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Abstract. In this work, we introduce a fast numerical algorithm to solve the time-
dependent radiative transport equation (RTE). Our method uses the integral formula-
tion of RTE and applies the treecode algorithm to reduce the computational complexity
from O(M?+1/4) to O(M'+1/410g M), where M is the number of points in the physical
domain. The error analysis is presented and numerical experiments are performed to
validate our algorithm.
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1 Introduction

The radiative transport model plays an important role in quantitative modeling and anal-
ysis of particle transport processes in many physical and biological applications such as
astrophysics [5, 19], nuclear engineering [23, 30], biomedical optics [1, 2, 25, 33, 41], ra-
diation therapy [20,37]. In this paper, we consider the numerical solution to the time-
dependent radiative transport equation (RTE) with isotropic scattering kernel:

oo (x)(u) (,x)+ f(£,x) in (0,T]x QxS 71,
0 on {0} x Qx84 1, (1.1)
0 on (0,T|xT_,

u(t,x,v)+[v- V4o (x)] u(t,x,v)

u(t,x,v)

u(t,x,v)

where the space Q) CIR? is a convex domain with smooth boundary 9Q), $%~! denotes the
unit sphere in R%. T'_ :={(x,v) €9Q xS~!|v-n, <0} (ny being the unit outward normal
at x € 0Q)) is the incoming boundary set. 0;(x) and o;(x) are the total absorption and
scattering coefficients, respectively. Physically speaking, the coefficient o;(x) represents
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the strength of the scattering of the underlying medium at x€ Q) and o, (x) :=03 (x) — 05 (x)
represents the strength of absorption of the medium. f(¢,x) is a time-dependent isotropic
source function (which is not dependent on v). The quantity (u)(¢,x) is defined by

() () = / u(tx v )dv', (1.2)

Gd—1

where dv’ is the normalized surface measure on $¢~1. For the sake of simplicity, we have
assumed there is no incoming source on the boundary, and the solution u(t,x,v) is zero
at t=0.

The analytic solutions for the time-dependent RTE (1.1) have only been found in spe-
cial setup, such as for homogeneous infinite or semi-infinite geometries [10, 26, 31], and
layered media [27]. Numerical methods for solving (1.1) has been extensively explored,
see [16,17,22,24,36] and references therein for an overview. These numerical algorithms
are mainly based on stochastic Monte Carlo [15,17,29], discrete ordinate [6,13,18,21,28],
or Py formulation [9,32]. The most challenging issue for solving the RTE numerically
is due to the high dimensionality of the phase space that includes both physical and an-
gular dimensions. Regarding time-independent problems, one of the popular ways is
based on the integral formulation to remove the angular variable by computing the an-
gular moments [11, 34, 35]. For isotropic scattering media, the fast algorithms based on
fast multipole method [34] and low rank matrix factorization [11] were developed. For
anisotropic scattering media, a truncated coupled system of integral equations for the
angular moments of the transport solution were studied in [35]. Particularly, for those
highly separable scattering phase functions such as Rayleigh or linearly anisotropic cases,
the integral formulation could solve the RTE very effectively by exploiting the low rank
structure of integral kernels [35]. Regarding time-dependent problems as (1.1), the in-
tegral formulation for infinite homogeneous medium has been carried out in [36, 40],
however the related fast algorithms have not been addressed yet.

In our work, we will pursue the integral formulation for angular averaged solution
for time-dependent RTE and develop a fast solver based on the treecode algorithm for
the resulting integral equation in space and time, which is more complicated due to the
manifold structure, a conical surface, for the domain of dependence. We will briefly
derive the integral formulation in Section 2 and provide a few mathematical preliminaries
in Section 3. Then we present our fast algorithm including discretization, error analysis,
and implementation details in Section 4. We provide numerical experiments in Section 5
and concluding remarks in Section 6.

