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Abstract—Unmanned Aerial Vehicles (UAVs) are an emerging 

computation platform known for their safety-critical need. In 
this paper, we conduct an empirical study on a widely used 

open-source UAV software framework, Paparazzi, with the goal 

of understanding the safety-critical concerns of UAV software 
from a bottom-up developer-in-the-field perspective. We set our 

focus on the use of Bounding Functions (BFs), the runtime 

checks injected by Paparazzi developers on the range of variables. 
Through an in-depth analysis on BFs in the Paparazzi autopilot 

software, we found a large number of them (109 instances) are 
used to bound safety-critical variables essential to the cyber-

physical nature of the UAV, such as its thrust, its speed, and 

its sensor values. The novel contributions of this study are two 
fold. First, we take a static approach to classify all BF instances, 

presenting a novel datatype-based 5-category taxonomy with fine-

grained insight on the role of BFs in ensuring the safety of 
UAV systems. Second, we dynamically evaluate the impact of the 

BF uses through a differential approach, establishing the UAV 

behavioral difference with and without BFs. The two-pronged 
static and dynamic approach together illuminates a rarely studied 

design space of safety-critical UAV software systems.

Index Terms—unmanned aerial vehicles, bounding functions, 

safety

I. In t r o d u c t i o n

Unmanned aerial vehicles (UAVs) are an emerging platform 

with promising applications such as infrastructure inspection, 

precision agriculture, disaster search-and-rescue, and mer-

chandise delivery. Traditionally designed as a robotics and 

embedded system with minimal software support, the software 

stack of UAVs in recent years has been significantly enriched, 

making them a “flying” computer system in the genuine 

sense. Beyond the excitement, the main hurdle against the 

broader adoption of this promising technology is their stringent 

requirement on safety: any crash of the UAV is not only a 

computer safety problem, but also a public safety hazard.

Even though the safety-critical nature of UAVs is universally 

recognized, there is no universal definition of what safety 

really means for UAVs. Broadly, any behavior that deviates 

from the “intended behavior” is a safety violation. Existing 

research [1]-[7] generally takes a “top-down” approach: an 

expert may provide a specification of the intended behavior, 

either through domain knowledge, or through the wisdom 

from the broader domains of cyber-physical systems (CPS) 

or robotics. Once the specification is given -  whether in the 

form of invariants, constraints, pre-/post- conditions, or logic

-  the safety of a UAV system can be verified, monitored, or 

enforced.

A. An Empirical Perspective on UAV Software Safety

In this paper, we take a bottom-up approach to empirically 

study the safety of UAV software. In a nutshell, we choose 

to listen to the UAV software developers in the field, and 

reverse-engineer what they believe the most safety-critical 

software components are. Despite early UAV systems often 

being developed in a proprietary fashion, recent trends in open- 

source development for UAV systems present an opportunity. 

For example, the software framework that serves as the focus 

of our empirical study, Paparazzi 1 [8], is a popular open 

software (and hardware) ecosystem with more than a decade 

of development and numerous active contributors. It provides 

unified software support from autopilot to ground station, 

with diverse support for multi-copters, fixed-wing, helicopters 

and hybrid aircraft. If domain experts are the best source 

for understanding the “intended behavior,” what can we learn 

about UAV safety from UAV software developers themselves?

We focus on how Bounding Functions (BF) are used in the 

Paparazzi autopilot software, arguably the most safety-critical 

components of the UAV software. A BF is a dynamic check 

inserted by programmers to ensure a variable -  which we call a 

Bounded Variable (BV) -  stays within a prescribed range. For 

example, variable g v _ z _ re f  in Paparazzi’s navigation guid-

ance module is frequently bounded by a BF within the range 

[cu r_z  -  GC_MAX_Z_DIFF, c u r_ z  +  GC_MAX_Z_DIFF]. 

Here, the bounded variable g v _ z _ re f  represents the al-

titude the UAV is guided to for the next time interval; 

variable c u r_ z  represents the current altitude of the UAV, 

and GC_MAX_Z_DIFF is a constant. Intuitively, this BF 

instance says that the UAV should not alter its altitude by 

GC_MAX_Z_DIFF or more within a time interval. This is 

aligned with our high-level understanding on UAV safety that 

an excessive change in altitude may jeopardize the stability of 

the UAV.

The premise of our approach is that the use of BFs is aligned 

with a UAV-specific safety concern. After all, the semantics of 

bounding a variable is akin to introducing an invariant over

1https://wiki.paparazziuav.org/
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the variable: the application of the bounding function is a no-

op if the variable is already in the range, or an assignment 

to the variable with the bound value otherwise. If we take 

the programmer’s perspective, the need to bound a variable is 

aligned with her concern that an “out-of-range” variable may 

cause errors in the program.

We take a two-pronged approach in validating our premise. 

Statically, we identify all BF instances in the source code, 

and provide a detailed datatype-based taxonomy of the BF 

uses. We find a large number of BF uses indeed reflecting the 

safety-critical concerns of UAV systems (§ III). Dynamically, 

we perform a differential simulation to illustrate the impact of 

BF uses on UAV behavior. We find BF uses, and their lack 

of use, do have impact on the dynamic trace of safety-critical 

values of the UAV, from trajectory to pose, and hence cyber-

physical behavior of the UAV (§ IV). We now elaborate these 

two contributions in more detail.

B. A  Datatype-based Taxonomy

A novelty of our empirical study is that we classify the 

use of BFs based on the datatype of the BVs they intend 

to bound. In UAV software, a large number of values have 

primitive types such as i n t  or f l o a t .  A key insight gained 

in our exploration is that the BVs fall into a small set of well- 

known UAV parameters reflecting their cyber-physical nature, 

which we call physical variables. For example, we find a 

large number of f lo a t- ty p e  variables representing the 3 pose 

parameters that define the orientation of a UAV: the pitch, 

the roll, and the yaw. In other words, these variables carry 

higher-level semantics more than a floating point number. This 

insight recalls the classic programming abstraction of abstract 

data type (ADT) [9]: the f l o a t  value above indeed logically 

encapsulates the floating number and a specification on what 

a pitch (or roll or yaw) parameter of a UAV should conform 

to. In this study, we classify our BF instances based on the 

logical datatypes of their corresponding BVs, as follows:

• Trajectory Management (TM) BF instances that pro-

vide safe navigation to the UAV, mainly bounding phys-

ical variables such as position, distance, and heading.

