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Saturating the Data Processing Inequality for o — 2
Rényi Relative Entropy

Sarah Chehade

Abstract

It has been shown that the o — z Rényi relative entropy satisfies the Data Pro-
cessing Inequality (DPI) for a certain range of a’s and z’s. Moreover, the range
is completely characterized by Zhang in ‘20. We prove necessary and algebraically
sufficient conditions to saturate the DPI for the av — z Rényi relative entropy when-
ever 1 < a < 2 and % < z < a. Moreover, these conditions coincide whenever
o=z

1 Introduction

Statistical distinguishability between two states is a central concept in Quantum Infor-
mation Theory. One basic distinguishability measure, the quantum relative entropy, was
introduced by Umegaki in 1962 in his paper [22] about non-commutative conditional ex-
pectations. When two states pass through a noisy quantum channel, it is indeed more
challenging to measure this distinguishability. This phenomena is described as the data
processing inequality. In order for a distinguishability measure to have any operational
meaning, it must satisfy the data processing inequality. Petz [19,20] proved this inequality
in the context of von Neumann Algebras. More information about this relative entropy is
found in section 21Tl Since then, once generalizations of the quantum relative entropies
were defined, the question of whether the data processing inequality holds or not (and for
which parameters) generated several publications such as [IH3],[5H9[12H15] 19,20} 22, 26].
One quantum generalization of the quantum relative entropy is called the a—Rényi rela-
tive entropy, and it was proven by Petz in [19,20] and also by Bény, Mosonyi, et.al in [3],
that this entropy measure indeed satisfies the data processing inequality. More informa-
tion about this relative entropy is found in section 2.1.2l Later, a different generalization
was introduced by Miiller-Lennert, Dupuis, Szehr, Fehr, and Tomamichel in [18], and in-
dependently by Wilde, Winter, and Yang in [24]. This family is called the a«—Sandwiched
Rényi relative entropy. Under certain parameters of «, this relative entropy also satisfies
the data processing inequality. Lastly, Audenaert and Datta, in their paper [I], intro-
duced a two parameter family of relative entropies that generalizes all entropy functions
stated thus far. This family of entropies, the a — 2z Rényi relative entropy, was completely
characterized in terms of its two parameters, a and z, as to when it satisfies the data
processing inequality and when it does not. Reference [0] gives a nice intuitive summary
of the contributions to the data processing inequality, and [26] finishes it up with the
final characterizations of the parameters.

It is known that Lindblad and Uhlmann in [I6] and [21] respectively proved that
satisfying the data processing inequality is equivalent to proving convexity or concavity
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of certain trace functionals within the definitions of the relative entropy functions. This is
a crucial ingredient in most of results on data processing. In fact, working with these trace
functionals is just as important when answering the questions of whether it is possible to
saturate these inequalities.

Our interest lies in the question of saturating the DPI. i.e., when is the relative
entropy preserved when states pass through a noisy quantum channel. For some of the
relative entropies above, the answer to this question is in terms of recoverability of states.
Recoverability exists for the quantum relative entropy, the Rényi relative entropy, and
the a—Sandwiched Rényi relative entropy. This work contributes to the question of
recoverability in terms of the o — z Rényi relative entropy.

After this paper first appeared on the arxiv, another paper [25] appeared asking the
same question: when is the DPI saturated for the o — z Rényi relative entropy? In [25],
the authors answer this question in a different format than it is presented here. More
work is needed to compare the results.

The main result of this paper says:

Corollary (A0.2). Let p € D(H), 0 € Q(H), and A : B(H) — B(K) be a quantum
channel. For any 1 < a <2 and § < 2 < «a, whenever saturation of the DPT holds, i.e.,
D, .(p|lo) = D, .(A(p)||A(0)), then the states satisfy
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The paper is arranged as follows: section 2, discusses the definitions and notations
used throughout this paper. In addition to this, some known results and properties
about the different quantum relative entropies of interest are mentioned. In section 3,
the technical results using tools in complex analysis or results about convex/concave
trace functionals are discussed. Section 4 is dedicated to the main result in the context
of partial traces followed by the more general consequences. Finally, section 5 concludes
with a brief discussion on closing remarks.

2 Notations and Definitions

Throughout this paper, only finite-dimensional Hilbert spaces are considered. When H 45
is written, it is understood to mean a tensor product of Hilbert spaces H4 and Hp. For
a Hilbert space H, let B(#) denote the set of bounded linear operators on H. The set of
all positive operators is denoted by

P(H):={Ae€B(H): A> 0},
and the space of all density operators is defined to be
D(H):={pecP(H): Tr(p) = 1}.

Recall that if an operator p is positive (p > 0), then it is automatically self adjoint, i.e.,
p* = p. Given any linear operator £ : B(H) — B(K), where H and K are Hilbert spaces,
the adjoint operator £* : B(K) — B(H) is the unique operator satisfying

(L(X),Y)sie) = (X, LYY )) By,
and the inner product here is the Hilbert-Schmidt inner product defined as
(X,Y)gs = Tr(X*Y).
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In general, the Schatten p— norm is defined as

11, = (1 [ x)])"

for p € [1,00). Note that this norm satisfies the Holder inequality, sub-multiplicativity,
and monotonicity in p. A linear operator £ : B(H) — B(K) is said to be n—positive if

1, ®L:B(C") ®B(H)— B(C") @ B(K)
is a positive operator, where 1,, is the identity operator on B(C").

