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Abstract. An infinite graph is highly connected if the complement of any
subgraph of smaller size is connected. We consider weaker versions of Ramsey’s
Theorem asserting that in any coloring of the edges of a complete graph there
exist large highly connected subgraphs all of whose edges are colored by the same
color.

1. Introduction

Ramsey’s celebrated theorem in its most basic infinite form is the fol-
lowing: for any partition of the collection of pairs of natural numbers into
finitely many sets, there exists some infinite X C N whose pairs all fall in
one of those sets. A pithier rendering is by way of Erdds and Rado’s arrow
notation:

(%) Rg — (No)2 for any finite k.

Here the outer cardinals X, 2, and k£ parametrize the sorts of partitions un-
der consideration: letting []* denote the size-\ subsets of p, the partitions
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in question in the above relation are all of the form c: [Rg]?> — k. The car-
dinal inside the parentheses records how large a homogeneous set we seek
with respect to any such partition, and the arrow tells us we can always find
one.
The following points are basic to the theory:

(1) The above relation “descends” to finite contexts (see [5, §1.5] for a
direct deduction). More precisely, for any finite k£ and m there is some n
such that

n—>(m)i.

This least such n is often denoted R(m; k).
(2) Extending the relation (%) to higher cardinals is less straightforward.
More precisely:

(a) The relation Xy — (Ry)? fails in a very strong sense, for any k > 2
(see [19]).

(b) More generally, for 2 < k < p, the relation 1 — (;)? characterizes
any uncountable cardinal p as weakly compact, that is, as a cardinal whose
existence is a strictly stronger assumption than the ZFC axioms (see [9]).

(c) Ttem (1), on the other hand, does fully generalize: for any x and u
there is some least v such that

v— ()2

This follows from Erdés and Rado’s theorem that (2)* — (A*)?2 for any
infinite A (see [4]).

Fach of these facts will figure in the following. Recall lastly the more
pictorial framing of Ramsey’s relation in terms of edge-colorings of graphs:

v— (W3

if and only if every coloring of the edges of the complete graph on v by A
many colors contains some size-y monochromatic subgraph which is com-
plete. It is this framing we will have generally in mind — only our inter-
est will be in subgraphs which are large in some finer sense than complete.
Namely:

DEFINITION 1. A graph G is k-connected if it remains connected after
the deletion of any fewer than k vertices.

Our question should at this point be clear. Where formality is necessary,
we will denote a graph G as an ordered pair (vertices, edges). The size of a
graph is the cardinality of its vertex-set. For cardinal numbers x, A, u, v,
write

V = k-c (N)g\
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if every coloring of the edges of the complete graph on v into A many colors
contains some size-p monochromatic subgraph which is k-connected. More
formally:

DEFINITION 2. v =, (1)3 if and only if for every c: [V]2 — X there
exists a £ < A and X € [v]* such that the graph (X, c~ (&) N [X]?) is k-con-
nected.

QUESTION. For which cardinals does the relation v — . ()3 hold?

2. Main results

Note at the outset that s-connectedness is a well-studied notion, not
least for its evident relevance to network design; it dates at least to Menger’s
1927 [14] (see also [12]; see further [6], [1], [10], and [18] for interactions of
the notion with vertex decompositions and chromatic number). Observe as
well that it articulates a number of graph theory’s most basic concerns:

(1) A graph is 1-connected if and only if it is connected.

(2) A graph with at least three vertices is 2-connected if and only if each
pair of its vertices belongs to a cycle.

(3) The only p-connected graph on any finite u is the complete one.

By this last point,

(%) when g is finite, v —,,. (1)} is simply the Ramsey relation v — (11)3.

Hence for any finite A and k < p,

V —k-c (N)i

for some v < R(u; ). See [13] for much finer bounds on the least such v.

For infinite p, a p-connected graph on p is no longer necessarily com-
plete; such graphs nevertheless play a sufficiently critical role in the theory
to merit a name and notation all their own:

DEFINITION 3. A graph G = (V, E) is highly connected if it remains con-
nected after the deletion of any fewer than |V| vertices. Write v —p. (1)}
if and only if v —,. (,u)i, i.e., if every coloring of the edges of the com-
plete graph on v into A many colors contains some size-u monochromatic
subgraph which is highly connected.

OBSERVATION 4. [v — (n)3] = [v —=ne (W3] = [V —re (W3] for any
K< W.