2 Integral formulation

In this section, we first briefly introduce the integral formulation for the time-dependent
RTE (1.1). Let

z:=(tx) R, 0:=(1,v)e{1} xS 1, (2.1)
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We slightly abuse the notations without causing any confusion that u(z,0) = u(t,x,v),
f(z)=f(t,x), 0s(z) =0s(x), 0¢(z) =0¢(x). Let R(z) =05(z) (1) (z)+ f(z), then the RTE (1.1)
can be formulated as a usual linear transport equation:

0-V,u(z,0)+0:(z)u(z,0)=R(z) (2.2)

with the initial and boundary conditions in (1.1). Under the convention that u(t,x,v) =0
and f(t,x) =0 for t <0, we can solve the linear transport equation (2.2) by

u(z,0) :/OT(X’V)exp <—/Or(7t(x—sv)ds> R(z—r0)dr, (2.3)

where 7_(x,v) is the distance from the location x to reach the boundary 9Q) along the
direction —v, which is:

T_(x,v):=sup{r|x—r'veQ for 0<+' <r}. (2.4)
Integrate both sides of (2.3) over the angular variable v € $4~!, we will obtain

T (x,v) r
(u)(t,x)= /d 1/ exp <—/ U't(X—SV)dS> R(t—r,x—rv)drdv. (2.5)

si-1.Jo 0
To further simplify Eq. (2.5), let y=x—rv, which means r=|x—y| and v=(x—y)/|x—y]|,
and define the function E(x,y) as:

Exy)—exp (_/Ob(ym (x—s ;:;" > ds> ) (2.6)

which is the total attenuation due to absorption along the line segment between x and y
in Q). Use the transformation between Cartesian and polar coordinates,

dy =vy_1r* drdv, 2.7)

with v4_; as the surface area of the unit sphere $~!, Eq. (2.5) can be rewritten as

)t = [ OB ) (k= ly) =yl )y @9
Geometrically, Eq. (2.8) describes that the solution (u)(t,x) is an integral over the conical
surface formed by the characteristic lines in the cylinder [0,T] x Q, see Fig. 1. Our main
numerical algorithm will be based on the integral formulation (2.8) for the angular aver-
aged quantity (u). In the following context, we assume the coefficients 0;(x),os(x) and
the source function f(t,x) satisfy the following conditions.

A. The coefficients o5 (x),0:(x) € C*(Q) for some a €[0,1], and there exist constants ky,
c and ¢ such that

O
0<sup—<ko<1l, 0<c<o;<E.
o Ot
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Figure 1: The characteristic line (blue) in the phase space.
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B. The source function f € C([0,T] x Q) and f(0,-) =0. There exists a constant C that

satisfies

[f(Ex) = fsy)| <Crlw([s—t))+w(lx=yl)), V(tx),(sy)€[0,T]xQ,

where w(s):=s(1+|logs|).

3 Mathematical preliminaries

(2.9)

In this section, we provide a few basic but useful properties for the solution to the integral

equation (2.8).

Lemma 3.1. Suppose the assumption A is satisfied and f(t,x) € L®([0,T]x ), then there exists
a unique solution (u) € L®([0,T] x Q) to (2.8). Moreover, there exists a constant Co such that

([ (&) Nl e (0,11 ) < Coll fll o (0,77 x )

Proof. Define the operator IC: L®([0,T] x Q) — L®([0,T] x Q)

k)= [ e x-yly)dy,

vi1 Jo [x—y["17
then
1 E(x,y)
KU lmorson < (5 [ reoerosy)dy ) I imqor-o

(3.1)

(3.2)

(3.3)
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Use the transform between the Cartesian coordinate and the polar coordinate in (2.7),

1 E(X,y) /‘ /T_(x,v)
dy = E(x,x— —sv)dsd
le/ﬂ ’X_y’d_las()’) y g1 (x,x—sV)0s(x—sv)dsdv

_/sd 1/ (x,x—sv)o; (x— sv)US(x Sv)d dv

ot (x—sv)

gko/ /7 ’ E(x,x—sv)at(x—sv)dsdv
si-1.Jo

:ko/sdi1 (1—E(x,x—T_(x,v)V))dv. (3.4)

For the last equality we have used LE(x,x—sv) = —E(x,x—sv)c;(x—sv). Therefore
|Cllop < ko<1, where |[|-||,, means the operator norm, which implies K is a contraction.
The solution (u) can be solved through

()= (T—K)"K (({) (35)
Hence the conclusion follows by the Banach fixed point theorem that
ko
[ (e) |z ([0, x ) < -k )||f||L°° 0,T]xQ)- (3.6)
The proof is completed. O

Lemma 3.2. Suppose the assumptions A and B are satisfied, then
| () (£,x) = (1) (s,%) | < CoCreo([s —H]). (3.7)

Proof. Define
w(T,x) = (u) (7,x) = (u) (T— (t=s),x), (3.8)

then w(t,x) = (u)(t,x)—(u)(s,x) and w satisfies

)_ 1 / E(X/Y)US(Y)W(T

w(T,x)= —|x—vy|,y)d
(T,x s Jo ey x—yl,y)dy

L[ Y eyl fle () - xoylyldy. 69)

Vi1 Ja [x—y[*!

