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Abstract

We address a fundamental issue in the nonparametric inference for systems of interacting particles:
the identifiability of the interaction functions. We prove that the interaction functions are identifiable for
a class of first-order stochastic systems, including linear systems with general initial laws and nonlinear
systems with stationary distributions. We show that a coercivity condition is sufficient for identifiability
and becomes necessary when the number of particles approaches infinity. The coercivity is equivalent to
the strict positivity of related integral operators, which we prove by showing that their integral kernels
are strictly positive definite by using Miintz type theorems.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

Dynamical systems of interacting particles or agents are widely used in many areas in
science and engineering, such as physics [12], biology [3], social science [6,31]; we refer
to [7,36] for reviews. With the recent advancement of technology in data collection and
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computation, inference of such systems from data has attracted increasing attention [8,17,19].
In general, such systems are high-dimensional and there is no natural parametric form for the
interaction laws, so their inference tends to be statistically and computationally infeasible due
to the curse of dimensionality. When the particles interact according to a function that depends
only on pairwise distances, one only needs to estimate such interaction function, opening the
possibility of statistically and computationally efficient inference techniques [5,26,28]. How-
ever, a fundamental challenge arises: the interaction function may be non-identifiable, because
its values are under-determined from the observation data consisting of trajectories. To ensure
the identifiability of the interaction function, a coercivity condition is introduced in [5,26,28].
In this study, we show that the coercivity condition is sufficient for the identifiability, that it
becomes necessary when the number of particles goes to infinity, and that it holds true for
linear systems and for a class of three-particle nonlinear systems with a stationary distribution.

More precisely, we consider a first-order stochastic gradient system of interacting particles

in the form
t t

axt = - 3 DX — XDt =X 4y gaB, fori=1,... N
N S TG =X ’ (1.1
SJSN, j#i
X%~ po,

where X' € R? represents the position of particle i at time ¢, { B! }1N= , are independent Brownian

motions in R4 representing the random environment, | - | denotes the Euclidean norm, o > 0
is the strength of the noise. Without loss of generality, we assume o = 1 in (1.1). The function
¢ : Rt = [0,00) — R models the pairwise interaction between particles, which is referred
to as the interaction function. We assume that the initial condition X° has an exchangeable
absolutely continuous distribution o on the state space RYM, that is, the joint distribution
of (X?l, ...,X?N) is uo for any ordering of the index set {ij,...,iy} = {l,...,N}. As a
consequence, combining with the fact that the system is equivalent under permutations of the
indices of the agents, the distribution of X’ is exchangeable for any ¢ € [0, T].

We consider the identifiability of the interaction function ¢ from many independent trajecto-
ries on a time interval [0, T'], denoted by {X [O’T]’m}n"le, in the likelihood-based nonparametric
inference setting. We focus on the case of infinitely many trajectories (i.e. M = oo) for our
analysis. Clearly, the function space for inference must depend on the information from the
process defined by the system (1.1), and in particular we can hope to estimate the interaction
function only on the interval explored by pairwise distances. A natural choice is the space
L?(pr) (or a subspace thereof), where pr is the average-in-time distribution of all the pairwise
distances {|X} — X’|,r € [0, T} j=1- By the exchangeability of the distribution of X', the
distribution p, of | X! — X ;-| is the same for all (7, j) pairs (which is why we may abuse notation
and avoid writing p; ; ;), thus pr can be written as

T
pr(dr) = %/ pedrydt,  with  p(dr) :=E[8(| X} — X’j| e dr)], (1.2)
0

In other words, pr is the average of the measures {p;,t € [0, T]}. Note that pr depends on
both the initial distribution and the interaction function ¢.
We define the identifiability of the interaction function as follows.

Definition 1.1 (I/dentifiability). The interaction function ¢ of the system (1.1), which defines
the process X!®71, is said to be identifiable in a linear subspace H of L(p7), if it is the unique
maximizer of the expectation of the log-likelihood ratio of the process (see EEy0,71(+) in (2.5)).
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In practice, the above identifiability requires a unique global maximizer for the expectation
of the log-likelihood ratio (a functional on the high- or infinite-dimensional subspace H,
see Section 2.1 for details), which is difficult to verify. The following coercivity condition,
introduced in [5,26-28], provides an appealing alternative because it can be numerically verified
from data. It ensures the uniqueness of the maximizer of the empirical likelihood ratio on finite
dimensional hypothesis spaces by ensuring the Hessian to be strictly negative definite.

Definition 1.2 (Coercivity Condition on a Time Interval). The system (1.1) on [0, T] is said
to satisfy a coercivity condition on a finite-dimensional linear subspace H C L?*(pr) with pr
defined in (1.2) if

T

1
inf — | Elh(ri,Dh(ri;))

1 1
; (rip. ri3)
heH, 1l 25 =1 T Jo

n —1dt > 0, (1.3)
Iriallrsl

CH,T ‘=

where rﬁj = Xﬁ — X;-. When H C Lz(ﬁT) is infinite-dimensional, we say that the system
satisfies a coercivity condition on 7 if the coercivity condition holds on each finite dimensional
linear subspace of H.

The coercivity condition on H defined here is slightly different than the previous one in
[26-28], which requires ¢y 7 + ﬁ > 0 and ensures the uniform concavity of the expectation
of the log-likelihood ratio. This new definition has the advantage of being independent of N,
and requires a positive coercivity constant cy, 7 only on each finite-dimensional hypothesis
space 7, rather than on any compact set of L%(57), making it suitable for studying the
mean-field limit when N — oo. This new definition also highlights the dependence on the
joint distribution of (ri,, r{,) only, and the connection with positive integral operators (see
Section 2.2). A drawback is that it can be slightly more restrictive than the previous one for
finite N, with such difference vanishing as N — oo (see Remark 2.3 for details).

We show that the coercivity condition is sufficient for the identifiability, and it holds for
certain classes of interaction functions, including ¢(r) = r28-1 with B e [%, 1]:

Theorem 1.3. Consider the system (1.1) on [0, T] with interaction function ¢, and the average
distribution of the pairwise distances between particles pr as in (1.2).

(a). The interaction function ¢ is identifiable in a linear subspace H of L*(pr) if the coercivity
condition holds on H.

(b). The coercivity condition holds on L?(or) if ¢(r) = Or, i.e. when the system is linear, and
the initial distribution 1o of X° is a non-degenerate exchangeable Gaussian.

(c). The coercivity condition holds on L*(pr) for nonlinear systems with three particles and
with the following interaction functions and initial distribution:

1. the interaction function ¢ is of the form
1
¢(r)= D'(r), where ®(r) :=ar” + &y(r), a>0, B¢ (511, (4

where @y € C>(R™, R) satisfies that f(u,v) = do(ju —v]) : R x R - R is a
negative definite function and that lim,_, o, ®(r) = 400,

2. the joint probability density of (X(l) - Xg, X(1) - Xg) is (with Z being a normalizing
constant)

1
P, v) = Ee—_%[¢<\u|>+¢<\v|)+4’><\u—v\>l, (1.5)

i.e., an invariant density of the process (X| — X5, X| — X%).
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Part (a) of Theorem 1.3 is proved in Proposition 2.1. In addition to being sufficient for
identifiability, the coercivity condition also becomes necessary when N, the number of particles
in the system, is infinity. In particular, the coercivity constant ¢4 7 in (1.3) is independent of
N and it depends only on the distribution of the process (X} — X}, X — X%). We prove Part (b)
in Theorem 3.6 and Part (¢) in Theorem 4.1.

We show that the coercivity condition is equivalent to the strict positivity of an integral
operator arising from the expectation in (1.3) (see Section 2.2). Then, to prove the strict
positivity of the operator, we show that its integral kernel is strictly positive-definite, by
introducing a series representation of the integral kernel and resorting to Miintz-type theorems
for the completeness of polynomials in L2(o7) (see Section 3). In particular, in the treatment
of nonlinear systems, we develop a “comparison to a Gaussian kernel” technique (Sections
4.2-4.3) to prove the strictly positive-definiteness of integral kernels.

This study serves as a starting point towards understanding the identifiability of the
interaction function for particle or agent systems. While providing a full characterization for
linear systems, i.e., the coercivity condition holds for general initial distributions, Theorem 1.3
provides limited results for nonlinear systems, covering only stationary initial distribution
for systems with N = 3 particles and with polynomial dominated interaction functions.
The constraint N = 3 arises because our series representation of the integral kernel is
based on the explicit expression of the joint distribution of (r!,,r/;), which is currently
unknown to us when N > 3, albeit we are hopeful to eventually be able to remove this
constraint in future work. The constraint of stationary initial distribution may be removable
by perturbation-type arguments. Future directions of research include, to name just a few,
first-order nonlinear systems with more general interaction functions that are regular [19,28]
or singular [24,25], second-order systems and systems with multiple types of particles or
agents [26], and mean-field equations [10,20,30].