In light of (%) and the following proposition, we might view —. as a
more satisfactory generalization of the positive Ramsey relations of (x) to
the uncountably infinite:
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PROPOSITION 5. If p is an infinite cardinal and k is a natural number
then 1 —pe (11)3-

PROOF. Given a coloring c: [u]> — k, let D be a uniform ultrafilter on
w and define f: yu — k by

f(a) =1 ifand only if Ay = {8 € p:c({o,8}) =i} €D,

and let i < n be such that the set B = {a € p: f(a) =4} isin D. The set B
is highly connected. This is because for any «, f in B, the set A, N AgN B
is in D and hence has cardinality ;. Any v in A, N Ag N B connects o and 3
via the edge-colorings c({a,~}) = c({B8,7}) =i. O

The situation is considerably more complicated for infinitely many col-
ors. Henceforth we will assume more set-theoretic background of the reader;
we will focus as well on the relation —j.. This relation is subtle and signif-
icant in its own right, and we will tend to treat the finer relations — .. as
secondary, as mainly grading its failure.

Perhaps the earliest result along these lines is Erdés and Kakutani’s
theorem [3] that the complete graph on an infinite cardinal p can be parti-
tioned into A\ many trees if and only if < A*. In consequence, the relation
AT =4 (AT)3 fails in the strongest possible respect: AT /9. (AT)3.

OBSERVATION 6. p —1.c ()3 holds for any cardinal X less than the co-
finality of p.

OBSERVATION 7. The Erdds—Kakutani coloring shows even that A\ /sp,.
()3 for any p > 3.

Alternately, AT /4. (AT)3 may be viewed as an instance of the following
proposition, inspired by the Sierpiriski coloring of [17]:

PROPOSITION 8. If 1 < 2* then p /pe (1)3.

PROOF. Let {1, : @ < u} C 2* be a collection of pairwise distinct func-
tions. Given a # [ < p let

DNgp=min{ & < X:na(€) #ns(8)}
Then define c: [u]?> — A x 2 by
c({a, B}) = (Aap,i) if and only if o < and 74 (Dq ) = 1.

Aiming for a contradiction assume that A C p is highly connected in color
(&,7). Let B e A be such that that ng(§) # ¢ (there is such a § since
A contains an edge). Let B=ANpA. Then S has no adjacent edges in
(A\ B,c ((&,9)) N [A\ B]?), a contradiction. [

By the following observation, Proposition 8 says even more.
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LEMMA 9. Let u be the cofinality of v. Then p #pe ()3 implies that
v e (V)3

PROOF. Let c: [u]? — X witness that 1 /pe (1)3. Let v be the disjoint
union of p many sets v, each of strictly smaller cardinality than v. A col-
oring d: [v]? —>)\f0rwhlchd(§ n) =c(a,B)if £ € vy and ) € vg and a # 3
will witness that v /. (v)3.

The core relation in Proposition 8 is 2} /. (2>‘) This is sharp, in the
sense that the relation (2*)* —. (2*)% does hold:!

PROPOSITION 10. If p= p then put —pe ()3

PRrROOF. Observe first that by assumption, the cofinality of p is greater
than .

Given a coloring c: [u]? — A, let {M. : ¢ < u} be a continuous C-chain
of size-u elementary submodels of some large enough H(6) such that

(1) p+1U{c} C Mo,

(2) [Mcy1]* € M.y for every € < p, and

(3) for every e < p, every formula ¢ € Ly+ y+(€) with parameters in
M. that is satisfiable in H(#) is satisfiable in M.

For each ¢ < p let 6. = M. Npt € u*. The key observation is the fol-
lowing:

CrLAM 11. For co-boundedly many € < u there is an i(e) < A such that
c({a,d,}) = c({B,0,}) =i(e) for some o, B < d. and such that for every such
«, B, the set

{7 €00z.0:41) s c{a,y}) = c({B.7}) = c{y, 0u}) =i =i(e) }

is unbounded in ey 1.
Observe that we do not require the «, 5 of the claim to be distinct.
PRrOOF. Adopt the convention that min @ = 0 and let
¢ =sup{min{o: a < §, and c(a,6,) =i} :i € A}

and take n < p with §,) > &£. Claim 11 will hold for all ¢ in the interval (1, u).
This we argue by contradiction: assume the claim fails for some € € (1, p);
in other words, for each i < A\ assume that one of the following holds:

(a) There exist o, 5; <e such that c¢({ay,0,})=c({B:,,}) =1, yet the set

Ly = {7 € [0 0011 < cl{an 7)) = e{Bir}) = el{7.8,}) = i}

is bounded in d.1.