Since f(0,-) =0, then with the convention that f =0 for t <0 and monotonicity of w(s) =
s(1+|logs|), we obtain

f(T=Ix=yly)=f(t=(t=s) = [x=yly)| <Crw([s—t]). (3.10)

By Lemma 3.1, we conclude that [[w|| .~ ([o,71x ) < CoCrew([s —1]). O
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Lemma 3.3. Suppose the assumptions A and B are satisfied, then there exists a constant C such
that
[ () (£,) = (u) (t,2)| < Cw([x—2]). (3.11)

Proof. Denote R=05(u)+ f, then we can decompose
(u)(t,x)—(u)(t,z) =Th + Tr+ s, (3.12)
where 7;,i=1,2,3 are:

I,= /Q { E(xy) __E(zy)

= - R(t—|x—yl,y)dy,
vi1Jalx—yl@t  |z—yld-t

= vdll A E|(zZ'—y§T5—(1Y) () (t=Ix=yly) = () (t=|z—yly)ldy,  (313)
Is= lel /Q |ZE_(§,,|};>_1 [f(t=Ix=yly)—f(t=|z—yl|y)]dy.

By Lemma 3.2 and the assumption B, | Z,| < CoCrw(|x—z|) and |Z3| < Cw(|x—z|). For I,
by [38, Lemma 2.3] that |Z; | < Cw(|x—z|), therefore | (u) (t,x) — (u)(t,z)| <Cw(|x—z|). O

4 Numerical algorithm

In the next, we will develop an efficient numerical algorithm to solve the integral equa-
tion (2.8). When (u)(t,x) is known, the solution u(¢,x,v) can be easily computed by (2.3)
using a fast sweeping method [14]. The main advantage of this algorithm is that it does
not require an explicit discretization for the angular variable v. It is clear that the compu-
tational cost for (2.8) will be only depending on the time and spatial variables. In many
practical applications such as radiation hydrodynamics [7], astrophysical plasmas, the
main quantities of interests are not the local solutions u(f,x,v). In these cases, we do not
even need to perform the computation for (2.3) and the computational complexity will
be completely independent of the angular variables.

4.1 Discretization of time
Definition 4.1. Let S;=t;,t;+1], i=0,---,N as an equispaced subdivision of [0,T] that
O=tg<---<tny=T, tig1—t;=h, 4.1)
then t;=ih. Denote the piecewise linear continuous function on [0,T| as
Vi={peC([0,T]): |5, € P1(S;), VI <i <N}, (4.2)

where Py (S;) is the set of linear polynomials on S;. The space Vj, can be spanned by the nodal basis
{p1}141 C Vi, where ¢)(t;) =6, where &; is the Kronecker delta.
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We seek for the time domain piecewise linear solution wy,(,x) to the equation (2.8).
Let (u); and fj, be the corresponding approximations for (1) and f in the form as

Zwl x)¢; (1), fh (t,x) ZCZ (4.3)

where w;(x) = (u);(#;,x), ¢;(x) = f(t;,x) by the definition of ¢;. At the time step t =1,
w;(x) satisfies the following integral equation instead,

N X
0= 1 [ ey ()t~ ey ey be-yl)dy. 40

Define the standard hat function V(t) supported on [—1,1] that

1—t, iftel0,1],
V(t)=< 1+t, ifte[-1,0), (4.5)
0, otherwise,

then ¢ (t;—|x—y|) can be represented by

¢k<tz—lx—yl>=V<”‘hy’+k l) (46)

The integral equation (4.4) is then rewritten as

1 x=yl .
wy(x) = o 1/@|x ST 12(75 ( - +k l>dy
1 —y|
k—1I)d 47
+vdl/mx yrdlz < T >-" ®7)

It is worth while to notice that the above formulation (4.7) implies causality, this is be-
cause

V(IX;yI +k—l> #0 <— —1<|XZ—Y|+k—Z<1, (4.8)

hence | > k- @ —1, since I,k € N, we must have [ > k. In fact, there are at most two
choices for k to take nonzero values, the summation in (4.7) over k can be reduced to k<!
instead. The error from discretization in time is estimated in the following Lemma 4.1.

