Quantitative PAT with simplified Py approximation
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Abstract

The photoacoustic tomography (PAT) is a hybrid modality that combines the optics and
acoustics to obtain high resolution and high contrast imaging of heterogeneous media. In this
work, our objective is to study the inverse problem in the quantitative step of PAT which aims
to reconstruct the optical coefficients of the governing radiative transport equation from the
ultrasound measurements. In our analysis, we take the simplified Py approximation of the
radiative transport equation as the physical model and then show the uniqueness and stability
for this modified inverse problem. Numerical simulations based on synthetic data are presented
to validate our analysis.

Key words. photoacoustic tomography (PAT), radiative transport equation, simplified Py method,
diffusion approximation, numerical reconstruction

1 Introduction

The photoacoustic tomography (PAT) [3, 6, 9, 21, 37, 34, 29, 31] is an emerging hybrid imaging
modality that reconstructs high resolution images of optical properties of heterogeneous media.
The PAT experiment uses a pulse of near-infra-red (NIR) laser into the medium of interest (e.g.
fat, bone, tumor tissues). These photons propagate inside the medium by following the radiative
transport process. During the propagation, a portion of the photons is absorbed by the medium
and then converted into heat which causes a local thermoelastic expansion. Such expansion induces
a transient pressure change and leads to the propagation of ultrasound. The ultrasound signals
are measured around the boundary of the medium and we need to infer the optical properties from
the acoustic measurements.

The photon transport process is usually modeled by radiative transport equation. Let X =
Q) x S?, where € is the physical domain and S? denotes the unit sphere in 3D, the photon density
function u(x,v) satisfies the following

v - Vu(x,v) + o (x)u(x, v) = 0s(x) /S2 p(v - v)u(x,v')dv in X, 0

U(X, V) = f(xa V) onI'_ )

where T'_ = {(x,v) € 9Q x S¥1 | —y(x) - v > 0} is the incoming boundary set. o, 0o, are the
scattering and total absorption coefficients respectively, o, := oy — 0 is the intrinsic absorption
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coefficient. f(x,v) is the external illumination source. The scattering phase function p(v - v') is
usually chosen as the Henyey-Greenstein function
1-— 92
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where g € (—1,1) is the anisotropy parameter.
The energy absorbed by the medium is o, fSQ u(x, v)dv, then the initial pressure field generated
by the photoacoustic effect is:

H(x) := T(x)aa(x)/ u(x,v)dv, (3)
S2
where T (x) is the dimensionless Griineisen coefficient which measures the efficiency of the photoa-
coustic effect.
Then the initial pressure field H (x) propagates the ultrasound wave, which satisfies the following

equation [35]:
1 0%p(x,t) B R
(%) oz Axp(x,t) =0, in R” x [0, 00), "
px,0) = H(x), L(x,0)=0, R

ot

Here ¢(x) is the wave speed of the underlying medium. The measured acoustic signals are p(x,t)
on 09 x [0,T] for sufficient large observation time 7'

The usual reconstruction of PAT is a two-step process. The first step is to reconstruct the initial
pressure field H (x) from the ultrasound measurements. This problem has been studied extensively
by [I, 2, 35, 17, 18] and the references therein. Here we assume this step has been finished and
recovered the initial pressure field H(x) and we focus on the second step to reconstruct the optical
properties (04,05, T) from the quantity H(x). Under the diffusion approximation, this quantitative
PAT (qPAT) problem has been well studied [10, 28, 4, 5]. However, with the radiative transport
equation (1), the multi-source inverse problem theory has not been well established except for
albedo type data [23, 4], which requires infinitely many angularly resolved illumination sources
f(x,v). The reconstruction of only absorption coefficient o, has been recently considered in [33]
for nonlinear setting. It is still unclear about the uniqueness and stability of the reconstructions
of (04,05, T) with finite many source functions or angularly independent sources.

In this paper, we aim to study the qPAT problem with the simplified Py (/N being an odd
integer) approximation to the equation (1) with angularly independent source functions, that is,
f(x,v) = f(x). The simplified Py approximation is also referred as S Py method, which is utilized
to solve the radiative transport equation by forming a system of elliptic equations [25, 20]. The S Py
approximation with relatively small N < 7 has been applied to many optical imaging methods [38,

, 19] and outperforms the traditional diffusion approximation (P; method). Theoretically, the
simplified Py approximation is derived from the Py formulation [15] and the Py approximation
converges to the exact solution of RTE as N — oo. Under appropriate conditions SPy and Py
are equivalent, see [25], however in general, they are different and not necessarily converging to the
same limit. For the qPAT problem, the case with N = 3 has been considered in [12], in our work,
we extend the theory to arbitrary order NV under a unified framework.

Under the SPy approximation, the RTE’s solution is expanded with Legendre polynomials,
which derives a weakly coupled diffusion equation system [20]. Formally, the 3D SPy approxima-
tion takes the 1D Py equations and replace the diffusion operators with 3D’s counterpart, which
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for n =0,2,4,..., N — 1, where coefficients o, = 04 + 05(1 — g"), 09 = 04. The system is closed
by seting ¢, as zeros for n > N + 1 and n < —2 and only consists of even-indexed ¢,,. Physically
speaking, ¢, represents the n-th Legendre moments of the solution u(x,v) and ¢¢ will be the
angular average of the solution. The corresponding mixed boundary conditions are derived from
the 1D Py equation’s boundary conditions by replacing % with n - V on the boundary [20].

In the following context, we let

(®)

on = (2n—1)pan—2+ 2n)p2,, n=1,2,...,(N+1)/2, (6)
and the column vector ® = [p1, ¢2,. .., @(NH)/Q]T, which satisfies
»1 %o 0 ... 0
2 b2 034 ... 0
¢ = ¥3 =M]| ¢4 where M := |0 0 5 ... 0], (7)
O(N+1)/2 ON-1 000 ... N
since the matrix M is upper triangular, its inverse is also upper triangular, let the row vector s =
[Sk,15- - - Sk, (N+1)/2] represent the k-th row of the inverse matrix M, according to Lemma A.1,
its entries are ) (-2 (211
I—k —2)! (2k—1)!!
_ 2k—1(_1) QI=DI (2k=2)11 L2k,
Skl = : (8)
0, otherwise .
Then we derive the SPy diffusion system
Ap B,
-Veere———Vp, - Ve —————— Vo, 98y, P =0 9
(47‘L — 1)0'271—1 ¥n (4n — 5)0'271—3 Pn-1 + T2n—25n ( )
forn=1,2,...,(N + 1)/2, where the constants A,,, B,, are defined by
A 2n —1 _ 2n—2
" (4n-3) " (4n-3)

We remark that the following matrix differs from M 7T by only a factor of diagonal matrix,

A 0 0 0 10 0
By Ay 0 0 10

0 B3 A3 ... 0 = LM7T where L:=|0 0 3 (10)
0 0 0 Btz Awine 00 0 0 53

The corresponding mixed boundary conditions are
(N+1)/2

1 0
Z Hom—1,2n—2P2n—2 + om
n=1

(4m — 1)0’2m_1 on

=kom_1f, m=1,2,...,(N+1)/2. (11)



The constants pi2,,—1,2n—2 and ko,—1 are

1
Hom—12n—2 = (4n — 3)/ Popy—1(x) Pop—o(z)dx

0
L(m+ $)T(n—3) (4n —3)
al'(m)(n)(m+n—-1)2n—2m—-1"

1 . 2m — !
kom—1 = /0 Poy—i(x)dz =(=1)""" (2m — i)(Qm)(;m —2)’

— (_1)m+n71

where P; is the degree [ Legendre polynomial with normalization condition P;(1) = 1 and the
symbol !! dnotes the double factorial. Since we have assumed f(x,v) = f(x), these boundary
condition coefficients are simply obtained through integration with Legendre polynomials on the
half sphere (incoming directions) and independent of f.  For convenience, we also define the
following matrices ¥, and R for later uses,

o 0 0 0
0 oo 0 0

S.=0 0 o4 0
0 0 0 ... on.

and
R = (Rij)ij=12,.,(N+1)/2, With Rij = pa;—125-2.

In the quantitative photoacoustic tomography, we suppose the datum H(x) = YT(x)o,(x)¢pp(x) has
been reconstructed from the measured acoustic signals. In the following sections, we will analyze
the uniqueness and stability of reconstruction of the coefficients Y, 0., 05 from the internal data
H. We also make the following general assumptions for the rest of paper.