• Sensor Management (SM) BF instances that provide 

valid sensor readings, bounding physical variables di-

rectly related to sensor values.

• Speed and Acceleration Management (SAM) BF in-

stances that ensure safe speed and acceleration to engine, 

bounding these two physical variables.

• Engine Management (EM) BF instances that provide 

safety to the engine by bounding 2 physical variables: 

the thrust and throttle of the engine.

• Pose Management (PM) BF instances that maintain 

safety for UAV orientation. These BF instances mainly 

bound 3 physical variables, pitch, roll, yaw of the UAV.

Within each class, we perform an in-depth analysis on how 

BFs are used in Paparazzi, defined as use scenarios. Taken the 

view of ADTs, each use scenario can be viewed as a specifica-

tion — in the form of a BF — of that datatype. Overall, our 

novel datatype-based taxonomy can be summarized as “not

all floating point values (or integers) are created equal.” By 

refining them into datatypes, their logical role in UAV software 

starts to emerge. As it turns out, except BF instances used for 

defining generic algorithms (such as control and geometry), 

the remaining BF instances all fall into the 5 categories above. 

In other words, despite the large code base of UAV software 

and despite the numerous instances of BFs, UAV developers 

concentrate their efforts of performing dynamic checks on a 

small set of physical variables. This cannot be accidental: it is 

a conscious reminder that this small set of physical variables 

are likely to play a pivotal role in defining what being safety- 

critical means for UAV systems.

C. A  Differential Simulation

To cross-validate whether our discovered BFs indeed have 

an impact on the correctness of UAV behavior, we perform 

a fine-grained simulation on the impact of BFs. We adopt a 

differential approach: for each instance of BF use, we perform 

one simulation over the original Paparazzi program, and the 

other over the same program except that the BF is removed. 

At its core, our approach can be viewed as a form of A/B 

testing. The interesting design question lies in how difference 

is defined. Our approach relies on analyzing the difference 

over the traces o f physical variables, such as position traces 

(trajectories), pose traces, and speed traces. This approach, 

black-box in essence, is aligned with our intuition on the 

safety of UAV systems: if the UAV behaviors with the BF 

and without the BF are observably different through the lens 

of physics, then the BF is likely impacting the safety of the 

UAV.

D. Research Questions and Results

In this paper, we report the first empirical study on the 

bounding function uses in UAV software. It complements 

existing top-down approaches with a bottom-up perspective 

focusing on answering two research questions:

• RQ1: Can the BF instances be classified to logically 

reflect the use of safety-critical physical variables?

• RQ2: Do BFs have impact on the dynamic cyber-physical 

behavior of UAV software?

We identified 241 BF instances through analyzing Pa-

parazzi’s 2049 source files in autopilot software modules. We 

grouped 109 instances related to physical variables into the 

5 categories (described earlier) most relevant to the safety 

of UAVs. Our dynamic differential analysis reveals that nu-

merous BFs have observable impact on the trace of physical 

variables. More specifically, 30 out of 64 simulatable cases 

show difference in flight trajectory, pose, etc. This provides 

experimental justification for our BF-based approach: the use 

of BFs coincides with safety-critical behavior of UAVs. While 

conducting the trace-based analysis, we also uncovered a bug 

in Paparazzi, whose fix has been accepted.

Broadly and philosophically, our study is a quest for answers 

on what makes UAV software safety-critical. The top-down 

approach taken by verification frameworks and tools defines 

safety as a priori properties or invariants. To do so, one needs
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to resort to domain experts to come up with the definitions of 

these properties or invariants first. Our bottom-up developer- 

in-the-field approach identifies the use of BFs with a call for 

attention from developers, and the deviation in the dynamic 

traces of physical variables with a cause of safety concern “as 

the developer’s program says so.” Overall, our approach and 

the existing approach complement each other: our approach 

discovers candidate invariants related to safety (but some may 

be deemed not by an “oracle” domain expert), whereas the 

existing approach focuses on invariants agreed upon a priori 

(but they may be incomplete in the eyes of the “oracle” domain 

expert). The two approaches together converge on revealing 

the elusive essence of safety in UAV software.

Overall, this paper makes the following contributions:

• the first “developer-in-the-field” empirical study on the 

safety-critical components of UAV software, based on 

bounding functions

• a datatype-based taxonomy on bounding function uses, 

focusing on physical variables

• a systematical differential analysis on the impact of BFs 

in UAV behavior through comparing and aligning traces 

of physical variables

• a tool P B F -D e te c to r  (Paparazzi Bounding Function 

Detector) for automatically identifying BF instances in a 

real-world code base with complex compilation schemes 

(decentralized compilation with 78 makefiles mixed with 

pre-processing code generation)

II. A P r i m e r  o n  UAV F l i g h t  Co n t r o l

The most widely known UAVs fall into two categories: 

fixed-wing aircraft and rotary-wing aircraft. Fixed-wing air-

craft are featured with special-shaped wings that can make 

use of forward airspeed to generate lift [10], while rotary-

wing aircraft, also referred to as rotorcraft, use rotating wings 

called blades to fly [11].

A. Engine and Pose

The driving force produced by the engine is commonly 

referred to as thrust or throttle. Engine management is directly 

associated with the speed and the acceleration of the UAV. 

UAVs are rigid bodies operating in 3-D space. Therefore, their 

position can be represented by three numbers (x, y, z ) in a 

3-D coordinate system. Similarly, their pose (orientation) is 

represented by three angles (also known as Euler angles) in 

the 3-D coordinate system. These angles are roll, pitch and 

yaw. The pose is also referred as the attitude. An illustration 

of the three angles can be found in Figure 1. Fixed-wing 

aircraft vary their attitude by utilizing flight control surfaces. 

Rotorcraft vary the attitude by varying the rotational speeds 

of the motors spinning in opposite directions.

B. Navigation

Navigating a UAV is usually split into two steps - path 

planning and trajectory planning. Path planning is the step of 

taking the objectives of a fight task. Path planning is usually

Fig. 1: A Visualization of UAV control (Left: attitude angles; 

Center: their application on a fixed-wing aircraft; Right: their 

application on a quadrotor) [12]

application-dependent, written in the form of flight plans in Pa-

parazzi. For example, a typical flight plan may include a step- 

by-step description of take-off, a circle navigation task, and 

then landing. The flight plan is translated into a trajectory. The 

trajectory is defined through a series of waypoints, positions in 

the 3-D space, with the Z-axis representing altitude. Trajectory 

planning takes the next waypoint to be visited and plans a 

thrust and pose to set the UAV to reach that waypoint. Given 

the required thrust and pose, the flight controller controls the 

actuators (such as engines) to achieve that thrust and pose. 

