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Abstract

The presence of label noise often misleads the training
of deep neural networks. Departing from the recent litera-
ture which largely assumes the label noise rate is only deter-
mined by the true label class, the errors in human-annotated
labels are more likely to be dependent on the difficulty lev-
els of tasks, resulting in settings with instance-dependent
label noise. We first provide evidences that the heteroge-
neous instance-dependent label noise is effectively down-
weighting the examples with higher noise rates in a non-
uniform way and thus causes imbalances, rendering the
strategy of directly applying methods for class-dependent
label noise questionable. Built on a recent work peer loss
[24], we then propose and study the potentials of a second-
order approach that leverages the estimation of several
covariance terms defined between the instance-dependent
noise rates and the Bayes optimal label. We show that this
set of second-order statistics successfully captures the in-
duced imbalances. We further proceed to show that with
the help of the estimated second-order statistics, we iden-
tify a new loss function whose expected risk of a classifier
under instance-dependent label noise is equivalent to a new
problem with only class-dependent label noise. This fact
allows us to apply existing solutions to handle this better-
studied setting. We provide an efficient procedure to es-
timate these second-order statistics without accessing ei-
ther ground truth labels or prior knowledge of the noise
rates. Experiments on CIFARIO and CIFARI00 with syn-
thetic instance-dependent label noise and ClothingIM with
real-world human label noise verify our approach. Our im-
plementation is available at https://github.com/
UCSC-REAL/CAL.

1. Introduction

Deep neural networks (DNNs) are powerful in reveal-
ing and fitting the relationship between feature X and la-
bel Y when a sufficiently large dataset is given. However,
the label Y usually requires costly human efforts for ac-
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curate annotations. With limited budgets/efforts, the re-
sulting dataset would be noisy, and the existence of label
noise may mislead DNNs to learn or memorize wrong cor-
relations [10, 11, 35, 38, 47]. To make it worse, the la-
bel noise embedded in human annotations is often instance-
dependent, e.g., some difficult examples are more prone to
be mislabeled [34]. This hidden and imbalanced distribu-
tion of noise often has a detrimental effect on the training
outcome [15, 23]. It remains an important and challenging
task to learn with instance-dependent label noise.

Theory-supported works addressing instance-dependent
label noise mostly rely on loss correction, which re-
quires estimating noise rates [40]. Recent work has
also considered the possibility of removing the depen-
dency on estimating noise rates [5]. The proposed so-
lution uses a properly specified regularizer to eliminate
the effect of instance-dependent label noise. The com-
mon theme of the above methods is the focus on learn-
ing the underlying clean distribution by using certain forms
of first-order statistics of model predictions. In this paper,
we propose a second-order approach with the assistance
of additional second-order statistics and explore how this
information can improve the robustness of learning with
instance-dependent label noise. Our main contributions
summarize as follows.

1. Departing from recent works [5, 24, 27, 29, 32, 40, 42]
which primarily rely on the first-order statistics (i.e. ex-
pectation of the models’ predictions) to improve the ro-
bustness of loss functions, we propose a novel second-
order approach and emphasize the importance of using
second-order statistics (i.e. several covariance terms)
when dealing with instance-dependent label noise.

2. With the perfect knowledge of the covariance terms de-

fined above, we identify a new loss function that trans-
forms the expected risk of a classifier under instance-
dependent label noise to a risk with only class-dependent
label noise, which is an easier case and can be handled
well by existing solutions. Based on peer loss [24], we
further show the expected risk of class-dependent noise
is equivalent to an affine transformation of the expected
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risk under the Bayes optimal distribution. Therefore
we establish that our new loss function for Covariance-
Assisted Learning (CAL) will induce the same minimizer
as if we can access the clean Bayes optimal labels.

3. We show how the second-order statistics can be esti-
mated efficiently using existing sample selection tech-
niques. For a more realistic case where the covariance
terms cannot be perfectly estimated, we prove the worst-
case performance guarantee of our solution.

4. In addition to the theoretical guarantees, the perfor-
mance of the proposed second-order approach is tested
on the CIFAR10 and CIFARI00 datasets with syn-
thetic instance-dependent label noise and the Cloth-
ingIM dataset with real-world human label noise.

1.1. Related Works

Below we review the most relevant literature.

Bounded loss functions Label noise encodes a different
relation between features and labels. A line of literature
treats the noisy labels as outliers. However, the convex loss
functions are shown to be prone to mistakes when outliers
exist [25]. To handle this setting, the cross-entropy (CE)
loss can be generalized by introducing temperatures to loga-
rithm functions and exponential functions [1, 2, 50]. Noting
the CE loss grows explosively when the prediction f(x) ap-
proaches zero, some solutions focus on designing bounded
loss functions [8, 9, 31, 36]. These methods focus on the
numerical property of loss functions, and most of them do
not discuss the type of label noise under treatment.