A-i The physical domain  is simply connected with C*' boundary.

A-ii The coefficients (04,05, ) are non-negative and bounded. There exists constants ¢ and ¢
that
0<c<o4,0: T <C<00. (12)

A-iii The coefficient o,,0, € C11(Q). There exists a constant My that
a CI,I(Q), s Cl,l(ﬂ) -~ 0 .
[oal o]l < My < o0

Moreover, o,, 0 are both known on 9f2.

A-iv The boundary source function f € H°/?(99).

The rest of the paper is organized as follows. We first present in Section 2 some general properties
of the forward problem with S Py approximation. Then in Section 3 we consider the reconstruction
of a single coefficient from a single data set H(x) and the reconstruction of two coefficients simulta-
neously with multiple data in linearized settings. We then demonstrate some numerical simulations
based on synthetic data in Section 4 to validate some of our theoretical results. Conclusions are
found in Section 5.



2 General properties

For the forward problem, we establish the wellposedness for the S Py approximation. In order to
show there exists a unique weak solution ® € [H'(Q)]™V*+D/2 for (9) and (11), we only have to
consider the corresponding variational form for the diffusion system. By rewriting (9) and (11)
into the matrix form,

—V - (LMTDV®) + 2. M~1® = 0, in Q,
® (13)
RM1<I>+Dgn = kf, on 99,

where D is a diagonal matrix with elements D,,, = W, n=12...,(N+1)/2 and kf is

a vector with n-th element as koj,—1f. Let U = [1)1, 49, ..., ¢(N+1)/2]T e [HY(Q)]V+D/2 be a test
function vector. Multiply the matrix form (13) with the vector LM ~!W¥ and integrate over €,
then the weak form of the S Py system is

(N+1)/2
B(®,7) —_ d
( Z / 4n—102n 1V<,0n Vipndx
+ / (M~TL7'S M3, U)dx +/ (RM™'®,U)ds
Q o0
=L(f, V),
where B(-,-) is a bilinear form, £ is a linear functional only involving boundary integrals that

(N+1)/2

Z k;Zn 1/ f¢nds (15)

We prove the following property of the bilinear form B(-, ).
Theorem 2.1. The bilinear form (14) is bounded and strictly coercive for any S Py approrimation.

Proof. The boundedness is obvious since L, M are both invertible matrices. We only need to
prove the coerciveness. In the following, we will show that the matrices M1 LM T and MTR are
positive definite. For MX!LM™| it is obvious since the diagonal matrix X2 'L has all positive
entries. For the matrix MT R, we compute its (4, k)-th entry by

(20 = DRip + (20 — 2)Ri1

1 1
= (20 — 1)(4k — 3) /O Poi1(z) Pop_o(2)dz + (2i — 2)(4k — 3) /O Poi_3(z) Popy_o(2)d

! (16)
= (4i — 3)(4]€ - 3)/ J:Pgi_g(x)ng_Q(a:)d:c
0
1
= / qi(x)qr(x)dr  with ¢;(x) = (4i — 3)V/xPoi_o(x),
0
where Py, is the k-th Legendre polynomial and we have used the recurrence relation
(22 — 1)P21'_1($) + (22 — 2)P2i_3($) = (47, — 3)21?P2i_2($) . (17)



Hence M TR is semi-positive definite. On the other hand, if there is a vector z = [21, . . ., Z(N+1)/2]T €

RW+1)/2 that
(N+1)/2 2

1
0= 2T (MTR)z = / v S (i - 3)Py o) | dr, (18)
0 k=1

then for any = € [0, 1], the following polynomial must vanish,

(N+1)/2
> zk(4k — 3)Pyp_o(x) = 0. (19)
k=1
Hence the polynomial equals zero for any x € R and use the fact { P (x) ,(girl)/ ? forms an orthogonal
basis on [—1,1], then Vk, z, = 0. Therefore MR is strictly positive definite, so is RM~! =
M~T(MTR)ML. O

The wellposedness immediately derives from the Lax-Milgram theorem, there exists a unique
weak solution ® € [H(Q)]V+1/2 for arbitrary odd integer N. In fact, using the assumptions
A-i to A-iv, the regularity theorem of elliptic systems [26] implies that the unique solution ® €
[H3(Q)]N+1/2 by the Sobolev embedding, the solution ® € [CLY/2(Q)](N+1)/2,

3 Reconstruction under SPy approximation

Generally speaking, if o, is not negligible, the inverse problem is highly nonlinear and very chal-
lenging. Therefore in the following, we only consider the practical scenario that o, < os(1 — g),
which means we can simplify the coefficients o,, = 0, + (1 — g")os ~ (1 — ¢")os for n > 1 and
0o = 04. This simplification decouples the coefficients o, and o,. In particular, if g = 0, there is
no need to perform such simplification.

Reconstruction of o, only. Suppose the coefficients Y, o, are known on 2, we consider the
reconstruction of g, from a single measurement datum H. Using the assumption that o, ~
(1 —g")os for n > 1, the coefficients o, are all known for n > 1. Since o, = 0g, then using
H(x) = T(x)04(x)¢0(x) and ¢g = s1 - P, we derive that

H(x)

T(x)s1 @ (20)

oo(x) =

By isolating the term relevant to og (n = 0) in the bilinear form (14), we can reformulated it as

(N+1)/2
_ I S _H) .
Bow= 3 it Vo Vst [ s )1 wi

(N+1)/2 21)
+ > / (4n — 3)oon_o(sn - ®) (s, - )dx (
n=2 Q
+/ (RM~'®,U)ds.
o

where the row vector s, denotes the k-th row of M ~!. We can establish the following uniqueness
and stability result.



Theorem 3.1. Given any SPy approzimation, under the assumptions A-i to A-iv and suppose
(Y, 05) are known, oq1 and 042 are two admissible absorption coefficients, Hy, Hy are the corre-
sponding internal data, respectively. Then Hy = Hy implies 0,1 = 042 and the following stability
estimate holds

H
[(oa1 — Ua,z)aa 11“1“ 2 < Cl|(Hy — H2) /Y|l 12(q) - (22)

where C' = C(N, ) is a positive constant depending on N and 2 only.

Proof. Let ® and ® be the weak solutions to the S Py system for the absorption coefficients o, 1
and 0,2, respectively. Let 6® := ® — ® = [y, ..., 5¢(N+1)/2]T, then from the bilinear form (21),
we obtain the equation

B(6®,T) / Hi— H2 s1-U)dx (23)

where the above modified bilinear form B(-, ") is
(N+1)/2
B(6®, ) —— Vo, nd
( Z / 471,—102 71v<,0 qu} x
(N+1)/2
+ Z / (41 — 3)o2n_2(Sp - 6B) (s, - U)dx
+/ (RM~16®, W)ds .
o0
Since RM ! is strictly positive definite, the coerciveness of B (+,-) is immediately deduced from
the Poincaré-Sobolev inequality [39] that Yu € HY(Q), Q C R3,
lullzs (@) < Cps (IVull 20y + lull 2 o0)) (25)

where Cps = Cps(Q2) is a positive constant depending on € only. Therefore there exists another
constant C(N, Q) that

H,— H
LN ) [5® ]2, 12 < B6®, 50) / BT, 0)ax

< [[(Hy — Ha) /Y| 20y lIs1 - 6@l 120 (26)
< |[(Hy = Ha) /Y| 2y Is1ll ez 16@ |22 sy /2

by the Holder inequality that

1
v llwre@) < I1VIleal[@lrr@yovnse, o i 1,
where the norm || - [[jyyx.p () v-+1)/2 is defined by
(N+1)/2
Hf||;FWk-,P(Q)](N+1)/2 = Z ||fn”Wkp f= [fl, s fN+1)/2]T
n=1

The estimate (26) implies

1
10|12 v+1/2 < N [(Hy — H2) /Y[ 120 lIstlle2 - (27)

7



Therefore the uniqueness is proved. For the stability estimate, we compute

H, — Hy ~
L B D) — oy, P
T 0a1(s1- @) = 0a42(s1- P) (25)
= (04,1 — 0a2)(s1+ P) + 0a2(s1 - 09).
Thus using (27), we obtain
Hy — Hy
001 = on)s1 ey < [ F lwalon 09
L2(Q
IR (29)
< (1+ clls1llz > HH1 — Hy
B Cl(N, Q) T L2(9)
Our proof is completed by noticing (20). O

The reconstruction algorithm for o, is then naturally divided into two steps. First, we solve ®
from the modified bilinear form (21), then recover o, by the relation (20) whenever s; - ® # 0. For
the general S Py system, we cannot guarantee the positivity of ¢g = s1 - @ for any positive source
function f(x).