While in motion, the UAV points to a direction, which is called 

heading. A related concept is the course, the direction that the 

UAV moves toward. Due to conditions such as wind, heading 

and course are not always the same.

C. Paparazzi Flight Controller Software

Paparazzi UAV software suite is a collection of modules 

capable of flying on a variety of UAVs. It is highly config-

urable with various airframes, large suite of sensors, several 

controller algorithms as well as the ability to use the controller 

software in simulation and on real hardware.

The autopilot software is capable of integrating with several 

sensors, such as GPS, Inertial Measurement Unit (IMU), 

Sonar, and barometer. Sensor values are fed into the Inertial 

Navigation System (INS) that estimates position, speed, and 

acceleration of the UAV. Similarly, the Attitude and Head-

ing Reference System (AHRS) performs attitude estimation. 

Together, the INS and the AHRS help the flight controller 

keep an estimate of the state of the UAV. This state is then 

used to control the UAV through the guidance and stabilization 

modules.

As is the case for all aerodynamic systems, control-theoretic 

algorithms are widely used to provide feedback control in 

UAVs’ stability management and autonomous control. Two 

popular algorithms used by Paparazzi are Proportional Inte-

gral Derivative (PID) control [13] and Incremental Nonlinear 

Dynamic Inversion (INDI) [14].

III. Un d e r s t a n d i n g  Bo u n d i n g  Fu n c t i o n s  

St a t i c a l l y

In this section, we describe our effort in understanding BF 

uses in Paparazzi through a detailed analysis on the source 

code, providing answers to RQ1. The centerpiece of this study 

is a taxonomy that classifies BF uses based on the physical 

variables they are applied to, in § III-C. Before we detail this
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TABLE I: Bounding Functions in Paparazzi

Bound forms Function names

double-ended bounds Bound
BoundInverted 
BoundWrapped 
VECT3 BOUND CUBE 
VECT3 BOUND BOX 
EULERS BOUND CUBE 
RATES BOUND CUBE 
RATES BOUND BOX 
Clip

absolute bounds BoundAbs
RATES_BOUND_BOX_ABS
DeadBand
ClipAbs

upper bounds BoundUpper
normalization FLOAT ANGLE NORMALIZE 

INT32 ANGLE NORMALIZE 
INT32_COURSE_NORMALIZE 
NormRadAngle

special bounds SATURATE_SPEED_TRIM_ACCEL

result, we start with a description of our taxonomy rationale 

in § III-A, and methodology in § III-B.

A. The Rationale o f Classification

UAVs are cyber-physical systems that interact with the 

physical world. Their safety is defined with respect to this 

interaction, i.e., their behavior in the physical world. Our 

classification of BFs is based on this observation and thus 

derived from the datatypes o f physical variables associated 

with the BFs. Our five-category taxonomy corresponds to 

the main functionalities of the UAV that define or impact 

interaction with the physical world. By organizing BF uses in 

this manner, we believe that this study will be useful for future 

UAV control software as they will still need to fundamentally 

interact with the physical world in the same manner: they will 

need to navigate (trajectory), control their navigation (speed 

and acceleration), understand their surroundings (sensors), 

understand their orientation with respect to their surroundings 

(pose), and manage their locomotion (motors). As our study 

shows, the vast majority of BFs in Paparazzi revolve around 

these five types of physical variables. This cannot be acciden-

tal: these five types of cyber-physical interactions are essential 

to the nature of UAV software.

B. Methodology

a) BF Identification: We have developed a compiler pass, 

implemented as a Clang plugin 2, to identify BF instances in 

the Paparazzi code base. Our plugin defines a baseline frame-

work, P B F -D e te c to r , for future research with advanced 

program analysis and optimization. Our analysis focuses on 

Paparazzi’s autopilot software modules, in the s w /a i r b o r n e  

directory, version v5.14.0_stable.

For our goal of identifying BFs, Paparazzi presents a unique 

advantage: a set of pre-defined BFs in the forms of C macros

2https://clang.llvm.org/

consistently used by Paparazzi developers. Our study focuses 

on the use of these macros, 19 in total as listed in Table I. 

These macros are manually identified by inspecting all . h  

files, and a macro qualifies if it bounds a variable within a 

given range. Some BFs are general, such as Bound, while 

others are more specific. Our Clang plugin parses C files 

to identify the 19 forms of BFs in the AST. One technical 

hurdle is that macros are expanded in Clang before the AST is 

generated. To address this, we have redefined 19 corresponding 

C functions to the macros in Table I. The Paparazzi source 

remains unchanged with a small number of exceptions that 

we documented at our project website (see URL in § VII).

b) Makefile-Aware Identification: A significant engineer-

ing challenge in analyzing Paparazzi’s code base results from 

the complex compilation process inherent in Paparazzi. Unlike 

high-level applications where the compilation process is often 

a “one-off” process that reaches all files in all folders, em-

bedded system software like Paparazzi must consider diverse 

configurations with complex customization and platform- 

dependent cross-compilation. Paparazzi adopts a hierarchical 

compilation with 78 C Makefiles distributed at various levels 

of the Paparazzi directories, and the dependencies between 

Makefile targets are complex. To further complicate the matter, 

many programs are generated on the fly during the compilation 

process with generators written in OCaml and Python.

Our compiler pass is Makefile-aware: we modified the 

decentralized Makefiles, and as a result, P B F -D e te c to r  

can faithfully follow the same dependencies as in compila-

tion. This not only allows us to reach all source code that 

can be reached by Paparazzi compilation, but also reach it 

in a semantic-aware manner: every name on the AST of 

every reachable file must have been defined (because the 

program compiles!). The P B F -D e te c to r  modification to 

handle hierarchical Makefiles in our compiler analysis was 

labor-intensive, but it is rewarding for building a toolchain for 

Paparazzi to integrate with Clang/LLVM.

c) BF Selection: In total, we identified 241 instances 

of BFs from autopilot program modules spanning 2049 files 

in 331K LOC of Paparazzi source code. We further cross- 

validated the number of instances through a text-based search. 

Among them, our study excludes instances not directly related 

to the safety of UAV software, which fall into 3 categories: 

(a) 71 BF instances in core control algorithms (PID/INDI). 

