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Abstract

We consider stochastic systems of interacting particles or agents, with dynamics deter-
mined by an interaction kernel, which only depends on pairwise distances. We study
the problem of inferring this interaction kernel from observations of the positions of
the particles, in either continuous or discrete time, along multiple independent tra-
jectories. We introduce a nonparametric inference approach to this inverse problem,
based on a regularized maximum likelihood estimator constrained to suitable hypoth-
esis spaces adaptive to data. We show that a coercivity condition enables us to control
the condition number of this problem and prove the consistency of our estimator, and
that in fact it converges at a near-optimal learning rate, equal to the min—max rate
of one-dimensional nonparametric regression. In particular, this rate is independent
of the dimension of the state space, which is typically very high. We also analyze
the discretization errors in the case of discrete-time observations, showing that it is
of order 1/2 in terms of the time spacings between observations. This term, when
large, dominates the sampling error and the approximation error, preventing conver-
gence of the estimator. Finally, we exhibit an efficient parallel algorithm to construct
the estimator from data, and we demonstrate the effectiveness of our algorithm with
numerical tests on prototype systems including stochastic opinion dynamics and a
Lennard-Jones model.
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Foundations of Computational Mathematics

1 Introduction

We consider a system of particles or agents interacting in a random environment, with
their motion described by a first-order stochastic differential equation in the form

N
1 .
dx;; = N ./E l¢>(||xj,z —xi(xj;—xidt +0dB;,, fori=1,...,N,
"=

(1.1

where x; ; € R represents the position of particle i at time 7, ¢ : R — R is an
interaction kernel dependent on the pairwise distance between particles, and B; is a
standard Brownian motion in R¥?, with o > 0 representing the scale of the random
noise. This is a gradient system, with the energy potential Vy : RV R

1
Vo(Xi) = 7 Yo oxi—xiil) with @'(r) =(r)r, (1.2)

where X; = (x;)i=1,..N € R4N is the state of the system. Letting

.....

fo=-VVs, (1.3)
we can write Eq.(1.1) in vector format as

The particles interact with each other based on their pairwise distance, with dissipation
of the total energy, with the system tending to a stable point of the energy potential,
while the random noise injects energy to the system.

Such systems of interacting particles arise in a wide variety of disciplines, includ-
ing interacting physical particles [22,49] or granular media [1-3,8,12,13] in Physics,
opinion aggregation on interacting networks in Social Science [24,43,46], and Monte
Carlo sampling [36,39], to name just a few.

Motivated by these applications, the inference of such systems from data gains
increasing attention. For deterministic multi-particle systems, various types of learn-
ing techniques have been developed (see, e.g., [9,14,40,41,50,55] and the reference
therein). When it comes to stochastic multi-particle systems, only a few efforts have
been made, e.g., learning reduced Langevin equations on manifolds in [19] (with-
out, however, assuming nor exploiting the structure of pairwise interactions), learning
parametric potential functions in [10,15] from single trajectory data, estimating the
diffusion parameter in [26], and estimating effective Langevin equations on manifolds
in [19].

Our goal is to estimate the interaction kernel ¢ given discrete-time observation data
from trajectories {X g”,)L }f,‘le , where the initial conditions {X E(')" )}n"le are independent

Elol:;ﬂ

@ Springer Lﬁjog



Foundations of Computational Mathematics

samples drawn from a distribution py on RN and 1q : 17 indicates times 0 = 1y <
HhH<--<ti<---<ty,=T,withwitht; = [At.

Since, in general, little information about the analytical form of the kernel is avail-
able, we infer it in a nonparametric fashion (e.g., [6,20,23]). We note that the problem
we consider is to learn a latent function in the drift term given observations from
multiple trajectories, which is different from the ample literature on the inference
of stochastic differential equations (see, e.g., [29,34]), focusing either on parameter
estimation or on inference for ergodic system. In particular, our learning approach is
close in spirit to the nonparametric regression of the drift studied in [44] for ergodic
system and in [17] from i.i.d paths. However, for systems of interacting particles one
faces the curse of dimensionality when learning the high-dimensional drift directly as
a general function on the high-dimensional state space R?V . Instead, we will exploit
the structure of the system and learn the latent interaction kernel in the drift, which
only depends on pairwise distances, and show that the curse of dimensionality may
be avoided, when such inverse problem is well-conditioned.

We introduce a maximum likelihood estimator (MLE), along with an efficient algo-
rithm that can be implemented in parallel over trajectories, with an hypothesis space
adaptive to data to reach optimal accuracy. Under a coercivity condition, we prove that
the MLE is consistent and converges at the min—max rate for one-dimensional non-
parametric regression. We also analyze the discretization errors due to discrete-time
observations: we show it leads to an error in the estimator that is of order A¢!/% (with
At =T/L = ;41 — 11), and as a result, it prevents us from obtaining the min—max
learning rate in sample size. We demonstrate the effectiveness of our algorithm by
numerical tests on prototype systems including opinion dynamics and a stochastic
Lennard-Jones model (see Sect. 5). Numerical results verify our learning theory in
the sense that the min—max rate of convergence is achieved, and the bias due to the
numerical error is close to the order Ar!/2.

1.1 Overview of the Main Results

We consider an approximate maximum likelihood estimator (MLE), which is the
maximizer of the approximate likelihood of the observed trajectories, over a suitable
hypothesis space H:

ér,7,m 1 = argmin Er 7 m (@),
peH

where €1, 7, (¢) is an approximation of the negative log-likelihood of the discrete data
{X ;g"t)L ,’Z’: |- Using the fact that the drift term f';, is linear in ¢ and hence &7 7, m (¢)
is a quadratic functional, we propose an algorithm (see Algorithm 1) that efficiently
computes this MLE by least squares. With a data-adaptive choice of the basis functions

{Vp ’;:1 for the hypothesis space H, we obtain the MLE

n

br.r.MH = ZaL,T,M,H(P)Wp (1.5)
p=1
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by computing the coefficients @y 7y 7 € R” from normal equations. The algorithm
may be implemented by building in parallel the equations for each trajectory.

We develop a systematic learning theory on the performance of this MLE. We
propose firsta coercivity condition that ensures the robust identifiability of the kernel ¢,
in the sense that the derivative of the pairwise potential definedin (1.2), @' (r) = ¢ (r)r,
can be uniquely identified in the function space L2(R™, pr), where pr is the measure
of all pairwise distances between particles. Then, we consider the convergence of the
estimator, from both continuous-time and discrete-time observations, under the norm

172
el = l9C) - 2y = ( / ) |(p(r)r|2pT(dr)) . (1.6)
R
The case of continuous-time observations (Sect. 3). We consider the MLE

aT,M,H = argmin &7 (@),
peH

where Er () is the exact negative log-likelihood of the continuous-time trajectories
{X [((")1 )T 1 nﬂf:] . We show that the MLE is consistent, that is, converges in probability to the
true kernel under the norm |||-|||. Furthermore, we show that the MLE converges at arate
which is independent of the dimension of the state space of the system and corresponds
to the mini—-max rate for one-dimensional nonparametric regression ([6,16,20,23]),
when choosing the hypothesis space adaptively according to data, the Holder continuity
s of the true kernel, and with dimension increasing with the amount of observed data.

With dim(H) = (5 OIgWM)ﬁ, and assuming that the coercivity condition holds on H

with a constant ¢y > 0, we have, with high probability and in expectation,

2s

—~ 2 1 (log M\ 2+t
ol 5 o (57

The case of discrete-time observations (Sect. 4). In this case, derivatives and statistics
of the trajectories in-between observations need to be approximated, while keeping the
estimator efficiently computable: this leads to further approximations of the likelihood
and consequently of the MLE. This discretization error of the approximations we use
is of order 1/2 in the observation time gap At = 7' /L, using an approximation of the
likelihood based on the Euler—Maruyama integration scheme. We show that for some
C > 0, for any € > 0, with high probability

18070056 — Blll < 17009 — || + € (\/g N m) ,

where aT,oo,H is the projection of the true kernel to H and n is the dimension of

hypothesis space H. The discretization error will flatten the learning curve when the

sample size is large, overshadowing the sampling error and the approximation error

cause by working within the hypothesis space. For some positive constants ¢» and
Elol:;ﬂ

@ Springer Lﬁjog



Foundations of Computational Mathematics

Continuous-time d)T’M’H AE
observation
arT,M,H SE-L
Sampling
Error
(SE)
Discrete-time ¢L’T’M’H S ¢L’T’°Q’H - ¢T’°°’H —_ ¢
b ti Sampling Discretization Approximation
observation =N Error ~ Error ~ Error
ar,T,M,H (SE-L) AL, T,00,H (DE) AT 0o, H (AE)

Fig.1 Diagram of the (regularized) MLE error analy51s and convergence. For continuous-time observations,
we refer to Proposition 3.4 for analysis of SE: ¢T MH — ¢T 00,4 and Theorem 3.2 for bounding the

total estimation error ¢T, M. H — ¢- For discrete-time observations, we refer to Proposition 4.2 for SE-L:
¢3L,T,M,H —¢A>L’ T.00,H» Proposition 4.1 for DE: ¢?L.T,00,H —¢3T.oo,H’ and Theorem 4.2 fordAJL’T’M’H —¢

c3, where g/b\T,oo,H is the projection of the true kernel to H. The numerical error may
overshadow the sampling error and the approximation error of the hypothesis space.

In both cases, we decompose the error in the MLE into sampling error from the
trajectory data, and approximation error from the hypothesis space, as illustrated in
the diagram in Fig. 1. In the case of continuous-time observations, the sampling error
is the error between ¢T m .+ and the MLE from infinitely many trajectories (denoted
by qu 00, 1): this will be controlled with concentration equalities. The approximation
error ¢T700,H ¢ is adaptively controlled by a proper choice of hypothesis space. The
analysis is carried out in the infinite-dimensional space L?(p7). In the case of discrete-
time observations, we provide a finite-dimensional analysis to study directly the MLE
in our proposed algorithm, that is, analyzing the error of a7 .7 in (1.5) with
proper conditions on the basis functions. The sampling error $L,T’ M.H— $LAT,<>0,H is
analyzed through@y, 7 p 1 —ar. 7001, and the discretization error between ¢, 7.0 %
and (/P\T,OO,H is analyzed through @, 7 a1 — a7 007 The discretization error comes
from the discrete-time approximation of the likelihood, and it vanishes when the
observation time gap Af reduces to zero, recovering the convergence of the MLE as
in the case of the continuous-time observations.

1.2 Notation and Outline

Throughout this paper, we use bold letters to denote vectors or vector-valued functions.
We use the notation in Table 1 for variables in the system of interacting particles.
We call the system of relative positions to a reference particle, say, (ri; = x;; —
xl,,)lN: »» by “relative position system”. The relative position system can be ergodic
under suitable conditions on the potential [37], and these relative positions are the
variables we need to learn the interaction kernel. We point out that the interacting
particle system (1.1) itself is not ergodic, because the center x; = % ZZN=1 x; ; satisfies
d¥, = o+ YN | dB; ;.
FoE'ﬂ
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Table 1 Notation for the system of interacting particles driven by Eq. (1.1)

Variable Definition

Xi; € R4 Position or opinion of particle i at time ¢, see (1.1)
Xi=&10....%XN ) € RIN State vector: position of the N particles, see (1.4)
Il Euclidean norm in RY or operator norm of a matrix
rip ), rin(t) € R4 Xp g —xipandx;r  —Xi

T (t),rijn(t) € Rt ripr @) = \rip @Ol and rjn (8) = |lr;n @),

] Interaction kernel, see (1.1)

fp Drift function of the system, see (1.4)

Vp = ﬁ Zi,i/ D(llxir —xir 41D Energy potential with @' (r) = ¢ (r)r, see (1.2)
Relative position system The system of (ry; (1) = x; ; — x].,)lN:2

We restrict our attention to interaction kernels ¢ in the admissible set

Kr.s=1{p € C'(Ry) : Supp(¢) C [0, R, lglloc + 1¢'lloc < S}. 1.7

Let §2 be an arbitrary compact (or precompact) set of a Euclidean space (which may be
R+, RY or RN ), with the Lebesgue measure unless otherwise specified. We consider
the following function spaces

— L°°(£2): the space of bounded functions on §2 withnorm || g || oc = esssup,co|g(x)l;

— C(£2) : the closed subspace of L°°(£2) consisting of continuous functions;

— C.(£2) : the set of functions in C(£2) with compact support;

- C*%(2) withk € N,0 < a < 1: the space of functions whose k-th derivative is
Holder continuous of order «. In the special case of k = Oand o = 1, g € C%¥(£2)
is called Lipchitz continuous on £2; the Lipschitz constant of g € Lip(§2) is defined

as Lip[g] := sup, ., —‘g(ﬁ‘;:iﬁy)l.

We summarize the notation for the inference of the interaction kernel in Table 2.
The function space in which we perform the estimation is the space of functions ¢
such that ¢(-)- € L2(R*, pr), where pr is the measure of pairwise distances between
all particles on the time interval [0, T'] (see (2.9)). We will focus on learning on the
compact (finite- or infinite-dimensional) subset of L>°([0, R]) (where [0, R] is the
support of the functions in the admissible set g s) in the theoretical analysis; how-
ever, in the numerical implementation we will use finite-dimensional linear subspaces
L%([0, R], pr) spanned by piecewise polynomial functions. While these linear sub-
spaces are not compact, it is shown that the minimizers over the whole linear space are
bounded and thus the compactness requirements are not essential (e.g., see Theorem
11.3 in [23]). We shall therefore assume the compactness of the hypothesis space in
the theoretical analysis.