Learning clean distributions To be noise-tolerant [26], it
is necessary to understand the effect of label noise statisti-
cally. With the class-dependent assumption, the loss can be
corrected/reweighted when the noise transition 7' is avail-
able, which can be estimated by discovering anchor points
[22, 29, 39], exploiting clusterability [51], regularizing to-
tal variation [49], or minimizing volume of 7" [20]. The loss
correction/reweighting methods rely closely on the quality
of the estimated noise transition matrix. To make it more ro-
bust, an additive slack variable AT [41] or a multiplicative
dual T' [45] can be used for revision. Directly extending
these loss correction methods to instance-dependent label
noise is prohibitive since the transition matrix will become
a function of feature X and the number of parameters to
be estimated is proportional to the number of training in-
stances. Recent follow-up works often introduce extra as-
sumption [40] or measure [4]. Statistically, the loss correc-
tion approach is learning the underlying clean distribution if
a perfect T' is applied. When the class-dependent noise rate
is known, surrogate loss [27], an unbiased loss function tar-
geting on binary classifications, also learns the clean distri-
bution. Additionally, the symmetric cross-entropy loss [36],
an information-based loss Lpy; [43], a correlated agree-
ment (CA) based loss peer loss [24], and its adaptation for

encouraging confident predictions [5] are proposed to learn
the underlying clean distribution without knowing the noise
transition matrix.

Other popular methods Other methods exist with more
sophisticated training framework or pipeline, including
sample selection [5, 12, 16, 18, 37, 46, 44], label correction
[13, 21, 33], and semi-supervised learning [19, 28], etc.

2. Preliminaries

This paper targets on a classification problem given a
set of N training examples with Instance-Dependent label
Noise (IDN) denoted by D := {(2n,¥n)}ne[n], Where
[N] := {1,2,---,N} is the set of indices. The corre-
sponding noisy data distribution is denoted by D. Ex-
amples (z,,, ) are drawn according to random variables
(X, )7) ~ D. Our goal is to design a learning mechanism
that is guaranteed to be robust when learning with only ac-
cessing D. Before proceeding, we summarize important
definitions as follows.

Clean distribution D Each noisy example (x,,, J,) € D
corresponds to a clean example (z,,y,) € D, which con-
tains one unobservable ground-truth label, a.k.a. clean la-
bel. Denote by D the clean distribution. Clean examples
(Zn, Y ) are drawn from random variables (X,Y) ~ D.
Bayes optimal distribution D* Denote by Y* the
Bayes optimal label given feature X, that is: Y*|X :=
argmaxy P(Y|X),(X,Y) ~ D. The distribution of
(X,Y™) is denoted by D*. Note the Bayes optimal distri-
bution D* is different from the clean distribution D when
P(Y|X) ¢ {0,1}. Due to the fact that the information
encoded between features and labels is corrupted by label
noise, and both clean labels and Bayes optimal labels are
unobservable, inferring the Bayes optimal distribution D*
from the noisy dataset D is a non-trivial task. Notably there
exist two approaches [5, 6] that provide guarantees on con-
structing the Bayes optimal dataset. We would like to re-
mind the readers that the noisy label ¢, clean label y,,, and
Bayes optimal label y;, for the same feature x,, may dis-
agree with each other.

Most of our developed approaches will focus on dealing
with the Bayes optimal distribution D*. By referring to D*,
as we shall see later, we are allowed to estimate the second-
order statistics defined w.r.t. Y*.

Noise transition matrix 7'(X) Traditionally, the noise
transition matrix is defined based on the relationship be-
tween clean distributions and noisy distributions [5, 24, 30,

]. In recent literature [6], the Bayes optimal label (a.k.a.
distilled label in [6]) also plays a significant role. In the im-
age classification tasks where the performance is measured
by the clean test accuracy, predicting the Bayes optimal la-
bel achieves the best performance. This fact motivates us
to define a new noise transition matrix based on the Bayes
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optimal label as follows:
Tij(X) =P(Y = j[Y* =i, X),

where T; ;(X) denotes the (7, j)-th element of the matrix
T(X). Its expectation is defined as T := E[T(X)], with
the (4, j)-th element being 7; ; := E[T; ;(X)].

Other notations Let X’ and V' be the space of feature
X and label Y, respectively. The classification task aims
to identify a classifier f : X — ) that maps X to Y ac-
curately. One common approach is minimizing the empiri-
cal risk using DNNs with respect to the cross-entropy (CE)
loss defined as: £(f(X),Y) := —In(fx[Y]), Y € [K],
where fx[Y] denotes the Y-th component of f(X) and K
is the number of classes. Let 1{-} be the indicator func-
tion taking value 1 when the specified condition is satisfied
and 0 otherwise. Define the 0-1 loss as 1(f(X),Y) =
1{f(X) # Y}. Define the Bayes optimal classifier f* as
[* = argmin; Ep-[1(f(X),Y™)]. Noting the CE loss is
classification-calibrated [3], given enough clean data, the
Bayes optimal classifier can be learned using the CE loss:
[r=argmin; Ep[l(f(X),Y)].

