
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
e
e
ri

n
g

 (
IC

S
E

)
| 9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1
 I

E
E

E
 |

D
O

I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

1
1

9

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

Understanding Bounding Functions in

Safety-Critical UAV Software

Xiaozhou Liang*, John Henry Burns*, Joseph Sanchez*, Karthik Dantu^ Lukasz Ziarek and Yu David Liu*

*SUNY Binghamton, Binghamton, New York

Email: { x l i a n g 2 4 , jb u r n s 1 1 , j s a n c h 4 9 ,d av id L } @ b in g h am to n .ed u

tSUNY Buffalo, Buffalo, New York

Email: { k d a n tu , lz ia r e k } @ b u f f a lo .e d u

Abstract—Unmanned Aerial Vehicles (UAVs) are an emerging

computation platform known for their safety-critical need. In
this paper, we conduct an empirical study on a widely used

open-source UAV software framework, Paparazzi, with the goal

of understanding the safety-critical concerns of UAV software
from a bottom-up developer-in-the-field perspective. We set our

focus on the use of Bounding Functions (BFs), the runtime

checks injected by Paparazzi developers on the range of variables.
Through an in-depth analysis on BFs in the Paparazzi autopilot

software, we found a large number of them (109 instances) are
used to bound safety-critical variables essential to the cyber-

physical nature of the UAV, such as its thrust, its speed, and

its sensor values. The novel contributions of this study are two
fold. First, we take a static approach to classify all BF instances,

presenting a novel datatype-based 5-category taxonomy with fine-

grained insight on the role of BFs in ensuring the safety of
UAV systems. Second, we dynamically evaluate the impact of the

BF uses through a differential approach, establishing the UAV

behavioral difference with and without BFs. The two-pronged
static and dynamic approach together illuminates a rarely studied

design space of safety-critical UAV software systems.

Index Terms—unmanned aerial vehicles, bounding functions,

safety

I. In t r o d u c t i o n

Unmanned aerial vehicles (UAVs) are an emerging platform

with promising applications such as infrastructure inspection,

precision agriculture, disaster search-and-rescue, and mer-

chandise delivery. Traditionally designed as a robotics and

embedded system with minimal software support, the software

stack of UAVs in recent years has been significantly enriched,

making them a “flying” computer system in the genuine

sense. Beyond the excitement, the main hurdle against the

broader adoption of this promising technology is their stringent

requirement on safety: any crash of the UAV is not only a

computer safety problem, but also a public safety hazard.

Even though the safety-critical nature of UAVs is universally

recognized, there is no universal definition of what safety

really means for UAVs. Broadly, any behavior that deviates

from the “intended behavior” is a safety violation. Existing

research [1]-[7] generally takes a “top-down” approach: an

expert may provide a specification of the intended behavior,

either through domain knowledge, or through the wisdom

from the broader domains of cyber-physical systems (CPS)

or robotics. Once the specification is given - whether in the

form of invariants, constraints, pre-/post- conditions, or logic

- the safety of a UAV system can be verified, monitored, or

enforced.

A. An Empirical Perspective on UAV Software Safety

In this paper, we take a bottom-up approach to empirically

study the safety of UAV software. In a nutshell, we choose

to listen to the UAV software developers in the field, and

reverse-engineer what they believe the most safety-critical

software components are. Despite early UAV systems often

being developed in a proprietary fashion, recent trends in open-

source development for UAV systems present an opportunity.

For example, the software framework that serves as the focus

of our empirical study, Paparazzi 1 [8], is a popular open

software (and hardware) ecosystem with more than a decade

of development and numerous active contributors. It provides

unified software support from autopilot to ground station,

with diverse support for multi-copters, fixed-wing, helicopters

and hybrid aircraft. If domain experts are the best source

for understanding the “intended behavior,” what can we learn

about UAV safety from UAV software developers themselves?

We focus on how Bounding Functions (BF) are used in the

Paparazzi autopilot software, arguably the most safety-critical

components of the UAV software. A BF is a dynamic check

inserted by programmers to ensure a variable - which we call a

Bounded Variable (BV) - stays within a prescribed range. For

example, variable g v _ z _ re f in Paparazzi’s navigation guid-

ance module is frequently bounded by a BF within the range

[cu r_z - GC_MAX_Z_DIFF, c u r_ z + GC_MAX_Z_DIFF].

Here, the bounded variable g v _ z _ re f represents the al-

titude the UAV is guided to for the next time interval;

variable c u r_ z represents the current altitude of the UAV,

and GC_MAX_Z_DIFF is a constant. Intuitively, this BF

instance says that the UAV should not alter its altitude by

GC_MAX_Z_DIFF or more within a time interval. This is

aligned with our high-level understanding on UAV safety that

an excessive change in altitude may jeopardize the stability of

the UAV.

The premise of our approach is that the use of BFs is aligned

with a UAV-specific safety concern. After all, the semantics of

bounding a variable is akin to introducing an invariant over

1https://wiki.paparazziuav.org/

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00119

1311

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

the variable: the application of the bounding function is a no-

op if the variable is already in the range, or an assignment

to the variable with the bound value otherwise. If we take

the programmer’s perspective, the need to bound a variable is

aligned with her concern that an “out-of-range” variable may

cause errors in the program.

We take a two-pronged approach in validating our premise.

Statically, we identify all BF instances in the source code,

and provide a detailed datatype-based taxonomy of the BF

uses. We find a large number of BF uses indeed reflecting the

safety-critical concerns of UAV systems (§ III). Dynamically,

we perform a differential simulation to illustrate the impact of

BF uses on UAV behavior. We find BF uses, and their lack

of use, do have impact on the dynamic trace of safety-critical

values of the UAV, from trajectory to pose, and hence cyber-

physical behavior of the UAV (§ IV). We now elaborate these

two contributions in more detail.

B. A Datatype-based Taxonomy

A novelty of our empirical study is that we classify the

use of BFs based on the datatype of the BVs they intend

to bound. In UAV software, a large number of values have

primitive types such as i n t or f l o a t . A key insight gained

in our exploration is that the BVs fall into a small set of well-

known UAV parameters reflecting their cyber-physical nature,

which we call physical variables. For example, we find a

large number of f lo a t- ty p e variables representing the 3 pose

parameters that define the orientation of a UAV: the pitch,

the roll, and the yaw. In other words, these variables carry

higher-level semantics more than a floating point number. This

insight recalls the classic programming abstraction of abstract

data type (ADT) [9]: the f l o a t value above indeed logically

encapsulates the floating number and a specification on what

a pitch (or roll or yaw) parameter of a UAV should conform

to. In this study, we classify our BF instances based on the

logical datatypes of their corresponding BVs, as follows:

• Trajectory Management (TM) BF instances that pro-

vide safe navigation to the UAV, mainly bounding phys-

ical variables such as position, distance, and heading.

• Sensor Management (SM) BF instances that provide

valid sensor readings, bounding physical variables di-

rectly related to sensor values.

• Speed and Acceleration Management (SAM) BF in-

stances that ensure safe speed and acceleration to engine,

bounding these two physical variables.

• Engine Management (EM) BF instances that provide

safety to the engine by bounding 2 physical variables:

the thrust and throttle of the engine.

• Pose Management (PM) BF instances that maintain

safety for UAV orientation. These BF instances mainly

bound 3 physical variables, pitch, roll, yaw of the UAV.

