
Do Not Overpay for Fault Tolerance!

Edo Roth Andreas Haeberlen

University of Pennsylvania

Abstract—In this paper, we argue that distributed real-time
and embedded systems sometimes “overpay” for fault tolerance,
by using a protocol that is more powerful than what is actually
needed, or by failing to take advantage of unique features in
these systems. As a result, these systems sometimes perform more
computation or communication than is strictly necessary, or they
can be unnecessarily complex, and thus more difficult to analyze.

We take a look at the design space for two common problems,
broadcast and consensus, and we show that, in a number of
scenarios that would be common in real-time systems, these
problems have trivial solutions. We then examine two solutions
from the literature and propose alternatives that are substantially
simpler, less expensive, and more reliable.

I. INTRODUCTION

Faults are a fact of life when building distributed systems,

and it is important to ensure that the system can tolerate

at least some of them. This is particularly true for real-time

and embedded systems, which often interact with the physical

world. In this setting, a failure at the wrong moment can cause

substantial damage, or even loss of life.

The traditional assumption is that fault tolerance should

be done using one of several off-the-shelf protocols, such as

Paxos [38] (for crash faults) or PBFT [12] (for Byzantine

[39] faults). These protocols are general and offer very strong

properties, which makes them an attractive choice. However,

they also come with a rather substantial cost: in order to

tolerate up to f faults, Paxos requires 2f + 1 replicas, while

PBFT requires 3f + 1; both protocols also have a high

message complexity. This hefty “price tag” can be a problem

– especially in embedded systems, where computation and

bandwidth resources are often scarce.

In this paper, our goal is to show that the cost of robust fault

tolerance can often be far lower than is commonly believed.

There are two reasons for this. The first is that standard

building blocks, such as Paxos and PBFT, were designed for

systems with very different properties: for instance, they often

assume an asynchronous system with point-to-point links,

which complicates the problem substantially and results in

worse lower bounds. Thus, when a real-time system with a bus

topology and/or tight synchronization uses these protocols, it

is effectively “overpaying” for features it does not need! In

particular, the strong synchrony, which is a key property of

real-time systems but is not usually present in other systems,

provides several imporant benefits.

The second reason is that, while non-crash faults such

as memory corruption are a common concern for embedded

systems, these faults represent only a small subset of Byzantine

faults – and it happens to be an “easy” subset! Much of the

cost and complexity of Byzantine-tolerant protocols is spent on

handling adversarial behavior, such as equivocation; this kind

of behavior is not likely to happen due to random corruption,

and its probability can be reduced further, e.g., by transmitting

several copies of messages, or by repeating computations and

cross-checking the results. Thus, tolerating “benign” non-crash

faults is often much cheaper and easier than tolerating arbitrary

Byzantine faults.

We take a look at the design space for fault-tolerant pro-

tocols, and we show how the cost can vary substantially,

depending on the scenario and the assumptions that are being

made. These dependencies can be very subtle, so choosing the

protocol that is “best deal” for a given scenario often requires

a very close look. We then apply our lessons to two protocols

from the literature: we show that the cost of RT-ByzCast [37]

can be reduced substantially if it can take advantage of a bus

topology, and we show that the consensus protocol by Gujarati

et al. [27] can be simplified considerably by taking advantage

of the fact that, although the paper describes its fault model as

“Byzantine faults” and uses an approach that can tolerate such

faults, it does not actually consider adversarial behavior and

in fact assumes only benign non-crash faults. In both cases,

our proposed replacements are so simple that they are almost

trivial, and their timing properties are easy to see, even without

a complicated analysis.

The building blocks we use for our solutions are not new –

they go back to the early 1980s – and the connection we point

out is of the kind that seems immediately obvious once one

has become aware of it. However, we do not think that it was

obvious to begin with, otherwise the earlier papers would have

taken advantage of it. Relative to the current state of the art, as

represented by an award paper from last year’s RTAS [27], our

proposals are much simpler, considerably more reliable, much

easier to analyze, and they have storage and communication

overheads that are orders of magnitude lower.

II. WHEN IS FAULT TOLERANCE TRIVIAL?

When building fault tolerance solutions, a critical and very

difficult building block is agreement, that is, getting all the

replicas to take a consistent action. We begin by examining

two agreement problems that are very common: broadcast and

consensus.

In the following, we will assume a system of N nodes,

n1, . . . , nN , that are connected by a network. We say that a

node ni is correct in a given execution of this system if it

faithfully executes the instructions that were assigned to it;

otherwise we say that ni is faulty. Although our focus is on

1

synchronous systems, which can provide timing guarantees,

we consider both synchronous and asynchronous systems here.

A. Broadcast

In the broadcast problem, some node ni sends a value, and

the other nodes must each deliver the same value to some

local application – say, some replicated state machine. This is

sometimes explained using the analogy of a commander and

several lieutenants [39]: the commander is supposed to issue a

single order, and the lieutenants want to make sure that they all

take the same action, even if some lieutenants do not receive

the order or a malicious commander gives different orders to

different lieutenants. A solution must satisfy the following four

properties:

• Agreement: If a correct node delivers a value v, then all

other correct nodes eventually deliver v.

• Validity: If ni is correct and sends value v, all correct

nodes must eventually deliver v.

• Integrity: Correct nodes deliver at most one value, and

any delivered value must have been sent by ni.

• Termination: Correct nodes deliver a value eventually.

This problem has several names (for instance, it is sometimes

called “terminating reliable broadcast”, to distinguish it from

other variants), and the properties are sometimes stated or

named slightly differently.

B. Consensus

The consensus problem is quite similar, except that now every

node ni proposes its own value vi, and the goal is for the

correct nodes to decide on a single value from among the

ones that have been proposed. The properties are:

• Agreement: If a correct node decides on a value v, then

all other correct nodes eventually decide v.

• Validity: If all nodes that propose a value propose the

same value v, then all correct nodes eventually decide v.

• Integrity: Correct nodes decide on at most one value, and

only on a value that has been proposed by some node.

• Termination: Correct nodes decide on a value eventually.

As with agreement, the properties are sometimes stated differ-

ently – for instance, validity is sometimes restricted to values

proposed by correct nodes.

C. Fault models

The difficulty of the above two problems depends, to a great

extent, on two things: 1) what we mean by “faulty”, and 2)

the exact properties of the system. In this paper, we consider

the following three common fault models:

• Crash faults: In this model, faulty nodes simply stop

sending messages and executing instructions. For in-

stance, a node might suddenly lose power.

• Probabilistic faults: In this model, nodes experience ran-

dom malfunctions with a certain probability. For instance,

a node might experience memory corruption.

• Byzantine faults: In this model [39], faulty nodes can do

almost anything; they can perform arbitrary computations

or send arbitrary messages, and they can collude with

each other. For instance, a faulty node might have been

hacked and taken over by a malicious adversary.

Notice that some events, such as message corruption or

memory corruption, can occur both in the probabilistic and

in the Byzantine model; the difference is in the process that

produces them. For instance, an adversary can cause the nodes

under her control to consistently flip a certain bit in every

single message they send. The same corruption pattern could

also occur with probabilistic faults, but it is extremely unlikely.

We assume that, in the crash and Byzantine models, there is

an upper bound f on the number of nodes that can be faulty;

if a majority of the nodes can fail at the same time, it is often

impossible to find any solution at all. For the probabilistic

model, we simply assume that faults occur independently with

some probability; thus, a majority of the nodes could fail at

the same time, it is just not very likely.

D. System model

In terms of system properties, we consider the following:

• Synchrony: In a synchronous system, there are bounds

on computation times and message delays, and nodes

have access to closely synchronized clocks. Computation

can be thought of as a sequence of discrete rounds, with

messages sent in round r being received in round r + 1.

In an asynchronous system, computations and message

transmissions can take arbitrarily long, and clocks are

not synchronized.

• Network topology: Some systems have a broadcast chan-

nel (say, a CAN bus, or switched Ethernet) that delivers

a transmitted message to all the nodes. Other systems

have unicast channels, such as direct point-to-point links

between the nodes.

• Network ordering: The network can deliver messages

in the order in which they were sent, or it can deliver the

messages in any order.