! (Compare the Erddés-Rado relation (2*)* — (AT)2. It too is sharp, in the sense that
2* 4 (AT)2, as witnessed by the Sierpitiski coloring.)
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(b) For no a < 6. does c(a,d,) = 4. In this case let I'; be @.

As [M.1]* € M., 1, the cofinality of 6.1 is bigger than )\, hence some
¢ < 0c41 bounds J,., I';. Denote the family of i satisfying (a) by 1. Con-
sider the conjunction ¢ of the formula v > ¢ with the formulas c({a;,v}) =
c({Bi,v}) =14, where i ranges through I. Then §,, witnesses that ¢ is satisfi-
able in H(0), so by (3) some v € ({,-11) witnesses its satisfaction in M. y;.
Let j = ¢({7,9,}). Then j € I and v € I';, which contradicts the assumption
that I'; is bounded by ¢. U

Let i < A be such that the set W = {e:i(¢) =i} has size p, and let
A =|J{A: : e € W}, where

A ={a € 6:,0.41) : c({e,6,}) =i}

A is then a subset of uT of size pu (in fact, A. has size u for every e € W).
We claim that it is highly connected in the color ¢. To see this it suffices to
prove that if « and g8 are distinct elements of A then the set

{veA:c({a,"}) =c({B,7}) =i}

has size pu. To see this, let €1 and €9 be elements of W such that o € A,
and 8 € A.,, and let € be an element of W\ (g1 + 1Ueg + 1). We wish to
find a v € [0z, 0-41) such that

c({a,7}) = c({B,7}) = ({7, 0u}) = i = i(e).
Such a « exists by Claim 11. [

A number of questions now come into focus. Most immediate among
them is:

QUESTION 12. For A an infinite cardinal, what is the least cardinal p for
which it is consistent with the ZFC axioms that  —pe ()3 7

By Observation 4, p —pe (,u)%\ holds whenever u is weakly compact, for
any A < p. As we have seen, though, —p. holds in many cases where the
classical arrow fails; hence we might reasonably hope for p — (,u)%\ on much
smaller . Necessarily, 2* must be smaller than any such j, by Proposition 8.
Is this alone enough?

No. By the following, any instance of u —, (u)i will involve large car-
dinal assumptions.

DEFINITION 13. For regular uncountable p, the principle O(u) is the
assertion that there exists a sequence C = (C,, | @ € p) such that

e (U, is a closed unbounded subset of «, for each a.

o CgNa = C,, for every limit point a of Cp.

e No club C C p satisfies C'Na = C,, at every limit point « of C.
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If in addition the following holds, we will call C a A-stationary O(u)-
sequence:
e The set {a € p: otp(Cy) = A} is stationary in p.

The following is immediate from [8] together with [20, Lemma 7.2.2].

THEOREM 14. If X < p are infinite regular cardinals and p is not Mahlo
in the constructible universe, then there exists a A-stationary C(u)-sequence.

PROPOSITION 15. If there exists a A-stationary O(u)-sequence, then
1 7L>hc (M)i

PROOF. The “bad” coloring c: [u]? — A will be ¢(a, B) = p*(a, ), where
p* is Todorcevic’s local rho function, defined in reference to some A-statio-
nary O(p)-sequence C. Readers are referred to [20] §7.2 for further informa-
tion. The decisive features of p* for our purposes are the following: for all
a<f<y<p,

(1) pMav, B) < max { p* (v, 7), P (8.7) }
and
(2) per,y) < max { p*a, B), p*(8.7) }

In consequence, for all £ < A, the relation
a<g‘5 iff a<6andp>‘(a,ﬁ) <¢

is a tree-ordering on p. By our assumptions about C and [20, Lemma 7.2.9],
none of the orderings <§‘ contains a chain of length p.

Now suppose towards contradiction that A € [u]* is highly connected in
the color £. By the above, there exist a < # in A with « {2 5. By highly-
connectedness, some color-§ path o = ag to a1 to ... to o to aj41 = B must
connect o and 3 in A\ a. It then follows from successive applications of (1)
and (2) above that

pMa, B) <: I?%XPA(O%O(HI) =¢

This implies that « <2‘ 8, a contradiction. [

COROLLARY 16. It is consistent with the ZFC axioms — and even with
ZFC+GCH — that p1 #ne ()3 for all infinite cardinals A < pu.