Positive-definite integral kernels play an increasingly prominent role in many applications
in science, in particular in statistical learning theory and in reproducing kernel Hilbert space
(RKHS) representations [11,13,35]. As a by-product, our results lead to a new class of positive-
definite integral kernels from particle systems, and our technique of comparison to a Gaussian
kernel may be of broader interest, for example in establishing identifiability of statistical
learning problems.

The organization of the paper is as follows: we summarize in Table 1 the frequently used
notations. In Section 2, we introduce the coercivity conditions in inference, and establish the
connections between identifiability, the coercivity condition and positive integral operators. In
Section 3 we prove the coercivity condition for linear systems and Section 4 is devoted to a
class of three-particle nonlinear systems with stationary distributions. We list in the Appendix
the preliminaries, such as properties of positive-definite kernels, a Miintz-type theorem on the
half-line, and a stationary measure for gradient systems.

2. The coercivity conditions and strictly positive integral operators

In the context of likelihood-based nonparametric inference of the interaction function, we
show that the coercivity condition is sufficient for identifiability, and it is equivalent to the
strict positive-definiteness of an integral operator. Also, we introduce a coercivity condition
at a single time, which suggests that the interaction function can be identifiable from many
samples at a single time.

In vector format, we can write the system (1.1) as

dX' = —VJ,(X")dt + dB' 2.1)
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Table 1
Notations.
Notation Description
¢ and ¢ The true and, respectively, a generic interaction function
[ The true interaction potential, such that @'(r) = ¢(r) as in (1.4)
X! and X (0,71 Position of the ith particle at time ¢ and, resp., trajectory on [0, T']
rl’.j =X - Xﬁ. Position difference from particle j to particle i at time ¢
p and pr Probability distribution of |r’12| and, resp., its average on [0, 7] in (1.2)
L?(p;) and L%(pr) The function spaces L2(R™, p;) and L>(R™, p7)
pi(u,v) and p(u,v) The joint density of (r,,r|;) and, resp., the stationary density, as in (1.5)

where X' := (X)), € RV, and the potential function J, : RN — R is
1 . Nd '
Jp(x) = N Z ‘ D(|x; —x;), xeR™™, with &(r) = /0 ¢(s)ds. 2.2)
i,j=1,j#i
Note that the constant $(0) does not affect the gradient system, and it can be arbitrary. We
assume for simplicity that ¢(0) = 0.

Since the pairwise potential @ in (1.4) is C*(R*) and lim,_, o, ®(r) = oo, the drift term
in (2.1) is locally Lipschitz and the total potential J,4 is a Lyapunov function for the system.
Thus, a global solution exists (see e.g. [22, Theorem 1.3]). For the existence and properties
of the solutions in systems with singular potentials, we refer to [1,24,25] and the reference
therein.

2.1. Identifiability and the coercivity condition

Consider the likelihood-based inference of the interaction function ¢ from observation data
consisting of many independent trajectories {X [O’T]‘m}fle. The maximum likelihood estimator
(MLE) is a maximizer of the log-likelihood ratio of these trajectories over a hypothesis
space H:

M

—~ . 1

¢3.m = argmax EM(p),  with EY(p) = — E Exto.11.m (@)
peH M m=1

where Ey0,71.m (@) denotes the average log-likelihood ratio of the trajectory X 0.T1m which is
given, by the Girsanov theorem (see e.g. [23, Section 1.1.4] and [21, Section 3.5]), by
T
Exor(@) = ——— <|VJ¢(X’)|2dt + 2(VJ, (X", dX’)) . (2.3)
2TN Jo
Note that £¥(.) is a quadratic functional. When % is a finite dimensional linear space, £ (-)
becomes a quadratic function on H, and an estimator ¢4, s can be obtained by solving a least
squares problem (which has multiple solutions if the matrix of the normal equations is singular.
A key assumption in the definition of MLE is the uniqueness of the maximizer of the
log-likelihood ratio EM(-). When M — oo, by the Law of Large Numbers,

E€xn.r(p) = Mlgnoo EM) a.s.,
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and the uniqueness assumption leads to the identifiability in Definition 1.1: the interaction
function is identifiable if it is the unique maximizer of the expectation of the log-likelihood
ratio.

The coercivity condition in Definition 1.2 can be readily verified from data on any finite
dimensional space H and it provides guidance on the choice of basis functions for H. In
fact, with the choice of an orthonormal basis for H C L*(pr), the coercivity constant ¢z, 7
provides a lower bound for the smallest eigenvalue of the normal matrix [26,27], thus ensuring
the uniqueness of the estimator. More importantly, if the coercivity condition holds true, the
estimator is proved to be consistent and converge at a rate (in M) equal to the minimax rate of
nonparametric regression in 1 dimension (see [26, Theorem 5-6] and [27, Theorem 3.1-3.2]),
and the estimation errors can be, under possibly further assumptions, dimension independent
(see [26, Theorem 9]).

The next proposition shows that the coercivity condition is sufficient for the identifiability
and it also becomes necessary when the number of particles in the system goes to infinity. This
implies Theorem 1.3(a).

Proposition 2.1. Consider the system (1.1) on [0, T] with interaction function ¢. Let pr be
as defined in (1.2). Then, the interaction function is identifiable on a subspace H C L*(pr) if
and only if

L e, page )iz )y L jnp Il h#0
7 [A(ri,)) (|"13|)m](1) t> —m” 25, Jorall h #0 e H.

(2.4)

Thus, it is identifiable on a linear subspace H C L*(pr) if the coercivity condition holds on
H. Furthermore, when N — 00, the interaction function is identifiable on L*(pr) if and only
if the coercivity condition holds on L*(pr).
Proof. Noting that dX' = —V J4(X")dt + dB' and that J, is linear in ¢, we have
T
/ |V]¢(X’)|2dl +2(VJ,(X"),dX")
0
’ 2
=/ VI, (XD)"dt — 2(VJ,(X"), VIu(X"))dt + (VI,(X"),dB")
0

T
=/ IV Jy_p(XDIdt — |V I,(XDIdt + (VI,(X"), dB'),
0

where the last inequality follows from completing the sczluares. Note first that from (2.3)

with ¢ = ¢ we have EEyp0m(¢p) = —ﬁ OT [VJ,(X")|"dt. Then, the expectation of the
log-likelihood ratio in (2.3) is
T
E€0n(@) = ——— | EIVJ, (X)) dt — EEo11(). (2.5)
2TN J,

Thus, ¢ is the unique maximizer of EEy0,m1(-) on H, i.e., is identifiable on H, if and only if

1T )
—_ EIVJ.(XD|°dt > 0 2.6
TN/O V(XD e > 2.6)

whenever h = ¢ — ¢ # 0 in H.
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Also, by exchangeability, with notation r i =X . — X}, we have

1 < i’ l)

Lo = Z 3 B, D D 2
= Ty
J#LkFE

Liji (1)
(N =DIIN =2)123 + I12]
= e
where the equality follows from that I;j; = I3 for all triplets {(i, j, k), j =i,k # 1, j #k},
contributing N(N — 1)(N — 2) copies of I1»3; and that [;;; = Iy, for all triplets {(Z, j, k), j =
k # i}, contributing N(N — 1) copies of I;5;. Therefore,

1T . (N—DN=21 [T N—11 (T
—_— EIVLX)dt = ———— "~ L3 (t)dt Lipn(t)dt.
TN,/O IV Jn(X)I T./o 123(1) 2 T/() 122(1)

)

N2
2.7)
Then, Eq. (2.4) is equivalent to Eq. (2.6) by noting that X [\ Iiox(t)dt = L [/ E[a(Irt,)*1dt =
||h||L2(pT)
If the coercivity condition holds on #, i.e. %fOT E[h(|r’,2|)h(|r’]3|)l(:”Hr”‘](t)dt > CcuT
|72 for all h € H, so Eq. (2.4) holds and ¢ is identifiable on .