2.0.1 Definition. If 1, ® L is positive for all n € N, then L is called a completely positive
map.

2.0.2 Definition. Completely positive maps that also preserve the trace of operators
are called quantum channels. i.e., Tr(L(p))=Tr(p).

2.1 Quantum Relative Entropies
2.1.1 Umegaki Relative Entropy

In quantum information theory, the information shared between states is regularly studied
through the understanding of quantum entropies. Umegaki relative entropy, also know
as the quantum relative entropy, in [22] is defined as

D(pllo) :=Tr(plog p — plog o),

where p € D(H) and o € D(H), provided that supp(p) C supp(o). Otherwise, the
relative entropy between p and o is said to be co. Reference [6] provides an extensive
review of the formulation of this relative entropy, applications, and some of its properties.
In this setting, [22] introduces and explains the DPI. That is, for any quantum channel
A, the following inequality holds

D(plle) = D(A(p)[|A())-

This inequality is interpreted as an increased difficulty in distinguishing states from one
another after the states pass through a noisy quantum channel.

2.1.3 Definition. If there is a quantum channel ¥ such that ¥ recovers states p and o,
ie.,

(WoA)p=pand (VoA)s=o,
then we say that A is sufficient for states p and o. When this happens, the quantum
channel W is called a recovery map.

Saturation of the DPI was originally proven by Petz in the context of von Neumann
algebras in [19,20]. The result states that 2 states p and o saturate the DPI for a
quantum channel A if and only if the quantum channel is sufficient for these states. The
recovery map U, , known as the Petz recovery map has an explicit form of

U, A() = PN (A(@*é ~A(a)’%> ob.

The map V¥ is indexed by ¢ and A to indicate that the recovery map depends on this
state and this quantum channel. In a different context, you can saturate the DPI with
the use of an error term, which was done in
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2.1.4 Theorem. [8, Corollary 1.7] For p and o density operators and N a partial trace,
the following inequality holds

™ 1y —
D(plle) = DN (0)IIN () = () 1l IRy (N (0)) = o1,
where || |1 is the Schatten 1-norm, || X ||, := Tr|X| = Tr(X*X)z, for an operator X and
R, is a Petz recovery map.
2.1.2 a—Rényi Relative Entropy («—RRE)

One of the first generalizations of the Umegaki relative entropy is defined for a €
(—00,1) U (1,00). The a—Rényi Relative Entropy is expressed as

R 1 a _l-—a
Da(pllo) = — log Tr (%0 ™),
provided supp(p) C supp(c). For a € [0,1) U (1,2], Theorem 5.1 of [3] proves equality
of the DPI if and only if there exists a recovery map that recovers both states p and
o perfectly well. Furthermore, [3] also provides the algebraic necessary and sufficient
conditions for the a-Rényi relative entropy as well. That is for all o € [0,1) U (1,2],
saturation of the DPI is satisfied if and only if

A (A(@)*A(p) %) = o797,

for all z € C. [ These proofs are in a more general class of quantum functionals called
quantum f-divergence, which is actually a class of quantum quasi-entropies. In fact in [7],
similar claims are made however in a different context and with the use of an error bound.
Once the bound is proven, necessity and sufficiency follow very easily. Their result is

2.1.5 Theorem. [7, Theorem 6.1] For any o € (0, 1), under explicit assumptions defined
in the paper for p and o, the following inequality holds
Da(pllo) = Da(A(p)||A(0)) =
1
1l —a
where K 1is a constant calculated in their paper.

log (1+ K[A(0)FA(p) 2 p¥ — a3[1§72) |

2.1.3 «a—Sandwiched Rényi Divergence («—SRD)

This section describes another way to generalize the Umegaki relative entropy and men-
tions some known results as well. For o € (—o0,1) U (1,00), [I8] and [24] introduce
a new family of Rényi relative entropies called Sandwiched Rényi Relative Entropies or
Sandwiched Rényi Divergence. They are defined as

. 1 —a —a ¢
D (pllo) = ; log (Tr [alTapo—lTa} ) ,

provided that supp(p) C supp(c). The DPI for all a € [3,1) U (1,00) was proven in [2].
That is . .
Da(pllo) = Da(A(p)[|Al0)).

Tt is understood that when o = 1 or the limit as « approaches 1, this is the Umegaki relative entropy
case.




In [15], it was shown that the equality of the DPI is satisfied for all o > %, if and only if
states p and ¢ have the following algebraic form:

o (05 o ) T = A (A0) T (Al0) W pA () T A0) ).
For a > 1, the equivalence between saturating the DPI and the sufficiency property
is proven in [I2]. The techniques use non-commutative interpolated L, spaces for von

Neumann Algebras. The same author proved the equivalence between saturating the DPI
and the sufficiency for a € (3,1) in [13] using different norms.