The remainder of the paper is organized as follows: We first provide an overview
of our learning theory. In Sect. 2, we present a practical learning algorithm with
theory-guided optimal settings on the choice of hypothesis spaces and with a practical
assessment of the learning results. We then demonstrate the effectiveness of the algo-

Elol:;ﬂ
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Table 2 Notation used for the estimator of the interaction kernel ¢

Notation Definition

M Number of observed trajectories

to: 1 =}k, Observation times in [0, T],0 =1ty < -+~ <ty =T,y = At =IT/L
"o Probability distribution in R4N for initial configurations X

‘H and {¢p}'z7= 1 The hypothesis space of learning, and a basis for it

Erm()and E 7 p () Empirical error functionals from continuous/discrete data, see (3.1) and (2.4)
$T,M,H and aL,T,M,H Minimizers, over H, of E7_p(¢) and Ef 7 p (@), see (3.2) and (2.5)

anL T MH Coefficient vectors of aL,T,M,H w.r.t. basis {/), ,IIJ=1’ see (2.8)

-1 L2(pr)-based norm: [[$]] = $() - ll2(,,.,» see (1.6)

rithm on prototype systems including a stochastic model for opinion dynamics and a
stochastic Lennard-Jones model in Sect. 5. We establish a systematic learning theory
analyzing the performance of the MLE, considering continuous-time observations in
Sect. 3 and discrete-time observations in Sect. 4. We present in “Appendix” detailed
proofs.

2 Nonparametric Inference of the Interaction Kernel

We present in this section the nonparametric technique we study for the inference of the
interaction kernel and corresponding algorithms. We discuss the assessment of the per-
formance of the estimator and its performance in trajectory prediction. The proposed
estimator is based on maximum likelihood estimation on data-adaptive hypothesis
spaces so as to achieve the optimal rate of convergence, guided by our learning theory
in Sects. 3—4.

2.1 The Maximum Likelihood Estimator

As a variational approach, we set the error functional to be the negative log-likelihood
of the data {X g",)L 31/[:1 and compute the maximum likelihood estimator (MLE).

The error functional. Recall that by the Girsanov theorem, for a continuous trajectory
X0, 7], its negative log-likelihood ratio between the measure induced by system (1.1),

with an admissible kernel ¢, and the Wiener measure is

1 T
Exon @) = 357 /O (IFs XD =2(f 5(X).dX)de) . 2.1)

As we do not know the interaction kernel ¢ that generated the trajectory X|o 7], we
can let ¢ be any possible admissible interaction kernel, and upon replacing ¢ by ¢
in (2.1), observe that 5X[o.r] (¢) is the log-likelihood of seeing the trajectory X|o, 7y if
system (1.1) were driven by the interaction kernel ¢. In this case, £x, , (¢) may be
EOE';W
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interpreted as a error functional, which we wish to minimize over ¢, in order to obtain
an estimator for ¢.

Given only discrete-time observations X, , where (f = [At,l = 0,...,L)
with At = T /L (the case of non-equispaced-in-time observation is a straightforward
generalization), the error functional £y, ;,(¢) may be approximated as

L—-1

S (IFpXIPAr =20, (X ). Xy = X)) (22)

=0

00, 0= 5007y

The corresponding approximate likelihood is equivalent to the likelihood based on the
Euler—-Maruyama (EM) scheme (whose transition probability density is Gaussian):

Xy =Xy + fo(Xi)At + o AW, W~ N(0, Inaxna) (2.3)

Note that while higher-order approximations of the stochastic integral (or, equivalently,
approximations based on higher-order numerical schemes) may be more accurate than
the EM scheme, they lead to nonlinear optimization problems in the computation of the
MLE defined below, and we shall therefore avoid them. The EM-based approximation
preserves the quadratic form of the error functional and leads to an optimization
problem that can be solved by least squares. As we show in Theorem 4.2, this discrete-
time approximation leads to an error term of order A¢!/? in the MLE, which will be

small in the regime on which we focus in this work.

Since the observed discrete-time trajectories {X t((')"t)L M
X g" )°s are drawn i.i.d. from 10, the joint likelihood of the trajectories is the product
of the likelihoods of each trajectory. Therefore, the corresponding empirical error

functional is defined to be

| are independent, as the

M
1
ELrm(p) =4 > 5X§;¢;L (9). (2.4)
m=1 ’

A regularized Maximum Likelihood Estimator. The regularized MLE we consider is
a minimizer of the above empirical error functional over a suitable hypothesis space
H:

br.7.m, 4 = argmin E, 7 (), 2.5)
peH

This regularized MLE is well defined when the minimizer exists and is unique over
‘H. We call this MLE “regularized” to emphasize the constraint ¢ € H, and the fact
that H will change with M, as in nonparametric statistics; this naming is somewhat
not standard though. We shall discuss the uniqueness of the minimizer in Sect. 3.1,
where we show it is guaranteed by a coercivity condition. When the hypothesis space
'H is a finite-dimensional linear space, say, H = span{i;}?_, with basis functions
Y¥i : RY — R, the regularized MLE is the solution of a least squares problem.
Elol:;ﬂ
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To see this, letting ¢ = >/, a(i)y; and a = (a(1),...,a(n)) € R", we have
fo(X) = Y a(i) f , (X), due to the linear dependence of f, on ¢. Then, we can
write the error functional in Eq.(2.2) for each trajectory as

Exm (@) :=Eyom (p) =a’ A™a+aTb™,
1ty ity

where the matrix A e R"*” and the vector b e R" are given by

L—-1
A(m)(i’ i) = 2062LN Z(fw’,(Xflm)), f*//;'(Xt(tm) )
=0
. (2.6)
) 1
b =~ 2w X X = X,
=0

Hence, corresponding to V&L 7.y = 0 for the error functional in (2.4), we solve the
normal equations for a to obtain the solution ZiL,T, MH:

AM,LaL,T,M,H = bM,L’ where

1 U 1 I
— (m) — (m)
Ay = MZA  byp = MZb 2.7
m=1 m=1
and corresponding desired MLE for the interaction kernel:

n
bL.T.MH = ZaL,T,M,H(i)WL (2.8)

i=1

The normal equations (2.7) are solved by least squares, so the solution always exists.
We will show in Sect. 4 that assuming a coercivity condition, the matrix Ay 1 €
R™" is invertible with high probability when M and L are large, so the least squares
estimator is the unique solution to the normal equations, and the regularized MLE is
the unique minimizer of the empirical error functional over H.

2.2 Dynamics-Adapted Measures and Function Spaces

We will assess the estimation error in a suitable function space: L>(R*, pr). Here pr
is the distribution of pairwise distances between all particles:

1 (7 N
pr(dr) = or / O[ 3 ]E[(Sr”,(,)(dr)]dt:|, (2.9)
2 =04 =ti<i’

where § is the Dirac §-distribution, so that ]E[‘Sri,-/(f) (dr)] is the distribution of the ran-
dom variable r;;/ (t) = ||x; ; —x; ||, with x; ; being the position of particle i at time ¢.
EOE';W
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Here the expectation is taken over the distribution p( of initial conditions and realiza-
tions of the system. The probability measure pr depends on both w¢ and the measure
determining the random noise on the path space, while it is independent of the observed
data. The measure pr encodes the information about the dynamics marginalized to
pairwise distances; regions with large pr-measure correspond to pairwise distances
between particles that are often encountered during the dynamics.

With observations of M trajectories at L discrete-times each, we introduce a cor-
responding measure

| LolM N
LM o
pr M (dr) = —(N)LM Z [ Z Srfi'?” ([])(dr):| , (2.10)
2 1=0,m=1 L i'=1,i<i’
where ri(gl)(t) = ||x§f7;) - foH) || is from the m-th observed trajectory. We think of

ot
this as an approximation to pr, in two significantly different aspects. In L, because as

L — +o00 our observations tend to be continuous in time, and in M, as p%’M can be
thought of, after letting M — +o00, as an empirical approximation to pr performed
from data on the M independent trajectories.
Accuracy of the estimator. We measure the accuracy of our estimator $L,T, m .+ by the
quantity R

(&L 7.1 — D)) - ||L2(]R+,p7)~

The function ¢ (-)-, instead of ¢, which at r € R takes value ¢ (r)r, appears naturally
in our learning theory in Sect. 3, fundamentally because it is the derivative of the
pairwise distance potential @ in (1.2). We define

1/2
llell == NleC) - N2 = </R+ |</>(V)V|2PT(dr)) - (2.11)
Then, the mean squared error (MSE) of the estimator is
-~ 2
Ell¢r,rmm — |- (2.12)

2.3 Hypothesis Spaces and Nonparametric Estimators

As standard in nonparametric estimation, we let the hypothesis space H grow in
dimension with the number of observations, avoiding under- or over-parameterization,
and leading to consistent estimators, that in fact reach an optimal min—max rate of
convergence (see, e.g., [20,21,23]).

Similar to [40,41], we set the basis functions {i; }f’:] to be piecewise polynomials

on a partition of the support of the density function of the empirical probability measure
LM
Pr -

Guided by the optimal rate convergence results in Sect. 3, we will set the dimension
of the hypothesis space H to be

n=C(M/logM)"/Cs+D, (2.13)
FolCTM
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Algorithm 1 Learning interaction kernels from many trajectories

m
1ot
: Output: An estimator ¢, 7 M. Moy, for the interaction kernel.

: Input: Data consisting of M independent trajectories { X } %:1 ; Holder regularity s of the true kernel.

: Compute the pairwise distances and the empirical measure p%’M in (2.10).

: Construct the basis {wp}zl‘;’1 with adaptive partition based on ,o%’M, and with ny given by (2.13).
: Assemble the normal equations (2.7) (in parallel).
: Solve the normal equation and return ¢L.T,M.H,1M as in (2.8).

[ T U R N

where the number s is the Holder index of continuity of the basis functions, and it is
to be chosen according the regularity of the true kernel. When 7 is large and when the
relative position system is ergodic, we set

n= C(Ness/log Ne“)l/(25+l)’

where Nygs := M % with T denoting the auto-correlation time of the system, is the
effective sample size of the data. Here the auto-correlation time 7 is the equivalent of
the mixing time for a reversible ergodic Markov chain [35].

We estimate the auto-correlation time by the sum of the temporal auto-correlation
function of a pairwise distance r; ;. (We refer to [51] for detailed discussion on the
estimation of auto-correlation time, which is a whole subject by itself.)

We will prove bounds, that hold with high probability, on the mean squared error
(MSE) of the MLE ¢y, 7 M, H,y, in (2.8) for fixed and large M, for a fixed time 7 and

for suitable hypothesis spaces 'H,,,, with dimension 7 asin (2.13). When continuous-
2

time trajectories are observed, the MSE is of the order (%) 24T with high probability,

according to Theorem 3.2, and so is its expectation. In particular, this avoids the curse

of dimensionality of the state space (d N). When the observations are discrete-time

2s
EM) 55T+ Ar'/2 with

lo

trajectories with observation gap Az, the error is of the order (
a high probability according to Theorem 4.2.

2.4 Algorithmic and Computational Considerations

The algorithm is summarized in Algorithm 1. Note that the normal matrices {A")}
and vectors {b™} are defined trajectory-wise and therefore may be computed in
parallel. When the size of the system is large (i.e., dN is large), this allows one to
accelerate the computation of the estimator, by assembling these normal matrices and
vectors for each trajectory in parallel, and updating the normal matrix A s 1, and vector
by, 1. The total computational cost of constructing our estimator, given P CPU’s, is

O(LNT?dMn2 + n3). This becomes 0(LNT?dM1+ﬁ + CMﬁ) when 7 is chosen

optimally according to Theorem 3.2 and ¢ is at least in C'"! (corresponding to the
index of regularity s > 2 in the theorem).

FoCT
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2.5 Accuracy of Trajectory Prediction

One application of estimating the interaction kernel from data is to perform predictions
of the dynamics. Given an estimator, the following proposition bounds its accuracy in
predicting the trajectories of the system driven by the true interaction kernel:

Proposition 2.1 Let a € Kr.s be an estimator of the true kernel ¢ , where Kg g is
the admissible set defined in (1.7). Denote by X + and X; the solutions of the systems
with kernels a and @, respectively, starting from the same initial condition and with
the same random noise. Then, we have

wp B[ 1%, - x2] <20 g
t€[0,T]

where the measure pr is defined by (2.9).

We postpone the proof to Sect. A.3.

3 Learning Theory: Continuous-Time Observations

We analyze first the regularized MLE in the case of continuous-time observations
{X Eg’ )T]} %:1' We show that under a coercivity condition, the regularized MLE is con-
sistent, and that with proper choice of the hypothesis spaces, we can achieve an optimal
1 . log M\ =25
earning rate (—;—)2+1.

Recall from Eq.(2.1) that

1 T
Exon® = soary [, (1F0(X01 =247, (X0, dX )

is the negative log-likelihood of a trajectory X o, 71, withrespect to the measure induced

by the system with interaction kernel ¢. Then, the negative log-likelihood of indepen-

M

dent trajectories {X F(r)" )T] Y 18

M
1
Er.m(p) == i E 5XFST>T](§0)’ (3.1
m=1

and the regularized MLE over a hypothesis space H is

b1 M1 € argmin Er_p(g) . (3.2)
peH

The existence of the minimizer follows from the fact that the error functional £7 ()
is quadratic in ¢, which in turn is a consequence of the linearity of f, in ¢. The
uniqueness of the minimizer, however, requires a coercivity condition and is related
to the learnability of the kernel, which we discuss in the next section.