Under appropriate conditions [25], the SPy approximation will be eventually converging to
the radiative transfer model. However, intuitively, when the order of system N grows, the recon-
struction of the coefficients will be less stable due to the coupling of the Legendre moments in the
solution. In the following, we study the relation of reconstruction’s stability and the system order
N. It can be shown that the reconstruction’s stability estimate’s constant in Theorem 3.1 grows
at most proportional to N“/S(l +log N).

Corollary 3.2. Under the assumptions A-i to A-iw, suppose (Y,05) are known, 04,1, 0g2 are two
admissible absorption coefficients, H1, Hy are the corresponding internal data, respectively. Then
Hy = Hy implies 0,1 = 042 and the following stability estimate holds

H,y
O'a’lT

(00,1 — 0a,2) 2y < CNME(1 + log N) [|(Hy — H2) /T 20 » (30)

where C' = C(Q) is a positive constant independent of N.

Proof. Recall the estimate (29), we only have to give an estimate for C1(N,Q) and ||s1]|% with
respect to V. Using the equation (24), we can estimate the lower bound of the coerciveness for
B(-,-) by neglecting the second term,

~ 1 B
B(é(I),é(I)) 2 WHV&I)H[QB(Q)}(NHW + >‘(N+1)/2(RM 1)”5¢||[2L2(8Q)}(N+1)/2 ’ (31)

Os

where A, (K) denotes the n-th singular value of K ordered from largest to smallest. Use the
inequality introduced in [24], we estimate the smallest singular value of RM ~! that

A+1)2(RM 7YY > X vy p(R) AN +1)2(M 1) = A1y 2(R) /AL (M) . (32)

Since the largest singular value A\j(M) = |[M||op, let v = [v1,v2,...,0nv41)2]" € RN+1/2 and
take the convention that v(y3)/2 = 0, then use the Cauchy-Schwartz inequality, we obtain

(N+1)/2
M]3, = Sup [Mv|? = Sup D> ((2k = v + (2k)ver1)? < AN?|v|? = 4N?. (33)
v|=1 v|[=1 k=1



Therefore we have A; (M) < 2N. In the next, we only need to estimate the smallest singular value

of R. According to the lower bound estimates introduced in [27, 16], the smallest singular value
satisfies -
N—1\ 1
Anty2(R) > | 72 |det(R)], (34)
[2diye
where || - |7 denotes the Frobenius norm, then use the results from Lemma A.2 and Lemma A.3

in Appendix, we have the estimate

Ay 2(R) > (x: > U det(R)| = O(N2). (35)

Therefore C1(N,Q) > cmin(m,)\(NH)M(RM—l)) — O(N-1/%). To estimate the upper

bound of ||s1 |2, we follow the Lemma A.1 that the row vector s; = [s1.1, ..., S1,(N+1)/2) 1s given by

2k -2t 7 T(k)

sl = op = =~ 2 T(k+1) (36)
Use the Gautschi’s inequality [14] that
1 I'(k 1
< ( )1 < , (37)
K+l Tlht3) -1
we immediately find out
_(N+1)/2
Is1]7 < 4 Z ; =O(1+1logN). (38)
—1 2
From the result of Theorem 3.1, the stability estimate now can be formulated as
H, — H
(001 = oualss®liaey < O30+ 1og vy [T (30)
L2()
O

Remark 3.3. It is possible to improve the above estimate by using a sharper bounded for the
Frobenius norm ||R|F in Lemma A.3. The simple bounds (32) and (34) are not sharp for the
smallest singular value of R, see Fig 1. It seems possible to achieve better estimate through the
calculation of R~1’s Frobenius norm by following the technique in [30].

Remark 3.4. As N — oo, the above result shows that the stability estimate’s constant will also
grow to infinity, this seems to give a negative answer to the uniqueness for ¢PAT with the radiative
transport equation. However, such estimate is only meant for the worst case, since the boundary
source could be chosen arbitrarily. In practice, if the source function f is sufficiently smooth, the
datum with respect to the SPy model H = Yao,s1-® will converge rapidly and the high order modes
will decay sufficiently fast, which could counter the growth in the constant. This will be the future
work.
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Figure 1: Decay of the smallest singular values with respect to the matrix sizes. The z-axis denotes
the matrix size (IV +1)/2. Left: The red (dashed) line represents the exact smallest singular value
of R and the blue (solid) line represents the estimated lower bound of the smallest singular value
of R through (34). Right: The red (dashed) line represents the exact smallest singular value of
RM ™! and the blue (solid) line represents the estimated lower bound of the smallest singular value
of RM~1 through (32).

Reconstruction of T only. Suppose the coefficients o, 05 are known and Y is unknown, then the
S Py equation system is completely known and ® could be uniquely solved, so we can reconstruct
T explicitly by

H(x)
oo(x)(s1 - @)
The uniqueness and stability estimate will be straightforward, we conclude in the following theorem
without proof.

T = (40)

Theorem 3.5. Under the assumptions A-i to A-iv, suppose (04,05) are known, Y1, Yo are two
Grineisen coefficients, H1, Hy are the corresponding internal data, respectively. Then we have the
following stability estimate

H

N2y < CI(HL — Ha)/oull 20 » (41)

T, -7
(1 2)T1

the constant C' does not depend on N.

Reconstruction of o, only. Suppose the coefficients T, o, are known and o, is unknown, then
(42)

is known from the measurement H. In addition, we also assume that o is known on the boundary
0. When N = 1, the reconstruction process of o, will be solving a linear transport equation [5] for
0,1, while larger N will introduce extra nonlinearity from the coupling of solution components.
The linearized case of SPs approximation has been recently studied in [12], which should be able
to generalize to S Py system with the similar technique. In the following, we assume N > 3, for
the corresponding nonlinear inverse problem, let s; be the k-th row of M~ and uy, be the n-th

10



row of the rank-one matrix s} s;. We reformulate the equations from the bilinear form (14) as

1
—V'<UV@n)+0apn'(b+0's(]n'q)zoa 7’L:1,...,(N+1)/2, (43)
s

where the row vectors p,, and q,, are defined by

prn=(dn—-1)(1- 2" 1)ulm,

(N+1)/2
an=(n—1)1—-g"") Y (4k-3)1 - " )up,. *
k=2

For convenience, we also denote P and Q as the corresponding matrices with n-th rows as p,
and q,, respectively. In the following, we first prove a simple lemma to estimate the variation in
solutions with respect to changes in the scattering coefficient.

Lemma 3.6. Under the assumptions A-i to A-iv, suppose 051 and os2 are two admissible scat-
tering coefficients that 0o, = 051 — 042 satisfies 6o, =0 on Q. Let ®; = [¢;1,. .., gpi,(NH)/Q]T €
[HY(Q)]N+D/2 the solution associated with scattering coefficient os;, i = 1,2, then

N23/8
[@1 = @ol| 1 vz < CWH‘IHH[VW o tv2llost — os2llr2 ) (45)

where C' is a positive constant independent of N.

Proof. Let B;(-,-) the bilinear form in (14) for coefficient pair (o4,0s,), ¢ = 1,2, then for any test
function ¥ € [H'(Q)]N+D/2 we have

By (91, V) = Ba(®2, ¥). (46)

Denote 6® = [0y1, ..., (5cp(N+1)/2]T := &1 — ®y, by Cauchy-Schwartz inequality, we have

(N+1)/2 5o
(I) (I) i n "’ n — sUn * o n
2(0®, 6 Z / 1)1 —g2” T [03,105,2V%’ Vép, — dosq 10 }dx
(N+1)/2
50.Vpin 30¢nll 12
<6 > |IVéenllize v Tl() [00san - 1l 120
n—1 5,102 L2(Q) (47)
(N+1)/2
< Okldoalre > Noenlme)
n=1
(N +1)

< 0k

5 1905l L2 () [0l 11 (w172

where the constants 6 = (3(1—|g]))™!, k = SUD;,>1 HVQOLn/(O'S’lO'&Q)HLOO(Q) + 47%1 llan - <I>1HLOO(Q).