Lemma 4.1. Suppose the assumptions A and B are satisfied, then

1) (£,) = () (£,) [ 1= (10,71 x2) < O(w (R)). (49)
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Proof. With the condition provided for f, we can extend f to (—oo,T]| x Q) by zero exten-
sion without changing the continuity class, then || f; — fl| 1= ((—co,x0) = O(w(h)). Take
en(t,x) = (u),(t,x)— (u)(t,x), then

e (£,x) = (u)n (£,%) = (u) (£,x)

1 E(x,
7R /Q |x—();|}:l)—1‘75(Y)eh(tl_ x—yl,y)dy
1 E(x,
Vi1 /Q ]x—();]z)l (fu(ti—Ix=yly)—f(ti—|x=yl,y))dy. (4.10)

By Lemma 3.1, we obtain that

lenll (0,11 ) S Cll fu = fll L (oo, 11 x ) = O(w (h)). (4.11)

The proof is completed. O

4.2 Discretization of space

Clearly, in order to solve Eq. (4.7), one has to evaluate the volume integrals on the right-
hand-side. We follow the piecewise constant collocation method (PCCM) introduced
in [34, 38] for the spatial discretization. The discretization is constructed as follows:

1. Partition of (). For a small />0, we partition the spatial domain () into two parts:
boundary part Qf and interior part Qf, where

O :={x€: dist(0Q,x) <f*} and Qf=Q\Q. (4.12)

Let { Tp,g}y: 1 of Q be a spatial discretization, that is T, ;T =@, Vp # p’ and
O= Uﬁil T,,¢, which also satisfies that: (a) diam(T), ) </, Vp; and (b) Tp,gﬂﬂf +0,
Vp. (It means no cell T, ; is completely in O, which can be easily satisfied since the

thickness of Q)f is of order ¢2.) It is then clear that M~ O(¢~%). Forany 1<p<M,
if T, NQY #D, we set T;:,z :=T,NQ when it is not empty.

2. Collocation Points. For each cell Tp,g in the discretization, we locate the collocation
point x, € T, 4 as follows:

(@ T, C Qf, X is chosen as the mass centroid point

)
Xp=-— zdz. (4.13)
y ’TP,A Tp,l:‘

(b) I T, ﬂﬂg # @, choose an arbitrary x;, € T;,E.
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The simplest example of the above discretization is to use a uniform grid G with cell size
of ¢. For a cell Tp,g C G contained in (), we choose its centroid point as the collocation
point. For a boundary-incident cell T, , CG such that T, ;NdQ)#®, we replace the cell T, ;
by the intersection Tp ¢=Tp¢NQ) and choose an arbitrary point in T;M as the collocation
point. When the boundary 9Q) is C?, the boundary part dQNT,, can be approximated
using a tangent plane or secant plane. The difference of measure in this case is of order

O(£2).
4.3 Linear system from discretization

With the above discretization scheme in space, for each I that 0 </ <N, we approximate
w;(x) and ¢;(x) with spatially piecewise constant functions @;(x) and ¢;(x), respectively,

_ M [4 _ _ M P . 1, xe Tp,g,
=Y wixp(x), ax)=) cxp(x), xp(x)= 0 (4.14)
=1 p:l 7 Xg Tp,f'

Replacing w; by w; in the integral equation (4.7) and using causality, we obtain the dis-
cretized linear equation for @;(x,) =w}:

_ (xp,y)os(y) ., ( 1xp—I 2
_Vd 1,1211];)</q6 [xp =yl V( h + l))dy) g

+L§Zl: </ E(XP/Y)_ V<!Xph—Y’+(k—l)> dy> . (4.15)

Va1 ,235=0 \/ Tax |XP_Y|d !

Similar to [34], we take the following approximations for the local integrals on T, ;,

/ E(xp,y)os(y )V<|xph Y|+( Z)> dyzW(xp,xq)Us(xq)V<w+(k_l)>;

T Pp—yl*!