These BF instances are part of the algorithm design, such 

as PID and INDI; they are “generic” in nature and do not 

vary from a UAV implementation to a non-UAV implemen-

tation. As a standard robotics problem, bounding and tuning 

generic control parameters is an independent and well-studied 

problem [15]. It should be made clear that we only leave out 

generic control algorithm BF uses here: if a physical variable, 

say the roll value of the UAV, relies on the PID control and is 

bounded while interacting with the PID, it is included in our 

study. (b) 45 BF instances used for geometric transformation. 

These BFs occur as parts of the trigonometry-based algorithms 

solely related to geometry. For example, a common use is 

to normalize an angle within the range of (-2n , 2n). (c)
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15 BF instances in vision/image processing algorithms and

I instance used for the remote control switch. For instance, 

BFs frequently occur for managing auto white balance, image 

refinement, sub-pixel resolution, and auto exposure. For any 

vision BF instances that impact control algorithms (e.g., optic- 

flow-based landing), we have included them into our study. 

Overall, our guiding principle here is to conservatively leave 

out BF instances unrelated to the safety-critical nature of 

UAV software, and when in doubt, an instance is included in 

our study. We have documented every BF instance for cross 

reference, including those we left out in the study on our 

project website.

There are two take-away messages from our BF selection 

process. On one hand, it shows some BF instances are not 

aligned with our intuition of safety-critical concerns. In that 

sense, these instances are the “false positives” to the premise 

of our empirical study. On the other hand, the more striking 

observation is that once the well-carved categories of (a)(b)(c) 

BF instances are removed, every remaining instance fits nicely 

with one of 5 categories intimately linked to the safety of 

UAVs, as we shall see next.

C. A Taxonomy o f Bounding Function Uses

For the remaining 109 BF instances, we conducted an in-

depth manual inspection, understanding the functionality of 

the program fragment each appears, and the purpose of each 

BF. As it turns out, all fit nicely into the 5-category taxonomy, 

which we present in Table II. In this table, observe that we 

further refine each category into a number of use scenarios. 

If each category is intuitively viewed as an ADT, each use 

scenario serves as a specified behavior of that ADT. In the 

rest of this section, we focus on trajectory management and 

sensor management as examples to demonstrate our approach. 

A description of all categories with the same level of detail 

can be found in a technical report at our project website.

1) Trajectory Management: To follow a trajectory, the UAV 

needs to follow waypoints, including turning occasionally 

(in the horizontal direction) and changing altitude (in the 

vertical direction). The physical variables related to trajectory 

management are distance and heading (change). We identified

II instances of BFs applied for trajectory management, which 

we divided into 4 use scenarios.

a) Safe Homing: (a) Use Context: After performing the 

flight task, the UAV should go back to the ground station.

(b) Datatype: distance (X and Y axis). (c) The Need for BFs: 

to avoid catastrophic consequences due to battery drain, a UAV 

(generally) should not fly too far way from the ground station.

(d) Example: In this code snippet [16], the distance between 

the UAV waypoint and the home waypoint is computed, and 

bounded by variable m ax_d ist_ fro m _ h o m e, the maximum 

distance between them. (e) Occurrence: 3 instances.

b) Safe Altitude Change: (a) Use Context: UAV systems 

fly in a 3-D space; altitude change is a basic task. (b) Datatype: 

distance (Z axis). (c) The Need for BFs: a drastic change in 

altitude may affect the stability of the UAV. (d) Example: In

TABLE II: Classification of Bounding Function Uses

Cate-
gory

Use Scenario Datatype Occur-
rence

TM Safe Leg Distance in 
Guidance

Distance (X and 
Y Axis)

4

Safe Heading Change Heading Change 3
Safe Homing Distance (X and 

Y Axis)
3

Safe Altitude Change Distance (Z Axis) 1
SM Safe Sensor Fusion Weight for Sensor 

Fusion
6

Safe Sensor Reading 
Interval

Time Interval 1

Safe Sensor Readings Sensor Reading 1
SAM Safe Acceleration Re-

quest as Engine Input
Acceleration 8

Safe Acceleration for 
Navigation

Acceleration 4

Safe Remote User 
Speed Input

Speed 3

Safe Wind Speed Speed 2
EM Safe Motor Mixing Thrust/Throttle 8

Safe Landing Thrust/Throttle 7
Safe Motor Speed 
Change

RPM 5

Collision Avoidance Thrust/Throttle 1
PM Safe Pose Change 

Rate
Pitch/Roll/Yaw 37

Safe Pose Maintenance Pitch/Roll/Yaw 12
Safe Pose Change 
Time Interval

Pitch/Roll/Yaw 
Change Time 
Interval

2

Safe Turn Coordination Roll 1

Fig. 2: Carrot-Based Guidance for Heading Change

this code snippet [17] , the altitude change between two iter-

ations of the control loop is bounded by GV_ma x _ z _ d i f f , 

the maximum distance between the previous waypoint and the 

current waypoint on the Z axis. (e) Occurrence: 1 instance.

c) Safe Heading Change in Guidance: (a) Use Context: 

Paparazzi follows the widely used carrot-based approach [18] 

for trajectory management: a virtual, continuously updated 

waypoint not far from the current position of the UAV to guide 

the next “leg” of movement of the UAV, similar to using a 

carrot to attract a mule to move forward. As shown in Figure 2, 

the carrot-based guidance implemented by Paparazzi for circle 

navigation assumes a constant distance between the current 

position of the UAV and the carrot, as CARROT_DIST. By
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adjusting the c a r r o t_ a n g le ,  the UAV may change its head-

ing. (b) Datatype: heading (change). (c) The Need for BFs: 

a drastic change in heading may affect the stability of the 

UAV, and affects the correctness of the circle trajectory.

(d) Example: In Listing 1 which concerns circle navigation, 

the c a r r o t _ a n g l e  is bounded to the range of [ 16, 4 ]. The 

rest of the variables are illustrated in Figure 2. (e) Occurrence: 

3 instances.

1 void nav_circle(struct EnuCoor_i *wp_center, int32_t radius

)
2 {
3 ...
4

5 // direction of rotation
6 int8_t sign_radius = radius > 0 ? 1 : -1;
7 // absolute radius
8 int32_t abs_radius = abs(radius);
9 // carrot_angle

10 int32_t carrot_angle = ((CARROT_DIST << INT32_ANGLE_FRAC)
/ abs_radius);

11 Bound(carrot_angle, (INT32_ANGLE_PI / 16),
INT32_ANGLE_PI_4);

12 carrot_angle = nav_circle_qdr - sign_radius *
carrot_angle;

13
14 ...

