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Abstract

The need for multiple interactive, real-time simulations using different parameter
values has driven the design of fast numerical algorithms with certifiable accuracies.
The reduced basis method (RBM) presents itself as such an option. RBM features
a mathematically rigorous error estimator which drives the construction of a low-
dimensional subspace. A surrogate solution is then sought in this low-dimensional
space approximating the parameter-induced high fidelity solution manifold. However
when the system is nonlinear or its parameter dependence nonaffine, this efficiency
gain degrades tremendously, an inherent drawback of the application of the empirical
interpolation method (EIM).

In this paper, we augment and extend the EIM approach as a direct solver, as
opposed to an assistant, for solving nonlinear partial differential equations on the re-
duced level. The resulting method, called Reduced Over-Collocation method (ROC),
is stable and capable of avoiding the efficiency degradation. Two critical ingredients
of the scheme are collocation at about twice as many locations as the number of basis
elements for the reduced approximation space, and an efficient error indicator for the
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strategic building of the reduced solution space. The latter, the main contribution of
this paper, results from an adaptive hyper reduction of the residuals for the reduced
solution. Together, these two ingredients render the proposed R2-ROC scheme both
offline- and online-efficient. A distinctive feature is that the efficiency degradation ap-
pearing in traditional RBM approaches that utilize EIM for nonlinear and nonaffine
problems is circumvented, both in the offline and online stages. Numerical tests on
different families of time-dependent and steady-state nonlinear problems demonstrate
the high efficiency and accuracy of our R2-ROC and its superior stability performance.

1 Introduction

The need for highly efficient simulations of parametrized systems, often governed by para-
metric Partial Differential Equations (pPDEs), is increasing in many areas of scientific and
engineering applications. In particular, the need for multiple interactive, real-time simu-
lations using different parameter values has driven the design of fast numerical algorithms
with certifiable accuracies. The parameters involved may have a wide variety of physical
meanings, including boundary conditions, material properties, geometric settings, source
properties etc. Moreover, the parameter dimensionality of the system may be high, the de-
pendence of the system on the parameters may be complicated, the underlying systems may
be nonlinear and their dependence on the parameters may be nonaffine.

To satisfy the need for fast numerical algorithms with certifiable accuracies that can
be used to efficiently compute multi-parametric systems, the reduced basis method (RBM)
[46, 32] was developed and proven effective. The RBM was introduced in the 1970s in the
context of a nonlinear structure problem [1, 43]. It has since been used in a wide variety of
problems, including linear evolution equations [30], viscous Burgers equation [51], the Navier-
Stokes equations [19], and harmonic Maxwell’s equation [15, 16], among many others. The
success of RB methods depends on an offline-online decomposition process, where the costly
process of basis selection and surrogate space construction are performed offline by a greedy
algorithm, and an efficient online reconstruction using the reduced basis then provides orders-
of-magnitude efficiency gain. The RBM is constructed so that the computational complexity
of the online reduced solver is independent of the number of degrees of freedom of the high-
fidelity approximation of the basis functions, and so can provide efficient real-time solutions.
Detailed reviews of the RBM approach can be found in [47, 29] and [46, 32].

For mildly nonaffine terms and/or nonlinear equations, the Empirical Interpolation Method
(EIM) or its discrete version (DEIM) [4, 27, 12, 45] is typically used to remove the online
dependence on the cost of the high-fidelity approximation and achieve the efficiency goals
of RBM. However, when the problem has a strong nonlinearity or nonaffinity, the EIM is
often not feasible. Furthermore, even in cases where performing a (D)EIM is feasible, it may
not be efficient. For example, in cases when the parameter dependence or the nonlinearity
is complicated, the EIM decomposition may require many terms, increasing the online com-
plexity and potentially severely degrading the reduced solver’s online efficiency. To see this,



consider a simple heat conduction problem with a nonaffine parameter dependence:

=V - (a(z; p)Vu) = f.

To handle the nonaffine parameter dependence, we first apply EIM to approximate the
function a(z; p) using a linear combination of p-independent functions,
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Here {,u,q}qQ;’1 is an ensemble, typically chosen through a greedy procedure. The equation of
interest is written in its weak form a(u,v; p) = (a(x; u)Vu, Vo) = (f,v), and the reduced-
order solution space spanned by the full order solutions {£!, ..., &V} is identified during the
offline learning stage. Finally, the online reduced solver is assembled for each g with the
corresponding stiffness matrix created via

(al&, & )0y = (a(z; p)VE,VE)Y_ Ze v u)VELVE)

where (a(z; u,q)V&,Vﬁj)ij:l is computed offline. Notice that although the online solver
is not dependent on the cost of the high fidelity approximations, its complexity is linearly
dependent on the number of EIM terms @,. If @), is large, this may lead to substantial
reductions in efficiency. When the model involves geometric parametrization (such as in
[16, 5, 50]), it has been observed that ), can be prohibitively large (i.e. much larger than
the reduced space dimension N) even if the more efficient matrix version of EIM [40] is
adopted. In this work, we present an approach to mitigate this drawback of EIM. The pro-
posed reduced residual (R2) based reduced over-collocation (ROC) method circumvents the
efficiency degradation (in both the offline and online stages) that plagues RBM approaches
that utilize EIM for nonlinear and nonaffine problems.

1.1 Overview of the reduced-residual reduced over-collocation ap-
proach

To overcome the limitations of the EIM framework, we adopt a collocation approach as we
did in [13, 14] rather than variational approaches such as Galerkin or Petrov-Galerkin [6, 9, §].
The reduced collocation method was developed in [13], which works well to circumvent the
EIM efficiency degradation for the reduced solver but suffers from stability problems [14].
To mitigate the stability issue, we adopt an over-collocation approach where we collocate at
approximately twice as many points as the dimension of the reduced order space. Half of
these collocation points interpolate the reduced solution, which is given by a linear combina-
tion of the basis elements. We choose the other collocation points based on a computational
analysis of the reduced order residuals when these basis functions are identified during the



offline procedure. These additional collocation points ensure a good interpolation of the
residual corresponding to an arbitrary parameter value when the reduced order space is used
to solve the pPDE. However, over-collocation alone does not provide online and offline effi-
ciency, because the error estimators (which are critical for the construction of the reduced
solution space), still require the application of EIM decomposition.

The challenge of computing error estimators without requiring a costly EIM decomposi-
tion is resolved by the second ingredient of our method. We propose an efficient alternative
for guiding the strategic selection of parameter values to build the reduced solution space, an
error indicator that is based on a reduced residual. The key is a systematic and hierarchical
reduction of the judiciously selected residuals. In comparison, our previously proposed L1-
based over collocation approach [17] follows the guidance of the L1-norm of the coefficients,
under a set of a Lagrangian basis, of the reduced basis solution. The proposed R2-based
scheme sits on a more mathematically rigorous foundation.