Within each class, we perform an in-depth analysis on how

BFs are used in Paparazzi, defined as use scenarios. Taken the

view of ADTs, each use scenario can be viewed as a specifica-

tion — in the form of a BF — of that datatype. Overall, our

novel datatype-based taxonomy can be summarized as “not

all floating point values (or integers) are created equal.” By

refining them into datatypes, their logical role in UAV software

starts to emerge. As it turns out, except BF instances used for

defining generic algorithms (such as control and geometry),

the remaining BF instances all fall into the 5 categories above.

In other words, despite the large code base of UAV software

and despite the numerous instances of BFs, UAV developers

concentrate their efforts of performing dynamic checks on a

small set of physical variables. This cannot be accidental: it is

a conscious reminder that this small set of physical variables

are likely to play a pivotal role in defining what being safety-

critical means for UAV systems.

C. A Differential Simulation

To cross-validate whether our discovered BFs indeed have

an impact on the correctness of UAV behavior, we perform

a fine-grained simulation on the impact of BFs. We adopt a

differential approach: for each instance of BF use, we perform

one simulation over the original Paparazzi program, and the

other over the same program except that the BF is removed.

At its core, our approach can be viewed as a form of A/B

testing. The interesting design question lies in how difference

is defined. Our approach relies on analyzing the difference

over the traces o f physical variables, such as position traces

(trajectories), pose traces, and speed traces. This approach,

black-box in essence, is aligned with our intuition on the

safety of UAV systems: if the UAV behaviors with the BF

and without the BF are observably different through the lens

of physics, then the BF is likely impacting the safety of the

UAV.

D. Research Questions and Results

In this paper, we report the first empirical study on the

bounding function uses in UAV software. It complements

existing top-down approaches with a bottom-up perspective

focusing on answering two research questions:

• RQ1: Can the BF instances be classified to logically

reflect the use of safety-critical physical variables?

• RQ2: Do BFs have impact on the dynamic cyber-physical

behavior of UAV software?

We identified 241 BF instances through analyzing Pa-

parazzi’s 2049 source files in autopilot software modules. We

grouped 109 instances related to physical variables into the

5 categories (described earlier) most relevant to the safety

of UAVs. Our dynamic differential analysis reveals that nu-

merous BFs have observable impact on the trace of physical

variables. More specifically, 30 out of 64 simulatable cases

show difference in flight trajectory, pose, etc. This provides

experimental justification for our BF-based approach: the use

of BFs coincides with safety-critical behavior of UAVs. While

conducting the trace-based analysis, we also uncovered a bug

in Paparazzi, whose fix has been accepted.

Broadly and philosophically, our study is a quest for answers

on what makes UAV software safety-critical. The top-down

approach taken by verification frameworks and tools defines

safety as a priori properties or invariants. To do so, one needs

1312

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

to resort to domain experts to come up with the definitions of

these properties or invariants first. Our bottom-up developer-

in-the-field approach identifies the use of BFs with a call for

attention from developers, and the deviation in the dynamic

traces of physical variables with a cause of safety concern “as

the developer’s program says so.” Overall, our approach and

the existing approach complement each other: our approach

discovers candidate invariants related to safety (but some may

be deemed not by an “oracle” domain expert), whereas the

existing approach focuses on invariants agreed upon a priori

(but they may be incomplete in the eyes of the “oracle” domain

expert). The two approaches together converge on revealing

the elusive essence of safety in UAV software.

Overall, this paper makes the following contributions:

• the first “developer-in-the-field” empirical study on the

safety-critical components of UAV software, based on

bounding functions

• a datatype-based taxonomy on bounding function uses,

focusing on physical variables

• a systematical differential analysis on the impact of BFs

in UAV behavior through comparing and aligning traces

of physical variables

• a tool P B F -D e te c to r (Paparazzi Bounding Function

Detector) for automatically identifying BF instances in a

real-world code base with complex compilation schemes

(decentralized compilation with 78 makefiles mixed with

pre-processing code generation)

II. A P r i m e r o n UAV F l i g h t Co n t r o l

The most widely known UAVs fall into two categories:

fixed-wing aircraft and rotary-wing aircraft. Fixed-wing air-

craft are featured with special-shaped wings that can make

use of forward airspeed to generate lift [10], while rotary-

wing aircraft, also referred to as rotorcraft, use rotating wings

called blades to fly [11].

A. Engine and Pose

The driving force produced by the engine is commonly

referred to as thrust or throttle. Engine management is directly

associated with the speed and the acceleration of the UAV.

UAVs are rigid bodies operating in 3-D space. Therefore, their

position can be represented by three numbers (x, y, z) in a

3-D coordinate system. Similarly, their pose (orientation) is

represented by three angles (also known as Euler angles) in

the 3-D coordinate system. These angles are roll, pitch and

yaw. The pose is also referred as the attitude. An illustration

of the three angles can be found in Figure 1. Fixed-wing

aircraft vary their attitude by utilizing flight control surfaces.

Rotorcraft vary the attitude by varying the rotational speeds

of the motors spinning in opposite directions.

B. Navigation

Navigating a UAV is usually split into two steps - path

planning and trajectory planning. Path planning is the step of

taking the objectives of a fight task. Path planning is usually

Fig. 1: A Visualization of UAV control (Left: attitude angles;

Center: their application on a fixed-wing aircraft; Right: their

application on a quadrotor) [12]

application-dependent, written in the form of flight plans in Pa-

parazzi. For example, a typical flight plan may include a step-

by-step description of take-off, a circle navigation task, and

then landing. The flight plan is translated into a trajectory. The

trajectory is defined through a series of waypoints, positions in

the 3-D space, with the Z-axis representing altitude. Trajectory

planning takes the next waypoint to be visited and plans a

thrust and pose to set the UAV to reach that waypoint. Given

the required thrust and pose, the flight controller controls the

actuators (such as engines) to achieve that thrust and pose.

While in motion, the UAV points to a direction, which is called

heading. A related concept is the course, the direction that the

UAV moves toward. Due to conditions such as wind, heading

and course are not always the same.

C. Paparazzi Flight Controller Software

Paparazzi UAV software suite is a collection of modules

capable of flying on a variety of UAVs. It is highly config-

urable with various airframes, large suite of sensors, several

controller algorithms as well as the ability to use the controller

software in simulation and on real hardware.

The autopilot software is capable of integrating with several

sensors, such as GPS, Inertial Measurement Unit (IMU),

Sonar, and barometer. Sensor values are fed into the Inertial

Navigation System (INS) that estimates position, speed, and

acceleration of the UAV. Similarly, the Attitude and Head-

ing Reference System (AHRS) performs attitude estimation.

Together, the INS and the AHRS help the flight controller

keep an estimate of the state of the UAV. This state is then

used to control the UAV through the guidance and stabilization

modules.

As is the case for all aerodynamic systems, control-theoretic

algorithms are widely used to provide feedback control in

UAVs’ stability management and autonomous control. Two

popular algorithms used by Paparazzi are Proportional Inte-

gral Derivative (PID) control [13] and Incremental Nonlinear

Dynamic Inversion (INDI) [14].