Since 041,052 are bounded from below by positive constants, the first term in & is bounded by
[[@1/[j1,001v+1)72. The second term needs to estimate sup,,>; 12 |ldnller. From the definition of

11



qn in (44), we can deduce that

. (N+1)/2
< 4k —
gl < 3 (kYo
n (N+1)/2
4k =3) > |skmsnl
k=2 =k
<” %g” 14k — 3) 1
=2 j= 2k - J=g\n—3
) n (N+1)/2 )
< ince — -
< - Z (since 2(k +1)(4k - 3) <
n—g k=2 j=k /]~ 3
— O(N).

. : (48)
(Gaustchi’s inequality)

(2k - 1)%)

This implies £ < cN||@1[[y1,00 (yv+1)/2 for certain constant ¢ > 0. On the other hand, from the

Corollary 3.2, there exists a constant C independent of N that

By(8®,69) = CrN T V3(6® 171 iy - (49)
Combine the estimates (49) and (47), we obtain
c  N23/8
109 g1(q) < EWH%H[WIOO( Q)2 (|00 2 - (50)
O

Theorem 3.7. Under the assumptions A-i to A-iv, suppose (o,,Y) are known, let 0,1 and o2

be two admissible scattering coefficients with o1

= 052 on the boundary 0S). Let ®1 and Py the
solutions to the SPy system with scattering coefficients o1 and 0,2 respectively.
denote the corresponding internal data for os1 and o2 respectively.

Hy and Hs
Then we have the following

estimate ) )
s,1 =™ Us Hy — H.
/ V(35 \) ((’ 17 ’2) ix < 2 | Hi=H2 , (51)
Q 0s,2 A To, H2(Q)
where A € (0,2¢) is an arbitrary constant, Vy(x; \) is
H, 1 H
V(%) i= (05,1 + 2¢ — N)(s1- QP1)? + ky o ( Q1) - — Y; -V(s1-Q®y) — 26°Y,
| (52)
with
Y= CsN*/8||sy - Q1 || oo o | P 1l wrroe )
(N+1)/2 (53)
KN = Z (4n_ 1)(]‘ 2n 1) %,n,
n=1
the constants C,Cs are independent of N. When Vy(x;\) > 0, Vx € €, then H; = Hy a.e. on §)

implies 051 = 052 a.e..
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Proof. Forn=1,...,(N +1)/2, we have the following S Py systems for ®; and ¥,

1

-V ( V(pl,n) —|—O'apn'(I)1+Us’1qn'(I)1 =0,
05,1

(54)

1
-V (O’ 2v902,n) +0aPn - P2+ 0s,29n * ¢y =0,
87

with the mixed boundary condition (11). Since Y and o, are known, the measurements are given
by

. @ = — ) = 1 2 . 55
S1 7 TO‘a’ ? 9 ( )
Therefore multiply (54) with s;, and take summation over n, we get
1 H; .
-V Vv + 81 - (O‘aP(I)i—i—O's,qu)i) =0, 2=1,2. (56)
0s; You

Take the difference between equations (56) with o1 and o2, respectively. Let dos = 051 — 052,
0d = (I)l - (I)Q and 6H = H1 - HQ, then

oy _ H 1 _0H
—V-< % v 1>—v-< v >—{—51-(oaP5<I>+6asQ<I>1+as72Q5<I>):0. (57)

05,1052 Yo, 05,2 Yo,

Use the following identity,

S0 bos 1 _ H 1 (60s\2 1 _ H; 1 sos\> 1 _ Hy
Us,2v ' (08,2 Us,lvTaa> B 5 <Us,2> v (Us,lvTUa> * iv . ((0'572) Us,lvTUa 7 (58)

we multiply (57) with do/05 2, then

1 [(d05\? 1 _ H 1 sos\? 1 _ Hy
2 <0572> v <05,1VT0,1> + §V- ((a&z) 0571VT0,1

Yo

(59)

1 H s
V. < \Y% 0 ) + 00 S1 - (O’aP(;(I) + 00,QPy +O'572Q5(I)) =0.

05,2 05,2 Yo, 05,2

The first term can be replaced from (56) that

1 /60s\?2 1 _H 1/ 60s\?2
(9% v. Vol ) =2 (225) s1- (0,P®) + 0,1QPy) (60)
2 \0s2 os1 Yoq 2 \0s2 ’

then combine (59) and (60), multiply the test function ¢ = s; - Q®; € H'(Q) to (59) and integrate
over (). Notice that dos = 0 on 02, we obtain

1 5os\ 2 1 _H
/ ( US) [Sl (0P 4 051Q 4 20,2Q) P1(s1 - Q1) — VL V(s1-QPy)| dx
2 Q 0—8,2 O-S,l TO—CL (61)
00 1 o0H
— V- \% —S1 - (O’aP(S(I) + 0572Q6q>) (Sl . Q(I)l)dX =0.
Q 0s,2 05,2 Yo,
In the next, observe that
(N+1)/2 (N+1)/2
si-P= ) (n—-1DA-g" Dsipmn=( >, @n-11-g¢""si, |s1, (62)
n=1 n=1

13



therefore in (61), we can replace

(N+1)/2

. SH
0,81 - P6® = nzz:l (4n —1)(1 — ¢** Hs %n ¥
(N+1)/2 " (03)
51 P®; = dn —1)(1— g Hs2 | =L,
0481 1 T; (4n )( g )31,n T

Define the constant ky := Z;NJ{D/Q( dn —1)(1 — g**1)s? ,, since [s1,]> = ©(n™"), then ky =

©(N), the equation (61) can be further reduced to

2
;/Q<50'5> |:(0's,1+20'5,2) (SI'Q(I)l) +’€NHT( Q(I)l) 1 le ‘

05,2 O0s,1 To,

:/Q g [V. ( vT%) RN T Os2 (s1- QD) | (s1 - QPy)dx

05,2 05,2

V(Sl . Q(I)l) dx
(64)

Due to Lemma A4, [|s; - Q| < CyN3/2t1/P for certain constant Cy independent of N, then
combine with Lemma 3.6, the second term on right-hand-side of (64) is bounded by
| 0. (51 Q30) (51 Q@1 )ax] < [t - Qe 157l 15820y 51 - Qs 10
< CoN?([80s| 20 6P L2y 181 - Q@1 oo ()
< 3Ny [[yy1.00 (181 - QP l| oo () 190572

where the constant Cs is independent of N as well. Let X and ) denote the following quantities

1 H
Vo> .
Os,1

To, v (517 Q%) (65)

V= C3N*/3) By [|yp1.00 0 lI51 - Q1|00 (0

then we obtain the following inequality,

H;
X = KN —— T (Sl Q(I)l)

1 s\
2/ (60 > (051 +2052)(s1 - QP1)? + X — 207, dx
Q

05,2

0o 1 _6H SH
< . _ .
= /Q s <V (U&QVT%) RN~ > (s1-QPy)dx (66)

A 50 2 1 1 _6H SH\?
< Z . - . _ -
<3 /Q [03,2 (s1 Q(Dl)] dx + 2/\/ <V <Us,2v'raa> KN T > dx,

where A > 0 is an arbitrary number and the last inequality has used the AM-GM inequality. For
the uniqueness, we let dH = 0 in above inequality, then it becomes

5os\?
/ < . > [(05,1 + 2052 = A)(s1- QP1)? + X — 207,Y] dx < 0. (67)
Q 0-572 )
Recall that ¢ < 0,2 < ¢, therefore if
H 1 H
(Us,l + 2Q - )\)(Sl . Q(bl)Q + K/NTl(Sl . Q(pl) — . VT; . V(Sl . Q¢1) > 262:)), (68)
s,1 a

we could conclude that dos = 0 a.e.. The stability estimate is straightforward by noticing ky =
O(N). O
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Remark 3.8. As N — oo, the requirement that V(x;\) > 0 could be difficult to fulfill since the
growth of V is much faster than the other terms. The estimate could be greatly improved by giving

a tighter bound to [, d0s(s1 - QO®)(s1 - QP1)dx, for instance, estimate the Frechét derivative of

5P
005 °

In the next, we focus on two important cases of simultaneous reconstructions: (Y,o0,) and
(04,0s) with multiple illumination sources. In SP; , one can only reconstruct any two coefficients
with the knowledge about the third one [5, 28] and it is impossible to recover all of them unless
additional information is provided. In S Py, it is still unclear whether or not all of the coefficients
can be recovered uniquely.