• Network reliability: The network can be reliable, that

is, it can guarantee that every transmitted message is

delivered to its recipient, or it can drop and/or corrupt

messages with a certain probability.

• Transferable authentication: With authentication, nodes

can identify the sender of a given message, even if the

message has been forwarded by another node. Without

authentication, nodes can only identify the sender of

messages that are sent directly to them.

Solutions can guarantee the properties from Sections II-A

and II-B either perfectly, in the sense that the solution must

never violate them in any execution, or probabilistically, in the

sense that the properties must hold with some high probability.

E. Trivial solutions

Both broadcast and consensus have a reputation for being

difficult, but this is not necessarily the case. Consider a syn-

chronous system that already has a reliable broadcast channel

at the network level (e.g., a bus), and assume that nodes can

fail only by crashing. Then Algorithm 1 trivially solves the

broadcast problem. In the first round, ni uses the network-level

2

Algorithm 1 A trivial broadcast algorithm (T-Bcast)

1: procedure PROPOSE(v)
2: broadcast(v)

3: procedure ROUND(r)
4: if v is received then

5: decide(v)
6: else

7: decide(⊥)

broadcast primitive to send the value v it wants to propose;

because the network is reliable and the system is synchronous,

this broadcast is received by each node in the second round,

and each node simply decides v. If ni crashes before it can

send the broadcast, none of the other nodes receive a message,

and they each simply decide a default value ⊥.

In this model, consensus is not much more difficult; Al-

gorithm 2 shows a simple solution. In the first round, each

node ni uses the network-level broadcast primitive to send

its proposed value vi; since the network is reliable and the

system is synchronous, each node will receive the same set of

messages in the second round. The nodes can then assemble

the received values into a vector and apply any deterministic

function f to choose one of the elements from the vector (other

than ⊥). Since the vectors will be identical on all the nodes,

each node thus decides on the same value.

Of course, the two algorithms are simple because we have

chosen idealistic assumptions. But this is precisely our point!

We argue that, rather than reflexively reaching for Paxos or

PBFT, one should always ask why the above algorithms are

not sufficient. We discuss some possible reasons next.

F. What if the network is unreliable?

One very common objection to the above model is that, in a

practical system, the network is not reliable – there is always

a small chance that a given message is lost. There are two

ways to respond to this concern, depending on whether, in any

given run, we need the system to achieve all four consensus

properties with certainty (perfect correctness), or only with

high probability (probabilistic correctness). The latter is often

acceptable, as long as the probability of failure can be bounded

and factored into the system-level reliability analysis.

Perfect: If we insist on getting all four properties with

certainty, then the problem cannot be solved with an unreliable

network at all [25], since it is possible that the network might

lose every single message that is ever sent. Because of this,

one often assumes something slightly stronger – perhaps that

messages are received eventually, if they are transmitted often

enough [22]. But since it is impossible to predict how often a

message might need to be retransmitted, there is no bound on

message delay, so we have no choice but to treat the system

as asynchronous. But once we give up on timing, we might

as well treat the network as reliable: we can imagine each

algorithm being augmented with a little loop that periodically

retransmits every message that has been sent, until it is either

acknowledged or the algorithm terminates.

Algorithm 2 A trivial consensus algorithm (T-Cons)

1: procedure PROPOSE(vi)
2: broadcast(vi)

3: procedure ROUND(r)
4: V = (⊥, . . . ,⊥)
5: V [i] = vi
6: if vj is received from nj then

7: V [j] = vj

8: decide(f(V))

Probabilistic: If we are willing to accept a small probability

of failure, the solution is even easier than the above simple

algorithms. Suppose we expect the algorithm to send up to

m messages, each message is dropped with probability pdrop,

and we are willing to tolerate a failure probability pfail. If we

send k copies of each message (and have the recipient drop

duplicates), the probability that at least one copy will arrive is

1−pkdrop, so we can simply choose k such that (1−pkdrop)
m ≥

1− pfail.

Of course, this brute-force solution is not necessarily the

most efficient choice: for instance, one could use erasure

coding to reduce the amount of redundant data that needs to

be sent.

Summary: If the algorithm must succeed with certainty, a

system with an unreliable network must be treated as asyn-

chronous. If a small probability of failure is acceptable, the

network can be made “reliable enough” with retransmissions.

G. What if the network can corrupt messages?

Another reason why our trivial solution might not suffice is

that messages might be corrupted in the network; for instance,

the network might sometimes randomly flip some bits. As

above, the response depends on whether we want a perfect

solution, or just one that works with very high probability.

Perfect: If we insist on all three properties holding with

certainty, the situation is roughly comparable to the one

with Byzantine faults on the nodes. To see why, consider

an execution e in which some nodes are malicious and send

different messages than the ones they were supposed to. Then

we can construct an equivalent execution e′ with just message

corruptions, in which the nodes originally send the correct

messages and every bit in a message that is different in e
and e′ is then flipped by the network. (The probability of this

happening by chance is admittedly very small, but it is not

zero.) True, there are some differences between the models

– for instance, a malicious node might send extra messages,

whereas most corruption models assume that only existing

messages can be corrupted – but, in practice, we will usually

need to go with a Byzantine-tolerant algorithm.

Probabilistic: If we can tolerate a small probability of failure,

the situation changes: we can simply include in each message

m a cryptographic hash H(m) of the contents, and we can

have the nodes drop any incoming messages 〈m,h〉 where

h 6= H(m). In the random oracle model [7], the chances of

a corruption leaving a k-bit hash unchanged is 2−k, which

is about 6.8 · 10−49 for a SHA-1 hash – small enough that

3

it should be safe to ignore in practice. Thus, the problem

effectively reduces to that of an unreliable network, which

we have discussed above.

Two possible objection to the use of hash functions are

that 1) they might be expensive, and 2) the random-oracle

assumption might be wrong. The former should rarely be a

concern in practice: for instance, SHA-1 can be computed in

less than 200 cycles per byte on an 8-bit CPU [48]. The latter

is a fair point: the outputs of a hash function are not really

random. There is indeed a certain structure, and, once it is

properly understood, this structure can allow an adversary to

find hash collisions relatively quickly. For instance, in 2017,

the first SHA-1 collision was found, using about 110 GPU

years and 6,500 CPU years [56]; this is why SHA-1 is

no longer considered acceptable for security uses. However,

the chance of a non-malicious network “finding” a collision

instantaneously through random bit flips still seems minuscule.

Summary: If probabilistic guarantees are acceptable and one

is willing to trust hash functions, message corruptions can be

reduced to message drops.

H. What if node memory can be corrupted?

A third reason for rejecting our trivial solution is that nodes

might experience random memory corruption and thus might

perform computations incorrectly.

Perfect: If we insist on perfect guarantees, this situation does

indeed force us to use Byzantine-tolerant algorithms. To see

why, consider an execution e in which a malicious adversary

installs some evil software S on a node ni; we can construct an

execution e′ in which ni’s original software is transformed into

S by a – very unlikely – long sequence of memory corruptions.

Probabilistic: Perhaps surprisingly, the situation is again

different if we can accept probabilistic guarantees. Although

it may at first appear as if memory corruption errors are a

perfect example of Byzantine faults, they are in fact only a

subset of Byzantine faults; the Byzantine model also includes

scenarios in which nodes are compromised by an adversary

who might cause the nodes to take the worst possible action

every single time. To see the difference, consider what happens

if we ask a node compute the same function f(x) k times.

If the node is controlled by an adversary, the adversary can

cause the function to return the same incorrect result every

time. But if the node is “just” experiencing random memory

corruption, the chances of this happening are small: each of the

k invocations has a nonzero chance of executing correctly, and

even if two executions do experience corruption, they might

still return different results.

Thus, there is a way to essentially reduce memory corrup-

tion errors to crash faults: we can repeat computations a few

times, and crash the node when the results do not match. (The

details are highly nontrivial, especially if control flow can be

affected, but they can be solved; see, e.g., Correia et al. [19] for

a practical technique.) With this change, we can use a crash-

tolerant algorithm, as long as we can find a setting of k such

that the failure probability we are willing to tolerate is higher

than the probability of memory corruption causing either all

k computations to return identical incorrect results or more

crashes than the crash-tolerant algorithm can handle. Notice

that increasing k will reduce the probability of the former but

increase the probability of the latter, so there is not always a

suitable setting for k.