Elol:;ﬂ
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3.1 Identifiability and Learnability: A Coercivity Condition

The uniqueness of the minimizer of the error functional £7 s (¢) over the hypothesis
space ensures that the kernel is identifiable. This is not granted, even when the number
of observed trajectories is infinite: denote

Er.co(p) i=EEx o (9) = lim Er y(p) a.s., (3.3)
M—o0

where [E here, and in all that follows unless otherwise indicated, is the expectation
over initial conditions, independently sampled from 11¢, and over the Wiener measure
underlying the random noise, and observe that

1 T
ET.00(@0) — E7,00(P) = E[SX[O,T] (p) — 5T,oo(¢)] = WE/O ||f<pf¢(Xz)||2dt'
(3.4)

Only when EfOT £, (X;) |?dt > 0 for any ¢ — ¢ # 0 can one ensure the unique-
ness of minimizer. This motivates us to propose the following coercivity condition,
introduced in [9] in the case of non-stochastic systems:

Definition 3.1 (Coercivity condition) We say that the stochastic system defined in (1.1)
satisfies a coercivity condition on a set  of functions on R, with a constant 0 < ¢,
if

) 1 T N 1 N )
erllolP <o fo ,;E[”ﬁ le<rii/(r)>riif(r>|| ]dr (3.5

i'=

for all ¢ € H such that ¢(-)- € L?(pr). Here |||-||| denotes the norm defined in (2.11).
We will denote by ¢y the largest constant for which the inequality holds and call it
the coercivity constant.

The coercivity condition ensures identifiability of the kernel. We emphasize that

the kernel is latent, in the sense that its values at {r;;; = ||x; —x;||} are undeterminable
N(N—1)

from data. In fact, torecover (¢ (r;;7)) € R~ 2 from the observed trajectories, even if
we ignore the stochastic noise in the system and assume to have access to f (x) € RN,
which consists of a linear combination of (¢ (r;;7)) with coefficients r;;; = x;» — x;,
we face a linear system that is underdetermined as soon as d N (=number of known
quantities) < W (=number of unknowns), i.e., ford < (N — 1)/2. Thus, in
general the exact values of ¢ at locations {r;;/}; ;7 cannot be determined. Furthermore,
we have stochastic noise in the system. This suggests that the inverse problem of
estimating the interaction kernel in a space of continuous functions is ill-posed. We
will see that the coercivity condition ensures well-posedness in L2(pr), both in the
sense of uniqueness and in the sense of stability.
The coercivity condition plays a key role in the learning of the kernel. Beyond ensur-
ing learnability of kernels by ensuring the uniqueness of minimizer over any compact
EOE';W
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convex sets, it also enables us to control the error of the estimator by the discrepancy
between the expectation of error functionals, as is shown in Proposition 3.1. We will
use this property to establish the convergence of the estimators in later sections.

To simplify notation, we define a bilinear functional product over ‘H by

1 T
(o1, ¢2) := WE/O (fp, (X1), £, (X))d2, Vo1, 92 € H. (3.6)

Proposition 3.1 Let H be a compact convex subset of L>(R*, pr) and assume the
coercivity condition (3.5) holds true on H with constant c1. Then, the error functional
Er.00 defined in (3.3) has a unique minimizer over 'H in L2(pr):

BT 0o = argmin €7 50 (9) . (3.7)
peH
Moreover, for all ¢ € 'H,
~ ~ 2
ET.00(®) = ET,00 @7 00,1) = cH|||0 — b1 00, 1]|| - (3.8)

Proof From Eq. (3.4), we have £7 o6 (¢) — €T .00(¢) = (¢ — ¢, ¢ — ¢). Then,

E7,00(®) = E7,00( @100, 10)
=0 = 0.9 — ) — (Pr.coH — D DT 00, — D)
=@ — PT.00H: @ + PT.00. 1 — 20)
=0 — T @ — PToc0 1) + 200 — T 000 PT.00 1 — D)
> cptlllo = Brcont||]” + 200 = 1.0 Br .01 — D),

where the inequality follows from the coercivity condition. Then, Eq.(3.8) follows
once we notice that ((p ¢T 00, H» d)r co.H — @) > 0 by the convexity of H In fact,
since tg + (1 - t)¢L oo, H_E H, vt € [0, 1], we have E7 oo (te + (1 — t)qbr o H) —
Er, oo(¢T 00 H) = 0 since q)T 00,1 18 a minimizer, and so, equivalently,

19 — PT 00119 + (2 — DPT 0.1y — 20) > 0
S D — T .cotts 10 + 2 — D001 — 2¢) > 0.

Sending ¢ — 0, we obtain (¢ — 700 7. 207 001 — 2¢) > 0. |

Well-conditioning from coercivity. When the hypothesis space H is a finite-dimensional
linear space, the coercivity constant provides a lower bound for the smallest eigen-
value of the limit of the normal equations matrix Ay, ; in Eq.(2.7) as M, L — +oo.
Therefore, when the sample size M is large and when the observation frequency L
is high, the matrix Az 1 is invertible with a high probability (see Corollary 4.2 for
details), and thus, the coercivity condition ensures the uniqueness of the regularized
MLE in Eq.(2.8):

FoE'ﬂ
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Proposition 3.2 Suppose that the coercivity condition holds on H = span{yy, ..., ¥},
where the basis functions satisfy (Y, (), ¥p (V) 2oy = Opp. Let Axe =
((l//p, Iﬂp/))p’p, € R™" with the bilinear functional (-, -) defined in (3.6). Then
the smallest singular value of Ao i Amin(Aco) = 3¢ -

Proof For an arbitrary a € R”, denoting = Z’;:] apyp, we have

al Asa = (Y, ¥) = enllvI® = exllal? (3.9)

where the first equality follows from that the functional (-, -) is bilinear, and the
inequality follows from the coercivity condition. Note that by the definition of the
coercivity constant in (3.5), we have

A
cH = sup

IR weru VY

which is attained at some ., € H since H is finite dimensional. Hence, the inequality
in (3.9) becomes inequality for ¥, and the smallest eigenvalue of A is ¢7y. O

Proposition 3.2 suggests that for the hypothesis space H, it is important to choose a

basis that is orthonormal in L%(p7), so as to make the matrix in the normal equations
as well-conditioned as possible given the dg/namics. In practice, the unknown p7
is approximated by the empirical density ,oT’M. Therefore, when using local basis
functions, it is natural to use a partition of the support of p%” .
The coercivity condition and positive integral operators. The coercivity condition
introduces constraints on the hypothesis spaces and on the distribution of the solutions
of the system, and it is therefore natural that it depends on the distribution wg of the
initial condition X, the true interaction kernel ¢, and the random noise. We review
below briefly the recent developments in [37,38], where the coercivity condition is
proved to hold on any compact sets of L2(p7) for special classes of systems, such
as linear systems and nonlinear systems with a stationary distribution. As discussed
in [9,40,41] for the deterministic cases, we believe that the coercivity condition is
“generally” satisfied for “relevant” hypothesis spaces, with a constant independent of
the number of particles N, thanks to the exchangeability of both the distribution of
the initial conditions and that of the particles at any time ¢.

The coercivity condition is ensured by the positiveness of integral operators that
arise in the expectation in Eq.(3.5). More precisely, recall that the drift of the SDE is
cyclic in the indexes. Thus, the distribution of X; is exchangeable and

fori # i’, one has

E[p (e (i, rin ] = ElpliriaDedlris Dy, i)l

FolCT
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One can rewrite Eq.(3.5) as

N -1 2
(e — T)”‘ﬂ() : ||L2(/3T)
L Wb =2t
- N2T

= / h / h o(r)e(s)K 7 (r, s)drds,
0 0

Elp(lriz DeirisDiriy. ris)lds

where the integral kernel K7 : RT x R* — R is defined as

_ 1 T
Kr(r,s):= (rs)? f f E = f pi(ré, sp)dedédn, (3.10)
sd-1 Jgd-1 T Jo

with p;(u, v) denoting the joint density function of the random vector (r’lz, r’13)
and S9~! denoting the unit sphere in R?. It is shown in [37,38] that the associated
integral operator defined by K7 is strictly positive definite, and therefore, the coer-
civity condition holds, for a large class of systems with interaction kernels in form of
o) = (a+rHyr 192 witha > 0and {(6, y) € (0, 1] x (1,2] : 6y > 1}.

3.2 Consistency and Rate of Convergence of the Estimator

In this section, we consider using a family of finite-dimensional linear spaces {L, :
n € Nt} ¢ €10, R] as hypothesis spaces and establish the consistency and rate
of convergence of our estimators, which are our main theorems for continuous-time
observations. We assume the spaces {£,, : n € N*} ¢ C11[0, R] satisfying Markov—
Bernstein-type inequality: there exist c1, y > Os.t. forall ¢ € £,

9 loo < crdim(Ly)” [[@llo - (3.11)

This condition has a long history and rich literature in classical approximation theory,
where it is studied when function spaces satisfy (3.11) (e.g., see the survey paper
[53]), which is an important step in establishing inverse approximation theorems.
This kind of inequality holds true on many function spaces that are commonly used
as approximation spaces in practice, including:

— L, : trigonometric polynomials of degree n on [0, 27] (similarly on [0, R]), for
which [|¢/[le0 < %(dim(ﬁn) — 1)||@loo. This result dates back to Bernstein [5].

— L, the polynomial space consisting of all polynomials with degree less than n — 1
on [0, R] (see Theorem 3.3 in [48]), for which ||¢’||s < %(dim(ﬁn) + D29l s
As aresult, (3.11) also holds true for polynomial splines; other extensions include
rational functions. We refer to the reader to [30] for details.

If we choose a compact convex hypothesis set 7 contained in some £, with a
suitable correspondence between n and M, such that the distance between Hj; and
the true kernel ¢ vanishes as M increases, the following consistency result holds:

Elol:;ﬂ
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Theorem 3.1 (Strong consistency of estimators) Suppose ¢ € Kr_s, the admissible
set defined in (1.7). Let {£, : n € Nt} ¢ C1[0, R] satisfying (3.11) and

inf [lg — ¢lloc > 0.
Let So > S and Hyr = B3 (Lny) =19 € Lny = |l@lloc < 280} with dim(L,,,,) =

ny and lim g "Mlo# = 0. Finally, suppose the coercivity condition holds true
on U, L,. Then, we have

lim |||$T,M,HM — ¢>||| =0 with probability one.
M— o0

If we know the explicit approximation rate of the family {£, : n € NT}, then by
carefully choosing the dimension of hypothesis spaces as a function of M, we can
obtain a near-optimal rate of convergence of our estimators.

Theorem 3.2 (Convergence rate of estimators) Suppose ¢ € Krg s, the admissible set
defined in (1.7). Assume that there exits a sequence of linear spaces {L, : n € Nt} C
C110, R) satisfying (3.11) with the properties

(i) dim(L,) < con forn € NT,

(ii) inf e, g — Blloo < cn™".

For example, when ¢ € C*% with s = k + a > 2, we may choose L, to consist of
polynomial splines of degree | s — 1] with uniform knots on [0, R]. Let H,, = Bg: (Ly)
with So = ca+Sandn < (M /log M)/ @Y and assume that the coercivity condition
holds on L := U, L, with a constant ¢y > 0. Then, we have

log M )
s[lFr w0l = 5 (57)

where C is a constant depending only on o, N, T, R, Sp.

It is fruitful to compare (up to log terms) the rate 2s/(2s + 1) to that for nonpara-
metric 1-dimensional regression, where one can observe directly noisy values of the
target function ¢ at sample points drawn i.i.d from p7. For the function space C*¢,
this rate is min—max optimal. Our numerical examples in Sect. 5 empirically validate
the desired convergence rate for s = 1, 2 where we use piecewise constant and linear
polynomials. Note that in our setting, learning ¢ is an inverse problem, as we do not
directly observe the values {¢(||x<m) (m) ||)}fvl N, le ;- While our result is stated
in such a way that a knowledge of s is requlred in fact an upper bound s is sufficient,
as choosing sufficiently regular splines, of degree |§ — 1| would give the optimal
s-dependent rate, at the cost of possibly larger constants. We also remark that we do
not require that the underlying stochastic process satisfies certain mixing properties
nor starts from a stationary distribution. Obtaining this optimal convergence rate in
M for short-time trajectory observations is therefore satisfactory. For long trajectories

FoE'ﬂ
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and under ergodicity assumptions, rates in terms of M T are likely to be obtainable:
In Sect. 5, we present numerical evidence that suggests that the error does decrease
with M T at a near-optimal rate.

3.3 Proof of the Main Theorems

In the following part, we present the proof for Theorem 3.2, which also yields the
proof for Theorem 3.1. The main techniques include the It formula, concentration
inequalities of unbounded random variables, and a generalization of a novel covering
argument in [52] that enables us to deal efficiently with the fluctuations in the data
due to the stochastic noise in the dynamics of the system.

One major obstacle in the non-asymptotic analysis of our regularized MLE esti-
mators is the unboundedness of stochastic integral of the form % fOT (£, (X,),dX,)dt
appearing in the empirical error functional. Unlike the deterministic case o = 0, our
empirical error functional £r p(+) is in general not continuous over H with respect to
the || - || oo norm. In the following, we first leverage the general 1t6 formula described in
Theorem A.3, to obtain a form of the empirical error functional that does not involve
a stochastic integral and is amenable to analysis; we then show that it is continuous
on Cl! ([0, R]) with respect to the || - ||1,1 norm. Therefore, in the following prelim-
inary results for the proofs of the main theorems, we consider the following generic
hypothesis space:

Assumption 3.3 The hypothesis space H is a compact convex subset of C!*1([0, R])
with respect to the uniform norm || - || and bounded above by Sp > S.

Lemma 3.1 Suppose ¢ € Kg. s, the admissible set defined in (1.7). Let
Vo(X) = = S Wlwis — xo ) with W) = p(yrs  (.12)
[ t 2N — 1,1t 1t 5 .
i,i
then, we have, almost surely
2 Y
—(dVp)(X1) = (£, (X), dX1) + 5= Y Y (' Uxiwr Dllxiir | + @l 1)) de

2N &~ &~
i=1i'#i

Proof Let g(X) = V,(X). Note that g is C?, with derivatives

2] _ W) LS gl — iy — x0)

3x,~ 8x,~ N .
i i
2eX) _ o 1
dx;0x; klN
¢ (lxi — xi1)
D ellxi — xp DIy + 2 (x — xy) ® (¥ — xi)
e le; —xil
i'£i
FolCTM
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1
- 8k;ﬁiﬁ
@ (llx; — x|

llx; — xill

(qo(llxi —x;DIg + (xi —xp) ® (x; — xk)) .