15 }

Listing 1: Safe Heading Change in Guidance [19]

d) Safe Leg Distance in Guidance: (a) Use Context: 

For linear trajectories that do not involve heading change, 

Paparazzi also uses carrot-based guidance. In this setting, 

the distance between the starting point of the leg and the 

carrot, which is called leg distance, is dynamically adjusted. 

(b) Datatype: distance (X and Y axis). (c) The Need for BFs: 

if the leg distance is set too long, the UAV may go “past” 

the waypoint of the target point. Deviating from the planned 

trajectory is a correctness concern. (d) Example: In this code 

snippet [20] which concerns route (i.e., linear) navigation, 

the n a v _ le g _ p r o g r e s s  is bounded to guarantee that the 

next leg of flight does not surpass the target waypoint.

(e) Occurrence: 4 instances.

2) Sensor Management: As important components of a 

UAV, sensors play an irreplaceable role in UAV’s state estima-

tion, e.g., UAV’s current attitude (pitch/roll/yaw). An accurate 

estimation based on sensor data is also critical for UAV 

safety. The physical variables related to sensor management 

are sensor readings, the time interval among readings, and 

the weight when multiple sensor readings are weighted. We 

identified instances of BFs applied for sensor management, 

which we divide into 3 use scenarios.

a) Safe Sensor Readings: (a) Use Context: The raw 

sensing data may be unreliable, either because the sensor is 

faulty, or because the reading may only reflect a transient state. 

(b) Datatype: sensor reading. (c) The Need for BFs: The need 

for bounding is sensor-specific. Take the current sensor for 

example. Due to overflow on high current spikes (fast electrical 

transients in current), the reading may be magnitudes higher 

than normal readings. This would impact battery estimation, 

crucial for estimating the remaining flight time. (d) Example: 

In this code snippet [21] , the current sensor keeps its readings

in e l e c t r i c a l . c u r r e n t ,  which is in turn bounded to a 

safe range [-65000, 65000]. (e) Occurrence: 1 instance.

b) Safe Sensor Reading Interval: (a) Use Context: In 

UAVs, sensors are continuously reading. In some scenarios, the 

time interval between different readings plays a crucial role in 

physical estimation. For example, as an application of Kalman 

filter [22], the UAV can use data from GPS and barometer at 

different time intervals to estimate its vertical position and 

velocity. (b) Datatype: time interval. (c) The Need for BFs: 

if there is a significant delay between two intervals, the 

estimation may be inaccurate, which in turn severely impacts 

the decision-making process of the UAV. (d) Example: In 

this code snippet [23] , the variable d t  represents the time 

interval between two GPS readings. It is bounded into the 

range [0.02, 2] seconds. The variable is used by Kalman filter 

(a l t_ k a lm a n )  for the estimation of the UAV’s altitude and 

vertical speed. (e) Occurrence: 1 instance.

c) Safe Sensor Fusion: (a) Use Context: Complementary 

filter [24] combines sensor readings from the accelerometer 

and the gyroscope to estimate UAV attitude (pitch/roll/yaw). 

(b) Datatype: weight for sensor fusion (c) The Need for BFs: 

To ensure that data collected from both sensors are consid-

ered adequately, their proportions in attitude estimation need 

bounding in order to reach a balance between these two 

components. (d) Example: In Listing 2, a h r s _ f c .w e ig h t  

computed at line 9 reflects the role of accelerometer plays 

in attitude estimation, which is influenced by f a b s ( 1 . 0  -  

g_m eas_norm ), the deviation between the measured grav-

itational acceleration and 1g. In the case of vibrations, large 

deviations from 1g may cause a decrement of the weight for 

the accelerometer data if bound is not introduced, ultimately 

causing the attitude estimate to drift [25]. Attitude estimation 

is critical for the safety of UAVs. In the aviation history, a 

catastrophe with the same root cause is Lion Air Flight 610, 

which was caused by incorrect angle-of-attack sensing (and 

consequent activation of the anti-stall software to repeatedly 

pitch the plane downward) [26]. (e) Occurrence: 6 instances.

1 void ahrs_fc_update_accel(struct FloatVect3 *accel, float
dt)

2 {
3 ...
4
5 // compute ratio between measured gravitational

acceleration and the standard value
6 const float g_meas_norm = float_vect3_norm(&

filtered_gravity_measurement) / 9.81;
7
8 // compute the weight of accelerometer in attitude

estimation
9 ahrs_fc.weight = 1.0 - ahrs_fc.gravity_heuristic_factor *

fabs(1.0 - g_meas_norm) / 10.0;
10
11 Bound(ahrs_fc.weight, 0.15, 1.0);
12
13 ...
14 }

Listing 2: An Example of Sensor Fusion [27]
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IV. Un d e r s t a n d i n g  B o u n d i n g  Fu n c t i o n s  

Dy n a m i c a l l y

In this section, we experimentally evaluate the impact of 

BFs on UAV behavior, answering RQ2. We start with a 

description of our rationale in § IV-A and on experiment setup 

in § IV-B, and the core results from differential simulation will 

be described in the rest of the section with a summary and 

several more detailed case studies.

A. The Rationale o f Differential Simulation

As we stated earlier, UAVs are cyber-physical systems that 

interact with the physical world. In UAV software, the traces 

of UAV physical properties — pitch/roll/yaw, trajectory, or 

altitude as time series — are essential for capturing their 

observable behavior. When the removal of BFs leads to 

observable difference in the trace of these physical variables, 

it should be a concern for attention.

Our differential simulation aims at achieving two goals. 

First, it helps confirm that the BF instances indeed impact 

the dynamic physical behavior of UAVs. A premise with the 

“developer-in-the-field” approach is that we trust the experi-

ence and wisdom of the developers. From the perspective, the 

dynamic approach here serves as the trust but verify step: we 

would like to confirm BFs do make a difference in defining 

the physical behavior of UAVs. With that, answers to RQ2 

serve as an evidence of the significance of our taxonomy 

proposed for RQ1. Second, the dynamic approach also serves 

as a quantitative study of the safety-critical impact of BFs. 

It complements the qualitative study of our static (taxonomy) 

approach by answering how much impact BFs have on the 

safety of UAV software.