2.1.4 o« — z Rényi Relative Entropy (o« — 2 RRE)

Here is another generalization of relative entropy that combines both a-RRE and a-SRD.
Let p,o € D(H) with « € R\ {1} and z > 0. The o — z Rényi relative entropy was
introduced in [I] and is defined as

1 l—a a 1-—a\7*
Daz(pllo) i= ——log (Tr | (o' 020 5" ) ),

provided the supp(p) C supp(o). Otherwise, the & — z Rényi relative entropy is said to
be +00. When z = 1, the a — z RRE reduces to the a-RRE. When 2z = «, the a — 2
RRE reduces to the a-SRD. When z =1 and @« — 1 or when z = a and o — 1, the a — 2
RRE reduces to the Umegaki relative entropy.

Many of the interesting properties of the o — z entropies are explained and introduced
in previous works on this family of entropies such as [IL[6]. Only the properties that are
explicitly used in this paper are listed here.

1. Invariance: The o — z Rényi entropies are invariant under unitaries. That is for
any unitary U,
Do (UpU*[|UGU*) = Daa(pllo).

This is because for any unitary U and for any operator A, the eigenvalues of A and
UAU* are the same.

2. Tensor Property: For any p,o,7 € D(H),
Do (p@7|lo@7) = Da.(pllo).

This is due to the fact that the trace of a tensor product between two states is the
product of trace of states.

2.1.6 Remark. In this paper, it is always assumed that the operators, p and o, are invert-
ible and that supp(p) C supp(o).
The conjecture for which parameters of o and z the DPI holds is outlined in [6] and

finally concluded in [26]. This is summarized in the next theorem.

2.1.7 Theorem. [20, Theorem 1.2] The a —z Rényi relative entropy is monotone under
completely positive trace preserving maps (quantum channels) on D(H) for all H if and
only if one of the following holds

1. 0<a<1and z > max{a,1 — a};



2. 1<a<2and 5 <z<a;
. 2<a<xanda—1<z<aq.

One way to prove this is through the relationship between the DPI and joint convex-
ity /concavity of the trace functional defined by the map

(A,B) — Tr(B3K*APKB?)?, (2.1)
where A and B are positive operators on H, K is any operator in B(H), p,q > 0, and
s> ﬁ. Here, the case of interest is whenever K is the identity operator, p = <, ¢ = 1_70‘,

1

pat A =p, and B = ¢. Then the trace functional is defined as

S =

oa(pllo) = Te [ (o020 ') .

The next theorem describes the relationship between the DPI and joint convexity and
joint concavity of the trace functional.

2.1.8 Theorem. [6, Proposition 7] Let a,z > 0 with a # 1. Then D, . is monotone
under quantum channels on P(H) (for any finite dimensional H) if and only if one of
the following holds:

1. a <1 and ¥V, ,(p||o) is jointly concave.
2. a>1and Y, .(p||o) is jointly convez.

Together, Theorem 2.1.7 and Theorem 2.1.8 give the complete picture for data processing
inequality of the a — z Rényi Relative Entropy.

The next two sections are the technical components used to prove the main result:

3 Preliminaries

3.1 Tools from Complex Analysis

Let Spec(X) denote the set of eigenvalues for operator X. If €2 is an open subset of C
such that Spec(X) C © C C, then the analytic functional calculus is used to conclude
that F'(X) is well defined, for any analytic function F'. Define

CT :={z € Cs.t. Im(z) > 0}.

Note that C* is an open subset of C. For any operator X, define

X+ X* X - X*
Re(X) := il and Im(X) := —.
2 21
Then let
[;LL ={X € M,,(C) s.t. Im(X) > 0}
and

I7 = {X € M,(C) s.t. Im(X) < 0},



where n < oo denotes the dimension. For 0 < p < 1, denote
[pri={re® :r>0and 0 <6 < pr}

and A
[ = {re’ :r>0and 0> 60> —pr}.

Note that when p =1, '), = CT. Let us recall a few known facts or results.

3.1.1 Lemma. [I0, Lemma 1.1] If X € I}, then X is invertible and Spec(X) C C*.
For X, an invertible n x n matriz, X € I if and only if Xt € I .

3.1.2 Lemma. [I0, Lemma 1.2] Let 0 < p < 1. If X € [}, then so is X? and
e XP e . IfX €l , then XP € I, and eP"X? € [

3.1.3 Lemma. Any pair of operators A and B have the following properties:
Re(ABA*) = A(ReB)A" and Im(ABA*) = A(ImB)A*".

Proof. Observe that

(ABA*) — (ABA*)*

Im(ABA") = 5;
1
B (ABA*) — (AB*A¥)
N 2
B A(B — B*)A*
n 2
= A(ImB)A*,
and the real version is similar. O

3.1.4 Lemma. If B € I}, then so is ABA*, for any non-zero operator A.
Proof. Lemma [B.1.3] implies that Im(ABA*) = A(ImB)A*. Thus for any y,
(Im(ABA)*y,y) = (A(ImB) A"y, y)
= ((ImB)A*y, A™y)
= ([mB)}] Ay, [(mB)t] avy) >0,

where the last equality holds because Im(B) is positive providing a unique square root
that is also positive. O

3.1.5 Remark. Define

n

I(H) = {X ePH): (:X + H)EB (=X + H)S ¢ I+} ,

for all H hermitian, z € C*, 0 <p <1, and B € P(H).

3.1.6 Proposition. Define ©,(X) := Z*XZ, where Z is an invertible operator. For
any 0 < p < 1, a positive operator X belonging to any convez subset of Z(H) is such that

X o Tr {{@Z (x%)aa, (X)}]

is concave for any A € P(H).

