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Abstract

®

CrossMark

We apply a spectrally-resolved electron interferometry technique to the measurement of the
spectral phase in the vicinity of the 3s'3p®4p Fano resonance of argon. We show that it allows
disentangling the phases of the two nearly-overlapping electron wavepackets corresponding to
different spin—orbit final states. Using simple assumptions, it is possible to process the
experimental data and numerically isolate each component in a self-consistent manner. This in
turn allows reconstructing the autoionization dynamics of the dominant channel.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The advent of attosecond spectroscopy has allowed the inves-
tigation of fundamental processes such as photoionization on
their natural timescale [1]. In particular, it is now possible
to measure attosecond delays between electron wave pack-
ets (EWP) emitted from different electronic shells of atoms
[2-5], molecules [6—-11] and solids [12—-14] (see [15-17]
for reviews on theory and experiments). These attosecond
delays can be accessed by different methods: either directly
in the time domain using the attosecond streaking technique
[18, 19]. or through the measurement of the spectral variation
of the scattering phase using the RABBIT (reconstruction of
attosecond beating by interference of two-photon transitions)
technique [20, 21].

Recently, two particularly challenging cases have been
investigated. On the one hand, the influence of the atomic fine
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structure on photoionization time delays was studied by Jordan
et al [22]. Up to 33-as delays were measured in Xenon between
EWPs originating from the same electronic shell but leaving
the ion in different spin—orbit (S—0O) configurations, whereas
very small (<8 as) delays were measured between the two
S—0 components of krypton. This demonstrated that relativis-
tic effects may influence photoionization time delays. Impor-
tant effects are expected in systems involving heavy elements,
in molecules and solids.

On the other hand, studies have been conducted in the vicin-
ity of autoionizing resonances [23—29], a well-known example
of the important role of electron correlation in light—matter
interaction. The presence of autoionizing resonances is known
since the measurement of unusual asymmetric peak shapes in
the absorption of noble gases [30]. Fano explained this phe-
nomenon as the interference between direct photoionization
and photoexcitation to a discrete state coupled to the final
continuum by configuration interaction [31]. Since then, Fano

© 2020 IOP Publishing Ltd  Printed in the UK
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resonances have been intensively studied using synchrotron
radiation, allowing very precise measurements of their ener-
getic locations and cross sections (e.g. [32, 33] in argon).
The possibility of measuring the phase of the Fano resonance
transition amplitude (i.e. the spectral phase in the vicinity of
the resonance) was demonstrated by Kotur et al [24] in argon,
however without resolving the S-O components. Different
RABBIT spectrograms were recorded as harmonic H17 was
tuned across the resonance by controlling the laser driving
wavelength. In Gruson et al [25], the EWP emitted through
the 2s2p Fano resonance in helium was fully characterized
using spectrally-resolved RABBIT (rainbow RABBIT), which
allowed reconstructing the complete autoionization dynamics
from a single spectrogram.

In this work, we go one step further compared to previ-
ous works [22, 24]. We measure the spectral phase across
the 3s'3p®4p (hereafter denoted 3s~'4p) Fano resonance in
argon for both SO components by using the Rainbow RAB-
BIT technique. The features are nearly-overlapping due to
the comparatively small S—O splitting (177 meV [34]), but
distinct signatures can be observed in the spectrally-resolved
amplitude and phase near the resonance. We apply a numeri-
cal procedure, based on simple assumptions, that allows com-
plete separation of the two S—O components. Our results
compare well with the predictions of our theoretical model,
giving access to the autoionization dynamics of the domi-
nant channel. In section 2, we describe the experiment, the
analysis method and the experimental results. In section 3,
we introduce the model used to simulate the spectral amplitude
and phase retrieved from the rainbow RABBIT technique. The
comparison between the experimental and theoretical results
is presented in section 4, together with the reconstruction of
the autoionization dynamics. Finally, we draw conclusions in
section 5.