Using Itd’s formula (Theorem A.3) for the Itd process g(X;), the conclusion follows.
O

Proposition 3.3 Suppose @1, 2 € H, then it holds almost surely that

|gX[0,T] (QD]) - gX[()YT] (‘P2)| =< Cl ”901 - ¢2||OO + C2”§01 - q)é”OCh

2 2
where C| = % + 252T + % and Cr = %.

Proof Note that
Expo.r(@1) — Expo.1) (92)

1 T
= m /()\ <fq01—(p2 (Xt)s f(m—i—goz (Xt)) dr —2 <f(p1—g02(Xt)v dXt) .

I I

I, satisfies
11| < B9y 40, XD g1 = XN < Nllgt — @2llscllp1 + @21l R,
since [|f,(X:)|| < v/NR||¢|loo- For I, Lemma 3.1 yields

|12| = |V¢1—¢2(X0) - V(pl—(pz(Xt)|

o2 T N )
o /0 ; ;(wn — o) i+ (91 — ) rind)di
_ -1
- 2

(N = DoT

> (lg1 = @rlloo R + ll91 — ¢2llc0d),

o1 — @2lloo R* +

where we used

1 (N = D]l¢llooR?
IVo(X0) = Vo(Xo)| = 7 Z |f o(ryrdr| < ———2720
121

b
Tiil 0 2

which follows from its definition in (3.12). Combining the estimates for /1 and /I, and
using [¢1 + @2lleo < 280, we obtain

|5X[0’T] (‘Pl) - gX[().T] (§02)|

R? 1
< 7I|¢1 —@lloo | l1 + @2ll0o + T

FolCT
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1
+ §(d||<ﬂ1 — ¢2lloc + ¢} = @3lloc R)

< Cillgr = ¢2lles + C2ll¢) = @3 lloos (3.13)
where C| = % + 2522T + %’ and C; = %. O

When M = oo, i.e., we observe infinitely many trajectories, the expectation of our
error functional £7 o, as in (3.3), does not involve the stochastic integral term. From
the proof of Proposition 3.3, we see that it is continuous over H with respect to the
[l - lloo norm:

2
ZR 250, we have
o

Corollary 3.1 Suppose ¢1, @2 € H, then, with C1 =

I€T 00 (@1) — ET,00(92)| = Cillo1 — ¢2]lc0-

Proof Using (3.4), we obtain that

1 T
|5T,oo(<P1) - 5T,oo(‘/’2)| = 262NTE/(; ‘(fwrtpz(Xt), f<p|+<p272¢(Xt)>|df
R2
= 5oz ller = eallocllor + 92 = 20l
o
ZSO
=2 ler — @2lloo

Recall the definition

$T,oo,7'{ = arg min ET,oo((P)-
peH

We now analyze the discrepancy between the empirical minimizer (/57) M.+ and
@T 00, 1> Which we called sampling error (SE) in the diagram in Fig. 1. We intro-
duce a measurable function on the path space by

Dy = Ex,0.1,(9) — Ex\0.11 (DT 00,10 (3.14)

for any ¢ € H. From Proposition 3.1, we have

EDy = E7,00(9) = E7.00@1 007) Z cnil|0 = broomll. (319
so Dy, in fact bounds (in expectation) the distance between ¢ and EBT,OO,H w.r.t. the
[ - |||-norm. We now perform a non-asymptotic analysis of D,. We shall show that
the random variable D,, satisfies moment conditions, sufficient to guarantee strong
concentration about its expectation (Proposition 3.4). To do this, we decompose D,
as the sum of a bounded component only involving time integrals and an unbounded
component involving stochastic integrals:

. _ pbd _ pubd
Dy .= D(p D(p
FoC'T
e,
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bd . _
Dyt ZGZNT [ AR ARG i

ubd
Dfﬂ 2 NT

/<¢ 1 (X0 AB())

We prove moment conditions independently for each of these components in the next
two Lemmata.

Lemma 3.2 (Bounds on D) For ¢ € Hand p =2,3,4, ...,

E[DPI < C(l¢ = roonl ) Ml — Frscnll

where C = (1’(/’2_1))2 Rpfzp -
021’(NT)T

Proof First of all, note that
1, 37 s XD < VNR| ¢ = G100 . - (3.16)
Therefore f¢—$f o (X,)isa L>-integrable process. Applying Theorem A.5, we obtain

p

‘/ 2 (X1), dB(1))

T
= CP*T]E/O ”f</>—$r,oo,7-z (Xl)”pdt

T
< Cp1r(VNRI9 = d1 003tllc)”E /0 1€, 5, ., (X0 de

~ -2
< Cp7(VNRIl@ — b7 00 1ll0)”

)4
2

with Cp 7 = (@) TPT The conclusion then follows by adding in the scaling

1
factor . O

Lemma 3.3 (Bounds on DY) For g € Hand p =2,3,4, ...,

280\” ~ - -~
Blof” = (22) #7210 = Fr 2l ~ Froeell

Proof From inequality (3.16) and the linear dependence of f,, on ¢, we have

2S0R
Dy’ <

T
< e [

ZSOR
= \/NT/ ” o— ¢TooH(X’)” dr.
Fol:"ﬂ
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Therefore,

2850\” -~ _ —~
B0l < (22) 2o = broenll, o~ Fronll

Now we combine Lemmas 3.2 and 3.3 to prove the moment condition for D,,.

Lemma 3.4 (Moment conditions) For ¢ € H, and every p = 2,3, ..., we have
E||p, —ED,|" | < L pk?>2c
|Dy —ED,|"| < PR o
where

Ky = Cole — ar,oo,HUoo, Cy = C5C e — $T,oo,7—{”’2 (3.17)

. 2¢2R2 1 C5.80.R
with Co = SINT Ci = max,>, (1 + %= ), and cs 5, =
NT P22 J2mpNTR o' 20,

0)17 R2p -2
\/2npp+7

maxp>2(

Proof The proof is based on the Jensen’s inequality, Lemma 3.2 and Lemma 3.3.

E|D, —ED,|" < 277'E[Dy! —EDY|" + 27 'E[ D]
< 22P71E|ng|p + 2P*1E[|D;bd|p

%"

1 —~ —~
< ECO e — &7 00 1| o e — ¢T,oo,HH|2

A

IA

1 ~ _
FPHCillg = 7 00 1llo0)” 2c?

where the constants are

850\” ,  RP72
Co = (—f) R+ 2p(p - 1))%—,,+2,
o o2P(NT) 2
2¢2R? 1 Co,S0,R
C=,/—/——, (C:=max + ===,
! o*NT 2T («/anNTRZ c’ )
<SSO>P R2p72
Cs.5.R ‘=max | — | ——,
0 p>2 \ o2e /27rp1’+%
and the last inequality is derived from the Stirling’s lemma. O

We now tie the discrepancy functionals for finite and infinite M:
FoE'ﬂ
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Proposition 3.4 (Sampling Error bound) Let 0 < § < 1 and {¢; } = | be an n-net of
functions in a compact convex hypothesis space H C Ballyg, (LOO[O RY)), that is for
any function ¢ € 'H, there exists some j such that ||¢ — ¢jllcc < n. Denote

D(pj,oo L= ED(pj = gT,oo((Pj) - ET,oo(aT,oo,H)
Dy, m 2= Er (@) — Er.m@r 0070 -

Then with probability at least 1 — 5, we have

1
D(pj,oo - D(pj,M < €mMsN T ED(/)'[’OO (3.18)

forall j, where e 5 A = S log(EY), € = zcoc‘

with ¢y the coercivity constant defined in (3.5 )

+4CySo, and Cy, Cy asin (3.17),

Proof Foreach ¢; € H, recall that in Eq.(3.15), the coercivity condition on H implies
that

Dyy00 = cnl][0j = br.oomll’
Then, Eq.(3.17) in Lemma 3.4 yields that

1 pzccl

EID, —EDy,|" < > plK, D, (3.19)

j»o°
CH ’

Therefore, the random variable Dy, satisfies the moment condition in Corollary A.2,
and so Ve > 0

—Me
]P’{ij,oo —Dy;.m > €€ +D<ﬂjv°°)} = exp <?>
0

+2K i H

We have K(p_/,H < 2CoSp where Cy is defined in (3.17). Taking a union bound on all
these events, over j € {1, 2, ..., N}, we obtain that

D .00 D —Me
P{ max > el < Nex (—) (3.20)
{1<J<N m } P\ yoos

Setting the right-hand side to be %, wegetey s N = log( 2N) where C := 22— CO Cl

4CySp. Using the inequality \/EM’(SW/\/'(EMyg’N + ij,oo) S ems N+ 5 D(/,j,oo, we
conclude that with probability at least 1 — %

1
=Dy, .0

Dy;,00 = Dy;m < €msN + 3

O
FoE'ﬂ
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Proof of Theorem 3.2 For H,, = B (Ly), let {g; : j = 1,..., N'} be an n-net of H,.
Let

b1, MM, = agming . E7 p(@).

Then there exists ¢j,, in the net such that [l¢;,, — aT,M,Hn lloo < n; by Corollary 3.1

2S0R?
02

Dy = Doy sy yin ool = [E7.00@j0) = ET 0@ m.21,)| <71 (3.21)
On the other hand, since H,, C £, c C"1([0, R]), thanks to the almost sure bound
in Proposition 3.3 and the uniformly bound sup,. ., ||||‘Z||||o°j < c1(dim(L,))Y from
assumption (3.11), we have, almost surely,

Dy M = Dgy e | = [ET.M @) — ET.00 (@1 M. 74,)

(3.22)
< n(C1 + c1C2dim(L,)Y),

RS, R? d R
where C] = 0—20 + 62T + 7 C2 =3-

By Lemma 3.4, for each > 0, with probability at least 1 — % (3.18) holds for this
n-net {¢; : j = 1,..., N'}. Combining (3.18) with (3.21) and (3.22), we conclude
that, with probability at least 1 — %,

Dot strn0 ~ Porogrn M
= D57 14000 = Pajyyc0l + Py .00 = Dy |
+1Dg;,, .M — Dar,M.H,,J""
< 1(Co + C1 +c1Codim(Ly)") + Dy, oo — Dy, 1t

. 1
< n(Co+ Cy + c1Cadim(L,)”) + €y 5,1 + §D¢,«M,oo

3C . !
< n(TO +Cr+aCadim(Ly)”) +em s v+ 5Dg

27T M Hp 00"
Notice that Dg;. , 5, .m < 0, so the above inequality implies that

D, v 00 < N3C0 +2C1 + 261 Codim (L)) + 265,77 (3.23)

Let S be a metric space and n > 0. We define the covering number N'(S, 1) to be the
minimal number of disks in & with radius n covering S. The covering number of H,,

con
satisfies N (H,,, ) < (%) ’ (e.g., Proposition 5 in [20]). By the triangle inequality,

we split the error we want to control into sampling error (SE) and approximation error
(AE) (see Fig. 1)

22 Broen, — o[> G24)

H|$T,M,H,, - <l5|”2 < 2H|$T,M,H,, - $T,OO,H,,
Elol:;ﬂ
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From (3.23) and the coercivity condition (3.15), we obtain that, with probability at
least 1 —
2 9

2 1

cH,
D (3Co +2Cy + 2¢1Cadim (L))
CHn

2
+ —€pmsN- (3.25)
CH

n

IA

H|$T,M,H,, - aT,Oo,'Hn D$T,M.anoo

IA

Let ¢y, := argminwEHn [ — @llco- By coercivity condition (3.15), we have

1 —~
1 < —(Er 0o @11,) — E7.00 (BT 00.7,))

1670074, — &2,

n

1 1
—— (Er.00(B1,) — E700 (@) < — || b2, — ¢
CH, CH,

IA

where we used

ET.00(®) < ET00@T.00.1,) €700 (@) — ET.c0(@)] =< llp —0ll*. Vo € Hy.

Therefore, we have

N 2 4R?
llér.com, = |° < @+ —)||¢n, — o[> < —n">.  (326)
CH, C

n

Now we combine the estimates (3.24), (3.25) and (3.26) together, and let n =

1
n~3 Y andn = (1024M)m’ and note that cy = cy, 2, = cu,H, < cH, =c, <1

for all n. We obtain that, with probability at least 1 — %, the following estimate holds
true:

- 2 8R2 4
1673124, — ¢ < ZL(BCo +2C1 + 2¢1Codim(L,)7) + ——n> + ey gn
cr cL cc

C Cynlo 4C
Z3pas gy SATOBR
cr cr M crM

2s
Cs (log M\ 2s+1 4C
< — log(2/6), 3.27
_%(M) +CM0g(/) (3.27)

IA

2
10g(§)

where we used (3.18) to get €p.5. v, C, and {C,-}l.zz0 is defined in (3.18), (3.21), and
(3.22) respectively, and

C3 = 6Co +4Cy +4c) c1C2 + 8R?
Cyq = 4coC|log(4S0)| +4co(2s +y)C
EOE';W
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Cy
2s+1°

Cs=C3+

The bound in expectation is obtained by standard techniques, writing
~ 2 * ~ 2
e, ~ 8l = [P {IFranm, - oIl > e de.

and splitting the integration interval into [0, i 1OgM)z +T] and [i(logM)z +T, 00].

On the first interval, we use P [ H|¢T,M,Hn — ¢>||| > 6} < 1. On the second one, we
use a change of variables and the probability estimate (3.27). We obtain

~ C log M\ 2s+1 4C 1
e, ol = = (5 )* +

cuH, \ M cu,H, M
C loe M 2s+]
<0 ( g ) (3.28)
UM, M
where Cg is an absolute constant only depending on o, N, T, So, R. 0

Proof of Theorem 3.1 In this proof, a < b means that there exists a constant ¢ such
that a < c¢b. For any € > 0, we claim

o0

Z IED{HW’\T,M,?wlM - ¢H|2 > 6} < 0.