-



Proof of Proposition[3.1.6. 1t suffices to show that for any H hermitian,

o [ e P e )

for any small z > 0. This is because if (3.1 holds, then
1
(X +zH)— Tr {{% (X +am)?) Ae, (X + xH)S)}p}

is concave, and hence the proposition is proved by taking z — 0.

Observe that for any z € C*, it follows that 2 X + H € IF. So (zX + H)g is well
defined, b¥ the analytic functional calculus. Moreover, by Lemma B.1.2] observe that
(X + H)? € IF. By linearity of ®; and by Lemma B4 &, ((:X + H)?) € I}
Define

F(z) = ®y ((ZX + H)) Ad, ((ZX + H)) .

This function is analytic in C* because a product of analytic functions is analytic.
To prove equation (B1]), we prove the following steps:

1. Show Spec(F(z)) is contained in some open subset of C so that (F(z))% is well
defined.

2. Extend F'(z) onto the real line (R, 00).
3. Express Tr [(F (z))%] as a Pick function to admit an integral representation.

4. Show concavity of the above expression through its integral representation.

Step 1: We show Spec(F(z)) C I'pr. As in [10], it suffices to prove the following 3
properties:

1. Spec(F(z)) C I'pr, when z = re with fixed 0 < § < 7 and sufficiently large r > 0.

2. Spec(F(z))N[0,00) =0 for all z € C*.

3. Spec(F(z)) N{re®™} = {) for all z € C*.
These statements are sufficient because if, for the sake of contradiction, Spec(F(z)) ¢ I'pr
for some z, = r,e% € C7T and the 3 properties are satisfied, then by continuity of
eigenvalues of F'(z) and by property (1), Spec(F(z)) U O, # 0, for some
z € {re? . r > r,}, which implies either property (2) or property (3) is violated.

To prove property (1), by linearity of z in F(z),

F(z) = 2" [cbz ((X + z—lH)%) Ad, ((X + z_lH)g)} .

Whenever z = re?e with a fixed 0 < 6, < 7, note that

Spec [cDZ ((X + z*lH)%> Ad, <(X + z*lﬂ)%ﬂ

converges to

Spec [CIDZ ((X)g) Ady ((X)gﬂ C (0,00), as r — oo.
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To prove property (2), for any 0 < r < oo,
F(z) —rl, = ®, ((zX v H)%) (A—r®,((:X + H"/*)2) &, ((ZX v H)%) .

By the assumption of X in any convex subset of Z(H) and by Lemma B.1.T]

(X +H) 2 ZY)(Z X +H) el

n’

and by Lemma B.1.3]
Y, [(zX +H) 5 (Z7Y)(Z7Y (X + H)*%] el

Note that [®; ((2X + H)p/2)}_2 = Q) (X +H) 2 (Z7H)(Z )X+ H) %] €1,
This implies that A — 7 [®7 ((2X + H)p/?)r2 € If, and thus F(z) — rl, is invertible
by Lemma B.ITl If there exists [ € Spec(F(z)) N [0,00), then F(z) — 11, = 0, which
would contradict invertability for all € [0, 00). Hence property (2) is satisfied. Proving
property (3) is very similar to proving the second property using the assumption from X

in any convex subset of Z(#H) as well as Lemma B.1.2l With this and using the analytic

functional calculus, (F (z))% is well defined.
Step 2: For every z € C* such that |z| > R, define an analytic function

P(2) = 27D, <(X + z*lH)%> Ad, <(X + z*lH)%> .

Then continuously extending this function to the real line, for every x € (R, 00) gives
F(z) = F(x). Hence for every z € CT such that |z| > R, write

F(z) =20 (X + 27 H)E) A® (X + 271 H)%),

and

Al

(F(2))7 = = {<I>z ((X + z—lﬂ)%) Ady ((X + Z—lg)%)}

Step 3: Given that Tr [(F(z))ﬂ € C* for every z € C*, and Tr [(F(az))%] € R for

every x € (R,00), by the Schwarz Reflection Principle, (F (z))% can be extended to the
lower half plane, that is the set of complex number with negative imaginary parts. And

thus, ¢ is a Pick function on C\ (—o0, R), where ¢(z) = Tr [(F(:c))ﬂ for all x € (R, 00).
Then

zp(a™t) = Tr{sz ((X +xH)%> Ad, ((X +xH)€>}fl’ 7

for every z € (0, R™!). By theory of Pick functions, see [4], every Pick function ¢ admits
an integral representation.

14tz
t—z

¢(z):a+bz+/

—00

(),

where a € R, b > 0, and v is a finite measure on R. The measure v is supported in
(—o0, R] because ¢ is analytically continued across (R, 00).