2. Experimental results
2.1. Experimental setup

The experiment relies on the RABBIT electron interferome-
try technique, with a setup similar to the one used in [28]. It
consists in ionizing argon atoms by a train of extreme ultra-
violet (XUV) pulses in presence of a weak infrared (IR) pulse,
and measuring the photoelectron spectrum as a function of the
XUV-IR delay. The driving laser is a Ti:Sa system produc-
ing ~800 nm 5 mJ 22 fs pulses at 1 kHz repetition rate. The
laser beam is split in two: the generation beam and a weak
dressing beam. The generation beam is focused in an argon
gas cell to generate a train of XUV attosecond pulses, that
corresponds to a comb of odd order harmonics of the funda-
mental laser frequency wp. A 200 nm thick Al filter blocks
the remaining IR radiation and transmits the XUV pulses
that are then recombined with the dressing beam and focused
into the argon target gas jet for laser-assisted photoionization.
The photoelectrons are detected by a magnetic bottle elec-
tron spectrometer (MBES), with a collection angle of 4
sr and a resolution better than 100 meV for electrons with
kinetic energy Ey, < 5 eV. A retarding potential is applied
in the MBES in order to shift the spectral region of inter-

3s5%3p° 3s13p®

J=1/2

35%3p°
J=3/2

3sl4p

3s23pe

Figure 1. Schematic representation of the energy levels and
transitions involved in this work. The blue (red) arrows represent
absorption of an XUV (IR) photon. The orange dashed arrows
represent the configuration interaction between the quasi-bound
state 35~ '4p and the continua. The processes indicated by the red
dotted arrows stand for the dipole coupling of the 3s~'4p state with
the final continua through absorption of an IR photon. E3/; and E}
are the kinetic energies of the electrons for different final states of
the ion, separated by Es_o.
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Figure 2. Photoelectron spectra for different wavelengths of the
driving laser, from 785 to 794 nm. Spectra are shifted vertically for
clarity, in decreasing laser wavelength from top to bottom in 1 nm
step. The green and blue areas in harmonic 17 mark the position of
the 3s~'4p resonance, visible at different kinetic energies depending
on the final state of the ion (Ey, = 10.66 eV for J = 1/2 and at Eyy
= 10.84 eV for J = 3/2, see figure 1).

est to this low energy and thus reach the optimal resolution.
Harmonic 17 (H17) has an energy close to the 3s '4p Fano res-
onance, located at E,.; = 26.6 eV. Using a combination of two
acousto-optical programmable dispersive filters (DAZZLER
and MAZZLER) as in [24], the laser central wavelength can
be tuned from 780 to 820 nm with a bandwidth of 50 nm (cor-
responding to ~35 fs pulses), which allows tuning H17 across
the resonance. A scheme of the resonant transition induced by
HI17 is represented in figure 1 by blue arrows.

Figure 2 shows the XUV-only photoelectron spectra for
different wavelengths of the driving laser. The photoelec-
tron peak due to ionization with non-resonant H19 exhibits
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a double structure that simply shifts but remains essentially
unchanged with wavelength. This is due to the overlapping
S—0O components that are only partially resolved due to both
the harmonic bandwidth and the spectrometer resolution.
In contrast, the shape of the peak coming from H17 changes
dramatically when the energy of the resonant harmonic is var-
ied. Its shape is governed both by the S—O splitting and the
Fano resonance. For short wavelengths (A = 785-788 nm),
when H17 is tuned just above the resonance, the photoelectron
spectrum shows a pronounced double structure that is mainly
due to the S—O splitting. As the wavelength increases (A =
789-792 nm), a three-peak structure appears. The intensity of
each peak changes as the wavelength is varied while the global
signal is lower (especially for A = 790-791 nm). These modi-
fications are the signature of the window resonance, as we will
see later. Finally, for A = 794 nm, H17 is just below the reso-
nance and the lineshape is similar to the short wavelength case.
The entire resonance has been scanned and its signature was
visible in both S—O channels.

The dressing field is then spatially and temporally over-
lapped with the XUV in the MBES interaction region, inducing
two-photon XUV + IR and XUV — IR transitions and lead-
ing to the formation of satellite peaks in the photoelectron
spectrum (the so-called sidebands (SB), see figure 1). These
sidebands encode the spectral interference between replicas
of the two neighboring EWPs created by absorption of high-
order harmonics. The spectral phase of the resonant H17 EWP
is thus encoded in SB16 and SB18, the non-resonant H15
and H19 EWPs serving as references. By recording the pho-
toelectron spectrum as a function of the delay 7 between
the XUV and IR pulses, a RABBIT spectrogram is obtained.
This delay is actively stabilized to correct for spatial and tem-
poral jitters [35]. The high resolution of the MBES allows
using the rainbow RABBIT technique to extract the entire vari-
ation of the amplitude and phase across the sideband by ana-
lyzing the 2wy oscillations as a function of energy, where wy
is the driving laser angular frequency [5, 9, 25, 28].