M=1

Strong consistency will then follow from the Borel-Cantelli lemma. Notice that

P{118r.m.00 = 91 = €} = B{11frant0 = B0 I = 5]

4P {[3r oo 4l = 5}

and P { |||$T,oo,HM — ¢|H2 > %} = 0 when M is large enough (see (3.26)). It suffices

to prove
o

> B {1@ranri — Frooruull = e < 0.

M=1
Let {¢ j} | be an n net for H ;. Consider the event

1
Ay Me —{ max —'ij,oo—ij,M > €}.
<]< 2

The bound (3.20) in Proposition 3.4 yields

P{Aym.e} S Nexp(— cpy Me). (3.29)
Fol:'ﬂ
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Using the fact that there exists jy € {1,2..., N} such that ¢ — ¢, lloc < 1, and
following the same argument as in (3.21) and (3.22), we obtain,

1
P {§D$T,M,HM,OO - Dar.M,HM,M R nnyM + G} =P {A’lvM’f} S Nexp (_CHMMG) :

2
\,so

Notice that Dg, .,y <0and Dy, . > ey, &7 M7y — D100+ |
that we have

P {er a7t — Br.owien I 2 mly + €] S Nexp (- epy Me).

Let 77”%/1 =€, le,n = n;,lye, by assumption, we have ¢y, > cu,H, > 0 and

. 1
lim y/— 0o “M521 = 0, we have

P { H|$T,M,HM - aT,oo,'HM |||2 2 6} < exp (ny log nTM — CUyHy ME)

ny ny
= exp ( — cupyHyMe(1 — e log T))
1
< exp < — ECUM'HMM€>
when M is large enough. By the comparison theorem, the series
oo
> P{lIrmr — Broorull’ 2 €
M=1
converges. The claim is proved. O

4 Learning Theory: Discrete-Time Observations

In this section, we analyze the estimation error of the (regularized) MLE $L,T, M. H>
defined in (2.5) for finite-dimensional linear space H and for discrete-time observa-

tions. We show that it is of order /7 + At!/2 with high probability, where 7 is the

dimension of H and At is the observation gap. As a consequence, the MLE is consis-
tent when M — oo and Ar — 0; and the MLE converges at an optimal rate as when
n is optimally chosen as in (2.13).

This section is organized as follows: we shall first prove the main theorem, Theo-
rem 4.2, on the error bounds of the MLE in Sect. 4.1. We postpone the technical details,
including concentration inequalities and discretization error bounds, to Sects. 4.2—4.3.

Recall that we denote X o, 7] the solution to system (1.1) with the true interaction
kernel ¢ and denote {X g”t)L ,’1‘;’: | independent trajectories observed at discrete times
1 = [ At with At = T /L. Recall that when H = span{wp}’;zl, the MLE aL,T,M,H
is given in (2.8).

EOE';W
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Throughout this section, we assume

Assumption 4.1 (Basis functions) Assume that the basis functions {v, Z=1 C
C g (R*, R) satisfy the following conditions:

(@) {¥»(-)()},_, are orthonormal in L%(p7);

(b) maxy [|[¥plleo < bo, maxg [V, () (Voo < b1;
(c) there exists a constant ¢, such thatn < ¢y, min(b%R, b1 R3/%).

Item (a) aims to make the normal equations matrix nonsingular, as discussed in Propo-
sition 3.2. In item (b), the uniform bound for the derivatives aims to control the
discretization error due to discrete-time observations; the uniform boundness on the
functions will be used for concentration inequalities. Item (c) states that the number
of such orthonormal basis functions is bounded by the measure p7 and the uniform
bounds of the functions and their derivatives. Item (c) often follows from (a) — (b),
with an intuition from examples including polynomials and trigonometric polynomi-
als, and smoothed piecewise polynomials, if 2 p7 (dr) is equivalent to the Lebesgue
measure on an interval [Rg, R] C RT. Such an interval is where pairwise distances
explore with a noticeable probability (see, for example, in Figs. 2 and 6). It exists in
general when the initial distribution spreads out the pairwise distances or when the
relative position system is ergodic, since the density of pr is smooth and nonnegative
on RT.

4.1 Error Bounds for the MLE
We show first that the L2(p7) error of the estimator $L,T, M.+ in (2.8) converges as
M — oo and Af := T /L — 0, with high probability.

Theorem 4.2 (Error bounds for the MLE) Let the hypothesis space be H =
span{y;}_,, where the set of functions {y;};_,, satisfying Assumption 4.1, are
orthonormal in L*(pr) with respect to the norm ||-||| defined in Eq. (2.11). Sup-
pose that the coercivity condition holds on H with a constant ¢y > 0. Then, with a

probability at least 1 — (4n + 2n?) exp (—%), the error of the estimator Zb\L,T,M‘H
1
in (2.8) satisfies

1B oll < WBr oo —ll +ex (e eart ). an

where aT,oo,H is the projection of the true kernel to H, At = T /L < c1/(2¢3), and
the constants are

¢1 = Rbo(Rby + 20 /T),
2 = 4cy (1 +|||o7.00. 1] (4.2)
¢3 = dN(by + bo) Rbo(RboAt? + \/Eo)\/cmv min(b3R, by R3/2).

FoC'T
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Remark 1 (The discretization error may dominate the statistical error) When the
observation gap At = 0, we recover the min—max learning rate M~ 2+T proved in the
previous section, if we choose the optimal dimension n = C(M/log M )1/ @s+1D) for

the hypothesis space. However, when At > 0, once M~ =T (logM)™ T < Atz
the discretization error will dominate the error of the estimator, preventing us from
observing the min—max learning rate. This phenomenon is well-illustrated by the left
plots in Figs. 5 and 9 in our numerical experiments.

Remark2 We assumed Cg regularity for the basis functions {v,} for the above
numerical error analysis, stronger than that of piecewise polynomials (which may
be discontinuous) used in the numerical tests. Such a difference between the regu-
larity requirements stems from the numerical representation, and we can view the
piecewise polynomials as numerical approximations of regular functions. This view
is supported by the numerical experiments: the estimator has only small jumps at the
discontinuities in the high probability region.

Remark 3 A smaller coercivity constant c¢7; corresponds to a worse conditioned prob-
lem (Proposition 3.2), and so the condition L 2 1/cp that requires L to be larger for
small ¢y makes sense.

We shall prove Theorem 4.2 as follows: we first outline the main idea and introduce
the key elements, such as the normal matrices and vectors and the empirical error
functionals in their entries; then, we provide a proof with key but technical estimations,
including the concentration inequalities and discretization error bounds, postponed to
Sects. 4.2-4.3.

The error of the MLE $L,T, M.+ consists of three parts: approximation error, dis-
cretization error and sampling error:

|||$L,T,M,H -] = |||$T,OO,H — ||+ |||$L,T,00,H - ar,oo,Hm

Approximation Error Discretization Error

4.3)

Sampling Error

where ;ﬁ L.T.co0,H 1s the infinite-data estimator. We shall study the discretization error
and the sampling error by analyzing the differences between their coefficient vectors.
All these coefficients are solutions to the corresponding normal equations (e.g., Eq.
(2.7)). To facilitate the study of these normal matrices and vectors, we introduce the
following notions. Forany f, g € C} (RN, RN?), we define the following functionals
of the observation paths:
FoE'ﬂ
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1 L—1
é(f’ Xl():l‘L) = ﬁ & <f(Xl[)7 Xl‘1+1 - Xl‘])a
1 L—1
0(fs & Xign) = T ;mm, g(Xy)), w
1 T
E(f, Xpor) = — i (f(X)),dX,),

1 T
n(f,g X)) = ﬁ/o (f(X0), g(X))dr

Correspondingly, we define the empirical functionals

Ev.L(f) = —Zs<f XU nmi(f.g) = —Zn(f g. X)),

- 4.5)

M
1 1 m
Emoo(f) = IV E (fs X(() T]) NM.oo(f, 8) = IV } n(f. g, XEO,)T])’
m=0

Using the notation of empirical functional introduced in (4.4)—(4.5), we consider the
following normal matrixes and vectors:

by, (k) =&m,L(fy,), Ap.L (ke K) =nm.L(fy, fye)s
bOO,L(k) = E[S(fl//ps XIQIIL)]v AOO,L(kv k/) = E[n(fl//pi fl//klv XIOZIL)]s (46)
boo(k) = E[E(fy,, Xj0.11)],  Aco(k, k') =Eln(fy,, fy,» Xi0.1D]-

It is clear that (here, to ease the notation, we denote the coefficient @y, 7y 7 in Fig. 1
as ay, 1., and similarly for others)

-~ . . -1
dLT.MH = E am,L(DVYi, withay = Ay by,
i=1

n
PL.T 00 H = Zaoo,L(i)I/fis with doo. L = AL boo. L. 4.7
i=1

n
B0 = Y ooV, with s, = A beo.
i=1

Here the matrix A is invertible due the coercivity condition: its smallest eigenvalue
is the coercivity constant ¢z (see Proposition 3.2). The matrix Ao . is invertible when
L = T /(At) is large, with its smallest eigenvalue bounded below by c3y — c3A11/2,
see Corollary 4.1. Furthermore, Corollary 4.2 in Sect. 4.3 shows that, with probability
at 1 — 4, the matrix Ay, is invertible with its smallest eigenvalue bounded blow by

1
cH — ( /lé —|—C3At7).
FoE'ﬂ
@Sprmger U_.:|0j



Foundations of Computational Mathematics

Proof of Theorem 4.2 By Eq. (4.3), it suffices to prove upper bounds for the discretiza-
tion error and the sampling error separately:

discretization error: |H¢L T.00H — qu 00 H||| < crezAt'?,

sampling error: pr.7.0.2¢ — bL.100m|| < cz\/%e,

where the second inequality holds with probability at least 1 — §.
For the discretization error, since {1;(-)(:)} are orthonormal in L2(,or), we have,
by Eq. (4.7):

n 2

Y Moo, L() — ace )]V

i=1

|||$L,T,00,H - aT,oo,H|||2 =

= Jlaco.L —aco|” = 145!  boo.L — Axlbool.

Using the formula A;OI’L — Agol = A;ol’L(AOo — AOO,L)AgQ1 (see, e.g., [25, Appendix
B9]), we have
|4 Lot = A boo | = [ AL LBt = boo) + (AT, = AT bc]

= | asc] (Jser = boc] + ||Aoo ~ o] |4 boo]))

Note that (i) HA;OILH < 2c7__{1, since c3Arl/? < %CH; (ii) by Proposition 4.1 (in
Sect. 4.3) in combination of Assumption 4.1,

b,z — boo|| < e34tY%, | Asor — As| < c3ALY%;

and (iii) | A boo| = ||| @700, |||- Then,

[ b = Ao <260 (1 + [1Brondl) esar @)

and the inequality for the discretization error follows.
Similarly, for the sampling error, we have

N 6e. 71,3 = br.7 007l

= |lam.L — doo,L| = ||A1T4{LbM,L - Ao_o{Lboo,L||
= |45 L 0w = boer) + (A3 = AT Db |
< 4] (Iow = boord + [ a3, = 42| |45 0w ]).

FoE'ﬂ
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Note that (i) HA;,I] I H < 2c77_l1 when M and L are large enough such that /7€ +

c3 At% < %cH; (i1) we have, by Proposition 4.2 (in Sect. 4.3), that

o ~beal = o6 Jaune — Aca] = [

hold with probability at least 1 — 8; (iii) since c3417 < Loz and AL boo| =

[42) b | <21+ 1Bracnl).

Then, the inequality for the sampling error follows. O

In in the next two subsections, we prove Proposition 4.1-4.2 that we just used in
the above proof. Section 4.2 studies the concentration inequalities and discretization
error bounds for the empirical error functionals in (4.5), which are the entries of the
normal matrices and vectors. Based on them, Sect. 4.3 provides error bounds for the
normal matrices and the normal vectors in Proposition 4.1-4.2.

4.2 Concentration and Discretization Error of Empirical Functionals

We introduce concentration inequalities for the above empirical functionals on the path
space of diffusion processes and a bound on the discretization error of the estimator
due to discrete-time approximations. Our first lemma studies concentration of the
discrete-time empirical functionals &y, 7 and np7 ..