Reconstruction of o, and Y. In this case, we consider the simultaneous reconstruction of
both o, and T with multiple sources f;, 1 < j < J (J > 2). We denote H; the corresponding
measurement for f; from qPAT. The simplest case SP; is studied in [5, 28] and linearized case of
SPs is discussed in [12]. The key observation is that the ratio of two measurements is independent
of the coefficients, which only implicitly depends on o,. We first consider the linearized setting,
suppose the scattering coefficient o and the background absorption and Griineisen coefficients
04, T are known and the perturbations are do,,dYT. For each 1 < j < J, suppose ®; is the
background solution with source f;, the perturbation in the solution is denoted by d®;, then by
linearizing (43), 6®; = [d¢j1,..., 590(N+1)/2]T satisfies the linearized S Py system

1
-V <JV5<pj7n> + 0aPn - 0P + 05Qp - 0P = —d0upn - P;, n=1,...,(N+1)/2. (69)

For any pair of indices 1 < ¢ < j < J, we define the following quantity

0H; 0H;
%% —(s1- q)j)aa’r = (s1- ®;)(s1-0P;) — (s1- Pj)(s1-09P;), (70)

Hij = (s1- ;)

which is known and only depends on do, and independent of Y. Our reconstruction will be a
natural two-step process, first solve 6o, from the crossing quantity #;; (1 <i < j < J), then solve
0®; using the recovered do,, finally if ¢, > 0 find 6T through

sp_ L L SH; — Yogs1 - 6®; — Tooas: - ; | )
J = 0481 - D;
By taking linearization over the bilinear form (14), for any test function ¥ e [H'(Q)](N+1/2,
B(6®;,V) = —/Q [00q(s1 - Pj)s1] - Pdx. (72)
Take ¥ = §®; and use the fact
B(6®;,60;) = B(6®,,5®;) + /Qoa(sl -6®;)%dx > B(6®;,09;), (73)
we can easily conclude the following estimates from the coerciveness of B (),
1695 g1 @y = O (N3 [16a(s1 - @)l (e st e -

= O (N"/3(1 +log N)l|doas: - @)l (e
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On the other hand, multiply (69) with s;, and sum over n,

1
50’aI€N(Sl . (I)j) =-V- <UV(81 . (5<I)j)) + 04uKNST - 5(1)]' + 04871 - Qéq)j s (75)
S
therefore we have a straightforward estimate
max(ky||sy ¢z, [Is1 - Qll¢2)
KN

160a(s1 - @) 12y = O ( ’5‘1’j\|[H2(Q)](N+1>/2> , (76)

where the constant iy = S22 (4 — 1)(1 — g2 )52, = O(N) and ||s; - Q|2 < O(N?) from

n=1 1n —

Lemma A.4, where © denotes the Laudau big Theta notation. These two estimates imply that
C_lN_11/8<1 + logN)_lH(5<I>]-H[Hl(9)](1v+1)/2 < H(Saa(sl : (I)j)HLQ(Q) < CN”5(I)]'H[H2(Q)](N+1)/2. (77)

for some constant ¢ > 1 independent of N.

Therefore if there exists two source distinct functions f;, f; such that the linear mapping
0o, — H;j; is invertible and s; - ®; # 0 over €, then one can recover both do, and 6®; from H;;
uniquely. In general such problem is ill-posed due to the compactness of the mapping do, — H;j,
numerical reconstruction of do, can be done through the following minimization formulation with
regularization,

2

9

do = argmin Y [HHU — [(s1- ®i)(s1-6P;) — (s1- Dj)(s1- 6P)] ‘ L2(9)

000 <ici<y

| [V
L2(9)

where « is the regularization parameter.
Particularly, when the background absorption coefficient o, = 0 or negligible, then we approx-
imately have 6 H; = do,Ys1 - ®;, which does not contain the perturbation § T, in this case, we can
only reconstruct §o,, the stability estimate is similar to the Theorem 3.1.
Without linearization, we take the ratio of two data sets H; and Hj, then
H; s1-9;

.E’]'_Sl'(I)j7

(78)

which only depends on o,, therefore our reconstruction strategy is similar to the linearized case.
First, try to solve the minimization problem:

op =argmin Y [|Hi(s1 - ®;) — Hy(s1 @) 2200 + ol Vou|2ao) - (79)
o 1<i<i<J

Then compute T* = %21 <i<J % with the reconstructed o).
> a 7

Reconstruction of o, and o,. We consider the simultaneous reconstruction of both o, and o,
from multiple sources f;, 1 < j < J provided that T is known. Similar to the previous case, we
denote H; the measurement for f; from the gPAT experiments. Under the linearized setting, let
o, and o the background absorption and scattering coefficients, the corresponding perturbations
are 0o, and do,. For each source fj, let ®; the background solution and the perturbation in
the solution is d®;, the corresponding perturbation in the measurement is 0H;. Linearize the
variational form (21), we obtain the following equation,

- (N+1)/2 5o .
2777 . S = . _ ..
T (Sl \Il)dx + nz:l /Q (4TL — 1)<1 2n—1) 03 V‘Pl,n Vi, —an q>j¢n dx,

B(6®;, V) = —/Q —
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where the bilinear form B(-, ) is from (24) and qy is defined in (44). Hence the perturbation P,
only linearly depends on do;. On the other hand, since 0H; /T = 60,81 P;+0481-0P;, the crossing
quantity H;; = ﬁ(HﬁHj — H;j0H;) = (s1-P;)(s1-0P;) — (s1-®;)(s1-0P;) only linearly depends
on 0o, therefore we first try to reconstruct do, from H;;, then find 6®; and recover do, using

Ca ;g K — 0481 - 0D; ) /(sl-cbj)] . (80)

Similar to the previous case, the uniqueness is immediate if the crossing term H;; as a linear
functional of do, is uniquely solvable and s; - ®; # 0 over ). However since dos +— 0P; is a
compact mapping, the inverse problem is ill-posed. Numerically, we consider the following L?
optimization formulation with regularization:

2

L2(9)

Jo% =argmin ) [HHm — [(s1- @i)(s1-6P;) — (s1- Dj)(s1- 6Py)] H22 ] +aHV605
00s  q<ici<g s

Additionally, if we are provided a priori estimate on the perturbation do, that [|°5 ‘;UGH lm2) <

e < 1 for certain 1 <4 < J, then linearize the equation (56) for ®;, we obtain

—00g 1 Hz
—V- < j; Vs - (I)i> -V <O_V81 . 5‘I>i> + KN(ST + 81 (00sQP; + 05QIP;) =0, (81)

where Q is defined in (44) and Ky = ZS\”{DQ( dn — 1)(1 — gzn_l)sin. Following the similar
approach in Theorem 3.7,

Os

2 .
1/ (50's> [/@N}IZ(Sl -Q®;) + 305(s1 - Q(I)i)2 _ iV(Sl - ®;) - V(sy - Q@Z)} dx
2 Ja T o o

:/ 5o {v- (1VSI , 5(1)2,) _ m% (st Q(S(I)Z-)] (s1- Q®;)dx
Q Ts

Os

§H; ||?
Yo,

Replace s;1 - 0®; = (0H; — d00,H;/0,)/(Yo,) and we immediately get the following estimate from
‘ H;bo,
H2(Q) TO’?L

the argument of Theorem 3.7 that
2
H2(9)>
2
— +e? ],
Tallm2(@)

505 2 9
VN dx < C|N
where Vi (x) is the same as in the Theorem 3.7, C is a constant independent of N.

<C<N2

4 Numerical experiments

In this section, we perform our numerical experiments in two phases: (i). Assume the true model
is certain SPy system and then reconstruct the coefficients with exactly the same model; (ii).
Assume the true model is either radiative transport equation or certain high order SPy system,
then the reconstruction is performed over a low order SPy system.

In all the following numerical experiments, we use the unit square in 2D as our domain . It
is worthwhile to notice that all the previous arguments are meant for 3D only, the 2D experiments
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here should be interpreted as special cases (e.g. infinite tube) of 3D, assuming the solution is
independent of the third dimension. If the true model is the SPy system, the forward problem is
solved though finite element method on a sufficiently fine mesh and the inverse problem is solved
on a different mesh to avoid inverse crime. If the true model is the radiative transport equation,
there are many fast forward solvers available [30, 32, 11, 13], we select the finite element method
implementation mentioned in [22] for convenience purpose. The source code for the numerical

experiments is hosted on GitHub'.