2.2. Numerical separation of the spin—orbit components

Due to the fine structure of argon, the measured photoelectron
spectrum S™ is the incoherent sum of two independent spectra
corresponding to the J = 1/2 and J = 3/2 final states of Ar™:

SY(E) = SYX(E) + SYX(E). )

Electrons corresponding to the J = 3/2 final state have a
177 meV higher kinetic energy than electrons correspond-
ing to J = 1/2 [34]. Because of the spectral overlap of the
two S—O components, the extraction of the spectral ampli-
tude and phase by the rainbow RABBIT technique is not
straightforward.

To study the influence of the Fano resonance on the spec-
tral phase and amplitude of the photoelectron wave-packet, it
is necessary to disentangle the contribution of the two S-O
components.

Our method takes advantage of the periodicity of the pho-
toelectron spectrum to separating numerically the two S-O
contributions by Fourier transformation [36]. We assume that
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Figure 3. Retrieved (red line) and measured (black dashed line)
XUV-only photoelectron spectra, for A = 785 nm (upper panel) and
A =791 nm (lower panel). The two S—O components J = 1/2 and
J = 3/2 are shown in green and blue respectively. The total
retrieved signal is in excellent agreement with the measured signal.

the two S—O spectra are identical, shifted by the S—O energy
difference Es—o and scaled by the degeneracy of the p, /2 and
2p, /2 states of ArT. Thus the two spectra corresponding to the
two S—0O components can be written as:

SYE)y=S(E) and S**E)=2S(E—Es_o). (2)

Equation (1) for the measured photoelectron spectrum
becomes:
SNE) = S(E) + 28(E — Es o) (3)

and its Fourier transform (FT), with i the transform variable
of E: _ ‘ _
S°(n) = (1 + 2e7"5-0)S(n). 4)

The expression for S(E) can be obtained by inverse FT:

E[Gl
S(E) = Re [FTI (%)] . (5)

The spectrum of each S—O ionization channel is then obtained
by equation (2). As the energy calibration of the photoelectron
spectrum may be imperfect, the value of Es—gq is optimized by
an algorithm which minimizes the difference between the
experimentally measured spectrum and the one calculated
by using equation (3). We first applied this procedure to
the XUV-only photoelectron spectra shown in figure 2. The
extracted value of 180 meV is in very good agreement with
the literature values. The imaginary part of the inverse FT in
equation (5) is found to be negligible, indicating the validity
of our assumptions. The total spectra, reconstructed from S(E)
using equation (3), are in excellent agreement with the mea-
sured ones, as illustrated in figure 3 for A = 785 nm and A =
791 nm. While the non-resonant harmonic H19 is bell-shaped
for each S—O component (green and blue lines), the resonant
harmonic H17 shows the imprint of the window resonance that
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Figure 4. (a) Measured RABBIT spectrogram at A = 791 nm;

(b) and (c) retrieved RABBIT spectrograms for J = 1/2 (b) and for
J = 3/2 (c). Differently scaled colormaps are used for sidebands
and harmonics for the sake of better visibility. (d) Difference
between the measured RABBIT spectrogram and the total retrieved
one (d=a— (b+c)).

digs a hole on the low-energy side for A = 785 nm and around
the maximum for A = 791 nm. The latter case shows that the
sum of the two resonant S—O components is responsible for the
three peaks observed in the total spectrum $''. Remarkably, the
ratio of the two S—O cross-sections, that can vary around 1.9 in
the vicinity of the Fano resonances [37, 38], does not seem to
be a critical parameter and our assumption of a constant value
of 2 over the whole spectral range does not lead to significant
discrepancies.