Together, these two ingredients produce a reduced residual reduced over-collocation
method, which we will refer to as the R2-ROC method. This R2-ROC scheme is on-
line efficient in the sense that the online cost is independent of the number of degrees of
freedom of the high-fidelity truth approximation, and also avoids the efficiency degradation
of a direct EIM approach for nonlinear and nonaffine problems. The R2-ROC method is also
highly efficient offline: it requires minimal computation beyond the standard RBM cost of
acquiring solution snapshots used to construct the reduced order space. Consequently, mini-
mum number of simulations of the pPDE that make the offline preparation stage worthwhile
(the “break-even” number of simulations) is significantly smaller than traditional RBM, as
we show in our numerical examples for the steady-state and time-dependent cases of the
diffusion with cubic reaction and the viscous Burgers’ equation.

The paper is organized as follows. In Section 2, we introduce and analyze our R2-ROC
method. We also discuss the difference between our approach and several others. In Section
3 we present numerical results for two test problems, the viscous Burgers’ equation [51] and
various nonlinear convection diffusion reaction equations. For all our test problems, the
R2-ROC is shown to have accuracy on par with the full-residual ROC, while demonstrating
significantly improved efficiency due to the independence of the number of expansion terms
resulting from the EIM decomposition. Finally, concluding remarks are drawn in Section 4.

2 The Reduced over-collocation (ROC) method
Let Q C R? (for d = 1,2, or 3) be a bounded physical domain on which we define the problem

Plu(x; p);p) — f(x) =0, € Q, (1)

with appropriate boundary conditions. The term P is a parametric second order partial
differential operator that may include linear and nonlinear functions of the solution u(x; ),
and its derivatives Vu(ax; p), and Au(x; ). The p-dimensional parameter p lives in the
space D C RP. The solution u(p) := u(x; p) lives in a Hilbert space H; for example, for a
stationary Laplace problem, the space H is typically the Sobolev space H*(£2). The R2-ROC
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method is designed to work for both steady state and time dependent problems, so we also
consider the transient problem

up + Plu(t, z; p);p) — flx) =0, © € Q, (2)

with appropriate boundary (and initial) conditions. We first focus on developing the algo-
rithm for steady state problems (1) and will then extend the algorithm to time dependent
case (2) in Section 2.3.

o= (1, pp)

Strain

Parameter in p-dimensional parameter domain D C RP

Parameter training set, a finite subset of D

u(p) Function-valued solution of a parameterized PDE on 2 C R?

Pu(p); ) A (nonlinear) PDE operator

N Degrees of freedom (DoF) of a high-fidelity PDE discretization, the “truth” solver

XN A size-N (full) collocation grid

uN () Finite-dimensional truth solution

N Number of reduced basis snapshots, N < A

wi “Snapshot” parameter values, j =1,..., N

Up (1) Reduced basis solution in the n-dimensional RB space spanned by {u™ (ul), ..., v (u™)}
en(p) Reduced basis solution error, equals wY (@) — @ (1)

AN () A residual-based error estimate (upper bound) for |ley ()| or an error/importance indicator
XNt = {al,,... a7 A size-(N — 1) reduced collocation grid, a subset of XV determined based on residuals

XN o= {2, .. 2]} An additional size-N reduced collocation grid, a subset of X determined based on the solutions
xM A reduced collocation grid of size M that is X;¥ ! U XN

T Final time for the time-dependent problems

At Time stepsize for the time dependent problems

Nt Total number of time levels, i.e. N} = Alz

+J

€tol

Time level j, j =1,...,N¢

Error estimate stopping tolerance in greedy sweep

Offline component

Online component

The pre-computation phase, where the reduced solver is trained using a greedy selection of snapshots
from the solution space

The process of solving the offline-trained reduced problem, yielding the reduced order solution.

Table 1: Notation and terminology used throughout this article.

We proceed by discretizing the equation (1) by a high-fidelity scheme (known as a “truth
solver” in the RB literature). We define the discrete solution w"(X*; u) such that the
equation

P (XN p); ) — F(XY) =0, (3)

is satisfied on a set of A collocation points X € Q. With a slight abuse of notation, we let
N denote the number of the degrees of freedom in the solver, even though the N points in
X might include, e.g. points on a Dirichlet boundary that are not free.

The truth approximation u™' (X" ) is thus a discretization of the solution u(p) on
the grid X so that the equation (1) is enforced on a very refined discrete level. In (3),
the terms Vu(XY; ), and Au(XV; u) are approximated by the numerical discretizations
Viu(XN: ), and Apu(XV; @), where generally h o %/LN In this paper, we use a finite
difference method (FDM) to obtain this discretized equation. However, the extension to
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point-wise schemes such as spectral collocation is obvious, and to finite element methods is
possible.

We are now ready to describe the R2-ROC algorithm. We split the description into the
online (in Section 2.1) and offline (in Section 2.2) components. However, specification of part
of the online algorithm is postponed until the introduction of the ROC offline algorithm in
Section 2.2, which repeatedly calls the online solver to construct a surrogate solution space.
Analysis of the method is provided in Section 2.2.4. In Section 2.3 we present the extension
to the time-dependent problems of the form (2). The algorithms contain a great many terms
with associated superscripts and subscripts. To help avoid confusion, we list the frequently
used terms and their meaning in Table 1 for the readers’ reference.

2.1 Online algorithm

The online component of the R2-ROC is similar to the online component of the reduced
collocation method described in our prior work [13], with one critical difference: in the R2-
ROC method we use a larger number of collocation points than the number of reduced basis
snapshots. Moreover, the selection of these points now takes a closer account of the PDE we
are solving. This over-collocation feature is an innovative approach that provides additional
stabilization of the online solver, as we will observe in the numerical results.

We begin with N selected parameters {u!, ..., u"}, and the corresponding high fidelity
truth approximations {u, = v (X";u"),1 < n < N}. We also have a set of collocation
points XM (M > N) formed from a subset of X,

XM = {x! ... &M},  with 2/ having index i, in XV,

These three ingredients: the chosen parameters, the truth approximations, and the set of
collocation points are all identified and computed in the offline phase and will be described
in Section 2.2.

Note that we adopt the same notation for a function u, and its discrete representation
as a vector of its values at the grid points. These vectors {u,,1 < n < N} constitute the
columns of basis matrix W,, € RV*" for n € {1,...,N} . Furthermore, we let W, 5; denote
the matrix of the corresponding reduced basis space on the set XM,

W = [un(XM), . u (X)) e R forn=1,...,N.
= P,W,,

RM <N

where the operator P, € is defined as,

P* = [ei17 e 76i1\/[]T

Y

with e; € RV*! the i th canonical unit vector.

'In practical calculations, columns of W, are orthonormalized via EIM for numerical robustness. For
notational simplicity, we still denote them by {u;}.