Summary: If a small probability of failure is acceptable,

memory corruption can be reduced to crash faults.

I. What if the system is asynchronous?

The next possible reason for rejecting our trivial solutions

is that the system is asynchronous. This is the first of two

issues that really do substantially increase the complexity of

the problem. One important consequence of asynchrony is

that nodes can no longer tell reliably whether another node

is faulty or is just very slow. Because of this, solutions, such

as Paxos [38], typically require a majority of the nodes to be

correct: intuitively, a group of N − f nodes must be able to

decide without hearing from the other f nodes at all, since up

to f nodes may crash, but two non-overlapping groups must

not be allowed to both decide, so we need 2 · (N − f) > N ,

or N > 2f . This lower bound disappears if nodes are given

a failure detector [14, §6.1], so the inability to detect faults

really is at the heart of the problem.

However, true asynchrony is rare [60] – especially in hard

real-time systems, which in some sense are the antithesis

of asynchronous systems. Once WCETs are available and

communication is carefully scheduled, it is possible to get

upper bounds on virtually any delay. Thus, in the systems we

are considering here, our trivial solutions should almost never

be rejected for this particular reason alone.

Summary: Asynchrony requires more complex solutions, but

true asynchrony is incompatible with hard real-time systems.

J. What if nodes can equivocate?

A final reason for rejecting our trivial solutions is that nodes in

the system can equivocate – in other words, that a faulty node

can give different and conflicting information to two correct

nodes. This is an obvious threat to consistency, and handling

it increases complexity quite a bit. In general, consensus

in this model requires N > 3f nodes if asynchrony is

present (Example: PBFT [11]), and N > 2f nodes otherwise

(Example: Abraham et al. [2]). The point that equivocation is

at the heart of the problem has been made in several prior

works, e.g., [9], [18], [46], [54]; another way to see it is

to consider TrInc [40], which shows that a small trusted-

hardware gadget that prevents otherwise Byzantine nodes from

equivocating is enough to drop the bound for asynchronous

systems back to N > 2f .

Equivocation is a common complication of the Byzantine

model: once a node is compromised by an adversary, it can

send conflicting messages to other nodes. However, even with

Byzantine faults, equivocation in a synchronous system with a

reliable network is a serious problem only if a) communication

is through unicast channels, and b) messages are not signed.

If communication is via a broadcast channel, a faulty node

4

WCETs +

sync. clocks?

Are

message delays

bounded?

Asynchronous

model

Synchronous

model

Timing

guarantees

needed?

NOT

possible

Small

prob. of failure

okay?

Random

msg corruption?

Random

msg corruption?

Add hashes

to messages

Random

msg drops?

Add extra

transmissions

Random

msg drops?

Random

mem corruption

on hosts?

Random

mem corruption

on hosts?

Add ASC-style

reexecution

Broadcast

channel?

Can hosts

equivocate?

Messages

authenticated?
IC-A protocol

(PSL §5)

N>3f?

Algorithm 2

IC protocol

(PSL §3)

Do msgs

eventually

arrive?

Can nodes

equivocate?

Paxos, Raft PBFT etc.

N>2f? N>3f?

No

Yes

No

Yes

Yes

No

No

Yes Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

Yes

No

No

YesYes

NoNoNo

YesYes

Yes

No

Yes Yes Yes

No No No

START

Fig. 1. A relevant part of the design space for fault-tolerant consensus. (The figure is not meant to be exhaustive.) The orange boxes show the four widely
known “difficult” classes of algorithms: synchronous with authentication (IC [49, §5]) and without (IC-A [49, §3]), and asynchronous with Byzantine faults
(PBFT [11]) and crash faults (Paxos [38] or Raft [47]). The fifth class, which T-Cons trivially solves, is less widely known, but we argue that real-time/embedded
systems, in particular, are often able to use it.

Technique Sect. Reduction

Redundant messages II.F Prob. msg drops → “Reliable network”
Hashes II.G Prob. msg corruption → Prob. drops
Repeated comp. [19] II.H Prob. memory corrupt. → Crash faults

TABLE I

cannot equivocate because all the other nodes will have the

same view of the messages it sends. If messages are signed,

we can use a construction analogous to the SM protocol [39,

§4]: correct nodes can add their signature to messages they

receive and forward them to the other nodes; once a message

has collected f + 1 signatures, it must have been seen and

forwarded by at least one correct node, so the correct nodes

can be sure that they each have seen it – and, if this is done for

all messages, that they have a consistent view of the messages

each node has sent.

It may seem odd to see a solution for consensus when

a majority of the nodes can be faulty. The confusion arises

because, in the literature, consensus is often used for state-

machine replication: the replicas agree on a request ordering,

then they execute the requests and send the results back

to the client. If a client receives different responses from

different replicas, it generally cannot tell which response is

correct and must go with the majority; thus, with state-machine

replication, we do need at least 2f +1 replicas to ensure that

the majority result is correct, independent of any lower bounds

from the consensus stage.

How common are real-time systems with unicast channels

and no signatures? Many embedded systems do have a link-

layer broadcast primitive – either because they use a bus

topology directly (CAN bus, etc.) or because they use a net-

work that supports broadcast, such as switched Ethernet. And

cryptographic signatures are not an unreasonable assumption,

even for embedded systems – there are fast implementations

on embedded CPUs [42], [57] and many different hardware

accelerators [50], [55], [61].

Summary: Equivocation does increase complexity, but only in

combination with unicast channels and without authentication.

K. Summary

Figure 1 summarizes the points we have made in this section,

and Table I summarizes the reductions we used. Although con-

sensus has a reputation for being a complex and challenging

problem, this is true only if: 1) the system is asynchronous, 2)

nodes can equivocate and there is neither a broadcast channel

nor message authentication, or 3) there is message loss,

message corruption, or memory corruption, and we insist on

perfect guarantees and cannot accept even a small probability

of failure. None of these scenarios seem particularly likely for

real-time or embedded systems.

III. CASE STUDY: THE GBB PROTOCOL

Our first case study is a protocol by Gujarati et al. [27] that

appeared at RTAS 2020. For brevity, we will refer to this

protocol as GBB below.

A. Problem statement

We begin by reviewing the problem as defined in [27]. There

are N nodes that are connected via Ethernet switches. Each

node i starts with a local input vi and must eventually decide

on a value. The goal is to provide one of the following two

properties:

• Strong correctness: If vi = v for a majority of the nodes,

then a majority of the nodes will decide on v; otherwise

the nodes may decide on any value, or on ⊥.

• Weak correctness: If v is the most common input value

(with ties broken deterministically), more nodes will

decide on v than on any other value, including ⊥.

This problem is a relaxed version of consensus, in two ways:

(1) it does not demand that all the correct nodes decide on

5

Algorithm 3 The GBB algorithm, from [27]

1: procedure INITIALIZATION

2: EIGi.addRoot(〈ǫ, vi〉)

3: procedure ROUND(r)
4: for all 〈α, v〉 ∈ EIGi.nodes s.t. |α| = r − 1 do

5: if Πi 6∈ α ∧ v 6= ⊥ then

6: send 〈α, v〉 to all processes in Π \ {Πi}

7: for all 〈α, v〉 ∈ EIGi.nodes do

8: if |α| = r − 1 then

9: for all Πj ∈ Π s.t. Πj 6∈ α do

10: if Πi = Πj then

11: EIGi.addChild(〈α, v〉 , 〈αΠj , v〉)
12: else if 〈α, v′〉 is received from Πj then

13: EIGi.addChild(〈α, v〉 , 〈αΠj , v
′〉)

14: else

15: EIGi.addChild(〈α, v〉 , 〈αΠj ,⊥〉)

16: if r 6= Nr then return

17: for all 〈α, v〉 ∈ EIGi.nodes from |α| = Nr − 1 to |α| = 1 do

18: candidates = ∅, vmajority = ⊥
19: for all 〈αΠj , v

′〉 ∈ EIGi.getChildren(〈α, v〉) do

20: if v′ 6= ⊥ then

21: candidates = candidates ∪ {v′}

22: if candidates 6= ∅ then

23: vmajority = simpleMajority(candidates)

24: EIGi.updateV alue(〈α, v〉 , vmajority)
25: if α = Πk then

26: Vi[k]← vmajority

the same value, but rather a majority of the nodes (somewhat

analogous to almost-everywhere agreement [24]), regardless

of whether they are correct, and (2) strong correctness does

not make any demands at all when no value is proposed by a

majority.