L2(p7)

When N — oo, by (2.5), the maximizer is unique iff (together with (2.7))
lim L TEIVJ (XD)*dr = —/ E[h(Iri,Dh(r 13|)<”’—”)]<r)dz >0,
N—oo TN Jy r 1z|| 13|

for each h # 0 € H. Hence, for any finite dimensional linear subspace H, Eq. (1.3)
holds. Thus, identifiability on L*(p7) is equivalent to the coercivity condition on L?(p7) when
N—-oco. 1

Remark 2.2. When the related integral operator introduced below is compact and strictly
positive (see Remark 2.6), the coercivity constant ¢y, r will converge to zero as the dimension
of H increases to infinity, because it is the smallest eigenvalue of the integral operator on
H C L*(pr). Thus, when performing nonparametric inference of the interaction function,
even when the coercivity condition holds true on Lz(ﬁr), regularization becomes necessary
to control the condition number of the normal matrix when the dimension of the hypothesis
space H becomes large [26-28].

Remark 2.3. The coercivity in Definition 1.2 is sightly more restrictive than the one in the
previous studies [26—28], which is almost equivalent to the identifiability. More precisely, the
definition in [27, Definition 3.1] says that the coercivity condition holds on a set H if there
is a positive constant cy; such that

ol < 5y / Z]EWJ X" ar. 2.8)

for all ¢ € H. This is almost the identifiability in (2.6), except requiring a uniform bound cy
over ‘H. Definition 1.2 is more restrictive than the previous one in the sense that its coercivity
constant ¢y 7 in (1.3) may be zero while the constant ¢y above is positive, as in (2.9). In fact,
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by (2.7) with & replaced by ¢ and the fact that %fOT Lin(t)dt = II(pIIiZ(ﬁT), we can write (2.8)
as

N-DWN =21
2N? T

N—-1_,

T
'/0\ 1123(I)dt + W”h”Lz(ﬁT)

CH||(P||L2(/7T) <

N-1 (N—1)N-2)1 (T
— (cn— 2—]\72)||‘p||L2<Fr) < — Nz T Ls(t)dt,
0

Combining with (1.3), we obtain
N—-—1 (N—DWN -2
< c
2N? 2N?
—1)(N=2)

Hence, we can have ¢y 7 < 0 while having 0 < ¢y < W Nz CHT T+ % When N — oo,
we have ¢y < ¢y r and the two definitions are equivalent. Definition 1.2 has the advantage
of providing a coercivity constant independent of N. Also, by requiring a positive coercivity
constant ¢y, r only on each finite-dimensional hypothesis space H, it can hold on infinite
dimensional spaces such as L?*(p7) when N — oo, while the previous definition cannot. Thus,
the new definition is suitable for studying the identifiability of the interaction function in the
mean-field equation.

CH — H,T- (29)

While numerically easy to verify, the above coercivity condition on a time interval is difficult
to analyze directly, because it involves the average-in-time distribution p7 which is complicated
in general, unless it is an invariant measure of the system, either when the system starts from
the invariant measure, or when we consider the large time limit. The following single-time
version of the coercivity condition can be analyzed directly, and involves only the single-time
distribution p;.

Definition 2.4 (Coercivity Condition at Time t). The dynamical system (1.1) is said to satisfy
the coercivity condition at time ¢ on a linear subspace H C L2(p,), where p, is defined in
(1.2), if

cp(t) == inf E[h(|r112|)h(|r’l3|)(r12’ I

1>0 (2.10)
t t ’
heH. Ikl 2., )= |7 175

where r! =X —X ’j If the coercivity condition holds true on every finite dimensional subspace
H C L%(p,), we say the system satisfies the coercivity condition on L?(p,) at time ¢.

Similar to Proposition 2.1, if the coercivity condition holds on H at #;, then the interaction
function can be identified on H from a large size of samples at time #yp. This explains
the observation in [26-28] that the interaction function can be learned from multiple very
short-time trajectories.

2.2. Relation to strictly positive integral operators

We show in this subsection that the coercivity condition on an interval [0, T'] (or at single-
time ¢) discussed above is equivalent to the strict positivity of related integral operators on
L*(pr) (or L*(p1)).

Recall that a linear operator Q on a Hilbert space H is positive if (Qf, f) > 0 for any
f € H. It is said to be strictly positive if (Qf, f) > 0 whenever f # 0 € /. Hereafter, by an
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integral operator Q with kernel K on L?(p), we mean the bounded linear operator defined by
[Qh](r) = / K (r, s)h(s)p(s)ds

for any h € L%(p).

Proposition 2.5. The_ system (1.1) on [0, T] satisfies the coercivity condition on L*(pr) iff
the integral operator Q7 on L*(pr) with the integral kernel

— 1 1 T
Kr(r,s) = =——=—@rs)""' = / / / (€. n)pi(r&, spydEdndt (2.11)
qr(r)qr(s) T Jo Jsa-1 Jga-1

is strictly positive, where qr(r) denotes the density of the measure pr and p;(u, v) denotes the
density function of the random vector (r',, r';).

Proof. By definition, we have
[Orh1(r) = / Ko (r, 5)h(s)57(s)ds. 2.12)

Note first that for any &, g € L?(pr), by a change of variable to the polar coordinates, we have

—/ h<|r]2|>g<|r]3|)< 12713 gy —/ //h( )g() >p,(u,v>dudvdr

i llrs] vl

== / / f / / h(r)g(s)p(rs,snxs,n><rs>d—1dedndrdsdr
0 R+ JR+ Jsd-1 Jgd—1

- / / R (r, ()85 (dr)pr(ds) = (Drh. &) 2. 2.13)
Rt JRT

Then, to show the equivalence between the strictly positive-definiteness of Q7 and the
coercivity condition on L?(pr), it suffices to note that by the above equality, the coercivity
constant in (1.3) satisfies

cur = inf (Qrh, h) 25 > 0,
het. ”hHL2<,oT) | L=(pr)

for any finite dimensional linear subspace H C L*(py). W

Remark 2.6. It follows from (2.13) that Q7 is a symmetric bounded linear operator on
L*(pr):

_ 1 T
(Qrh, 8) 126, < 7/ E[h(|ri,Dg(risD]dr < WAl 2 18 1 2y
0

where the second inequality follows from the Cauchy—Schwarz inequality and the fact that
T fo [h(|r',)*1dt = ||h||L2(_ - When the integral kernel K7 is in L?(pr ® pr), the operator

Q7 is compact and its eigen-functions form an orthonormal basis of L(p7). Then, for any
linear subspace H € L?(py), the coercivity constant ¢y 7 is the smallest eigenvalue of QT

on H.

Similarly, we have the following proposition for the coercivity condition at a single time.
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Proposition 2.7. The system (1.1) satisfies the coercivity conditions on L*(p;) at time t iff
the integral operator Q, with kernel

1
K, (r,s) = ———(rs)?! / / (&, n)p:(r&, sn)d&dn. (2.14)
q:(r)q(s) sd—1 J gd—1

is strictly positive on L*(p,), where q, denotes the density of the measure p, and p;(u,v)
denotes the density function of the random vector (r,, ri;).

Proof. Note that

[h(|r,2|>h<| npﬂ} / / BGS)K(r. $)pidr)pi(ds) = (Qih. 1) 12,

Iralirisl
(2.15)

Then, cy(t) = infrep, —1(0;h, h)LZ(p,)- Hence, Q; is strictly positive iff ¢y () > 0 for

L2(pr)
any finite dimensional linear subspace H C L*(p). N

The positivity of Q; on L?(p;) will be proved in later sections by showing that its integral
kernel K is strictly positive-definite, using the special structure of p,(u, v) (the density function
of the random vector (r,, r;)). However, the positivity of Q7 on L*(pr) cannot be proved in
the same way because the kernel K7 in (2.11) involves the average of p,(u, v). The following
proposition shows that, while Q, and QT are defined on different spaces (unless p, is the same
as pr), the strict positivity of Q, for all # € [0, T] implies the positivity of Q7.

Proposition 2.8. The integral operator Qp on L*(pr) with kernel Ky in (2.11) is strictly
positive on H. if the family of operators Q; on L*(p,) with kernel K, in (2.14) is strictly positive
for eacht € [0, T].

Proof. Note that a combination of (2.13) and (2.15) leads to

_ 1 T
(Qrh, h) 25, = ?/0 (Qih, h) 2, dt. (2.16)

For any h # 0, we have (Qh, h);2,,, > 0 for all 7 because Q, is strictly positive. Thus,
(Orh, h) 12,y > 0. This implies that Or is strictly positive on L*(pr). W

Remark 2.9. If we let X C C,(RY), then QT is strictly positive on H if Q; is non-
negative for each ¢ € [0, T] and strictly positive on H for some #y, € [0, T], because the
integrand g(¢) = (Q:h, h)LZ(p,) in (2.16) is continuous in time ¢ for each & € H. Indeed,
note that E[ f(X")] is continuous in ¢ for any f € C,(RV? R) because X' is a diffusion
process whose density satisfies the Kolmogorov forward equation. Thus, for any function

h € C,RT, the function f(X') = h(|r12|)h(|r13|) riprs i continuous and bounded, so

RGN

(Oih, h) 12, = E[f(X")] in (2.15) is continuous in ¢ e [O T].