We are now ready to describe the online algorithm. For any given parameter pu we seek
a reduced approximation of the solution u(u), denoted by w, (@) and computed as a linear
combination of the truth approximation “snapshots” contained in the reduced basis space
W,. This reduced basis solution satisfies

un(p) = Waen(p),

where the coefficients ¢, () must satisfy a reduced version of equation (3):

Prn(Woea(p)i ) = f(XV). (4)

Recall that the number of “snapshots” n is (hopefully significantly) smaller than the degrees
of freedom of the truth approximation A/, so we have an over-determined system. In [13]
we dealt with this system by a Petrov Galerkin approach or collocation on n points (which
produced a square system). In this paper we propose something different, which is one of
the distinctive features of our method. Indeed, the R2-ROC method proposes to solve the
unknown coefficients ¢, (p) by minimizing the residual of (4) on the set of nodes X:

P, (Px(Waw; ) — f(XV)).
The problem is formulated as an optimization problem:

ca(p) = argmin || P, (Pr(Wow; p) — F(XV)) [lmo - (5)

weR™

Note that this is a nonlinear system of equations for ¢, (p). It can be solved using an iterative
methods such as Newton’s method or Picard iteration.
The calculation of

P. (Py(Wow; p) = f(XV))

relies on the computation of

Vatia(k) = P [(Vaur) -, (Viua)] e (h),
Anfin(p) = P.[(Bns) ..., (An)] ealp).

Notice that the differentiations V,u; and Aju; are computed accurately, at a cost propor-
tional of N and then projected to the reduced grid X™. However, this step (of computing
P.[(Vyur), ..., (Vpu,)] and P, [(Apuq), ..., (Apuy,)]) is performed offline leading to matri-
ces of dimension M x n which we denote by V,,(W,, ar) and Ay (W, ar) respectively. They are
multiplied by w € R" online to compute V,u,(p) and Ay, (@) independent of N thanks
to linearity of Vj,- and Aj-. To see in more detail that the evaluation of the operator Py is
also independent of N, we consider the nonaffine operator introduced in Introduction with
a nonlinear term added. For simplicity, we consider the one-dimensional case,

— (a(@; p)u') + u(u — p2)*.



Given a discretized reduced basis representation of u, W,w, P, (Pyn(W,w; u)) can be evalu-
ated as

—a(XM; ) © (Ah(Wn,M)W) —d(XM ) © <Vh(Wn,M)W) + Wi mw © (Mw — M2>2 .

Here, the terms with underlines, of dimension M x n, are precomputed (and expanded as n
and consequentially M increase) offline. a(X™; ;) and a'(X™M; 111) are evaluations at the M
chosen collocation points. ©® and the square at the end should be understood as Hadamard
products. It is therefore clear that the cost is O(Mn). In particular, neither is it dependent
on N nor the (potentially large) number of EIM expansion terms @, of a(x; ).  This
independence will translate to the full online solver, and is due to the collocation approach’s
point-wise evaluation nature.

In summary, the online procedure of the nonlinear solve for obtaining ¢, () from equation
(5) involves:

1) realizing/updating W, pre,, Vi (Wi ar) €, and Ay (W, ar)e, at each iteration, at a cost
of O(Mn) operations;

2) calculating the forcing term f(X*), at a cost of O(M) operations; and

3) solving the reduced linear systems at each iteration of the nonlinear solve, at a cost of
O(n?) operations per iteration.

The next section describes the offline procedure in which we select the N reduced basis
parameters {u!, ..., uV} sequentially through a greedy algorithm. Once a selected parame-
ter p? is determined, we precompute as many quantities as possible so that minimal update
is performed at each iteration of the online iterative method. We also describe the choice of
the over-collocation points X* and analyze the resulting scheme in the next section.

2.2 Offline algorithm

In this section, we describe the offline procedure of the algorithm. There are three compo-
nents here, and we describe each separately.

2.2.1 A greedy algorithm

Reduced basis methods typically utilize a greedy scheme to iteratively construct the reduced
basis space. The R2-ROC is no exception. In this section we describe the procedure for
selecting the representative parameters p!, ..., u" which comprise the reduced parameter
space, and the corresponding reduced basis space Wy. We utilize a greedy scheme to itera-
tively construct Wy as follows:

We begin by selecting the first parameter p! randomly from =i, (a discretization of
the parameter domain D) and we obtain its corresponding high-fidelity truth approximation
uN(p') to form a (one-dimensional) RB space given by the range of W; = [u"(u')]. Now
assume that we begin each iteration with a n-dimensional reduced parameter space and



reduced basis space W, comprised of the corresponding truth approximations. Next, we
use the online procedure described above to obtain an RB approximation u,(u) for each
parameter in Z.,;, and compute its error estimator A, (p). The (n + 1)th parameter p"!
is now selected using a greedy approach and the RB space augmented by

P = argmaxA, (), W1 = [Wn uN<un+1)} ) (6)

/—LEEtrain

For this procedure to be efficient and accurate, the greedy algorithm requires an efficiently-
computable error estimate that quantifies the discrepancy between the n-dimensional surro-
gate solution 7, () and the truth solution w (). We denote this error estimator A, (u),
it traditionally satisfies A, (@) > Hﬂn(u) — N (p,)” The error bound A, is usually defined
based on a residual-type a posteriori error estimate from the truth discretization. Mathemat-
ical rigor and implementational efficiency of this error estimate are crucial for the accuracy
of the reduced basis solution and its efficiency gain over the truth approximation. When
P(u; p) is a linear operator, the Riesz representation theorem and a variational inequality
imply that A, can be taken as

1S = P (tin; ) ||2
Al(p) =
n (1) ) (7)

which is a rigorous bound (with the ®-superscript denoting that it is based on the full
residual). Here B;p(p) is a lower bound for the smallest eigenvalue of Py(p)T Py(pt) where
Pyn(p) is the matrix corresponding to the discretized linear operator Pas(+; p).

2.2.2 An error indicator based on Reduced Residual

For the general nonlinear equation, deriving the counterpart of this estimation is far from
trivial. Moreover, even for linear equations, the robust evaluation of the residual norm in the
numerator is delicate [11, 18]. Furthermore, we would also have to resort to an offline-online
decomposition to retain efficiency which usually means application of EIM for nonlinear
or nonaffine terms. This complication degrades, sometimes significantly [5, 40], the online
efficiency due to the large number of resulting EIM terms. What exacerbates the situation
further is that the (parameter-dependent) stability factor Spp(@) must be calculated by a
computationally efficient procedure such as the successive constraint method [34, 33]. In this
section we present our novel reduced-residual error indicator as an alternative that does not
suffer from any of these challenges.

This alternative error indicator must be as efficient and effective for the nonlinear and
nonaffine problems as for the linear affine ones. We present here our novel reduced residual
based error indicator:

A ) = | f = Par(@ns )| oo (xary = [[1Pe (f = P (i 1))l - (8)

Note that this residual is not being evaluated over the entire discrete mesh of the truth
approximation, only a judiciously reduced portion of it. It is therefore based on the reduced



residual, giving the name of the method - R2-based reduced over collocation. We further
note that it is not certified, thus called “indicator”.