Step 4: For all z € (0, R™1),

rp(x ) = (a + g + /OO 1+7%:'7_1@(75))

o t—a7t
Boa(x+1t)
—ax+b+/_oo y—— dv(t),
with
d? gz +1) B @ (z(z+1)
— b dv(t) | = — dv(t
d:ch((MJF +/OO tr —1 V()) /Ood:L‘Q(t:E—l) V(1)
B o2 +1)
= — | dv(t
[ (Gs) e <o
for all z € (0, R7!) and all t € (—o0, R). O

3.2 Convex and Concave Trace Functionals

To prove joint convexity of f, .(H,p, o) from equation (B.3]) below, the next few results
are needed. Recall the equation from (2.1])

(A, B) = Tr(B* K*APK B%)*. (3.2)

3.2.7 Theorem. [26, Theorem 1.1] Fix any invertible matriz K. Suppose that p > q
and s > 0.

1. If0<q¢<p<land0<s< ﬁ, then the map from (3.3) is jointly concave.
2. If -1 < q<p<0ands >0, then the map from (33) is jointly conver.

3. If-1<q<0,1<p<2 (pq) #(1,-1) and s > p—}rq, then the map from (3.2) is
jointly convex.

3.2.8 Theorem. [26, Theorem 3.3] Forr; >0, i € {0,1,2} such that % = % + %, one
has that for any invertible X,Y € B(H) that

Tr| XY | = max {ﬁTr|XZ\”° - QT1"|Y’IZ\”2 1 Z € B(H) and invertz’ble} :
To 9

3.2.9 Proposition. [6, Proposition 5] For a fixed operator B, the map on positive
operators

A T |(B A7 B)s |
1. is concave for 0 < p < 1, with p # 0.
2. 1is conver for 1 < p <2, with p # 0.
3.2.10 Proposition. If f : D(H) x D(H) x P(H) — [0,00) is defined as
f(A,B,H):=g(A,H)+ h(B,H),

where g and h are continuous, the functional g is conver in A and the functional h is
convex in B, then f is jointly convex in (A, B). Moreover, supy-o{f(A, B, H)} is jointly
convez in (A, B) whenever f is.
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Proof. For all i such that 0 < \; <1, with >, \; = 1, by convexity of ¢g and h,

g (Z )\Z-Ai,H) <> Xig(A;, H) and h (Z B, H) <> Xh(B, H).

Thus
f (Z N, ZAiBZ-,H> —g (Z NA;, H) +h (Z )\Z-BZ-,H>
| | <Z)\Zg A, H) + ZAhABZ,H
= Z)\ (Ay, H) + h(B;, H))
= Z)\if A;, B, H),
as desired. 0

Recall that

os(pllo) =T [ (o5 p% 05" ) ]

3.2.11 Lemma. Let p and 0 € P(H), and assume that o > 1 and z > 1. For any
positive operator H, define

o

S0 FH) — (2 — D)Tr [(U%Ho—é‘i)ﬁ] . (3.3)

fa,z(H, Ps 0) = ZTI“(O'%p
Then
\Ila’z<p||0-) = sup fa,z,H(pa 0)7
H>0

— o

. . 1oz, l-a a l-a,, 1| 1l—z
where the supremum is achieved whenever H = 0% (0% p=02 )* o2 .

Proof. For X and Y € P(H), it follows that Tr(XY) = Tr (X%YX%), which is positive
because X2Y X2 is a positive operator. For a choice of 1 < p, ¢ < 00, such that 1 = %Jr %,

0 < Tr(XY) =|Tr(XY) (3.4)
<Tr|XY| (3.5)
< (Te(X7))7 (Tr(Y))s (3.6)
<Inxr) 4 Imye (3.7)

D q

where (3.3) is standard for operators, (3.6) follows from Theorem 1.1 in [I7] for positive
operators X and Y, and (3.7) follows from the standard Young’s inequality. Note from
Theorem 1.1 in [I7] that line (3.0) is saturated if and only if X? = Y7 which also implies

equality of line (3.7) as well. Moreover, X = Y# also implies that

Tr|XY| =Tr|Y Y|

q+p

=Tr|Y » |
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=Tr(Y?)
=Tr(YrY)
=Tr(XY),

so that (B.4)) is also saturated whenever X? = Y. Thus,

pTe(XY) — gTr(Y)q < Tr X (3.8)

Take positive operators

1—a o —1 z—1

X =(0c=% pz0 E Yand Y = (0% Ho2 ),

where H is some positive operator in B(?). Then it follows that (3.8) becomes

- o l—a 2z-—1 z—1 —1

pTr(c%= pz02% 0= Ho= ) — Py [(crz?_z
q

l—-a o 11—«

Ho> ) ] < Tr |:(O'Wp;0' = )P, (3.9)

where equality happens if and only if

1—2 l1-a a l-« g 1—2
g 2z O‘szzO‘Qz g 2z :H

By construction, H is unique, hence the left hand side of ([B.8) becomes

ya
pTr (0’2zpz0-12zag-2z10'12zz (glgzapjo'lgza> ¢ 0-12220-2221) —
P q
]—)Tr {(0%015_; (UIQ_;P%UIZ__;Y> ! 01270%) ]
q
( l—a a l-« l—a a l-« % p l—a a l-« % a
:pTr 0% pzo 2= (0’ %= p:o 22) — =Ty <0’2z pzo’2z>
4q
( l-a o 1-a §+1 P 1-a o 1-a\P
:pTI‘ (0’ 2z pzo’ 2z ) — —TI‘ [(U 2z pzo‘ 2z ) :|
4q
—a « —a\P
= ( — ]—?) Tr [(0127/)?0122 ) ]
q
—« [e3 — p
=TT [(g 22 pzo‘l2z ) i| ,

where 1 = % + % implies that p + ¢ = pqg which implies g +1=pandp— g = 1. For a
choice of p = z and ¢ = %5, where z > 1 define the left hand side of (3.3) as

farlH, p,0) = 2Te(0F p2o = H) — (» — 1)Tt (0—2—?;{0—2?)%] .
Then, the desired result is achieved. O