B. Experiment Setup

We use Paparazzi’s built-in simulator for recording flight 

trajectories. We further use Paparazzi’s log plotter to generate 

traces on real-time physical variables, such as speed, altitude, 

and roll-pitch-yaw values. The two complement each other, 

with the former useful for elucidating macro-level navigation 

patterns, and the latter useful for characterizing micro-level 

time-dependent physical behavior.

Among the 109 BF instances, we are able to conduct 

simulation for 64 of them. Some programs with BF instances 

require manual radio control (RC) inputs. We have developed a 

script to ensure RC inputs are programmably given, so that for 

repetitions of the same experiment, identical RC commands 

with identical timing are inputed. The not-simulatable cases 

fall into two categories. First, the compilation and execution 

of some program fragments are hardware-dependent, such as 

requiring camera or sensor support. The Paparazzi simulator 

does support physical simulation, but it does not include 

features such as optical flow (for cameras) and some low-level 

sensors. Second, some code fragments where BFs occur are 

experimental features that cannot be built with any compatible 

aircraft. For example, no existing aircraft in Paparazzi is com-

patible with the module s t a b i l i z a t i o n _ f l o a t _ e u l e r ,  

so we cannot simulate any BF instances in that module.

TABLE III: Simulation Result Summary (S-Diff: Single-BF 

Simulation Different Results; M-Diff: Multi-BF Simulation 

Different Results; Same: No Difference in Results; Non-Sim: 

Not Simulatable)

Category S-Diff M-Diff Same Non-Sim Total

TM 7 0 2 2 11
SM 3 0 4 1 8
SAM 5 4 8 0 17
EM 2 0 5 14 21
PM 3 6 15 28 52

TABLE IV: Selected Differential Analysis BF Instances

Label File Name BF Line Number

A ahrs_float_cmpl 253
B common nav 135
C nav_gls 150
D nav_gls 181
E nav smooth 174
F attitude ref saturate naive 79, 82, 83, 84 (multi-BF)
G guidance_h_ref 240, 241 (multi-BF)

For each simulatable BF instance, we perform two exper-

iments: (1) a simulation of the autopilot with a pre-defined 

flight plan (see § II-B) where the code with the BF instance 

is called; (2) a simulation with the same flight plan with the 

BF is removed. We compute whether the traces from the two 

experiments are different, where difference is defined as the 

relative error in the trace values of physical variables (roll, 

pitch, yaw, thrust, etc.) from the two simulations above. We 

repeat each pair of simulations 5 times. The data across the 5 

runs are averaged out with respect to timestamps.

It is noteworthy that when there is more than one BF in-

stance in the same function, removing one may have no impact 

on the trajectory or physical variable traces, but removing 

multiple can. From now on, we refer to the experiments that 

involve the removal of multiple BFs in the same function at 

the same time as multi-BF differential simulation, and refer to 

the one-BF-a-time experiments as single-BF differential sim-

ulation. Multi-BF differential simulation is performed when 

single-BF differential simulation for each BF in a function 

does not show any difference.

C. Result Summary

The results from the experiments fall into 4 categories, 

which we summarize in Table III. If our simulation shows 

difference in a single-BF differential simulation, we classify 

the involved instance as “S-Diff”. Otherwise, if difference is 

shown in a multi-BF differential simulation, we classify the 

involved instances as “M-Diff”. The rest of simulatable in-

stances are classified as “Same”, and non-simulatable instances 

are classified as “Non-Sim”. There is no overlap between 

the categories. For repeated experiments, we only mark an 

instance as “different” when 5 repeated experiments all show 

a difference exists: in physical simulation, small variations
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(h)

Fig. 3: Relative Errors in Differential Analysis (Each sub-figure represents a distinct physical variable. Each bar represents a 

BF case, whose height is the mean and the range line is the standard deviation. The label to the left of each bar indicates a BF 

instance, whose details are described in Table IV. Data is presented in log scale, where 100 (1) implies 100% relative error.)
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Fig. 4: Pearson’s Correlation Coefficients (PCCs) in Differential Analysis (Each sub-figure represents a distinct physical variable. 

Each bar represents a BF case, whose height is the PCC. The label at the bottom indicates a BF instance, whose details are 

described in Table IV. A PCC value over 0.7 empirically indicates strong correlation.)

are common, so we wish to be conservative to make sure all 

repeated experiments agree.

As we can see in the S-Diff and M-Diff columns, nearly half 

of the instances we can simulate produce different results when 

comparing executions with or without BFs. In other words, 

the BFs indeed play an important role in safeguarding the 

correctness of programs and consequently the safety of UAVs.

In our differential analysis, we compute the averaged rel-

ative error between the measured physical variable value of 

the program with the BF, and the one without. We elide yaw

data for brevity. Figure 3 shows the result for a subset of 

BF instances, whose details can be found in Table IV. The 

complete results are included in the repository. Three concrete 

observations can be made. First, BFs have non-equal impacts 

on physical variables. For example, we can observe that BF 

cases A, B, and G have large impacts on the majority of 

physical variables, whereas BF case E has a minor impact on 

nearly all variables. Second, the same BF instance may have 

different impacts on different physical variables. For example, 

BF case A has a larger impact on the Z axis of positioning
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(altitude) (see Fig. 3c) than the Y axis (see Fig. 3b). As 

another example, the relative error of BF case G stands out in 

trajectory-related physical variables (see Fig. 3d for example) 

than speed-related variables. Third, the same physical variable 

may be impacted by different BF instances in different degrees. 

For example, speed is significantly impacted by BF cases A 

and B, but not others (see Fig. 3g).

To gain a finer-grained analysis, we further computed the 

similarity of the two traces in a timestamp-wise manner. 

Figure 4 shows the Pearson’s Correlation Coefficients (PCCs) 

of the with-BF and without-BF traces. The most important ob-

servation is that PCC is rarely over 0.7, the golden standard for 

“strong” correlation. In other words, without BFs, a program 

would cause noticeable behavioral change to the UAV in a 

large number of BF instances, as manifested through location 

or pose or speed.

Take BF case E for example. Recall that in the earlier 

relative error figure, this BF has a small relative error; the 

PCC results however tell a different story: a timestamp- 

wise alignment of traces is poor for the majority of physical 

variables, especially altitude, pitch, row, and speed on the 

X/Y dimensions. In this example, the BF is used to bound 

the physical variable of ground speed. With its removal, the 

UAV not only has significant ground speed fluctuation, but 

also leads to functuations in other physical variables. The 

difference between relative error and PCC as metrics is that the 

latter is time-dependent. As a result, PCC can capture behavior 

differences in the presence of (time-dependent) fluctuation 

despite the “mean” remains stable, a goal the relative error 

cannot achieve.