PROOF. By Proposition 15, the relation p +p. (1)} holds for any in-
finite regular cardinals A\ < g in a model of ZFC+(V=L)+ “there exist no
Mahlo cardinals.” It will hold then for any singular u by Lemma 9. Observe
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finally that if p #pe (1)3 failed for any singular A, it would fail as well for
some smaller regular \, contradicting our premise. [J

We now show in the opposite direction that, assuming the existence of
a weakly compact cardinal above some p > A, it is consistent with the ZFC
axioms that 2% —p. (2)3.

Instrumental in the argument is the following “two-dimensional delta
system lemma” of more general utility.

DEFINITION 17. A family of sets A is a A-system if there exists a fixed r
such that a Nb = r for every distinct a and b in A. This r is called the root
of the A-system.

LEMMA 18. Let v be weakly compact and let p be less than v. Then for
any family {uap: o < B < v} C [V]SF there exists a B € [V]” such that:

(1) For each o € B, the set {uqp: 8 € B\ (a+1)} is a A-system, with
root V.

(2) For each [ € B, the set {u,p:a € BN P} is a A-system, with root
Vﬁ_.

(3) The sets {V,t : o€ B} and {V, :a € B} and {V, UV, :a € B}
each form A-systems.

(4) The elements of the set {uqp\ (V5 U V) a < B in B} are pairwise
disjoint.

In what follows, the relation a < 8 will sometimes be left implicit; it is
assumed to hold in any expression conjoining « and £.

PROOF. By the weak compactness of v, we may begin by assuming all
Uq 3 to be of the same order-type.

Define the coloring d: [v]* — H(u™") as follows: for any increasing a =
{ag, a1, a2, a3} let

U,=aU U Ue; 0 -
j<k<4

and let
d(a) = (otp(Ua), (& 11 < 4), (vjk: j <k <4)),

so that if & is the unique order-isomorphism between U, and otp(U,), then

o h(ay;) =¢; for every i < 4, and

o hlug,a,] = vjr for every j <k < 4.

By the weak compactness of v, there exists a d-monochromatic A € [v]”.
We argue most of the lemma for this set A, thinning to a B € [A]” only later
if necessary.
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Consider a < f <y <d<e in A. Since d(«,,7,¢) =d(a, B,0,e) =
d(Oé,")/,(S, 8)7

(1) E€UNBNULY & EEUNENULF & & E Uny NUgs

As e was arbitrary, this implies item (1) of the lemma. We might usefully
note more: a & as in () must sit at the same relative height in each u, g,
for 5 € A\ (a+1)). Pigeonhole arguments together with (1) then ensure
that any lesser elements of u, g also fall in the root V" of the A-system
{uap: B8 €A\ (a+1)}. In other words, V" is an initial segment of each
such u, g.

Item (2) of the lemma is similar. (Pigeonhole arguments are not available
in this case, hence the root V" is not so easily characterized.)

To see that {V, : @ € A} forms a A-system with root 7+, observe that
e Vﬁ"“ﬁVAY'Ir = {cug.Nuy. foranye e A\ (y+1)

= eV
= £ €Uy foranya e ANe.

As ¢ is arbitrary, this implies that ¢ is in V;I. As « is arbitrary, this com-
pletes the argument.

The argument that {V, : a € A} forms a A-system with root = is es-
sentially identical (but may require the omission of the first two elements
of A).

Finally, note that otp(V,;"), otp(VB+), otp(V,"), otp(V; ) are all legible
from d(«, 8,7,0). In consequence:

(1) VﬁJr NV is of the same order-type for all 8 <+ in A. Hence this

intersection must be equal to r* N r~. Thin A if necessary to a B € [A]”
such that VBJr \7t NV, \r~ =@ forall 3>~ in B. Then {V,;UV, :a
€ B} forms a A-system with root r =r~ Urt.