2.3. Resonant phase for the two spin—orbit components

We now apply this method to the RABBIT spectrogram
obtained at A = 791 nm and shown in figure 4(a). In order to
isolate the contribution of a single S—O component, the pro-
cedure described in section 2.2 is applied to each spectrum at
every delay. By doing this, we extend the assumptions made
in section 2.2 from one-photon to two-photon transitions. The
two retrieved RABBIT spectrograms, corresponding to the
two S—O components, are shown in figures 4(b) and (c). The
total spectrogram is reconstructed by applying equation (3).
The difference with the measured RABBIT spectrogram is
negligible as seen in figure 4(d). Therefore the assumptions
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Figure 5. Experimentally measured spectral amplitudes and phases
(black dashed lines) of the 2wy component of SB16, SB18 and
SB20, for A = 791 nm. The amplitudes and phases of the two S—O
components retrieved using the procedure detailed in the text are
shown in green for J = 1/2, blue for J = 3/2 and red for the total.
The shaded area around the spectral phases represent the error-bars.
They are estimated as the statistical error from the FT
phase-retrieval algorithm, normalized by the signal to noise ratio.
The intrinsic group delay dispersion of the ionizing harmonic
radiation, related to the attochirp [39], has been removed. The green
and blue vertical lines indicate the positions of the resonance shifted
up (SB18) or down (SB16) by the energy of one photon.

concerning the two S—O components in equation (2) lead to
self-consistent results. Each spectrogram can then be ana-
lyzed with the rainbow RABBIT method. The resulting spec-
tral amplitudes and phases for the resonant sidebands SB16
and SB18 and the non-resonant SB20 are shown in figure 5.
The amplitude and phase of the measured (black dashed line)
and reconstructed total (red) spectrograms are in very good
agreement with each other.

The double signature of the resonance is not clearly visi-
ble in the amplitudes (as it was in the XUV-only spectra of
figure 3) but is clear in the phases. In contrast to the non-
resonant SB20 phase that is rather flat, the measured phases
for the resonant SBs show large spectral variations with dou-
ble structures, a behavior markedly different from the exper-
imental results of reference [24] which were S—O averaged.
This observation is made possible by the high spectral resolu-
tion of the rainbow RABBIT technique.

These modulations can be related, although non-trivially, to
that in each reconstructed S—O component. The correspond-
ing phases (in green and blue lines) show, for both SB16 and
SB18, a modulation across the energy value corresponding
to the resonance shifted by the energy of one laser photon,
E..s & hwy (green and blue vertical lines). In contrast to what
was observed in helium [25], the phase of the lower energy SB
is not equal to the opposite of the phase of the higher energy
SB. Here, the phase of SB16 increases monotonically from 0
to 1.2 rad before the resonance whereas the phase of SB18
first decreases from O to —0.5 rad, then is rather flat before
increasing back to O at the resonance. The reason for this dis-
crepancy will be clarified in section 4. Note that the numerical
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separation procedure intrinsically yields identical results for
the two S—O components, apart from an energy shift and a
scaling in the amplitude.

3. Simulations

In order to interpret the measured phases in terms of
resonance-induced phases in the two S—O components, we
performed RABBIT simulations. To describe the resonance,
we use the non-relativistic model of [24], assuming that
relativistic effects are negligible so that the resonant two-
photon transitions for the J = 1/2 and J = 3/2 components
are identical, except for the scaling and spectral shift factors
in equation (2). The total SB signal is proportional to the inco-
herent sum of transition probabilities towards different final
states, characterized by the quantum numbers L (total orbital
angular momentum) and ¢ (angular momentum of the ionized
electron). In the case of argon, there are three channels: L =
0/=1,L=2¢=1,and L = 2 ¢ = 3. For each channel, we
compute the intensity of the oscillating SB for the two S0
components as follows:

SBIZE (7, E) = |Aw(B)? + |AFH (B + 2/An(B)|
x |AFHUE)| cos (2wor F ARM(E)),
SBIE (r,E) = 2 SBYLGe (r,E — Es_o), (6)

where wy stands for the driving laser angular frequency, 7 for
the XUV-IR delay, A,(E) and A-54(E) are the non-resonant
and resonant two-photon transition amplitudes, and A@f’u
is their phase difference. The symbol (+) indicates whether
the IR photon is absorbed (+) or emitted (—) for the reso-
nant path; L, ¢ indicate the given channel. The resonant and
non-resonant transition amplitudes can be written as a func-
tion of the harmonic spectral amplitude # and the resonant
two-photon transition matrix element M*4f as

An(E) x H(E), ©)
AFH(E) o< HIE)MPH(E). (8)

The final intensities of the SBs are given by the sum over all
channels and components convoluted with the MBES response
function Sp:

8B 316(7, E)

=SpE)+ Y SBG . B)+ Y SBIGe (r,E)| . (9)
L Lt

In argon, the presence of two continua (s and d) to which
the resonance is coupled by configuration interaction can be
reduced to the case of an ‘interacting’ and a ‘non-interacting’
continua [31]. This results in the following expression for the
one-photon absorption cross-section o [40]:

(q+e)?
14£2

o(e) = o, + op (10)
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Figure 6. Modulus (a) and phase (b) of the two photon transition
matrix elements with 8 =0 (qciﬁ = g) as a function of the reduced
energy, for the three channels. The phase curves have been shifted to
0 for e = oo.

where o, represents the (constant) non-interacting part,
while o, is the off-resonant contribution of the interacting
continuum.

