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Quantum Gibbs state sampling algorithms generally suffer from either scaling exponentially with
system size or requiring specific knowledge of spectral properties a priori. These algorithms also
require a large overhead of bath or scratch/ancilla qubits. We propose a method, termed the
“minimal” effective Gibbs ansatz (MEGA), which uses a quantum computer to determine a small
effective ensemble of pure states that accurately reproduce thermal averages of an objective dynamic
correlation function. This technique employs properties of correlation functions that can be split
into a lesser and greater parts; here, we primarily focus on single-particle Green’s functions and
density-density correlators. When properly measured, these correlation functions provide a simple
test to indicate how close a given pure state or ensemble of pure states are to providing an accurate
thermal expectation values. Further, we show that when properties such as the eigenstate ther-
malization hypothesis hold, this approach leads to accurate results with a sparse ensemble of pure
states; sometimes only one suffices. We illustrate the ansatz using exact diagonalization simula-
tions on small clusters for the Fermi-Hubbard and Hubbard-like models. Even if MEGA becomes
as computationally complex as other Gibbs state samplers, it still gains an advantage due to its
ease of implementation without any a priori information about the Hamiltonian and in the efficient
allocation of available qubits by eliminating bath qubits and using a minimal number of ancilla.

I. INTRODUCTION

In the mid 1990’s it was shown that the time evolution
of many-body quantum systems can be simulated effi-
ciently on a quantum computer [1]. Since then much
progress has been made in developing quantum algo-
rithms for simulating these systems [2–4]. The ability
to extract correlation functions, such as single-particle
Green’s functions which are important for understanding
the bulk behavior of condensed-matter systems, have also
been developed for quantum computers [5–8]. One dif-
ficulty, generally overlooked in these algorithms, is that
of initial state preparation. While exploring time dy-
namics will eventually be a straightforward process on
an ideal quantum computer, the complexity of preparing
physically relevant states can be challenging for certain
systems [9].

This is especially true when it comes to preparing
Gibbs thermal states at low temperature. Certain al-
gorithms are able to achieve quantum Gibbs state prepa-
ration, but generally require a large overhead of ancilla

or bath qubits and a long run-time [10, 11]. Other
approaches can be more efficient, but require a priori
knowledge about specific spectral properties such as cor-
relation lengths or spectral gaps [12–14]. Recently, more
approximate approaches to Gibbs state sampling have
been explored [15–17]

Here we propose a framework termed the “minimal ef-
fective Gibbs ansatz” (MEGA),which uses quantum com-
puters to construct a small set of pure states that ef-
fectively produces an accurate representation of an ob-
jective, finite temperature, dynamic correlation function.
The term “minimal”, used in the framework, is not re-
ferred to in a mathematically rigorous sense, but rather
colloquially in the context of the framework which we
present. The MEGA works with any correlation func-
tion that can be separated into a lesser and greater part.
When a system is in thermal equilibrium, these func-
tions can be Fourier transformed from the time domain to
the frequency domain. Here, the fluctuation-dissipation
theorem (for grand-canonical ensembles) schematically
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gives:

F<(ω)

F>(ω)
= −e−β(ω−µ), (1)

for correlation functions of fermionic operators, and:

B<(ω)

B>(ω)
= e−βω, (2)

for correlation functions of bosonic operators, where β is
the inverse temperature and µ is the chemical potential.
In this work, we focus on two specific types of correlation
functions: single-particle Green’s function and density-
density correlation functions.

The MEGA approach requires one to efficiently pre-
pare pure states within a certain energy window, where
the ensemble of pure states resembles a mixed state
that is diagonal in the energy eigenbasis. Then, using
well-known quantum circuits, we extract the lesser and
greater parts of the Green’s function with respect to each
prepared pure state in the ensemble [7, 8]. Using the
known relation of the ratio between the lesser and greater
components, given in Eq. (1-2), one can classically ex-
tract the optimal β and µ from a linear least squares
fit, whose errors serve as an indicator of how well the
current ensemble approximates the corresponding exact
result, calculated from the full Gibbs state.

One advantage of the MEGA lies in its simple imple-
mentation and its efficient use of qubits. If one has no
prior information as to whether a minimal thermal rep-
resentation of pure states may exist, one can simply im-
plement the MEGA and test how quickly the results con-
verge. If it does not converge well, then it would be more
appropriate to use a different Gibbs state preparation
or sampling algorithm. Further, we expect the MEGA
to efficiently create a minimal representation in systems
where the eigenstate thermalization hypothesis holds, or
at temperatures where the system has a finite correlation
length [13, 18–21].

We aim to layout a simple framework, in which quan-
tum computers can efficiently extract thermal properties
of many-body systems. The paper is structured as fol-
lows. In Sec. II, we briefly review single-particle Green’s
functions. In Sec. III, we discuss heuristic arguments
that support the MEGA being an efficient method, and
in Sec. IV, we present numerical simulations. Finally, in
Sec. V we give our concluding remarks.

