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Abstract—In this paper, we argue that distributed real-time
and embedded systems sometimes “overpay” for fault tolerance,
by using a protocol that is more powerful than what is actually
needed, or by failing to take advantage of unique features in
these systems. As a result, these systems sometimes perform more
computation or communication than is strictly necessary, or they
can be unnecessarily complex, and thus more difficult to analyze.

We take a look at the design space for two common problems,
broadcast and consensus, and we show that, in a number of
scenarios that would be common in real-time systems, these
problems have trivial solutions. We then examine two solutions
from the literature and propose alternatives that are substantially
simpler, less expensive, and more reliable.

I. INTRODUCTION

Faults are a fact of life when building distributed systems,
and it is important to ensure that the system can tolerate
at least some of them. This is particularly true for real-time
and embedded systems, which often interact with the physical
world. In this setting, a failure at the wrong moment can cause
substantial damage, or even loss of life.

The traditional assumption is that fault tolerance should
be done using one of several off-the-shelf protocols, such as
Paxos [38] (for crash faults) or PBFT [12] (for Byzantine
[39] faults). These protocols are general and offer very strong
properties, which makes them an attractive choice. However,
they also come with a rather substantial cost: in order to
tolerate up to f faults, Paxos requires 2f + 1 replicas, while
PBFT requires 3f + 1; both protocols also have a high
message complexity. This hefty “price tag” can be a problem
— especially in embedded systems, where computation and
bandwidth resources are often scarce.

In this paper, our goal is to show that the cost of robust fault
tolerance can often be far lower than is commonly believed.
There are two reasons for this. The first is that standard
building blocks, such as Paxos and PBFT, were designed for
systems with very different properties: for instance, they often
assume an asynchronous system with point-to-point links,
which complicates the problem substantially and results in
worse lower bounds. Thus, when a real-time system with a bus
topology and/or tight synchronization uses these protocols, it
is effectively “overpaying” for features it does not need! In
particular, the strong synchrony, which is a key property of
real-time systems but is not usually present in other systems,
provides several imporant benefits.

The second reason is that, while non-crash faults such
as memory corruption are a common concern for embedded
systems, these faults represent only a small subset of Byzantine
faults — and it happens to be an “easy” subset! Much of the

cost and complexity of Byzantine-tolerant protocols is spent on
handling adversarial behavior, such as equivocation; this kind
of behavior is not likely to happen due to random corruption,
and its probability can be reduced further, e.g., by transmitting
several copies of messages, or by repeating computations and
cross-checking the results. Thus, tolerating “benign” non-crash
faults is often much cheaper and easier than tolerating arbitrary
Byzantine faults.

We take a look at the design space for fault-tolerant pro-
tocols, and we show how the cost can vary substantially,
depending on the scenario and the assumptions that are being
made. These dependencies can be very subtle, so choosing the
protocol that is “best deal” for a given scenario often requires
a very close look. We then apply our lessons to two protocols
from the literature: we show that the cost of RT-ByzCast [37]
can be reduced substantially if it can take advantage of a bus
topology, and we show that the consensus protocol by Gujarati
et al. [27] can be simplified considerably by taking advantage
of the fact that, although the paper describes its fault model as
“Byzantine faults” and uses an approach that can tolerate such
faults, it does not actually consider adversarial behavior and
in fact assumes only benign non-crash faults. In both cases,
our proposed replacements are so simple that they are almost
trivial, and their timing properties are easy to see, even without
a complicated analysis.

The building blocks we use for our solutions are not new —
they go back to the early 1980s — and the connection we point
out is of the kind that seems immediately obvious once one
has become aware of it. However, we do not think that it was
obvious to begin with, otherwise the earlier papers would have
taken advantage of it. Relative to the current state of the art, as
represented by an award paper from last year’s RTAS [27], our
proposals are much simpler, considerably more reliable, much
easier to analyze, and they have storage and communication
overheads that are orders of magnitude lower.

II. WHEN IS FAULT TOLERANCE TRIVIAL?

When building fault tolerance solutions, a critical and very
difficult building block is agreement, that is, getting all the
replicas to take a consistent action. We begin by examining
two agreement problems that are very common: broadcast and
consensus.

In the following, we will assume a system of N nodes,
ni,...,ny, that are connected by a network. We say that a
node n; is correct in a given execution of this system if it
faithfully executes the instructions that were assigned to it;
otherwise we say that n; is faulty. Although our focus is on



synchronous systems, which can provide timing guarantees,
we consider both synchronous and asynchronous systems here.

A. Broadcast

In the broadcast problem, some node n; sends a value, and
the other nodes must each deliver the same value to some
local application — say, some replicated state machine. This is
sometimes explained using the analogy of a commander and
several lieutenants [39]: the commander is supposed to issue a
single order, and the lieutenants want to make sure that they all
take the same action, even if some lieutenants do not receive
the order or a malicious commander gives different orders to
different lieutenants. A solution must satisfy the following four
properties:
o Agreement: If a correct node delivers a value v, then all
other correct nodes eventually deliver v.

o Validity: If n; is correct and sends value v, all correct
nodes must eventually deliver v.

o Integrity: Correct nodes deliver at most one value, and
any delivered value must have been sent by n;.

o Termination: Correct nodes deliver a value eventually.
This problem has several names (for instance, it is sometimes
called “terminating reliable broadcast”, to distinguish it from
other variants), and the properties are sometimes stated or
named slightly differently.

B. Consensus

The consensus problem is quite similar, except that now every
node m; proposes its own value v;, and the goal is for the
correct nodes to decide on a single value from among the
ones that have been proposed. The properties are:
o Agreement: If a correct node decides on a value v, then
all other correct nodes eventually decide v.
« Validity: If all nodes that propose a value propose the
same value v, then all correct nodes eventually decide v.
o Integrity: Correct nodes decide on at most one value, and
only on a value that has been proposed by some node.
« Termination: Correct nodes decide on a value eventually.
As with agreement, the properties are sometimes stated differ-
ently — for instance, validity is sometimes restricted to values
proposed by correct nodes.

C. Fault models

The difficulty of the above two problems depends, to a great
extent, on two things: 1) what we mean by “faulty”, and 2)
the exact properties of the system. In this paper, we consider
the following three common fault models:

e Crash faults: In this model, faulty nodes simply stop
sending messages and executing instructions. For in-
stance, a node might suddenly lose power.

« Probabilistic faults: In this model, nodes experience ran-
dom malfunctions with a certain probability. For instance,
a node might experience memory corruption.