4.1 Experiment setting

In the following numerical experiments, we will use the boundary source functions fi(x,y) = 1+,
fa(x,y) = 1+sin(4mx) and the anisotropy constant g = 0.8. The coefficients (o, 05, T) are selected

from the following variable set, see Fig 2.

Figure 2: Coefficient Set. From left to right: absorption coefficient o, (Shepp-Logan phantom),
scattering coefficient o, (Jaszczak phantom), Griineisen coefficient Y.

4.2 Validation of approximation

Before we start to run any of the numerical experiments, we need to verify that if our SPy model
is valid under these settings, which means modeling error should not be dominating (in practice
there are noises in data). Therefore it is important to compare the quantity (;5{)\7 =50 = %LT with
the solution’s angular average U(x) = [c4-1 u(x, v)dv for the radiative transport equation (1). We

summarize the L? relative errors: W with respect to different SPy models in Tab 1.

Table 1: Relative L? error of the gbév from S Py equations with the angular averaged solution U (x)
from radiative transport equation for boundary sources fi and fs.

SP SPs3 SPs SP; SPy SP;y | SPis | SPis | SPiy
fi | 1.93% | 2.28% | 2.25% | 2.24% | 2.23% | 2.23% | 2.23% | 2.23% | 2.23%
fa | 5.24% | 3.98% | 3.76% | 3.75% | 3.77% | 3.78% | 3.79% | 3.79% | 3.79%

From the table Tab 1, we can see that the modeling error with respect to the SPy equations
indeed stay at a relative low level with the selected coefficient set. The reason that such modeling
error is not converging to zero might partly attribute to the simplification o, ~ (1 — ¢")os in the
computation instead of using o, + (1 — g™)os.

Yhttps://github.com/lowrank /spn_gpat

18



It is also informative to look at the convergence rate of gbév from the S Py equations with respect
to growing N, see Fig 3. If the error converges sufficiently fast (e.g. exponentially), then we will
obtain the uniqueness of reconstruction for the case that N = co. However, the theory about the
convergence is still an open problem.

-1.5 -1.5
2 By
E 25 =
= =-25
| | -3
= =35
o =
4.5 -4
-5 4.5
0 10 20 30 40 0 10 20 30 40
N {odd munbers) N {odd numbers)

Figure 3: The convergence of qSéV with respect to the order V. Left: with source function f;. Right:
with source function fs.

4.3 Reconstruction of o, only

In this numerical experiment, we are using the algorithm introduced in Section 3 to reconstruct the
absorption coefficient o, only. We consider two scenarios for the reconstruction: (i) The datum H
is generated from certain SPy model. (ii) The datum H is generated from the radiative transport
model. The result is summarized in the following Tab 2 and Tab 3. For all the reconstructions in
the tables below, we have contaminated the datum H with multiplicative random noises pointwisely
by H* = H(1 + yrandom) with parameter v = 5% regarded as the noise level and random is the
uniform distributed random variable on [—1,1].

Observe the diagonals of above tables, one can find out that the reconstruction error is not
growing as N grows, this is because the estimate in Theorem 3.1 is only meant for the worst
boundary source. For the given source function and coefficient set, the reconstruction based on
S P, model (diffusion approximation) appears not as good as the other models when the data are
generated from SPy models. While the performances of most low order S Py models (N < 7) are
already close to the ones of high order SPy models (N > 9).

Particularly, when the datum H is generated from the radiative transport model, all of the
reconstruction errors of SPy models become larger due to the additional modeling errors, see
Section 4.2. We plot some of the reconstructions in Fig 4. It is not surprising to find that the
errors are relatively larger near boundary since the S Py equation system is still elliptic over the
whole domain, while the behavior of radiative transport averaged solution is hyperbolic in the
vicinity of boundary sets.

4.4 Reconstruction of o, only

The reconstruction of o is a nonlinear problem for N > 3. In order to provide a fair comparison
of across the S Py models, we will use the optimization based method to reconstruct the scattering
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Table 2: Relative L? error of the reconstructed o, for source function f; with different generating
models and reconstruction models. The row label represents the generating model and the column
label represents the reconstruction model.

SP SP; SPs SP; SPy SPiy SPi3 SPis SPi7
SP; | 2.89% | 3.13% | 3.15% | 3.14% | 3.14% | 3.14% | 3.14% | 3.14% | 3.14%
SP; | 3.08% | 2.88% | 2.88% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89%
SPs | 3.13% | 291% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91%
SP; | 3.09% | 2.89% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88%
SPy | 3.06% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86% | 2.86%
SPi1 | 3.07% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88%
SPig | 3.11% | 291% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91% | 2.91%
SPi5 | 3.09% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88% | 2.88%
SPi7 | 3.10% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89%

| RTE | 3.58% | 3.14% | 3.16% | 3.18% | 3.19% | 3.19% | 3.19% | 3.19% | 3.20% |

Table 3: Same as Tab 2, but for source function fs.

SP, | SPy, | SPs | SP; | SP, | SPi | SPis | SPi5 | SPir
SP | 2.91% | 3.17% | 3.22% | 3.22% | 3.22% | 3.22% | 3.22% | 3.22% | 3.22%
SPy | 3.10% | 2.88% | 2.89% | 2.90% | 2.90% | 2.90% | 2.90% | 2.90% | 2.90%
SPs | 3.14% | 2.80% | 2.89% | 2.89% | 2.80% | 2.89% | 2.89% | 2.89% | 2.89%
SP; | 3.15% | 2.80% | 2.88% | 2.88% | 2.88% | 2.88% | 2.89% | 2.89% | 2.89%
SPy | 3.16% | 2.91% | 2.80% | 2.89% | 2.80% | 2.89% | 2.89% | 2.89% | 2.89%
SPy | 3.14% | 2.89% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87%
SPis | 3.12% | 2.88% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87% | 2.87%
SPis | 317% | 2.91% | 2.90% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89%
SP7 | 316% | 2.90% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89% | 2.89%

| RTE | 8.02% | 7.12% | 6.77% | 6.65% | 6.60% | 6.59% | 6.60% | 6.60% | 6.61% |

coefficient:

o5 = argminl/ (JH(x) — H*|> + |V(H(x) — H*)[?) dx + 6/ |Vos|2dx, (84)
o 2Ja 2 Jo
where H* is the measured datum and g is the regularization parameter. The optimization problem
is solved by L-BFGS method, the gradient is computed from the adjoint state technique. The choice
of regularization parameter 3 should depend on the noise level. One should notice that we use
H1(Q) norm instead of the traditional L?(2) minimization:

1
oszargmin/ |H(X)H*|2dx+5/ |Vos|?dx. (85)
2 Ja 2 Jo

Os
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Figure 4: The error of reconstruction for the absorption coefficient o, with datum generated from
radiative transport model. Top row, from left to right: reconstruction error for source f; with
N =1, N =17, N = 17. Bottom row is the same but for source fs.

This is due to the stability estimate in Theorem 3.7, where actually the H?(2) norm is needed
for the stability estimate. However, such regularity requirement implies that H(x) needs to be
globally C' from Sobolev embedding, which means our finite element space needs to equip with
polynomials of five or higher degrees (e.g. Argyris element). Here we relax objective functional
to H'(€2) norm simply to avoid the extraordinary computational cost. To get a brief impression
about the two optimization schemes, we take the fi source function with SPs; model (both data
generation and reconstruction) for an example, the datum H is not contaminated (noise level v = 0)
and regularization parameter 8 = 0 as well. The reconstructed scattering coefficients are shown in
Fig 5. One can tell from the images that the coefficient recovered from L? optimization (85) still
contains background artifacts. The reason behind is the relatively strong smoothing effect of the
mapping os(x) — H(x), where the high frequency information in o4 could not be fully recovered
if we emphasize equally on H(x)’s frequency information.

Therefore the data contamination should be treated carefully for the H' minimization (84).
This is because if we still apply the random noises by H* = H(1+4~random) at each mesh node, then
| H — H* |51 ) = O(V'N7), where N is the total number of nodes assuming the mesh is uniform.
Therefore instead of pointwise multiplicative noise, we aggressively contaminate the datum by
perturbing its Fourier modes

FH*(&) = FH(&)(1 + yrandom), (86)

where we have used v = 2% as the noise level parameter. Note that such noise will perturb the

low frequency modes of H which might cause severe global artifacts in the reconstruction.
Similar to the previous numerical experiment, we summarize the result in the Tab 4, where we

have fixed the regularization parameter 3 = 10~° for these experiments. From the table, we could
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Figure 5: Left: The reconstructed scattering coefficeint using L? minimization, the L? relative error
is 4.25%. Right: The reconstructed scattering coefficient using H' minimization, the L? relative
error is 1.10%.