The paper assumes that nodes can crash or suffer random

memory corruption; the system is synchronous, and messages

can be corrupted in the network. There are no assumptions

about authentication, so we assume that signatures are not

available. Unicast and broadcast are not mentioned specifi-

cally, but the paper does assume an Ethernet network, which

supports link-layer broadcast.

B. Original solution

The GBB paper proposes a solution (Algorithm 3) that is a

modification of the Exponential Information Gathering (EIG)

trees from [8] (which in turn follows [49, §3]), a consen-

sus protocol for synchronous systems with Byzantine faults.

Briefly, the EIG protocol consists of two steps: 1) The nodes

compute a vector V , whose elements are the values vi that

each node has proposed, or ⊥ if nodes fail or misbehave in

a certain way; the protocol guarantees that all correct nodes

compute the same vector, as long as N > 3f . Then 2) each

node uses a deterministic function f to map V to a single

element f(V) 6= ⊥, and then decides that value.

The computation in the first step proceeds in several rounds.

In the first round, each node i sends a tuple 〈ǫ, vi〉 (“my value

is vi”) to every other node. In each of the following rounds,

each node takes the tuples it has received in the previous round,

appends the sender’s ID to the first element of each, and sends

the resulting tuples to each other node. Thus, if j received

〈ǫ, vi〉 from i in the first round, it distributes tuples 〈i, vi〉

(“i told me that its value was vi”) in the second round; if k
received this tuple, it then distributes 〈ij, vi〉 (“j told me that

i told j that i’s value was vi”) in the next round, etc.

Each node i organizes the tuples it receives in a tree, in

which 〈ǫ, vi〉 is the root and, for any string α, 〈αj, . . .〉 is a

child of 〈α, . . .〉. If i has received no tuple 〈α, v〉 in round

|α|, it fills in 〈α,⊥〉. After the last round, each node walks its

tree from the leaves to the root; for each interior node 〈α, v〉
it encounters, it replaces v with a function of the values in

the direct children. The choice of this function is one of two

major differences between EIG and GBB: EIG uses uses any

value that has been received at least N−|α|−f , whereas GBB

simply uses the majority of the non-⊥ values. If no suitable

value is found, both protocols use ⊥.

At the end of this process, the direct children of the root on

node ni contain a value vi,j for each node nj . EIG guarantees

that 1) all the correct nodes compute the same vector, and

2) if nk is correct, then vi,k = vk. Finally, the nodes apply

a deterministic function to the vi to pick a single value to

decide; EIG does not prescribe a particular function, but GBB

uses the majority of the non-⊥ values.

C. Does GBB tolerate Byzantine faults?

Although the GBB paper focuses mainly on benign cor-

ruptions, it describes the goal as “tolerating [...] Byzantine

errors” [27, §I]. The choice of the more general Byzantine

fault model, as opposed to simple probabilistic faults, has a

number of problematic consequences. The first of these is that

– strictly speaking – the problem cannot be solved at all:

no algorithm (including GBB) can guarantee either strong or

weak correctness if even a single node might be Byzantine.

We prove this claim with the following two theorems.

Theorem 1. No algorithm can guarantee GBB’s notion of

strong correctness in the presence of at least one Byzantine

node.

Proof. Suppose some algorithm A does provide strong cor-

rectness when one node – say, B – is Byzantine. (If there

are other Byzantine nodes, they can just execute the algorithm

correctly; recall that Byzantine nodes can have any behavior,

including, as a special case, the correct behavior.) Consider

two executions e1 and e2; in both executions, ⌊N/2⌋ of the

other nodes have input X , and ⌈N/2− 1⌉ of the other nodes

have input Y ; B has input X in e1, and Y in e2. Then strong

correctness requires that a majority of the nodes decide X in

e1, and Y in e2. But now suppose that, in e2, B pretends

that its input is X – that is, it performs the exact steps that

A requires, but replaces its input with X . However, note that

each node can only make decisions based on information it has

locally available. Nodes cannot know “what really happened”

on another node; they can only observe messages that were

sent by that other node. Then, from the perspective of the other

nodes, B’s steps in e1 and e2 will be indistinguishable, and

since their own circumstances are identical in both executions,

these other nodes must make the same decision in both. Since

B makes the same decision in both executions as well, a

6

Algorithm 4 The T-GBB algorithm

1: procedure ROUND(r)
2: decide(vi)

majority of the nodes must make the same decision in both

executions, and since the correct decision (which GBB defines

based on the majority of the inputs) was X in e1 and Y in

e2, one of these decisions must be wrong.

Theorem 2. No algorithm can guarantee GBB’s notion of

weak correctness in the presence of at least one Byzantine

node.

Proof. The proof is largely analogous to the proof of The-

orem 1, except that in e1, weak correctness demands that

more nodes decide on X than on any other value, including

⊥; in e2, it demands that more nodes decide on Y than on

any other value, including ⊥. As before, both cannot be true

in the same execution, but B can make the two executions

indistinguishable by simulating A in e2 with its input value

replaced with X . Thus, no algorithm can make the correct

decision in both executions.

These results may be surprising: the problem does not seem

all that different from the consensus problem in Section II-B,

which does have solutions in the Byzantine model. The

difference is that consensus defines correctness in terms of

what nodes do (proposing a value), which other nodes can

observe and respond to, and not in terms of private inputs that

are known to only one particular node [45]. Since a Byzantine

node can always tell lies about its inputs, a goal that is based

on inputs alone would be difficult to achieve.

D. A trivial solution

Of course, the fact that GBB cannot tolerate Byzantine faults

does not mean that it is not useful; from the context, it is clear

that the real goal is to tolerate specific errors (crashes, memory

corruption, and message corruption) with high probability. We

next discuss whether the proposed solution, a variant of EIG

trees, is a good fit for this goal.

However, as defined in [27, §II.B], the problem has a trivial

solution (Algorithm 4) – every node can simply decide its

local value! This approach, which we refer to as T-GBB, is

already enough to provide GBB’s notion of strong correctness:

if there is an input v that a majority of the nodes have received,

then these nodes will decide v and form the required majority,

and if there is no majority input, strong correctness makes

no demands. Since this algorithm sends no messages and

performs no computation, none of the assumed probabilistic

faults can occur, so it is perfectly reliable.

We assume that this was not the goal, so, in the following,

we assume that a slightly stronger form of agreement is

required: at least in a fault-free execution, all the correct nodes

should decide on the same value. The GBB algorithm does

have this property.

Algorithm 5 The S-GBB algorithm

1: procedure INITIALIZATION

2: V [k] = (k == i) ? vi : ⊥

3: procedure ROUND(r)
4: broadcast(〈V,H(V)〉) ⊲ H(·) is the hash function from §II-G
5: if 〈V ′, h〉 is received from nk and H(V ′) = h then

6: for each k : V [k] = ⊥ and V ′[k] 6= ⊥ do

7: V [k]← V ′[k]

8: if r = Nr then decide(simpleMajority({V [i] |V [i] 6= ⊥}))

E. A simple alternative

With this addition, a Byzantine-tolerant protocol like EIG trees

seems like a natural choice, since the fault model includes

non-crash faults and Byzantine-tolerant protocols can handle

these. However, probabilistic faults are only a small subset of

the entire set of Byzantine faults, and an “easy” subset at that

– as we have argued in Section II-J, the truly difficult faults

are the ones where nodes equivocate, which can occur only

by accident in the probabilistic model.

None of the other complicating factors are present, either:

the network can drop or corrupt messages, but the goal is to

give probabilistic guarantees, so we can use hash functions to

convert corruptions to drops (Section II-G) and retransmissions

to mask drops (Section II-F). Nodes can suffer memory

corruption, but we can convert most of these to crashes by

executing computations more than once (Section II-H). Finally,

the system is synchronous, so the biggest potential source of

complexity is absent entirely.