« Byzantine faults: In this model [39], faulty nodes can do
almost anything; they can perform arbitrary computations
or send arbitrary messages, and they can collude with

each other. For instance, a faulty node might have been
hacked and taken over by a malicious adversary.
Notice that some events, such as message corruption or
memory corruption, can occur both in the probabilistic and
in the Byzantine model; the difference is in the process that
produces them. For instance, an adversary can cause the nodes
under her control to consistently flip a certain bit in every
single message they send. The same corruption pattern could
also occur with probabilistic faults, but it is extremely unlikely.
We assume that, in the crash and Byzantine models, there is
an upper bound f on the number of nodes that can be faulty;
if a majority of the nodes can fail at the same time, it is often
impossible to find any solution at all. For the probabilistic
model, we simply assume that faults occur independently with
some probability; thus, a majority of the nodes could fail at
the same time, it is just not very likely.

D. System model
In terms of system properties, we consider the following:

o Synchrony: In a synchronous system, there are bounds
on computation times and message delays, and nodes
have access to closely synchronized clocks. Computation
can be thought of as a sequence of discrete rounds, with
messages sent in round r being received in round r + 1.
In an asynchronous system, computations and message
transmissions can take arbitrarily long, and clocks are
not synchronized.

o Network topology: Some systems have a broadcast chan-
nel (say, a CAN bus, or switched Ethernet) that delivers
a transmitted message to all the nodes. Other systems
have unicast channels, such as direct point-to-point links
between the nodes.

o Network ordering: The network can deliver messages
in the order in which they were sent, or it can deliver the
messages in any order.

o Network reliability: The network can be reliable, that
is, it can guarantee that every transmitted message is
delivered to its recipient, or it can drop and/or corrupt
messages with a certain probability.

« Transferable authentication: With authentication, nodes
can identify the sender of a given message, even if the
message has been forwarded by another node. Without
authentication, nodes can only identify the sender of
messages that are sent directly to them.

Solutions can guarantee the properties from Sections II-A
and II-B either perfectly, in the sense that the solution must
never violate them in any execution, or probabilistically, in the
sense that the properties must hold with some high probability.

E. Trivial solutions

Both broadcast and consensus have a reputation for being
difficult, but this is not necessarily the case. Consider a syn-
chronous system that already has a reliable broadcast channel
at the network level (e.g., a bus), and assume that nodes can
fail only by crashing. Then Algorithm 1 trivially solves the
broadcast problem. In the first round, n; uses the network-level



Algorithm 1 A trivial broadcast algorithm (T-Bcast)

Algorithm 2 A trivial consensus algorithm (T-Cons)

1: procedure PROPOSE(V)
2: broadcast(v)

3: procedure ROUND(r)
4: if v is received then
5: decide(v)

6 else

7 decide(L)

broadcast primitive to send the value v it wants to propose;
because the network is reliable and the system is synchronous,
this broadcast is received by each node in the second round,
and each node simply decides v. If n; crashes before it can
send the broadcast, none of the other nodes receive a message,
and they each simply decide a default value L.

In this model, consensus is not much more difficult; Al-
gorithm 2 shows a simple solution. In the first round, each
node n; uses the network-level broadcast primitive to send
its proposed value v;; since the network is reliable and the
system is synchronous, each node will receive the same set of
messages in the second round. The nodes can then assemble
the received values into a vector and apply any deterministic
function f to choose one of the elements from the vector (other
than ). Since the vectors will be identical on all the nodes,
each node thus decides on the same value.

Of course, the two algorithms are simple because we have
chosen idealistic assumptions. But this is precisely our point!
We argue that, rather than reflexively reaching for Paxos or
PBFT, one should always ask why the above algorithms are
not sufficient. We discuss some possible reasons next.

F. What if the network is unreliable?

One very common objection to the above model is that, in a
practical system, the network is not reliable — there is always
a small chance that a given message is lost. There are two
ways to respond to this concern, depending on whether, in any
given run, we need the system to achieve all four consensus
properties with certainty (perfect correctness), or only with
high probability (probabilistic correctness). The latter is often
acceptable, as long as the probability of failure can be bounded
and factored into the system-level reliability analysis.

Perfect: If we insist on getting all four properties with
certainty, then the problem cannot be solved with an unreliable
network at all [25], since it is possible that the network might
lose every single message that is ever sent. Because of this,
one often assumes something slightly stronger — perhaps that
messages are received eventually, if they are transmitted often
enough [22]. But since it is impossible to predict how often a
message might need to be retransmitted, there is no bound on
message delay, so we have no choice but to treat the system
as asynchronous. But once we give up on timing, we might
as well treat the network as reliable: we can imagine each
algorithm being augmented with a little loop that periodically
retransmits every message that has been sent, until it is either
acknowledged or the algorithm terminates.

1: procedure PROPOSE(v;)

2: broadcast(v;)

3: procedure ROUND(r)

4: V=(L,...,1)

5: V[Z} = V5

6: if v; is received from n; then
7: V[jl =v;

8: decide(f(V))

Probabilistic: If we are willing to accept a small probability
of failure, the solution is even easier than the above simple
algorithms. Suppose we expect the algorithm to send up to
m messages, each message is dropped with probability pgp,
and we are willing to tolerate a failure probability pr;. If we
send k copies of each message (and have the recipient drop
duplicates), the probability that at least one copy will arrive is
l—psmp, so we can simply choose k& such that (1 —p’d“mp)m >
1 — prair-

Of course, this brute-force solution is not necessarily the
most efficient choice: for instance, one could use erasure
coding to reduce the amount of redundant data that needs to
be sent.

Summary: If the algorithm must succeed with certainty, a
system with an unreliable network must be treated as asyn-
chronous. If a small probability of failure is acceptable, the
network can be made “reliable enough” with retransmissions.

G. What if the network can corrupt messages?

Another reason why our trivial solution might not suffice is
that messages might be corrupted in the network; for instance,
the network might sometimes randomly flip some bits. As
above, the response depends on whether we want a perfect
solution, or just one that works with very high probability.

Perfect: If we insist on all three properties holding with
certainty, the situation is roughly comparable to the one
with Byzantine faults on the nodes. To see why, consider
an execution e in which some nodes are malicious and send
different messages than the ones they were supposed to. Then
we can construct an equivalent execution e’ with just message
corruptions, in which the nodes originally send the correct
messages and every bit in a message that is different in e
and €’ is then flipped by the network. (The probability of this
happening by chance is admittedly very small, but it is not
zero.) True, there are some differences between the models
— for instance, a malicious node might send extra messages,
whereas most corruption models assume that only existing
messages can be corrupted — but, in practice, we will usually
need to go with a Byzantine-tolerant algorithm.

Probabilistic: If we can tolerate a small probability of failure,
the situation changes: we can simply include in each message
m a cryptographic hash H(m) of the contents, and we can
have the nodes drop any incoming messages (m,h) where
h # H(m). In the random oracle model [7], the chances of
a corruption leaving a k-bit hash unchanged is 27%, which
is about 6.8 - 1074% for a SHA-1 hash — small enough that



it should be safe to ignore in practice. Thus, the problem
effectively reduces to that of an unreliable network, which
we have discussed above.