/ E(xp,y)_ V<’Xph_y’_|_(k_l)>dy%W(Xp,Xq)V<w+(k—l)>/

T [xp =yl

where W(x,,x;) denotes the following local weakly singular integral,

1
W(x,,x;) = E(x,,x / ———dz. (4.16)
ox0)=ECp) [
Therefore we obtain an explicit linear system of (4.15) as follows:
[xp =X
o= L W v (B ) @t ), @)
Vi—1 . 21k=0

where the left-hand-side is only relevant to the time-step /, while the right-hand-side
involves the terms on time-steps k </. Note that the evaluations of V actually only has
at most two nonzero values for each pair of g4 and I. In particular, if the time step / is
smaller than the grid size /, then (4.17) is an explicit scheme in time.
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Remark 4.1. As [34] points out, the function W(x,y) could be analytically evaluated un-
der certain circumstances. For example, consider the two-dimensional case (d=2), and let
the discretization T, be identical and square. Let T(y) be a square centered at y=(y1,42)
with side length of £. Let x=(x1,x2), t =y1 —x1, and t, =y» — x,. It is then easy to verify

that
1 1 Y] Y
/ x—z|'"dz=} ZijP<t1+i—,t2+j—> (4.18)
T(y) 2 2

i=—1j=—1

with the function F(r,s) given by

F(r,s)=sgn(r)sgn(s) <|r]10g(|s]+\/r2+sz)+ ]s|log(|r]+\/r2+52) —|r|log|r|— |s]10g]s|).

This calculation works for any (x,y) pair over () x () and any side length ¢ > 0.

4.4 Error analysis

We now estimate the numerical error for the discretization in (4.17). First, we prove the
following lemma.

Lemma 4.2. For any ke (ko,1), there exists an £y >0 (depending on k) such that for any cell size
e (0,4y) and any x€Q),

1 M/ E(x,xg)

T, [x—yl4~!

0u(x,)dy <. (4.19)
Vg—1 g=1

Proof. Lemma 3.1 says

Ly / L) o (y)ay = /Q PO o (y)dy <ko. (4.20)

vt B, ey TV T o ey
Then
1 M/ E(x,y) 1 M E(x,x4)
- — "7 . dy— — / ——0s(x,)dy =11+, 4.21
s i, ey YT D ey b @2
where
I 1 M/ E(X,y)—E(X,Xq)U( )d
! Vd-1 ;=17 Ty ’X_y,d_l Sy
! (4.22)
1 M E(x,x;) '
Ih=—— / (g (y) —os(x,)dy.
2 Vi—1 q=1 Ty |X_Y|d_1( S(Y) S( l]) y

Since ¢; € C*(Q)), we obtain Vy € (),

01(y) = 01(xq) = Vor(xq) - (y=%g) + O(ly —x "), (4.23)
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then when x,, #x;, E(xp,y) is differentiable in T, , that
E(xp,y) —E(xp,xg) = VyE(xp,Xq) - (y—%4) +O(ly —xp |1, (4.24)
when x;, = Xq, We derive that
E(Xp,y) - E(xp,xq) = E(XP/Y) —1= O(|xp -yl). (4.25)

Fix x,, let the set Nj,:={x;:(n—1){<|x, —x,| <nl} which stands for the collocation points
within a thin shell, then |N,,| < O(n~!). Then we can estimate Z; by

o) E(xp,y)—
/Y) E(prxq)
T,/ <C / p i
| 1’ ’12::1 Xq;\fn Ty ’xlﬂ_y,dil Y
E(xp,y)—1 own L e
gc/ kS0 Uy i p)d-l__ =y
-y T |TC L 0
=0(A)+0( ) =01, (4.26)

Use the similar approach, we also obtain |Z;| < O (¢1*). Therefore

1 M/ E(x,x4) 1
— — g (xg)dy <ko+O(£17), 4.27
wiuginxh—yw* <(xg)dy <ko+O(£1F) (4.27)

therefore when £ < O((k—ko)'/(1+%)) is sufficiently small, the right hand side of (4.27) is
strictly less than k. O

Theorem 4.1. Suppose { is small enough such that (4.19) is satisfied. Define the spatially piece-
wise constant solution wy, (t,x)

N M
p(tx)=Y_ Y @l xp(X)pi(t), (4.28)
I=0p=1

where @} is defined as (4.14). Then |y (t,xp) — (u),(t,xp) | <O (w(h)+w(£)) for any collocation
point xp.