Thus, it seems reasonable to consider a simpler replacement.

Our proposal is Algorithm 5, which we will refer to as S-

GBB. This is a variant of our trivial solution for consensus

(Algorithm 2), but with multiple rounds to account for message

drops, as well as with hash functions added (see §II-G),

and with f instantiated with the simple majority, as required

by GBB’s notion of strong correctness. To handle memory

corruption, the computations would need to be reexecuted a

few times, as discussed in §II-H; we omit this here for clarity.

Since [27] considers an Ethernet network, the algorithm takes

advantage of Ethernet’s link-layer broadcast primitive.

F. Overhead

We now compare GBB and S-GBB in terms of cost. This

is an important factor in choosing fault-tolerance algorithms;

BFT solutions, in particular, are notoriously expensive. At first

glance, S-GBB is more efficient than GBB simply because

each node sends only one (broadcast) message per round,

whereas GBB sends unicast messages; thus, for R rounds, the

per-node message complexity appears to be O(R) for S-GBB

and O(N ·R) for GBB.

However, the actual cost difference is much higher than that.

Vanilla message complexity obscures the fact that EIG sends a

lot more information: each message contains an entire level of

the EIG tree. Recall that, on a node ni, the first level contains

ni’s own input, the second level says, for each node nj , what

nj told ni its input was, the third level says, for each pair

of nodes (nj , nk), what nk told nj told ni its input was, etc.

7

101

102

103

 2 3 4 5 6 7 8 9 10

T
o
ta
l
v
a
lu
e
s
 s
e
n
t

(p
e
r
n
o
d
e
 p
e
r
d
e
s
ti
n
a
ti
o
n
)

Number of nodes (N)

GBB (R=4)
GBB (R=3)
GBB (R=2)
S-GBB (R=4)
S-GBB (R=3)
S-GBB (R=2)

Fig. 2. Total number of values each node sends to each other node over the
network, when R rounds of GBB/S-GBB are executed.

In general, level r contains a vertex for each sequence of r
distinct nodeIDs that ends in ni. There are

(N−1)!
(N−r)! such labels,

and for each label, EIG (and, thus, GBB) sends at least one

value to each other node. Thus, if GBB runs for R rounds,

the total number of values each node sends is actually

R
∑

r=1

(N − 1) ·
(N − 1)!

(N − r)!

which is O(NR), whereas S-GBB sends one value in the

first round (if we omit the ⊥ values), and N values in each

subsequent round, so each node sends 1+N · (R− 1) values,

which is O(N ·R). Figure 2 shows, for different values of N
and R, how many values each node sends to each other node.

(To be fair, we ignore the fact that S-GBB uses link-layer

broadcasts, which, in principle, GBB could do as well.) The

figure shows that the S-GBB’s lower complexity can make a

substantial difference, especially for larger numbers of rounds.

Figure 3 compares the two algorithms in terms of their

storage requirements. GBB must remember each of the
∑R

r=1(N − 1) · (N−1)!
(N−r)! values it receives, so its storage

complexity is O(NR). In contrast, S-GBB stores only a single

estimate for the value of each node, so it simply requires N
values, regardless of R. In an embedded system, this can be a

substantial benefit: for instance, with N = 8 and R = 4, GBB

stores 1,100 values, while S-GBB stores only eight.

G. How to assess reliability?

Another obvious factor in choosing a fault-tolerance algorithm

is reliability – the probability that the algorithm will succeed.

Since GBB assumes probabilistic faults, we can, in prin-

ciple, compute the probability of success using probabilistic

model checking. In essence, this approach considers all possi-

ble executions of the algorithm under all possible failure sce-

narios, computes the probability of each execution, and adds

up the probabilities for the executions where the algorithm

succeeds. The GBB paper rejects this approach, essentially

because the space of possible faults is enormous: nodes could

crash at every step, every single message could potentially be

lost, etc. For instance, suppose we run S-GBB with N = 4
nodes and R = 3 rounds, and suppose we let each node

101

102

103

104

 1 2 3 4 5 6 7 8 9 10

V
a
lu
e
s
 s
to
re
d
 (
p
e
r
n
o
d
e
)

Number of nodes (N)

GBB (R=4)
GBB (R=3)
GBB (R=2)
S-GBB

Fig. 3. Values stored in memory by GBB and S-GBB, when R rounds are
executed. S-GBB’s memory requirements do not depend on R.

pick one of four possible inputs (since there could be at most

four different ones). Then there are 44 = 256 possible runs;

in each run, each node can crash in each round, or not at

all, so there are 44 = 256 crash scenarios; and there are up

to N · (N − 1) · R = 36 opportunities for message drops.

Thus, if we ignore for the moment that some messages cannot

be lost because their sender has already crashed, there are

44 · 44 · 236 ≈ 4.5 · 1015 scenarios for the model checker to

consider – a staggering number!

However, while it is true that model checking in general suf-

fers from state explosion, this particular setting happens to be

relatively easy, as long as we can accept an upper bound. The

reason is that faults are relatively rare. For instance, suppose

crashes and message losses occur independently, and we use

a crash probability of pcrash = 10−8 and a loss probability of

pdrop = 10−3. Then the scenario where one node crashes in the

last round and four of the 33 messages are lost has probability
1
4

4
· (1− pcrash)

11 · pcrash · (1− pdrop)
29 · p4drop ≈ 3.79 · 10−23.

If we are only interested in certifying a failure probability of

less than, say, 10−15, it is not clear that we need to consider

such scenarios (or ones that are even less likely) at all – most

of the probability mass will be concentrated in a small number

of relatively likely scenarios.

We can get a precise range for the failure probability as

follows. We maintain a set of execution prefixes and associated

probabilities, which is initially set to the empty prefix and

probability one. Then we repeatedly pick the most likely

prefix that has not yet terminated and execute one step of the

algorithm; if the step is probabilistic, we “split” the current

prefix into multiple prefixes. Thus, at each moment, we have

lower and upper bounds on the probabilities of success and

failure: for the lower bounds, we can add up the probabilities

of the prefixes that have terminated with success and failure,

respectively, and for the upper bounds, we can add to each the

probabilities of the “undecided” prefixes that are still active.

We can terminate this process at any moment, once the upper

and lower bounds are close enough for our purposes. Fig-

ure 4 shows how the cumulative probability of the undecided

prefixes evolves as more and more executions are evaluated;

after as few as 973,824 executions, the undecided prefixes

account for less than a probability of 10−15. Examining this

8

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

R
e
m
a
in
in
g
 u
n
c
e
rt
a
in
ty

Scenarios evaluated

Uncertainty
10-15

Fig. 4. Remaining uncertainty after a certain number of scenarios have been
evaluated with probabilistic model-checking.

many executions is perfectly feasible on modern hardware, and

many model checkers would be able to do even better, e.g.,

by considering symmetry.

The GBB paper instead presents a closed-form analysis

that involves about 5.5 pages of complex math, as well as a

custom, 53-line algorithm. This approach is labor-intensive, as

the manual analysis would have to be repeated for every new

algorithm or variant, and it almost inevitably involves upper-

bounding the more complicated probabilities, which is a source

of potential mistakes. For instance, in the analysis of case #5,

the GBB paper observes that it is “impossible to estimate”

the probability of failure after message corruption “without

knowing the exact contents of the corrupted messages”; it

therefore chooses a worst-case analysis, which assumed that all

corruptions turn the message into a special Incorrect value [27,

§IV.D.5]. But this is not actually the worst case! Consider a

situation with a narrow majority, analogous to Section III-C,

perhaps one where five nodes have input A and four nodes

have input B. If a corruption flips an A into a B, this could

cause nodes to decide on B and thus violate weak correctness,

whereas, if A can only flip to Incorrect, weak correctness could

still hold, since the Incorrect value will be in a small minority

and will thus almost certainly be ignored by the algorithm. As

a result, the computed probability is not necessarily an upper

bound.

This kind of issue is not uncommon when analyzing non-

crash behavior manually – there are almost always lots of

cases, and it is rarely obvious what the worst case is. In light

of this difficulty, a mechanized approach, such as probabilistic

model checking, seems like the safer choice.