(i) The family {uap \ (Vi7" UV )t @ < B in B} is pairwise disjoint. For
by the homogeneity of B, any £ in (ug,, \ VBJr UV) N (tas \ Vah UVs ) is
necessarily also in (ug . \ VﬁJr UV,) N (tae \ Voh UV for any € # 6 in B.
But this implies that £ € V7, a contradiction. Similarly for any other con-

figuration of «, 3, v, and §. These establish items (3) and (4) of the lemma.
U

REMARK 19. Two further features of the above system will be useful
below:

e VI are all of the same order-type, for o € B. Similarly for V.

e As each a in B sits at the same distinguished relative location in
V, =V, UV, we have [{otp(V4) : @ € B} =1 as well.
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THEOREM 20. Let v be a weakly compact cardinal, and let N < p =
w<H < v be given. Then there is a cardinal-preserving forcing P such that

lFp “24 = v and v —p. (V)37
PRrOOF. Let P be the forcing for adding v many p-Cohen subsets of v,
ie.,

P = {p : p is a partial function from v to 2 of size less than ,u}

reverse-ordered by extension. By assumption, P has the p™-c.c; it is evi-
dently p-closed as well, and consequently preserves cardinals. By standard
arguments, IFp “2¢ = 7.

Let ¢ be a P-name such that IFp “¢: [¥]?2 — A\”. For every a < 8 <v
let Ay g := {pa,pe: & < p} be a maximal antichain in P with corresponding

{iape 1 & <p} such that po ge b “¢({a, f}) = iape”- Let

Ua,p = {a, B} U U dom(pa g.¢)-
E<p

Let {va,8,y : 1 < €a,3} enumerate u, g in increasing order. Define a relation
E on [v]? by declaring {1, 81} E {2, 32} if and only if

)

) @1 =Ya 5, if and only if @y =7, 5,9,

) B1L = VYou,8:,m if and only if B2 = 74, 8,1,

) {0 Yoo g1 € dom(pa, 5,,6) } = {0 Vo, € dOm(pa, g, ¢)} for every
)

p0117517§(70117/31777) = p0127/327§(/70627/32777) fOI“ every 1 as in (4) and 6 < Hs

(6) iay gr.e = Py, p,¢ for every € < p.
Clearly E is an equivalence relation on [v]? with 2# < v many equiva-

lence classes. As v is weakly compact, there exists an A € [v]” such that
{tap: {a, B} € [A]?} all falls in a single class. Further thin A to a B C A
as in Lemma 18. Write r for the root of the A-system {Vj : 8 € B}.
Observe that in this context the key terms of Lemma 18 take on more
particular meanings: V", for example, records exactly those coordinates at
which some p € A, 3 and ¢ € A, may disagree. The argument now pro-
ceeds in two steps; the uniformities of the family B are important to each.
In the first step, we extend any ¢ € P to an s deciding the elements of some
¢-homogeneous X € [I/]A. In the second step, genericity below ¢ propagates
that homogeneity to highly connect a cofinal Y C v in the forcing extension.
Therefore fix ¢ € P and a W C B of order-type AT + 1 such that

dom(q) N U {uap:{a,B} € W]} Cr.
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We will recursively define “colors” i, € X and a sequence (g, : ) < A1) C W
and conditions ¢, below ¢ so that for all n < AT,

(1) £ < n implies that g¢ > gy,

(2) g IF “¢({e¢,en+ }) = i¢” for all € <,

(3) qn IF “¢({e¢,ec}) = i¢” forall £ < (¢ <n, and

(4) ¢y =qU [ Uggnpeg,gﬁ] U [ U€<C§np55’€<] , where each p., .. is a mem-
ber of the antichain A, ...

To begin the construction, let €9 and e+ be the first and last elements of
W, respectively, and let gg be the union of ¢ with any compatible element of
Az, - Suppose now that for each < ¢ coordinates €, and conditions g,
have been selected which together satisfy (1)-(4). As 6 < AT, by Lemma
18 there exists an €5 € W such that u. ., \V;g is disjoint from (J, 5 gy for
each n <. There also exists for each such n a p. .., € A -, so that
U77 <5 Deyens © U77 <5 Q- Let p;mE , denote their induced respective “copies”
under the order-isomorphisms 7, : ue, o, . — Ue, ¢, By arrangement,

6= | Un|v| U]

n<d n<d

is a function. Let g5 be the union of ¢j with any compatible element of
Acs.e..- The condition g5 is as desired; in this fashion the construction pro-
ceeds.