III. Un d e r s t a n d i n g Bo u n d i n g Fu n c t i o n s

St a t i c a l l y

In this section, we describe our effort in understanding BF

uses in Paparazzi through a detailed analysis on the source

code, providing answers to RQ1. The centerpiece of this study

is a taxonomy that classifies BF uses based on the physical

variables they are applied to, in § III-C. Before we detail this

1313

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Bounding Functions in Paparazzi

Bound forms Function names

double-ended bounds Bound
BoundInverted
BoundWrapped
VECT3 BOUND CUBE
VECT3 BOUND BOX
EULERS BOUND CUBE
RATES BOUND CUBE
RATES BOUND BOX
Clip

absolute bounds BoundAbs
RATES_BOUND_BOX_ABS
DeadBand
ClipAbs

upper bounds BoundUpper
normalization FLOAT ANGLE NORMALIZE

INT32 ANGLE NORMALIZE
INT32_COURSE_NORMALIZE
NormRadAngle

special bounds SATURATE_SPEED_TRIM_ACCEL

result, we start with a description of our taxonomy rationale

in § III-A, and methodology in § III-B.

A. The Rationale o f Classification

UAVs are cyber-physical systems that interact with the

physical world. Their safety is defined with respect to this

interaction, i.e., their behavior in the physical world. Our

classification of BFs is based on this observation and thus

derived from the datatypes o f physical variables associated

with the BFs. Our five-category taxonomy corresponds to

the main functionalities of the UAV that define or impact

interaction with the physical world. By organizing BF uses in

this manner, we believe that this study will be useful for future

UAV control software as they will still need to fundamentally

interact with the physical world in the same manner: they will

need to navigate (trajectory), control their navigation (speed

and acceleration), understand their surroundings (sensors),

understand their orientation with respect to their surroundings

(pose), and manage their locomotion (motors). As our study

shows, the vast majority of BFs in Paparazzi revolve around

these five types of physical variables. This cannot be acciden-

tal: these five types of cyber-physical interactions are essential

to the nature of UAV software.

B. Methodology

a) BF Identification: We have developed a compiler pass,

implemented as a Clang plugin 2, to identify BF instances in

the Paparazzi code base. Our plugin defines a baseline frame-

work, P B F -D e te c to r , for future research with advanced

program analysis and optimization. Our analysis focuses on

Paparazzi’s autopilot software modules, in the s w /a i r b o r n e

directory, version v5.14.0_stable.

For our goal of identifying BFs, Paparazzi presents a unique

advantage: a set of pre-defined BFs in the forms of C macros

2https://clang.llvm.org/

consistently used by Paparazzi developers. Our study focuses

on the use of these macros, 19 in total as listed in Table I.

These macros are manually identified by inspecting all . h

files, and a macro qualifies if it bounds a variable within a

given range. Some BFs are general, such as Bound, while

others are more specific. Our Clang plugin parses C files

to identify the 19 forms of BFs in the AST. One technical

hurdle is that macros are expanded in Clang before the AST is

generated. To address this, we have redefined 19 corresponding

C functions to the macros in Table I. The Paparazzi source

remains unchanged with a small number of exceptions that

we documented at our project website (see URL in § VII).

b) Makefile-Aware Identification: A significant engineer-

ing challenge in analyzing Paparazzi’s code base results from

the complex compilation process inherent in Paparazzi. Unlike

high-level applications where the compilation process is often

a “one-off” process that reaches all files in all folders, em-

bedded system software like Paparazzi must consider diverse

configurations with complex customization and platform-

dependent cross-compilation. Paparazzi adopts a hierarchical

compilation with 78 C Makefiles distributed at various levels

of the Paparazzi directories, and the dependencies between

Makefile targets are complex. To further complicate the matter,

many programs are generated on the fly during the compilation

process with generators written in OCaml and Python.

Our compiler pass is Makefile-aware: we modified the

decentralized Makefiles, and as a result, P B F -D e te c to r

can faithfully follow the same dependencies as in compila-

tion. This not only allows us to reach all source code that

can be reached by Paparazzi compilation, but also reach it

in a semantic-aware manner: every name on the AST of

every reachable file must have been defined (because the

program compiles!). The P B F -D e te c to r modification to

handle hierarchical Makefiles in our compiler analysis was

labor-intensive, but it is rewarding for building a toolchain for

Paparazzi to integrate with Clang/LLVM.

c) BF Selection: In total, we identified 241 instances

of BFs from autopilot program modules spanning 2049 files

in 331K LOC of Paparazzi source code. We further cross-

validated the number of instances through a text-based search.

Among them, our study excludes instances not directly related

to the safety of UAV software, which fall into 3 categories:

(a) 71 BF instances in core control algorithms (PID/INDI).

These BF instances are part of the algorithm design, such

as PID and INDI; they are “generic” in nature and do not

vary from a UAV implementation to a non-UAV implemen-

tation. As a standard robotics problem, bounding and tuning

generic control parameters is an independent and well-studied

problem [15]. It should be made clear that we only leave out

generic control algorithm BF uses here: if a physical variable,

say the roll value of the UAV, relies on the PID control and is

bounded while interacting with the PID, it is included in our

study. (b) 45 BF instances used for geometric transformation.

These BFs occur as parts of the trigonometry-based algorithms

solely related to geometry. For example, a common use is

to normalize an angle within the range of (-2n , 2n). (c)

1314

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

15 BF instances in vision/image processing algorithms and

I instance used for the remote control switch. For instance,

BFs frequently occur for managing auto white balance, image

refinement, sub-pixel resolution, and auto exposure. For any

vision BF instances that impact control algorithms (e.g., optic-

flow-based landing), we have included them into our study.

Overall, our guiding principle here is to conservatively leave

out BF instances unrelated to the safety-critical nature of

UAV software, and when in doubt, an instance is included in

our study. We have documented every BF instance for cross

reference, including those we left out in the study on our

project website.

There are two take-away messages from our BF selection

process. On one hand, it shows some BF instances are not

aligned with our intuition of safety-critical concerns. In that

sense, these instances are the “false positives” to the premise

of our empirical study. On the other hand, the more striking

observation is that once the well-carved categories of (a)(b)(c)

BF instances are removed, every remaining instance fits nicely

with one of 5 categories intimately linked to the safety of

UAVs, as we shall see next.

C. A Taxonomy o f Bounding Function Uses

For the remaining 109 BF instances, we conducted an in-

depth manual inspection, understanding the functionality of

the program fragment each appears, and the purpose of each

BF. As it turns out, all fit nicely into the 5-category taxonomy,

which we present in Table II. In this table, observe that we

further refine each category into a number of use scenarios.

If each category is intuitively viewed as an ADT, each use

scenario serves as a specified behavior of that ADT. In the

rest of this section, we focus on trajectory management and

sensor management as examples to demonstrate our approach.

A description of all categories with the same level of detail

can be found in a technical report at our project website.

1) Trajectory Management: To follow a trajectory, the UAV

needs to follow waypoints, including turning occasionally

(in the horizontal direction) and changing altitude (in the

vertical direction). The physical variables related to trajectory

management are distance and heading (change). We identified

II instances of BFs applied for trajectory management, which

we divided into 4 use scenarios.

a) Safe Homing: (a) Use Context: After performing the

flight task, the UAV should go back to the ground station.

(b) Datatype: distance (X and Y axis). (c) The Need for BFs:

to avoid catastrophic consequences due to battery drain, a UAV

(generally) should not fly too far way from the ground station.