3. The case of linear systems

We prove in this section that the coercivity condition holds true for linear systems with
general non-degenerate exchangeable Gaussian, covering Theorem 1.3(b). We start with a
macro—micro decomposition (with the average position of all particles X’ being the macro-
state and with ¥' = X’ — X', being the micro-state) to transform the system into a system of
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decentralized positions, which is ergodic. Then, we prove the coercivity condition when the
initial distribution has a special structure similar to the covariance of the invariant measure
(see Theorem 3.3), by using a series representation of the integral kernel and by a Miintz-type
theorem about polynomials with even degrees being dense in L>(R*, 1) for a proper j. Lastly,
we prove the coercivity condition for general initial distributions by extending the arguments
to non-radial interaction kernels (see Theorem 3.6).

3.1. A macro—micro decomposition

We first consider linear systems for which we have ¢(r) = 0r with 6 > 0 (i.e., ¢(r) = %91’2,

a quadratic potential). The system (1.1) can be written as

dX' = —0AX'dt +dB’, 3.1
where the matrix A € RV¥*N4 ig given by (with /; being the identity matrix on R¥)
(N =Dl -1 =14
1 —1Ia (N—=Dlg - =14
A=— : : . . - (3.2)
N : : - :
—1 —1I <o (N =Dy
It is straightforward to see that A> = A, and that the matrix A has eigenvalue 1 of multiplicity
(N — 1)d and eigenvalue 0 of multiplicity d (with a null space {x = c(v,v,...,V):ceR,ve
R7Y).

By a macro—micro decomposition of the system as in [9,29], the next lemma shows that the
center of the particles moves like a Brownian motion, and the particles concentrate around the
center with a distribution close to Gaussian.

Lemma 3.1. (i) The solution X' of Eq. (3.1) can be explicitly written as

t
X' =e"AX% + / e """ AdB* + X!, (3.3)
0

where X' = (v, v', ... V") with vt .= L ¥ Xt = LYV (X0 + BY).
(ii) Conditional on X°, the centralized process

Ytzxt_Xt

is an Ornstein—-Uhlenbeck process with distribution N (e’Q’AXO, %(1 - e"”)A) for each t.
In particular, if X° is Gaussian with variance X, then for each t, Y' has a distribution
N(0,e"ATA + 5(1 — e ")A).

Proof. The fact that v := £ > X! =+ 3"V (X?+ B!) follows directly from the equation
1 < 1 <
avt = — dX!=— dB:.
v N 1:21 14 N ; 1

Next, note that ¥' = X’ — X! = AX" and

dY' = AdX' = —0A’X'dt + AdB' = —0Y'dt + AdB’,
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where we used A? = A in the third equality. Therefore, (Y') is an Ornstein—Uhlenbeck process
Y =e Y+ / et 4a B,
0

Therefore, conditional on X°, with Y° = AX° and A? = A, we have that the distribution of
Y'is V(7" AX°, 5-(1 — ‘“)A) and that X' = X’ + Y’ can be written as in (3.3).

If the initial distribution X° is exchangeable, then E[Y°] = AE[X"] = 0 because ]E[X?] =
E[X (}] for any (i, j). Thus, if X 0 is Gaussian and exchangeable, then Y’ is Gaussian with mean
0. The variance of Y’ follows directly from the above integral representation. W

3.2. Coercivity condition for linear systems

We begin with a technical lemma for generic Gaussian random vectors. We denote by
cov(X, Y) the covariance of X and Y, with the convention that cov(X) = cov(X, X).

Lemma 3.2. Let (X, Y, Z) be a Gaussian vector in R3? with an exchangeable joint distribution
and cov(X) — cov(X,Y) = Al; for some A > 0. Denote p*(u,v) the joint distribution of
(X — Y, X — Z) and denote p* the distribution (and q*(r) the density function) of |X —Y|.
Then

(i) The function K*(r,s) : R x RT — R defined by
A R S| Py
K5 i= oo™ [ o sy G4)

is uniformly bounded and is in L*(p* @ p*).
(ii) The integral operator Q% with kernel K* is strictly positive on L*(p*), i.e., for any
0#heL*(p"),

(3.5)

Y X—-Z
(Q*h, h) 2y = E [hux YD(X — zng] 0

| X -YI||X — Z|

Proof. We start with explicit expressions for p*(u, v), p*(r) and K*(r, s). By exchangeability,
. . . . . 21, I,
the random vector (X — Y, X — Z) is centered Gaussian with covariance matrix A < I d 2}1 ),
d d
2; =1

Y > Thus, the joint distribution is

whose inverse is ﬁ (

P, v) = V3 0) " demrPHOP =) ity ¢, = %

and a direct computation yields that the density of |X — Y| is
40 = ot e 1,00, with Gy = ~@nin(d,
C, - 2 2
22

where the constant F(%) comes from the surface area of the unit sphere in R¢: |S¢~!| = Ok
2

Then, the integral kernel in (3.4) can be written as

déd 3
K)L(r s) = Cye” le(r +s )/ / (£, n)e £OMTS (E.m) § 772’ with C; = (\/__)7[!.
sd—1 Jgd—1 |S4-1) 2
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Here when d = 1, the above spherical measure on S° = {—1, 1} is interpreted as P(§ = 1) =
B(E = —1) = 1, or cquivalently, [y, [y (6, e 7646, 1 gers _ pmour)
To prove (i), note that (£, n)e s L 7S Then,

K)L(r’ S) g Cdefm(r +s )+C}LI‘S7

and it follows that K*(r, s) is uniformty-bounded-above-and-is in L2(p* ® p*).
To prove (ii), we first represent K*(r, s) in terms a series of polynomials and then apply a
Miintz-type theorem. Note that by Taylor expansion, (£, n)e" s =Y o ]), (rs)k !

(€, n)¥, and that
b dédn =0, for odd k,
k= gd—1 Jga— 1 5 |sd-1)> | € (0, 1),  for even k,

due to symmetry. We have

o0
1
K*(r,s) = Cye” T 4s? )Z C;\bk+1(i’5) = Cqe” D¢ Z Ecl){bkﬂ("s)kil
k= o k=1k odd
Then, for any & € L*(p"), we have
(Q h, h) 20y = f h(r)h()K*(r, )p* (r)p*(s)drds
0
e 1 o0 12 2
=Cy Z ch{bk“ (/ h(ryr*=te~ " p*(r)dr> > 0.
k=1,k odd 0
Note that
* k=1 —-1r2 2 -1 *© kbd—2 —dL,2
h(r)r* e~ 12" p*(r)dr = C, h(r)r e 3" dr.
0 0
By Lemma A.9, a variation of the Miintz Theorem, the space span{l, r2 rt re ..} is dense in

Lz(rd’le’ﬁrz). Thus, (Q*h, h) 2,5y = 0 only if 1 = 0, and Q" is strictly posmve. Eq. (3.5)
follows as in Eq. (2.13). W

The next theorem implies Theorem 1.3(b) under the additional assumption that the initial dis-
tribution of X" is exchangeable Gaussian with a covariance satisfying cov(X?)—cov(X?, X (}) =
Xoly for any 1 < i < j < N. Intuitively, we may decompose each component of X° as the
sum of a common variable and an independent variable, i.e., X ? = Z; + W, where {Z,-}f\’: ,
are i.i.d. N(0, Agly) and W is a common Gaussian random variable, and this implies that the
particles are initially scattered randomly around a random position.

Theorem 3.3. Suppose the linear system (3.1) starts from X° whose distribution is exchange-
able Gaussian with covariance satisfying cov(X (1)) —cov(X", X (2)) = Moly for some Ay > O.
Then, (i) the coercivity condition holds on L*(p,) at each time t € [0, T] as in Definition 2.4;
(i) the coercivity condition holds on L*(p7) on [0, T1 as in Definition 1.2.

Proof. Let Y' = X' — X'. Note that
ro=X X, =Y Y,
Thus, the coercivity conditions for the process (X') is equivalent to those for the process (Y').
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With M = COV(X?, X (}), the covariance of X° can be written as

M + 2oly M M
M M +2roly - M
z= : : ,
M M o M+ ol

A direct computation shows that AXA = ApA for A defined in (3.2). By Lemma 3.1(ii), this
special covariance implies that the centralized process ¥’ = X' — X' has a covariance A(1)A
with A(t) = [e7%"ho 4+ 55(1 —e~)]. Then, (Y},...,Y}) is exchangeable Gaussian with
covariance satisfying cov(Y’ ) — cov(Y?, Y’ )= A1y, partlcularly for the vector (Y, Y5, Y%).
Then, applying Lemma 3.2 to the vector (Yl, Y}, YY), we obtain that the integral operator QM
with kernel K*® defined in (3.4) is strictly positive on L?(p;) for each ¢. In the notation of
Proposition 2.7, this implies that integral operator Q, = Q*® with kernel K, = K** is strictly
positive on L?(p;). Part (i) then follows.

