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Abstract. We propose a novel numerical algorithm utilizing model reduction
for computing solutions to stationary partial differential equations involving

the spectral fractional Laplacian. Our approach utilizes a known character-
ization of the solution in terms of an integral of solutions to local (classical)

elliptic problems. We reformulate this integral into an expression whose contin-

uous and discrete formulations are stable; the discrete formulations are stable
independent of all discretization parameters. We subsequently apply the re-

duced basis method to accomplish model order reduction for the integrand.

Our choice of quadrature in discretization of the integral is a global Gauss-
ian quadrature rule that we observe is more efficient than previously proposed

quadrature rules. Finally, the model reduction approach enables one to com-

pute solutions to multi-query fractional Laplace problems with orders of mag-
nitude less cost than a traditional solver.

1. Introduction. Differential equations involving fractional derivative powers have
gained in popularity in recent years. These non-classical differential equations have
shown potential to model nonlocal and time-delay effects, making them good can-
didates for modeling hysteretic and globally-coupled phenomena. For example,
fractional differential equations have recently been used to model fluid mechanics,
arterial blood flow, cardiac ischemia, and geophysics; as components of optimal
control problems; and as ingredients in image denoising and image segmentation
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[38, 30, 22, 2, 5]. In particular, optimal control problems frequently require opti-
mization of an objective function that involves the solution to a partial differential
equation (PDE). Algorithms for solving the optimization problem would require
many evaluations of the objective, hence of the PDE. Thus, for control problems it
is necessary to ensure that the computational solution of the PDE can be obtained
as quickly as possible. In this paper we focus on the acceleration of computational
algorithms for such PDEs, in particular those involving fractional elliptic operators,
which are defined via spectral expansions; a prototypical example of an operator
that we use throughout this paper is the fractional Laplacian.

With ∆ the “standard” (classical) Laplacian operator, we are interested in com-
puting the solution u to the partial differential equation

(−∆)su = f,

valid on some physical domain Ω (which is open, bounded, and Lipschitz) with
appropriate boundary conditions on ∂Ω, where s ∈ (0, 1) is the fractional order. The
precise definition of the fractional operator (−∆)s involves the spectral expansion of
the local operator −∆ (with appropriate associated boundary conditions), which we
more precisely describe in Section 2. There are already several numerical algorithms
for computing the solution to such an equation:

• Perhaps the most conceptually straightforward idea is to use the spectral
expansion definition of (−∆)s to devise a scheme that computes solutions
using the spectral expansion of the associated discretized operators [27, 28,
45, 40]. The disadvantage of this approach is that the procedure is expensive,
requiring a full eigendecomposition of a potentially very large matrix.
• A second approach uses an extension procedure to write the nonlocal d-

dimensional PDE as a (d+ 1)-dimensional local PDE [34, 13, 41]. This latter
PDE can be solved with existing methods, although some nontrivial tailoring
of existing numerical methods is needed [35]. The challenge with this ap-
proach is that the spatial dimension is increased, and the extended PDE is
degenerate, requiring specialized numerical methods. More recent efforts have
significantly reduced the computational cost of this method. These methods
exploit the tensor product structure that occurs as a result of the additional
dimension [33, 1] but rely on discretizations that depend on the exponent s,
i.e., essentially assume a non-zero lower bound for s.
• A final approach that we use as the starting point for the method proposed

in this paper is an integral operator approach, which writes the solution (i.e.,
the inverse of the operator) as a type of Dunford-Taylor integral involving the
resolvent of the local operator:

(−∆)−s =
sinπs

π

∫ ∞

0

y−s (y −∆)
−1

dy, (1)

See [29, Theorem 2 with λ = 0]. Numerical approaches for solving nonlocal
PDEs using this formula discretize the integral in (1) with quadrature and re-
quire many local (“standard”) PDE solves (equal to the number of quadrature
points) in order to compute the solution to the fractional problem [11, 6, 9].
However, this results in an algorithm that can require, depending on the prob-
lem, many or hundreds of queries of an existing PDE solver to compute the
solution to the fractional problem. The challenge with this approach is that
often many local PDE solves may be necessary to ensure accuracy for a single
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solution of the fractional PDE, making this approach quite expensive com-
pared to traditional solvers. For certain operators these local PDE solves may
be accomplished in parallel, but this does not diminish the overall cost. Other
operators require coupling of these solves, e.g., in cases when a lifting strat-
egy is used to solve non-homogenous nonlocal Poisson equations [43], making
parallel approaches more difficult.

In this paper, we develop a novel model reduction algorithm for the third approach
listed above to substantially alleviate the cost of traditional PDE solves. We concen-
trate on this approach for the spectral definition of the fractional Laplacian in this
paper, but due to a similar integral formulation for the integral fractional Laplacian
[10], our approach would extend to more general cases as well.

This paper is not the first strategy for model reduction for fractional elliptic prob-
lems. The authors in [4] provide a model reduction strategy, applied to the second
(extension) approach listed above. More recently, the work in [18, 19] employs a
reduced basis approach by interpolating operator norms. Reduced order methods
for this problem using the integral operator approach are also investigated in [9].
However, low-rank structure in solution sets to fractional problems has been empir-
ically noted even earlier [44]. For problems involving nonlocal integral kernels, the
authors in [25] also proposed a reduced basis approach, but use a different strategy
to perform model reduction. Our contributions in this article are as follows:

• We provide a rearrangement of the Dunford-Taylor integral considered in [11]
that improves numerical stability. We first show that the analytical solution
has s-independent L2 stability bounds. This stability extends to the numerical
discretization, independent of all discretization parameters. See Lemma 3.1
and Proposition 3.
• Our approach to discretize the Dunford-Taylor integral is a novel application

of a global Gaussian quadrature rule. Our numerical results suggest that our
quadrature choice is more efficient than previously proposed choices, cf. Figure
4. We cannot provide an analytical error bound in terms of the number of
quadrature points, but we do provide a rigorous, computable error certificate;
see Proposition 4. Previous work has required a number of quadrature points
proportional to max(1/s, 1/(1 − s)) in order to obtain a specified level of
accuracy. Our empirical results suggest that our approach also suffers from
this limitation, see Figure 2.
• We employ the reduced basis method (RBM) to effect model reduction which,

after a single offline computational investment, can accelerate subsequent
computations of (s, f) 7→ u by at least two orders of magnitude. The offline
portion of this algorithm requires approximately as much time as a single
(s, f) 7→ u solve using the traditional Dunford-Taylor approach; see Algorithm
3.4.
• We provide a rigorous a posteriori error estimate for our solution computed

via model reduction. This error estimate is computed as a by-product of the
offline investment, and is therefore directly available; see Theorem 5.2.

Regarding alternative model reduction approaches to solve this problem: After ini-
tial dissemination of the first draft of this manuscript, the authors in [9] provided a
complementary approach. For s0 some fixed constant, [9] provides rigorous conver-
gence analysis for energy norms for s ≥ s0 > 0, with estimates depending on 1/s0.
The space interpolation-based approach in [18, 19] likewise provides convergence
the L2 norm for the discretized setting. Although comparably strong convergence
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analysis is missing in our work (i.e., we do not yet have rigorous convergence anal-
ysis available), we do accomplish different goals: We establish L2-stability of the
fractional problem uniformly as s ↓ 0 both at the discrete and continuous levels. In
addition, we provide rigorous, computable error certification for the fractional prob-
lem (and not just for the auxilliary problem defined by the Dunford-Taylor integral);
these results distinguish our study from the similar approach in [9]. In compari-
son to extension approaches, the additional reduced order modeling based approach
considered in [4] requires solving a PDE in an additional (extended) dimension, and
due to this requirement is less efficient, even if combined with efficiency gains in
full-order models achieved in [33] and related work.

We remark that while we study PDEs with an operator of the form (−∆)s, all
our results extend to more general fractional elliptic operators. See Remarks 1 and
4.

This paper is structured as follows. Section 2 lays out our notation and describes
the problem. Section 3 describes a new algorithm for expressing and computing the
Dunford-Taylor solution that was first proposed in [11]; this new algorithm is a novel
utilization of a Gaussian quadrature rule. The accuracy of this quadrature rule is
empirically investigated in Section 4. Section 5 is our main algorithmic section that
introduces an RBM algorithm for model reduction that computationally accelerates
the fractional PDE algorithm from Section 3, and provides a computable error
certificate for the model reduction. Finally, section 6 includes numerical results that
demonstrate our new algorithms on a two-dimensional fractional Laplace problem
and compares our algorithm against the predecessor in [11].

2. Notation and setup. Vectors will be denoted in lowercase bold, and matrices
in uppercase bold, e.g., x and A, respectively. If M is a symmetric positive definite
matrix, we define

‖x‖2M := xTMx,

and ‖x‖ is the standard Euclidean norm. The matrix norm ‖A‖ is the standard
induced `2 norm on matrices. If A is symmetric, then λmin (A) denotes the smallest
(real) eigenvalue of A. If both A and B are symmetric positive definite matrices
in RN×N , we define the smallest generalized eigenvalue of (A,B) as

λmin (A,B) := inf
x∈RN\{0}

‖x‖2A
‖x‖2B

.

Note that under these assumptions on A and B, the above expression is equal to
the smallest λ such that Ax = λBx has a nontrivial solution x, and also we have
that

λmin

(
B−1/2AB−1/2

)
= λmin (A,B) ,

where B1/2 is the symmetric positive definite matrix square root of B. Similarly,
we use the notation λmax(·) and λmax(·, ·) to denote maximum eigenvalues.