(d) Example: In this code snippet [16], the distance between

the UAV waypoint and the home waypoint is computed, and

bounded by variable m ax_d ist_ fro m _ h o m e, the maximum

distance between them. (e) Occurrence: 3 instances.

b) Safe Altitude Change: (a) Use Context: UAV systems

fly in a 3-D space; altitude change is a basic task. (b) Datatype:

distance (Z axis). (c) The Need for BFs: a drastic change in

altitude may affect the stability of the UAV. (d) Example: In

TABLE II: Classification of Bounding Function Uses

Cate-
gory

Use Scenario Datatype Occur-
rence

TM Safe Leg Distance in
Guidance

Distance (X and
Y Axis)

4

Safe Heading Change Heading Change 3
Safe Homing Distance (X and

Y Axis)
3

Safe Altitude Change Distance (Z Axis) 1
SM Safe Sensor Fusion Weight for Sensor

Fusion
6

Safe Sensor Reading
Interval

Time Interval 1

Safe Sensor Readings Sensor Reading 1
SAM Safe Acceleration Re-

quest as Engine Input
Acceleration 8

Safe Acceleration for
Navigation

Acceleration 4

Safe Remote User
Speed Input

Speed 3

Safe Wind Speed Speed 2
EM Safe Motor Mixing Thrust/Throttle 8

Safe Landing Thrust/Throttle 7
Safe Motor Speed
Change

RPM 5

Collision Avoidance Thrust/Throttle 1
PM Safe Pose Change

Rate
Pitch/Roll/Yaw 37

Safe Pose Maintenance Pitch/Roll/Yaw 12
Safe Pose Change
Time Interval

Pitch/Roll/Yaw
Change Time
Interval

2

Safe Turn Coordination Roll 1

Fig. 2: Carrot-Based Guidance for Heading Change

this code snippet [17] , the altitude change between two iter-

ations of the control loop is bounded by GV_ma x _ z _ d i f f ,

the maximum distance between the previous waypoint and the

current waypoint on the Z axis. (e) Occurrence: 1 instance.

c) Safe Heading Change in Guidance: (a) Use Context:

Paparazzi follows the widely used carrot-based approach [18]

for trajectory management: a virtual, continuously updated

waypoint not far from the current position of the UAV to guide

the next “leg” of movement of the UAV, similar to using a

carrot to attract a mule to move forward. As shown in Figure 2,

the carrot-based guidance implemented by Paparazzi for circle

navigation assumes a constant distance between the current

position of the UAV and the carrot, as CARROT_DIST. By

1315

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

adjusting the c a r r o t_ a n g le , the UAV may change its head-

ing. (b) Datatype: heading (change). (c) The Need for BFs:

a drastic change in heading may affect the stability of the

UAV, and affects the correctness of the circle trajectory.

(d) Example: In Listing 1 which concerns circle navigation,

the c a r r o t _ a n g l e is bounded to the range of [16, 4]. The

rest of the variables are illustrated in Figure 2. (e) Occurrence:

3 instances.

1 void nav_circle(struct EnuCoor_i *wp_center, int32_t radius

)
2 {
3 ...
4

5 // direction of rotation
6 int8_t sign_radius = radius > 0 ? 1 : -1;
7 // absolute radius
8 int32_t abs_radius = abs(radius);
9 // carrot_angle

10 int32_t carrot_angle = ((CARROT_DIST << INT32_ANGLE_FRAC)
/ abs_radius);

11 Bound(carrot_angle, (INT32_ANGLE_PI / 16),
INT32_ANGLE_PI_4);

12 carrot_angle = nav_circle_qdr - sign_radius *
carrot_angle;

13
14 ...

15 }

Listing 1: Safe Heading Change in Guidance [19]

d) Safe Leg Distance in Guidance: (a) Use Context:

For linear trajectories that do not involve heading change,

Paparazzi also uses carrot-based guidance. In this setting,

the distance between the starting point of the leg and the

carrot, which is called leg distance, is dynamically adjusted.

(b) Datatype: distance (X and Y axis). (c) The Need for BFs:

if the leg distance is set too long, the UAV may go “past”

the waypoint of the target point. Deviating from the planned

trajectory is a correctness concern. (d) Example: In this code

snippet [20] which concerns route (i.e., linear) navigation,

the n a v _ le g _ p r o g r e s s is bounded to guarantee that the

next leg of flight does not surpass the target waypoint.

(e) Occurrence: 4 instances.

2) Sensor Management: As important components of a

UAV, sensors play an irreplaceable role in UAV’s state estima-

tion, e.g., UAV’s current attitude (pitch/roll/yaw). An accurate

estimation based on sensor data is also critical for UAV

safety. The physical variables related to sensor management

are sensor readings, the time interval among readings, and

the weight when multiple sensor readings are weighted. We

identified instances of BFs applied for sensor management,

which we divide into 3 use scenarios.

a) Safe Sensor Readings: (a) Use Context: The raw

sensing data may be unreliable, either because the sensor is

faulty, or because the reading may only reflect a transient state.

(b) Datatype: sensor reading. (c) The Need for BFs: The need

for bounding is sensor-specific. Take the current sensor for

example. Due to overflow on high current spikes (fast electrical

transients in current), the reading may be magnitudes higher

than normal readings. This would impact battery estimation,

crucial for estimating the remaining flight time. (d) Example:

In this code snippet [21] , the current sensor keeps its readings

in e l e c t r i c a l . c u r r e n t , which is in turn bounded to a

safe range [-65000, 65000]. (e) Occurrence: 1 instance.

b) Safe Sensor Reading Interval: (a) Use Context: In

UAVs, sensors are continuously reading. In some scenarios, the

time interval between different readings plays a crucial role in

physical estimation. For example, as an application of Kalman

filter [22], the UAV can use data from GPS and barometer at

different time intervals to estimate its vertical position and

velocity. (b) Datatype: time interval. (c) The Need for BFs:

if there is a significant delay between two intervals, the

estimation may be inaccurate, which in turn severely impacts

the decision-making process of the UAV. (d) Example: In

this code snippet [23] , the variable d t represents the time

interval between two GPS readings. It is bounded into the

range [0.02, 2] seconds. The variable is used by Kalman filter

(a l t_ k a lm a n) for the estimation of the UAV’s altitude and

vertical speed. (e) Occurrence: 1 instance.

c) Safe Sensor Fusion: (a) Use Context: Complementary

filter [24] combines sensor readings from the accelerometer

and the gyroscope to estimate UAV attitude (pitch/roll/yaw).

(b) Datatype: weight for sensor fusion (c) The Need for BFs:

To ensure that data collected from both sensors are consid-

ered adequately, their proportions in attitude estimation need

bounding in order to reach a balance between these two

components. (d) Example: In Listing 2, a h r s _ f c .w e ig h t

computed at line 9 reflects the role of accelerometer plays

in attitude estimation, which is influenced by f a b s (1 . 0 -

g_m eas_norm), the deviation between the measured grav-

itational acceleration and 1g. In the case of vibrations, large

deviations from 1g may cause a decrement of the weight for

the accelerometer data if bound is not introduced, ultimately

causing the attitude estimate to drift [25]. Attitude estimation

is critical for the safety of UAVs. In the aviation history, a

catastrophe with the same root cause is Lion Air Flight 610,

which was caused by incorrect angle-of-attack sensing (and

consequent activation of the anti-stall software to repeatedly

pitch the plane downward) [26]. (e) Occurrence: 6 instances.