Since Q; is strictly positive on L?*(p,) for each t € [0,T], so is QT on L*(pr) by
Proposition 2.8. Then, the coercivity condition holds on L?(p7) by Proposition 2.5. W

Remark 3.4. When the system is deterministic, i.e. there is no stochastic force, the coercivity
conditions hold true on L?(p7) when the initial distribution is exchangeable Gaussian with
cov(X)) — cov(X7, X9) = Aoly. In fact, we have X' = e AX" + X. and Y’ = ™" AX".
Then the vector (Y, Y}, Y%) is exchangeable Gaussian with cov(Y})—cov(Y?, Y’j) =e P rly.
The coercivity condition follows again from Lemma 3.2 and Proposition 2.5. In particular, it
holds when the initial distribution is standard Gaussian, i.e., the initial position of the particles
are i.i.d. Gaussian.

3.3. Coercivity condition for non-radial interaction functions

The covariance constraint cov(X ?)—COV(X ? X (;) = Mol in Theorem 3.3 is necessary for the
above proof, due to the need of a series representation of the radial integral kernel K,. Here we
remove this constraint by using a series representation of the corresponding non-radial integral
kernel. More importantly, we show that the coercivity condition holds true on L? for interaction
functions that are non-radial.

More precisely, consider the system with a non-radial interaction kernel ¢ : RY — R,

dX' = 1 Z PX'; — X’)udt +odB!, fori=1 N (3.6)
=y X x| i sooos N, .
I<j<N, j#i J i

with initial condition X°. We will extend the above coercivity condition to non-radial interac-
tion functions.

It is straightforward to see from Section 2.1 that for non-radial interaction functions, the
function space of learning is L>(R?, p7) or L2(R?, p,) with

T
or(du) = %/ pe(duyde,  with p,(du) = E[§(X! — X;- e du)]. (3.7)
0

Correspondingly, the coercivity condition is on L*(R?, o) or L*(R?, p,). For simplicity of
notation, we denote them by L*(p7) and L?(p,).
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Definition 3.5 (Coercivity Condition for Non-radial Functions). The dynamical system (3.6)
on [0, 7] with an initial condition X° and an interaction function ¢ R?Y — R is said to satisfy
the coercivity condition on a finite dimensional linear subspace H C L*(p7), with pr defined
in (3.7), if

T

1
= | Elhriphry)

t t
. (ri, ri3)
inf 12> 713
heH,IIhHLz(;T):lT 0

1dt > 0, (3.8)
71175

CH, T ‘=
where 7! =X f—X ’j If the coercivity condition holds true on every finite dimensional linear
subspace H C L*(pr), we say the system satisfies the coercivity condition. Similarly, we can
define the coercivity condition at a single time 7 on L?(p,).

The next theorem shows that the coercivity condition holds true for the linear system when
the distribution of X° is non-degenerate exchangeable Gaussian.

Theorem 3.6. Suppose the linear system (3.1) starts with an initial condition (X V. X ?\,)
whose distribution is non-degenerate exchangeable Gaussian. Then the coercivity condition
holds true at each time t > 0, as well as on [0, T], in the sense of Definition 3.5.

As in the previous section, we prove the coercivity condition by showing that the corre-
sponding integral operator is strictly positive, based on a series representation of the non-radial
integral kernel. Propositions 2.5 and 2.7 can be directly generalized to a non-radial version. We
begin with the following lemma, which is a counterpart of the Miintz-type theorem, showing
that polynomials are dense in weighted L? spaces.

Lemma 3.7 ([33, Lemma 1.1]). Let ju be a measure on R? satisfying
/ec‘xldu(x) < 00
for some ¢ > 0, where |x| = Z?:l |xj|. Then the polynomials are dense in L2(w).

Proposition 3.8. Let (X, Y, Z) be a Gaussian vector in R3 with an exchangeable and non-
degenerate joint distribution. Denote by p(u, v) the non-degenerate joint density of (X —Y, X —
Z) and by p the distribution (with a density q) of X — Y. Then, the integral operator Q with
kernel

1 (u,v)
TP
q(u)gq(v) |ullv]

is strictly positive on L*(p).

K(u,v) = (u, v) 3.9

Proof. For any h, g € L?(p), from the definition of Q and the Cauchy—Schwarz inequality,
we have

(X-Y,X—2)

(O, &) 12| = [EIAX = 2)g(X = Z) i v

]| < ||h||L2(p)||g||L2(p)~

Thus, Q is a bounded operator on L?(p). We show that Q is strictly positive by

(i) (Qh,h) > 0 for any h € L*(p), and
(i) (Qh,h) =0= h =0in L*(p).
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To prove (i), note that

7
(Qh, h) 2, = f / h(u)h()K (u, v)p(u)p(v)dudv = f f h(uw)h(v )—)p(u v)dudv.

|ul[v]
(3.10)

Then, by Theorem A.2, it suffices to show p(u, v) is positive-definite.

Since the joint distribution of (X, Y, Z) is exchangeable non-degenerate Gaussian, there exist
a vector i € RY and an invertible matrix X such that the distribution of each of X, Y, Z is
N(it, 2). Decompose X' = LLT  andlet X = L(X—pu), Y = L(Y —), Z = L(Z—). Then,
the distribution of each of X , Y , Zis N (0, I;) and their joint distribution is exchangeable and
non-degenerate. It follows that cov(f(, 17) = cov(f(, Z) = cov(?, Z). Let © = cov(f(, 17) =
E[XYT]. Since O is real symmetric, it is diagonalizable and there is a real orthonormal
matrix P such that POPT = diag(Aq,..., Ay), where {A;, ..., Ay} are eigenvalues of 6.
Note that —1 < XA; < 1 because the joint distribution of (f( , f’, Z) is non-degenerate and
cov()~(') = cov(?) =1;.

Let X' = PX = LP(X — p),Y = PY = LP(Y — ), Z = PZ = LP(Z — u). By
Theorem A.2, to prove that p(u, v) is positive-definite, it suffices to show that the density
q(u,v) of (X' —Y', X' — Z') is positive-definite. Note that the covariance matrix cov(X’ —
Y, X' — Z') is invertible:

-1
e e [20-20 1-67' _1[24 -4
coviX' -~ 1. X'~ Z) _[1—9 2 —20| T3|-4 24]

where A := diag(ay, ..., ay) with a; = ﬁ > % Thus, with a normalizing constant C; > O,

we have

q(u,v) = Cyexp (=3, v)cov(X' — Y, X' — Z') "' (u, v)")

d d
= Cd exXp (—% Zai(“iz + Ul2) + % Zaiuivi> .

i=1 i=1
By Theorem A.2, g(u, v) is positive-definite.
To prove (ii), let h € L?(p) satisfy (Qh, h) = 0. We need to prove that 1 = 0. Let

o 14, L ((PL)'w);
gj(l/t) . =€exp (—E iz_]:a,-ui) h((PL) M)m

/ 1 l 2
qu) : = /q(u, v)dv = Cjexp <_4_1 iEZI a,-ui)
14
f(u,v): =exp <§ ;:] a,-u,-v,-) .

By the linear transform X — PL(X — u), we can rewrite (3.10) as

d
(Qh, h) = Cy(Cy)*(det L’ Y f / 2;()q(u)g;(v)q) f (u, v)dudv.
j=1
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Note that the Taylor series of f(u, v) is
00 1 d 00
fu, )= —O aquv) = Choiy.ig 10" - (qvg)d,
k!3k
k=0 i=1 k=0 iy+-+ig=k

where all coefficients are positive. By Fubini’s theorem,

(Qh.h) = Ca(det L* Y >~ Ciiy.iy (/gj(u)u’ll...u;dq(u)du> : (.11)
d

Jokaipseni
Thus, (Qh, h) = 0 implies that each term must be zero

/-gj(u)uil1 - u"g(u)du = 0, for any integers iy, ...,iz > 0.