Consider a bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω; for spatial
domains we are mainly concerned with d ≤ 3 but this restriction is not necessary.
We have

L2(Ω) :=
{
v : Ω→ R

∣∣ ‖v‖L2 <∞
}
, ‖v‖2L2 := 〈v, v〉, 〈v, w〉 :=

∫

Ω

v(x)w(x)dx.
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We will often write L2 = L2(Ω), and we define 〈∇w,∇v〉 =
∑d
j=1〈 ∂

∂xj
w, ∂

∂xj
v〉,

which induces a definition for the L2 norm ‖∇v‖L2 of vector-valued functions. For
brevity will also write ‖v‖ = ‖v‖L2 and ‖∇v‖ = ‖∇v‖L2 . The standard Laplace
eigenvalue problem on Ω with Dirichlet boundary conditions,

−∆u = λu, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2)

yields an infinite sequence of eigenvalues 0 < λ1 ≤ λ2 · · · with associated eigenfunc-
tions {φn}∞n=1. Here, and in all the following, the differential operator ∆ operates
on the x variable. The spectral theorem ensures that the eigenfunctions enjoy
L2(Ω)-orthogonality and completeness, so that

u ∈ L2(Ω) =⇒ u(x) =
∞∑

n=1

unφn(x), un = 〈u, φn〉L2(Ω) , (3)

where we have further assumed that each φn has unit L2(Ω) norm.

2.1. The fractional Laplace problem. In this section we provide the definition
of the fractional operator (−∆)s, and summarize some regularity properties of so-
lutions. Let s ∈ (0, 1). In this section we describe the spectral definition of the
fractional operator (−∆)s, on bounded domains, supplemented with homogeneous
Dirichlet boundary conditions, see [7] for the inhomogeneous case. Related defini-
tions of similar nonlocal or fractional operators can be found in the literature [31].
If u has an expansion in eigenfunctions, then a formal definition for application of
the fractional operator is,

u =

∞∑

n=1

unφn(x) =⇒ (−∆)su =

∞∑

n=1

λsnunφn(x). (4)

We likewise use λn to define Sobolev spaces of fractional order. With s ∈ (0, 1):

Hs(Ω) :=
{
u ∈ L2(Ω)

∣∣ (−∆)s/2u ∈ L2(Ω)
}
, H−s(Ω) := Hs(Ω)∗,

where Hs(Ω)∗ denotes the dual space of Hs(Ω). With these definitions, (−∆)s :
Hs(Ω)→ H−s(Ω). For the relation of Hs(Ω) to the standard fractional order Sobolev
space Hs(Ω), see [32, Chapter 1, Section 9] or [21] for a more modern survey.

Given data f ∈ L2(Ω), our main goal is to compute the solution u to

(−∆)su = f, x ∈ Ω

u = 0, x ∈ ∂Ω
(5)

for arbitrary s ∈ (0, 1). We emphasize that only for s > 1/2 can the boundary
conditions in (5) be understood in the classical trace sense. This is due to the
fact that, for smooth enough boundaries, Hs(Ω) = Hs

0(Ω) for s > 1/2. For s <
1/2, Hs(Ω) = Hs

0(Ω) = Hs(Ω) and in this case the boundary conditions are not
meaningful in the classical trace sense. One possible interpretation of the boundary
conditions in this case is using the integration-by-parts formula, as described in [7,

Theorem 3.1]. Finally, for s = 1/2 we have Hs(Ω) = H
1
2
00(Ω) i.e., the Lions-Magenes

space, in this case, it follows from the definition of the space that the functions need
to have certain decay at the boundary.

One can assume f ∈ H−s, yielding a solution u in Hs. Note therefore that
f ∈ L2 is a stronger requirement than necessary for this fractional problem, and
is even stronger than usual for local elliptic problems. We make this stronger
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assumption to be assured, for fixed f , that u ∈ L2 uniformly for s ∈ (0, 1). Note that
this is a reasonable assumption in the optimal control context where controls are
frequently assumed to be smoother than the explicit image of a differential operator.
Notationally, we omit showing explicit dependence of u on the spatial variable x,
and only show dependence on the fractional order s, which is a parameter. This
convention will be used in the remainder of this paper when considering solutions
to parameterized PDE’s: notational dependence on parameters will be explicit, but
that on the spatial variable x will be implicit. Therefore, we let u(s) ∈ L2 denote
the solution u to (5) for a fixed value of s. We will be interested in developing a
computational algorithm for computing the family or manifold of solutions,

U :=
{
u(s)

∣∣ s ∈ (0, 1)
}
.

If f ∈ L2, then the solution u to (5) has H2s membership. In order to ensure that
u is also in the classical Sobolev space H2s, we need to assume the domain to be
more regular, for example, quasi-convex. Recall, that quasi-convexity ensures that

‖v‖H2(Ω) ≤ C‖(−∆)v‖L2(Ω), ∀v ∈ H2(Ω) ∩H1
0 (Ω),

see [23, Theorem 10.4]. See also [24] for a related discussion on solution regularity.
Our goal is to study the manifold U so that the natural function space is ∩s∈(0,1)H2s.

Therefore, all of our investigations will assume f ∈ L2 and study solutions u(s) as
elements of L2.

In the remainder of this document we will consider the problem (5) with homo-
geneous Dirichlet boundary conditions. The inhomogeneous boundary case may be
handled using the lifting technique in [7], which requires only a small modification
of the algorithm proposed here. While the previous discussion has centered on the
definition of the nonlocal operator and the associated PDE, our main analytical and
computational tool will be an equivalent formulation via Kato’s formula.

2.2. Kato’s integral solution of (5). The following remarkable result provides
an appealing formula for the solution u to (5):

u(s) = β(s)

∫ ∞

−∞
e(1−s)y (−∆ + ey)

−1
fdy, β(s) :=

sinπs

π

which is a reformulation of Kato’s formula (1) from [29, Theorem 2 with λ = 0].
This representation was first exploited in [11] for designing numerical algorithms,
and is derived via a special kind of Dunford-Taylor integral. To write the above more
explicitly, define q(y), for fixed y ∈ R, as the solution to the local y-parameterized
PDE,

−∆q(y) + eyq(y) = f, x ∈ Ω

q(y) = 0, x ∈ ∂Ω.
(6a)

Then u is given by

u(s) = β(s)

∫ ∞

−∞
q(y)e(1−s)ydy. (6b)

This representation reveals that u is actually just an integral of solutions q to local
Laplace-type problems. A solution method employing a discretization of the above
formula then only requires solves of (classical) local PDE’s in order to solve the
nonlocal problem (5). The straightforward way to compute the solution via (6b) is
to approximate the integral with a quadrature rule. This would require computing
solutions q(·; y) to the PDE (6a) for many values of the parameter y.
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More precisely, let {ym, τm}Mm=1 be a quadrature rule for approximating the
integral in (6b). We will give precise choices for this quadrature rule soon. Then
we can approximate the solution u(s) as

u(s) ≈ uM (s) :=
M∑

m=1

τmq(ym)e(1−s)ym .

One then needs only to compute the ensemble of functions {q(ym)}Mm=1, which
are solutions to local PDEs, in order to approximate the solution to the fractional
problem. This is the particular approach adopted in [11], wherein a sinc quadrature
rule is adopted, and associated error bounds are derived.

The observation we make in this paper is that the approach above requires ap-
proximately M times the work of solving a local problem; when M is large (which
can be required when s is small), this may become computationally prohibitive, see
for instance [42]. However, there are by-now standard model reduction approaches
that allow one to efficiently compute solutions to parameterized PDE’s when the
number of queries M is very large; one such method that is directly applicable (to
some extent) here is the reduced basis method, which we exploit in Section 5. The
next section expresses (6) in a more computationally robust formulation, and pro-
poses a new kind of quadrature for y-discretization. We observe in Section 6 that
our new quadrature approach is much more efficient than the most efficient strategy
considered in [11].

3. Fractional Laplace solutions via integral formulation. Recall that given
s ∈ (0, 1), we seek to evaluate (6b), which defines the solution u(s) to the fractional
Laplace problem (5). In this section we describe our algorithm for doing so, which
discretizes the y variable using quadrature. The main components of this algorithm
come in two stages: first we describe a partitioning formulation for the y variable,
followed by a quadrature discretization of the y integral.

The approach described in this section augments the approach presented in [11];
our improvements include s-independent stability in both the continuous and dis-
crete case. For small values of s and large y-quadrature rule size, the algorithm
in [11] results in discrete operators whose norm becomes very large, which can be
problematic for numerical implementation. In our reformulation, the discrete oper-
ators are uniformly bounded in s (for any quadrature rule). Second, we replace the
sinc quadrature in [11] with a Gaussian quadrature rule. (The authors in [11] also
propose using Gaussian quadrature rules, but theirs is a composite rule, whereas
ours is a global rule and is designed differently.) Our results in section 6 indicate
that this quadrature rule is substantially more efficient than sinc quadrature.

The sections below perform the following tasks:

• Section 3.1 rewrites the integral formulation (6b) in a form that we actually
discretize. Lemma 3.1 is this rewritten expression. This rewritten expression
allows one to easily observe L2 stability results for solutions. This is Propo-
sition 1. These stability results can naturally also be observed from (6b), to
analyze the algorithm it is more convenient to use the rewritten form.
• Section 3.2 imposes a Galerkin-based spatial discretization on certain local

auxilliary PDEs, which translates into a spatial discretization for the fractional
solution u. Proposition 2 establishes that the discrete solution inherits the
stability of the continuous problem.
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• Section 3.3 introduces the particular global quadrature rule that we employ to
discretize the y variable, and establishes a stability result for this fully discrete
scheme in Proposition 3.

3.1. Partitioning of the y variable. To make computations numerically stable,
we split our parameterized problem (6a) into regions y ∈ (−∞, 0] and y ∈ [0,∞).
To accomplish this, we introduce a new parameterized PDE for a solution w that
is closely related (but not identical) to q from (6a)

−α∆w(α, β) + βw(α, β) = f, x ∈ Ω

w(α, β) = 0, x ∈ ∂Ω.
(7)

where (α, β) ∈ (0,∞) × [0,∞) is the parameter. In our computational setting, we
will only require (α, β) ∈ (0, 1]2. Comparing (7) with (6a), we see that q(y) =
w(1, ey). We now define w±(y) as two specializations of w that will be used in the
following:

w−(y) := w(1, e−y) = q(−y), w+(y) := w(e−y, 1) = eyq(y), y ∈ [0,∞). (8a)

(−∆ + e−y)w−(y) = f, (−e−y∆ + 1)w+(y) = f, (8b)

for x ∈ Ω, with boundary conditions w±(y) = 0 for x ∈ ∂Ω. We note that for
y ∈ [0,∞), we have q(y) = e−yw+(y). We can formulate the solution to (5) in
terms of these new quantities.