Two possible objection to the use of hash functions are
that 1) they might be expensive, and 2) the random-oracle
assumption might be wrong. The former should rarely be a
concern in practice: for instance, SHA-1 can be computed in
less than 200 cycles per byte on an 8-bit CPU [48]. The latter
is a fair point: the outputs of a hash function are not really
random. There is indeed a certain structure, and, once it is
properly understood, this structure can allow an adversary to
find hash collisions relatively quickly. For instance, in 2017,
the first SHA-1 collision was found, using about 110 GPU
years and 6,500 CPU years [56]; this is why SHA-1 is
no longer considered acceptable for security uses. However,
the chance of a non-malicious network “finding” a collision
instantaneously through random bit flips still seems minuscule.

Summary: If probabilistic guarantees are acceptable and one
is willing to trust hash functions, message corruptions can be
reduced to message drops.

H. What if node memory can be corrupted?

A third reason for rejecting our trivial solution is that nodes
might experience random memory corruption and thus might
perform computations incorrectly.

Perfect: If we insist on perfect guarantees, this situation does
indeed force us to use Byzantine-tolerant algorithms. To see
why, consider an execution e in which a malicious adversary
installs some evil software S on a node n;; we can construct an
execution e’ in which n;’s original software is transformed into
S by a — very unlikely — long sequence of memory corruptions.

Probabilistic: Perhaps surprisingly, the situation is again
different if we can accept probabilistic guarantees. Although
it may at first appear as if memory corruption errors are a
perfect example of Byzantine faults, they are in fact only a
subset of Byzantine faults; the Byzantine model also includes
scenarios in which nodes are compromised by an adversary
who might cause the nodes to take the worst possible action
every single time. To see the difference, consider what happens
if we ask a node compute the same function f(z) k times.
If the node is controlled by an adversary, the adversary can
cause the function to return the same incorrect result every
time. But if the node is “just” experiencing random memory
corruption, the chances of this happening are small: each of the
k invocations has a nonzero chance of executing correctly, and
even if two executions do experience corruption, they might
still return different results.

Thus, there is a way to essentially reduce memory corrup-
tion errors to crash faults: we can repeat computations a few
times, and crash the node when the results do not match. (The
details are highly nontrivial, especially if control flow can be
affected, but they can be solved; see, e.g., Correia et al. [19] for
a practical technique.) With this change, we can use a crash-
tolerant algorithm, as long as we can find a setting of £ such
that the failure probability we are willing to tolerate is higher

than the probability of memory corruption causing either all
k computations to return identical incorrect results or more
crashes than the crash-tolerant algorithm can handle. Notice
that increasing k will reduce the probability of the former but
increase the probability of the latter, so there is not always a
suitable setting for k.

Summary: If a small probability of failure is acceptable,
memory corruption can be reduced to crash faults.

1. What if the system is asynchronous?

The next possible reason for rejecting our trivial solutions
is that the system is asynchronous. This is the first of two
issues that really do substantially increase the complexity of
the problem. One important consequence of asynchrony is
that nodes can no longer tell reliably whether another node
is faulty or is just very slow. Because of this, solutions, such
as Paxos [38], typically require a majority of the nodes to be
correct: intuitively, a group of N — f nodes must be able to
decide without hearing from the other f nodes at all, since up
to f nodes may crash, but two non-overlapping groups must
not be allowed to both decide, so we need 2- (N — f) > N,
or N > 2f. This lower bound disappears if nodes are given
a failure detector [14, §6.1], so the inability to detect faults
really is at the heart of the problem.

However, true asynchrony is rare [60] — especially in hard
real-time systems, which in some sense are the antithesis
of asynchronous systems. Once WCETs are available and
communication is carefully scheduled, it is possible to get
upper bounds on virtually any delay. Thus, in the systems we
are considering here, our trivial solutions should almost never
be rejected for this particular reason alone.

Summary: Asynchrony requires more complex solutions, but
true asynchrony is incompatible with hard real-time systems.

J. What if nodes can equivocate?

A final reason for rejecting our trivial solutions is that nodes in
the system can equivocate — in other words, that a faulty node
can give different and conflicting information to two correct
nodes. This is an obvious threat to consistency, and handling
it increases complexity quite a bit. In general, consensus
in this model requires N > 3f nodes if asynchrony is
present (Example: PBFT [11]), and N > 2f nodes otherwise
(Example: Abraham et al. [2]). The point that equivocation is
at the heart of the problem has been made in several prior
works, e.g., [9], [18], [46], [54]; another way to see it is
to consider TrInc [40], which shows that a small trusted-
hardware gadget that prevents otherwise Byzantine nodes from
equivocating is enough to drop the bound for asynchronous
systems back to N > 2f.

Equivocation is a common complication of the Byzantine
model: once a node is compromised by an adversary, it can
send conflicting messages to other nodes. However, even with
Byzantine faults, equivocation in a synchronous system with a
reliable network is a serious problem only if a) communication
is through unicast channels, and b) messages are not signed.
If communication is via a broadcast channel, a faulty node
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A relevant part of the design space for fault-tolerant consensus. (The figure is not meant to be exhaustive.) The orange boxes show the four widely

known “difficult” classes of algorithms: synchronous with authentication (IC [49, §5]) and without (IC-A [49, §3]), and asynchronous with Byzantine faults
(PBFT [11]) and crash faults (Paxos [38] or Raft [47]). The fifth class, which T-Cons trivially solves, is less widely known, but we argue that real-time/embedded

systems, in particular, are often able to use it.
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Redundant messages | ILF Prob. msg drops — “Reliable network”
Hashes .G Prob. msg corruption — Prob. drops
Repeated comp. [19] | ILH Prob. memory corrupt. — Crash faults

TABLE I

cannot equivocate because all the other nodes will have the
same view of the messages it sends. If messages are signed,
we can use a construction analogous to the SM protocol [39,
§41]: correct nodes can add their signature to messages they
receive and forward them to the other nodes; once a message
has collected f + 1 signatures, it must have been seen and
forwarded by at least one correct node, so the correct nodes
can be sure that they each have seen it — and, if this is done for
all messages, that they have a consistent view of the messages
each node has sent.

It may seem odd to see a solution for consensus when
a majority of the nodes can be faulty. The confusion arises
because, in the literature, consensus is often used for state-
machine replication: the replicas agree on a request ordering,
then they execute the requests and send the results back
to the client. If a client receives different responses from
different replicas, it generally cannot tell which response is
correct and must go with the majority; thus, with state-machine
replication, we do need at least 2f + 1 replicas to ensure that
the majority result is correct, independent of any lower bounds
from the consensus stage.

How common are real-time systems with unicast channels
and no signatures? Many embedded systems do have a link-
layer broadcast primitive — either because they use a bus
topology directly (CAN bus, etc.) or because they use a net-
work that supports broadcast, such as switched Ethernet. And
cryptographic signatures are not an unreasonable assumption,
even for embedded systems — there are fast implementations
on embedded CPUs [42], [57] and many different hardware
accelerators [50], [55], [61].