Note that the measure u defined by du(u) := gq(u)du satisfies the condition of Lemma 3.7.
Then the polynomials are dense in L2(R?, ¢). Also, note that g; € L>(R?, ¢) because |g;(u)| <
|h((PL) 'u)| and

/ Ih(PL)"w)|’q(u)du = E[|A(PL)" (X' — Y))['] = E[|A(X — Y)[*]

2
= ||h||L2(p) < 00,

where in the first equality we used the fact that ¢(u) is the density of X’ —Y’. Hence, g; =0
in L3R, q) for all j, and we conclude that 4 = 0 in L*p). N

Proof of Theorem 3.6. Similar to the proof of Theorem 3.3, we only need to consider the
process ¥Y' = X' — X[ because the proof only involves r}; = X; — X, =Y; - Y",.

By Lemma 3.1, (Y], ..., Y%) is exchangeable Gaussian. In particular, the vector (Y!, Y?,
Y?,) is exchangeable Gaussian on R*. Denote by p,(u, v) the joint distribution of (Y| —Y%, Y/ —
Y%) and recall in (3.7), we denote by p, the distribution (with g, denoting its density) of ¥/ —Y"
and denote by pr the average of p, on [0, T'] (with g7 denoting its density).

By Proposition 3.8, the integral operator Q, with kernel

1 (u, v)

Ki(u,v) = —————

q:(u)q, (v) |uf|v]
is strictly positive on L?(p;). Then it follows from the non-radial version of Proposition 2.7
that the coercivity condition holds true for each time ¢.

Similar to the proof in Theorem 3.3, the coercivity on [0, T'] follows from the non-radial
version of Propositions 2.5 and 2.8. More precisely, we would like to show that the integral
operator Qr with kernel

p:i(u, v) (3.12)

- 1 , T
Kr(u,v) = —— {w, v) / pi(u, v)dt
qr)gr(v) |ullv] Jo
is strictly positive on L2?(pr). Note that (érh,hhz(m) = %fOT(Q,h,h)Lz(p,)dt for any

h € L*(pr), and we just showed above that (Q;h, h)12¢,, > 0O for each ¢ € [0, T]. Thus,
Q7 is strictly positive. W

4. Nonlinear systems with three particles

We consider the class of nonlinear systems with interaction functions in Theorem 1.3(c),
starting from an invariant measure. Since the diffusion process (X', ¢t € [0, T]) has a stationary
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distribution, the coercivity condition on a time instance is the same as on the time interval
[0, T'], because pr = p;. Thus, we simply say that coercivity condition holds true without
specifying it being at a single time or on a time interval when the process is stationary.
Global solutions exist for the gradient system (2.1) with a potential @(r) in (1.4), because
the potential leads to a locally Lipschitz drift term and the total potential Jy4 in (2.2) leads to
a Lyapunov function for the system.
The following theorem covers Theorem 1.3(c).

Theorem 4.1. The coercivity condition holds true for the system (2.1) with N = 3 starting
from an initial condition X° such that the joint density of (X(l) — Xg, X(1) - Xg) is p(u,v) in
(1.5), and with ® in (1.4).

Note that we only need the joint density of (X} — X5, X| — X}%) to study the coercivity
condition. We will show first that p(u, v) in (1.5) is an invariant density for (X| — X%, X| — X%)
when N = 3 (see Section 4.1). Then based on the analytical expression of p(u,v), we
introduce a “comparison to Gaussian kernels” technique, which makes extensive use of positive-
definite kernels. We will prove the theorem and develop the technique in two steps: first when
®(r) = r?# in Section 4.2 and then general @ in Section 4.3. Due to the need of the above
analytical form of p(u, v), our result is limited to the case when N = 3 and when the initial
distribution is the invariant measure (see Remark 4.4).

4.1. Stationary distribution for pairwise differences

We show first that the process of pairwise differences (X} — X%, X —X%) admits a stationary
distribution.

Proposition 4.2.  Suppose that & € C?(R*,R) and Z = [pq [ga e 7 “Vdudv < oo for

1
H(u,v) = 5[@(|u|) + 2(Jv]) + 2(Ju — v])].

Then the process (ri,,r\;) = (X| — X5, X| — X%) admits p(u,v) in (1.5) as an invariant
density.

Proof. Note that

{dr’12 = F(r',,r\;)dt + (dB}| — dB)),

4.1
dr'y = F(r'y, ry)di + (d B, — dBY), “.1)

where the function F : R? x R? — R? is given by

1
F(u,v) = —§[Z¢(|Ml)u + o(vDhv + ¢(Ju — v|)(u — )],

where ¢(r) = 9'(r).
e dB| — dB), 2l; Iy
The diffusion dB' — dB} I, 2,
verify directly that the distribution p(u, v) is a stationary solution to the Kolmogorov forward
equation of (4.1). Alternatively, for ease of computation, we show that the system (4.1) is a
linear transformation of a gradient system with homogeneous diffusion, which shares the same

has a non-degenerate covariance < ) One can then
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1y 0

invariant measure. Let A = /2 (1 21, /321

the process

Y — A i
Y, r!
2 13

is a weak solution to the system

Y L (FOy, L2y 4 Loy dB'
al )= Ly o r+ () 42)
Y, F(LY) + Loy), Y;) dB,
where (Etl, Etz) is a standard Brownian motion on R??. Notice that H(u, v) = H(v, u) and

-1 F(V2u, 2u+ %)\  (VuH2u, Lu+ L)
FC2u+ %oy, Vauy)  \V,[H(Zu + Lo, fu)] '

. V2 V6 . . .
Then, it follows from Lemma A.10 that py(y,,y,) o e 2HO1T2+552) §5 an invariant

density for the system (4.2). Therefore, the process (ri,, r’l3) admits p(u, v) as an invariant
density. W

. which satisfies AAT = 2la la . Then
L, 21,

Remark 4.3. Similarly, one can prove that the process (X| — X5, X| — X5, ..., X| — X))
admits a stationary density on RW~D¢ In essence, we decompose the system into a reference
particle and the relative positions of other particle to the reference particle. This is similar to
the macro-micro decomposition of the system in [9,10,16,29]. But the above transformation
has the following advantage: it leads to a gradient system with an additive white noise, and
this simplifies the derivation of the stationary distribution.

Remark 4.4. Our current proof for the coercivity condition makes use of the analytical
expression of the invariant density p(u,v) of (X| — X5, X| — X%) and of the Miintz-type
theorem on R*. When N > 3, such an explicit form is no longer available due to the need of
marginalizing the joint distribution of (X| — X5, X| — X4, ..., X| — X\):

P, v) = if(u V)~ FIPUD+ S+ S(u—vD]
b Z b 9

where Z is a normalizing constant and

2 N N
Fu, v) = / E—N[Z4<;<j ‘P(Irli—flj\)+Zz:4[¢’(|1’11|>+45(\14411|)+45(\U—r11|)]]dr]4 TN
d(N—3)
We expect to remove the constraint N = 3 in future research. Also, when the system starts
from initial distributions other than the invariant measure, the density of (X} — X5, X — X%)
will no longer be p(u, v). Perturbation type arguments may help to address such cases.

4.2. Interaction potentials in form of ®(r) = r*#

We develop in this section a “comparison to Gaussian kernels” technique to prove that
the coercivity condition holds true for systems with interaction potential &(r) = r?# for
1/2 < B < 1. We first prove that p(u, v) in (1.5) is positive-definite, then prove that the
integral kernel K; is strictly positive-definite by comparing it with the Gaussian kernel.

153



Z. Li, F. Lu, M. Maggioni et al. Stochastic Processes and their Applications 132 (2021) 135-163

Lemma 4.5. Assume O(r) = r?f. Let p(u, v) be the density function defined in (1.5).

(1) If 0 < B < 1, all the three kernels, (lu — v|), e~ P and p(u, v), are positive-
definite.
(2) If B > 1, then p(u, v) is not positive-definite.