The effectiveness of this error indicator is wholly dependent on the choice of the over-
collocation set X the topic of the next sub-section. Our analysis in Section 2.2.4 will show
that first set of points of X, denoted by XV, ensures that, when the differential operator is
linear, our reduced collocation solution recovers a specifically designed generalized empirical
interpolant [39, 38] of the truth approximation. The remaining part of X*  denoted by
XN=1is critical in maintaining the online-efficiency of AZ® in (8) while providing a stable
interpolating procedure for f — Py (u,; i) of any p € D in the space of those at the greedy-
selected p™’s, thus a mechanism to control || f — Par(Un; pt)|| oo (x») Which is stronger than
AERE hut not online-efficient.

In the numerical examples we demonstrate that this reduced residual error indicator is
a reliable quantity to monitor when deciding which representative parameters p', ..., u"
will form the surrogate space. In addition, a further advantage of this error indicator over
our previously proposed L1-ROC [17] is that AZ® does decrease as n increases. In fact, the
numerical results seem to indicate the effective index is rather constant and small. Moreover,
the calculation of A®% is independent of A" while the traditional AZ is dependent on N .
This difference leads to the dramatic efficiency gain of the R2-ROC, as we will numerically
confirm in Section 3.

Algorithm 1 R2-ROC: construction of Wy and the collocation set X?¥N~1 = XNy XVN-1,

1: Choose p!' randomly from Sy, compute uy == vV (XV; pb).
2: Compute @} = argmax, |Py(us; u')(x)], o1(-) = 0511(-), define g1 = wuy /o1 (uy). Let iy

be the index of x! and P, = [e;,]*.

3: Initialize m =n =1, X" = X" = [z}], W, = {1}, Wi = P.Wy, and X? = ().

4: Forn=2,...,N

5: Solve ¢,_1(p) with W,,_1, P, and calculate A,,_;(u) for all g € Zqpain.

6:  Find p" == argmax, ez \(uiic1. no1y AFE (1) and solve for g, = o™'(XV; pn).

7: Compute a generalized interpolatory residual for ¢, : find {«;} and let ¢, == ¢,, —
Z;:ll ajq; so that o;(¢,) =0,Vi e {1,--- ,n—1}.

8:  Find & = argmax, |Pyx(qn; ") ()], on(:) = o;‘;(-), Gn = Gn/0n(qn), and let X :=
X1 U {x"}, and 4; be the index of ="

9:  Form the full residual vector r,,_1 == Par(tUn_1("); ™) — f(XV) and compute its in-
terpolatory residual: find {a;} and let 7, == 1,1 — E;L:_f a;r; so that r,_1(XP?%) =
0. Find x,' = argmax,cxnxmgny [ta-1(x)]. Let 1,1 = rp_1/rpa(xl"), and
Xn=l= X"=2y {z" '} and iy is the index of z7 1.

10:  Update W, == {W,_1,qn,},m=2n—1, X" = XPU X" 1 P, == P, U|e;, ei,]".

11: End For
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2.2.3 Construction of the reduced over-collocation set X

There is one piece that we have left until all the other ingredients are in place: we are
now ready to describe how to determine the reduced collocation set X™ that are needed
in both the online and offline algorithms. The reduced collocation set X* is comprised of
collocation points that are selected using two different approaches. We will describe these
as two different sets. The first set of point, denoted by X, consists of the maximizers from
a Generalized EIM (GEIM) procedure [39, 38| that is tailored to our setting.

Indeed, the differentiating feature is the GEIM interpolating functional which we define
as follows for any admissible function v(x), any € , and pu € D

o4 (v) == P (v; ) (). (9)

When u; = w? (+; ut) is calculated, we identify the first collocation point and the correspond-

ing functional as
1

! = argmax [Py (u; ) (@), 1) = o2 () (10)

*

uy
o1(u1)
We then proceeds as follows. Forn =1,2,------ , when p"*! is identified by the greedy

algorithm and w,1 obtained, we solve {1}, , such that

g; (un+1 - Zan+l,iQi> = 07 Vie {17 e 7n}'

i=1

and our first collocation basis ¢; = and By = o1(q1).

With these values {1}, we define the n+1™ collocation basis ¢,41 = tnt1— oy ni1. G-
We then augment the collocation points and functionals

n n n+1
" = argmax [Pa(quas ") (@)], 0 () = 0t (1), (11)
and define ¢, = %. Lastly, we expand the matrix B by a column and a row via
Bi; = 0i(¢qj) when i or j equals n + 1. We finally define the first collocation set X :=

{wiv T 7wi\f}

The second set of points is chosen due to a recognition of the importance of controlling
the residuals of the PDE when solving the equations. In order to control the PDE residuals,
we must represent them well on the reduced grid. For that purpose, we introduce a second
set of points, called XN ~1 which are chosen using a greedy algorithm aiming to control the
residual. To examine the residual of the RB solution at the chosen p™ when only n — 1 basis
elements are used, we compute the residual vectors

r;‘«jl = ,PN(iL\nfloJ‘n); “n) - f(XN)’ n < {Qa s 7N}‘ (12>

These residuals are a basis that can be used to interpolate the residual at any other point p
in the domain, and so we need to identify the collocation (or interpolation) points on which
this residual basis {r,} best represents all possible residuals. For this reason, we take these
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N —1 residual vectors and perform an EIM procedure on them. The N — 1 maximizers from
this procedure form the second set which is denoted X1,

The choice of the set of over-collocation points X includes the points in X¥ and XN~
and so we use M = 2N — 1 collocation points. Note that the first basis function has no
accompanying residual vector (12), so that from the second onward there are two collocation
points selected whenever a new parameter is identified by the greedy algorithm. We are now
ready to outline the entire R2-ROC method in Algorithm 1.

Remark 2.1. The reduced collocation approach in [13] is a specialization that takes o;(+) to
be identities, M = N, X* = XN The resulting M = N reduced scheme can be unstable
particularly when high accuracy (i.e. large ) of the reduced solution is desired. It can be
resolved in special cases by an analytical preconditioning approach [14]. The second obvious
choice of XM is to append XN~! with one more point such as the maximizer of the first
basis. Numerical tests (not reported in this paper) also reveal instability of this scheme.

2.2.4 Analysis of the R2-ROC method

With the basis Wy = {q1, -+ ,qn}, the collocation points and the functionals as built in
(10) and (11), we are ready to define a Generalized Empirical Interpolation [39, 38] operator
for any admissible function v(x)

N
IN°l(z)] =Y Bl ai(x) such that o;(IN°[v]) = oi(v) Vi € {1,--+ ,N}. (13)

i=1
Lemma 2.1. When the differential operator P(u(x; p); p) is linear (with respect to u), the
matriz B is lower triangular with unitary diagonal and we have that IR°[v] = v for v €
span{qi, - ,qn}. If, in addition, the collocation points are taken as XM = {x! ... =N},

our reduced collocation solution coincides with the GEIM approzimation IRC[u™N (u)] of the
truth approzimation uN (1) when p = p' fori € {1,--- | N}.