Goal Different from the goals in surrogate loss [27], Lpmi
[43], peer loss [24], and CORES? [5], which focus on re-
covering the performance of learning on clean distributions,
we aim to learn a classifier f from the noisy distribution
D which also minimizes E[1(f(X),Y™)],(X,Y™) ~ D*.
Note E[1(f*(X),Y™*)] = 0 holds for the Bayes optimal
classifier f*. Thus, in the sense of searching for the Bayes
optimal classifier, our goals are aligned with the ones focus-
ing on the clean distribution.

3. Insufficiency of First-Order Statistics

Peer loss [24] and its inspired confidence regularizer
[5] are two recently introduced robust losses that operate
without the knowledge of noise transition matrices, which
presents them as preferred solutions for more complex noise
settings. In this section, we will first review the usages of
first-order statistics in peer loss and the confidence regu-
larizer (Section 3.1), and then analyze the insufficiency of
using only the first-order statistics when handling the chal-
lenging IDN (Section 3.2). Besides, we will anatomize the
down-weighting effect of IDN and provide intuitions for
how to make IDN easier to handle (Section 3.3).

We formalize our arguments using peer loss, primarily
due to 1) its clean analytical form, and 2) that our later pro-
posed solution will be built on peer loss too. Despite the
focus on peer loss, we believe these observations are gener-
ally true when other existing training approaches meet IDN.

For ease of presentation, the following analyses focus on
binary cases (with classes {—1,+1}). Note the class —1

I'We focus on the closed-set label noise, i.e. }7 Y, and Y'* share the
same space ).

should be mapped to class 0 following the notations in Sec-
tion 2. For a clear comparison with previous works, we
follow the notation in [24] and use class {—1,+1} to rep-
resent classes {0,1} when K = 2. The error rates in Y
are then denoted as ¢4 (X) := P(Y = —1]Y* = +1, X),
e_(X) :=P(Y = +1|Y* = —1, X). Most of the discus-
sions generalize to the multi-class setting.

3.1. Using First-Order Statistics in Peer Loss

It has been proposed and proved in peer loss [24] and
CORES? [5] that the learning could be robust to label
noise by considering some first-order statistics related to the
model predictions. For each example (z,,¥,), peer loss
[24] has the following form:

EPL(f(xn)agn) = é(f(mn)7 gn) - Z(f($n1)>gn2)a

where (2,,,,Un,) and (Z,,,Jn,) are two randomly sam-
pled peer samples for n. The first-order statistics re-
lated to model predictions characterized by the peer term
£(f(2n,), Un, ) are further extended to a confidence regular-
izer in CORES? [5]:

Ceores? (F(xn), ) = U(f (20), Gn)—BED, L 0(f(2n), V)],

where [ is a hyperparameter controlling the ability of reg-
ularizer, and Dy  is the marginal distribution of Y given
dataset D. Although it has been shown in [5] that learn-
ing with an appropriate 8 would be robust to instance-
dependent label noise theoretically, in real experiments,
converging to the guaranteed optimum by solving a highly

non-convex problem is difficult.

3.2. Peer Loss with IDN

Now we analyze the possible performance degradation
of using the binary peer loss function proposed in [24] to
handle IDN. Denote by

f;eer = arg;nin Eﬁ :HPL(f(X%?)

the optimal classifier learned by minimizing 0-1 peer loss,
where 1pp, represents £p;. with 0-1 loss (could also be gen-
eralized for £-orpsz With O-1 loss). Let p* := P(Y™* = +1).
With a bounded variance in the error rates, supposing

Eles (X)~Eles (X)]] < e, Ele_ (X)~Ele_ (X)]] < c_,

the worst-case performance bound for using pure peer loss
is provided in Theorem 1 and proved in Appendix B.1.

Theorem 1 (Performance of peer loss). With the peer loss
function proposed in [24], we have

< 2(eq +€-)

E[]l(f* (X)’Y*)] T l—e;—e_

+2|p* — 0.5
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Theorem | shows the ratio of wrong predictions given by
f;eer includes two components. The former term f(_iite;)
is directly caused by IDN, indicating the error is increasing
when the instance-dependent noise rates have larger mean
(larger e + e_) and larger variation (larger €, + €_). The
latter term 2|p* — 0.5| shows possible errors induced by
an unbalanced D*. Theorem | generalizes peer loss where
e+ = e_ = 0, i.e., the error rates are homogeneous across
data instances, and there is no need to consider any second-
order statistics that involve the distribution of noise rates.