Summary: Equivocation does increase complexity, but only in
combination with unicast channels and without authentication.

K. Summary

Figure 1 summarizes the points we have made in this section,
and Table I summarizes the reductions we used. Although con-
sensus has a reputation for being a complex and challenging
problem, this is true only if: 1) the system is asynchronous, 2)
nodes can equivocate and there is neither a broadcast channel
nor message authentication, or 3) there is message loss,
message corruption, or memory corruption, and we insist on
perfect guarantees and cannot accept even a small probability
of failure. None of these scenarios seem particularly likely for
real-time or embedded systems.

III. CASE sTUDY: THE GBB PROTOCOL

Our first case study is a protocol by Gujarati et al. [27] that
appeared at RTAS 2020. For brevity, we will refer to this
protocol as GBB below.

A. Problem statement

We begin by reviewing the problem as defined in [27]. There
are N nodes that are connected via Ethernet switches. Each
node ¢ starts with a local input v; and must eventually decide
on a value. The goal is to provide one of the following two
properties:
« Strong correctness: If v; = v for a majority of the nodes,
then a majority of the nodes will decide on v; otherwise
the nodes may decide on any value, or on L.
o Weak correctness: If v is the most common input value
(with ties broken deterministically), more nodes will
decide on v than on any other value, including L.

This problem is a relaxed version of consensus, in two ways:
(1) it does not demand that all the correct nodes decide on



Algorithm 3 The GBB algorithm, from [27]

1: procedure INITIALIZATION
EIG;.addRoot({e,v;))
procedure ROUND(r)
for all («,v) € EIG;.nodes s.t. |a] =r —1 do
if II; ¢ a Av # L then
send (o, v) to all processes in IT \ {II;}
for all (o, v) € EIG;.nodes do
if || =7 — 1 then
for all IT; € II s.t. II; & o do
if IT; = Hj then
EIG;.addChild({a, v) , (oIl;,v))
else if (v, v’) is received from II; then
EIG;.addChild({c, v) , (all;,v'))
else
EIG;.addChild({a,

16: if » # N, then return
17: for all (a,v) € EIG;.nodes from || = N;- — 1 to || = 1 do

—— e
DRV INREL N

), {allj, 1))

18: candidates = 0, Vmajority = L

19: for all (aIl;,v’) € EIG;.getChildren({c,v)) do
20: if v/ # 1 then

21: candidates = candidates U {v'}

22: if candidates # () then

23: Umajority = simpleMajority(candidates)
24: EIG;.updateValue({o, v) , Umajority)

25: if o = 11}, then

26: ‘/'L[k} < Umajority

the same value, but rather a majority of the nodes (somewhat
analogous to almost-everywhere agreement [24]), regardless
of whether they are correct, and (2) strong correctness does
not make any demands at all when no value is proposed by a
majority.

The paper assumes that nodes can crash or suffer random
memory corruption; the system is synchronous, and messages
can be corrupted in the network. There are no assumptions
about authentication, so we assume that signatures are not
available. Unicast and broadcast are not mentioned specifi-
cally, but the paper does assume an Ethernet network, which
supports link-layer broadcast.

B. Original solution

The GBB paper proposes a solution (Algorithm 3) that is a
modification of the Exponential Information Gathering (EIG)
trees from [8] (which in turn follows [49, §3]), a consen-
sus protocol for synchronous systems with Byzantine faults.
Briefly, the EIG protocol consists of two steps: 1) The nodes
compute a vector V, whose elements are the values v; that
each node has proposed, or L if nodes fail or misbehave in
a certain way; the protocol guarantees that all correct nodes
compute the same vector, as long as N > 3f. Then 2) each
node uses a deterministic function f to map V to a single
element f(V) # L, and then decides that value.

The computation in the first step proceeds in several rounds.
In the first round, each node 7 sends a tuple (¢, v;) (“my value
is v;”) to every other node. In each of the following rounds,
each node takes the tuples it has received in the previous round,
appends the sender’s ID to the first element of each, and sends
the resulting tuples to each other node. Thus, if j received
(e,v;) from 4 in the first round, it distributes tuples (i, v;)

“7 told me that its value was v;”) in the second round; if &k
received this tuple, it then distributes (ij,v;) (“j told me that
1 told j that ¢’s value was v;”) in the next round, etc.

Each node ¢ organizes the tuples it receives in a tree, in
which (e, v;) is the root and, for any string «, {(«j,...) is a
child of (a,...). If i has received no tuple (o, v) in round
|a], it fills in {cv, L). After the last round, each node walks its
tree from the leaves to the root; for each interior node («,v)
it encounters, it replaces v with a function of the values in
the direct children. The choice of this function is one of two
major differences between EIG and GBB: EIG uses uses any
value that has been received at least N —|«|— f, whereas GBB
simply uses the majority of the non-_L values. If no suitable
value is found, both protocols use L.

At the end of this process, the direct children of the root on
node n; contain a value v; ; for each node n;. EIG guarantees
that 1) all the correct nodes compute the same vector, and
2) if my, is correct, then v; j, = vy. Finally, the nodes apply
a deterministic function to the v; to pick a single value to
decide; EIG does not prescribe a particular function, but GBB
uses the majority of the non-L values.

C. Does GBB tolerate Byzantine faults?

Although the GBB paper focuses mainly on benign cor-
ruptions, it describes the goal as “tolerating [...] Byzantine
errors” [27, §I]. The choice of the more general Byzantine
fault model, as opposed to simple probabilistic faults, has a
number of problematic consequences. The first of these is that
— strictly speaking — the problem cannot be solved at all:
no algorithm (including GBB) can guarantee either strong or
weak correctness if even a single node might be Byzantine.
We prove this claim with the following two theorems.

Theorem 1. No algorithm can guarantee GBB’s notion of
strong correctness in the presence of at least one Byzantine
node.

Proof. Suppose some algorithm A does provide strong cor-
rectness when one node — say, B — is Byzantine. (If there
are other Byzantine nodes, they can just execute the algorithm
correctly; recall that Byzantine nodes can have any behavior,
including, as a special case, the correct behavior.) Consider
two executions e; and es; in both executions, | N/2] of the
other nodes have input X, and [N/2 — 1] of the other nodes
have input Y'; B has input X in e;, and Y in ey. Then strong
correctness requires that a majority of the nodes decide X in
e1, and Y in ep. But now suppose that, in es, B pretends
that its input is X — that is, it performs the exact steps that
A requires, but replaces its input with X. However, note that
each node can only make decisions based on information it has
locally available. Nodes cannot know “what really happened”
on another node; they can only observe messages that were
sent by that other node. Then, from the perspective of the other
nodes, B’s steps in e; and e, will be indistinguishable, and
since their own circumstances are identical in both executions,
these other nodes must make the same decision in both. Since
B makes the same decision in both executions as well, a



Algorithm 4 The T-GBB algorithm

Algorithm 5 The S-GBB algorithm

1: procedure ROUND(r)
2: decide(v;)

majority of the nodes must make the same decision in both
executions, and since the correct decision (which GBB defines
based on the majority of the inputs) was X in e; and Y in
e2, one of these decisions must be wrong. O

Theorem 2. No algorithm can guarantee GBB’s notion of
weak correctness in the presence of at least one Byzantine
node.