Lemma 4.1 (Concentration of empirical functionals) Let {X g"t)L },’1‘;’ | be discrete-time
observations, with t; = At and L = T | At, of the system (1.1) with ¢. Then for any
£, g € Co(RIN RINY the error functionals defined in (4.5) satisfy the concentration

inequalities:

7M52
P{l&m,L(f) — Elem, ()]l > €} <de
Mez

P{inm.(f. &) —Elnmo(f. 9l > €} < 2¢ 23

(4.9)

forany e > 0, where Cy = | flloo max (S, | fylloc), and C2 = 11 f o l1gloc

Furthermore,
e2
P{lEm,L(f) — Elép, (DN <€ Inmo(f. 8) —Elnmo(f. 9l <e}=1-— 867%,
(4.10)

where C = NllfllmmaX(m, I folloo, N8 llo0)-

Fo C 'ﬂ
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Proof Note that |n(f, g, X[,O;,L])| < I fllscllglloo- Then, the exponential inequality
for nyy follows from the Hoeffding inequality, which states that, for i.i.d. random

variables {Z-} bounded above by K, one has IP’{ Z,/:’:](Zi — > e} <

‘L
M

To study SML, we decompose &(f, X[4:;,1) into two parts, a bounded part and a
martingale part:

1 L—1
EC X)) =7 DAL X)), Xy — Xop)
=0
1 T
TN[ (FH©), foXds + — | (f5(s), 0dBy) = Zr + Y,

where we denote f Lis) = Z f (X)) 1z,5,,1(s). We call Z7 a bounded part
because

= —||f||oo||f||oo

1
|Zr| = TN/ (f(5), fp(Xy))ds

We call Yr a martingale part since TNYr = fOT(fL(s), odBy) is a martingale.
Correspondingly, we can write

1
_ (m) (m)
SML—_ME Z; + Y.

m=1

Then, denoting K| := %||f||oo||f¢,||oo and Ky = 20| f|loo, and noticing that C; =
K1+ K>/~/TN, we can conclude the first concentration inequality in (4.9) from

€
> _
-5

where the first exponential bound follows directly from Hoeffding inequality applied
2

P{lm,(F) — Elém (]l > €}

1
§ : (m)
< PHM ZT —EZ7r| >

m=1

€ 1 (m)

_ Mé? _ TNMé?
) 2
S 26 2](l +€ 8](2 ,

to {Z(Tm)}, and the second exponential bound P {

proved as follows.
Note that EY7y = 0 and TNYr = fOT(fL(s), odBy) is a martingale satisfying

T 2
E[e? Jo /7O 4] < 00 because ]fL(s)|2 < || fllso- By the Novikov theorem, the

2 .
T |z 5 s e s

T | ¢L(gy|? . .
process (e*TNY7— T" o 1O ds T >0)isa martingale for any @ € R (see, e.g.,

[31, Corollary 5.13]). Therefore, with « = M)% > We have

FoE'ﬂ
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2 a2 T pLiy|2 2 32 2
oob] <[ 0] e

for any A > 0. As a consequence, we have

|

Lastly, Eq. (4.10) follows directly from Eq. (4.9). O

_ TNME2

e

m=1

) 2
re 11200 flloo 2
T T < e 8K3

€ . _ e Ly . _
> -t <infe ZE[eM T]smfe
2 A>0 A>0

We remark that here we focus on the case M — oo with finite time 7. If the relative
position system is ergodic, one can extend the concentration inequalities to the case
when T — oo.

The next lemma shows that the discretization error of the empirical functionals, as

. . N . . 1
discrete-time approximation of the integrals, is at order AzZ.

Lemma 4.2 (Discretization error of empirical functionals) Let f, g € C} (RN RIN),
Let Xy, be a discrete-time trajectory, with t; = lAt and L = T | At, of the system
(1.1) with ¢. Then, the error functionals defined in (4.4) satisfy

IELE(f, X001 — EIECS, Xjo.r)]| < C1AL7;

4.11)
IEn(f, & Xig)] — EIn(f, &, Xjo.r)]1| < C2At2,

where the constants are

C1 =119 Fllool filloo (11 follow A1 /N + /N0 )

Ca = (IV flsollglioo + 19811l Flloe) (I fislloo A2 /N +/d[Nor ).

Proof Note that since X [0, 7] is a solution to system (1.1), we have for each [,

141 141

E/ (f(Xy) — f(X5),dXy) =E/ (f(Xy) — f(Xs), fo(X))ds
1y 1

I+

1
< ||Vf||oo||f¢||ooE/ X, — X,lds

7]

=19 ool foloo (I fislloo A + VAN A2)

where in the firstinequality we have applied the mean value theorem to bound f (X;)—

J(Xs):

[f(Xy) = FXD =NV fllool Xy — X,
FoC'T
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and in the second inequality, we used the fact that

EIX, — X,|=E

/t " 5 (X))dr + 0 (Bs — By)
1
< 1 fplloo(s = ) + VdNo (s — 1)/,
Thus, we obtain the bound in (4.11) by a summation over /:
| Lo
v 2"

< IV ool fylloo (I follooAt/N + /d/No 41'/2)

I
/ (f(Xy) = f(Xy), dX5),

1

E[&(f, Xigur) —E(f, Xjo,1))]

A

Similarly, we have

[(f(Xy), g(Xy)) = (f(X5), gX))| < IV flloollglloo + Vg ool £llo0) | Xs — X

)

and the bound for n follows from the fact that

E[U(f, 8> Xl‘o:fL) - T}(f, 8> X[O,T])]

1 L-1 141
= TN ZE/ [(f(X1)., 8(X)) — (f(Xy), g(Xy))|ds.
=1 U

4.3 Error Bounds for the Normal Matrix and Vector

Proposition 4.1 (Discretization error) For the normal matrix Ao, 1, and vector bsg .
defined in (4.6) with {1#1,}7,:1 satisfying Assumption 4.1, we have

lboo.L — booll < VACALT | [[Ases — Acoll < V/nCALZ,

where the constant C is C = dN (b1 + bo)Rbo(RboAt% + \/ao).

Proof Applying Lemma4.2,in combination of the basic factthat ||b|| < /n maxg—1.. .
|b(k)| for any b € R", and ||A|| < /n maxy g=1
obtain

.....

lboo.r. — booll < VACIALZ . [|Aso.L — Asoll < V/nCa AL,

with constants Cy and C» in the form of

FolCT
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1
G = (||f¢||ocAt2/N + d/NG) max - (1Y fy, ool fyylloo + 11V Sy llooll fy lloo)-

To complete the proof, we are left to estimate “ fv, ||OO and ||V fv, ||OO From the
definition of f., we have

2

N N
1
[0, 2 =50 D7 | D 01X, = Xi(X; = X0)| < R%AN,  (@412)
* =1 i=1

and “f¢ HOO < Rbox/ﬁ as well. Note that for each i,i’ € {1, ..., N}, with notation

rji=x; —x;andrj; = |rj;|, we have,
N
I N
Vxl’. (pr(x))i = 8ii’ﬁ Z <‘/fp(7’ji)ld + 1//1/7("11)¥>
J=Lj# Jt
1 ri Qrii
+ 8t — (pr(rii/)ld + l/fl’,(ri,-/)u) .
N rii,

Thus, the norm of this d x d matrix is uniformly bounded,

sgp HVx; (f¢,,(x))i ‘ < d(by + by),

and as a result, the norm of the d N x d N matrix is uniformly bounded,

IV £y, |l o, < dN b1+ bo).

Combining the above estimates with || fglloc < RboN (the same as [ fy, [loc), We

obtain that C| and C5 are both bounded by C. m]
It follows directly that the matrix Ao, 7 is invertible:

Corollary 4.1 The smallest eigenvalue of the matrix Ao 1 defined in (4.6) is bounded
below by c1y — c3AtY2 when c3AtY? < cH, with c3 defined in (4.2).

Proof Recall that from Proposition 3.2, we have a’ Asoa > c7¢|a|* for an arbitrary
a € R". Then,

a' Ass.ra =a’ (AsoL — Axc)a +a" Axca = (e — 2412 Ja?
by Proposition 4.1 with the bound of /7 in Assumption 4.1. O

We prove next that the matrix Az f is invertible and concentrates around A f..

Proposition 4.2 (Concentration of the normal matrix and vector) Suppose that the

coercivity condition holds on 'H = span{y;}_, with a constant cy; > 0, where
Elol:;ﬂ
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{wp}’;,: | satisfying Assumption 4.1. Then, the normal matrix Ay 1 and vector by .

defined in (4.6) satisfy concentration inequalities in the sense that for any € > 0,

Me?
P{”AML - Aoo,L“ > 6} <2n“e c?

_ Me2

P{|bum.z — boo.r|| > €} < 4ne” wic?, 4.13)

€2
P{|Aw.s — Avor| <€ [bars <boor| <€)} =1— @n+ 202 e,

where the constant C is C = Rbo(RSo + 26 //T).

Proof Recall that by definition in (4.6), bar, (k) = &m. L (fy,) WithE[by 1] = beo, L
and Ay (k, k') = nM,L(pr, f,/,k,) with E[Ap 1] = Ao,z Lemma 4.1 implies that
each of these entries concentrates around their mean:

Me2

P{'EM,L(fl/IP) _boo’L(k)| > %} S 46_8)1C2’

M2

€ _
P {I?’/M,L(fz//p, fy) — Am.Lk, K| > ﬁ} < 2e wc?,

where the constant C is obtained from (4.12). In combination of the basic fact that
bl < V/nmaxi=1,.. . |b(k)| forany b € R",and [|A[| < /nmaxy g—1,.. . |[Alk, k)|
for any A € R"*", we obtain

,,,,,

M2

P{|lom.L — boo| > €} < ZP{|§M,L(f¢p) —boo, (k)| > i} < 4ne sc2,
k ﬁ

P{|AmL — Acor] > €} < ZP{MM,L(]CWW fuy) = Aso,L k. k)| > i}
kK \/ﬁ

_ Me2
<2n“e mc?,

The third exponential inequality follows directly by combining the first two. O
Corollary 4.2 Denote hmin(ApL) the smallest eigenvalue of the normal matrix Ay
defined in (4.6). We have

P{Amin(AmL) >cy—€}>1-96

2

with8 = 2n? exp (—%),foranyel > Oandany At =T /L suchthat€1+C3At% =
1

€ < ¢y, where c1 and c3 are defined in (4.2).

Proof Note that for any a € R” such that |la|| = 1, we have, by Corollary 4.1,
aTAoo,La >cH —C3 At%. Meanwhile, Proposition 4.2 implies that

T T
la” Apyra—a A rall < |AmL — Ao Ll < €
EOE';W
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with probability at least 1 — §. Thus,
la” Ay rall > la” Ao rall = €1 = ey — 2012 — ey,
and the corollary follows. O

Remark 4 The above corollary requires € > c3 At > This condition can be removed if
the coercivity holds for the discrete-time observations on H with a constant ¢/ 7 1,
which can be tested numerically from a data set with a large M. In fact, we obtain
directly from the above proof that P {Amin(Apz) > cp,7, — €} > 1 — 8 with § =

2
2n? exp (—%), for any € > 0.
1

Remark 5 1In practice, the minimum eigenvalue of A, may be small due to the redun-
dancy of the local basis functions or due to the coercivity constant on H being small.
Thus, the smallest eigenvalue of A s 1 may be zero. On the other hand, these matrices
are always symmetric and nonnegative, so it is advisable to regularize the matrix by
pseudo-inverse.

5 Examples and Numerical Simulation Results

In this section, we performed numerical experiment to validate that our estimator
defined in (2.5) and implemented by Algorithm 1, behaves in practice as predicted by
the theory. We consider two examples: a stochastic opinion dynamical system and a
stochastic Lennard-Jones system, using observations from simulated data.

The setup for the numerical simulations is as follows. We simulate sample paths on
the time interval [0, T'] with the standard Euler—Maruyama scheme (see (2.3)), with a
sufficiently small time step length dz. When observations are made at every time step,
ie., At = ;41 — t; = dt for each [, we view Xqin, 1 = {Xt((’)r:lz)L}%:l as continuous-
time trajectories. When observations occur spaced in time with observation gap At
equal to an integer multiple of d¢, we refer to them here as discrete-time observations.

From the observations, we construct the empirical probability measure ,o]T‘ M
(defined in (2.10)), and let [Rmin, Rmax] be its support. We choose the hypothesis
spaces H consisting of piecewise constant or piecewise linear polynomials on interval-
based partitions of [ Ryin, Rmax]- This choice is dictated by the ease of obtaining an
orthonormal basis for H, ease and efficiency of computation, and ability to capture
local features of the interaction kernel. To avoid discontinuities at the extremes of
the intervals in the partition and to reduce stiffness of the equations of the system
with the estimated interaction kernels, we interpolate the estimator linearly on a fine
grid and extrapolate it with a constant to the left of Ry, and the right of Ryax. This
post-processing procedure ensures the Lipschitz continuity of the estimators. We use
the post-processed estimators to predict and generate the dynamics with the estimated
interaction kernels.

We mainly focus on the case where T is small and report on the results as follows:

Elol:;ﬂ
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— Interaction kernel estimation. We compare ¢ and QS\T’ M. H the true and estimated
interaction kernels (after smoothing), by plotting them side by side, superimposed
with an estimate of pr, obtained as in (2.10) by using M, (M,; > M) inde-
pendent trajectories. The estimated kernel is plotted in terms of its mean and
standard deviation, computed over 10 independent learning trials. To demonstrate
the dependence of the estimator on the sample size and the scale of the random
noise, we report the above for different values of M and o.

— Trajectory prediction. In the spirit of Proposition 2.1, we compare the discrepancy
between the true trajectories (evolved using ¢) and predicted trajectories (evolved
using $r, Mm.,7) on both the training time interval [0, 7] and a future time interval
[T, Tr], over two different sets of initial conditions—one taken from the training
data, and one consisting of new samples from p1o. When simulating the trajectories
for the systems driven by ZET, M.+ using the EM scheme, we use the same initial
conditions and the same realization of the random noise as in the trajectory of the
system driven by ¢. The mean trajectory error is estimated using M test trajectories
(the same number as in the training data).

— Rate of convergence. We report the convergence rate of $T, M.+ to ¢ in the |||l
norm on L2( or) as the sample size M increases, with the dimension of H growing
with M according to Theorem 3.2, for different scales o of the random noise. We
also investigate numerically the convergence rate when both 7 and M increase,
with the dimension of the hypothesis space H set according to the effective sample
size as discussed in Sect. 2.2.

— Discretization errors from discrete-time observations. To study the discretiza-
tion error due to discrete-time observations, we report the convergence rate (in
M) of estimators <$L,T, M.+ obtained from data with different observation gaps
At = T/L. We also verify numerically that the |||-||| error of the estimators
increases with At as predicted by Theorem 4.2. These experiments are carried
out for different values of the square root of the diffusion constant o.