3.3. Down-weighting Effect of IDN

We further discuss motivations and intuitions by study-
ing how IDN affects the training differently from the class-
dependent one. Intuitively, a high noise rate reduces the
informativeness of a particular example (z,y), therefore
“down-weighting" its contribution to training. We now an-
alytically show this under peer loss.

As a building block, the invariant property (in terms of
the clean distribution D) originally discovered by peer loss
on class-dependent label noise is first adapted for the Bayes
optimal distribution D*. Define e_ := P(Y = +1|Y* =
—1)and e, := P(Y = —1|Y* = +1). Focusing on a
particular class-dependent D, we provide Lemma 1 and its
proof in Appendix A.1.

Lemma 1 (Invariant property of peer loss [24]). Peer loss
is invariant to class-dependent label noise:

Eg[le(f(X),Y)] = (1—es —e)Ep-[La(f(X),Y")]. (1)
Then we discuss the effect of IDN. Without loss of gen-
erality, consider a case where noisy examples are drawn
from two noisy distributions Dy and Dy, and the noise rate
of Dy is higher than Dy, ie. exn+e_ng > erg+e_y,
where e4 1ap = Pﬁlm)(f/ = —1]Y* = +1). Assume a
particular setting of IDN that the noise is class-dependent
(but not instance-dependent) only within each distribution,
and different between two distributions, i.e. part-dependent
[40]. Let Df and Dy; be the Bayes optimal distribution re-
lated to Dy and Dy. For simplicity, we write P((X,Y*) ~
Df‘(II)|(X, Y*) ~ D*) as ]P’(Df(n)). Then P(Dy) = P(Dy)
and P(?ﬁ) = ]P)(DH)N Note P('DI)G_;'_J + ]P’(DH)e_,_JI = €4+
and P(Dy)e_; + P(Dy)e_ i = e_. Then we have the fol-
lowing equality:

Eg[eL(f(X),Y)]
=P(Dy)(1 — 41 — e~ )Ep; [Lp(f(X),Y™)]
=+ P(ﬁ[l)(l — €41 — 67,[I)EDI’; []lPL(f(X)v Y*)]

(1 —epr—ey) <1P><DI*>ED; (Lo (F(X), V7))

l—einm—e_qu

l=eri—e P(Di)Ep; [T (f(X), Y*)]),

where
l—ern—e_q

<1
l—epr—e-g

indicates down-weighting examples drawn from 511 (com-
pared to the class-dependent label noise).

What can we learn from this observation?  First, we
show the peer loss is already down weighting the impor-
tance of the more noisy examples. However, simply drop-
ping examples with potentially high-level noise might lead
the classifier to learn a biased distribution. Moreover, sub-
jectively confusing examples are more prone to be misla-
beled and critical for accurate predictions [34], thus need to
be carefully addressed. Our second observation is that if we
find a way to compensate for the “imbalances” caused by
the down-weighting effects shown above, the challenging
instance-dependent label noise could be transformed into
a class-dependent one, which existing techniques can then
handle. More specifically, the above result shows the down-
weighting effect is characterized by T'(X), implying only
using the first-order statistics of model predictions with-
out considering the distributions of the noise transition ma-
trix T'(X) is insufficient to capture the complexity of the
learning task. However, accurately estimating T'(X) is pro-
hibitive since the number of parameters to be estimated is
almost at the order of O(NK?) — recall N is the number
of training examples and K is the number of classes. Even
though we can roughly estimate 7'(X), applying element-
wise correction relying on the estimated 7'(X) may ac-
cumulate errors. Therefore, to achieve the transformation
from the instance-dependent to the easier class-dependent,
we need to resort to other statistical properties of T'(X).

4. Covariance-Assisted Learning (CAL)

From the analyses in Section 3.3, we know the instance-
dependent label noise will “automatically” assign different
weights to examples with different noise rates, thus cause
imbalances. When the optimal solution does not change
under such down-weighting effects, the first-order statistics
based on peer loss [5, 24] work well. However, for a more
robust and general solution, using additional information to
“balance” the effective weights of different examples is nec-
essary. Although the Bayes optimal distribution is not ac-
cessible in real experiments, we first assume its existence
for theoretical analyses in the ideal case, then we will dis-
cuss the gap to this optimal solution when we can only use
a proxy D that can be constructed efficiently.

4.1. Extracting Covariance from IDN

__ Again consider an instance-dependent noisy distribution
D with binary classes where Y € {—1,+1}. Define the
following two random variables to facilitate analyses:

Z1(X) =1—ep(X)—e_(X), Zo(X) =er(X)—e_(X).

10116



Recall e, := Eley(X)] and e— := Ele_(X)]. Let
Covp(A, B) := E[(A-E[A])(B—E[B])] be the covariance
between random variables A and B w.r.t. the distribution D.
The exact effects of IDN on peer loss functions are revealed
in Theorem 2 and proved in Appendix B.2.