1 void ahrs_fc_update_accel(struct FloatVect3 *accel, float
dt)

2 {
3 ...
4
5 // compute ratio between measured gravitational

acceleration and the standard value
6 const float g_meas_norm = float_vect3_norm(&

filtered_gravity_measurement) / 9.81;
7
8 // compute the weight of accelerometer in attitude

estimation
9 ahrs_fc.weight = 1.0 - ahrs_fc.gravity_heuristic_factor *

fabs(1.0 - g_meas_norm) / 10.0;
10
11 Bound(ahrs_fc.weight, 0.15, 1.0);
12
13 ...
14 }

Listing 2: An Example of Sensor Fusion [27]

1316

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

IV. Un d e r s t a n d i n g B o u n d i n g Fu n c t i o n s

Dy n a m i c a l l y

In this section, we experimentally evaluate the impact of

BFs on UAV behavior, answering RQ2. We start with a

description of our rationale in § IV-A and on experiment setup

in § IV-B, and the core results from differential simulation will

be described in the rest of the section with a summary and

several more detailed case studies.

A. The Rationale o f Differential Simulation

As we stated earlier, UAVs are cyber-physical systems that

interact with the physical world. In UAV software, the traces

of UAV physical properties — pitch/roll/yaw, trajectory, or

altitude as time series — are essential for capturing their

observable behavior. When the removal of BFs leads to

observable difference in the trace of these physical variables,

it should be a concern for attention.

Our differential simulation aims at achieving two goals.

First, it helps confirm that the BF instances indeed impact

the dynamic physical behavior of UAVs. A premise with the

“developer-in-the-field” approach is that we trust the experi-

ence and wisdom of the developers. From the perspective, the

dynamic approach here serves as the trust but verify step: we

would like to confirm BFs do make a difference in defining

the physical behavior of UAVs. With that, answers to RQ2

serve as an evidence of the significance of our taxonomy

proposed for RQ1. Second, the dynamic approach also serves

as a quantitative study of the safety-critical impact of BFs.

It complements the qualitative study of our static (taxonomy)

approach by answering how much impact BFs have on the

safety of UAV software.

B. Experiment Setup

We use Paparazzi’s built-in simulator for recording flight

trajectories. We further use Paparazzi’s log plotter to generate

traces on real-time physical variables, such as speed, altitude,

and roll-pitch-yaw values. The two complement each other,

with the former useful for elucidating macro-level navigation

patterns, and the latter useful for characterizing micro-level

time-dependent physical behavior.

Among the 109 BF instances, we are able to conduct

simulation for 64 of them. Some programs with BF instances

require manual radio control (RC) inputs. We have developed a

script to ensure RC inputs are programmably given, so that for

repetitions of the same experiment, identical RC commands

with identical timing are inputed. The not-simulatable cases

fall into two categories. First, the compilation and execution

of some program fragments are hardware-dependent, such as

requiring camera or sensor support. The Paparazzi simulator

does support physical simulation, but it does not include

features such as optical flow (for cameras) and some low-level

sensors. Second, some code fragments where BFs occur are

experimental features that cannot be built with any compatible

aircraft. For example, no existing aircraft in Paparazzi is com-

patible with the module s t a b i l i z a t i o n _ f l o a t _ e u l e r ,

so we cannot simulate any BF instances in that module.

TABLE III: Simulation Result Summary (S-Diff: Single-BF

Simulation Different Results; M-Diff: Multi-BF Simulation

Different Results; Same: No Difference in Results; Non-Sim:

Not Simulatable)

Category S-Diff M-Diff Same Non-Sim Total

TM 7 0 2 2 11
SM 3 0 4 1 8
SAM 5 4 8 0 17
EM 2 0 5 14 21
PM 3 6 15 28 52

TABLE IV: Selected Differential Analysis BF Instances

Label File Name BF Line Number

A ahrs_float_cmpl 253
B common nav 135
C nav_gls 150
D nav_gls 181
E nav smooth 174
F attitude ref saturate naive 79, 82, 83, 84 (multi-BF)
G guidance_h_ref 240, 241 (multi-BF)

For each simulatable BF instance, we perform two exper-

iments: (1) a simulation of the autopilot with a pre-defined

flight plan (see § II-B) where the code with the BF instance

is called; (2) a simulation with the same flight plan with the

BF is removed. We compute whether the traces from the two

experiments are different, where difference is defined as the

relative error in the trace values of physical variables (roll,

pitch, yaw, thrust, etc.) from the two simulations above. We

repeat each pair of simulations 5 times. The data across the 5

runs are averaged out with respect to timestamps.

It is noteworthy that when there is more than one BF in-

stance in the same function, removing one may have no impact

on the trajectory or physical variable traces, but removing

multiple can. From now on, we refer to the experiments that

involve the removal of multiple BFs in the same function at

the same time as multi-BF differential simulation, and refer to

the one-BF-a-time experiments as single-BF differential sim-

ulation. Multi-BF differential simulation is performed when

single-BF differential simulation for each BF in a function

does not show any difference.

C. Result Summary

The results from the experiments fall into 4 categories,

which we summarize in Table III. If our simulation shows

difference in a single-BF differential simulation, we classify

the involved instance as “S-Diff”. Otherwise, if difference is

shown in a multi-BF differential simulation, we classify the

involved instances as “M-Diff”. The rest of simulatable in-

stances are classified as “Same”, and non-simulatable instances

are classified as “Non-Sim”. There is no overlap between

the categories. For repeated experiments, we only mark an

instance as “different” when 5 repeated experiments all show

a difference exists: in physical simulation, small variations

1317

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

(a) (d)

(h)

Fig. 3: Relative Errors in Differential Analysis (Each sub-figure represents a distinct physical variable. Each bar represents a

BF case, whose height is the mean and the range line is the standard deviation. The label to the left of each bar indicates a BF

instance, whose details are described in Table IV. Data is presented in log scale, where 100 (1) implies 100% relative error.)

X Position

A B C D E F G

0.6

A B C D E F G

(a) (b) (c) (d)

Pitch

0.6 -

(e) (g)

S p e e d (Z I

A B C D E F G

(h)

Fig. 4: Pearson’s Correlation Coefficients (PCCs) in Differential Analysis (Each sub-figure represents a distinct physical variable.

Each bar represents a BF case, whose height is the PCC. The label at the bottom indicates a BF instance, whose details are

described in Table IV. A PCC value over 0.7 empirically indicates strong correlation.)

are common, so we wish to be conservative to make sure all

repeated experiments agree.

As we can see in the S-Diff and M-Diff columns, nearly half

of the instances we can simulate produce different results when

comparing executions with or without BFs. In other words,

the BFs indeed play an important role in safeguarding the

correctness of programs and consequently the safety of UAVs.