Together, these experiments show that BFs do significantly 

impact UAV behavior. As physical variables play a pivotal role 

in safety-critical UAV behavior -  from trajectory management 

to pose management and so on -  our experiments demonstrate 

the importance of BFs in safety-critical UAV software.

In the rest of this section, we highlight 3 BF instances and 

their impact on preserving the UAV behavior.

D. Case Study: Turning Angles

In § III-C1c, we discussed the bounded variable 

c a r r o t _ a n g l e  bounded within the range [ 16, f  ] in function 

n a v _ c i r c l e ,  which is used by Paparazzi to perform a circle 

task. With the safeguard of the bounding function, the UAV 

circles around normally as is shown in Figure 5a, where the red 

actual trajectory fits nicely with the green desired trajectory.

However, if we remove the bounding function, as is shown 

in Figure 5b, the trajectory is irregular at the beginning and 

later follows a stable oval orbit. This deviation stems from the 

drastic angle variation c a r r o t_ a n g le .

E. Case Study: Takeoff Speed

As an example of multi-BF differential simulation, Listing 3 

shows a code snippet where removing only one BF does not 

make a difference while removing both does. In this example, 

s p  represents the vertical speed setpoint computed by the 

PID algorithm, and i n c r  represents its deviation from the

(a) (b)

Fig. 5: A Case Study on Turning Angles (a) with-BF trajectory 

(b) without-BF trajectory

Fig. 6: Multi-BF Differential Simulation on Takeoff Speed

current speed setpoint v _ c t l_ c l im b _ s e tp o in t .  i n c r  

is added to v _ c t l_ c l i m b _ s e t p o i n t  in the end. If we 

only remove the BF on line 7, the excessive value would be 

bounded on line 10. Similarly, if we remove the latter, since the 

former has already bounded sp, the following i n c r  is thus 

not likely to be excessive. However, when we remove both, 

v _ c t l _ c l i m b _ s e t p o i n t  can grow by a sharp increment.

1 void v_ctl_altitude_loop(void)
2 {
3 ...
4
5 float sp = v_ctl_altitude_pgain * v_ctl_altitude_error +

v_ctl_altitude_pre_climb ;
6

BoundAbs(sp, v_ctl_max_climb);
8
9 float incr = sp - v_ctl_climb_setpoint;

10 BoundAbs(incr, 2 * dt_navigation);
11 v_ctl_climb_setpoint += incr;
12 }

Listing 3: A Multi-BF Simulation Example [28]

Figure 6 shows the UAV speed when taking off based on 

the UAV’s flight logs. The solid lines show the speed when 

both BFs are kept, while the dashed line show the speed when 

both are removed. In the first 40 seconds, the without-BF runs 

(named as “abnormal” in the Figure) reach a higher speed 

during take-off: observe that the dashed lines show a higher 

speed than those of the solid lines. This agrees with our source 

code inspection above.

F. Case Study: Navigation Progress

In §III-C1d, we discussed another bounded variable

n a v _ le g _ p r o g r e s s  in function n a v _ ro u te ,  and this
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variable reflects the navigation progress which is bounded 

within the range [0, prog_2]. As is shown in Figure 7a, an 

oval trajectory consists of two straight lines and two semi-

circles. The function n a v _ ro u te  is called in the navigation 

task on both straight lines. If we remove the BF from variable 

n a v _ le g _ p r o g r e s s ,  the UAV may “flee” and move in the 

opposite direction when approaching the waypoint where the 

straight routine begins, as is shown in Figure 7b.

The more intriguing question is why the UAV would change 

its behavior as radically as this. Let us have a close look at 

the source code on how n a v _ le g _ p r o g r e s s  is computed:

n a v _ le g _ p r o g r e s s  = ( p o s _ d i f f .x  * w p _ d i f f .x  

+ p o s _ d i f f . y  * w p _ d if f .y )  /  

n a v _ le g _ le n g th ;

Here, w p _ d if f  and p o s _ d i f f  are two-dimensional vari-

ables representing the horizontal distance between two way-

points p1 and p2 (as shown in the figure) and between the 

UAV and the start waypoint p1 respectively. The types of 

their members x  and y are both signed integers. However, 

since n a v _ le g _ le n g th  is an unsigned integer, the result 

computed within the parentheses must be implicitly converted 

to unsigned integer before divided by n a v _ le g _ le n g th .  

When the UAV is approaching the waypoint p1, the result 

computed within the parentheses happens to be a negative 

value whose most significant bit is set to 1, and thus it is 

interpreted as a large value after conversion to the unsigned 

integer. After being divided by n a v _ le g _ le n g th ,  the most 

significant bit becomes 0 and therefore, when the final re-

sult is converted back to the signed integer and assigned 

to n a v _ le g _ p r o g r e s s ,  it is still a large positive value 

which goes far beyond the range [0, p rog_2]. It further 

impacts the computation of the position of navigation target 

and consequently the UAV flees eccentrically.

With a BF in place, n a v _ le g _ p r o g r e s s  is at least 

bounded within a range, so that a radically unexpected tra-

jectory such as Figure 7b does not occur. However, note that 

always adjusting its value to the upper bound p ro g _ 2  is 

not reasonable either: the variable should not have shown a 

completed progress before straight navigation begins.

In other words, the program contains a bug. To help 

fix this bug, we added an explicit type conversion for 

n a v _ le g _ le n g th :

n a v _ le g _ p r o g r e s s  = ( p o s _ d i f f .x  * w p _ d i f f .x  

+ p o s _ d i f f . y  * w p _ d if f .y )  /  

( i n t 3 2 _ t ) n a v _ le g _ le n g th ;

After this bug fix, we repeated our simulation without the 

BF. As is shown in Figure 7c, the oval trajectory is preserved. 

However, as is analyzed in our discussion in § III-C1d, the 

carrot, namely the navigation target denoted as a yellow 

inverted triangle in the figure, exceeds the intended trajectory 

without the BF.

This case study is interesting for two reasons. First, the 

use of the BF indeed reflects the developer’s concern that an 

unbounded variable may significantly alter the UAV behavior.

Second, the developer appears to be unaware of the latent bug: 

the BF use somewhat masks the severity of the bug. Observe 

however, it is the use of the BF that led our attention to this 

code snippet, and it is the simulation of BF removal that helps 

us uncover the bug. We reported this bug to Paparazzi, and our 

bug fix has been accepted. The updated code has now been 

merged into Paparazzi’s GitHub repository.