Theorem 2 (Decoupling binary IDN). In binary classifica-
tions, the expected peer loss with IDN writes as:

Eg(lee(f(X),Y)] = (1— et — e )Ep- [Lp(f(X),Y™)]
+ COVD*(ZI(X)71(f(X)7Y*))
+ COVD*(ZZ(X)ﬂ ]l(f(X)v _1))' (2)

Theorem 2 effectively divides the instance-dependent la-
bel noise into two parts. As shown in Eq. (2), the first line
is the same as Eq. (1) in Lemma 1, indicating the average
effect of instance-dependent label noise can be treated as
a class-dependent one with parameters ey, e_. The addi-
tional two covariance terms in the second and the third lines
of Eq. (2) characterize the additional contribution of exam-
ples due to their differences in the label noise rates. The
covariance terms will become larger for a setting with more
diverse noise rates, capturing a more heterogeneous and un-
certain learning environment. Interested readers are also re-
ferred to the high-level intuitions for using covariance terms
at the end of Section 3.3.

We now briefly discuss one extension of Theorem 2
to a K-class classification task. Following the assump-
tion adopted in [24], we consider a particular setting of
IDN whose the expected transition matrix satisfies T} ; =
Ty, j, Vi # j # k. Denote by e; = T; ;,Vi # j. Corol-
lary 1 decouples the effects of IDN in multi-class cases and
is proved in Appendix C.1I.

Corollary 1 (Decoupling multi-class IDN). In multi-class
classifications, when the expected transition matrix satisfies
ej =T;; =Ty 5, Vi # j # k, the expected peer loss with
IDN writes as:

B[l (f(X),Y)] = (1= Y e)Ep-[lp(f(X),Y7)]
1€[K]
+ 3 Eny. [Covpepye (Tye 5 (X), K(f(X), )],

JE[K]

where Dy« is the marginal distribution of Y* and D*|Y * is
the conditional distribution of D* given Y*.

4.2. Using Second-Order Statistics

Inspired by Theorem 2, if D* is available, we can sub-
tract two covariance terms and make peer loss invariant to
IDN. Specifically, define

foaL = arg;ninEﬁ[]lpL(f(X), 17)] — Cov(Z1(X), 1(f(X),Y™))

— Cov(Z2(X), 1(f(X),—1)).

‘We have the following optimality guarantee and its proof is
deferred to Appendix B.3.

Theorem 3. f¢,; € argmin; Ep-[1(f(X),Y™")].

For a K -class classification problem, a general loss func-
tion for our Covariance-Assisted Learning (CAL) approach
is given by

KCAL(f(xn)a Z}n) - ZPL(f(xn)a gn)

— " Ep,. [Covpejy- (Ty- ;(X),6(£(X),5))] .
JEIK]

Eq. (3) shows the Bayes optimal distribution D* is critical in
implementing the proposed covariance terms. However, D*
cannot be obtained trivially, and only imperfect proxy con-
structions of the dataset (denoted by D) could be expected.
Detailed constructions of D are deferred to Section 4.2.1.
Advantages of using covariance terms There are several
advantages of using the proposed covariance terms. Un-
like directly correcting labels according to D*, the proposed
covariance term can be viewed as a “soft” correction that
maintains the information encoded in both original noisy
labels and the estimated Bayes optimal labels. Keeping
both information is beneficial as suggested in [13]. More-
over, compared to the direct loss correction approaches
[30, 40, 41], we keep the original learning objective and
apply “correction” using an additional term. Our method
is more robust in practice compared to these direct end-
to-end loss correction approaches due to two reasons: 1)
The covariance term summarizes the impact of the complex
noise using an average term, indicating that our approach
is less sensitive to the estimation precision of an individual
example; 2) As will be shown in Section 4.3, the proposed
method is tolerant with accessing an imperfect D*.

Estimating the covariance terms relies on samples drawn
from distribution D*. Thus, we need to construct a dataset
ﬁ, which is similar or unbiased w.r.t. D*. We will first
show the algorithm for constructing D, then provide details
for DNN implementations.

4.2.1 Constructing D

To achieve unbiased estimates of the variance terms, the
high-level intuition for constructing p is determining
whether the label of each example in D is Bayes optimal
or not by comparing the likelihood, confidence, or loss of
classifying the (noisy) label to some thresholds. There are
several methods for constructing D: distillation [6], search-
ing to exploit [44], and sample sieve [5]. If the model does
not overfit the label noise and learns the noisy distribution,
both methods in [6] and [44] work well. However, for the
challenging instance-dependent label noise, overfitting oc-
curs easily thus techniques to avoid overfitting are neces-
sary. In this paper, we primarily adapt the sample sieve pro-
posed in [5], which uses a confidence regularizer to avoid
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Algorithm 1: Constructing D