3.2.12 Proposition. Let 1 < a <2 and § < z < a. For a fized H > 0, one has that
fa:(H,p,0) from equation (3.3) is jointly convex in p and o, where o is in any conver

subset of Z(H) from Remark[3 12

12



— o3 Hz. Note that

Proof. Fix H > 0. Let p= %, ¢= =

z

Tr (a%p%azgzaho =Tr (H%a 272(1/)%(722;&['{%

=Tr (Hig?p%p%g 2z H2>

=Tr (H%g_%pgpgg_%H%)

Since 1 < z < a < 2z, observe that 1 <p=2 <2 and 0 < ¢ = *% < 1. Both p and ¢

are both positive numbers, so set (rg,71,72) = (2,2, 2).

P77 q
Then by Theorem [3.2.§]

Tr (cT%,O%crz;;Y H) = max {pTr|,0§Z|% — qTr|H_%cr%Z|§} : (3.10)
where Z is invertible. Since 1 < p < 2, it follows from Proposition part 2 that
ps Te|pbZ|7 = Tr [(Z*pPZ)ﬂ

is convex in p. For the second term in (3.I0), choose ®z(X) := Z* X Z, which is linear,
positive, and self adjoint. Let A = Z"'H~Y(Z*)~!, then by Proposition B.1.6]

1 g 2 i 1 g 1 g :
Ti|H 203 2|7 = Tr( (H*aaaZ)*(HﬁaaZ)] )

ot H~ 0—22} )

-]
( 70422 H- (Z*)_lZ*cr%Z];)
_TT[ (1) a0z (1)}

1 q 2
o— —qTr|H 207 2Z|4

is concave in ¢. Since 0 < ¢,

is convex in o. By Proposition B.2.10, one concludes that Tr (0% pro= H ) is the
maximum of a sum of two convex functionals and thus is itself convex in p and o.

On the other hand, since 0% Ho'# and H2o = H: have the same nonzero eigen-
values,

e ([o 1o =] 7 = ([ario 1] ).
By Proposition 329 part 1, Tr <[JZ2Z1H o5

—(z—=1)Tr ([022_21 Ho%} Zl)

is convex in 0. As a consequence, by Proposition B.2.10]

is a sum of two convex functionals in p and o as desired. O

} z_l) is concave in o, for all z > 1. Hence

13



4 Main Result

4.0.1 Remark. Let us denote Q(Hap) as
Q(Hag) ={Xap € Z(Hap) : Xa®7p € Z(Han)},

where 7 is the maximally mixed state on Hilbert space Hp.

The techniques used here are inspired by [15] and [26]. The main result of this section
is a consequence of the following theorem.

4.0.2 Theorem (Necessary Partial Trace Case). Let pap € D(Hap) and oap € Q(Hag).
For any 1 < a < 2 and 5 < z < «, whenever saturation of the DPI holds. i.e.,
D, .(paglloag) = Da..(palloa), then the states satisfy

12/ 1oa o 1-ayz-l 1-: 1z / 1-a a 1-ayz-1 1-:
Py <0'A2§ PABO AT ) Ofp = 04" (O'A2Z PAOA” ) o5
Proof. Assume 1 < a <2 and 5 <z < a, denote d = dim(#Hp), and define
pi = (L@ vi)pap(l ®v;),
where pap € D(Hagp) and {v; fil are the generalized Pauli B matrices. Similarly, define
o= (1®v)oap(l®v)),
where o4p € Z(Hap). Then o; € Z(Hap), for all i. Define \; = &, for all i = 1,...,d>,

a2
and let
d? d?
i=1 i=1
As mentioned in [15],
2 d?
p= Z)\ipi =pa®@mpand 0 = Z)\iai =04 QTpg,
i=1 i=1

where g is the completely mixed state on Hg. ie., mg = %. Note that
O=04Q TR € Q(HAB) C Z(HAB).

Define

H := argmax f, .(H, p,5) and H; := argmax f, .(H, p;, 5;), where (4.1)

H>0 H>0

farlH,p,0) = 2Te(0 5 p2o 5 H) — (2 — 1)Tt (U%Ho—é’zl)ﬁ] ,

from Lemma B.2.T1l Note that the trace functional ¥, .(p||o), mentioned after theorem
217 is proven jointly convex in [26] in a more general setting. The following chain of
inequalities says:

\Ila7z<ﬁ||&> = fa,z(Hvﬁv 6-) (42)

2For more details on the generalized Pauli matrices, see [23] Chapter 3.7 for more details.
3See [23] exercise 4.7.6 for an explanation of how the Generalized Pauli operators randomly applied
to any density operator with uniform probability give us a maximally mixed state