Proof. The proof is largely analogous to the proof of The-
orem 1, except that in e;, weak correctness demands that
more nodes decide on X than on any other value, including
L; in ey, it demands that more nodes decide on Y than on
any other value, including L. As before, both cannot be true
in the same execution, but B can make the two executions
indistinguishable by simulating A in es with its input value
replaced with X. Thus, no algorithm can make the correct
decision in both executions. O

These results may be surprising: the problem does not seem
all that different from the consensus problem in Section II-B,
which does have solutions in the Byzantine model. The
difference is that consensus defines correctness in terms of
what nodes do (proposing a value), which other nodes can
observe and respond to, and not in terms of private inputs that
are known to only one particular node [45]. Since a Byzantine
node can always tell lies about its inputs, a goal that is based
on inputs alone would be difficult to achieve.

D. A trivial solution

Of course, the fact that GBB cannot tolerate Byzantine faults
does not mean that it is not useful; from the context, it is clear
that the real goal is to tolerate specific errors (crashes, memory
corruption, and message corruption) with high probability. We
next discuss whether the proposed solution, a variant of EIG
trees, is a good fit for this goal.

However, as defined in [27, §II.B], the problem has a trivial
solution (Algorithm 4) — every node can simply decide its
local value! This approach, which we refer to as T-GBB, is
already enough to provide GBB’s notion of strong correctness:
if there is an input v that a majority of the nodes have received,
then these nodes will decide v and form the required majority,
and if there is no majority input, strong correctness makes
no demands. Since this algorithm sends no messages and
performs no computation, none of the assumed probabilistic
faults can occur, so it is perfectly reliable.

We assume that this was not the goal, so, in the following,
we assume that a slightly stronger form of agreement is
required: at least in a fault-free execution, all the correct nodes
should decide on the same value. The GBB algorithm does
have this property.

1: procedure INITIALIZATION
2: Vikl=(k==1)2v; : L
procedure ROUND(r)

broadcast((V, H(V))) > H () is the hash function from §II-G

if (V' h) is received from ny and H(V') = h then

for each k : V[k] = L and V'[k] # L do
V[k] < V'[k]
if » = N, then decide(simpleMajority({V'[¢] | V[i] # L}))

A

E. A simple alternative

With this addition, a Byzantine-tolerant protocol like EIG trees
seems like a natural choice, since the fault model includes
non-crash faults and Byzantine-tolerant protocols can handle
these. However, probabilistic faults are only a small subset of
the entire set of Byzantine faults, and an “easy” subset at that
— as we have argued in Section II-J, the truly difficult faults
are the ones where nodes equivocate, which can occur only
by accident in the probabilistic model.

None of the other complicating factors are present, either:
the network can drop or corrupt messages, but the goal is to
give probabilistic guarantees, so we can use hash functions to
convert corruptions to drops (Section II-G) and retransmissions
to mask drops (Section II-F). Nodes can suffer memory
corruption, but we can convert most of these to crashes by
executing computations more than once (Section II-H). Finally,
the system is synchronous, so the biggest potential source of
complexity is absent entirely.

Thus, it seems reasonable to consider a simpler replacement.
Our proposal is Algorithm 5, which we will refer to as S-
GBB. This is a variant of our trivial solution for consensus
(Algorithm 2), but with multiple rounds to account for message
drops, as well as with hash functions added (see §II-G),
and with f instantiated with the simple majority, as required
by GBB’s notion of strong correctness. To handle memory
corruption, the computations would need to be reexecuted a
few times, as discussed in §1I-H; we omit this here for clarity.
Since [27] considers an Ethernet network, the algorithm takes
advantage of Ethernet’s link-layer broadcast primitive.

E Overhead

We now compare GBB and S-GBB in terms of cost. This
is an important factor in choosing fault-tolerance algorithms;
BFT solutions, in particular, are notoriously expensive. At first
glance, S-GBB is more efficient than GBB simply because
each node sends only one (broadcast) message per round,
whereas GBB sends unicast messages; thus, for R rounds, the
per-node message complexity appears to be O(R) for S-GBB
and O(N - R) for GBB.

However, the actual cost difference is much higher than that.
Vanilla message complexity obscures the fact that EIG sends a
lot more information: each message contains an entire level of
the EIG tree. Recall that, on a node n;, the first level contains
n;’s own input, the second level says, for each node n;, what
n; told n; its input was, the third level says, for each pair
of nodes (n;,ny), what ny told n; told n; its input was, etc.
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Fig. 2. Total number of values each node sends to each other node over the
network, when R rounds of GBB/S-GBB are executed.

In general, level r contains a vertex for each sequence of r
distinct nodelDs that ends in n;. There are % such labels,
and for each label, EIG (and, thus, GBB) sends at least one
value to each other node. Thus, if GBB runs for R rounds,

the total number of values each node sends is actually

R

N —1)!
;(N—l)-ENr;!

which is O(NF), whereas S-GBB sends one value in the
first round (if we omit the 1 values), and N values in each
subsequent round, so each node sends 1+ N - (R — 1) values,
which is O(N - R). Figure 2 shows, for different values of N
and R, how many values each node sends to each other node.
(To be fair, we ignore the fact that S-GBB uses link-layer
broadcasts, which, in principle, GBB could do as well.) The
figure shows that the S-GBB’s lower complexity can make a
substantial difference, especially for larger numbers of rounds.

Figure 3 compares the two algorithms in terms of their
storage requirements. GBB must remember each of the
Zle(N -1 %:3: values it receives, so its storage
complexity is O(N ). In contrast, S-GBB stores only a single
estimate for the value of each node, so it simply requires N
values, regardless of R. In an embedded system, this can be a
substantial benefit: for instance, with N = 8 and R = 4, GBB
stores 1,100 values, while S-GBB stores only eight.

G. How to assess reliability?

Another obvious factor in choosing a fault-tolerance algorithm
is reliability — the probability that the algorithm will succeed.