Input: Noisy dataset D. Thresholds Lyin < Lax-
Number of epochs 7. D=D.
1 Train the sample sieve in [5] for T" epochs and get
the model f;
2 forn € [N] do
Calculate v, 7 following [5];
if Ccorese (f(2n), Un) — @n,r < Linin then
Un = Un;
else if ZCORESQ (f(xn)’ gn) — QpT > Lmax then
Un = arg max, e (k] fon [Y;
else
| §n = —1 (drop example n);

V-2 BN B N T ]

10 end
Output: D := {(x,,9n) : 7 € [N], 9 # —1}

overfitting, to construct D. Specifically, as shown in [5], in
each epoch ¢, the regularized loss for each example is ad-
justed by the parameter «,, ;, which can be calculated based
on model predictions in linear time. In the ideal cases as-
sumed in [5], any example with a positive adjusted loss is
corrupted (with a wrong label).

We summarized the corresponding procedures in Al-
gorithm 1, where the critical thresholds for compar-
ing losses are denoted by L, and Lyax. At
Line 5, if the loss adjusted by c«,; is small enough
(smaller than the threshold L,,;,), we assume ¢, is the
Bayes optimal label. Accordingly, at Line 7, if the adjusted
loss is too large (larger than the threshold L,y,,x), we treat
Un as a corrupted one and assume the class with maximum
predicted probability to be Bayes optimal one. For the ex-
amples with moderate adjusted loss, we drop it as indicated
in Line 9. In ideal cases with infinite model capacity and
sufficiently many examples (as assumed in [5]), we can set
thresholds Liin = Limax = 0 to guarantee a separation of
clean and corrupted examples, thus D will be an unbiased
proxy to D* ?. However, in real experiments, when both the
model capacity and the number of examples are limited, we
may need to tune L,;, and Ly, to obtain a high-quality
construction of D. In this paper, we set Lyin = Lmax
to ensure |D| = |D*| and reduce the effort to tuning both
thresholds simultaneously.

Note that using D to estimate the covariance terms could
be made theoretically more rigorous by applying appropri-
ate re-weighting techniques [6, 7, 14]. See Appendix D.1
for more discussions and corresponding guarantees. We
omit the details here due to the space limit. Nonetheless,
our approach is tolerant of an imperfect D, which will be
shown theoretically in Section 4.3.

2In the ideal case as assumed in Corollary 1 of [5], we have D = D*.

4.2.2 Implementations

For implementations with deep neural network solutions,
we need to estimate the transition matrix 7'(X) relying on
D and estimate the covariance terms along with stochastic
gradient descent (SGD) updates.

Covariance Estimation in SGD As required in (3), with
a particular D, each computation for T} ;(z,,) requires only
one time check of the associated noisy label as follows:

TiJ (l‘n) = 1{gn = i, Zjn = j} (4)

When D is unbiased w.r.t. D*, the estimation in (4) is also
unbiased because

115 (X)) = By, [{Y =i,V = j|X}]

3

=P(Y = j|X,V =) =P(Y = j|X,Y* =4).

Eﬁ\x,x?:i[

Noting Covp(A, B) := E[(A — E[A])(B — E[B])] =
E[(A — E[A4]) - B], the covariance can be estimated em-
pirically as

% S tlyn =it [(@ilen) = Tig) - £ (@a), )] -

n€[N]i,j€[K]

For each batch of data, the above estimation has O(N') com-
plexities in computation and space. To reduce both com-
plexities, with the cost of the estimation quality, we use | Ep|
examples to estimate the covariance in each batch, where
E}, is the set of sample indices of batch-b. Per sample wise,
Eq. (3) can be transformed to

ECAL(f(xn)vgn) = gPL(f(mn)vgn)
= Y My =1} (D) = Tog) - €f (20),9)]

i,j€[K]

With the above implementation, the estimation is done lo-
cally for each point in O(1) complexity.

4.3. CAL with Imperfect Covariance Estimates

As mentioned earlier, D* cannot be perfectly obtained
in practice. Thus, there is a performance gap between the
ideal case (with perfect knowledge of D*) and the actually
achieved one. We now analyze the effect of imperfect co-
variance terms (Theorem 4).

Denote the imperfect covariance estimates by D7, where
7 € [0,1] is the expected ratio (a.k.a. probability) of cor-
rect examples in D7: 7 = E[1{(X,Y) € D7|(X,Y*) €
D*}] = P((X,Y) ~ D7|(X,Y*) ~ D*). With D7, the
minimizer of the 0-1 CAL loss is given by:

féAL_T:arg;ninEﬁ Lo (f(X),Y)]—Covp- (Z1(X), 1(f(X),Y

— Covpr (Z2(X), 1(f(X),—1))|.
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Theorem 4 reports the error bound produced by f&,; .. See
Appendix B.4 for the proof.