Table 4: Relative L? error of the reconstructed o, for source function f; with different generating
models and reconstruction models. The row label represents the generating model and the column
label represents the reconstruction model.

SPy SP3 SPs SP; SPy SPi1 | SPi3 | SPis SP7

SP | 12.0% | 19.0% | 19.5% | 19.6% | 19.6% | 19.6% | 19.6% | 19.7% | 19.7%
SPy | 13.9% | 12.1% | 12.5% | 12.8% | 13.0% | 13.2% | 13.3% | 13.4% | 13.5%
SPs | 14.9% | 12.5% | 12.3% | 12.5% | 12.7% | 12.9% | 13.0% | 13.1% | 13.2%
SP; | 15.1% | 13.3% | 12.5% | 12.1% | 11.9% | 11.8% | 11.7% | 11.7% | 11.6%
SPy | 15.1% | 13.3% | 12.5% | 12.3% | 12.2% | 12.3% | 12.3% | 12.4% | 12.4%
SPyy | 15.5% | 14.4% | 13.3% | 12.7% | 12.3% | 12.0% | 11.8% | 11.7% | 11.6%
SPis | 15.1% | 13.8% | 12.8% | 12.5% | 12.3% | 12.2% | 12.2% | 12.2% | 12.2%
SPis | 15.7% | 15.1% | 14.0% | 13.2% | 12.7% | 12.3% | 12.1% | 12.0% | 11.8%
SPi7 | 15.2% | 14.2% | 131% | 12.7% | 12.4% | 12.3% | 12.2% | 12.2% | 12.2%

| RTE | 25.8% | 25.7% | 18.3% | 21.5% | 36.9% | 37.2% | 39.2% | 39.3% | 39.4% ||

clearly see that SP; is not as good as other models for the reconstruction of o, when the datum
H is coming from higher order models.

The reconstruction errors on the diagonal of the tables look converging as the order N grows,
which indicates that the models converge relatively fast for the given source functions and the
coefficient setting. When the datum H is generated from the radiative transport equation, the
reconstruction error becomes larger. The reconstructions with respect to source function fo are
significantly worse than the ones for fi, see Fig 6. However, this could be explained through
the analogue with the SP; model, where the scattering coefficient’s reconstruction is to solve a
transport equation [5]:

Vo - VD(z) + D(x)A¢o — gago = 0, (87)

where D(z) = 1/(3(1—g)os), where ¢ and o4|gq are known. Therefore when V¢ # 0, the function
D(z) could be solved by tracing the characteristics. If V¢ vanishes or appears to be small, then
the characteristics could be trapped, where the reconstructions are based on regularization only.
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Table 5: Same as Tab 4 but for source function fs.

SPy SPs SPs SPy; SPy SPiy SPi3 SPis SPi7
SP; | 20.8% | 21.4% | 21.3% | 23.1% | 21.4% | 21.4% | 21.5% | 21.6% | 21.7%
SP; | 23.1% | 18.0% | 18.6% | 19.1% | 19.7% | 19.9% | 20.2% | 20.3% | 20.5%
SPs | 26.9% | 183% | 17.7% | 18.0% | 18.3% | 18.5% | 18.6% | 18.6% | 18.7%
SP; | 28.0% | 22.7% | 18.2% | 16.4% | 16.3% | 16.4% | 16.6% | 16.8% | 16.9%
SPy | 29.0% | 19.9% | 18.0% | 17.8% | 17.7% | 17.8% | 17.9% | 18.06% | 18.1%
SPy | 294% | 19.5% | 16.9% | 16.4% | 16.3% | 16.3% | 16.4% | 16.4% | 16.5%
SPi3 | 29.5% | 21.0% | 18.4% | 18.0% | 17.8% | 17.8% | 17.8% | 17.8% | 17.9%
SPi5 | 30.2% | 20.6% | 17.3% | 16.6% | 16.4% | 16.3% | 16.3% | 16.3% | 16.4%
SPi7 | 30.5% | 21.5% | 19.4% | 18.1% | 17.9% | 17.8% | 17.7% | 17.8% | 17.8%

RTE | 55.9% | 47.8% | 49.4% | 50.2% | 50.3% | 50.3% | 51.4% | 51.5% | 51.6%

Figure 6: The reconstructions for the scattering coefficient o with datum generated from radiative
transport model. Top row, from left to right: reconstruction error for source f; with N =1, N =7,
N = 17. Bottom row is the same but for source fs.

4.5 Reconstruction of 0, and T

In this section, we consider the non-linearized case and follow the aforementioned two-step recon-
struction strategy. Suppose Hi, Hs are the data sets measured with boundary source functions f;
and fa, respectively. Our numerical reconstruction solves the optimization problem:

2

Sl~q)1’
Sl'(I)Q

. | Ha 2
Ogq = argznln HE ) + Oé“VO'aHLz(Q) ) (88)

L2(Q
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where @1, ®o are the solutions to the SPy equation with the absorption coefficient o, and source
function fi, fo, respectively. Intuitively, the ratio Hj/Hy should be quite smooth and weakly
depends on o,, which means the reconstruction for o, could be very unstable. In the following,
we assume the data sets Hy and Ho are generated from the S Py models with multiplicative noise
H} = H;(1+ ~random) for v = 0.1% only, the regularization parameter is fixed as o = 1075, Then
we reconstruct the absorption coefficient using the same model. The reconstructions are shown in
Fig 7, it could be seen that the reconstructions are very unstable even for small noise, only limited

resolution could be obtained.
1 1 0025
0025 00245 ¢, 00245
0.024 0.024
0024 0.0235 0.0235
0023 0.023
0023 00225 0.0225
0022 0022
0022 00215 00215
0021 0021
0021 00205 0.0205
. . 002 002
002
0 0 0
0 0.2 0.4 06 08 1 0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 7: The reconstructions of absorption coefficients o, with respect to S Py models. From left
to right: N = 1,7,17. The relative L? errors are 16.6%, 16.2%, 15.9%, respectively.

4.6 Reconstruction of ¢, and o,

Similar to the previous case, we consider the reconstruction in a two-step process as well. Sup-
pose Hi, Hy are the data sets with boundary sources fi, fa, respectively. Our algorithm will first
construct the scattering coefficient from the following optimization problem:

H1 S1 q)l

* .
o, = argmin H— —
S

2
2
T oo . o oIVl (89)

where @1, @9 are the solutions to the modified SPy equation (21), where o, has been replaced
by H;/(YTsy - ®;), i = 1,2. Here we have taken the H; minimization. In the following numerical
experiment, we assume Hi, Ho are generated from the S Py model, the data sets are contaminated
on the Fourier space through

FH; (&) = FH;(§)(1 4 yrandom)

with v = 2%. We also fix the regularization parameter o = 10~%.The numerical reconstructions
are performed over the same S Py model and the results are illustrated in Fig 8. After the scat-
tering coefficient has been reconstructed, we will use the recovered scattering coefficient to find
the absorption coefficient following the Experiment 4.4. The corresponding reconstruction errors
of the absorption coefficients are shown in Fig 9. It can be seen that even the reconstruction of
scattering coefficients contain background artifacts, while the reconstruction errors of o, are still
quite small.

5 Conclusion

In this work, we studied the quantitative photoacoustic tomography with the simplified Py approx-
imation model to the radiative transport equation. We have derived the uniqueness and stability
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Figure 8: The reconstructions of scattering coefficients o with respect to S Py models. From left
to right: N =1,7,17. The relative L? errors are 16.1%, 16.7%, 16.8%, respectively.
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Figure 9: The reconstruction error of absorption coefficients o, with respect to SPy models by
using the recovered scattering coeflicients from Fig 8. From left to right: N = 1,7,17. The relative
L? errors are 1.76%, 5.79%, 5.80%, respectively.

estimates for the reconstruction of one single coefficient of (o4, 05, T) from one initial pressure
datum H(x). For the simultaneous reconstruction of two coefficients, we have considered the lin-
earized setting and introduced the optimization based numerical algorithm for the reconstruction.
We showed the numerical simulations based on a synthetic data to validate the mathematical
analysis.
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A Appendix

Lemma A.1. Let s be the (k,1)-th entry of M~*, then

1 q)l—k(@=2)N 261! 1>k
Sk = {%—1( ) =D k=21 =R (90)

0, otherwise .