We will report the conclusions of our experiments in Sect. 5.3

5.1 Example 1: Stochastic Opinion Dynamics

We first consider a 1D system of stochastic opinion dynamics with interaction kernel

0.4, 0<r< Tz 0.05,
_ _ 1
0.3 cos(107 (r [+005))+07 [ 005<r<f+005
d(r) =41, T+005<r<095
0.5cos(10 (r — 0.95)) + 0.5, 0.95 <r < 1.05
0, 1.05<r

It is straightforward to see that ¢ is in Cg ’1([0, 2]) and nonnegative. Systems of this
form are motivated in various applications, from biology to in social science, where ¢
models how the opinions of people influence each other (see [7,11,18,33,43] and ref-
erences therein), with one or a multiplicity of consensuses may be eventually reached.
FoE'ﬂ

@ Springer u.. jO E|



Foundations of Computational Mathematics

Table 3 (OD) Parameters for the system

d N Moy dt [0:T; Ty] "o deg(¥) n

1
1 10 5. 104 0.01 [0; 5; 50] U([0, 81N 0 40( 523

In the system we consider, each agent tries to align its opinions more with its farther
neighbors than with its closer neighbors: such interactions are called heterophilious.
For deterministic systems of this type, [43] shows that the opinions of agents merge
into clusters, with the number of clusters significantly smaller than the number of
agents. This is natural, as increased alignment with farther neighbors increases mix-
ing and consensus. In our stochastic setting, the random noise prevents the opinions
from converging to single opinions. Instead, soft clusters form at large time, that are
metastable states for the dynamics, i.e., states where agents dwell for long times, rarely
switching between them.

We study the performance of our estimators of the interaction kernel, from trajectory
data. Table 3 summarizes parameters of the setup. In this example, we choose H,,,
to be the function space consisting of piecewise constant functions on n ) uniform
partitions of the interval [0, 10].

Figure 2 shows that, as the number of trajectories increases, we obtain increasingly
accurate approximations to the true interaction kernel, including at locations with
sharp transitions of ¢. The lack of artifacts at these locations is an advantage provided
by the use of local basis. The estimators oscillate near 0, with amplitudes scaling with
the level of noise. We believe that the reason for this phenomenon is that due to the
structure of the equations, we have terms of the form ¢ (0)0 = 0 at, and near, 0, with
subsequent loss of information about the interaction kernel about 0.

We then use the learned interaction kernels a in Fig. 2 to predict the dynamics
and summarize the results in Fig. 3 and Table 4. Even with M = 32, our estimator
produces very accurate approximations of the true trajectories both in the training
time interval [0, 5] and the future time interval [5, 50], including number and location
of clusters, and the time of their formation. As M increases to 4096, we have more
accurate predictions on the locations of clusters. We impute this improvement to the
better reconstruction of estimators at locations near 0.

Next we investigate the convergence rate of estimators. It is well known in approx-
imation theory (see Theorem 6.1 in [48]) that ilnfweﬁn g —@lloo < Lip[qb]rfl . With
the dimension n being proportional to (log%)?, Fig. 4 shows that the learning rate in
terms of M is around M~%3*, which matches the optimal min—max rate M -3 stated
in Theorem 3.2 with s = 1.

We also study the convergence of the estimator as the length of the trajectory T
increases, for the estimator Zb\T, M.+ from continuous-time trajectories (i.e., without
gaps between observations). The auto-correlation time for this system is estimated
to be about t = 10 time units. Therefore, we use relatively long trajectories up to
T = 1500 time units to test the convergence, contributing up to about 150 effective
samples. We set the dimension of the hypothesis space to be n = 4(10gﬂ(/lﬂ%d/’dt))3
for each pair (M, T'), where dz is the time step size of the Euler—Maruyama scheme.
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" (pairwise distances)  (pairwise distances)

(@ oc=01,M =32 () o =0.5,M = 32

f(palrwwsedwilances) s ¢ r(palmws:dwslancesf
(c) o = 0.1, M = 4096 (d) o = 0.5, M = 4096

Fig. 2 Stochastic opinion dynamics: comparison between true and estimated interaction kernels qAbT’ M H

for different values of M and o, together with histograms (shaded regions) for p7 and p%” . In black: the
true interaction kernel. In blue: the mean of estimators in 10 independent trials, with dash lines representing
the standard deviation. From top to bottom: learning from M = 25,212 trajectories for kernels in systems
with 0 = 0.1 (left) and o = 0.5 (right). The standard deviation bars on the estimated interaction kernels
become smaller if M increases and o decreases. The mean of the estimation error can be found in Fig. 4a
(color figure online)

The convergence rate of the estimators in terms of M T is about 0.33, showing the
equivalence of learning from a single long trajectory with multiple short trajectories
when the underlying process is ergodic.

We also investigate the effects of the scale of the random noise, which is represented
by the standard deviation o. Figure 2 shows that the estimators for the system with
o = 0.5 have much large oscillations than those with o = 0.1. The left plot in Fig. 4
shows that the scale of the random noise does not affect the learning rate, matching
our theory. We also see that the absolute L2(,oT) error of estimators increases as
the system noise increases; this may indicate that the coercivity constant decreases
as the level of noise in the system increases. The left plot in Fig. 5 shows that the
scale of the errors increase linearly in o (in particular, when the observation gap
is 1).

Finally, we study the discretization error due to approximation of the integral in the
likelihood using discrete-time observations. In the left plot of Fig. 5, as the observation
gap k increases, the learning rate curves become flat, due to the error induced by
discretization of the likelihood function (2.1). The right plot shows that the absolute
error of the estimator is dominated by o 0 ((ADHY?),

EOE';W
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(c) M =4096,0 = 0.1 (d) M =4096,0 = 0.5

Fig. 3 Stochastic opinion dynamics: trajectory prediction. In each panel: X; (left column) and X; (right
column) obtained with the true kernel ¢ and the estimated interaction kernel &;T’ M, H from M = 32 (top
panel) and 4096 (bottom panel) trajectories, for an initial condition in the training data (top row in each
panel) and a (new) initial condition randomly chosen from ¢ (bottom row in each panel). The black dashed
vertical line at t = T = 5 divides the “training" interval [0, 7] from the “prediction" interval [5,50]. As M
increases, our estimators achieve better approximation of the true kernel overall, and at regions near 0 (see
Fig. 2). As aresult, they produced more faithful prediction of the number and location of clusters for large
time. Statistics of trajectory prediction errors are reported in Table 4

Table 4 Stochastic opinion dynamics: means and standard deviations of trajectory prediction errors

[0, 5] [5. 50]

M = 32,0 = 0.1, meanyyj: Training ICs 20-1071+1.4.107! 63-1071 £57.107!
M = 32,0 = 0.1, meanyy,j: Random ICs 17-1071+1.2.1071 57-1071+£3.9.107!
M =32,0 = 0.5, meanyy,j: Training ICs 38-1071+1.7- 107! 4.0-100+2.3-109
M = 32,0 = 0.5, meany,j: Random ICs 3.6-1071 £ 1.1-107! 35-100+1.4-10°
M = 4096, ¢ = 0.1, meany: Training ICs 21-1072+2.0-1072 93-1072+1.6-107!
M = 4096, ¢ = 0.1, mean,j: Random ICs 21-1072+£23.1072 9.8-1072+£1.7-107!
M = 4096, ¢ = 0.5, mean,;: Training ICs 52-1072+£3.5.1072 3.8-1071+3.0-107!
M = 4096, ¢ = 0.5, meanyj: Random ICs 52.1072+3.5.1072 3.8-107' £3.0.107!

The tests with “Training ICs” use initial conditions from the training data set. The tests with “Random
ICs” use initial conditions that are randomly drawn from j(. Means are taken over M trajectories. There is
little difference between errors on training and test ICs, indicating the prediction of trajectories generalizes
perfectly to new ICs
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Fig.4 Stochastic opinion dynamics: learning rates for continuous-time observations. Left: the convergence
rate of the estimators in terms of M is 0.35 for o = 0.5 and is 0.33 for o = 0.1, close to the theoretical
optimal min—max rate 1/3 (shown in the black dot line). Right: the convergence rate of the estimators in
terms of M T, when both M and T increase, is about 0.33. The colors of points are assigned according to
M. The learning rate is still close to the theoretical optimal min—max rate 1/3, showing the equivalence
of learning from a single long trajectory with multiple short trajectories when the underlying process is
ergodic (color figure online)

T=5,dt=0.01,0=0.1 T=5,dt=0.01,M=1024

. — 2785201, slope=0.35|
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Fig.5 Stochastic opinion dynamics: discretization error due to discrete-time observation. Left: the learning
rates of estimators $L,T, M+ obtained from data with different observation gaps Ar = kdt for k ranging
from 11 to 100. Recall that L = T/ At. As k increases, the learning rate curves become flat, due to the bias
induced by discretization of the likelihood function (2.1) on coarse time grids. Right: the log—log plot of the
absolute error of the estimator in terms of observation gap At = kdt for k ranging from 1 to 100, for systems
with different levels of random noise in terms of o, computed with M = 1024, T = 5 and dr = 0.01
fixed. The orders of the absolute error in both o and At are bounded by the theoretical order o 0((At)l/ 2),
dominating the statistical error due to sampling, finite-dimensional approximation, and noise. The slopes
of the lines are calculated using points whose x coordinate fall in the range [—1, 0]

5.2 Example 2: Stochastic Lennard Jones Dynamics

Q'(r)
r

In this example, we consider the Lennard-Jones-type kernel ¢ (r) = , with

P = (pp—eq) [% (%m)” N (VTm)q}

for some p > g € N. The system of particles is assumed to be associated with a
potential energy function only depending on the pairwise distance and &, and the
evolution is driven by minimization of the energy function. In particular, € represents
the depth of the potential well, r is the distance between the particles, and r, is the
distance at which the potential reaches its minimum. At r,,, the potential function has
the value —e. The r—7 term, which is the repulsive term, describes Pauli repulsion
EOE';W
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Table 5 (Stochastic LJ)
Parameters for the
Lennard-Jones kernel 3 2 1 1 0.95

14 q € m Ttrunc

Table 6 (Stochastic LJ) Parameters for the system

d N My, dt [0: T: Ty] 10 deg(y) n

1
2 10 5.10% 0.001 [0;0.5;20] N, ) 1 30(%)5

at short ranges due to overlapping electron orbitals, and the r~7 term, which is the
attractive long-range term. The corresponding system has wide applications in molec-
ular dynamics and material sciences where ¢ models atom—atom interactions. Note
that ¢ is singular at » = 0: we truncate it at rypc by connecting it with an exponential
function of the form a exp(—brlz) so that it has a continuous derivative on RT.

In this system, the particle—particle interactions are all short-range repulsions and
long-range attractions. The short-range repulsion force prevents the particles to collide
and long-range attractions keep the particles in the flock. In the deterministic setting,
the system evolves to equilibrium configurations very quickly, which are crystal-like
structure, whose pairwise distance corresponds to the local minimizers of the associ-
ated energy function. Tables 5 and 6 summarize the system and learning parameters.

Note that the true kernel ¢ is not compactly supported. But in our simulations, we
observe the dynamics up to a time 7" which is a fraction of the equilibrium time. Since
the particles only explore a bounded region due to the large-range attraction, pr is
essentially compactly supported on a bounded region (see the histogram background
of Fig. 6), on which ¢ is in our admission space.

We use piecewise linear functions on n uniform partitions of the learning interval
to approximate the true kernel ¢. With M = 32, Fig. 6 shows that we have already
obtained faithful approximations to the true interaction kernel, except for on regions
are close 0. Increasing number of observations improves the accuracy of estimators
at locations near 0, which seems to be very helpful for the system with larger noise
level.

In terms of the trajectory prediction, we use the learned interaction kernels :5 in
Fig. 2. We summarize the results in Fig. 7 and Table 7. In the experiments, we study
two cases, one with small random noise where the particles still form an equilibrium
configuration, and then, this configuration has small fluctuation in the space; the other
one with medium level of random noise, where the random noise begins to break the
formation of a fixed equilibrium configuration and we see the transition between differ-
ent configurations. We see that in both cases, our estimators produce good prediction
of the true dynamics in both training and future time interval.

We plot the convergence rate of estimators in terms of M in the right plot of Fig. 8. In
this case, we have inf,e7¢, |9 —@lloc < Lip[¢/1n~2. We choose a choice of dimension

. 1 . . .
n proportional to (log%) 5, our numerical results show that the learning rate is around
. . . _2 .
M~93% which matches the optimal min-max rate M5 stated in Theorem 3.2.
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25 3
r (pairwise distances) r (pairwise distances)

(a) 0 =0.05, M =128 (b) 0 =0.25, M =128

r (pairwise distances) r (pairwise distances)
(¢) 0 =0.05,M = 1024 (d) 0 =0.25, M = 1024

Fig.6 Stochastic Lennard-Jones dynamics: comparison between true and estimated interaction kernels with
different values of M, together with histograms (shaded regions) for p7 and p%’l .Inblack: the true interaction
kernel. In blue: the mean of estimators in 10 independent trials, with dash lines representing the standard devi-
ation. From top to bottom: learning from M = 27,210 trajectories for kernels in systems witho = 0.05 (left)
and o = 0.25 (right). The standard deviation bars on the estimated interaction kernels become smaller if M
increases and o decreases. More details of the estimation errors can be found in Fig. 8 a) (color figure online)

We also study the convergence of the estimators as the length of the trajectory 7
increases. In this example with o = 0.35, the estimated auto-correlation time is about
T = 10 time units. Therefore, we use relatively long trajectories up to 7 = 1200

time units, contributing up to about 120 effective samples. We set the dimension of

the hypothesis space to be n = 4(%)% for each pair (M, T'), where drt is the

time step size of the Euler—Maruyama scheme. The right plot of Fig. 8 shows that the
rate is 0.39, indicating the equivalence between a single long trajectory and multiple
short trajectories for inference.

Next, we investigate the effects of the scale of the random noise on learning. We
observe phenomenon similar to those in Example 1. Figure 6 shows that the estimators
for the system with o = 0.25 oscillate more than the one with o = 0.05 at locations
near 0. The random noise also did not affect the learning rates, suggested by the left
plot of Fig. 8. As the random noise increases, absolute Lz(,oT) error of estimators also
increase, suggesting that coercivity constant is getting smaller.