Since GBB assumes probabilistic faults, we can, in prin-
ciple, compute the probability of success using probabilistic
model checking. In essence, this approach considers all possi-
ble executions of the algorithm under all possible failure sce-
narios, computes the probability of each execution, and adds
up the probabilities for the executions where the algorithm
succeeds. The GBB paper rejects this approach, essentially
because the space of possible faults is enormous: nodes could
crash at every step, every single message could potentially be
lost, etc. For instance, suppose we run S-GBB with N = 4
nodes and R = 3 rounds, and suppose we let each node
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Fig. 3. Values stored in memory by GBB and S-GBB, when R rounds are
executed. S-GBB’s memory requirements do not depend on R.

pick one of four possible inputs (since there could be at most
four different ones). Then there are 4* = 256 possible runs;
in each run, each node can crash in each round, or not at
all, so there are 4* = 256 crash scenarios; and there are up
to N- (N —1)- R = 36 opportunities for message drops.
Thus, if we ignore for the moment that some messages cannot
be lost because their sender has already crashed, there are
4% . 4% . 236 ~ 4.5 .10 scenarios for the model checker to
consider — a staggering number!

However, while it is true that model checking in general suf-
fers from state explosion, this particular setting happens to be
relatively easy, as long as we can accept an upper bound. The
reason is that faults are relatively rare. For instance, suppose
crashes and message losses occur independently, and we use
a crash probability of perasn = 1078 and a loss probability of
DPdrop = 10~3. Then the scenario where one node crashes in the
last round and four of the 33 messages are lost has probability
%4 (1 *pcrash)ll  Perash * (1 *pdrop)Qg 'pﬁrop ~3.79-107%,
If we are only interested in certifying a failure probability of
less than, say, 10~'°, it is not clear that we need to consider
such scenarios (or ones that are even less likely) at all — most
of the probability mass will be concentrated in a small number
of relatively likely scenarios.

We can get a precise range for the failure probability as
follows. We maintain a set of execution prefixes and associated
probabilities, which is initially set to the empty prefix and
probability one. Then we repeatedly pick the most likely
prefix that has not yet terminated and execute one step of the
algorithm; if the step is probabilistic, we “split” the current
prefix into multiple prefixes. Thus, at each moment, we have
lower and upper bounds on the probabilities of success and
failure: for the lower bounds, we can add up the probabilities
of the prefixes that have terminated with success and failure,
respectively, and for the upper bounds, we can add to each the
probabilities of the “undecided” prefixes that are still active.
We can terminate this process at any moment, once the upper
and lower bounds are close enough for our purposes. Fig-
ure 4 shows how the cumulative probability of the undecided
prefixes evolves as more and more executions are evaluated;
after as few as 973,824 executions, the undecided prefixes
account for less than a probability of 10~!°. Examining this
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Fig. 4. Remaining uncertainty after a certain number of scenarios have been
evaluated with probabilistic model-checking.

many executions is perfectly feasible on modern hardware, and
many model checkers would be able to do even better, e.g.,
by considering symmetry.

The GBB paper instead presents a closed-form analysis
that involves about 5.5 pages of complex math, as well as a
custom, 53-line algorithm. This approach is labor-intensive, as
the manual analysis would have to be repeated for every new
algorithm or variant, and it almost inevitably involves upper-
bounding the more complicated probabilities, which is a source
of potential mistakes. For instance, in the analysis of case #5,
the GBB paper observes that it is “impossible to estimate”
the probability of failure after message corruption “without
knowing the exact contents of the corrupted messages”; it
therefore chooses a worst-case analysis, which assumed that all
corruptions turn the message into a special Incorrect value [27,
§IV.D.5]. But this is not actually the worst case! Consider a
situation with a narrow majority, analogous to Section III-C,
perhaps one where five nodes have input A and four nodes
have input B. If a corruption flips an A into a B, this could
cause nodes to decide on B and thus violate weak correctness,
whereas, if A can only flip to Incorrect, weak correctness could
still hold, since the Incorrect value will be in a small minority
and will thus almost certainly be ignored by the algorithm. As
a result, the computed probability is not necessarily an upper
bound.

This kind of issue is not uncommon when analyzing non-
crash behavior manually — there are almost always lots of
cases, and it is rarely obvious what the worst case is. In light
of this difficulty, a mechanized approach, such as probabilistic
model checking, seems like the safer choice.

H. Reliability

To get a side-by-side comparison of GBB and S-GBB in
terms of reliability, we evaluated both with probabilistic model
checking, using the approach we sketched above. Where
possible, we use assumptions that are comparable to [27]: we
assume that nodes crash with probability 10~ in each round
(and do not recover before the protocol terminates); we assume
that messages experience corruption with probability 10~ and
are dropped by the Ethernet link layer unless the corruption
results in a CRC32 collision, which maps to an effective
drop rate of 103 (for practical purposes) and, for GBB, a
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Fig. 5. Failure probabilities, as a function of the number of nodes and rounds.
The error bars show lower and upper bounds.

corruption rate of 2.33- 10~13. For S-GBB, we assume a SHA-
1 hash, whose collision probability of 6.8 -10~%° seems small
enough to ignore; similarly, GBB assumes a host corruption
rate of 107°, but if we execute S-GBB’s very simple update
step on ten copies of the vector and crash the node unless
seven of the copies agree, we end up with an extra crash rate
of &~ 10729 and a host corruption rate of less than 10735; both
again seem low enough to ignore. We assume that corruption
does not occur before S-GBB has had a chance to make copies
of the node’s local input value.

Our numbers are different from the ones reported in [27,
Fig.6], for at least two reasons. First, in conversations with
the authors of [27], we discovered that the experiment in [27,
§V.B] was done with a different notion of strong consistency
than the one the paper had defined in §I1.B: in the experiment,
each node received a different input value, and a run was
considered a success when a majority of the nodes was able to
correctly infer a majority of the private input values, without
considering what each node actually decided. Here, we use
the paper’s original definition from §II.B instead; to ensure
that majorities can form, we assume that each node randomly
receives one of two possible inputs, with equal probability.
Second, rather than assuming that memory corruptions result
in a special Incorrect value, we randomly flip one of the values
in the EIG tree.

Figure 5 shows the failure probabilities of GBB and S-
GBB as a function of the number of nodes and rounds. GBB’s
failure rate is higher than S-GBB’s; its most common source of
failure is host corruption, which can, in the common situation
where both inputs are about equally prevalent, flip the majority
the wrong way. Increasing the number of nodes N does not
help much because a) the number of nodes with a given
input follows a Binomial distribution, which has most of its
probability mass concentrated around the problematic % point,
and b) increasing N also increases the expected number of
corruptions. For S-GBB, the most common source of failures
is message drops preventing some of the nodes from learning
the inputs of certain other nodes. This becomes less likely if
we increase the number of nodes N and/or the number of
rounds: a node n; learns the input of another node n; as long
as there is at least one path from n; to n; with no drops
or corruptions. The curious dips at even numbers of nodes



Algorithm Assumptions Goals Costs (per node)
Synchr. | Topology Drops | Mem.corr. | Crashes | Adversary | Auth. Communic. | Storage
T-Cons Alg.2 | Sync Broadcast No No Yes No No Consensus ~ Perfect | O(N) O(N)
GBB [27] Alg3 | Sync Broadcast* | Prob. | Prob. Prob. No No* | GBB-SC  Prob. O(NF) O(NF)
T-GBB Alg4 | Sync (any) (any) (any) (any) (any) (any) GBB-SC Perfect | Zero Zero
S-GBB Alg.5 | Sync Broadcast Prob. | Prob. Prob. No No Consensus  Prob. O(N?%.R) | O(N)
TABLE II

happen because of the way [27] defines strong correctness:
the nodes are free to decide on anything at all unless there is
an input value that occurs at least | N/2] + 1 times. For even
values of IV, the most common case is that the two inputs
occur equally often, and in this situation strong correctness is
trivially satisfied, no matter what the nodes decide.