The reduced energy £ = 2(E — E.s)/T includes the param-
eters for the 3s~'4p resonance: its linewidth [' = 76 meV and
energy E.; = 26.6 eV. The value of the lineshape parame-
teris ¢ = —0.25 and the correlation parameter P =0, [(oa+
op) = 0.89 [32]. A fit of the numerically-separated H17 line-
shape for J = 3/2 in figure 3 (791 nm) using these parameters
allows the extraction of the width of the spectrometer response
function assumed Gaussian. The extracted value of 90 meV
full width at half maximum is then used for the simulation of
the SBs in the RABBIT spectrogram with equations (6)—(9).

The resonant two-photon transition matrix element for
channel (L, £) can be written as [24]:

+ LE
+£
Mrj:,L,E — MDLE esr + M@LE

11
e+i an
with the effective complex g parameter [23, 41]:
aui™ = qF 2q — i) B hwo/T. (12)

MWL and M@ are the two-photon matrix elements asso-
ciated to the interacting and non-interacting continua. Their
values were previously calculated by some of the authors and
used in [24]. qfff"f includes the dipole-coupling of the interme-
diate quasi-bound state with the final continuum through the IR
field [23,41] (see red dotted arrows in figure 1). The strength of
this process is described by the 8% parameter. Figure 6 shows
the modulus and phase of ML for the three channels when
B5* = 0. The channel L = 2 ¢ = 3 is clearly the dominant one,
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Figure 7. Simulation of the resonant sidebands (solid lines) at

A = 792.3 nm compared to the experimental data (diamonds).
Normalized 2wj-amplitudes (top panels) and 2w,-phases (bottom
panels) for SB16 and SB18. Green, blue colors are used for the
J=1/2,J = 3/2 respectively. Red is used for the summed
components and measured data. Vertical lines indicate the positions
of the resonance shifted up (SB18) or down (SB16) by the energy of
one photon energy.

the channel L = 0 £ = 1 having a slightly smaller amplitude
but a very similar phase. In [24], the best agreement between
model and data was found for ﬁ"“’f = 0.005, which is the value
used here for all three channels. The experiment being per-
formed with the reduced 50 nm laser bandwidth, the effects
described in references [23, 41] arising from short pulses, are
not taken into account.

In our analysis, the group delay dispersion of the attosec-
ond pulses (attochirp) [39] is not considered since it only
leads to a phase offset. We further assume that the spectral
phase of the individual harmonic fields (often referred to as
femtochirp) does not vary significantly from one harmonic
order to the next. It does not contribute to the phase differ-
ence in equation (6). Consequently, the phase of the side-
band oscillations in each channel is simply: A@fi’f(E) ~
— argl MFLYE)] + argl MHYE — oc)]. Finally, the har-
monic spectral amplitude H(E) is assumed Gaussian and
equal for all channels. Its width, determined by compari-
son with the numerically separated J = 3/2 spectrum for
SB20 in figure 4(c), is found to be 140 meV full width at
half-maximum.

The spectrograms simulated using equation (9) are ana-
lyzed like the experimental ones. The amplitudes and phases
are shown in figure 7 in red lines for the total and in green
and blue lines for the two S—O components. The shape of the
amplitude is clearly different in SB16 and SB18. This is due
to the different effective complex parameter qeiff"'“’g for the two
sidebands. The fact that ﬁu, although small, is not zero has
a strong impact on the two-photon transition complex ampli-
tude. For the same reason, the phase jumps of SB16 are much
larger than in SB18.