Theorem 4 (Imperfect Covariance). With D7, when p* =
0.5, we have

E[L(féar-(X), Y7)] <

Theorem 4 shows the quality of D™ controls the scale
of the worst-case error upper-bound. Compared with The-
orem | where no covariance term is used, we know the co-
variance terms will always be helpful when 7 € [0.5,1].
That is, the training with the assistance of covariance terms
will achieve better (worst-case) accuracy on the Bayes op-
timal distribution when the construction D7 is better than
a dataset that includes each instance in D* randomly with
50% chance.

5. Experiments

We now present our experiment setups and results.

5.1. General Experiment Settings

Datasets and models The advantage of introducing our
second-order approach is evaluated on three benchmark
datasets: CIFAR10, CIFAR100 [17] and ClothinglM [42].
Following the convention from [5, 43], we use ResNet34 for
CIFAR10 and CIFAR100 and ResNet50 for Clothing1M.
Noting the expected peer term Ep_ [(f(zn),Y)] (ak.a.
confidence regularizer (CR) as implemented in [5]) is more
stable and converges faster than the one with peer sam-
ples, we train with ¢corgs2. It also enables a fair abla-
tion study since D is constructed relying on [5]. For nu-
merical stability, we use a cut-off version of the cross-
entropy loss £(f(z),y) = —In(f.[y] + €). Specifically,
we use € = 1078 for the traditional cross-entropy term, use
¢ = 107° for the CR term, and the covariance term. All
the experiments use a momentum of 0.9. The weight de-
cay is set as 0.0005 for CIFAR experiments and 0.001 for
Clothing IM.

Noise type For CIFAR datasets, the instance-dependent
label noise is generated following the method from [5, 40].
The basic idea is randomly generating one vector for each
class (K vectors in total) and project each incoming feature
onto these K vectors. The label noise is added by jointly
considering the clean label and the projection results. See
Appendix D.2 for details. In expectation, the noise rate 7 is
the overall ratio of examples with a wrong label in the entire
dataset. For the Clothing]lM dataset, we train on 1 million
noisy training examples that encode the real-world human
noise.

5.2. Baselines

We compare our method with several related works,
where the cross-entropy loss is tested as a common base-
line. Additionally, the generalized cross-entropy [50] is
compared as a generalization of mean absolute error and
cross-entropy designed for label noise. Popular loss cor-
rection based methods [29, 40, 41], sample selection based
methods [5, 12, 37, 46], and noise-robust loss functions
[24, 43] are also chosen for comparisons. All the compared
methods adopt similar data augmentations, including stan-
dard random crop, random flip, and normalization. Note the
recent work on part-dependent label noise [40] did not ap-
ply random crop and flip on the CIFAR dataset. For a fair
comparison with [40], we remove the corresponding data
augmentations from our approach and defer the compari-
son to Appendix D.3. The semi-supervised learning based
methods with extra feature-extraction and data augmenta-
tions are not included. All the CIFAR experiments are re-
peated 5 times with independently synthesized IDN. The
highest accuracies on the clean testing dataset are averaged
over ) trials to show the best generalization ability of each
method.

5.3. Performance Comparisons

5.3.1 CIFAR

In experiments on CIFAR datasets, we use a batch size of
128, an initial learning rate of 0.1, and reduce it by a factor
of 10 at epoch 60.

Construct D To construct D we update the DNN for
65 epochs by minimizing {corgsz (Without dynamic sam-
ple sieve) and apply Algorithm 1 with Ly = Liax =
—8.3 For a numerically stable solution, we use the square
root of the noise prior for the CR term in {-orgpsz as

e OB ). ). The hyperpran:
eter [ is set to 2 for CIFAR10 and 10 for CIFAR100.
Train with CAL With an estimate of D*, we re-train the
model 100 epochs. The hyper-parameter (3 is set to 1 for
CIFARI10 and 10 for CIFAR100. Note the hyperparameters
(Lmin, Lmax, B) can be better set if a clean validation set is
available.

Performance Table 1 compares the means and standard
deviations of test accuracies on the clean test dataset when
the model is trained with synthesized instance-dependent
label noise in different levels. All the compared meth-
ods use ResNet34 as the backbone. On CIFAR10, with a
low-level label noise (n = 0.2), all the compared meth-
ods perform well and achieve higher average test accura-
cies than the standard CE loss. When the overall noise

3Theoretically, we have Liin = Lmax = 0 if both the CE term and
the CR term use a log loss without cut-off (¢ = 0). Current setting works
well (not the best) for CIFAR experiments empirically.
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Table 1. Comparison of test accuracies (%) using different methods.