Lemma 3.1. The solution u(s) to (5) is given by

u(s) =
∑

σ∈{−,+}
β0 (sσ)

∫ ∞

0

wσ

(
y

sσ

)
W (y)dy (9)

= β0(s−)

∫ ∞

0

w−

(
y

s−

)
W (y)dy + β0(s+)

∫ ∞

0

w+

(
y

s+

)
W (y)dy,

where β0, s±, and W are defined as

β0(s) := β(s)/s =
sin(πs)

πs
= sinc(s), s± :=

1

2
±
(
s− 1

2

)
W (y) := e−y.

Proof. Beginning with (6b), we have

u = β(s)

∫ 0

−∞
e(1−s)yw(1, ey)dy + β(s)

∫ ∞

0

e(1−s)yw(1, ey)dy

= (1− s)β0(1− s)
∫ ∞

0

w−(y) exp(−(1− s)y)dy + sβ0(s)

∫ ∞

0

w+(y) exp(−sy)dy

= β0(1− s)
∫ ∞

0

w−

(
y

1− s

)
W (y)dy + β0(s)

∫ ∞

0

w+

(y
s

)
W (y)dy, (10)

completing the proof.

Given the domain Ω, we define CΩ as the domain’s Poincaré constant, i.e., the
smallest constant such that for every v ∈ H1

0 (Ω),

‖v‖ ≤ CΩ ‖∇v‖ . (11)

Note that CΩ = 1/λ2
1, where λ1 is the minimal eigenvalue of the Laplacian from

(2). The space H1
0 (Ω) is the standard Sobolev space of zero-trace L2(Ω) functions



MODEL REDUCTION OF FRACTIONAL ELLIPTIC PROBLEMS 9

whose gradients are also in L2. In what follows, we will also need the following
quantity,

C̃2
Ω := max

(
1, C2

Ω

)
, (12)

which also depends only on Ω. Fixing (α, β), the weak formulation of (7) seeks
a solution w(α, β) = w ∈ H1

0 (Ω) as the unique function satisfying the Galerkin
formulation,

a (w, v;α, β) := 〈f, v〉 , ∀ v ∈ H1
0 (Ω) , (13)

with the bilinear form a(·, ·;α, β) defined as

a (w, v;α, β) := α 〈∇w,∇v〉+ β 〈w, v〉 . (14)

With α > 0 and β ≥ 0, the Poincarè inequality (11) ensures that the coercivity
property a(v, v; y) ≥ α‖∇v‖2L2(Ω) ≥ c‖v‖H1

0 (Ω) holds for some c > 0 uniformly in β,

so that standard Lax-Milgram theory then yields a unique H1
0 (Ω) solution.

With this setup, we can demonstrate the utility of a formula like (9) by deriving
an s-independent L2 stability estimate for solutions to (5).

Proposition 1. Assume f ∈ L2. Then

sup
s∈(0,1)

‖u(s)‖ ≤ 4C̃2
Ω

π
‖f‖.

Proof. The function w+(y) ∈ H1
0 (Ω) is the unique solution to

a
(
w+(y), v; e−y, 1

)
= 〈f, v〉 , ∀ v ∈ H1

0 (Ω).

Taking v = w+(y) and using the Cauchy-Schwarz and Poincaré inequalities results
in

‖f‖‖w+(y)‖ ≥ 〈f, w+(y)〉 = e−y 〈∇w+(y),∇w+(y)〉+ 〈w+(y), w+(y)〉

≥
(

1 +
e−y

C2
Ω

)
‖w+(y)‖2 ≥ ‖w+(y)‖2.

We thus obtain

sup
y≥0
‖w+(y)‖ ≤ ‖f‖. (15a)

A similar computation for w− shows that

sup
y≥0
‖w−(y)‖ ≤ C2

Ω‖f‖. (15b)

Therefore, taking the L2 norm in (9) and using the triangle inequality yields

‖u(s)‖ ≤ β0(s−)

∫ ∞

0

∥∥∥∥w−
(
y

s−

)∥∥∥∥W (y)dy + β0(s+)

∫ ∞

0

∥∥∥∥w+

(
y

s+

)∥∥∥∥W (y)dy

(15)

≤ β0(s−)C2
Ω‖f‖

∫ ∞

0

W (y)dy + β0(s+)‖f‖
∫ ∞

0

W (y)dy

≤ max(1, C2
Ω)‖f‖ [β0(s−) + β0(s+)] ,

where the third inequality uses the fact that W is a probability density on [0,∞).
From the above, we immediately obtain the desired result by noting that

β0(s−) + β0(s+) =
sin(πs)

πs(1− s) ≤
4

π
, s ∈ (0, 1).

The proof is complete.
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Note that formulas like (9) are not the only way to show such stability results,
but Proposition 1 is meant to illustrate one possible use of these relations. Our
main utility of such results will be to design a numerical scheme.

3.2. Spatial discretization. In this section we apply a spatial discretization to the
result of Lemma 3.1. We proceed to discretize (14) using a finite element method.
Let TΩ be a conforming triangulation of Ω with K elements. We assume each
element in the triangulation is isoparametrically equivalent to a standard canonical
triangle/tetrahedron. For a fixed polynomial degree k ≥ 1, we define the finite
element space

V =
{
v ∈ C

(
Ω
) ∣∣ v|e ∈ Pk (e) ∀e ∈ TΩ, v|∂Ω = 0

}
,

where Pk(e) is the space of polynomials of degree k or less over the element e ∈ TΩ.
Let N = dimV . The finite element-discretized version of (13) is the Galerkin
formulation seeking wN ∈ V satisfying

a
(
wN , v;α, β

)
= 〈f, v〉 , ∀v ∈ V. (16)

Let wN (α, β) be expressed as a linear expansion,

wN (α, β) =
N∑

n=1

wNn (α, β)ψn, (17)

where {ψn}Nn=1 is a basis for V , e.g., a basis comprised of compactly supported
piecewise polynomials. Collecting the linear degrees of freedom of wN (y) ∈ V in
the N -dimensional vector wN , then this vector satisfies the linear system,

A(α, β)wN (α, β) = f , (f)j = 〈f, ψj〉 , (18a)

where the N ×N matrix A(α, β) has entries,

(A(α, β))j,k = a (ψk, ψj) = α 〈∇ψk,∇ψj〉+ β 〈ψk, ψj〉 := α(S)j,k + β(M)j,k,
(18b)

for j, k = 1, . . . ,N . Above we have defined the N × N y-independent stiffness
and mass matrices S and M , respectively. Both S and M are symmetric and
positive-definite.

The matrices S and M can be used to define a “discretized” Poincaré constant
CN by using a standard Rayleigh quotient argument:

1

C2
Ω

= inf
v∈H1

0\{0}

‖∇v‖2
‖v‖2 ≤ inf

v∈V
‖∇v‖2
‖v‖2 = inf

v∈RN \{0}

vTSv

vTMv
= λmin (S,M) =:

1

C2
N
,

(19)

hence leading to the inequalities,

CN ≤ CΩ, max
(
1, C2

N
) (12)

≤ C̃2
Ω. (20)

Our estimates for x-discrete quantities will involve CN , but we will sometimes use
the above inequality to bound quantities in terms of CΩ. Bounds involving CΩ

emphasize independence of the x-discretization. Bounds involving CN emphasize
the explicit computability of the bounds, since CN is equal to an extremal eigenvalue
of finite element matrices, which is computable with iterative eigenvalue solvers.
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The maximum generalized eigenvalue of (S,M) will also play a small role in our
estimates. In analogy with (19) we define

1

K2
N

:= λmax (S,M) . (21)

Note that KN in general tends to 0 as N ↑ ∞.
From the discretization of w we derive discretizations of w±(y) defined in (8).

Thus, finite element discretizations for w± are specializations of those for w. In
particular, we define

wN− (y) := wN
(
1, e−y

)
∈ V, wN+ (y) := wN

(
e−y, 1

)
∈ V.

Denote by wN± (y) theN -dimensional vectors that are solutions to the linear systems,
(
S + e−yM

)
wN− (y) = f ,

(
e−yS + M

)
wN+ (y) = f , y ∈ [0,∞), (22)

so that, akin to (17), we have

wN± (y) =

N∑

j=1

wNj,±(y)ψj , wN± (y) =
(
wN1,±(y), . . . , wNN ,±(y)

)T
.

We can now codify the fact that the solutions wN± (y) are L2-stable uniformly in y.

Lemma 3.2. Assume f ∈ L2(Ω). Then

sup
y≥0
‖wN+ (y)‖ ≤ ‖f‖, (23a)

sup
y≥0
‖wN− (y)‖ ≤ C2

N ‖f‖. (23b)

Proof. The result can be obtained by considering the discrete form (22). To begin
we relate the L2 norm of f to the Euclidean `2 norm of f . Let PV denote the
L2-orthogonal projector onto V . Then:

fj = 〈f, ψj〉 =⇒ ‖PV f‖2 = fTM−1f .

wN+ (y) =
N∑

j=1

wNj,+(y)ψj =⇒ ‖wN+ (y)‖2 =
(
wN+

)T
M
(
wN+

)
.

Thus we have

‖f‖2M−1 = ‖PV f‖2 ≤ ‖f‖2,
‖wN+ ‖2M = ‖wN+ ‖2,

(24)

Now since M is symmetric and positive-definite, it has a unique symmetric positive-

definite square root M1/2. Thus:

(e−yS + M)wN+ (y) = f =⇒
(
e−yM−1/2SM−1/2 + I

)(
M1/2wN+ (y)

)
= M−1/2f .

This in turn implies:

‖wN+ ‖M ≤
1

λmin

(
e−yM−1/2SM−1/2 + I

)‖f‖M−1 .

Since M−1/2SM−1/2 is symmetric and positive-definite, we have

λmin

(
e−yM−1/2SM−1/2 + I

)
≥ λmin (I) = 1.