Proof. Let S be the matrix with (k,[)-th entry as s, we then compute the (k, j)-th entry of SM
by apj = sk;(2) — 1)+ spj—1(2) —2). f k=7, sp; = ﬁ, therefore a ; = %%1(2j —-1)=11
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J < k, notice that now s ; = 0, we must have a;; = 0. If j > k, we compute ay ; directly

1 (2k—1) (25 =2 (25 —ann
2k—1§2k—2§!! <(_1)J k(ézi'—&)! (2 =1 + (=177 1(22j—3§!)!

Hence S = M 1. O

(25 — 2)) =0. (91)

Lemma A.2. det(R™1) < O(N3/%), hence det(R) > O(N—3/8).

Proof. Since

R = (_1)i+j 1 ( %)F(] — %) (4] — 3)
“ L) (20425 —2)(2j —2i— 1)’ (92)
( WG == G- 9)?
which gives the factorization
R=UGV, (93)
where diagonal matrices
U = diag(ui,...,u ,
g(u1 (N+1)/2) (94)

V = diag(v, ... ,U(N+1)/2) )

. i+ L . i—Lly
with u; = (—1)1\/2%,1@ =(-1) %F(Fj(jf) (j—2), and G is the Cauchy-Toeplitz matrix,

1
G: ( R 1 2 . 3 2) : (95)
(i—3)?=0—-19) ij=1,...,(N+1)/2

We denote x; = (i — i)2 and y; = (j — %)2, then use the Theorem 2.1 in [30],

G '=PGTQ, (96)
where P = diag(p1, ..., pv+1)/2) and Q = diag(qy, . . ., q(n41)/2) satisfy

G[ph s 7p(N+1)/2]T = [17 SRR 1]T>

(97)
GT[Q1, - ,Q(N+1)/2]T = [1, NN 1]T .
Also p;, q; are computed explicitly by Cramer’s law,
(N+1)/2 (N+1)/2
pi= [ @-w)/ JI w-w),
I=1 I=1,l#i
(N+1)/2 (N+1)/2 (98)
g= J] @-w/ [] @-=)
I=1 I1=1,1#j
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By replacing x;,y; with their values, we obtain

(N+1)/2 1 (N+1)/2

ri= ] (I+i-1l—i+3)/ I ¢-da+i-3/2)
=1 I=1,I%i
(N+1)/2

. i—1 (N+1)/2—1
[+71—-1 .3 1 1 1
( W) (22—2> (2II<1QJ> I1 <1+2z>)
=1 2 =1 =1

R e T )

(N+1)/2 (N+1)/2
qj = G+i=-DG-1+3)/ [ G-DG+i-1/2)
=1 1=1,l#j

(i) 0 i
= Jtie3 2 22
SO o) (ST 3) (-0

=1

Then we can easily deduce det(R™1) = \/det(P)det(Q)/(det(V)det(U)), since all matrices in-
volved are diagonal, let S; = %H;;} (1 + %) l(]:VlH)/Qﬂ (1 — %), then from the theory of Gamma

functions, we know
D+ HDAE —f +
Si = ( _ 2)u§+1) 2), (100)
F@OrE==—-i+1)

Hence we can estimate det(R~!)’s upper bound by estimating

(N+1)/2

det(R7) = [ 2%
=1 i
(N+1)/2 F(Z+N+1)2F( )

. (i
-U G NP+ Y+ 1)0(i+ Hr(i— 1)(i— 3) (101)

<Nﬁ/2 PG - 1> L(i+ 552 = §) - )
@i+ *—=5—= 3

Then by noticing the Chu’s Double Inequality [7],

1 T+ x
\/x—1< F(x)2 < — (102)
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the following estimates hold,

\/ I(i+ N+
T+ 5)riE+ % i+ S (103)
T -7 -3
I'(i)?
which implies
(N+1)/2
(4 - 2 (41 -1)
det(R™7) < H — )
(N+1)/2
1 3 2
= - log (1
oxp |5 D Og( TE 3T @i-3 )
=1 (104)
(N+1)/2
1 3 2
< z
=P 3 Z:: 4i—3 " @i—3p
=0 <exp (BIOg ((N+ 1)>)> = O(N3/8).
8 2
O
Lemma A.3. |R||% M
Proof. We show that for all m > 1,
(105)

m m—1
Yo Riml + Y R < 1.
7j=1 j=1

The above estimate is true for m = 1 since Ry = %, we only focus on the cases that m > 2.
Reformulate R;,, by the Gamma function as
I'(j+3HT(m— 3 4m —3
G+Prem—3)  (@m-3) 06)

Rjm| =
[Rjim T (H)T(m)(j +m —1)2m —2j — 1

1 T(z+3
-t et @ (107)
I'(z) T+ 411
the following estimates hold,
LG+ 3% ' T(m— 3 1
g .2)< J (m=3) 173 (108)
MG i1 Lm -V
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we can deduce the estimate
m m . 2
SR, |2_iz I(j+3H)T(m—3) (4m — 3)2 1
= T ()0 (m) (+m—17(2m—2j—1)?

1 & (4m = 3)*(j — 5 + qrap)
; (m—f)(j—km 1)2(2m — 25 — 1)?

IN

A
:]w‘ N
NgE

= (2j +2m —2)? (2m —2j—1)2
4 1 1
s a 109
ﬂglﬁm—%—n2<w+%hmJ (109)
4 4 S (4m — 3)
m? = (L 45)(2) +2m — 2)%(2m — 2j — 1)2

IN
|
—_

4 N 2 L1 ’Z“: 1
2 8 4m 5m(2m 32 9m = (2m —2j —1)?

A (4 1 ™\ 1
— 72 180 ' 72
The other part can be estimated in a similar way,

S 1m4<”m+9mrév2<@—@2 !
(

R j 2= : - -
=1 o iz L(m)I(4) j4+m—1)2(2j —2m —1)2

1
1 (43— G )
TS G- DU+ m = D22 - 2m 1)

=1
im—l (4m — 1+ 5) (45 — 3)
— w2 (25 +2m —2)%(2j — 2m — 1)

_ 4 i [ 1 _ 1 ] (110)

2 ‘ (2m+1-25)2  (2j+2m — 2)?
L4 s 45 -3
2 = (14+4m)(2j +2m — 2)2(2m + 1 — 2j)

Hence we can estimate that

17 72\ 1 1 (m? 1
Z R Z R2<
[ Bjm| [ o = (90 72) m w2 ( 8 1) m2’ (111)



the above estimate is strictly less than 1 for m > 2, then the Frobenius norm’s square of R is
estimated by

1 (N+1)/2 m m—1 N
IR||% = 5t ST IRmP+ D Rl | < 5 (112)
m=2 j=1 j=1

O
Lemma A.4. Let sy, the k-th row of the matriz M~ in (7), and matriz Q is defined in (44), then
Is1 - Qller = O(N3/2+1/P). (113)

Proof. Let sj; denote the j-th entry of vector s;. Combine the Lemma A.1 and Gautschi’s in-
equality [11], we have

1
1 k3
i< 114
|Sk,j o — (114)
J—3

For the matrix Q, we denote its (n, j)-th entry by @Q,;, which can be estimated by

min(j,n) min(j,n) 1
4k — 3 kE+35
|Qnjl < (4n—1) > (4k = 3)|spnspyl < (4n—1) > ( ) ;

R k-1 /. 1 /1
E>2 E>2 Jj—357/n— 5
? > (115)

dn—1) ™20 4k - 3)(k + 1)
1 Z (2k — 1)? =

ji—i/n—3 >
Since (4k — 3)(k + 3) < 2(2k — 1)? for all k, we will have |Qn ;| < (8n—2) — 1),

FE (min(j,n

(8n — 2)(min(j,n) — 1
51 - Qllgee <supZ|51n]|QnJ| <Supz ) (min( )1 )
s SRR IR (116)

= O(N?/?).

therefore, by simple calculations, ||s; - Q||¢~ is bounded by

Then the /P estimate is

N+ 1)\
o1 Qe < o - Qe () = o),
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