H. Reliability

To get a side-by-side comparison of GBB and S-GBB in

terms of reliability, we evaluated both with probabilistic model

checking, using the approach we sketched above. Where

possible, we use assumptions that are comparable to [27]: we

assume that nodes crash with probability 10−8 in each round

(and do not recover before the protocol terminates); we assume

that messages experience corruption with probability 10−3 and

are dropped by the Ethernet link layer unless the corruption

results in a CRC32 collision, which maps to an effective

drop rate of 10−3 (for practical purposes) and, for GBB, a

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 3 4 5 6

F
a
ilu

re
 p
ro
b
a
b
ili
ty

Number of nodes

GBB R=1

GBB R=2

S-GBB R=1

S-GBB R=2

Fig. 5. Failure probabilities, as a function of the number of nodes and rounds.
The error bars show lower and upper bounds.

corruption rate of 2.33·10−13. For S-GBB, we assume a SHA-

1 hash, whose collision probability of 6.8 ·10−49 seems small

enough to ignore; similarly, GBB assumes a host corruption

rate of 10−5, but if we execute S-GBB’s very simple update

step on ten copies of the vector and crash the node unless

seven of the copies agree, we end up with an extra crash rate

of ≈ 10−20 and a host corruption rate of less than 10−35; both

again seem low enough to ignore. We assume that corruption

does not occur before S-GBB has had a chance to make copies

of the node’s local input value.

Our numbers are different from the ones reported in [27,

Fig.6], for at least two reasons. First, in conversations with

the authors of [27], we discovered that the experiment in [27,

§V.B] was done with a different notion of strong consistency

than the one the paper had defined in §II.B: in the experiment,

each node received a different input value, and a run was

considered a success when a majority of the nodes was able to

correctly infer a majority of the private input values, without

considering what each node actually decided. Here, we use

the paper’s original definition from §II.B instead; to ensure

that majorities can form, we assume that each node randomly

receives one of two possible inputs, with equal probability.

Second, rather than assuming that memory corruptions result

in a special Incorrect value, we randomly flip one of the values

in the EIG tree.

Figure 5 shows the failure probabilities of GBB and S-

GBB as a function of the number of nodes and rounds. GBB’s

failure rate is higher than S-GBB’s; its most common source of

failure is host corruption, which can, in the common situation

where both inputs are about equally prevalent, flip the majority

the wrong way. Increasing the number of nodes N does not

help much because a) the number of nodes with a given

input follows a Binomial distribution, which has most of its

probability mass concentrated around the problematic N
2 point,

and b) increasing N also increases the expected number of

corruptions. For S-GBB, the most common source of failures

is message drops preventing some of the nodes from learning

the inputs of certain other nodes. This becomes less likely if

we increase the number of nodes N and/or the number of

rounds: a node ni learns the input of another node nj as long

as there is at least one path from ni to nj with no drops

or corruptions. The curious dips at even numbers of nodes

9

Algorithm
Assumptions

Goals
Costs (per node)

Synchr. Topology Drops Mem.corr. Crashes Adversary Auth. Communic. Storage

T-Cons Alg.2 Sync Broadcast No No Yes No No Consensus Perfect O(N) O(N)
GBB [27] Alg.3 Sync Broadcast∗ Prob. Prob. Prob. No No∗ GBB-SC Prob. O(NR) O(NR)
T-GBB Alg.4 Sync (any) (any) (any) (any) (any) (any) GBB-SC Perfect Zero Zero

S-GBB Alg.5 Sync Broadcast Prob. Prob. Prob. No No Consensus Prob. O(N2 ·R) O(N)

TABLE II

happen because of the way [27] defines strong correctness:

the nodes are free to decide on anything at all unless there is

an input value that occurs at least ⌊N/2⌋+ 1 times. For even

values of N , the most common case is that the two inputs

occur equally often, and in this situation strong correctness is

trivially satisfied, no matter what the nodes decide.

I. Summary

The main reason GBB “overpays” for fault tolerance is a

disconnect between the faults it assumes and the fault model

it uses: all random corruptions are Byzantine faults, but the

reverse is not true. In particular, the Byzantine model assumes

that faulty nodes might take the worst possible action every

single time, instead of just with a small probability, and

this is a major source of complexity in Byzantine-tolerant

algorithms. In fact, as we have shown in Section III-C, it is

impossible to solve the problem the paper motivates when even

a single Byzantine node is present! Solutions do exist for the

probabilistic faults that [27] focuses on, but, as T-GBB and

S-GBB demonstrate, they can be much simpler than GBB.

EIG trees are both too strong and too weak for this setting.

They are too strong because they can tolerate the entire set

of Byzantine faults, when only a small subset is needed here,

and they solve consensus, when the goal is only to achieve

a form of almost-everywhere agreement. And they are too

weak because they assume that the number of faulty nodes

cannot reach N/3, which is not true in this setting. When this

assumption is violated, EIG trees can actually make matters

worse, since nodes will follow (potentially faulty) quorums of

a certain size, even if the correct value reached them as well.

Table II shows a comparison of the four candidate solutions

(T-Cons, GBB, T-GBB, and S-GBB) we have discussed here.

(Properties with asterisks are inferred; GBB-SC means strong

correctness as defined in [27].) S-GBB offers substantial

benefits over GBB: it sends less data and consumes less

storage, it is more reliable, it should be easier to implement,

and it is easier to analyze.

IV. CASE STUDY: RT-BYZCAST

Our second case study is a protocol by Kozhaya et al. [37]

that provides a form of Byzantine-tolerant broadcast.

A. Problem statement

There are N nodes that are connected by a network. The goal

is to implement a broadcast primitive called RTBRB that has

the following five properties:

• RTBRB-Validity: If a correct process broadcasts m, then

some correct process eventually delivers m.

• RTBRB-No duplication: Every correct process delivers

each message at most once.

• RTBRB-Integrity: If some correct process delivers a

message m with sender ni, and node ni is correct, then

m was previously broadcast by ni.

• RTBRB-Agreement: If some message m is delivered by

any correct process, then every correct process eventually

delivers m.

• RTBRB-Timeliness: There exists a known ∆ such that,

if a correct process broadcasts m at real-time t, no correct

process delivers m after real time t+∆.

This problem is a variant of what we have called broadcast in

Section II-A; the properties are stated slightly differently, and

there is an additional timeliness requirement.

The paper assumes that up to f =
⌊

n−1
3

⌋

nodes can be

compromised by an adversary. The system is synchronous;

messages are authenticated and can be randomly dropped in

the network. Since the latter precludes a perfect implementa-

tion of RTBRB-Timeliness, an additional requirement is that

nodes crash themselves if they appear to be disconnected from

too many other nodes.

B. Original solution

Algorithm 6 shows the original RT-ByzCast algorithm

from [37]; for brevity, we have omitted the code for the proof-

of-life, aggregate-sig, and deliver-message functions.

Briefly, the algorithm works as follows. When a node

wishes to broadcast a message m, it signs m and sends a

RTBRB-broadcast message to every other node. When a

node sees this message, it responds with an Echo message

that includes a signature of its own. The echo signatures are

aggregated in the Recho set on each node; once a node has

accumulated a quorum of at least 2f + 1 signatures, it sends

a Deliver message that includes these signatures to each

other node. Echo and Deliver messages are retransmitted

for some time, in case they are lost. If a node has no messages

to send, it sends a heartbeat message; if a node fails to

accumulate signatures from a quorum on either broadcasts or

heartbeats, it crashes itself.

C. A simple alternative

Since the paper assumes that nodes can potentially be compro-

mised by an adversary, its fault model encompasses the entire

set of Byzantine faults, so, at first glance, the complexity of

the original solution seems justified and the upper bound on

the number of faulty nodes seems necessary. Notice that, since

messages can be dropped and we insist on perfect guarantees,

the limit for asynchronous systems applies, even though the

system itself is synchronous.