Method Inst. CIFARIO Inst. CIFAR100
n=20.2 n=04 n=20.6 n=0.2 n=204 n=20.6

CE (Standard) 85.45+0.57 76.23+1.54 59.75£1.30 57.79+1.25 41.15+0.83 25.68+1.55
Forward T [29] 87.22+1.60 79.37+2.72 66.56+4.90 58.19+1.37 42.80+1.01 27.91£3.35
Lpwm [43] 88.57+£0.60 82.82+1.49 69.94+1.31 57.90+£1.21 42.70+0.92 26.96+2.08
L, [50] 85.81+£0.83 74.66+1.12 60.76+3.08 57.03+0.27 39.81+1.18 24.874+2.46
Co-teaching [12] | 88.874+0.24 73.00£1.24 62.51+1.98 43.30+0.39 23.21£0.57 12.58+0.51
Co-teaching+ [46] | 89.80£0.28 73.78+£1.39 59.22+6.34 41.71£0.78 24.454+0.71 12.584+0.51
JoCoR [37] 88.78+0.15 71.64+3.09 63.46+1.58 43.66+1.32 23.95+0.44 13.16£0.91
Reweight-R [41] | 90.04+0.46 84.11+2.47 72.18£2.47 58.00+0.36 43.83+8.42 36.07+£9.73
Peer Loss [24] 89.12+0.76  83.26+0.42 74.53+£1.22 61.16+£0.64 47.23+1.23 31.71+2.06
CORES? [5] 91.144+0.46 83.67+1.29 77.68+2.24 66.47+0.45 58.99+1.49 38.55+3.25
CAL 92.01+0.75 84.96+1.25 79.82+2.56 69.11+0.46 63.17+1.40 43.58+3.30

rates increase to high, most of the methods suffer from se-
vere performance degradation while CAL still achieves the
best performance. There are similar observations on CI-
FAR100. By comparing CAL with CORES?, we conclude
that the adopted second-order statistics do work well and
bring non-trivial performance improvement. Besides, on
the CIFAR100 dataset with = 0.4 and 0.6, we observe
Reweight-R [41] has a large standard deviation and a rel-
atively high mean, indicating it may perform as well as or
even better than CAL in some trials. It also shows the po-
tential of using a revised transition matrix 7' [41] in severe
and challenging instance-dependent label noise settings.

5.3.2 ClothinglM

For Clothing1M, we first train the model following the set-
tings in [5] and construct D with the best model. Noting
the overall accuracy of noisy labels in Clothing1M is about
61.54% [42], we set an appropriate Lyin = Lmax such that
61.54% of training examples satisfying {corps2 — ne <
Lin. With 15, we sample a class-balanced dataset by ran-
domly choosing 18, 976 noisy examples for each class and
continue training the model with 8 = 1 and an initial learn-
ing rate of 10~5 for 120 epochs. Other parameters are set
following [5]. See Appendix D.4 for more detailed exper-
imental settings. Table 2 shows CAL performs well in the
real-world human noise.

5.4. Ablation Study

Table 3 shows either the covariance term or the peer term
can work well individually and significantly improve the
performance when they work jointly. Comparing the first
row with the second row, we find the second-order statistics
can work well (except for n = 0.4) even without the peer
(CR) term. In row 4, we show the performance at epoch 65
since the second-order statistics are estimated relying on the
model prediction at this epoch. By comparing row 4 with
row 5, we know the second-order statistics indeed lead to
non-trivial improvement in the performance. Even though
the covariance term individually can only achieve an accu-

Table 2. The best epoch (clean) test accuracies on Clothing1 M.

Method ‘ Accuracy
CE (standard) 68.94
Forward T [29] 70.83
Co-teaching [12] 69.21
JoCoR [37] 70.30
Lpwm [43] 72.46
PTD-R-V[40] 71.67
CORES? [5] 73.24
CAL 74.17

Table 3. Analysis of each component of CAL on CIFAR10. The
result of a particular trial is presented. Cov.: the covariance term.
Peer: the CR term [5] (a.k.a. expected peer term [24]).

row# Cov. Peer Epoch [n=02 n=04 =06
1 X X Best 90.47 82.56 64.65
2 v X Best 92.10 78.49 73.55
3 X v Best 91.85 84.41 78.74
4 X v Fixed@65 | 90.73 82.76 77.70
5 v v Best 92.69 85.55 81.54

racy of 78.49 when n = 0.4, it can still contribute more
than 1% of the performance improvement (from 84.41% to
85.55%) when it is implemented with the peer term. This
observation shows the robustness of CAL.

6. Conclusions

This paper has proposed a second-order approach
to transforming the challenging instance-dependent label
noise into a class-dependent one such that existing methods
targeting the class-dependent label noise could be imple-
mented. Currently, the necessary information for the covari-
ance term is estimated based on a sample selection method.
Future directions of this work include extensions to other
methods for estimating the covariance terms accurately. We
are also interested in exploring the combination of second-
order information with other robust learning techniques.
Acknowledgements This research is supported in part
by National Science Foundation (NSF) under grant IIS-
2007951, and in part by Australian Research Council
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