12 H. DINH, H. ANTIL, Y. CHEN, E. CHERKAEV AND A. NARAYAN

Therefore,

‖wN+ ‖M ≤
‖f‖M−1

λmin

(
e−yM−1/2SM−1/2 + I

) ≤ ‖f‖M−1 ,

which, when combined with (24) yields (23a). A similar computation for w−(y)
yields (23b) by using the definition of CN in (19).

The result above gives the stability of an algorithm that uses wN± (y) as a spatial
discretization. In particular, consider the following semi-discrete approximation of
u(s),

ũN (s) :=
∑

σ∈{+,−}
β0(sσ)

∫ ∞

0

wNσ

(
y

sσ

)
W (y)dy, ũN (s) :=

N∑

j=1

ũNj (s)ψj ∈ V.

(25)

A fully discrete scheme, introduced in the next section, would discretize the y vari-
able. The following result mirrors the stability estimate of Proposition 1, showing
s-uniform L2 stability of the semi-discrete solution.

Proposition 2. Assume f ∈ L2. Then

sup
s∈(0,1)

‖ũN (s)‖ ≤ 4C̃2
Ω

π
‖f‖.

The proof, which we omit, is almost exactly the same as for Proposition 1 using
the discrete stability estimates (23); the only novelty is the need to exercise the
inequality (19).

Having described the spatial discretization, we now proceed to describe a dis-
cretization for the y-integrals in (9).

3.3. Quadrature for the y-integral. We will use an M -point W -Gaussian quad-
rature rule to discretize the integrals in (9). The weight function W (y) is a weight
function associated with a classical family of orthogonal polynomials: Laguerre
polynomials. Let {pn}n≥0 denote the family of Laguerre polynomials, orthonormal
under the weight W , i.e.,

∫ ∞

0

pn(y)pm(y)W (y)dy = δm,n, m, n ∈ N0,

where δm,n is the Kronecker delta function. Like all orthogonal polynomials, the
family {pn}n≥0 satisfies a three-term recurrence formula,

ypn(y) = bn+1pn+1(y) + an+1pn(y) + bnpn−1(y), n ≥ 0,

with p0 ≡ 1 and p−1 ≡ 0. The recurrence coefficients (an, bn) are explicitly known:

b0 = 1, bn = n an = 2n− 1, n ≥ 1.

Among the properties of orthogonal polynomial families is the existence of a unique
M -point quadrature rule with optimal polynomial exactness, the Gaussian quad-
rature rule. This rule has abscissae and weights, (ym, τm)Mm=1, respectively, and
integrates polynomials up to degree 2M − 1 exactly:

∫ ∞

0

p(y)W (y)dy =
M∑

j=1

τjp(yj), p ∈ span{1, y, . . . , y2M−1}.
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Although yj and τj depend on the value of M , we omit this explicit notational
dependence. This rule can also be easily computed with knowledge of the recurrence
coefficients. Defining the M ×M symmetric tridiagonal Jacobi matrix,

JM :=




a1 b1
b1 a2 b2

. . .
. . .

. . .

bM−1 aM



,

consider its associated eigenvalue decomposition,

JM = V LV T , L = diag(`1, . . . , `M ), V =
[
v1 v2 · · · vM

]
, (26a)

where V is unitary since JM is symmetric. The Gaussian quadrature rule can
be computed from these quantities. In particular,

yj = `j , τj = v2
j,1b

2
0, (26b)

where vj,1 is the first component of the vector vj . To compute an M -point quad-
rature rule for W thus requires a size-M eigenvalue computation. Since W is a

probability density function, then likewise
∑M
j=1 τj = 1, and furthermore each τj is

non-negative by (26).
The cost of computing the above M -point quadrature rule is dominated by the

cost of computing the spectrum of symmetric tridiagonal matrix. For computing
only the eigenvalues, many algorithms can compute this with O(M2) cost [36].
Computation of the weights can also be accomplished in O(M2) time by using an
explicit formula for the weights in terms of the nodes (eigenvalues of JM ). Thus,
the entire computation can be completed with O(M2) effort.

Now let M− and M+ be the number of quadrature points used to approximate the
“−” and “+” integrals in (9), respectively.1 This results in two sets of W -Gaussian
quadrature rules,

(yj,−, τj,−)
M−
j=1 , (yj,+, τj,+)

M+

j=1 .

We apply these rules to the integrals in (25), resulting in the fully discrete approx-
imation,

uN (s) :=
∑

σ∈{+,−}
β0(sσ)

Mσ∑

j=1

wNσ

(
yj,σ
sσ

)
W (y), uN (s) :=

N∑

j=1

uNj (s)ψj ∈ V (27)

We emphasize that the y-discretization does not suffer from any numerical instabili-
ties as s ↑ 1 or s ↓ 0: the weights τj,± are positive, no larger than 1, and independent
of s, β0(1− s) and β0(s) are just sinc functions, and w±(y) has bounded L2 norm
for all y ≥ 0, i.e., for all inputs. The following codifies this stability.

Proposition 3. Assume f ∈ L2(Ω). Then

sup
s∈(0,1)

‖uN (s)‖ ≤ 4C̃2
Ω

π
‖f‖, (28)

Proof. The proof is very similar to the proof for proposition (1). Take the ‖ · ‖M
norm on both sides of (27), use the triangle inequality and (23), and note that the
quadrature weights τj,± all satisfy 0 ≤ τj,± ≤ 1 since they are all positive and W is

1We describe in section 6 how these values are chosen.
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a probability density. Note that (28) holds for any quadrature rule for the y variable
if augmented by a multiplicative constant equal to the quadrature condition number
(sum of absolute value of weights).

Just as in [11], assuming we have the ability to compute wN± , then the formulation

above immediately yields an algorithm to compute uN (s) via (27).

Remark 1. All of our results extend to the case when we solve (5) but replacing
−∆ with a general elliptic operator E that (i) satisfies the coercivity condition
〈Ev, v〉 ≥ α‖v‖H1

0
for α > 0 and (ii) can be associated with a symmetric variational

bilinear form. In this more general case, we need only replace all the instances of C̃2
Ω

with C̃2
Ω/α. The matrix S should likewise be replaced with the associated matrix

defined from the bilinear form of E .

3.4. Algorithm summary. The sections above identify an algorithm for comput-
ing uN (s) in (27). We summarize the procedure in Algorithm 1. The discrete
solution adheres to the stability bound in Proposition 3. Note that we have not yet
described how one should decide on values for M±. We provide a concrete compu-
tational strategy for accomplishing this in the next section. However, one of our
goals in our numerical results section is to compare our algorithm to existing ones,
which determine M± using (48).

Algorithm 1 GQ algorithm: Produces solution to the fractional Laplace problem
(5).

Precondition: Availability of a discrete solution wN (α, β) from the formulation
(16).

1: function FracLapGQ(s)
2: Determine M±, e.g., via (48).

3: Generate quadrature rules (yj,±, τj,±)
M±
j=1 using (26).

4: for j ← 1 to M− do

5: Compute wN−
(
yj,−
1−s

)
= wN

(
1, exp

(
−yj,−1−s

))
from (22) or (18).

6: for j ← 1 to M+ do
7: Compute wN+

(yj,+
s

)
= wN

(
exp

(
−yj,+s

)
, 1
)

from (22) or (18).

8: Compute uN (s) from (27).
9: return uN (s)

4. Error due to quadrature discretization. The formulation (27) is our numer-
ical approximation to compute solutions to (5). This formulation is a discretization
over both the x and y variables (via a finite element formulation and a quadrature
rule, respectively). To understand the error that the y discretization contributes,
we analyze the discrepancy between ũN (s) and uN (s).

To proceed, we need an auxiliary function that measures the absolute error be-

tween a size-M quadrature rule (yj , τj)
M
j=1 and the exact integral applied to a par-

ticular function:

gM (a, b) :=

∣∣∣∣∣∣

∫ ∞

0

W (y)

1 + ae−by
dy −

M∑

j=1

τj
1 + ae−byj

∣∣∣∣∣∣
, (a, b) ∈ (0,∞)× (1,∞). (29)
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We also need to define intervals on the real line enclosing the spectrum of some
discretized operators. Recalling the definitions of CN and KN in (19) and (21),
respectively, define intervals I and I± as

I− =
[
K2
N , C

2
N
]
⊂ (0,∞), I+ =

[
1

C2
N
,

1

K2
N

]
⊂ (0,∞), I = I−

⋃
I+

The error committed by the quadrature rule can be understood by studying the
quantity,

G±(M, s) := β0 (s±) sup
a∈I±

gM

(
a,

1

s±

)
. (30)

The precise statement is as follows.

Proposition 4. Assume f ∈ L2. Then for each s ∈ (0, 1),

∥∥uN (s)− ũN (s)
∥∥ ≤ C̃2

Ω‖f‖
∑

σ∈{+,−}
Gσ (Mσ, s) (31)

and therefore,

sup
s∈(0,1)

∥∥uN (s)− ũN (s)
∥∥ ≤ 4C̃2

Ω‖f‖
π

max
σ∈{+,−}

sup
a∈Iσ,b∈(1,∞)

gMσ
(a, b). (32)

Proof. The same argument that produces the relations (24) implies that

∥∥uN (s)− ũN (s)
∥∥
L2 =

∥∥∥uN (s)− ũN (s)
∥∥∥
M
,

so we proceed to study the quantity on the right-hand side. The difference between

the “−” integral contributions in uN (s)− ũN (s) is proportional to

∫ ∞

0

wN−

(
y

s−

)
W (y)dy −

M−∑

j=1

wN−

(
yj,−
s−

)
τj,−.

We can express the solution wN− (y) as

wN− (y) =
[
S + e−y/s−M

]−1

f = M−1/2
[
A + e−y/s−I

]−1

M−1/2f ,

where we have defined A := M−1/2SM−1/2. The matrix A is symmetric and
positive definite, and thus has an eigenvalue decomposition

A = WTW T , WW T = I, T = diag(t1, . . . , tN ).