Proof. Define the difference é(t,x) := (u); (f,x) —wy,(t,x), which satisfies

e(t,xy) = (o5 (y) () n(t=xp =yl y) + fu(t=Ixp =yl y)) dy

1 M / E(xp,y)
Vd—1 217 Ty |Xp_Y|d71

1 M E(xp,x4)
_Eq—l/ﬂww

= /Ch,gE—i—Il +I,+13,

((Ts(xq)wh(t_ |Xp _Xq|/xq)+fh(t_ |Xp —xq|,xq))dy
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where the integral operator ), s is

1 M E(xp,x7)
Ky e:= —— /#Uxét—x—x,x dy, 4.29)
h.t Vi1 = T, |xp_Y|d_1( S( q) ( | 4 Q| Q)) y (

which is a contraction operator in L*([0,T] x Q}) by Lemma 4.2. The quantities Z;, i=1,2,3

are defined as:

Ilz_l M/ E(xp,y) —E(xp,Xg)
Vi—1 q:l Tq( |XP_Y|d_1

I, 1 M E(xp,x4)

=P e
—lg=1" Y9t 1P y

1 M/ E(xp,x4)

Ty=—
v S, =yl

(Us (y)(u)n(t— ’XP_Y|/Y) + fu(t— |xp_Y|/Y)) dy,
(fult=Ixp=y|,y) = fu(t=Ixp—%q1. X)) dy,

(s (y) () (= [xp =y 1, y) =05 (xg) ()i (= [xp = Xq |, %) ) dy -

The estimate |Z;| < O(¢!*) is the same as the in the proof of Lemma 4.2. For the estimate
of 75, it is simple to derive that

n(E=Ixp =y 1y) = fu(t=xp =4, %) | <O(w () + O(w(4)) (4.30)

using the relation between f and f;,. Therefore |Z;| < O(w(h)+w(¢)). By Lemma 3.2
and Lemma 3.3, we have |Z3| < O(w(h)+w(¥)) as well. From the contraction property

of K, s, we get the estimate of the numerical error of the discretization schemes &(t,x) <
O(w(h)+w(X)). O

4.5 Treecode algorithm

To solve the linear system (4.17) at the [-th time step, we need to evaluate the summation
on the right-hand-side with k <[ which is the main cost when using the integral formula-
tion. Direct evaluation of such a summation will take at least O(M?) operations. We will
accelerate the summation in (4.17) using the treecode algorithm [3].

In the treecode algorithm, the point set {x,, }2’1: 1 is partitioned into hierarchical clusters
{Cs} with k-d tree structure, we call the leaves of the k-d tree as leaf-clusters, if a cluster
C; is produced by partitioning C; directly, then we call C; as a child-cluster of C;. To
determine whether or not a cluster C; is in the far-field of the point Xp, We let  be the
radius of cluster Cs and R is the distance between the center of Cs to x,, when r/R <6 for
some user-specified parameter 6, then the cluster C; is assumed to be in the far field of
xp, otherwise the cluster is assumed to be in the near field of x,. Using the hierarchical
structure, the summation in the following form

M
u(xp) =Y K(xpxg)f(xg), 1<p<M (4.31)
q=1
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can be re-grouped into

u(xp) =Y us(xp), us(xp):=Y_ K(xp,xq)f(x4), (4.32)

seS x7€Cs

where S is a certain index set depending on x,, Cs denotes a cluster in the far-field of
x, or a leaf-cluster such that UscsCs = {xlg}g/fz1 and C;sNCy =@ when s #t. When the
cluster C; is in the far-field of the point x,, the quantity u; can be evaluated through
some approximation with a lower computational cost. Here we follow the interpolative
idea in Fong-Darve’s fast multipole method [12,39]. Let Ty be the first-kind Chebyshev
polynomial of degree k defined on [—1,1], then we define the interpolation function

i=1 n nk

d 1 2)’171
Su(xy) =11 <—+— Tk(xi)Tk(yi)> , (4.33)
1

where x=(x1,-++,%3)€[~1,1%, y=(y1,--- ,ya) €[~1,1]%. Assume the cluster C; is contained
in a hypercube X; that C;CX ]-::]_[fl:1 [a;,b;] which stays in the far-filed of x,, we can define
the linear transformation £;:[—1,1]% — X that

_at+b b-a

2+2

where © denote Hadamard product between two vectors. The transformation £ maps
the standard Chebyshev points in [—1,1]¢ to the scaled Chebyshev points in X. Then we
can approximate u; by the following interpolation formulation [8],

Lix ©x, a=(ay,--,a3), b=(by,--,by), (4.34)

nd

us Y K(xp, Lsym) Zsm (4.35)
m=1

with Z; ,, evaluated in the following two cases:

1. If C, is a leaf-cluster, then

Zs,m: Z Sn(ﬁglxq,ym)f(xq);

x7€Cs

2. Otherwise,

d

Zs,m - Z Sn (Es_lLtYr/Ym)Zt,rr
r=1

=

t
C; is a child-cluster of Cg

where {ym}’j::l € [-1,1)% is the set of d-dimensional Chebyshev interpolation points
formed by tensor product of the nth order Chebyshev points on [—1,1]. Then the sum-
mation (4.31) can be approximated by

u(xp) =Y Y K(xp, Lsym)Zsm- (4.36)

seSm=1
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Applying this approximation to (4.17), we obtain the accelerated summation for the right-
hand-side. Since the local summations Z; ,, can be precomputed from bottom to top on
the k-d tree with O(M) time complexity, the computation complexity will be reduced
to O(MlogM) for each time step. If the time step h >~ O(¥¢), then total number of time
interval N ~ O(M'/%), which means the total computation complexity with treecode al-
gorithm is O(M'*/logM).

Remark 4.2. In the above treecode algorithm, the evaluation of E(x,y) in the kernel func-
tion K(x,y) is of computation cost O(1) if the integral of ¢; is known analytically or the
involved evaluation is precomputed. In practice, if the coefficient o; is only known on the
collocation points, the evaluation cost of E(x,y) is proportional to the number of grids
along the segment connecting x and y, which is O( @) with a naive summation. In this
case, the total precomputing cost is at O(M'+1/?1ogM). Hence the total computational

complexity is still O(M'+1/4log M) if h~O(¥).

Remark 4.3. The accuracy of using the Chebyshev polynomial (4.33) in the interpolation
formulation (4.35) depends on the smoothness of the kernel function. Since piecewise
linear interpolation is used in time, the kernel function is only piecewise linear in space.
Hence, the numerical solution to the treecode algorithm will not approximate the true
solution of the discretized linear system very accurately even if high order interpolation
is used. However, as long as this interpolation error matches the numerical discretization
error for the integral equation, for example, see the Experiment II of Section 5, when the
interpolation order n =3, our treecode based algorithm already provides a fast solver for
time-dependent RTE. When the mesh becomes finer and finer, the order of interpolation
may need to be increased to maintain the accuracy.

5 Numerical experiments

In this section, we demonstrate the fast algorithm for the time-dependent radiative trans-
port equation with numerical experiments in 2D', the numerical experiments are im-
plemented in C++, the treecode algorithm is naturally parallelized with OpenMP. The
computational domain is fixed as 2=10,1]> and T =1 for the following experiments. For
simplicity, we take the uniform spatial discretization with cell length /= M~1/2 and the
time step h =/, where M denotes the total number of collocation points in (2. We also
denote t;;, as the running time by computing (4.17) directly and ¢, as the running time
for (4.17) with the treecode algorithm. The source function f is chosen as the following:

f(t,x) =4t exp(—40|x—r1(t)|?), (5.1)

where r(t) = (3+2cos(47t), 5+ Lsin(47t)), which represents a Gaussian point source
with increasing intensity traveling two rounds around the center of (). All the numeri-

*The code repository is hosted at https://github.com/lowrank/treecode_rte.



360 H. Zhao and Y. Zhong / CSIAM Trans. Appl. Math., 1 (2020), pp. 346-364

cal experiments are performed using a desktop with 12 Intel Xeon CPUs at 2.27GHz and
32GB memory.

5.1 ExperimentI

In the first experiment, we take 0,=5.0 and 0;=5.2. Let (1) 4;, and (u) s, be the discretized
solutions to (4.17) with and without treecode algorithm to accelerate respectively. We use

V) e — () el
E,»= 5.2
N T 6-2)

to measure the difference. We show comparisons of solutions in two cases.

Case I. We fix the Chebyshev polynomial interpolation of order n =6 and let the pa-
rameter 6 (the ratio of the cluster size and the separation distance) in treecode algorithm
take values: 6 =0.3,0.4,0.5,0.6,0.7. The numerical results are shown in Table 1. Since the
coefficient oy is a constant, we evaluate E(x,y) =exp(—o;|x—y|) directly, one can observe
that the growth of running time t,;, with respect to M is almost at order of O(M>/2) and
the growth of t;. is relatively slower. As the parameter 0 decreases, the approximation
error E;» becomes smaller.

Table 1: The computational time and relative error between the solutions with and without the treecode
algorithm under different values of the parameter 6 and collocation points M. The Chebyshev polynomial
interpolation’s order is fixed as n=6.