V. Th r e a t s  t o  Va l i d i t y

Our analysis is empirical in nature. We based our analysis 

on the BFs injected by the Paparazzi developers. We assume 

the correct amount of functions is leveraged to achieve safety- 

criticality. In this sense, a fundamental limitation of our 

approach is that it may only be as good as the programming 

skills of the developers. In reality, developers may miss BFs 

and may make mistakes. Incompleteness in enumerating all 

safety-critical scenarios is inherent to our approach.

UAVs, and embedded systems in general, are real-time 

systems driven by their onboard sensors. As such, achieving 

simulations that faithfully cover all flight scenarios is chal-

lenging. Our simulation environment can replay navigation 

commands and replay at a specific rate. However, due to timing 

of the control software, perfect reproducibility is impossible.

Paparazzi is an influential UAV framework, but not the only 

one. We believe the taxonomy of safety-critical use scenarios 

and the methodology of our differential analysis may transcend 

the specifics of Paparazzi, but the concrete findings of our 

study — such as the number of use scenarios within each 

caregory, and the dynamic impact of individual cases — may 

not be representative for all UAV frameworks.

VI. Re l a t e d  Wo r k

Verification for safety-critical software is a well-established 

area, and perhaps the best example of the “top-down” approach 

for studying safety of UAV systems. Blanchet et al. [1] propose 

a static analyzer based on abstract interpretation to verify a 

large class of properties in safety-critical software. Miller et 

al. [2] apply NuSMV [3], a symbolic model checker, to the 

verification of a flight control system. Kloetzer and Belta [4] 

provide a fully automated framework to develop feedback 

controllers for a linear system given its linear temporal logic 

over a set of linear predicates in its state variables. Kress- 

Gazit et al. [5] propose a linear temporal logic (LTL) based 

framework to automatically generate a hybrid controller that 

guarantees correct robot function given a high-level task 

specification as well as a class of admissible environments. 

Yoo et al. [6] introduce a formal-methods-based process that 

supports development, verification, and safety analysis for the 

nuclear power plant’s reactor protection system, and develop 

Computer-Aided Software Engineering (CASE) tools for nu-

clear engineers to apply formal methods to safety verification. 

Similarly, runtime verification of UAV software is also an 

actively researched topic. Moosbrugger et al. [7] develop a 

real-time, Realizable, Responsible, Unobtrusive Unit (R2U2) 

to monitor security properties and diagnose security threats 

of Unmanned Aerial Systems (UAS) during run time. Its
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(a) (b) (c)

Fig. 7: A Case Study on Navigation Progress (a) with-BF trajectory (original) (b) without-BF trajectory (original): UAV flees 

(c) without-BF trajectory (fixed): carrot off

supervision scope covers the on-board components, as well 

as inputs from the ground control station.

Software engineering for self-adaptive cyber-physical sys-

tems is an active research direction, where UAVs are of-

ten cited as a compelling use scenario [29], [30]. Testing 

cyber-physical systems (e.g., [31]) and development tools 

(e.g., [32], [33]) is well explored. Another family of self-

adaptive systems that have received attention in recent years 

is autonomous/self-driving vehicles, with results on bug char-

acterization (e.g., [34]) and testing (e.g., [35], [36]). Program-

ming languages are proposed for supporting energy aware-

ness of UAVs [37] and context adaptation for UAVs [38]. 

Copilot [39] is a stream-based dataflow language to perform 

hard real-time monitoring over safety-critical control systems 

by sampling variables in programs and computing properties 

over the sampled values. SafetyScrum [40] is a software 

development methodology that relies on a notion of “safety 

debt” to incrementally track the safety status of safety-critical 

UAV systems in agile software development and maintenance.

Broadly speaking, our datatype-based classification can be 

related to programming language efforts that refine primitive 

types. For example, dimension types [41] are designed so that 

value 1 can either mean one meter or one kilometer, and 

misuse among them can be eliminated by the type system. 

As another example, Osprey [42] is a constraint-based type 

inference to automatically detect misuse of measurement units.

Fundamental to the growth of UAVs is their ability to fly 

autonomously and not require human control at all times. Most 

modern UAVs, from high-end fixed wing aircraft to hobby 

quadcopters, come equipped with flight controllers, such as 

in PixHawk [43]. These systems use well-studied algorithms 

such as extended Kalman filter estimation to fuse the sensor 

values into a pose, and well-studied controllers to achieve the 

set commands.

VII. Co n c l u d i n g  Re m a r k s

This paper describes a novel empirical study on the use 

of bounding functions in UAV autopilot software. Our study 

shows that the use of bounding functions coincides with use 

scenarios where safety concerns of UAVs are addressed by 

UAV software developers. Our differential simulation further 

shows that bounding functions play an important role in

preserving the physical behavior of UAVs. To the best of our 

knowledge, this is the first systematic empirical in-field study 

on open-source UAV software frameworks.

Beneficiaries We envision our empirical study will be 

beneficial in the following ways. (1) For UAV software de-

velopers, our empirical study may serve as a reference point 

for systematically addressing safety concerns in future UAV 

development. UAVs are well known for their diverse hardware 

platforms, but the key safety-critical datatypes identified by 

this paper are likely to transcend the specifics of diverse 

platforms of UAVs. We show that despite the large code 

base, the BF instances revolve around a small set of phys-

ical variables, which future developers should pay particu-

lar attention to. (2) For framework and language designers, 

our datatype-based taxonomy may inspire new abstractions 

to generalize, modularize, and reason about UAV software 

systems, with the identified datatypes and their associated 

use scenarios serving as motivations for new language-based 

designs such as automated BF placement and enforcement. 

(3) For researchers interested in automated analysis for UAV 

software (e.g., through testing, debugging, and verification), 

our identified BFs and their differential simulation serve as 

a source for identifying new invariants, and as a litmus test 

on validating the coverage of their approaches. In addition, 

P B F -D e te c to r  can serve as a base system to facilitate 

Clang/LLVM-based development.

Artifacts In the repository 3 , we provide the following 

artifacts: (a) the source code of P B F -D e te c to r  together 

with modified Paparazzi source (Makefiles); (b) a detailed 

documentation on each BF use; (c) all data of the simulation 

results, including log data, simulation screenshots, along with 

aircraft and flight plan files as test cases; (d) scripts for 

statistical analysis and for reproducing the results; (e) a report 

of the complete BF taxonomy.
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