Proof. When P is linear, we have 0;(¢;) = 1 and o;(¢;) = 0 when j > i by construction.
Therefore, matrix B is lower triangular with unitary diagonal.
When v € span{q,- - ,qn}, there exist {d;}, such that

N
=1

Since P is linear, we have o;(v) = Zjvzl d;oi(g;) which means 60 = Bd where b =
(01(v) - on(0))T and d = {dy, -~ ,dy}T. On the other hand, from (13) we know that,
if we assume IRC[v] = S°N | ¢;q;, we have that

C1 0'1(’0)
= B! : = B 'ov (14)

CN O'N(U>



Plugging ot = Bd completes the first half of the proof.
To prove the second half, we note that the reduced collocation procedure amounts to

requiring that
ol (Tn(p) = oty (" ()

When p = p, this is identical to the system determining the GEIM approximation (13).
Given the fact that B is invertible, we conclude that the reduced collocation solution is
identical to the GEIM approximation. O

Regarding the error of the reduced solution, we can prove a standard result of interpolation-
type. Toward that end, we define the Lebesgue constant

N

Ay =sup) [ ()|

e i—1

where {hfv ():i=1,---,N } € Wy is the traditional Lagrangian basis of W)y satisfying
o;(hY) = 6;;. Indeed, if we define Y (@) = S, (B~');;q;(z) which in discretized form is
equivalent to the following matrix-matrix equation,

(h by - hN)B = (g2 -+ qw), (15)

we can then confirm that crz»(hj»v ) = d;; by the following derivation.
Uz‘(h;-v) =oi((qr, 2 -+ an) B7'(, 7))
N N
=Y oia) (B ey = > _(B)i(B )iy
k=1 k=1

with the last equality due to the definition of matrix B. It then follows that
oi(hY) = (B-B™), = 4.

v

Theorem 2.1. When the differential operator P is linear and the collocation points are taken

as XM = {zxl ... 2N}, our reduced collocation solution satisfies the following estimate.
() = IN“[@()]ll e < (14 An) inf [[a(p) = vllz= (16)

Proof. For any v € Wy, we have

() — IN[a(p)] [l <[[a(p) = vllzee + [lv — INC ()] ]| e
=l[a(p) = vllz= + 1IN [0 = ()]

TECTw]|| 1 .
< (1+ sup PA B ) ) — o
wewy  [Jwllzee
To complete the proof, we just need to show that sup,cyy, % = Ay which can be
verified by recalling equations (14) and (15). O
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We note again that, for notational simplicity, we commit a slight abuse of notation
by adopting Wy for both the reduced space and the matrix whose columns are the discrete
representations of the basis of Wy. These results show that our first set of points X ensures
that, when the differential operator is linear, our reduced collocation solution recovers a
specifically designed generalized empirical interpolant of the truth approximation. We finish
our analysis by the following remark which indicates the significance of the second set of
points XV~
Remark 2.2. Functionality of the second set of points X' ~!: We recall that the residual
(12) of RB solution at g with n bases is defined as

rt = P () 1) — FXN) = Par(@n(p); ) — Par(u (); ).

Assuming we have the error-residual relation, we need to control |74 || e (xny for any p. The
greedy algorithm with error indicator AZ% in (8) means that we have, for any p,

n+1 n+1

178 | oo (xcary <t || poo(x ), a weak version of |78 || peoxeary < |78 || poo (xavy.

The latter can be achieved by adopting a stronger AL (i.e. = |[r#||e(xr)) which would
make the online complexity linearly dependent on N (thus the algorithm not online efficient).
The choice of the second set of points X¥~! is critical in maintaining the online-efficiency
of AR in (8) while providing a stable procedure for the linear procedure of interpolating r#

in the space S.paun{'r’z’»‘l)rl n. .
Indeed, if we denote the EIM interpolation procedure of {r# o ? , in Algorithm 1 by J,,
we have that

|75 | oo (xcnvy < (| Tnlrh || oo (xvy + (78 — Tn[rB]|| oo (xv)
S| Tulrt]ll poe (xary + (1 + A7) ir;ﬂln‘f — 0| oo (x),

where Al is the Lebesgue constant of {r# " " ,.Consider that the (classical) greedy algo-
rithm adopted by EIM/GEIM has the tendency of minimizing the Lebesgue constant A

[37]. We therefore conclude that the EIM procedure of 7# by {r# o *_, via their EIM points
in XM is effective in generating the RB space and the online solver.

2.3 Extension of R2-ROC for time dependent problems

Given the reduced space W,, and the collocation set XM the semi-discretized R2-ROC solver
remains identical to the steady-state case for the time-dependent problem (2). That is, we
seek the reduced approximation of the solution for any given parameter g in the form of

an(l“'v t) = Wncn(yw t)

The unknown coefficients ¢, (u,t) € R™ ! is obtained by solving the following optimization
problem:

ea(p, 1) = axgmin || P, (Wow + Pa (W 1) — F(XV)) s (17)

w
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For full dicretization, our R2-ROC aligns with the parameter-time greedy framework [27, 28],
as opposed to POD [35, 41] or POD-greedy [26]. We first denote the (full) set of temporal
nodes as Ty .= {t; : i =0,--- ,N;} with ¢y being the initial time and N; = T//At where At
is the temporal step-size. We also denote a reduced set of temporal nodes by 7, that starts
from the empty set and is gradually enriched in the greedy algorithm.

We next describe the R2-based error indicator needed by the greedy algorithm for the
time-dependent case as follows. It is extended from the steady-state version (8). Indeed, for
each p € Eain, after its corresponding (reduced) solver of (17) with n bases is performed
and the reduced solution u,(u,t) obtained, we define

AR () = "™t ) with et p) = || Para(t; ) oo (18)
teTy

Here, 7,(t; ) € RV*! denotes the full residual for @, (u,t), and Pr,(t;p) € RM*D its
reduced version.

Remark 2.3. We emphasize that: 1) The distinctive feature of our scheme, in comparison
to e.g. [28], is that we only consider the reduced residuals, i.e. the residual sampled at our
over collocation points; And 2) We automatically have online efficiency, without EIM, when
evaluating the error indicator. This is made possible thanks to the collocation framework.

We are now ready to describe our greedy algorithm. To initiate the reduced solver
construction we start with a deterministically or randomly chosen ! (similar to the steady-
state case) and invoke the truth solver to obtain the snapshots {uV (t;, z; u) ¥, Ty is
initiated by the time instant when the corresponding snapshot has the largest variation.
That is,

T, = {t',} where ', = argmax [ max v’V t,x; D — min oV t,x; .
ri= At} pr = argmax { max (t,2;p7) — min ™ (t,2547)

The RB space W is initiated with uN(tLI,x; p'). The (first) collocation point is set to be
the special GEIM point of this first basis,

x! = argmax | (8, @ pt) + Pur(u (th, s pt); ) ().
zeX

We note that the corresponding collocation functional o¥, defined in (9) for the steady-state
case, should be understood as its extension to the time-dependent version

ot (V) = v + Pu(t, s p); p)(t, x).