1. Summary

The main reason GBB “overpays” for fault tolerance is a
disconnect between the faults it assumes and the fault model
it uses: all random corruptions are Byzantine faults, but the
reverse is not true. In particular, the Byzantine model assumes
that faulty nodes might take the worst possible action every
single time, instead of just with a small probability, and
this is a major source of complexity in Byzantine-tolerant
algorithms. In fact, as we have shown in Section III-C, it is
impossible to solve the problem the paper motivates when even
a single Byzantine node is present! Solutions do exist for the
probabilistic faults that [27] focuses on, but, as T-GBB and
S-GBB demonstrate, they can be much simpler than GBB.

EIG trees are both too strong and too weak for this setting.
They are too strong because they can tolerate the entire set
of Byzantine faults, when only a small subset is needed here,
and they solve consensus, when the goal is only to achieve
a form of almost-everywhere agreement. And they are too
weak because they assume that the number of faulty nodes
cannot reach N/3, which is not true in this setting. When this
assumption is violated, EIG trees can actually make matters
worse, since nodes will follow (potentially faulty) quorums of
a certain size, even if the correct value reached them as well.

Table II shows a comparison of the four candidate solutions
(T-Cons, GBB, T-GBB, and S-GBB) we have discussed here.
(Properties with asterisks are inferred; GBB-SC means strong
correctness as defined in [27].) S-GBB offers substantial
benefits over GBB: it sends less data and consumes less
storage, it is more reliable, it should be easier to implement,
and it is easier to analyze.

IV. CASE STUDY: RT-BYZCAST

Our second case study is a protocol by Kozhaya et al. [37]
that provides a form of Byzantine-tolerant broadcast.

A. Problem statement

There are N nodes that are connected by a network. The goal
is to implement a broadcast primitive called RTBRB that has
the following five properties:

« RTBRB-Validity: If a correct process broadcasts m, then
some correct process eventually delivers m.

« RTBRB-No duplication: Every correct process delivers
each message at most once.
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o RTBRB-Integrity: If some correct process delivers a
message m with sender n;, and node n; is correct, then
m was previously broadcast by n;.
RTBRB-Agreement: If some message m is delivered by
any correct process, then every correct process eventually
delivers m.

RTBRB-Timeliness: There exists a known A such that,
if a correct process broadcasts m at real-time ¢, no correct
process delivers m after real time ¢ + A.

This problem is a variant of what we have called broadcast in
Section II-A; the properties are stated slightly differently, and
there is an additional timeliness requirement.

The paper assumes that up to f = |231| nodes can be
compromised by an adversary. The system is synchronous;
messages are authenticated and can be randomly dropped in
the network. Since the latter precludes a perfect implementa-
tion of RTBRB-Timeliness, an additional requirement is that
nodes crash themselves if they appear to be disconnected from

too many other nodes.

B. Original solution

Algorithm 6 shows the original RT-ByzCast algorithm
from [37]; for brevity, we have omitted the code for the proof-
of-life, aggregate-sig, and deliver-message functions.

Briefly, the algorithm works as follows. When a node
wishes to broadcast a message m, it signs m and sends a
RTBRB-broadcast message to every other node. When a
node sees this message, it responds with an Echo message
that includes a signature of its own. The echo signatures are
aggregated in the R..n, set on each node; once a node has
accumulated a quorum of at least 2f + 1 signatures, it sends
a Deliver message that includes these signatures to each
other node. Echo and Deliver messages are retransmitted
for some time, in case they are lost. If a node has no messages
to send, it sends a heartbeat message; if a node fails to
accumulate signatures from a quorum on either broadcasts or
heartbeats, it crashes itself.

C. A simple alternative

Since the paper assumes that nodes can potentially be compro-
mised by an adversary, its fault model encompasses the entire
set of Byzantine faults, so, at first glance, the complexity of
the original solution seems justified and the upper bound on
the number of faulty nodes seems necessary. Notice that, since
messages can be dropped and we insist on perfect guarantees,
the limit for asynchronous systems applies, even though the
system itself is synchronous.

However, in the system model in §1I.A, the paper mentions
almost in passing that nodes are assumed to be connected by
links, and that links “can abstract a physical bus or a dedicated




Algorithm 6 The RT-ByzCast algorithm, from [37]

Algorithm 7 The S-ByzCast algorithm

QUL

7T:
8

9:
10:
11:
12:

: Imit: Msg[1 ™[] =0
: Execute proof-of-life(R);
: upon event < p; wants to broadcast a value v > do

Execute proof-of-life function in piggyback mode

Initialize Recpo(pi, 7, v) =

Send periodically starting from the current round
RTBRB-broadcast ((pi, Tcurrent, v); Pp,) to all p € IT

: upon event <receive RTBRB-broadcast () (p;,’,v); ®p,;) in
round » — 1 > 7/ for the first time> do

Execute proof-of-life function in piggyback mode
Initialize Rfého(pi7 T, v) = pi; sigs = p;

Send Echop, ((pi, 7", v; ®p,); sigs) to all p € I at rounds > r

@process p;:

13: upon event <receive Echop, ((pi,r’,v; ®p,); Ppy,--., Pp,) at
round r do

14: if p; is not sending any Echo () then

15: Set sigs =aggregate-sigp; (v, pi, Pp, - .- Pp.,Pk)

16: if p; has not already delivered a message relative to p; then

17: Execute proof-of-life function in piggyback mode

18: Initialize Re.po(pi,7 + 1,v) =0

19: If sigs < 2f then

20: Send at the beginning of every cycle (as of round

r + 1 onward) Echopj((pi,r + 1, v; <I>pi);°1>pj) ifk#j

21: end if

22: end if

23: If sigs > 2f (for the first time) then

24: Set Recho(pi,T,v) = sigs

25: Execute deliver-message(p;,v, sigs)

26: end if

27: end if

28:  if p; is sending an Echop; ((ps 7', v; Pp,); .. .) then

29: Set sigs = aggregate-sigp,; (v, pi, Pp, ... Pp_,Pk)

30: If sigs > 2f (for the first time) then

31: Set Recho(pi,T,v) = sigs

32: Execute deliver-message(p;,v, sigs)