M n 0 tdir(s) ttree(s) Ep
2,304 6 0.7 2430 396 4.59x1072
2,304 6 0.6 2430 470 2.59x10°2
2,304 6 05 2430 580 1.20x10°2
2304 6 04 2430 725 3.88x1073
2,304 6 03 2430 936 6.53x10°*
4,09 6 0.7 9515 10.85 6.07x102
4,09 6 0.6 9515 12.89 3.99x1072
409 6 05 9515 16.16 243x10°2
409 6 04 9515 2430 1.28x1072
4,09 6 03 9515 29.05 4.81x1073
6,400 6 0.7 3007 2394 6.27x1072
6,400 6 0.6 3007 29.84 4.16x107°2
6,400 6 05 300.7 3843 2.54x10°2
6,400 6 04 3007 5062 1.35x1072
6,400 6 03 3007 7025 5.01x1073
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Case II. We fix the parameter 6 = 0.3 and let the Chebyshev polynomial’s order n take
values n = 2,3,4,5,6. Similar to Case I, since the coefficient ¢; is a constant, we have
evaluated E(x,y) =exp(—ot|x—y|) directly in the experiment. The numerical results are
shown in Table 2. We can find that increasing the order n of Chebyshev polynomial is not
effectively reducing the approximation error, this is due to the deficiency of smoothness
of the integral kernel in (4.17) as explained in Remark 4.3.

Table 2: The computational time and relative error between the solutions with and without the treecode
algorithm under different interpolation orders 1 and collocation points M. The treecode algorithm related
parameter 6 is fixed as 6 =0.3.

M n 0 tdir(s) ttree<5) Eﬁ
2,304 2 03 2430 3.08 1.54x10°2
2,304 3 03 2430 486 4.48x1073
2,304 4 03 2430 6.03 447x1073
2,304 5 03 2430 7.89 4.48x1073
2,304 6 03 2430 936 6.53x107*
409 2 03 9515 875 1.18x10°2
409 3 03 9515 1417 8.08x1073
409 4 03 9515 2058 4.80x1073
409 5 03 9515 2482 4.81x1073
409 6 03 9515 29.05 4.81x1073
6,400 2 03 3007 2128 1.32x1072
6,400 3 03 3007 3612 7.22x1073
6,400 4 03 3007 5095 7.21x1073
6,400 5 03 3007 6136 5.01x1073
6,400 6 03 3007 7025 5.01x1073

5.2 Experiment II

In this experiment, we study the self-convergence tests on the accuracy of the solutions
to (4.17) with the treecode algorithm. We perform the numerical simulation with ¢, =5.0
and 0; =5.2 for different cell sizes £ = m for 1 <k <8 and different Chebyshev poly-
nomial interpolation order: n=3, n=4, n=>5. The solution at k=8 is taken as the reference
solution, the numerical relative errors are evaluated using the /2-norm on the common
collocation points at the coarsest level k=1. We can observe that the convergence is faster
than linear (see Fig. 2). This is partly because the collocation points on the coarsest level
are reasonably far from the boundary, thus the numerical solutions on these points are

less affected by the boundary effect.
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Figure 2: The numerical errors with respect to various grid sizes with 0y =>5.2 and 05=5.0. The relative £2 error
of the solutions are compared with the reference solution calculated at the finest level k=8. The Chebyshev
polynomial interpolation order from left to right are: n=3, n=4, n=5.

6 Concluding remarks

In this work, we develop a fast algorithm to solve the time-dependent radiative trans-
port equation in isotropic media. The method is based on the integral formulation (2.8)
and uses the treecode algorithm to accelerate the computation. Numerical experiments
are performed to show the efficiency and accuracy of the algorithm. We emphasize that
the integral formulation does not rely on the assumption of infinite homogeneous media,
which is different from existing methods [36,40]. For inhomogeneous media, the treecode
algorithm involves evaluations of path integrals for different pairs of (x,y). Although the
computation cost is increased compared to that in the homogeneous case, those evalua-
tions can be precomputed once and reused for each time step. The total computational
cost is the same order as the case of homogeneous media, which is (’)(MHU d logM),
where M is the number of collocation points in the physical space.

The main contribution of this work is on the combination of the integral formula-
tion (2.8) and the treecode algorithm to accelerate the solution for the time-dependent ra-
diative transport equation. We believe there are other ways to solve the time-dependent
radiative transport equation efficiently, e.g., solving the equation in frequency domain
with the idea from [4], which will be studied in our future work.
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