However, for brevity of notation, we still write it as o whenever the accompanying ¢ is clear.

Once these ingredients are in place with the first pair (!, t}ﬂ) determined, we can solve
the reduced problem (17) for every g € Zipain (With a one-dimensional RB space 7). Similar
to the traditional greedy algorithm, the next step is to determine the subsequent (p,t) pairs.
Our greedy algorithm, as seen in Algorithm 2, manifests itself in the following three aspects:
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Algorithm 2 R2-ROC algorithm for time dependent problems

1:

=t

10:
11:

k
Choose p', and set k, = 1 the first temporal node to be t”‘fl =

argmax,c7, (max, uN (¢, 25 pt) — min, wN (¢, 2; pt)). Define ¢, = uN(tZ‘{l XN ph).

: Find &} = argmax,c v~ |q1, + Pyv(q; 1b)|, o1() = Uﬁ;(-), and let P, == [e;,]T, where i,

is the index of x!.

: Initialize m = n =1, X™ = X* = {zl}, Wi = {¢,}, Wi, = P.Wy, and X? = 0.
:Forn=2,... N

Solve the reduced problem for ¢, _1(p, ty).

Find p" = argmax,c, At (), and a new temporal node ¢/ Fur
arg max,er, €78 (t; p).

Solve q,, = uN(tﬁ%",XN; u").

Compute a generalized interpolatory residual for ¢, : find {a;} and let ¢, = ¢, —
> fa]q] so that o,(g,) =0 fori € {1,--- ,n—1}. Find &} := argmax,c yn,xm ’qnt +
Par(ds ) (@)], 00 () 1= 0k (), €y = ¢, /0n(q,). Let X7 = X77" U {2}, and iy be the
index of 7.

Form the full residual vector r,, = (Un—1), (tZ’Z"; ©") +
Pr (XN U1 (8! o)) — f(XY tfj;"). Compute an interpolatory residual
Tn1 : find {a;} and let r,_y = 71,1 — Z;:f a;r; sothat r,_1(X'?) = 0.
Find @}, = argmaxXgexn/jxmgny|rna|lLet r,1 = rpq/roa(xl,), and

Xn=l= X2y {x"}. iy is the index of ",
Update Ty == {Wy 1,g,},m =20 — 1, X" = X2 UXP=1, P [P (e0)" (e0)"]
End For

e Greedy in p: Our greedy choice for the p-component of the (u,t) pair is through

maximizing A" (u) over the training set Ziain:
p" = argmax AR ().

IJ’EEtrain

e Greedy in t: Given the greedy choice "' and the reduced solution @, (u",t) =
Wi, (u™t,t) for all time levels ¢ € Ty, the greedy t-choice is given by

= argmax {e(t; p) = | Por, (6 p" )|}, and T, U{t w0 (19)
teTy

,_Ln+1
t n+1

o XM expansion: With the greedy choice (u"*?, t“‘,‘ﬂ ), we solve for the truth approx-

n+1

imations u(t, XV; u"t!) for t < t ‘;H . The expansion of X by two more coloca-

tion points, with one from the GEIM procedure of the solution wu(t ‘fL'fll,XN ;)

with the particular functionals {o? (1)}, and the other from that of the residual

ra(t

kpyn+1

1 p™ ), is identical to the steady state case.
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Remark 2.4. Here, kynt1 > 1 is introduced to accommodate the possibility that multiple
temporal nodes might be selected for the same p (at different rounds of the greedy algorithm).
We note in particular that, consistent with typical greedy scheme, we choose one (as opposed
to multiple) maximizer in (19). However, as we proceed with building up the reduced solution
space, the same p (and a different temporal node) may be chosen by the greedy algorithm
at a later step due to the lack of resolution of its corresponding temporal history.

2.4 Other related techniques

There are other model reduction techniques for both steady and trasient problems such as
Proper Orthogonal Decomposition (POD) [35], system-theoretic approaches including bal-
anced truncation, moment matching or Hankel norm approximation [6]. RBM differentiates
itself, particularly for parametric problems, by featuring rigorous a posteriori error estima-
tions, the resulting greedy algorithm, and the ability to compute the theoretically smallest
number of full order solutions dictated by the Kolmogorov n-width of the solution manifold.
Nonlinear problems bring some additional challenges, mainly in that a high dimensional
reconstruction of the surrogate quantities is often needed each time the nonlinearity is eval-
uated. Sampling-based approximation techniques were developed to mitigate the resulting
loss of efficiency. They include the Empirical Interpolation Method and its discrete variants
[4, 27, 12, 45] and Hyper-Reduction [48, 49, 10] which are known to be equivalent to DEIM
under certain conditions [23, 20]. Other approaches include POD coupled with “the best
interpolation points” approach [41, 25], Gappy-POD [21], Missing Point Estimation (MPE)
[3] or GaussNewton with approximated Tensors (GNAT) [9, 10]. Most of these methods
work by first identifying a subset of the important features of the nonlinear function, and
then constructing an approximation of the full solution based solely on an evaluation of these
few components.

The R2-ROC method presented in this paper can be viewed as adopting hyper reduction
for reduced residual minimization. Indeed, instead of enforcing that the full residual is small
in either a weak or strong formulation, we identify its selected entries and ensure that an
accurate evaluation of the residual on that subset is small. This is not the first time this
type of idea is explored. For example, [3, 2] uses a collocation of the original equations based
on missing point interpolation and is followed by a Galerkin projection. The authors in [48]
obtain the solution snapshots and collocation points through an adaptive algorithm in the
finite element framework. It was also applied to nonlinear dynamical systems with randomly
chosen collocation points [7]. Other existing works that can be used for accelerating residual
norm calculation in the finite element setting include the Energy Conserving Sampling and
Weighting (ECSW, see [22]), Empirical Cubature Method (ECM, see [31]), and LP Empiri-
cal Quadrature Procedure (LP EQP, see [53]). However, the proposed R2-ROC differs from
these existing works. The first distinctive feature is that the basis functions and collocation
points are determined hierarchically via a greedy algorithm guided by reduced residual min-
imization problems that gradually increase in size. It tailors the Generalized EIM procedure
[39, 38] to our setting via a set of carefully designed interpolating functionals. In compari-
son, the existing approaches obtain basis functions through POD-type techniques and then
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Name Description

Full-residual ROC Reduced scheme with online solver as described in Section 2.1 and by
following the full-residual based error estimator Af (7)
R2-ROC Reduced scheme with online solver as described in Section 2.1 and by

following the reduced-residual based error indicator A®® (8)

L1-ROC Reduced over collocation approach introduced in [17] whose greedy
algorithm is based on the L1-norm of the coefficients, under a set of
a Lagrangian basis, of the reduced basis solution.

Table 2: Description of the schemes compared in our numerical results.

compute the whole set of collocation points all at once. The second distinctive feature is
that the only step during the offline process that depends on the full order model is when
we calculate a new high fidelity basis.