In our differential analysis, we compute the averaged rel-

ative error between the measured physical variable value of

the program with the BF, and the one without. We elide yaw

data for brevity. Figure 3 shows the result for a subset of

BF instances, whose details can be found in Table IV. The

complete results are included in the repository. Three concrete

observations can be made. First, BFs have non-equal impacts

on physical variables. For example, we can observe that BF

cases A, B, and G have large impacts on the majority of

physical variables, whereas BF case E has a minor impact on

nearly all variables. Second, the same BF instance may have

different impacts on different physical variables. For example,

BF case A has a larger impact on the Z axis of positioning

1318

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

(altitude) (see Fig. 3c) than the Y axis (see Fig. 3b). As

another example, the relative error of BF case G stands out in

trajectory-related physical variables (see Fig. 3d for example)

than speed-related variables. Third, the same physical variable

may be impacted by different BF instances in different degrees.

For example, speed is significantly impacted by BF cases A

and B, but not others (see Fig. 3g).

To gain a finer-grained analysis, we further computed the

similarity of the two traces in a timestamp-wise manner.

Figure 4 shows the Pearson’s Correlation Coefficients (PCCs)

of the with-BF and without-BF traces. The most important ob-

servation is that PCC is rarely over 0.7, the golden standard for

“strong” correlation. In other words, without BFs, a program

would cause noticeable behavioral change to the UAV in a

large number of BF instances, as manifested through location

or pose or speed.

Take BF case E for example. Recall that in the earlier

relative error figure, this BF has a small relative error; the

PCC results however tell a different story: a timestamp-

wise alignment of traces is poor for the majority of physical

variables, especially altitude, pitch, row, and speed on the

X/Y dimensions. In this example, the BF is used to bound

the physical variable of ground speed. With its removal, the

UAV not only has significant ground speed fluctuation, but

also leads to functuations in other physical variables. The

difference between relative error and PCC as metrics is that the

latter is time-dependent. As a result, PCC can capture behavior

differences in the presence of (time-dependent) fluctuation

despite the “mean” remains stable, a goal the relative error

cannot achieve.

Together, these experiments show that BFs do significantly

impact UAV behavior. As physical variables play a pivotal role

in safety-critical UAV behavior - from trajectory management

to pose management and so on - our experiments demonstrate

the importance of BFs in safety-critical UAV software.

In the rest of this section, we highlight 3 BF instances and

their impact on preserving the UAV behavior.

D. Case Study: Turning Angles

In § III-C1c, we discussed the bounded variable

c a r r o t _ a n g l e bounded within the range [16, f] in function

n a v _ c i r c l e , which is used by Paparazzi to perform a circle

task. With the safeguard of the bounding function, the UAV

circles around normally as is shown in Figure 5a, where the red

actual trajectory fits nicely with the green desired trajectory.

However, if we remove the bounding function, as is shown

in Figure 5b, the trajectory is irregular at the beginning and

later follows a stable oval orbit. This deviation stems from the

drastic angle variation c a r r o t_ a n g le .

E. Case Study: Takeoff Speed

As an example of multi-BF differential simulation, Listing 3

shows a code snippet where removing only one BF does not

make a difference while removing both does. In this example,

s p represents the vertical speed setpoint computed by the

PID algorithm, and i n c r represents its deviation from the

(a) (b)

Fig. 5: A Case Study on Turning Angles (a) with-BF trajectory

(b) without-BF trajectory

Fig. 6: Multi-BF Differential Simulation on Takeoff Speed

current speed setpoint v _ c t l_ c l im b _ s e tp o in t . i n c r

is added to v _ c t l_ c l i m b _ s e t p o i n t in the end. If we

only remove the BF on line 7, the excessive value would be

bounded on line 10. Similarly, if we remove the latter, since the

former has already bounded sp, the following i n c r is thus

not likely to be excessive. However, when we remove both,

v _ c t l _ c l i m b _ s e t p o i n t can grow by a sharp increment.

1 void v_ctl_altitude_loop(void)
2 {
3 ...
4
5 float sp = v_ctl_altitude_pgain * v_ctl_altitude_error +

v_ctl_altitude_pre_climb ;
6

BoundAbs(sp, v_ctl_max_climb);
8
9 float incr = sp - v_ctl_climb_setpoint;

10 BoundAbs(incr, 2 * dt_navigation);
11 v_ctl_climb_setpoint += incr;
12 }

Listing 3: A Multi-BF Simulation Example [28]

Figure 6 shows the UAV speed when taking off based on

the UAV’s flight logs. The solid lines show the speed when

both BFs are kept, while the dashed line show the speed when

both are removed. In the first 40 seconds, the without-BF runs

(named as “abnormal” in the Figure) reach a higher speed

during take-off: observe that the dashed lines show a higher

speed than those of the solid lines. This agrees with our source

code inspection above.

F. Case Study: Navigation Progress

In §III-C1d, we discussed another bounded variable

n a v _ le g _ p r o g r e s s in function n a v _ ro u te , and this

1319

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

variable reflects the navigation progress which is bounded

within the range [0, prog_2]. As is shown in Figure 7a, an

oval trajectory consists of two straight lines and two semi-

circles. The function n a v _ ro u te is called in the navigation

task on both straight lines. If we remove the BF from variable

n a v _ le g _ p r o g r e s s , the UAV may “flee” and move in the

opposite direction when approaching the waypoint where the

straight routine begins, as is shown in Figure 7b.

The more intriguing question is why the UAV would change

its behavior as radically as this. Let us have a close look at

the source code on how n a v _ le g _ p r o g r e s s is computed:

n a v _ le g _ p r o g r e s s = (p o s _ d i f f .x * w p _ d i f f .x

+ p o s _ d i f f . y * w p _ d if f .y) /

n a v _ le g _ le n g th ;

Here, w p _ d if f and p o s _ d i f f are two-dimensional vari-

ables representing the horizontal distance between two way-

points p1 and p2 (as shown in the figure) and between the

UAV and the start waypoint p1 respectively. The types of

their members x and y are both signed integers. However,

since n a v _ le g _ le n g th is an unsigned integer, the result

computed within the parentheses must be implicitly converted

to unsigned integer before divided by n a v _ le g _ le n g th .

When the UAV is approaching the waypoint p1, the result

computed within the parentheses happens to be a negative

value whose most significant bit is set to 1, and thus it is

interpreted as a large value after conversion to the unsigned

integer. After being divided by n a v _ le g _ le n g th , the most

significant bit becomes 0 and therefore, when the final re-

sult is converted back to the signed integer and assigned

to n a v _ le g _ p r o g r e s s , it is still a large positive value

which goes far beyond the range [0, p rog_2]. It further

impacts the computation of the position of navigation target

and consequently the UAV flees eccentrically.

With a BF in place, n a v _ le g _ p r o g r e s s is at least

bounded within a range, so that a radically unexpected tra-

jectory such as Figure 7b does not occur. However, note that

always adjusting its value to the upper bound p ro g _ 2 is

not reasonable either: the variable should not have shown a

completed progress before straight navigation begins.

In other words, the program contains a bug. To help

fix this bug, we added an explicit type conversion for

n a v _ le g _ le n g th :

n a v _ le g _ p r o g r e s s = (p o s _ d i f f .x * w p _ d i f f .x

+ p o s _ d i f f . y * w p _ d if f .y) /

(i n t 3 2 _ t) n a v _ le g _ le n g th ;

After this bug fix, we repeated our simulation without the

BF. As is shown in Figure 7c, the oval trajectory is preserved.

However, as is analyzed in our discussion in § III-C1d, the

carrot, namely the navigation target denoted as a yellow

inverted triangle in the figure, exceeds the intended trajectory

without the BF.