For some i € A the set {7 : i,, = ¢} is unbounded in A™. Let X’ collect its
first A elements. Let 7 =sup X’ and let s = g5 and let X = {g,, : € X'}.
Clearly s IF “¢”[X]? = {i}”. This completes the first of the steps described
above.

For the second step, let s. = s [ Vz for each ¢ € X. Let V[G] be a forcing
extension of V' by a P-generic filter GG; therein define the family

Y:UY;

e€X
where
Y. = {a € B : there exists a p € G with dom(p) C V, such that
the order-isomorphism 7 : V, — V; sends p to 35}.
Lastly, let ¢ = qU (s [ r).

CLAaM 21. ¢ |- {Y,¢ (i) N[Y]?) is a highly connected graph of size v”.

As ¢ was arbitrary, this claim will establish the proposition.
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PrOOF OF CLAIM 21. Observe first that for each o € v and € € X the
set

D: = {p:pll— “Y. ¢ o/’}
is dense below ¢'. Hence ¢’ forces that each Y; is unbounded in v.

Suppose now that ¢” < ¢ forces that o and 8 are in Y. Without loss
of generality, ¢” decides the witnesses to this fact as well, i.e., there ex-
ist some po,pg € ¢ and e(a),e(f) € X such that the order-isomorphism
7 Vo = V(o) sends p, to s.(,), and similarly for 5. We’ll show that for
any v € v there exists a 6 > v and ¢ < ¢” such that

#) q" I “é(, 0) = é(B,0) ="

This will establish the claim. To that end, take e € X \ (max{e(«),e(8)} + 1).
By Lemma 18 there exists a 6 € B\ (y+ 1) such that uy 5\ Vo and ugs \ Vs
are disjoint from dom(q"). Extend ¢” by “copying” s [ (us(a),c Uus(g),c) via
the order-isomorphism to u,sUugs. Denote this extension by ¢”. Our
assumptions on « and 3 ensure that ¢"” is in fact a condition, and our as-
sumptions on E translate the relation s IF “¢(e(a), ) = é¢(e(8),e) =i to (),
as desired. [ [

COROLLARY 22. Assuming the existence of a weakly compact cardinal,
it is consistent with the ZFC axioms that 2% —, (2N1)§0.

3. Main questions

We turn in conclusion to the most immediate instance of Question 12:

QUESTION 23. What is the least cardinal p for which it is consistent with
the ZFC axioms that 1 —pe (,u)io ?

Corollary 22 may be viewed as approximating to any of several possibili-
ties. For example: the p = 28 of Corollary 22 falls, in the forcing extension
of Proposition 20, well below any weakly compact v, but it remains a regular
limit cardinal. Therefore we may ask:

QUESTION 24. Must the least cardinal p for which it is consistent with
the ZFC azioms that 1 —pe (,u)io be weakly inaccessible?

By Lemma 9, such a p is necessarily regular; hence Question 24 amounts
to asking if such a p may be a successor cardinal. If indeed it may be,
then Corollary 22 might be viewed instead as approximating to the following
alternative to Question 24:

QUESTION 25. Assuming whatever large cardinals may be necessary, is
it consistent with the ZFC axioms that No —p,. (Ng)io ¢
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Reasoning from [7] and [11] shows that if p is the successor of a reg-
ular cardinal and A < p, then the consistency strength of “there exists no
A-stationary O(u) sequence” is exactly a Mahlo cardinal. By Proposition 15,
this gives a lower bound on the assumptions necessary to any affirmative an-
swer to Question 25. Again by Proposition 15, answers to any of the above
questions entail further questions of consistency strength; most generally:

QUESTION 26. What is the consistency strength of the existence of an
uncountable cardinal p such that p —pe (,u)io ?

By Proposition 8, positive relations g —pe (,u)%\ will involve cardinal
arithmetic assumptions as well. An affirmative answer to Question 25, for
example, would imply the continuum hypothesis. It is unclear if weaker rela-
tions would also. More particularly, the continuum hypothesis implies that
No —pe (Nl)io, by Proposition 10. Is the reverse true? In other words:

QUESTION 27. Is the continuum hypothesis equivalent to the assertion
that Ng —he (Nl)k%o ?

A question of a similar flavor is the following;:
QUESTION 28. Does Ry —ry, - (R2), ?

As this paper goes to press, the authors have the pleasure of referring the
reader to Chris Lambie-Hanson’s recent https://arxiv.org/abs/2005.10812
for partial progress on some of these and related questions.
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