33: end if

34 If sigs < 2f Ak = j then

35: Set Recho(pi,T,v) = sigs

36: end if

37: If sigs < 2f then

38: Send at the beginning of every cycle (as of round r + 1

onward) Echop, ((ps,r’,v; ®p,); sigs) to all p € 11

39: end if

40: end if

41:  if p; is sending Echop, ((pi, 7", v"; ®p,);*) : v’ # v then

42: Set sigs = aggregate-sigp; (v',pi, @p, - .. Pp_, Dk)

43: If sigs > 2f (for the first time) then

44: Set Recho(pi,T,v) = sigs

45: Execute deliver-message(p;, v’ , sigs)

46: end if

47: end if

48:

49: upon event <receive Delivery, ((p;,v, sigs); Pp, ... Pp, ) at
round 7 do

50:  if ((pi,v) is not delivered yet then

51: Deliver v

52: Stop sending any Echo ()

53: Initialize set Ryejiver (Pi,7) = {Pxs---, Pz}

54: else

55: Rgetiver (Pi, ") = Raeliver (i, ') U{pwv X 7p2}'

56: end if

57: Send Deliverp, ((pi,v, sigs); signatures) to all p € IT at

every round in [r + 1,7 4+ 1 4+ 2R], signatures contains the
signatures of all processes in Ryeiiver (Piy - - -)-
58:  Execute same commands as lines 5-8 of deliver-messagep, (. . .)
59:
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1: procedure INITIALIZATION

2: seen = ()

3: procedure RTBRB-BROADCAST(m)

4 fori=1...k do

5 broadcast(é, m, now, o; (i, m, now))
6: procedure ROUND(7)

7: for each received msg:=(j, m,r,s) do
8: if signature s is valid then

9 if =3m’, s’ : (j,m',r,s’) € seen then
0 seen = seen U {msg}

1 RTBRB-deliver(m)

network link/path”. If the network does indeed consist of
a physical bus, this provides a broadcast channel and thus
removes the adversary’s ability to equivocate, which, as we
have discussed in Section II-J, is a major source of complexity.

With a reliable broadcast channel, the solution would be
trivial and essentially equivalent to Algorithm 1. However,
the assumption here is that the network can randomly drop
messages, and since the RTBRB guarantees are deterministic,
it seems that one still cannot avoid collecting quora. However,
we note that RT-ByzCast’s effective guarantees are probabilis-
tic as well, since a) a sequence of random message drops
can cause correct nodes to crash themselves, and b) too many
crashes can cause the number of live nodes to fall below 3 f+1,
at which point the Byzantine nodes can, by falling silent, cause
all of the remaining correct nodes to crash themselves as well.
If this cataclysmic scenario is acceptable, provided that its
probability is small enough, a small chance (say, 10715) of a
loss of RTBRB-Agreement may be acceptable as well.

For this specific case (bus topology, probabilistic guaran-
tees), we can suggest a much simpler alternative (Algorithm 7),
which we call S-ByzCast. This algorithm simply 1) signs
messages and broadcasts them k& times, and 2) discards du-
plicates, messages that are not properly signed, and messages
that conflict with another message sent by the same node
in the same round. Validity holds with high probability if
k is large enough; integrity is ensured by the signatures;
agreement holds because of the broadcast channel (which
delivers the message either to all the correct nodes, or to
none of them); and timeliness holds because the system is
synchronous. This algorithm is much simpler, and uses fewer
messages; moreover, it no longer has a nontrivial bound on f
and thus works with any number of Byzantine nodes.

D. Summary

If the system has a bus topology and can accept probabilistic
guarantees, RT-ByzCast “overpays” for fault tolerance by not
taking advantage of the natural broadcast primitive a bus
provides, and by treating the bus as a collection of point-to-
point links instead. As a result, the algorithm is more complex
than it would need to be in that setting, it uses more messages,
and it can tolerate only a limited number of Byzantine faults.



V. RELATED WORK

Benign fault tolerance: The question of how to build safe,
reliable, and fault-tolerant distributed systems has been studied
in great detail by several communities, including distributed
systems, real-time systems, and controller design. Existing
solutions include replication protocols for asynchronous dis-
tributed systems like Paxos [38], Remus [21], and Raft [47];
fault-tolerant real-time systems, like Mars [34] and DeCo-
RAM [6]; and fault-tolerant and/or reconfigurable control
systems [63]. Most of this work has considered various types
of “benign” faults, such as hardware defects, software bugs, or
electromagnetic interference, and thus does not need the full
complexity of Byzantine fault tolerance. Correia et al. [19]
introduced a way to reduce corruption errors to crashes, as
discussed in Section II-H.

Agreement problems: The theoretical underpinnings of
broadcast and consensus are well understood. Failure detec-
tors [13], [14] can capture the information that is needed to
solve these problems; this concept was originally introduced
for benign faults but was later extended to the Byzantine set-
ting [29], [32]. There is also a rich literature on lower bounds
in various settings [10], [22]-[24], [28], including the famous
FLP result [25]. S-GBB is similar to the maximum information
protocol by Hadzilacos [23], [28]. Pease et al. [49] proves
the N > 3f bound without authentication (§4) and gives
protocols for both the authenticated and the unauthenticated
setting (§5 and §3, respectively). The impact of equivocation
on complexity was noted, e.g., in [9].

Byzantine fault tolerance: There is a rich literature on
practical protocols for tolerating Byzantine faults [1], [4], [12],
[16], [20], [26], [30], [36], [40], [41], [53], [58], [59], [62],
and some of these protocols have been applied to distributed
real-time systems (e.g., in [31], [33], [44]). And Byzantine
are not uncommon: A substantial number of vulnerabilities
in existing real-time distributed systems have been identified
and studied, including, e.g., recent work on the on-board
network in cars [15], [35], [51]. Many classical BFT protocols
are unsuitable for real-time systems [52], but more recent
protocols have improved in this respect [2], [5], [17], [43],
and synchronous variants, such as [3], are available as well.

VI. CONCLUSION

In general-purpose distributed systems, fault tolerance can be
a source of enormous headaches, especially when the goal is
to tolerate non-crash faults. Solutions do exist, but they are
often expensive, complex, and prone to subtle vulnerabilities.
However, in the particular case of real-time and embedded
systems, the problem is often much easier, or even trivial!
This is because these systems are often synchronous and/or
have a topology that naturally supports broadcast, and because
they often have a specific reliability target and can thus accept
probabilistic guarantees, as long as the probability of a failure
is small enough. The theory literature has studied the benefits
of synchrony as early as the 1980s, but, as recent publications
show, the connection to real-time systems has either been
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forgotten or was never really made. We think that the com-
munity should take advantage of this connection and to adopt
the “trivial” solutions whenever possible. These solutions may
not be very interesting from a theoretical perspective, but they
come with substantial practical advantages, such as simplicity,
efficiency, and — in some cases — even higher reliability!
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