This case study is interesting for two reasons. First, the

use of the BF indeed reflects the developer’s concern that an

unbounded variable may significantly alter the UAV behavior.

Second, the developer appears to be unaware of the latent bug:

the BF use somewhat masks the severity of the bug. Observe

however, it is the use of the BF that led our attention to this

code snippet, and it is the simulation of BF removal that helps

us uncover the bug. We reported this bug to Paparazzi, and our

bug fix has been accepted. The updated code has now been

merged into Paparazzi’s GitHub repository.

V. Th r e a t s t o Va l i d i t y

Our analysis is empirical in nature. We based our analysis

on the BFs injected by the Paparazzi developers. We assume

the correct amount of functions is leveraged to achieve safety-

criticality. In this sense, a fundamental limitation of our

approach is that it may only be as good as the programming

skills of the developers. In reality, developers may miss BFs

and may make mistakes. Incompleteness in enumerating all

safety-critical scenarios is inherent to our approach.

UAVs, and embedded systems in general, are real-time

systems driven by their onboard sensors. As such, achieving

simulations that faithfully cover all flight scenarios is chal-

lenging. Our simulation environment can replay navigation

commands and replay at a specific rate. However, due to timing

of the control software, perfect reproducibility is impossible.

Paparazzi is an influential UAV framework, but not the only

one. We believe the taxonomy of safety-critical use scenarios

and the methodology of our differential analysis may transcend

the specifics of Paparazzi, but the concrete findings of our

study — such as the number of use scenarios within each

caregory, and the dynamic impact of individual cases — may

not be representative for all UAV frameworks.

VI. Re l a t e d Wo r k

Verification for safety-critical software is a well-established

area, and perhaps the best example of the “top-down” approach

for studying safety of UAV systems. Blanchet et al. [1] propose

a static analyzer based on abstract interpretation to verify a

large class of properties in safety-critical software. Miller et

al. [2] apply NuSMV [3], a symbolic model checker, to the

verification of a flight control system. Kloetzer and Belta [4]

provide a fully automated framework to develop feedback

controllers for a linear system given its linear temporal logic

over a set of linear predicates in its state variables. Kress-

Gazit et al. [5] propose a linear temporal logic (LTL) based

framework to automatically generate a hybrid controller that

guarantees correct robot function given a high-level task

specification as well as a class of admissible environments.

Yoo et al. [6] introduce a formal-methods-based process that

supports development, verification, and safety analysis for the

nuclear power plant’s reactor protection system, and develop

Computer-Aided Software Engineering (CASE) tools for nu-

clear engineers to apply formal methods to safety verification.

Similarly, runtime verification of UAV software is also an

actively researched topic. Moosbrugger et al. [7] develop a

real-time, Realizable, Responsible, Unobtrusive Unit (R2U2)

to monitor security properties and diagnose security threats

of Unmanned Aerial Systems (UAS) during run time. Its

1320

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 7: A Case Study on Navigation Progress (a) with-BF trajectory (original) (b) without-BF trajectory (original): UAV flees

(c) without-BF trajectory (fixed): carrot off

supervision scope covers the on-board components, as well

as inputs from the ground control station.

Software engineering for self-adaptive cyber-physical sys-

tems is an active research direction, where UAVs are of-

ten cited as a compelling use scenario [29], [30]. Testing

cyber-physical systems (e.g., [31]) and development tools

(e.g., [32], [33]) is well explored. Another family of self-

adaptive systems that have received attention in recent years

is autonomous/self-driving vehicles, with results on bug char-

acterization (e.g., [34]) and testing (e.g., [35], [36]). Program-

ming languages are proposed for supporting energy aware-

ness of UAVs [37] and context adaptation for UAVs [38].

Copilot [39] is a stream-based dataflow language to perform

hard real-time monitoring over safety-critical control systems

by sampling variables in programs and computing properties

over the sampled values. SafetyScrum [40] is a software

development methodology that relies on a notion of “safety

debt” to incrementally track the safety status of safety-critical

UAV systems in agile software development and maintenance.

Broadly speaking, our datatype-based classification can be

related to programming language efforts that refine primitive

types. For example, dimension types [41] are designed so that

value 1 can either mean one meter or one kilometer, and

misuse among them can be eliminated by the type system.

As another example, Osprey [42] is a constraint-based type

inference to automatically detect misuse of measurement units.

Fundamental to the growth of UAVs is their ability to fly

autonomously and not require human control at all times. Most

modern UAVs, from high-end fixed wing aircraft to hobby

quadcopters, come equipped with flight controllers, such as

in PixHawk [43]. These systems use well-studied algorithms

such as extended Kalman filter estimation to fuse the sensor

values into a pose, and well-studied controllers to achieve the

set commands.

VII. Co n c l u d i n g Re m a r k s

This paper describes a novel empirical study on the use

of bounding functions in UAV autopilot software. Our study

shows that the use of bounding functions coincides with use

scenarios where safety concerns of UAVs are addressed by

UAV software developers. Our differential simulation further

shows that bounding functions play an important role in

preserving the physical behavior of UAVs. To the best of our

knowledge, this is the first systematic empirical in-field study

on open-source UAV software frameworks.

Beneficiaries We envision our empirical study will be

beneficial in the following ways. (1) For UAV software de-

velopers, our empirical study may serve as a reference point

for systematically addressing safety concerns in future UAV

development. UAVs are well known for their diverse hardware

platforms, but the key safety-critical datatypes identified by

this paper are likely to transcend the specifics of diverse

platforms of UAVs. We show that despite the large code

base, the BF instances revolve around a small set of phys-

ical variables, which future developers should pay particu-

lar attention to. (2) For framework and language designers,

our datatype-based taxonomy may inspire new abstractions

to generalize, modularize, and reason about UAV software

systems, with the identified datatypes and their associated

use scenarios serving as motivations for new language-based

designs such as automated BF placement and enforcement.

(3) For researchers interested in automated analysis for UAV

software (e.g., through testing, debugging, and verification),

our identified BFs and their differential simulation serve as

a source for identifying new invariants, and as a litmus test

on validating the coverage of their approaches. In addition,

P B F -D e te c to r can serve as a base system to facilitate

Clang/LLVM-based development.

Artifacts In the repository 3 , we provide the following

artifacts: (a) the source code of P B F -D e te c to r together

with modified Paparazzi source (Makefiles); (b) a detailed

documentation on each BF use; (c) all data of the simulation

results, including log data, simulation screenshots, along with

aircraft and flight plan files as test cases; (d) scripts for

statistical analysis and for reproducing the results; (e) a report

of the complete BF taxonomy.

Acknowledgments We thank Brian Grant for his partici-

pation in the early stage of this project. We thank Gautier

Hattenberger for his help on the Paparazzi Forum. This project

is sponsored by NSF Awards CNS-1823260, CNS-1823230,

and SHF-1749539.

3https://github.com/SUNY-BU-Software-Systems-Research-Group/
PaparazziBF

1321

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

Re f e r e n c e s

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” SIGPLAN Not., vol. 38, no. 5, p. 196-207, May 2003.
[Online]. Available: https://doi.org/10.1145/780822.781153

[2] S. Miller, E. Anderson, L. Wagner, M. Whalen, and M. Heimdahl,
“Formal verification of flight critical software,” in AIAA Guidance,
Navigation, and Control Conference and Exhibit, 2005, p. 6431.