14



d2

< Z )\ifa,z<H7 i, 0;) (4.3)
i=1
d2

< Z Nifo(Hi, piy i) (4.4)
i=1

d2
- Z )\i\pa,z(piHai)a (45)
=1

where lines (£2) and ([A3) are from Lemma B.2.T7] line (A3) is from the joint convexity
of f, which is proven in Proposition B:2212] and line (€4]) is from the fact that H; is the
maximizer for f, ,(H;, pi,0;) from (£I]). Assuming saturation of the DPI is equivalent to

d2
Vo (All6) = Y Xi¥as(pillon).
i=1

Then the chain of inequalities above is now a chain of equalities and thus by the definition
of H;,
foz(H,pi;03) = far.(H;, piyo;) foralli=1,... d*

By the uniqueness of the maximizer H, which is proven above in Lemma B.2.11, H = H;
foralli=1,...,d>

Recall that because an operator X and UXU™* have the same eigenvalues, where U
is any unitary, then for any function f it follows that f(UXU*) = U f(X)U*. Therefore
from Lemma [B.2.11] one has an explicit form of the maximizer: H; =

1—2 l—a o 1l—a\2—1 1—2
2z 2z z 2z 2z
g; (Ui Pi 0 ) g;

1—2

=1 ® v)oap(l ®v))] =
([(]1 ® v))oap(l @ v))] T (1 ®v;)pap(1 @ v)][(1 @ v;)oap(l® vf)]lhay_l
(1 ®v)oap(l @))%

=(1® Uz')U,}_éz <0;‘2;§p530;‘2;§)z_1 0';2_5 (1 ®wv]).

This holds for all v; due to the fact that v;v; = I. Therefore for some i € {1,...,d*},

1—2 l1-a « 1—a\ 2—1 1—=z
L — 2z 2z z 2z 2z
H; =0/ <UAB PABO AB ) O4B -
Also by similar calculations, H =

1—2 1—a a 11—« 1—2
z z

(ca®@mp) 2 ((0A®7r3)2(pA®7rB)Z(O,A®7rB)2>z—1 (01 1)

1—2 ( l-a « 1(1)21 1—2 (12;Z+(12—a+%+12—a)(z_1)+ 12—zz)

—_ 2z 2z z 2z 2z z z
=0y 04" PAa0 4 04" QTp

1—2 l-a o l-a z—1 1—2
=0 <0’A2z PAO A ) o ®lpg, (4.6)

where (E6) holds because 1= + (42 + ¢ + 1-2)(z — 1) + 52 = 0. Thus

z

1—2 l-a o 1—ay 2—1 11—z 1—z l-a o l-—a z—1 1—2
2z 2z z 2z P 2z 2z z 2z 2z
94B (UAB pABUAB> 94 =04 (UA Pa04 ) g4 -
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Next is the generalization of the partial case trace using a standard Stinespring Dila-
tion argument.

4.0.3 Corollary. Let p € D(H), 0 € Q(H), and A : B(H) — B(K) be a quantum
channel. For any 1 < a <2 and § < z < «, whenever saturation of the DPI holds, i.e.,
D, .(pllo) = Da.(A(p)||A(0)), then the states satisfy

127204 )ZﬁlA(O-) 12;z> .
Proof of [4.0.3 Following élB], for any quantum channel A : B(H) — B(K), by the Stine-
spring Dilation Theorem [, there exists a Hilbert space H’, a pure state |7) € H' ® K,

and a unitary operator U : H@H' @ K — H ® H' ® K such that for every p € B(H), one
has

1—2 l—-a « 1—a -1 1—2 1—

o E (0 plo E ) e 'E = A (A(g)%(/\(o—) = p2 A(0)

Alp) = Triz (U(p @ 7)U),
where 7 = |7) (7| and Try5 denotes the partial trace over the first two systems H ® H’
ie., Trig: H® H ® K — K. Then, for the parameters [ where DPI is satisfied for the
a — z RRE,
Doz (pllo) =Da:(U(p @ T)U||U(0 @ T)U) (4.7)
>Dq (Tr12(U(p @ 7)U)|| Tr12(U (0 @ 7)U™)) (4.8)
=Da..(A(p)||A(9)),
where (7)) is due to properties mentioned in Z.T.4l and (4.§]) is the DPI for partial traces.
By assuming equality and by Theorem one sees that

1—2

>z1 Ao) =

l1—a a l—«

Luew ® A(0) T (A(0) T A(p)*A(0) T
=[U(c & 7)U*] '

(e @ U= Wpe N Ue et U nU s

1

—z —a o —o z=1 —z
:U(O' 2z <0‘12z p§0'127z> 0'1272 X T)U*, (49)

where the last line is due to the fact that f(UXU*) = U f(X)U*, for every function f
and for any unitary U. The quantum channel A : B(H) — B(K), has a unique adjoint,
A*: B(H) — B(K), and it is given by

A (X) := (Iy @ (T]ype) U (X)U (1 @ |T) perc)- (4.10)
So applying ([A1I0) to (£.9) gives

1—z l1—a a 1-a\ 21 1—z
A [40)F (30 F a0 A0 =) a0 | -
1—z2 l—a « 11—« z—1 1—2
A* |:U (0‘ 2z (0‘ 2z p?o‘?) o 2z ®7’) U*:| —
1—z 1o a 1-a\? ! 1-:
(s (rl (o (5050'5) 7 o 07 ) (tw ) =

1—2 l-a a l—a z—1 11—z
g 2z 0'22pzo'22 g 2z

4Stinespring Dilation Theorem can be found in [23].
5for o and z where the DPI makes sense. see Theorem .17 for such parameters
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Here, some algebraic sufficient conditions for saturating the DPI of a — z RRE are
explained.