However, in the system model in §II.A, the paper mentions

almost in passing that nodes are assumed to be connected by

links, and that links “can abstract a physical bus or a dedicated

10

Algorithm 6 The RT-ByzCast algorithm, from [37]

1: Init: Msg[]n[]n = ∅
2: Execute proof-of-life(R);
3: upon event <pi wants to broadcast a value v> do

4: Execute proof-of-life function in piggyback mode
5: Initialize Recho(pi, r, v) = ∅
6: Send periodically starting from the current round

RTBRB-broadcast((pi, rcurrent, v); Φpi) to all p ∈ Π
7:
8: upon event <receive RTBRB-broadcast()(pi, r

′, v); Φpi) in
round r − 1 ≥ r′ for the first time> do

9: Execute proof-of-life function in piggyback mode

10: Initialize R
pj
echo

(pi, r, v) = pi; sigs = Φpj

11: Send Echopj ((pi, r
′, v; Φpi); sigs) to all p ∈ Π at rounds ≥ r

12:
@process pj :
13: upon event <receive Echopk ((pi, r

′, v; Φpi); Φpx , . . . ,Φpz) at
round r do

14: if pj is not sending any Echo() then

15: Set sigs =aggregate-sigpj (v, pi,Φpx . . .Φpz , pk)
16: if pj has not already delivered a message relative to pi then

17: Execute proof-of-life function in piggyback mode
18: Initialize Recho(pi, r + 1, v) = ∅
19: If sigs ≤ 2f then

20: Send at the beginning of every cycle (as of round
r + 1 onward) Echopj ((pi, r + 1, v; Φpi); Φpj) if k 6= j

21: end if

22: end if

23: If sigs > 2f (for the first time) then

24: Set Recho(pi, r, v) = sigs
25: Execute deliver-message(pi, v, sigs)
26: end if

27: end if

28: if pj is sending an Echopj ((pi, r
′, v; Φpi); . . .) then

29: Set sigs = aggregate-sigpj (v, pi,Φpx . . .Φpz , pk)
30: If sigs > 2f (for the first time) then

31: Set Recho(pi, r, v) = sigs
32: Execute deliver-message(pi, v, sigs)
33: end if

34: If sigs ≤ 2f ∧ k = j then

35: Set Recho(pi, r, v) = sigs
36: end if

37: If sigs ≤ 2f then

38: Send at the beginning of every cycle (as of round r + 1
onward) Echopk ((pi, r

′, v; Φpi); sigs) to all p ∈ Π
39: end if

40: end if

41: if pj is sending Echopj ((pi, r
′′, v′; Φpi); ∗) : v

′ 6= v then

42: Set sigs = aggregate-sigpj (v
′, pi,Φpx . . .Φpz , pk)

43: If sigs > 2f (for the first time) then

44: Set Recho(pi, r, v) = sigs
45: Execute deliver-message(pi, v

′, sigs)
46: end if

47: end if

48:
49: upon event <receive Deliverpk ((pi, v, sigs); Φpx . . .Φpz) at

round r do

50: if ((pi, v) is not delivered yet then

51: Deliver v
52: Stop sending any Echo()

53: Initialize set Rdeliver(pi, r) = {px, . . . , pz}
54: else

55: Rdeliver(pi, r
′) = Rdeliver(pi, r

′)
⋃
{px, . . . , pz}.

56: end if

57: Send Deliverpj ((pi, v, sigs); signatures) to all p ∈ Π at

every round in [r + 1, r + 1 + 2R], signatures contains the
signatures of all processes in Rdeliver(pi, . . .).

58: Execute same commands as lines 5-8 of deliver-messagepj (. . .)
59:

Algorithm 7 The S-ByzCast algorithm

1: procedure INITIALIZATION

2: seen = ∅
3: procedure RTBRB-BROADCAST(m)
4: for i = 1 . . . k do

5: broadcast(i,m, now, σi(i,m, now))

6: procedure ROUND(r)
7: for each received msg:=(j,m, r, s) do

8: if signature s is valid then

9: if ¬∃m′, s′ : (j,m′, r, s′) ∈ seen then

10: seen = seen ∪{msg}
11: RTBRB-deliver(m)

network link/path”. If the network does indeed consist of

a physical bus, this provides a broadcast channel and thus

removes the adversary’s ability to equivocate, which, as we

have discussed in Section II-J, is a major source of complexity.

With a reliable broadcast channel, the solution would be

trivial and essentially equivalent to Algorithm 1. However,

the assumption here is that the network can randomly drop

messages, and since the RTBRB guarantees are deterministic,

it seems that one still cannot avoid collecting quora. However,

we note that RT-ByzCast’s effective guarantees are probabilis-

tic as well, since a) a sequence of random message drops

can cause correct nodes to crash themselves, and b) too many

crashes can cause the number of live nodes to fall below 3f+1,

at which point the Byzantine nodes can, by falling silent, cause

all of the remaining correct nodes to crash themselves as well.

If this cataclysmic scenario is acceptable, provided that its

probability is small enough, a small chance (say, 10−15) of a

loss of RTBRB-Agreement may be acceptable as well.

For this specific case (bus topology, probabilistic guaran-

tees), we can suggest a much simpler alternative (Algorithm 7),

which we call S-ByzCast. This algorithm simply 1) signs

messages and broadcasts them k times, and 2) discards du-

plicates, messages that are not properly signed, and messages

that conflict with another message sent by the same node

in the same round. Validity holds with high probability if

k is large enough; integrity is ensured by the signatures;

agreement holds because of the broadcast channel (which

delivers the message either to all the correct nodes, or to

none of them); and timeliness holds because the system is

synchronous. This algorithm is much simpler, and uses fewer

messages; moreover, it no longer has a nontrivial bound on f
and thus works with any number of Byzantine nodes.

D. Summary

If the system has a bus topology and can accept probabilistic

guarantees, RT-ByzCast “overpays” for fault tolerance by not

taking advantage of the natural broadcast primitive a bus

provides, and by treating the bus as a collection of point-to-

point links instead. As a result, the algorithm is more complex

than it would need to be in that setting, it uses more messages,

and it can tolerate only a limited number of Byzantine faults.

11

V. RELATED WORK

Benign fault tolerance: The question of how to build safe,

reliable, and fault-tolerant distributed systems has been studied

in great detail by several communities, including distributed

systems, real-time systems, and controller design. Existing

solutions include replication protocols for asynchronous dis-

tributed systems like Paxos [38], Remus [21], and Raft [47];

fault-tolerant real-time systems, like Mars [34] and DeCo-

RAM [6]; and fault-tolerant and/or reconfigurable control

systems [63]. Most of this work has considered various types

of “benign” faults, such as hardware defects, software bugs, or

electromagnetic interference, and thus does not need the full

complexity of Byzantine fault tolerance. Correia et al. [19]

introduced a way to reduce corruption errors to crashes, as

discussed in Section II-H.

Agreement problems: The theoretical underpinnings of

broadcast and consensus are well understood. Failure detec-

tors [13], [14] can capture the information that is needed to

solve these problems; this concept was originally introduced

for benign faults but was later extended to the Byzantine set-

ting [29], [32]. There is also a rich literature on lower bounds

in various settings [10], [22]–[24], [28], including the famous

FLP result [25]. S-GBB is similar to the maximum information

protocol by Hadzilacos [23], [28]. Pease et al. [49] proves

the N > 3f bound without authentication (§4) and gives

protocols for both the authenticated and the unauthenticated

setting (§5 and §3, respectively). The impact of equivocation

on complexity was noted, e.g., in [9].

Byzantine fault tolerance: There is a rich literature on

practical protocols for tolerating Byzantine faults [1], [4], [12],

[16], [20], [26], [30], [36], [40], [41], [53], [58], [59], [62],

and some of these protocols have been applied to distributed

real-time systems (e.g., in [31], [33], [44]). And Byzantine

are not uncommon: A substantial number of vulnerabilities

in existing real-time distributed systems have been identified

and studied, including, e.g., recent work on the on-board

network in cars [15], [35], [51]. Many classical BFT protocols

are unsuitable for real-time systems [52], but more recent

protocols have improved in this respect [2], [5], [17], [43],

and synchronous variants, such as [3], are available as well.

VI. CONCLUSION

In general-purpose distributed systems, fault tolerance can be

a source of enormous headaches, especially when the goal is

to tolerate non-crash faults. Solutions do exist, but they are

often expensive, complex, and prone to subtle vulnerabilities.