[3] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new
symbolic model verifier,” in International conference on computer aided
verification. Springer, 1999, pp. 495^99.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287-297, 2008.

[5] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE transactions on robotics,
vol. 25, no. 6, pp. 1370-1381, 2009.

[6] J. Yoo, E. Jee, and S. Cha, “Formal modeling and verification of safety-
critical software,” IEEE Software, vol. 26, no. 3, pp. 42-49, 2009.

[7] P. Moosbrugger, K. Y. Rozier, and J. Schumann, “R2u2: Monitoring
and diagnosis of security threats for unmanned aerial systems,” Form.
Methods Syst. Des., vol. 51, no. 1, p. 31-61, Aug. 2017.

[8] G. Hattenberger, M. Bronz, and M. Gorraz, “Using the paparazzi uav
system for scientific research,” in Proceedings of the International Micro
Air Vehicle Conference and Competition 2014, August 2014.

[9] B. Liskov and S. Zilles, “Programming with abstract data types,” ACM
Sigplan Notices, vol. 9, no. 4, pp. 50-59, 1974.

[10] D. Anderson and S. Eberhardt. (2015) How airplanes fly: A physical
description of lift. [Online; accessed 06-March-2020]. [Online].
Available: http://www.aviation- history.com/theory/lift.htm

[11] S. May. (2017) What is a helicopter? [Online; accessed 06-March-
2020]. [Online]. Available: https://www.nasa.gov/audience/forstudents/
5-8/features/nasa-knows/what-is-a-helicopter-58.html

[12] Pir Arkam. (2020) How does a plane fly? [Online; accessed
9-May-2020]. [Online]. Available: https://rookieelectronics.com/
the-aerodynamics-of-flight-how-does-a-plane-fly/

[13] M. Araki, “Pid control,” in CONTROL SYSTEMS, ROBOTICS AND
AUTOMATION - Volume II: System Analysis and Control: Classical
Approaches-II, H. Unbehauen, Ed. EOLSS Publications, 2009,
pp. 58-79. [Online]. Available: https://books.google.com/books?id=
RF1xDAAAQBAJ

[14] E. J. J. Smeur, Q. Chu, and G. C. H. E. de Croon, “Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehicles,”
Journal of Guidance, Control, and Dynamics, vol. 39, no. 3, pp. 450-
461, 2016.

[15] K. J. Astrom and T. Hagglund, PID controllers: theory, design, and
tuning. Instrument society of America Research Triangle Park, NC,
1995, vol. 2.

[16] “Function nav_move_waypoint: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/navigation/common_nav.
c.”

[17] “Function gv_update_ref_from_zd_sp: url at https://github.com/
paparazzi/paparazzi/blob/master/sw/airborne/firmwares/rotorcraft/
guidance/guidance_v_ref.c.”

[18] G. Conte, S. Duranti, and T. Merz, “Dynamic 3d path following for an
autonomous helicopter,” in Proceedings of the 5th IFAC Symposium on
Intelligent Autonomous Vehicles, Oxford, UK, 2004, pp. 473^-78.

[19] “Function nav_circle: url at https://github.com/paparazzi/paparazzi/blob/
master/sw/airborne/firmwares/rotorcraft/navigation.c.”

[20] “Function nav_route: url at https://github.com/paparazzi/paparazzi/blob/
master/sw/airborne/firmwares/rotorcraft/navigation.c.”

[21] “Function electrical_periodic: url at https://github.com/paparazzi/
paparazzi/blob/363dec86938cd1090221ccd772fc6fae58ed89a2/sw/
airborne/subsystems/electrical.c.”

[22] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[23] “Function ins_alt_float_update_gps: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/ins/ins_alt_float.c.”

[24] W. T. Higgins, “A comparison of complementary and kalman filtering,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11,
no. 3, pp. 321-325, May 1975.

[25] Paparazzi Wiki. (2015) Vibration. [Online; accessed 10-February-
2020]. [Online]. Available: https://wiki.paparazziuav.Org/wiki/Vibration#
Complementary_AHRS

[26] D. Shortell and J. Shelley, “Lion air crash investigators looking at
two american companies associated with boeing 737 max sensor,”
CNN, Apr 2019. [Online]. Available: https://www.cnn.com/2019/04/04/
us/boeing-sensor-investigation/index.html

[27] “Function ahrs_fc_update_accel: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/ahrs/ahrs_float_cmpl.c.”

[28] “Function v_ctl_altitude_loop: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/firmwares/fixedwing/guidance/
energy_ctrl.c.”

[29] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Muller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle, Software Engineering for
Self-Adaptive Systems: A Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1-26. [Online]. Available:
https://doi.org/10.1007/978-3-642-02161-9_1

[30] R. Lemos, H. Giese, H. Müller, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels,
and J. Wuttke, Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap, 01 2013, pp. 1-32.

[31] J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V S. Prabhu,
“Testing cyber-physical systems through bayesian optimization,” ACM
Trans. Embed. Comput. Syst., vol. 1 6 , no. 5s, Sep. 2017. [Online].
Available: https://doi.org/10.1145/3126521

[32] S. A. Chowdhury, “Automatically finding bugs in commercial cyber-
physical system development tool chains,” ser. ICSE ’18, 2018, p.
506-508.

[33] S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner,
“Slemi: Equivalence modulo input (emi) based mutation of cps models
for finding compiler bugs in simulink,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), 2020, pp.
335-346.

[34] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen,
“A comprehensive study of autonomous vehicle bugs,” in ICSE'20,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 385-396.

[35] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 1016-1026.

[36] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and
C. Liu, “Deepbillboard: systematic physical-world testing of autonomous
driving systems,” in ICSE’20, G. Rothermel and D. Bae, Eds. ACM,
2020, pp. 347-358.

[37] Y. D. Liu and L. Ziarek, “Toward energy-aware programming for
unmanned aerial vehicles,” in 3rd IEEE/ACM International Work-
shop on Software Engineering for Smart Cyber-Physical Systems,
SEsCPS@ICSE 2017, Buenos Aires, Argentina, May 21, 2017. IEEE,
2017, pp. 30-33.

[38] J. H. Burns, X. Liang, and Y. D. Liu, “Adaptive variables for declarative
uav planning,” in The 12th International Workshop on Context-Oriented
Programming and Advanced Modularity (COP), 2020.

[39] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: a hard
real-time runtime monitor,” in International Conference on Runtime
Verification. Springer, 2010, pp. 345-359.

[40] J. Cleland-Huang and M. Vierhauser, “Discovering, analyzing, and man-
aging safety stories in agile projects,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE), 2018, pp. 262-273.

[41] A. Kennedy, “Dimension types,” in In 5th European Symp. on Program-
ming, LNCS 788. Springer-Verlag, 1994, pp. 348-362.

[42] L. Jiang and Z. Su, “Osprey: A practical type system for validating
dimensional unit correctness of c programs,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
262-271. [Online]. Available: https://doi.org/10.1145/1134285.1134323

[43] PixHawk Team. (2020) Pixhawk flight controller. [Online; accessed
15-May-2020]. [Online]. Available: https://pixhawk.org/

1322

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 31,2021 at 14:53:28 UTC from IEEE Xplore. Restrictions apply.