Proof. This is a generalization of Corollary 3.3.3 of [2] to the higher-dimensional case.
Note that p(u, v) is positive-definite iff e~ ?0#=?D is positive-definite. The kernel |u — v|* for
u,veRlisa negative definite kernel, because for any cy,...,c, € R, and Z;’:l ¢ =0,

n n n n n n 2
2 2
> e = | 3 || Dot |+ Xes [ Lo | - S
i=I j=1 j=1 i=1 i=1

i.j=1

ili| <

By Theorem A.6, |u — v|*# is also a negative definite kernel for any 0 < B < 1. By
Theorem A.5, we obtain that e"“’“‘zﬁ is positive-definite, then Part (1) follows.
Now we prove Part (2). Suppose now that for some 8 > 1, p(u, v) is a positive-definite

kernel. Then for any ¢t > 0, x,...,x, € R and ¢y, ..., c, € R, we have
11 P
n —|t2P x;—12P x;
Z Ci cke_”xf_xk‘ i Z cjcre ! >0
Jik=1 jok=1

By Theorem A.5, the kernel |u — v|*? is negative definite, and by Theorem A.7, |u — v|? is a
metricon R.Let 0 = (0,...,00 e R, 1=(1,...,1) e R and 2 = (2,...,2) € R. Note
that

0—11F =d5, j0—2f =2/d5 > 200—1)f
when 8 > 1. The contradiction to the triangle inequality implies Part (2). W

Recall that the coercivity condition depends only on the distribution of the process (r/,, 7).
When the process (r{,,r|;) is stationary, the coercivity condition at a time instance in
Definition 2.4 is equivalent to that of Definition 1.2. Following Proposition 2.5, the coercivity
condition is equivalent to the positivity of the integral operator Q on L?(p) with kernel
K(r,s): RT x RT — R defined by

1
K(r,s) = ——(rs)*! / / (&, ) p(re, sm)didn, @3)
24) gt Sy

where p(u, v) is the stationary density defined in (1.5), and p denotes the distribution of |ri,|
with g being its density. For the case § = 1 in the previous section, we witnessed that the
Gaussian distribution neatly ensures strict positivity of the integral operator through Taylor
expansion of (u, vyet ) However, when B # 1, such a “quadratic structure” of the Gaussian
kernel is no longer available. Using the positive-definiteness of —|u — v|*#, we uncover a
quadratic structure by bounding the kernel K by another positive-definite kernel from below
and by a Gamma integral representation of the power function. We call this procedure a
“comparison to a Gaussian kernel” technique.
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We start with two inequalities using positive-definiteness of integral kernels.
Lemma 4.6. Let &; : RY x RY — R be positive-definite kernels for i = 1,2. Then,
/ / h()h(v) 1 (u, v)e 2 dudv > / / h(uw)h(v) Dy (u, v)dudv,

R4 JRA R4 JRI

//h(u)h(v)@l(u,v)e‘pz(”’”)dudv2/ / h(u)h(v) D1 (u, v) Pr(u, v)dudv
R4 JR R4 JRA

for any h # 0, as long as the integrals exist.

Proof. By Theorem A.2, @,(u, v)" @\(u, v) is positive-definite for each integer n > 0, so
for any h # 0 and n > 0, we have [pq [pa (V) Pi(u, v)Dr(u, v)"dudv > 0. Then the
inequalities follow from the Taylor expansion of e ®2¢:?)_ with the first inequality keeping only
the term with n = 0 and the second inequality keeping only the term withn =1. W

The following proposition is a counterpart of Proposition 3.8.
Proposition 4.7. Let 8 € (0, 1] and p(u, v) be a density function in (1.5) with &(r) = r?

ie, pu,v) =+ ¢~ 3PP Hu—v) g o o(r) be the distribution of |U| with (U, V) havmg
a joint distributlon p(u, v). Then, for any 0 # h € L*(p),

I =/ / (Do) ) o, vdudy > 0,
Rd JRA |ue]|v]

Proof. The factor % and the normalizing constant Z do not play a role in the above inequality,

so we omit them in the following proof. We only consider the case 8 < 1, since when g =1,
the Gaussian distribution neatly ensures strict positivity of the integral operator through Taylor
expansion of (u, v)e). Note that

I= / / h(lue ™" h(jole *2'”‘”'( - )| PP gy gy
v

/ / D)) ||>| 2D dud.

where h(r) = h(r)e’zr and
Gy(u, v) = [u|® + [P — Ju — v,

By Lemma 4.5, |u — v|2’3 is negative definite. Then, by Theorem A.4, &,(u, v) is positive-
definite. Thus, by Lemma 4.6 with @;(u, v) = (u, v) and $,(u, v) as above, we have

I >/ / E(|u|>i~z(|v|)% (lul® + 11* — |u — v*) dudv

//h(lul)h(l DTI)I' —v|¥dudv =: T, 4.4)

where in the equality we dropped the term |u|? + |v|?, due to symmetry of (u, v),

(u, v)
//gl(lul)gz(lvl) =
R JRe |ue||v]

for any g1, g» € L?(p). We shall use this property several times in the following.
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Next, we use Gamma function to bound T in (4.4) from below by a Gaussian kernel as in
the previous section. Note that for any x > 0 and 8 < 1,

lu—vs dA
=i = gl [

Plugging this into the integral in (4.4), and using the symmetry of (u, v) again, we obtain

~ (u, v) o di
= F(l—ﬂ)/ / / MDDy e - Ddudvig
_ (u, v) v di
= F(l—ﬁ)/ / / Bl 7™ dudv s

di
_ oD+ 80 Y 2 4 ‘
F(l—ﬂ)/ /d/ (ebh(ube Tl €A

21 (u,v)

By the symmetry of (u, v) and Taylor expansion of e , we have

T = T uhh —A(u+o?) (15 V)
F(l—ﬂ)/ / / (luDh(lv])e ol

XZ (u, U)Z”Hd dv22 208 g,

(2n +1)!

oo

ZF(I 5 / / / ROR(s)e ™+ )20, drdsi P,

n=0

221 (g y2n+2
(2n+1)!

7 _ / 22— |:/ E(r)e—)»rzrd+2n+ldr:|2 dx
F(l )]

2
> Z / A2n=B g [/ E(r)e—kr2rd+2n+ldrj| .
Z i

Note that C, 5 = F(CI” 5 )i 2 327=B 45 > 0 for each n > 0. Combining all the above, we have

where we denote C,, := fgesd—l fnesd ) d&dn, which is positive. Thus,

2

o ]
123 Cup [ / h(rye™” _2r2rd+2”+1dr] :
n=0 0

which is positive if & # 0 € L*(f) with f(r) := rd“e’z’zﬁ’z’z, because by Lemma A.9, the
set of functions span{1, r2, r*, ...} is complete in L>(R*, f). Note that supp f = supp p = R™,
soh#0eL?>(f)whenh #0e L%(p). N

Proof of Theorem 4.1 with &(r) = r?#. Since B € [1/2, 1] and the density of (r),, rl;) is
p(u, v), it follows from Proposition 4.2 that the process (r’l2, r’13) is stationary with distribution
p(u, v). Then, the coercivity condition is equivalent to that

(rt,,r'y)
I == E[h(|ri,Dh(rish-—2—2-] > 0
[risllrisl
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for any h # 0 € L%(p), where p is the stationary probability density of |r,|. Note that

I:l/ / D h(lo]) 2 = R P =P gy gy,
Z Jga Jpa |u||v]

Then we can conclude the theorem by Proposition 4.7. W

Remark 4.8. We point out that the requirement 8 € (0, 1] is to ensure that the stationary
density p(u, v) is a positive-definite kernel. When B8 > 1, the above method does no longer
work, because p(u, v) is not positive-definite as shown in Lemma 4.5. The requirement 8 > é
is to ensure that the drift term is continuous, so that a strong solution exists. When 8 < %, the
drift is moderately singular, the existence of a solution is open [1,34].

4.3. General interaction potentials

The “comparison to a Gaussian kernel” technique in Lemma 4.6 and Proposition 4.7 can
be generalized to prove the coercivity condition for a large class of interaction functions. The
following lemma provides the key element in such a generalization.

Lemma 4.9. Let @ be a potential in (1.4) and let p(r) be the distribution of \U| with (U, V)

having a joint distribution p(u v) = % ~3Leubt QD+ 2Uu—vDl - 7pep,

> - u v u—v
I—/ / h(Ju)h(|v |) || | [2(ub+ 2D+ P(u—vD] gy, 41 = 0

\ I\)

for any 0 # h € L?(p).
Proof. Rewrite the integral as

1_/ / Ch(lulye™ 3 200 pA (o e~ 20012 = Ralimu =3 200D g

jllol©

- / / o) ) o= 3atu—o 43 B gy 1y
re JRd [ullv]

where }Nl(r) = h(r)e—%¢(r)—§q§0(r) and
5(u, v) == Dy(|u]) + Do(|v]) — Do(lu — v)).

Since @y(Ju — v|) is negative definite, by Theorem A.3, 5(u, v) is positive-definite. Also, by
2,
Lemma 4.5, (u, v)e” zalu=vl™ g positive-definite. Hence, by Lemma 4.6, we have

2/ / 7z<|u|>ﬁ<|v|>Me—%a'u—vlz"dudv.
rd JRpd [ul|v]

Then the strictly positive-definiteness follows from Proposition 4.7. W

We can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. The case when &(r) = r?# is proved in the previous section. For

general potential @, the proof is similar. In fact, since B € [1/2,1] and @ is smooth, the
process (r),, r';) is stationary with invariant density p(u, v). Then, E[h(|r},h(|r 13|)%]
is the same as the integral / in Lemma 4.9, so the coercivity condition follows. We conclude

the proof. W
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We provide a few examples of negative definite radial kernels and the related positive
kernels.