Then further manipulation of the wN− (y) expression yields

wN− (y) = M−1/2WH

(
y

s−

)
W TM−1/2f ,

where H(y) is a diagonal matrix having entries

(H(y))j,j =
1

tj + e−y
=

1

tj

[
1 +

1

tj
e−y
]−1

.
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Thus,

∥∥∥∥
∫ ∞

0

wN−

(
y

s−

)
dy −

M−∑

j=1

wN−

(
yj,−
s−

)
τj,−

∥∥∥∥
M

≤

∥∥∥∥∥∥
W



∫ ∞

0

H(y/s−)W (y)dy −
M−∑

j=1

τj,−H

(
yj,−
s−

)
W T

∥∥∥∥∥∥

∥∥∥M−1/2f
∥∥∥

=

∥∥∥∥∥∥



∫ ∞

0

H(y/s−)W (y)dy −
M−∑

j=1

τj,−H

(
yj,−
s−

)

∥∥∥∥∥∥
‖f‖M−1

(24)

≤

∥∥∥∥∥∥



∫ ∞

0

H(y/s−)W (y)dy −
M−∑

j=1

τj,−H

(
yj,−
s−

)

∥∥∥∥∥∥
‖f‖L2

= ‖f‖L2 max
j=1,...,N

1

tj
gM

(
1

tj
,

1

s−

)
,

The first inequality is sub-multiplicativity of the ‖ · ‖ matrix norm, and the first
equality uses the invariance of the same norm under unitary transformations. A
similar computation for the “+” quantities yields

∥∥∥∥∥∥

∫ ∞

0

wN+

(
y

s+

)
dy −

M+∑

j=1

wN+

(
yj,+
s+

)
τj,+

∥∥∥∥∥∥
M

≤ ‖f‖L2 max
j=1,...,N

g

(
tj ,

1

s+

)
.

The combination of these results implies

∥∥uN (s)− ũN (s)
∥∥
L2 ≤ β0(s−)

∥∥∥∥∥∥

∫ ∞

0

wN−

(
y

s−

)
dy −

M−∑

j=1

wN−

(
yj,−
s−

)
τj,−

∥∥∥∥∥∥
M

+ β0(s+)

∥∥∥∥∥∥

∫ ∞

0

wN−

(
y

s+

)
dy −

M+∑

j=1

wN+

(
yj,+
s+

)
τj,+

∥∥∥∥∥∥
M

≤ ‖f‖L2

λmin (S,M)
sup
a∈I−

gM−

(
a,

1

s−

)
+ ‖f‖L2 sup

a∈I+
gM+

(
a,

1

s+

)
.

Using the inequality (20) yields the result.

The summation on the right-hand side of (31) can be computed independent of
the data f , and requires only knowledge of the extremal eigenvalues of the discrete
operator, cf. (19) and (21). While we cannot at present provide a theoretical
estimate of this error, we numerically investigate the behavior of this error on M±
in our numerical results section.

Remark 2. Comparing (31) with the stability bound (28) suggests that many of
the factors in (31) appear due to bounding the error relative to ‖ũN ‖L2 . Thus the
supremum over g is the factor that arises due to the quadrature error.
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Remark 3. The result (31) also shows that the error between uN (s) and ũN (s) is
stable independent of s since

gM (a, b) ≤
∣∣∣∣
∫ ∞

0

W (y)

∣∣∣∣+

∣∣∣∣∣∣

M∑

j=1

τj

∣∣∣∣∣∣
= 2,

uniformly in a, b, and M . Thus,

sup
s∈(0,1)

∥∥uN (s)− ũN (s)
∥∥
L2 ≤

8C̃2
Ω

π
‖f‖L2 .

This again suggests that, independent of all discretization parameters, our numerical
algorithm is stable. However, a rigorous convergence analysis for our quadrature
rule is not yet available.

4.1. Empirical behavior of quadrature error. The main result from Propo-
sition 4 is that the error in the fully discrete approximation (27) that is due to
the y-quadrature discretization is computable without solving any PDE’s, assum-
ing that the extremal generalized eigenvalues of (S,M), coded in the quantities
CN and KN , are known. In particular, this implies that most details of the spa-
tial discretization need not be utilized to understand the quadrature error; we only
require extremal eigenvalues of discretized operators.

We empirically investigate the accuracy of the quadrature rule in this section.
Throughout our tests, we will use the following values:

C2
N = 2⇐⇒ λmin (S,M) =

1

2
, K2

N =
1

106
⇐⇒ λmax (S,M) = 106.

Since CN is bounded above by the analytical Poincaré constant of the domain CΩ,
then choosing this O(1) quantity for CN is reasonable. The choices above make
the intervals I± defined in Proposition 4 explicit. The finite element discretization
from our numerical experiments in Section 6 results in values C2

N = 0.0506 and
K2
N = 2.36× 10−6.
We note that G± in (30) can be numerically approximated for each (M, s) by

replacing the supremum over a with the maximum over a discrete mesh. We com-
pute the supremums in G± by discretizing the intervals I± with 200 logarithmically
spaced points. (I.e., log I± is replaced with 200 equispaced points.) This discretiza-
tion then allows us to compute G±, and hence allows us to compute approximations
to the bound in (31). In Figure 1, we show the behavior of G± as a function of
(M, s). We note that ensuring small values of G+ requires more quadrature points
when s is close to 0. In contrast, controlling G− requires more quadrature points
when s is close to 1. However, the behavior of G+ for small s+ = s is more restric-
tive than the behavior of G− for small s− = 1 − s. Thus, we expect that G+ is
the term that requires more computational investment to guarantee a certain error
level.
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Figure 1. Values of log10G± defined in (30) as a function of (M, s). We
show s-dependence as log10(1/s) since the error behavior for small s is the

most restrictive. We observe that, for fixed M , G± has large values when s±
is small.

To explore this further, we define the smallest value2 of M needed to assure a
given error level δ:

M̃(δ, s) := M̃− (δ, s) + M̃+ (δ, s) , (33)

M̃± (δ, s) := min

{
M ∈ N

∣∣ G± (M, s) ≤ δ

2

}
. (34)

For δ = 10−2, 10−4, and 10−6, we display the values of these M̃ quantities in Figure

2. We see that for small values of s, the requisite number of points M̃ scales like

1/s. In particular, for small s, more effort (quadrature points) is allocated to M̃+,

but for small 1 − s, comparatively more effort is allocated to M̃−. Therefore, the

0 1 2 3
log10(1/s)

101

102

103

M̃

Tolerance δ = 10−2

M̃−

M̃+

M̃

M ∝ 1/s reference

0 1 2 3
log10(1/s)

101

102

103

M̃

Tolerance δ = 10−4

M̃−

M̃+

M̃

M ∝ 1/s reference

0 1 2 3
log10(1/s)

101

102

103

M̃

Tolerance δ = 10−6

M̃−

M̃+

M̃

M ∝ 1/s reference

Figure 2. Values of M̃ and M̃± defined in (33) for various values of the
tolerance δ. We show s-dependence as log10(1/s) since the error behavior for
small s is most restrictive. For visual reference, a 1/s curve is also plotted. We

see that for small values of s±, the corresponding value of M̃± is large.

number of quadrature queries M− + M+ in the fully discrete scheme (27) can be

2To avoid computational effects of oscillating errors due to, e.g., even/odd parity of the quadra-
ture rule, we actually compute the smallest value of M so that M , M+1, M+2, and (M+3)-point

quadrature rules all achieve the stated accuracy requirement.
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quite large when the fractional order s is very small. This general observation,
including the 1/s-type behavior shown in Figure 2, is consistent with earlier work
[6]. Thus, the number of local PDE solutions M = M−+M+ needed to compute an
accurate solution is large. This motivates a need to make these solves more efficient;
we achieve this in the next section via model reduction.

5. Model reduction for the integral formulation. This section proposes an
augmentation of the algorithm in the previous section. The cost of computing the
fully discrete solution (27) is essentially M− +M+ queries of finite element solvers
for wN± . In practice one can require M−+M+ ∼ 100, cf. Figure 2 and earlier work

[11, 42], resulting in a substantial computational cost if the cost of computing wN±
is high.

We observe that the formulations (8) for w± (and also (22) for the discrete
counterparts wN± ) are quintessential examples of parameterized PDE’s where RBM
algorithms are used to accelerate solution queries. Thus, RBM can be used to
ameliorate the cost of performing M− + M+ queries of these PDE’s. In RBM
terminology, an available expensive discrete solution is called a truth solution. Thus,
our truth solutions for the auxiliary PDE problem for w± are wN± defined in (22).
The associated truth solution for u(s) is (27). The purpose of RBM procedures is
to diminish the cost of evaluating the truth solution.

5.1. Reduced basis methods. Let L be a (local) differential operator, and con-
sider the following PDE parameterized by a Euclidean parameter y ∈ D ⊂ Rp:

L(w;x; y) = f(x; y), (x, y) ∈ Ω×D ⊂ Rd ×Rp, (35)

where x is the spatial variable and y is a parameter. The operator L is differential
in the x variable. For example, the PDE defining w(y) from (7) can be written as
(35) with the operator,

L = −α∆ + βI, p = 2, y = (α, β) ∈ D = (0, 1]2. (36)

We assume that (35) is well-posed for each y ∈ D. For a fixed y, one usually
develops an x-discretization with N � 1 degrees of freedom yielding a solution wN

with membership in an N -dimensional subspace. For us, this is the discretization
defined in section 3.2. We assume that N is large enough so that

sup
y∈D
‖wN (y)− w(y)‖L2 ≤ ε,

where ε is a user-prescribed tolerance. Thus, the map y 7→ wN (y) ≈ w(y) requires
algorithms whose complexity is dependent on N .3 Such an algorithm that performs
the operation y 7→ wN (y) is called a truth approximation or solver.