3 Numerical results

We test the R2-ROC method on nonlinear steady-state and time-dependent problems, re-
spectively in Sections 3.1 and 3.2. The particular equations include the classical viscous
Burgers’ equation and nonlinear convection diffusion reaction equations. We test and com-
pare R2-ROC with two other schemes. For the sake of clarity, we list them in one place,
Table 2.

3.1 R2-ROC for steady-state nonlinear problems

In this Section, we report the test results of R2-ROC on steady-state problems while com-
paring it with benchmark algorithms.

3.1.1 Viscous Burgers’ equation
First, we test it on the one-dimensional (viscous) Burgers’ equation,

Uy = HUgy,

uz=-1)=1, uz=1)=-1. (20)

Here the viscosity parameter p varies on the interval D = [0.05,1]. The computational
domain [—1,1] is divided uniformly into A"+ 1 intervals with grid points denoted by

{wo, 21, ., 21}
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With A = ﬁ, the following finite difference discretization based on the conservative form

of equation (20), (“—;) — MUy, = 0, is then used

Uz, — Uy Ui—1 — 2U; + Ujqy .
“4h L e =0, ie{l,...,N}. (21)

This leads to a nonlinear truth solver of size N'. The parameter domain D is sampled 50
times logarithmically spaced to form the training set for the Offline procedure. We test our
method on a subset of =i of D that does not intesect with the training set Zi.a,. We
compute the relative errors F(n) over all g in Zieg of the RB solution @, (@) in comparison
to the high fidelity truth approximation. That is,

B = e { 10~ o)) 2

[[2]] Lo (Zqent oo ()

where

|[uf| oo (2reni L () = max [Ju(pe)||oo-
HEZtest

Error curves and the distribution of the first NV = 10 selected parameters with N' = 100
are showed in Figure 1. It shows a clear exponential convergence as n increases and a
concentration of the selected p values toward the lower end of the parameter domain. We
note that the distributions of chosen parameters between the full-residual ROC and the new
R2-ROC are very much similar which underscores the reliability of our proposed approach.

10° 1 . ©

0

10 0.8

2 0.6

X
0.4

<]10
)

10°

Q°® 9
R

Figure 1: Steady viscous Burgers’ result. (Left) Histories of convergence for the error and error
estimator/indicator for the full-residual ROC and proposed R2-ROC. Here, Eff and EXF refer to
the E(n) in (22) with the reduced solution u, constructed by following the residual-based error
estimator A" and R2-based error indicator A% respectively. (Middle) Distribution of selected
parameters p", using estimator A" and ARF  as a function of n. (Right) Sample RB solutions at
three parameter values.

3.1.2 Nonlinear reaction diffusion equations

Here we consider the following cubic reaction diffusion,
—poAu+ u(u—pn)? = f(x) in Q= [-1,1] x [-1,1],

(23)
u = 0 on 0f2.

19



We take f(a) = 100sin(2wz) cos(2mzs), and D is set to be [0.2, 5] x [0.2,2], and discretized
by a 128 x 64 uniform tensorial grid. Denoting the step size along the p; direction by hq,
and the other by hs, the training set and test set are given by

Etrain = (0.2 : 4hy : 5) x (0.2 : 4hy : 2),
E‘test = ((02 + 2h1) : 4h1 . (5 — 2h1)) X ((02 + 2h2) . 4h2 . (2 — 2h2)),

where (a : h : b) denotes an equidistant mesh over [a,b] with stepsize h. The nonlinear
solver, based on the 5-point stencil with v/ interior points at each direction of Q, for the
high fidelity truth approximation linearizes, at the (£+4 1) iteration, the equation according
to

A + g (WO = g ()l — g, ) + () (24)

where g(u; 1) = u(u — )*.

Relative errors of the RB solution F(n) with VN = 400 are displayed in Figure 2 top
left showing steady exponential convergence for R2-ROC that is on par with the full-residual
ROC. The accuracy test shown in Table 3 Right demonstrates that the ROC schemes reach
the accuracy of the full order model with N = 40 when v A = 400. The set of selected
parameters are shown in Figure 2 top middle, while the collocation points are shown on
the bottom row. We note again that the distributions of chosen parameters between the
full-residual ROC and the more nascent R2-based scheme are quite similar for this example
underscoring the reliability of R2-ROC.

Next, we showcase the vast saving of the offline time for the R2-ROC approach. Toward
that end, the comparison in cumulative computation time for the full-residual ROC, R2-
ROC, and the high fidelity truth approximations is shown in Figure 2 top right. The initial
nonzero start of the R2-ROC is the amount of its offline time. We observe that the “break-
even” number of runs for R2-ROC is much smaller. The vast difference in this “break-
even” point is the manifestation of the enormous disparity in computational complexity
for calculating AZ® (for R2-ROC, requiring obtaining an N x 1 vector and evaluating the
residual at numbers of points proportional to N), and that for A? (for full-residual ROC,
involving an offline-online decomposition of the calculation of the full residual norm). The
latter, implemented without EIM in this paper, will be less if EIM is incorporated in the
residual calculation. However, it will still be dependent on the number of EIM terms @),
while the former does not involve EIM thus is independent of @),.

Lastly, though R2-ROC has a much more efficient offline procedure than the full-residual
ROC, their online time for any new parameter is comparable, see Table 3. The results also
confirm that time consumption of the online ROC methods is independent of v/ N, that is
the method is online efficient. Here in the table, we present the online calculation time for
the different algorithms in two different parameter regimes. The first regime is when g
is large and o small, in particular we choose p; = 4.55, s = 0.42. The second regime
has the relative sizes reversed. The reduced solver requires 27 iterations for the nonlinear
system in the first regime, while only requiring 8 iterations in the second regime leading to
the noticeable difference in the full-order time consumption. It also means that the speedup
factor of R2-ROC varies. But they range between 3000 ~ 12000 when v A = 400, 800. This
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speedup factor is dependent on N, the complexity of the full order model. For this example,
VN =400 is a reasonable choice since, as shown by the accuracy test in Table 3 Right, the
ROC accuracy with N = 40 matches that of the full model with v AN = 400.

“F 1K < " —- Residual-based
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Figure 2: Top row:(Left) comparison of the histories of convergence with VN = 400 for the errors
and the error estimator/indicator for the ROC method. Here, E® and EFF refer to the F(n) in
(22) with the reduced solution ,, constructed by following the residual-based error estimator A%
and R2-based error indicator AR respectively. (Middle) Selected N(= 40) parameters of the
ROC method for full-residual based and R2-based approaches. (Right) cumulative runtime of the
FDM, the full-residual ROC, and R2-ROC. Bottom row: selected 40 collocation points XM from
solutions (Left) and 39 collocation points XM from residuals (Right).