Lemma 4.10. For 0 < a <2, 0 <y < 1l and a > 0, the following kernels are negative
definite:

Pi(Ju —v)) = (a + lu —v[*);

Po(Ju — v|) = log[l + (a + lu — v[*)"].
For any ¢ > 0 and any integer k > 1, the following kernels are positive-definite:

e ¢ P1lu—vD)  ,—cPr(ju—vl) Dy (|u _v|)*k_

Proof. By Lemma 4.5,if 0 < o < 2, then |u — v|” is a negative definite kernel. By definition of
a negative definite kernel a + |u — v|* is also negative definite for any a € R. By Theorem A.6,
D1 (lu —v]) = (a + |lu — v|*)" is also a negative definite kernel when 0 < ¥ < 1 and a > 0.
Since @(ju —u|) = a¥ = 0, by Theorem A.6, log(1 + @;(Ju —v|)) = D(Ju — v]) is
negative definite.
The positive-definiteness of e=¢?104=vD and =< P24~V follows directly from Theorem A.5.
The kernel &,(Ju — v|)~* is positive-definite because

o 1
/ e Palu—vh g0 —
0 Dr(lu — vl)

and because that the product of positive-definite kernels are positive-definite. W

Proposition 4.11. Assume that the series
—00

Di(r) = co+ »_cjlog[1+ (aj +r*)i] = " ¢;llog(l + (a; + r* )] ™ 4.5)
Jj=1 j=—1

Or(r) = > _cillaj +r*) 1= Y Il + (@ + )i F (4.6)

i=1 =
converge for every r € RT, where the coefficients satisfy the following conditions

l.aj >0,a; 20,c; >20,¢; >0 fori, j #0and
220<y <, aj,al €[1,2] fori, j #0, and
3. B;j > 0and k; > 1 is a positive integer for each j.

Let K : RT™ x RT™ — R be an integral kernel defined in (4.3) with p(u, v) defined in (1.5) and
with

D(r) = &1(r) + Do(r). 4.7
Then K (r, s) is a positive-definite kernel. Furthermore, if there exists iy > 1, such that
alfo =0, yi; =1, and clfo > 0, (4.8)

then the coercivity condition holds true on L*(p) for the system (2.1) with potential ® in (4.7),
if it starts from (r(l)z, r?3) with a joint density p(u,v) in (1.5), where p is the distribution of
Ir9,.
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Proof. It follows directly from Lemma 4.10 that K is positive-definite. Note that with the above
conditions, the drift term is smooth and dominated by a term r2f with B = oclfo /2 e€[1/2,1], s0
the system leads to a stationary process (r},, r{,). It follows from Lemma 4.9 that the coercivity
condition holds true. W
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Appendix

A.l. Positive-definite integral kernels

In this section, we review the definitions of positive and negative definite kernels, as
well as their basic properties. The following definition is a real version of the definition in
[2, p. 67].

Definition A.1. Let X be a nonempty set. A function K : X x X — R is called a (real)
positive-definite kernel iff it is symmetric (i.e. K(x, y) = K(y, x)) and

> ik x) =0 (A1)
k=1
foralln e N, {x,...,x,} € X and {cy, ..., c,} € R. We call the function ¢ a (real) negative

definite kernel iff it is symmetric and

n

Z cicnK(xj, x;) <0 (A.2)
k=1
forallm > 2, {x1,...,x,) € Xand {cy, ..., c,} € R with Z?:lcj =0.

Remark. In [2, p. 67], a function K : X x X — C is defined to be positive-definite iff

n

Z ¢;c K (xj,x) =0 (A.3)
jok=1
forall n € N, {x,...,x,} € X and {c|,...,c,} € C, where ¢ denotes the complex

conjugate of a complex number c. It is straightforward to check that when ¢ is real-valued
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and symmetric, the definitions (A.l) and (A.3) are equivalent. Similarly, In the definition of
negative definiteness in [2, p. 67], a function K : X x X — C is negative definite iff it is
Hermitian (i.e. K(x,y) = K(y, x)) and

> itk (xj, x) <0 (A.4)
jok=1
forall n > 2, {x1,...,x,} € X and {cy, ..., c,} € C with Z;zl ¢j = 0. We can again check

that when ¢ is real-valued, the definitions (A.2) and (A.4) are equivalent. In this paper, we
only consider real-valued, symmetric kernels.

Theorem A.2 (Properties of Positive-definite Kernels). Suppose that k, ki, k, : X x X C
R? x RY — R are positive-definite kernels. Then

. c1ky + c2ky is positive-definite, for ci,co > 0

. kiky is positive-definite. ([2, p. 69])

. exp(k) is positive-definite. ([2, p. 70])

. k(f(u), f(v)) is positive-definite for any map f : R? — R?

. Inner product (u, v) = ijl u;v; is positive-definite ([2, p. 73])

. f) f(v) is positive-definite for any function f : X — R ([2, p. 69]).

. If k(u, v) is measurable and integrable, then ([ k(u, v)dudv > 0 ([32, p. 524])

~N N RN =

Theorem A.3 ([2, Theorem 3.1.17]). Let K : X x X — R be symmetric. Then K is
positive-definite iff
det(K (x;, x)jk<n) = 0

forall n € N and all {x,...,x,} € X

Theorem A.4 ([2, Lemma 3.2.1]). Let X be a nonempty set, xo € X and let ¢y : X x X - R
be a symmetric kernel. Put K (x, y) := ¥(x, x0) + ¥ (y, x0) — ¥(x, y) — ¥ (x0, X9). Then K is
positive-definite iff \ is negative definite.

Theorem A.5. Let X be a nonempty set and let ¥ : X x X — R be a kernel. Then { is
negative definite iff exp(—t{r) is positive-definite for all t > 0.

Proof. The complex version of this theorem is proved in Theorem 3.2.2 of [2]. The real version
can be proved in a similar way. W

Theorem A.6. If ¥ : X x X — R is negative definite and y(x, x) > 0, then so are ¥* for
0 <a < 1 andlog(1+ ).

Proof. The complex version of this theorem is proved in Theorem 3.2.10 of [2]. The real
version can be proved in a similar way. W

Theorem A.7 ([2, Proposition 3.3.2]). Let X be nonempty and ¥ : X x X — C be negative
definite. Assume {(x,y) € X x X, ¥(x,y) = 0} = {(x,x) : x € X}, then /¥ is a metric
on X.
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A.2. Miintz-type theorems on half-line

We recall first the following theorem on the completeness of {t*} in weighted L? space on
unbounded domain (see [4,14] and see [15,18] for recent developments).

Theorem A.8. Let a; be positive numbers, such that a1 —a, >d >0,(k=1,2,...), and
let

22ak<r o Afr>a

logyr(r) =
%, if r <ay.

Then {e~'t%} is complete in L*(0, 00) lﬁrfoo Wr)dr

Lemma A.9. The set of functions {r*™*,k = 1,2,...} is complete in L*([0, 00), p) for any

probability density p such that sup,_, p(r)e* < oo.

Proof. Let a; = 2k for k = 1,2,.... We define the function log(t/f(r)) = 2Zak<r 0 if
r > ay, and log(y(r)) = % if r < ap. Note that 2y, _, L 1= /2] 1 + > In(|r/2]). Then

Y(r) > rand [° wr(’) = 00. We conclude that {e~t*,k = 1,2, ...} is complete in L?(0, 00)
by Theorem A.S8.

To show that {r?*,k = 1,2, ...} is complete in L?(p), assume that (h(r), r2k)Lz(p) = 0 for
all kK > 1. Then

/Ooh(r)p(r)e’ere_rdr = fwh(r)erp(r)dr =0
0 0

for all k. This implies that h(r)p(r)e” = 0 in L2[0, o) (note that h(r)p(r)e” € L?[0, 0o)
because sup,. p(r)e* < oo0). Hence h(r)p(r) = 0 almost everywhere, and # = 0 in
L*([0,00), p). W

A.3. Stationary measure for a gradient system

Lemma A.10. Suppose H : R* — R is locally Lipschitz and lim|y|—, o H(x) = +00 so that

Z = [pne Wdx < oo. Then p(x) = S e *#™ is an invariant density to gradient system
dXt = _VH(Xt)dt +dB;,

where (B;) is an n-dimensional standard Brownian motion.

Proof. It follows directly by showing that p(x) is a stationary solution to the Kolmogorov
forward equation,

|
EAp—I—V-(pVH):O. |
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