4. Discussion

Figure 7 shows the comparison between the SB amplitudes
and phases from the simulation and the experiment (the data of
figure 5 are here plotted as diamonds). The best agreement was
found when the simulations were performed for a laser driving
wavelength of 792.3 nm. The difference with the experimen-
tal value is less than 0.2% which is within the experimental
uncertainty. The agreement between the simulated and mea-
sured amplitudes (red in figure 7) is remarkable, especially for
SB18. A good agreement is also obtained between the mea-
sured and simulated total phases (also in red in figure 7), which
indicates that the double bumps measured in SB16 and SB18
are signatures of the Fano resonance in the two S—O chan-
nels. In particular, the very different modulation amplitudes of
the phase jumps measured in SB16 and SB18 are well cap-
tured by the simulations. The non-zero 5 parameter explains
the difference with respect to the 2s2p resonance in helium
(for which 3 ~ 0), even though it is not enough to fully recover
the exact shapes of the resonant phases, in particular for SB16.
A possible reason could be the presence, within SB16, of the
3s'4s two-photon resonance, with I' = 170 meV linewidth
[42]. Note that the 3s~'4d two-photon resonance that could
affect SB18 has a linewidth of only I' = 2 meV and is thus
probably washed out. The simple model used to numerically
separate the measured spectrogram in two incoherent contribu-
tions also gives quite satisfying results: in SB18, the retrieved
amplitudes and phases for each J (green and blue lines and dia-
monds in figure 7) correspond to a good extent to the results of
the simulation. All the above demonstrates the ability of rain-
bow RABBIT to distinguish between two nearly-overlapping
contributions, here separated only by 177 meV.

The simulations described in section 3 were also used to
study the influence of different detunings of the driving laser.
The results, presented in figure 8, show significant modifi-
cations of both spectral amplitudes and phases. Interestingly,
when the resonant harmonic is centered below (above) the res-
onance, the phase jump corresponding to the J =3/2 (J =
1/2) is entirely encoded in the total phase. For instance, when
H17 is below the resonance (A = 793.5 nm), the total phase
(red) fits closely the J = 3/2 phase jump (blue) at 12.4 eV.
This is due to the fact that the J = 1/2 contribution (green)
is very weak at high energy: it plays a role only below ~
12.3 eV. A combination of measurements with appropriate
detunings could reveal differences between the spectral phases
of the two S—O components. The experimental realization is
though delicate since, to recover the entire phase jump, the
phase must be extracted down to 5% of the SB amplitude
where the noise level can be important, which was the case
for the measurements presented in this work. As shown above,
the relatively good agreement of the measured data with our
simulations indicates that differences between the two S—O
components should be small.

Similarly to what was done for the 2s2presonance in helium
[25, 28], we reconstruct the temporal evolution of the EWP
emitted through the 3s !4p resonance. The reconstruction of
the EWP from experimental data is meaningful when a single
channel is dominant or when the main channels present similar
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Figure 9. (a) Intensity (red straight line) and phase (blue dashed
line) of the temporal reconstruction of the experimental two-photon
EWP in SB18 for J = 3/2. The arrows indicate the vertical axis
corresponding to each curve. (b) Time—frequency representation of
the buildup of the corresponding resonant spectrum obtained by
time-limited inverse FT. The plots are obtained from experimental
data in figure 5 with A = 791 nm.

dynamics. Otherwise, the incoherent addition of the various
channels in the RABBIT spectrogram prevents this reconstruc-
tion. Since in figure 6, the L = 2 £ = 3 channel has the largest
amplitude and, furthermore, the second largest channel (L =0
£ = 1) has a very similar phase evolution, the dynamics of the
former can be recovered. We will compare the temporal evo-
lution of the EWP emitted in the J = 3/2 continuum obtained
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Figure 10. (a) Intensity (red straight line) and phase (blue dashed
line) of the temporal reconstruction of the simulated two-photon
EWP in SB18 for J = 3/2 and for the L = 2 £ = 3 channel.

(b) Time—frequency representation of the buildup of the
corresponding resonant spectrum obtained by time-limited inverse
FT. The plots are obtained from simulations for A = 792.3 nm
without convolution with the spectrometer response function.

from measurements (figure 9) and from simulations (figure 10)
in order to validate these assumptions.