3.1.3 Numerical comparison with POD and random generation

To further establish numerically the reliability of the R2-ROC algorithm, we compare it with
two alternative methods of building the reduced basis space. On one end, POD [24, 35, 52, 36]
based on an exhaustive selection of snapshots (i.e. we include all solutions u (u) for p €
Ztrain) Produces the best reduced solution space and thus the most accurate, albeit costly,
surrogate solution. We note that this version of POD only serves as reference and is in general
not feasible as the full solution ensemble must be generated. On the other end, a random
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Full-Resid.
(1, p12) VN ROC R2-ROC FDM

200 3.1e-3 48e-3 231
(4.55,0.42) 400 3.1e-3 3.9¢-3 1178
800 3.3¢-3 42e-3  53.73

200 1.1e-3 1.4¢-3 0.66

(1,1.82) 400 1.1e-3 1.3e-3  3.34
800 1.2¢-3 1.7¢-3  15.17

Table 3: Left: Online computational time (seconds) with different grid sizes v N, when N = 40.
Right: Full model accuracy test. L% norm of the error in the zi-direction for different grid size

VN with (p1, p2) = (2.6,1.1).

selection of N parameters as our RB snapshots is a fast but crude method. Comparison
results of two steady-state test problems above are shown in Figure 3. Not surprisingly, the
exhaustive POD is the most accurate. Our R2-ROC is one order of magnitude worse than
POD, but in fact slightly better or comparable to the the best of the 20 random generations.
It is roughly one order of magnitude better than the median performance of the 20 random
generations.

101 ¥ ¥ ¥ ¥ 101
= POD
--R2-ROC &
=8-Min -
-©-Mean

Max

= POD
=©9-R2-ROC
=B~ Min
=©-Mean
Max

0 10 20 30 40 50 0 2 4 6 8 10
N N
Figure 3: Convergence comparison for the R2-ROC, exhaustive POD and (best, median, and

worst cases of) random generation approaches. On the left is for cubic reaction diffusion (23) with
VN =400, with the right being for steady viscous Burgers’ equation (20) with N' = 100.
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3.2 Time dependent nonlinear problems

In this section, we test the time-dependent equations corresponding to stationary problems
in the last section, namely viscous Burgers’ and cubic reaction diffusion equations.

3.2.1 Viscous Burgers’ equation

We test the viscous Burgers’ equation adopting settings similar to [44, 42]

U+ uly = P, + f(x), (x,t, 1) € (0,1) x (0,1] x D,
u(z,t =0;p) =0, (25)
u(0,t; 1) = o, u(l,t;p) = 6.

The authors of [44] takes D = [0.1,1], f = 0,7 = 1, At = 107*,(«, 8) = (—1,1) and monitor
the average error in a Frobenius norm-based metric,

Mtest

o~

|U’(7a/"’> _U(V';“)HF, ”U(,)H% — Z v(w,tl-)2

i—1 ||U(,7l,l,)||F weXN T

Error =
Miest

while the authors in [42] set D = [0.005,1], f = 1,7 = 2,At = 2-1075 (a, 3) = (0,0) and
observe the error in L?. We investigate R2-ROC results from both of these setups. The
results are showed in Figure 4. These results are similar to those of [44, 42]. When N = 10,
R2-ROC attains an accuracy around 10~! which gets much better when N = 15.

3.2.2 Nonlinear reaction diffusion problems

Next, we consider accordingly the following time dependent nonlinear reaction diffusion
equation,

up — poAu + u(u — py)° = f(x), in Q= [—1,1] x [-1, 1],
u =0 on 0f), (26)
u(x,t =0) = up(x).

Here f(x) = 100sin(27x;) cos(2mzs), and [u, uo] € D := [1,5] x [0.2,1]. The parameter
space D is discretized by a 128 x 32 uniform tensorial grid. Denoting the step size along the
w1 direction by hy, and the other by ho, we specify the training and test sets as follows,
Zrain = (1 :8h1 :5) x (0.2:2hy : 1),
Etest = ((1 + 2h1) : 4h1 . (5 — 2]11)) X ((02 + hg) . 4h2 . (]. — hQ))

For the truth approximation, we use backward Euler for time marching and the same non-
linear spatial solver as the steady-state case (24).
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Figure 4: Transient viscous Burgers’ result. On the top row are the error curves of R2-ROC with
N = 15 basis elements for the setup in [44] (left) and [42] (right). Plotted at the bottom row are
the actual L2 error, ||u™N (:, tx; i) — un(:, tg; p)|| and error indicator AREL (¢, ) as a function of
discrete time t;. The left, center and right plots show N = 5,10, 15, respectively, with parameter
values bring p = 0.005,0.01,0.1 and the setup as in [42].

Exponential convergence is evidenced in Figure 5 top left. We also report the p-component
of the parameter values selected by R2-ROC in the top middle. Note that the RB space is
built from the snapshots

k N

{u(t}w, Sp"), ot u”)}

n=1

That is, for each distinct parameter value pu”™ chosen by R2-ROC, there are k,» > 1 time

level snapshots {t., ... ,tﬁ‘ﬁn} C {to,t1,...,tn;,}. The red number by each p values in the
middle pane denotes this k,n. It is interesting to note that, consistent with the tendency
of RBM selecting boundary values of the parameter domain, our R2-ROC tends to select
multiple snapshots along time for the selected parameters when they are at the boundary of
the parameter domain.

To show the vast saving of the offline time for the R2-ROC approach, we present the
comparison in cumulative computation time for the L1-ROC, R2-ROC, and the high fidelity
truth approximations in Figure 5 top right. We observe that the “break-even” number of
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runs for R2-ROC is smaller than that of the L1-ROC which is much smaller than that of
the full simulation [17]. The fact that they are even less than the dimension of the RB space
underscores their efficiency. The bottom row of Figure 5 shows the collocation points in the
physical domain.
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Figure 5: Transient cubic reaction diffusion result. Top Left: Error curves of R2-ROC algorithm.
Top Middle: Selected parameters when Ny,., = 40. The number means corresponding parameter
is selected at many different time nodes. Top Right: Cumulative run time comparison. Collocation
points from solutions and residuals are shown at the bottom row from left to right respectively.

4 Conclusion

This paper proposes a novel reduced over-collocation method, dubbed R2-ROC, for effi-
ciently solving parametrized nonlinear and nonaffine PDEs. By integrating EIM/GEIM
techniques on the solution snapshots and well-chosen residuals, the collocation philosophy,
and the simplicity of evaluating the hyper-reduced well-chosen residuals, R2-ROC has online
computational complexity independent of the degrees of freedom of the underlying FDM,
and more interestingly, the number of EIM/GEIM expansion terms. This expansion would
have otherwise significantly degraded the efficiency of a traditional RBM when applied to
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the nonaffine and nonliner terms in the equation. The lack of such precomputations of
nonlinear and nonaffine terms makes the method dramatically faster offline and online, and
significantly simpler to implement than any existing RBM. For future directions, we plan
to extend R2-ROC from scalar to systems of nonlinear equations with nonaffine parameter
dependence.
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