However, in the particular case of real-time and embedded

systems, the problem is often much easier, or even trivial!

This is because these systems are often synchronous and/or

have a topology that naturally supports broadcast, and because

they often have a specific reliability target and can thus accept

probabilistic guarantees, as long as the probability of a failure

is small enough. The theory literature has studied the benefits

of synchrony as early as the 1980s, but, as recent publications

show, the connection to real-time systems has either been

forgotten or was never really made. We think that the com-

munity should take advantage of this connection and to adopt

the “trivial” solutions whenever possible. These solutions may

not be very interesting from a theoretical perspective, but they

come with substantial practical advantages, such as simplicity,

efficiency, and – in some cases – even higher reliability!

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful com-

ments and suggestions. This work was supported in part by

NSF grant CNS-1955670.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie. Fault-scalable Byzantine fault-tolerant services. In Proc. SOSP,
2005.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. Efficient
synchronous Byzantine consensus, 2017.

[3] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync HotStuff:
Simple and practical synchronous state machine replication. In Proc.

Oakland, 2020.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.
BAR fault tolerance for cooperative services. In Proc. SOSP, 2005.

[5] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication
under attack. IEEE TDSC, 8(4):564–577, 2011.

[6] J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf, D. C. Schmidt,
C. Lu, and C. Gill. Middleware for resource-aware deployment and
configuration of fault-tolerant real-time systems. In Proc. RTAS, 2010.

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proc. CCS, 1993.

[8] F. Borran and A. Schiper. A leader-free Byzantine consensus algorithm.
In Proc. ICDCN, 2010.

[9] G. Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput.,
75(2):130143, Nov. 1987.

[10] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. J. ACM, 32(4):824840, Oct. 1985.

[11] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc.

OSDI, 1999.

[12] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. on Comp. Syst., 20(4):398–461, 2002.

[13] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector
for solving consensus. J. ACM, 43(4):685–722, July 1996.

[14] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225267, Mar. 1996.

[15] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
experimental analyses of automotive attack surfaces. In Proc. USENIX

Security, 2011.

[16] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In Proc.

SOSP, 2007.

[17] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine faults. In
Proc. NSDI, 2009.

[18] B. A. Coan. A compiler that increases the fault tolerance of asyn-
chronous protocols. IEEE Transactions on Computers, 37(12):1541–
1553, 1988.

[19] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. Practical
hardening of crash-tolerant systems. In Proc. USENIX ATC, 2012.

[20] J. A. Cowling, D. S. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance. In
Proc. OSDI, 2006.

[21] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: high availability via asynchronous virtual machine
replication. In Proc. NSDI, 2008.

[22] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[23] C. Dwork and Y. Moses. Knowledge and Common Knowledge in a
Byzantine environment: Crash failures (extended abstract). In Proc.

Theoretical Aspects of Reasoning about Knowledge, 1986.

12

[24] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in
networks of bounded degree. In Proc. STOC, 1986.

[25] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374382,
Apr. 1985.

[26] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700
BFT protocols. In Proc. EuroSys, 2010.

[27] A. Gujarati, S. Bozhko, and B. Brandenburg. Real-time replica consis-
tency over ethernet with reliability bounds. In Proc. RTAS, 2020.

[28] V. Hadzilacos. A lower bound for Byzantine agreement with fail-stop
processors. Technical Report TR-21-83, Harvard University.

[29] A. Haeberlen and P. Kuznetsov. The Fault Detection Problem. In Proc.

OPODIS, Dec. 2009.

[30] C. Ho, R. van Renesse, M. Bickford, and D. Dolev. Nysiad: Practical
protocol transformation to tolerate Byzantine failures. In Proc. NSDI,
2008.

[31] K. Hoyme and K. Driscoll. SAFEbus. In Proceedings of the Digital

Avionics Systems Conference (DASC), 1992.

[32] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzantine fault
detectors for solving consensus. The Computer Journal, 46(1):16–35,
2003.

[33] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings

of the IEEE, 91(1):112–126, 2003.

[34] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The Mars
approach. IEEE Micro, 9(1):25–40, 1989.

[35] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In Proc. IEEE

S&P, 2010.

[36] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong. Zyzzyva:
Speculative Byzantine fault tolerance. ACM TOCS, 27(4), 2009.

[37] D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. RT-ByzCast:
Byzantine-resilient real-time reliable broadcast. IEEE Trans. Comput.,
68(3):440454, Mar. 2019.

[38] L. Lamport. The part-time parliament. ACM Transactions on Computer

Systems (TOCS), 16(2):133–169, May 1998.

[39] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. on Prog. Lang. and Systems (TOPLAS), 4(3):382–401, 1982.

[40] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc: Small
trusted hardware for large distributed systems. In Proc. NSDI, 2009.

[41] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine
fault tolerant systems. In Proc. NSDI, 2007.

[42] Z. Liu, J. Weng, Z. Hu, and H. Seo. Efficient elliptic curve cryptography
for embedded devices. ACM Trans. Embed. Comput. Syst., 16(2), Dec.
2016.

[43] Z. Milosevic, M. Biely, and A. Schiper. Bounded delay in Byzantine-
tolerant state machine replication. In Proc. SRDS, Sept. 2013.

[44] P. Miner. Analysis of the SPIDER fault-tolerance protocols. In Proc.

NASA Langley Formal Methods Workshop (LFM), 2000.

[45] G. Neiger. Distributed consensus revisited. Information processing

letters, 49(4):195–201, 1994.

[46] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance
of distributed systems. In Proceedings of the seventh annual ACM

Symposium on Principles of distributed computing, pages 248–262,
1988.

[47] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proc. USENIX ATC, 2014.

[48] D. A. Osvik. Fast embedded software hashing. Cryptology ePrint
Archive, Report 2012/156, 2012. https://eprint.iacr.org/2012/156.

[49] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228234, Apr. 1980.

[50] Rambus. PKA-IP-28 / EIP-28 RSA/ECC Public Key Accelerators.
https://www.rambus.com/security/crypto-accelerator-hardware-cores/
basic-crypto-blocks/pka-ip-28/.

[51] I. Rouf, R. D. Miller, H. A. Mustafa, T. Taylor, S. Oh, W. Xu,
M. Gruteser, W. Trappe, and I. Seskar. Security and privacy vulner-
abilities of in-car wireless networks: A tire pressure monitoring system
case study. In Proc. USENIX Security, 2010.

[52] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT protocols
under fire. In Proc. NSDI, 2008.

[53] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis. Zeno:
Eventually consistent Byzantine-fault tolerance. In Proc. NSDI, 2009.

[54] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80–94,
1987.

[55] ST Microelectronics. Introduction to STM32 micro-
controllers security. Application note AN5156, avail-
able from https://www.st.com/resource/en/application note/
dm00493651-introduction-to-stm32-microcontrollers-security-
stmicroelectronics.pdf.

[56] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A. P.
Bianco, and C. Baisse. Announcing the first SHA1 collision. https://
security.googleblog.com/2017/02/announcing-first-sha1-collision.html.

[57] H. Tschofenig and M. Pegourie-Gonnard. Performance of state-of-the-
art cryptography on ARM-based microprocessors. NIST Lightweight
Cryptography Workshop 2015; available from https://csrc.nist.gov/csrc/
media/events/lightweight-cryptography-workshop-2015/documents/
presentations/session7-vincent.pdf.

[58] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating
Byzantine faults in transaction processing systems using commit barrier
scheduling. In Proc. SOSP, 2007.

[59] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. ZZ
and the art of practical BFT execution. In Proc. EuroSys, 2011.

[60] T. Yang, R. Gifford, A. Haeberlen, and L. T. X. Phan. The synchronous
data center. In Proc. HotOS, May 2019.

[61] G. Yi. Implementing the RSA cryptosystem with the public key
accelerator. Analog Devices EE-385, https://www.analog.com/media/
en/technical-documentation/application-notes/EE385v01.pdf.

[62] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sep-
arating agreement from execution for Byzantine fault tolerant services.
In Proc. SOSP, 2003.

[63] Y. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-
tolerant control systems. Annual reviews in control, (32):229–252, 2008.

13