The reduced basis method (RBM) is a thematic collection of model reduction
strategies for parameterized PDEs that compute an emulator y 7→ wN (y) ≈ wN (y),
whose complexity behaves like O(N3) or O(N2), where N � N . For N/N suffi-
ciently small, this can result in an emulator wN whose evaluation is substantially
cheaper than the truth approximation wN . The RBM emulator takes the form,

wN (y) :=
N∑

k=1

cN,k(y)φk, φk ∈ VN := span
{
wN (y1), . . . , wN (yN )

}
⊂ V, (37)

3For linear elliptic operators L, this complexity can in principle scale like O (N logN ), but
frequently is O(N 2), or even O(N 3) depending on the details of the employed numerical solver.
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where {yk}Nk=1 are particular parameter values that are chosen during the RBM
construction procedure. The success of RBM algorithms rely on three main com-
ponents:

• The condition that the manifold of solutions,

W (D) :=
{
w(y)

∣∣ y ∈ D
}
⊂ L2(Ω),

is “low rank”. The mathematically precise statement of this is that the Kol-
mogorov N -width of the manifold,

dN (W ) := inf
V⊂L2

dimV=N

sup
y∈D

inf
v∈V
‖w(y)− v‖L2(Ω) ,

decays quickly with N . “Quickly” ideally means exponentially, but high alge-
braic rates of decay are also suitable. This condition ensures an RBM emulator
wN can achieve L2-proximity to the truth approximation wN when N/N is
very small. We provide empirical evidence in this paper that this condition is
true. Note that for our particular problem (36), exponential decay of the N
width is known if we can assume that α is bounded away from 0 [17]. However
Kato’s formula requires α to take values arbitrarily close to 0. In a follow-up
paper in preparation, we present N width estimates uniformly for α ∈ (0, 1]
[3].
• The condition that the truth approximation wN (y) comes with a practically

computable a posteriori error estimate ∆(y), satisfying,

∆(y) & ‖w(y)− wN (y)‖L2 .

This usually comes in the form of a posteriori finite element estimates, and in
practice in the algorithm are actually used to measure ‖wN (y)−wN (y)‖. This
condition ensures that the parameter values {yn}Nn=1 in (37) can be chosen in
a computationally tractable manner. In our case the PDE’s we consider are
linear so that efficient residual-based error indicators ∆ can be derived.
• The condition that the operator L and right-hand side f have affine depen-

dence on the parameter y. This means that one has the expressions,

L =

QL∑

q=1

γq(y)Lq, f(x; y) =

Qf∑

q=1

σq(y)fq(x),

where we have introduced (i) y-independent differential operators Lq, (ii) y-
independent functions fq(x), (iii) x-independent functions γq(y), and (iv) x-
independent functions σq(y). More precisely, one requires the weak (varia-
tional) form of L to have such a decomposition. This condition is needed so
that evaluation of the RBM emulator map y 7→ uN (y) can be accomplished
using operations that are independent of the truth approximation discretiza-
tion parameter N . We will briefly justify this for our situation in the next
section.

Our next goal is to apply the RBM algorithm to the truth discretizations of w±(y)
that define the fractional solution u(s). We discuss this in the next section.

5.2. RBM formulation. We describe here the RBM procedure for approximating
wN− via a reduced basis emulator; the procedure for wN+ is nearly identical. We

recall the discrete truth approximation formulation that defines wN− :
(
S + e−yM

)
wN− (y) = f , (38)
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where S, M , and f are defined in (18). Detailed exposition of application of the
RBM algorithm to this parameterized PDE (and to much more general cases) can
already be found in existing textbook literature [37, 26, 39]. Here we give a only
brief synopsis of the major steps in the algorithm for completeness, but refer to
the previously-mentioned references for details and motivating explanation of the
algorithm. In particular, in what follows we describe the algorithm using vectors
and matrices instead of more common functional-analytic mathematical statements;
this choice is made for simplicity of exposition since the algorithm itself is not new
and we instead focus on the application of the algorithm.

As indicated by relation (37), an RBM algorithm produces an emulator wn,−
given by

wn,−(y) =
n∑

k=1

cn,k(y)wN− (yk), cn = (cn,1, . . . , cn,n)
T
, (39)

where we have made a particular choice of the basis φk appearing in (37).4 Also,
since the RBM procedure builds wN sequentially by first building w1, w2, . . . , we
label the RBM dimension as n, satisfying 1 ≤ n ≤ N , in this section. We must
specify the parameter values {yk}nk=1 and the coefficients {cn,k}nk=1, which is the
focus of the following discussion.

5.3. Computing the cn,k. We assume that y1, . . . , yn have been chosen and are
known, and now seek to define the coefficients {cn,k}nk=1, equivalently the vector
cn, whose computation allow evaluation of y 7→ wn(y). To proceed we define a new
matrix U ∈ RN×n, having entries

Un,− =
[
wN (y1) wN (y2) · · · wN (yn)

]
, (Un,−)j,k = wNj (yk),

where the vector wN and its entries wNj are expansion coefficients for the truth
approximation solution, see (17).

Then for each y, the coefficients cn,k of the RBM solution are defined by seeking
the vector cn(y) ∈ Rn satisfying

UT
(
S + e−yM

)
Ucn(y) = UTf . (40)

Assuming U has linearly independent columns (which is assured by the choice of
yk discussed in the next section), then this uniquely defines cn(y) for each y, and
prescribes the RBM solution wn via (39). One final point of interest is that our
truth variational form (38) exhibits affine dependence on the parameter y, making
it possible to compute cn very efficiently. We may rearrange computations in (40)
so that

(
B + e−yC

)
c(y) = g,

where

B := UTSU ∈ Rn×n, C := UTMU ∈ Rn×n, g := UTf ∈ Rn,
so that the quantities B, C, and g, once computed, are all independent of both
the truth discretization dimension N and the parameter y. Thus, for each y, the
coefficients cn (i.e., the RBM solution wn) can be computed with complexity that
depends only on n and not on N . Since in practice n � N this can result in

4The parameter values yk and coefficients cn,k should be labeled yk,− and cn,k,−, respectively,

to differentiate them from the analogous quantities resulting from applying RBM to wN+ . However,

we omit this notational dependence for more clarity in exposition.
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computational savings, especially if we wish to query y 7→ wn−(y) numerous times.
This is one of the major attractions of model reduction with RBM.

5.4. Choosing yk. The ingredient we are left to provide to complete our descrip-
tion of the RBM algorithm is the choice of parameter values yk in (39). Given an
RBM approximation wn, we focus on the choice of yn+1. We accomplish this via
the standard greedy procedure in RBM algorithms. Ideally, this choice is given by

yn+1 = argmax
y≥0

∥∥wN (y)− wn(y)
∥∥ . (41)

Unfortunately, this explicit form requires computing the full solution wN (y) at all
parameter values y, which RBM seeks to avoid. To circumvent this restriction,
the standard strategy is to resort to residual-based error indicators. The following
lemma identifies one such computable residual-based error indicator ∆n(y).

Lemma 5.1. Define the residual vector rn(y) ∈ RN as

rn,−(y) := f −
(
S + e−yM

)
Un,−cn,−(y),

rn,+(y) := f −
(
Se−y + M

)
Un,+cn,−(y),

(42)

and the indicator

∆n,− (y) :=
C2
N√

λmin (M) (C2
N e
−y + 1)

‖rn(y)‖,

∆n,+ (y) :=
C2
N√

λmin (M) (e−y + C2
N )
‖rn(y)‖,

(43)

Then

∆n,±(y) ≥
∥∥wN± (y)− wn,±(y)

∥∥ (44)

Proof. We show the result for the “−” quantities; a similar proof works for the “+”
quantities. The residual rn,− satisfies

(
S + e−yM

) (
wN− (y)−wn,−(y)

)
= rn,−,

so that
∥∥wN− (y)− wn,−(y)

∥∥
L2 =

∥∥wN− (y)−wn,−(y)
∥∥
M
≤ 1

λmin(S+e−yM ,M)

∥∥∥M−1/2rn,−
∥∥∥ ,

with

λmin (S + e−yM ,M) := infv∈RN
vT (S+e−yM)v

vTMv
= e−y + infv∈RN

vTSv
vTMv

= e−y + λmin (S,M) .

To summarize, we have the estimate

∥∥wN− (y)− wn,−(y)
∥∥ ≤ 1

e−y + λmin (S,M)

∥∥∥M−1/2rn,−
∥∥∥

≤ 1√
λmin (M) (e−y + λmin (S,M))

‖rn,−‖,

which is the desired result by using the definition of CN in (19).

The residual vectors rn,± can be efficiently computed for many values of y. We
illustrate this rn,−. We have:

rn,−(y) := f −
(
S + e−yM

)
Un,−cn,−(y)

= PR(Rn)⊥f + PR(Rn)

(
f −

(
S + e−yM

)
Un,−cn,−(y)

)
, (45)
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where PR(A) : RN → R
N is the RN -orthogonal projector onto the column space

of a matrix A, and

Rn := [SUn,−, MUn,−] ∈ RN×(2n).

The orthogonal decomposition in (45) shows that the Pythagorean theorem can
be used to compute the Euclidean vector norm ‖rn,−(y)‖2 in an efficient way for
several values of y:

• ‖PR(Rn)⊥f‖2 is y-independent, so that it can be computed once and stored.

• PR(Rn) (f − (S + e−yM)Un,−cn,−(y)) is a vector in a 2n-dimensional, y-
independent vector space. Thus, the norm can be computed with only n-
dependent complexity. The fact that cn(y) appears with linear behavior in
this expression ensures that we can rearrange computations so that, for each
cn(y), the norm of this quantity can be computed using complexity that is
dependent only on n.

In summary, while the right-hand side of (44) is not efficiently computable for many
values of y, the left-hand side is efficiently computable for several values of y since
‖rn‖2 is efficient to compute, and λmin (S,M) does not depend on y and can be
computed either directly or iteratively with generalized eigenvalue solvers once and
subsequently stored.

Standard greedy algorithms for RBM methods require a computable quantity
satisfying (44), and replace the essentially un-computable maximization (41) with
the computable maximization

yn+1 = argmax
y≥0

∆n(y). (46)

The above maximization has an objective function that is efficiently computable,
and the inequality (44) ensures that the maximization (46) is a weak greedy algo-
rithm. Weak greedy algorithms in turn ensure that the set of chosen parameters
{y1, . . . , yN} defines an RBM subspace VN in (37) whose best approximation to the
truth solution wN− is comparable to the Kolmogorov N -width [8, 20].