Atlast, we study the effects of discretization error induced by discrete observations.
As the observation gap increases, the discretization errors flatten the learning rate curve
of M, see left plot of Fig. 8. Similar to Example 1, the right plot of Fig. 8 shows that the
absolute error of the estimator is of order close to the theoretical order o O ((At)1/?)
(Fig. 9).
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Fig. 7 (Stochastic Lennard-Jones dynamics) In each panel: true trajectory X; (left column) and learned
trajectory X; (right column) obtained with the true kernel ¢ and the estimated kernel a from M = 128 and
1024 trajectories, for an initial condition in the training data (top row) and an initial condition randomly
chosen (bottom row). The black dot at = 0.5 divides the “training" interval [0, 0.5] from the “prediction”
interval [0.5,20]. The trajectory prediction errors are small in all cases. The statistics of the errors are
presented in Table 7

Table7 (Stochastic Lennard-Jones dynamics) trajectory errors: ICs used in the training set (first two rows),
new ICs randomly drawn from g (second set of two rows)

[0,0.5] [0.5,20]
M = 128, = 0.05, meany: Training ICs 3.1-1002+£8.3-1073 3.0-1071+3.9.107!
M =128, = 0.05, meany,j: Random ICs 3.1-1002+£9.3.1073 3.1-1071 +4.2. 107!
M =128, 0 = 0.25, mean,;: Training ICs 55.1071 £24.10°2 13-100+75. 107!
M =128, ¢ = 0.25, mean,j: Random ICs 58-1072+£2.3-1072 13-100+73-107!
M = 1024, 0 = 0.05, meany,;: Training ICs 12-1072+£34.1073 1.7-107'+£27-107!
M = 1024, ¢ = 0.05, meany,j: Random ICs 121072 +3.6-1073 15-1071 £25. 107!
M = 1024, 0 = 0.25, meanyy: Training ICs 22-1072+£6.2-1073 32.1071 £3.7.107!

M = 1024, 0 = 0.25, meanyy,j: Random ICs 22:-1072+64-1073 32-1071+3.5.107!

Means are taken over the same number of trajectories as in the training data set

5.3 Conclusions from the Numerical Experiments

Numerical results show that in case of continuous-time observations, the algorithm

effectively estimates the interaction kernel, achieves the near-optimal learning rate

in M, is robust to different magnitudes of the random noise, and the system with the
EIOET
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Fig. 8 Stochastic Lennard—Jones: learning rates for continuous-time observations. Left: the learning rate
of the estimators in terms of M is 0.39 when o = 0.05 and is 0.41 when o = 0.25, close to the theoretical
optimal min—max rate 2/5 (shown in the black dot line). Right: the convergence rate of the estimators in
terms of M T, when both M and T increase. The colors of points are assigned according to M. The rate
is still close to the optimal min—max rate 2/5, showing the equivalence of learning from a single long
trajectory with multiple short trajectories when the underlying process is ergodic (color figure online)
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Fig. 9 Stochastic Lennard-Jones: discretization error due to discrete-time observation. Left: The learning
rate of estimators in terms of different observation gap At = kdt for k = 5 : 5 : 30. The learning rate
becomes flat, due to the bias induced by discretization of the likelihood function on coarse time grids.
Right: the log—log plot of the absolute error of the estimator in terms of observation gap At = kdr for
k =5:5:45, for systems with different levels of random noises in terms of o, computed with M = 1024,
T = 0.5 and dr = 0.001 fixed. The orders of the absolute error in both o and At are close to the theoretical
order o 0((At)]/2). The slopes of the lines are calculated using points whose x coordinate fall in the range
[-1,0]

estimated kernels accurately predicts trajectories. In case of discrete-time observations,
the estimator has an estimation error of order A¢!/2, due to the discretization error in
the approximation of the likelihood ratio. These numerical results are in full agreement
with the learning theory in Sects. 3—4:

— In case of continuous-time observations, the estimators in 10 trials are faithful
approximations of the true interaction kernels, with a mean close to the truth. The
standard deviation of the estimators decreases as the sample size increases and
gets larger as the diffusion constant increases.

— The estimator from data achieves the min-max learning rate (log M /M)*/s+1) in
Theorem 3.2 by the appropriate choice of the hypothesis spaces and their dimension

as a function of M. For ¢ in CHe with k + « > 2, the learning rate is around

! . . . . . .
M ™3 when using piecewise constant estimators (s = 1) and the learning rate is

[S]

around M~ 5 using the piecewise linear estimators (s = 2), which is the mini—-max
optimal rate for the case k + o = 2.
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— The estimators predict transient dynamics well in the training time interval, and
the results validate Proposition 2.1: the trajectory discrepancy is controlled by
L?(pr) error of estimators, demonstrating the effectiveness of distances in L2(p7)
in quantifying the performance of estimators. In addition, the estimators even
predict in a remarkably accurate fashion the collective behavior of particles in
larger future time intervals, indicating that the bound in Proposition 2.1 may be
overly pessimistic in some cases. Our intuition is that this benign phenomenon
benefits from the large support of pr, encouraged by the randomness of the initial
conditions and presence of stochastic noise.

— In case of discrete-time observations with observation gap At, the estimation error
of the estimator is of order Ar'/? and depends linearly on o, the square root of the
diffusion constant. Therefore, as At increases, the discretization error dominates
the estimation error, consistently with the learning theory in Sect. 4, which leads
to bounding the estimation error of the estimator by M I 4 o O(At'?).

— When the length T of the trajectories increases, the optimal learning rate (in M)
is still achieved. The estimation errors of the estimator exhibit a convergence rate
around (%)‘V @s+D with s = 1, 2 respectively, demonstrating an equivalence
of “information” between few long trajectories and many short trajectories initiated
at suitably random initial conditions, as discussed above in Sect. 2.3.

6 Final Remarks and Future Work

There are many venues in which the present work could be extended.

The first notable extension is to heterogeneous particle systems with multiple types
of particles, which arise in many applications. In this case, one assumes that there
are different interaction kernels, modeling the non-symmetric interactions between
different types of particles. Examples of these systems are considered in [41] in the
deterministic case, with the theoretical analysis achieved in [40], where the coerciv-
ity condition is generalized to the multiple-particle-types setting, and (near-)optimal
convergence rates of the estimators were established. We believe a similar extension
is possible in the stochastic case, combining the ideas of this work and [40].

Another notable extension is to second-order differential systems of interacting
particles or systems with possible external potentials, where interaction kernels of
more general forms than those considered here arise. In the deterministic case, [41]
considers examples of such systems, with a forthcoming theoretical analysis. In the
stochastic case, the extension would require significant effort, especially if important
cases of systems with degenerate diffusion (e.g., stochastic Langevin) were considered.
We also remark again that in this work we do not observe velocities, as done in the
works just cited in the case of deterministic systems: here we fully take into account
the discretization (in time) error, and if we let o — 0, the results here would imply
similar results in the deterministic case. Extending these considerations to second-
order systems would be valuable.
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Further work is also needed to formalize the considerations we put forward in
Sect. 2.3 regarding ergodic systems, and design robust and optimal algorithms in the
regimes of observation a long trajectory or many independent trajectories.

We assume in this work that all particles are observed. A desirable extension is to
the case of partial observations of a subset of particles or macroscopic observations
of the population density, which is a practical concern when the system is large with
millions of particles in high dimension. Since it is an ill-posed inverse problem to
recover the missing trajectories of unobserved particles [54], a new formulation based
on the corresponding mean field equations [27,28,43] is under investigation.

In this work, we assume that the noise coefficient is a known constant: there has
been of course significant work in estimating the noise coefficient, for example in the
case of interacting particle systems see the recent work [26] and references therein, and
for the case of model reduction for Langevin equations with state-dependent diffusion
coefficient [19].
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A Appendix
A.1 Preliminaries for SDEs

Let (X;,t > 0) be a stochastic process on R” satisfying
dX; = V(X;, t)dt + o (X;, t)dB;. (A.1)

We first review the existence and uniqueness of strong solutions for SDEs (see Theorem
5.41n [32])

Theorem A.1 (Existence and Uniqueness) If the following conditions are satisfied

— The coefficients V and o are locally Lipschitz in x uniformly in t, that is for
every T and K, there is a constant C depend only on T and K such that for all
lxll, llx|l < K and all0 <t <T

Vx, 1) =V, Dl +llox, 1) —o, )| < Cllx —x]. (A2)
EOE';W
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— Coefficients satisfy the linear growth condition
Ve, Ol +llo, Dl < CA+ [lx]D. (A.3)

— X is independent of (B;,0 <t < T), and E|| X¢|*> < oc.

Then, there exists a unique strong solution X; of the SDEs (A.1). X, has continuous
paths; moreover,
E[ sup [1X,II”] < C1(1 + E[lIXol*D),

0<t<T

where constants C1 depend only on C and T.

It is straightforward to show that f, satisfy (A.2) and (A.3). Therefore, suppose
1o is independent of the underlying Brownian motion and has finite second moment;
then, there exists a unique strong solution up to time 7" for system (1.1) for any Xg
drawn from .

Theorem A.2 (Girsonov theorem) Let P, be the probability measure induced by the
solution of the SDEs (A.1) fort € [Ty, T1 and a fixed starting value at time Ty, and let
Wy be the law of the respective driftless process. Suppose that ¥ = oo’ is invertible
and V fulfills the Novikov condition

1 T
Ep, [exp<§/ ||V(Xt,t)||2dt)i| < 0.
To

Then P, and W, are equivalent measures with Radon—Nikodym derivative given
by Girsonov’s formula

dPa s T el 1 K S
(Xi7.51) = exp / viy dX,——/ vIx=lva
dW, T 2 /g

foralls € [Ty, t] and X151 = (X1)te[Ty,51-

The proof of Theorem A.2 can be found in [31, Chapter 3.5], [45, Chapter 8.6].

Theorem A.3 (The Itd formula, see Theorem 4.1.2 in [45]) Let g : R" — R be a
C? map and (X,) be a solution to (A.1) with o being a constant. Then, the process
Y(t) = g(X;) is an Itd process satisfying

n

og 1
dy = —(XpdX; + =
Zaxi( t) z+2;

i=1

8

32
(X,)odr.
8xl~8xj

A.2 Useful Inequalities

Theorem A.4 (Bernstein inequality for unbounded random variables) Let X, X, ...,

X m be independent random variables with |E(X;) = 0. If for some constants K1, vy >
Elol:;ﬂ
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0, the bound E|X;|? < %p!Klp_zvl holds for every2 < p € N, then

M 2
’ !fo = 6} < om Tk, (A4)

i=1

For the proof of Theorem A.4 , we refer to [4] and David Pollard’s book notes
[47](page 14).

Corollary A.1 Denote Ep(g) = % Z;IZI:I 8(Xy) for a measurable function g. If for
some K>, vy > 0, the bound

1 -2
Elg —Egl? < Ep!Ké’ v

holds for2 < p € N, then there holds

M2

P{Eg — Em(g) = €} < ¢ T Ve > 0. (A.5)

Proof Applying Theorem A.4 on the random variable Eg — g, we immediately obtain
the desired bound. O

Corollary A.2 [f for some K3, v3 > 0, the bound
p 1 p=2
Elg — Eg|” < EP!K3 v3|Eg|
holds for2 < p € N, then

_ Me
P{Eg —Em(g) > Vee+ IEgI} <e XK Ve >0

Proof If we replace € with /e (e + |Eg|) in (A.5), and let K; = K3, vy = v3|Eg]|, the
desired bound follows from the inequality

__MeletiBeh __ Me
e 2+KpJe(e+lEgD’ < o 2(3+K3)

& v3e + Ki3(e + |Eg|) > K3v/€(e + |Egl),

where the last inequality is true since /€ (€ 4 [[Eg|) < € + |Eg| for all ¢ > 0. m]

We also refer to [52] (see its Lemma 3 and Lemma 5) for the analog of Corollary A.1
and A.2.

Theorem A.5 (Moment inequality for stochastic integrals, see Theorem 7.1 in [42]) Let
M?2([0, T); R™™) denote the family of all n x m-matrix-valued measurable {(Ft)i=1
FoCT
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-adapted process f = {(fij(t)nxmlo<i<T Such thalEfOT ||f(t)||2dt <oo. Ifp>2,
f e M2([0, T1; R"™™) such that

T
E/ If@17dt < oo,
0

P _ - T
< (MﬁT%E/O 1 () ]17ds

T
]EH / F(s)dB(s) 5
0

In particular, for p = 2, there is equality.

A.3 Proof of Proposition 2.1

Proof of Proposition 2.1 For ease of notation, in this proof we use E to represent E,, .
For every t € [0, T], we have
2:|

t ~ 2
(E [/O Hf,;)(X(s))—fqg(X(s))H ds]

ZTE[/Ott
+zm[/0

Letting x i (s) := xj(s) — x;(s), Xi(s) := X (s) — Xi(s), and Fy(x) = p(|lx[)x,
foro € Kgsandx € R,

t
E[1X - X =E| | [ f(X() ~ ;R (5)ds
0

IA

IA

2
£5(X(5) — (X)) ds]

~ 2
£5(X(5)) —fa(X(s))H ds] .

N

N
i)~ &0 =3 H% 3" (Figy (i (5)) — Figy ®1i(5)
i=l1

2

< 4Lip?(F3) | X(s) = X(s)|> . almost surely.
Then, an application of Gronwall’s inequality yields the estimate
S 12 8T2Lip2(F.2) T 2
E[|X, - X:|*] < 27* WP iR / £ (X ) — £5X 60| as |
0

Note that by Jensen’s inequality,

% /OT E |:Hf¢(X(s)) — £5(X(5)) Hz] ds < N|[|@ — o>

Elol:;ﬂ

]
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Then, the conclusion follows by combining with the estimate Lip(Fz))

<(R+DS. O
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