4.0.4 Proposition. If oap € P(Hap) and pap € D(Hag), where pap is a product state
such that

l-a loa a 1l-a\2-1l 1-a la s l-a a 1l-a\#-1 1-a
OAB (UAQE; PABO AT ) O =047 (UAQZ PAOA” ) 04" ®1p,
then
Da,z(pABHUAB) - Da,z(pAHUA) + kpa
o
where k, = -1 log [Tr <p§)] .

Proof. Since pap is a product state on Hp, it follows that pap = pa ® pp, where
pa € D(Ha) and pp € D(Hp). Multiplying the assumed expression by pap on the left
and taking a trace gives

o 11—« l-a o 1—ay 2—1 11—« a 11—« l-a o l-« z—1 11—«
2 2 2 2 — 2 2 2 2
Tr | pipoAB (UAé PABO AB ) os5 | =Tr{pip | 04" (UAZ PATAT ) 0 @l | .

This implies

l—a o l—a\ ? a a 11—« l-a a 1l-«o z—1 11—«
2 2 J— 2 2 2 2
Te[(0. pinoi ) | =T (i @pp)os (o paod ) od ).
which gives
l-a o l—a\ % a l-«o l-aa a 1l-—a z—1 l1—a a
2z z 2z — z 2z 2z z 2z 2z z
Tr [(OAB PABO AB ) ] =Tr|(pios (UA PATA ) o4 ) Qpp|-

Taking the log of both sides and multiplying by ﬁ gives

1 l—a a l-a\?Z% 1 l—a a 1l-a\?Z% a
(05 ) T) - e () 7).

which is the same as

Da,z(pABHUAB) - Da,z(pAHUA) + kpa

where k, = ﬁ log [Tr (p%)} as desired.
O

4.0.5 Remark. It is interesting to see that Theorem [4.0.2] and Proposition [4.0.4] would
hold simultaneously if and only if 2 = a. This in turn will result in «—SRD, which aligns
with the work done in [15].

4.0.6 Remark. If pg in Proposition [4.0.4] is a pure state, then & = 0. This immediately
leads to another result:

6Note that we are using the fact that Trap(X) = Tra(TrpX)
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4.0.7 Proposition. If oap € P(Hap) and pap € D(Hap), where pap is a separable
state, such that

1-a l1-a « 1—a\2—1 1-o 1-a l-o a 1l-a\2—1l 1-a
2z 2z z 2z 2z _ 2z 2z z 2z 2z
04B <‘7AB PABUAB) 04 =04 (UA PAT 4 ) 04 >
then the DPI under partial traces is saturated. 1i.e.,

Da,Z(pABHOAB) = Da,Z(pAHUA)-

Proof. Since pap is a separable state on H 4, write pap as a convex combination of a
tensor product of pure states. i.e., pap = Y Ni |[Vi) 4 (¥i| @ |¢i) g (¢i], where {|¢;)} and
il
{|¢i)} are sets of pure states on H4 and Hp respectively. Furthermore, 0 < \; < 1, for
all i € T so that > \; = 1. Again, multiplying by pap on the left and taking a trace of

i€l
the assumed expression yields

[
z

lma a 1l=a\Z% lma s/ 1l-a a l-a\2?~l 1-0a
Ir [(OAQEZ? PABO4B ) } =T (Z Ai [Y0i) 4 (Vi @ [¢4) <¢i|> 04 (UAQZ PAOA” ) 04"
iel
This implies
l-a o 1=a\#
Tr [(UAQJ_? PABO A ) } =
a 1-a l-a a 1-a\%2—1 1-a
Te | ([ Do a il ) o (0 o) o | @ ool
iel
which gives
l-a o 1-a\~% a 1-a l-a a 1l-a\%-1 1-a
Tr [(OAQé PABO AT ) ] =Tr {(PZUAQZ (UAQZ PAO A" ) 04" )] :
Taking the log of both sides and multiplying by ﬁ gives
Da,Z(pABHOAB) = Da,Z(pAHUA)-
]

5 Closing Remarks

We have shown algebraic conditions equivalent to saturating the data processing inequal-
ity for 1 < z < o < 2z, which generalizes the a— SRD saturation condition from [15].
The techniques in this paper fail for & < 1 because the Holder inequality requires positive
powers, so it would be interesting to find a similar result for this case. As mentioned in
section 2 a quantum channel A is said to be sufficient with respect to p and o if there
exists a quantum channel R such that (R o A)(p) = p and (RoA)(c) = 0. For Umegaki
relative entropy, a-RRE, and a-SRD, saturation of the DPI is equivalent to sufficiency of
the quantum channel A. In general, it is not known whether sufficiency of the quantum
channel is equivalent to saturation of the o — z RRE DPI. However in [11], Hiai and
Mosonyi do prove such results for a set of density operators fixed under the quantum
channel. (i.e., A(p) = p and A(0) = o). It would be interesting to find a larger class of
channels where sufficiency holds.
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