The amplitude of the wavepacket is calculated by using
the formula reported in the supplementary material of refer-
ence [25] as SB}, (E)/\/2 SByy (E+2hwy), where SB;}” and
SB;{)Z are the experimentally-recovered amplitudes of SB18
and SB20 for the J = 3/2 component, respectively. The phase
of the wavepacket is the one experimentally recovered for
J = 3/21in SB18. By Fourier transform, we determine the tem-
poral evolution of the two-photon EWP. Note that, in contrast
to He, the two-photon EWP is not an exact replica of the res-
onant one-photon EWP because of the non-zero value of the
3 parameter in equation (12). It accounts for the possibility of
a direct dipole transition from the resonant state to the final
continuum, giving rise to an additional two-photon pathway
and thus a deviation of the total two-photon EWP from the one-
photon EWP. Finite pulse effects, due to the spectral width of
the dressing beam (~50 meV), are expected to play a marginal
role, given the broader resonance width (76 meV).

The normalized intensity and phase evolution of the EWP
are shown in figure 9(a). The intensity variation is essentially a
Gaussian profile, with a 12 fs FWHM, centered at time ~0 fs.
After dropping down to almost zero at time ~12 fs, the inten-
sity variation then exhibits a secondary maximum of much
smaller amplitude. The strong minimum is accompanied by an
abrupt phase jump. This feature is characteristic of the inter-
ference between the direct ionisation path and the resonant
path. The temporal evolution of the simulated EWP for the
channel L = 2 ¢ = 3, shown in figure 10(a), reveals a very



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 184003

M Turconil et al

5

L0%()
:@ 0.81 _
0 o
& 0.6 o
> o]
T 0.4 9
c -
‘8 o
T 0.2]

0.01
~12.6
>
) 280
5125 24073
@ S
S 124 2005
c 160,
5123 120 3
3 80 ?é
8122 a0 <
et
@]
c 0
e 121

20 -10 O 10 20 30
Time (fs)

Figure 11. Same as figure 10 for SB16.

similar behavior, implying that our assumptions were justified.
Nevertheless, the interference position occurs slightly earlier,
at ~10 fs. Figure 9(b) shows the buildup in time of the (two-
photon) resonant spectrum in SB18. This time—frequency rep-
resentation is obtained by applying a time-limited inverse
Fourier transform to the complex EWP as described in [25,
28, 43]. The spectrum is bell-shaped, like the excitation pulse,
until ~12 fs, then a destructive interference starts to appear at
the photoelectron energy of ~12.4 ¢V, digging the window res-
onance in the pulse spectrum. This appears even more clearly
in the time-frequency representation of the simulated EWP,
shown in figure 10(b), where the hole in the spectrum starts
to appear at ~10 fs. Note that there is very little constructive
interference in the buildup because, in contrast to helium, the
argon resonance lineshape is quite symmetric.

The position in time of this interference depends on the rel-
ative value of the Fourier-limited duration of the excitation
radiation with respect to the resonance lifetime (8 fs). The
harmonic width is 140 meV, which corresponds to a Fourier
limited duration of 12.8 fs. By increasing the harmonic band-
width to 280 meV in the simulations, the interference is shifted
down to ~6 fs.

For comparison, we plot in figure 11 the temporal profile
and buildup of the simulated two-photon EWP in SB16 for
the same channel L = 2, £ = 3. They are significantly differ-
ent from those in SB18, with a stronger destructive interfer-
ence and a higher secondary maximum. Mathematically, this
is the result of the change of sign of the complex factor in
g see equation (12). This illustrates the importance of the

presence of the additional channel involving the direct dipole
transition from the resonance to the final continuum that affects
differently the sidebands on either side of the resonance.

5. Conclusion

The spectral phase around the 3s~'4p Fano resonance in argon
has been measured for photoionization leaving the Ar™ ionin
two different S—O states. We show that a spectrally-resolved
electron interferometry technique, the rainbow RABBIT, is
able to distinguish between the two nearly-overlapping S—O
contributions, here separated only by 177 meV. Assuming
identical resonant transitions for the two S—O components, a
simple model is used to numerically separate the measured
spectrograms in the two incoherent contributions. The com-
parison with simulations based on the same assumption gives
quite satisfying results. The double signature of the resonance
is recovered in both amplitude and phase and attributed to the
two S—O components. The simulations also explain the very
different amplitude of the phase jumps measured in the lower
and upper sidebands with respect to the resonant harmonic.
Our approach intrinsically yields identical results for the two
fine-structure states. A better theoretical description could
be obtained by adding relativistic effects [44, 45]. Finally,
a more complete description of the photoionization process,
including coherence between multiple ionization channels,
could be measured using the Mixed-FROG approach [46, 47].
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