We have completed the basic description of the RBM algorithm: the emulators
wN,±(y) are defined by computing coefficients cN,±(y) as described in the previous
section, and the parameter values yk are chosen according to (46) by computing the
estimators ∆n,±(y) for n = 1, 2, . . . ,. One usually sequentially computes yk until
supy≥0 ∆n,±(y) is smaller than some specified tolerance, so that one can rigorously
certify the error committed by the RBM emulators. This tolerance condition is
usually how the terminal RBM dimension N is computationally specified.

One final observation we make is a major theoretical result of this paper:

Theorem 5.2. Let N± denote the RBM dimensions formed for the emulators
wN±,±(y). Then

sup
s∈(0,1)

∥∥uN (s)− uN (s)
∥∥ ≤ 4

π
max

{
sup
y≥0

∆N+,+(y), sup
y≥0

∆N−,−(y)

}
. (47)
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Proof. We have

uN (s)− uN (s) = β0(s−)

N−∑

j=1

τj,−

[
wN−

(
yj,−
s−

)
− wN−,−

(
yj,−
s−

)]
+

β0(s+)

N+∑

j=1

τj,+

[
wN+

(
yj,+
s+

)
− wN+,+

(
yj,+
s+

)]
.

Taking L2 norms of both sides, and using the triangle inequality with (44) yields
the result.

We note that the quantities ∆N±,±(y) are computed during the RBM construc-
tion phase, so that these estimators are available. Therefore, (47) provides a com-
putable error bound that can be used to certify error committed by using the RBM
algorithm.

Remark 4. Just as with Remark 4, all our results above extend to a more general
elliptic operator E satisfying the assumptions outlined in Remark 4. In this case,
all of our formulas in this section carry over.

5.5. Algorithm summary. The full algorithm of this section first uses the RBM
algorithm to perform model reduction on the parameterized PDE solutions wN± (y).5

Subsequently, the efficient RBM emulators wN,±(y) are used in the GQ algorithm
from Section 3.4. We describe the full algorithm in Algorithm 2.

The algorithm we have described in this section is a skeleton version of a modern
RBM algorithm. We summarize various improvements that should be implemented
in order for an RBM algorithm to be efficient and accurate:

• One does not usually solve (46) by maximizing over the parameter continuum,
and instead maximizes over a discrete set. For bounded parameter domains,
it is common to use a uniform grid and subsequently adaptively (e.g., dyad-
ically) refine the grid to ensure that no local maxima are skipped. Over the
unbounded domain, we employ a logarithmic map; see section 6.4 for details.
• Our RBM ansatz (39) uses solution snapshots wN± (y) as basis functions. This

is known to generally lead to ill-conditioning in the formulation (40) even for
small n (since in practice the columns of Un,± are “nearly” linearly depen-
dent). A better prescription is to build the RBM basis functions by orthogo-
nalizing snapshots.
• Some naive implementations of the decomposition (45) via quadratic forms

leads to numerical roundoff error that results in stagnation of the error in-
dicators ∆n,±(y) near root-machine precision. (E.g., for double precision,
stagnation occurs when ∆n,±(y) takes values around 10−8. More careful com-
putations allow one to overcome this limitation [14, 15, 12, 16].

We again refer to [37, 26, 39] for a more complete description of important but
standard RBM algorithm details.

Finally, we note that one can combine the error estimates in (47) and (31) via
the triangle inequality to create a computable bound for ‖uN − ũN ‖. This error
would estimate the error committed by the two novel innovations of this paper: our
Gaussian quadrature approach and the model reduction procedure.

5In the previous sections we have describe this process only for wN− , but the process for wN+
results in almost the same procedure with only minor differences stemming from the location of
the e−y factor.
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Algorithm 2 RBM algorithm: Produces solution to the fractional Laplace problem
(5). The function OfflineFracLapRBM needs to be completed only once and
has complexity dependent on N = dimV . Afterwards, OnlineFracLapRBM can
be called for arbitrary values of s ∈ (0, 1) with a computational cost dependent only
on dimVN = N � N .

Precondition: Availability of a discrete solution wN (α, β) from the formulation
(16).

1: function OfflineFracLapRBM
2: n← 1. Randomly choose y1, compute and store wN− (y1).
3: Assemble RBM emulator w1(·).
4: for n← 2 to N− do
5: Compute yn from (46).
6: Compute and store wN− (yn).
7: Assemble RBM emulator wn(·).
8: Repeat above computations to assemble wN+,+(·)
9: return RBM emulators wN±,±(·)

Precondition: Availability of RBM emulators wN±,±(·).
10: function OnlineFracLapRBM(s)
11: Call FracLapGQ(s), Algorithm 1, replacing wN± (·) with RBM emulators

wN±,±(·).
12: return uN (s).

6. Numerical examples. In these experiments, we compare the effectiveness of
our improvements to current methods. We first describe the setup of the test
problems that we consider in our simulations. We solve (5) on Ω = [0, 1]2 with
homogeneous Dirichlet boundary conditions. We test a total of 3 algorithms:

• “SQ” — The sinc quadrature approach from [11].
• “GQ” — Algorithm 1 detailed in section 3, utilizing a modified version of the

integral formulation in [11] along with Gaussian quadrature.
• “RBM” — The approach detailed in section 5.5, leveraging the reduced basis

method to accelerate the GQ algorithm.

To compare the three methods, we will use the same number of y-quadrature
points M = M−+M+ in each approach. This number represents the total number
of local PDE solves needed to compute an approximation to u(s). In particular, we
make the choices given in [11, 6], which depend on the spatial mesh and fractional
order:

M+ =

⌈
π2

4sr2

⌉
, M− =

⌈
π2

4(1− s)r2

⌉
, r =

1

log(
√
N )

(48)

The finite element discretization is accomplished with linear quadrilateral finite
elements on a Cartesian tessellation of Ω. The one-dimensional grids that define
this Cartesian tessellation are isotropic with respect to the two dimensions, and are
defined as equidistant meshes with 2K points. We will use various values of K.

6.1. Manufactured Solutions on [0, 1]2. Consider the physical domain Ω =
[0, 1]2. In this case, an explicit family of eigenfunctions for the Laplacian with



26 H. DINH, H. ANTIL, Y. CHEN, E. CHERKAEV AND A. NARAYAN

homogeneous Dirichlet boundary conditions is available:

φn,m(x) = sin(nπx1) sin(mπx2), n,m ∈ N, x = (x1, x2) ∈ Ω,

which satisfy

−∆φn,m(x) = λn,mφn,m(x), λn,m = π2(n2 +m2).

With this in hand, and using the inverse of the relation (4), we can easily con-
struct explicit solutions for testing using eigenfunction expansions. We explore the
effectiveness of our algorithms through three manufactured solutions:

• “Sine” — The function u and data f are, in this case,

u(x) =
1

(2π2)s
sin(πx1) sin(πx2), f(x) = sin(πx1) sin(πx2)

• “Mixed modes” — The function u and data f are, in this case,

u(x) =
1

(116π2)s
sin(4πx1) sin(10πx2), f(x) = sin(4πx1) sin(10πx2)

• “Square bump” — The data f is the indicator function

f(x) = 1[0.25,0.75]2(x).

While an analytical solution is available as an infinite sum of eigenfunctions,
we instead numerically compute a solution on a grid formed by 29 + 1 equally
spaced nodes in both directions and consider this the “exact” solution. In
comparison, the finest mesh used to evaluate the accuracy of our solver has
26 + 1 nodes in both directions.

6.2. Spatial convergence. Our first test verifies that we recover spatial conver-
gence in terms of the finite element mesh size. Since we are primarily interested in
accuracy and not efficiency, this section compares the SQ and GQ methods, with
the results summarized in Figure 3.

We can see that the proposed GQ algorithm performs slightly better than the
existing SQ algorithm for the same number of quadrature points M . We also remark
that the GQ implementation allows us to generate solutions for small fractional
parameters with less numerical difficulty. With the SQ approach, the difficulty
arises when application of the quadrature rule results in large values of a term
involving ey appearing in operators that must be inverted.

6.3. Quadrature rule efficiency. In this section we compute errors committed
by the GQ and SQ algorithms for different values of the quadrature rule size M .
The purpose of this test is to understand the efficiency of the quadrature rule, i.e.,
the number of solutions of wN± required. Figure 4 illustrates errors for the three
test cases as a function of the total number of quadrature nodes. The test in this
section does not fix M± as given by (48). Instead, given a number of quadrature
points M (the abscissa in Figure 4), we generate M -point quadrature rules for the
Gaussian quadrature and sinc approaches. Thus, the quadrature rule for each M is
generated anew.

The results indicate that the GQ algorithm converges faster than the SQ with
respect to the number of PDE solves. This shows that the GQ algorithm appears to
be far more efficient than sinc quadrature for computing solutions to these fractional
problems.
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Figure 3. Convergence of SQ (solid blue) and GQ methods (red dashed) as

the spatial mesh is refined. Each used a dyadic mesh along the spatial variable

with increasing resolution. A parameter value of s = 0.2 was used and similar
results were seen for value of s between 0.1 and 0.9. We used the number of

quadrature points for the integral suggested by current methods [6].

Figure 4. Accuracy comparison of the SQ (red, dotted and dashed) and GQ

methods (blue, dashed), with fractional order s = 0.2 (top plots) and s = 0.5

(bottom plots). Similar results where observed for value of s between 0.1 and
0.9.
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6.4. RBM offline efficiency. This section investigates the RBM algorithm. For
now, we restrict our attention to one-time queries of u(s), i.e., to situations when,
given Ω, f , and s, we seek to compute only u(s) for this given s. For the GQ
algorithm this involves a single run of the routine FracLapGQ in Algorithm 1.
For the RBM algorithm, this entails a single run of the OfflineFracLapRBM
routine in Algorithm 2, followed by a single run of OnlineFracLapRB routine.

For the RBM algorithm, we solve (46) by discretizing the y ∈ [0,∞) domain in
a uniform way under a logarithmic map. Precisely: we set z = e−y for y ∈ [0,∞)
and proceed to discretize z ∈ (0, 1]. We take 128 equispaced points in the z variable
and map back to y-space with z 7→ − log z = y. We subsequently perform a discrete
maximization over this set instead of the continuous optimization (46).

In figure 5 we compare the GQ algorithm to the accelerated RBM algorithm,
including the offline construction time. We see that the initial investment of the
RBM algorithm in the offline phase is substantial, accumulating to the time required
for the direct GQ method with 150-200 quadrature points. However, we see that
after this initial offline investment, subsequent evaluations of the RBM surrogate
are extremely efficient, so that the effort required to evaluate M � 1 quadrature
point is essentially the same as that required to evaluate at a single quadrature
point.

Figure 5. “Offline” (i.e., one-time) computational investment for a single
solve of (5) with a fixed value of s = 0.2. These experiments compare both

the direct (dotted and dashed) and reduced basis methods (solid) using the

gaussian quadrature. Each used a dyadic mesh with 7 levels. Similar results
where seen for value of s between 0.1 and 0.9.

6.5. RBM accuracy. We now investigate the accuracy delivered by the RBM
algorithm in the construction of reduced order models for wN± . Our rigorous error
certificate for u(s) using the reduced order model is (47), but we here consider a
finer estimate using the proof of Theorem 5.2. We define the error estimator,

∆N (s) :=
∑

σ∈{+,−}
β0(sσ)

Mσ∑

j=1

∆N,σ(sj,σ)τj,σ,

where ∆N,± are the computable error indicators defined in (43), and we again choose
M± as in (48). One can see from the proof of Theorem 5.2 that this quantity bounds
the error committed by the RBM procedure. We plot ∆N in Figure 6 as a function
of N , and observe that it decays exponentially.

Finally, we remark that ∆N only certifies the error committed by the model
reduction RBM algorithm; the error committed by the y-quadrature rule is not
certified by this quantity.
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Figure 6. Error indicators ∆N (s) as a function of N , for s = 0.2, 0.5, 0.8.

6.6. RBM accuracy and efficiency. Finally, we explore the accuracy afforded
by the RBM procedure for computing s 7→ u(s), and also verify the computational
efficiency of the procedure. In Figure 7 left and center, we demonstrate that the
error committed by the RBM algorithm is stable, even for relatively small values
of the parameter 0.01 < s < 0.1. Furthermore, the right pane of this figure demon-
strates that if we wish to repeatedly query the map s 7→ u(s) for several values of
s, the RBM algorithm is undeniably more efficient by an order of magnitude even
for just one query, and by three orders of magnitude if 1000 queries are needed.
This is an especially salient point for optimization or control applications involving
forward models with fractional PDEs of varying fractional order s, where repeated
evaluation of such PDE solutions is needed.

Figure 7. Accuracy of the RBM algorithm over a range of values of s (left

and center). The Sine example is plotted in a red dot-dashed, the Mixed
Modes in a blue solid line, and the Square Bump case in black crosses. In
the right pane we show the cumulative computational time required by the

GQ algorithm (blue) versus the RBM algorithm (red). Each query refers to an

evaluation of the map s 7→ u(s). In particular this cumulative time for the RBM
solver includes the one-time offline cost required by OfflineFracLapRBM in

Algorithm 2.

7. Conclusion. We propose a novel model reduction strategy for computing solu-
tions to fractional Laplace PDE’s, in particular (5). Our algorithm builds on the
ideas introduced in [11], improving accuracy and stability, and accelerating that
algorithm considerably. Our model reduction strategy hinges on the fact that the
solution to the fractional problem can be written in terms of classical, local elliptic
PDE’s, for which RBM-based model reduction is known to be efficient.

We provide novel stability bounds for both the continuous and discrete problems,
and our numerical experiments suggest that our Gaussian quadrature approach is
more efficient than alternative quadrature methods. All of our algorithmic and
theoretical results apply to solutions to differential equations involving fractional
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powers of general elliptic operators. A rigorous proof of the convergence for our
quadrature rule is the subject of ongoing study.
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[31] M. Kwaśnicki, Ten equivalent definitions of the fractional laplace operator, Fract. Calc. Appl.

Anal., 20 (2017), 7–51.

[32] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications.
Vol. 1, Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York-

Heidelberg, 1972. https://www.springer.com/gp/book/9783642651632
[33] D. Meidner, J. Pfefferer, K. Schürholz and B. Vexler, $hp$-finite elements for fractional

diffusion, SIAM J. Numer. Anal., 56 (2018), 2345–2374.

[34] S. Molchanov and E. Ostrovskii, Symmetric stable processes as traces of degenerate diffusion
processes, Theory of Probability & Its Applications, 14 (1969), 127–130. https://epubs.

siam.org/doi/abs/10.1137/1114012

[35] R. H. Nochetto, E. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in
general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733–791.

[36] B. N. Parlett, The Symmetric Eigenvalue Problem , Classics in Applied Mathematics, vol. 20,

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
[37] A. T. Patera and G. Rozza, Reduced basis approximation and a posteriori error estimation

for parametrized partial differential equations, MIT Press, 2007.
[38] P. Perdikaris and G. E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood

flow models, Annals of Biomedical Engineering , 42 (2014), 1012–1023.

[39] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential

Equations, UNITEXT, vol. 92, La Matematica per il 3+2. Springer, Cham, 2016.
[40] F. Song, C. Xu and G. E. Karniadakis, Computing fractional Laplacians on complex-geometry

domains: Algorithms and simulations, SIAM J. Sci. Comput., 39 (2017), A1320–A1344.
[41] P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional

operators, Comm. Partial Differential Equations , 35 (2010), 2092–2122.

[42] C. J. Weiss, B. G. van Bloemen Waanders and H. Antil, Fractional operators applied to
geophysical electromagnetics, Geophysical Journal International , 220 (2020), 1242–1259.

[43] C. J. Weiss, B. G. v. B. Waanders and H. Antil, Fractional Operators Applied to Geophysical

Electromagnetics, preprint, arXiv:1902.05096.
[44] D. R. Witman, M. Gunzburger and J. Peterson, Reduced-order modeling for nonlocal diffusion

problems, Internat. J. Numer. Methods Fluids , 83 (2017), 307–327.

http://arxiv.org/pdf/2005.03574
http://www.ams.org/mathscinet-getitem?mr=MR3054611&return=pdf
http://dx.doi.org/10.1007/s00365-013-9186-2
http://dx.doi.org/10.1007/s00365-013-9186-2
http://www.ams.org/mathscinet-getitem?mr=MR2944369&return=pdf
http://dx.doi.org/10.1016/j.bulsci.2011.12.004
http://dx.doi.org/10.1016/j.bulsci.2011.12.004
http://arxiv.org/pdf/1809.07936
http://www.ams.org/mathscinet-getitem?mr=MR2788354&return=pdf
http://dx.doi.org/10.1007/s11854-011-0002-2
http://dx.doi.org/10.1007/s11854-011-0002-2
http://www.ams.org/mathscinet-getitem?mr=MR3503820&return=pdf
http://dx.doi.org/10.1002/mana.201500041
http://www.ams.org/mathscinet-getitem?mr=MR3612777&return=pdf
http://dx.doi.org/10.1016/j.cma.2016.12.019
http://dx.doi.org/10.1016/j.cma.2016.12.019
http://www.ams.org/mathscinet-getitem?mr=MR3408061&return=pdf
http://dx.doi.org/10.1007/978-3-319-22470-1
http://dx.doi.org/10.1007/978-3-319-22470-1
http://www.ams.org/mathscinet-getitem?mr=MR2252038&return=pdf
https://eudml.org/doc/11303
https://eudml.org/doc/11303
http://www.ams.org/mathscinet-getitem?mr=MR2300467&return=pdf
http://www.diogenes.bg/fcaa/
http://www.ams.org/mathscinet-getitem?mr=MR121666&return=pdf
http://dx.doi.org/10.3792/pja/1195524082
http://dx.doi.org/10.1016/j.jaubas.2014.01.001
http://dx.doi.org/10.1016/j.jaubas.2014.01.001
http://www.ams.org/mathscinet-getitem?mr=MR3613319&return=pdf
http://dx.doi.org/10.1515/fca-2017-0002
http://www.ams.org/mathscinet-getitem?mr=MR0350177&return=pdf
https://www.springer.com/gp/book/9783642651632
http://www.ams.org/mathscinet-getitem?mr=MR3835594&return=pdf
http://dx.doi.org/10.1137/17M1135517
http://dx.doi.org/10.1137/17M1135517
http://www.ams.org/mathscinet-getitem?mr=MR0247668&return=pdf
https://epubs.siam.org/doi/abs/10.1137/1114012
https://epubs.siam.org/doi/abs/10.1137/1114012
http://www.ams.org/mathscinet-getitem?mr=MR3348172&return=pdf
http://dx.doi.org/10.1007/s10208-014-9208-x
http://dx.doi.org/10.1007/s10208-014-9208-x
http://www.ams.org/mathscinet-getitem?mr=MR1490034&return=pdf
http://dx.doi.org/10.1137/1.9781611971163
http://dx.doi.org/10.1007/s10439-014-0970-3
http://dx.doi.org/10.1007/s10439-014-0970-3
http://www.ams.org/mathscinet-getitem?mr=MR3379913&return=pdf
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1007/978-3-319-15431-2
http://www.ams.org/mathscinet-getitem?mr=MR3679919&return=pdf
http://dx.doi.org/10.1137/16M1078197
http://dx.doi.org/10.1137/16M1078197
http://www.ams.org/mathscinet-getitem?mr=MR2754080&return=pdf
http://dx.doi.org/10.1080/03605301003735680
http://dx.doi.org/10.1080/03605301003735680
http://dx.doi.org/10.1093/gji/ggz516
http://dx.doi.org/10.1093/gji/ggz516
http://arxiv.org/pdf/1902.05096
http://www.ams.org/mathscinet-getitem?mr=MR3591014&return=pdf
http://dx.doi.org/10.1002/fld.4269
http://dx.doi.org/10.1002/fld.4269


32 H. DINH, H. ANTIL, Y. CHEN, E. CHERKAEV AND A. NARAYAN
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