II. SINGLE-PARTICLE GREEN’S FUNCTIONS

Single-particle Green’s functions are the workhorse of
many-body physics. They can be employed to determine
a number of properties directly, such as the total en-
ergy, double occupancy, kinetic energy, electron filling,
etc. In addition, they are required in formulating more
complicated response functions like an optical conductiv-
ity or a magnetic susceptibility (when supplemented by

vertex functions). Here, we will also primarily focus on
the lesser and greater Green’s functions, which can be
seen as a decomposition of the retarded Green’s function
in the following manner:

G>ijσ(t) = −i〈ĉi,σ(t)ĉ†j,σ(0)〉 (3)

G<ijσ(t) = i〈ĉ†j,σ(0)ĉi,σ(t)〉 (4)

GRijσ(t) = Θ(t)[G>ijσ(t)−G<ijσ(t)] (5)

Here the angled brackets represent thermal averaging
with respect to the equilibrium thermal Gibbs state:

ρG(β) =
1

Z(β)
e−βĤ (6)

where Z(β) is the partition function:

Z(β) = Tr{e−βĤ} (7)

The time dependence of the operators is in the Heisen-

berg representation. The ĉi,σ(ĉ†i,σ) operators represent

the Fermionic annihilation (creation ) operators at the
i − th site on a lattice for a given z-component of the
spin, σ ∈ {↑, ↓}.

When periodic boundary conditions are imposed on
the real-space lattice, the creation and annihilation op-
erators can also be represented in momentum space as:

ĉ~k,σ =
1√
L

L∑
j=1

ĉj,σe
−i~k·~Rj (8)

where ~k is a reciprocal lattice vector, ~Rj is the real space
position vector of the j − th site, and L is the number of
lattice sites.

One can also express the Green’s functions in what is
known as the Lehmann representation by expanding the
trace as a sum over the energy eigenstates (which sat-

isfy Ĥ|En〉 = En|En〉) and inserting a resolution of the
identity operator in between the creation and annihila-
tion operators. This is shown below for the lesser Green’s
function.

G<ij,σ(t) =
∑
n

e−βEn

Z(β)
〈En|ĉ†i,σe

iĤtĉj,σe
−iĤt|En〉 (9)

=
∑
n

e−βEn

Z(β)

∑
m

e−i(En−Em)t|〈En|ĉ†i,σ|Em〉|
2. (10)

Fourier transforming Eq. (10) from the time domain to
the frequency domain we likewise obtain:

G<ij,σ(ω) = 2πi
∑
n

e−βEn

Z(β)

∑
m

δ(ω−En+Em)|〈En|ĉ†i,σ|Em〉|
2

(11)
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FIG. 1. The Keldysh contour for the lesser Green’s function,
with t > 0. Here, the matrix element that defines the lesser
Green’s functions shows that one first annihilates a particle at
site i, then evolves the system for a time t, creates a particle
at site j, evolves backwards in time again for a time t, and
finally evolves down the imaginary axis to the desired inverse
temperature β.

An important physical property that we will also focus
on is the local density of states (per spin) given by

Aσ(ω) = − 1

π
Im[GRii,σ(ω)] =

1

2π
Im[G<ii,σ(ω)]. (12)

The fluctuation-dissipation theorem for Green’s func-
tions gives:

G<ij,σ(ω)

G>ij,σ(ω)
= −e−β(ω−µ) (13)

which can be easily derived from the grand-canonical en-
semble. The formulas for the grand-canonical formal-
ism result from shifting the Hamiltonian operator by the
chemical potential multiplied by the electron number op-
erator: Ĥ → Ĥ − µN̂ , with N̂ being the total particle
number operator.

III. ANALYSIS AND HEURISTICS

Here, we use heuristic arguments to analyze situations
in which MEGA is well suited, and examine its limita-
tions. We do not give any rigorous bounds for particular
Hamiltonians but rather justify the use of this approach
by using physical arguments. MEGA benefits from not
needing all the resources required to prepare full Gibbs
states when calculating dynamic correlation functions of
moderately sized system. We assume the system we de-
scribe corresponds to a periodic lattice that is transla-
tionally invariant, so that every site is identical.

The aim of the MEGA framework is to find a small
set of pure states, {|ψi〉}, in which expectation values
of a specific dynamic correlation function yield accurate
approximations compared to those determined from the

corresponding Gibbs state. Based on ensemble equiva-
lence, if we sample states from a restrict energy window
this Micro-canonical ensemble will be equivalent to any
other thermodynamic ensemble in the thermodynamic
limit. The MEGA also takes advantage of the inherent
fluctuation theorems related to the dynamic correlation
function of interest. The fluctuation-theorems are used to
measure how well the current set of states approximates
the true thermal result. With these properties in mind
we propose the MEGA as a framework to approximate
finite-temperature dynamic correlation functions.

An outline of the MEGA procedure is as follows:

1. Prepare |ψi〉 with N electrons and within an appro-
priate energy window. (One has the option of ad-
ditionally employing projective measurements here
depending on available resources to remove states
that fall outside the desired window).

2. Repeatedly use the same state preparation proce-
dure to measure G<ij,σ(t) and G>ij,σ(t) at a series of
points in time. Extend the time points far enough
out that the Green’s function can have its tail fit to
an exponential or power-law decay. (Negative times
can be extracted by using the relation that the
imaginary parts of the lesser and greater Green’s
functions are symmetric about t = 0 and the real
parts are anti-symmetric about t = 0.)

3. On a classical computer, perform a Fourier trans-
form from time to frequency, approximating the
real time Green’s functions by the fit tail for large
enough times. Extract a least squares fit of β and
µ from the Eq. (13).

4. If the least squares fit lies below a given thresh-
old, terminate the calculation. Otherwise, return
to step 1, and prepare |ψi+1〉, possibly using least
squares fits of the current set of states to inform
the state preparation procedure for |ψi+1〉.

Note that there is no guarantee that MEGA will produce
a sparse representation of a thermal Gibbs state, but the
advantage here is that one can implement the MEGA
protocol without any prior knowledge and observe how
quickly the fit converges.

The precise methodology needed to create states
within a given energy window will depend on the spe-
cific system as well as the hardware and resource lim-
itations. We do not spell out a particular algorithm
here, but one can choose from a variety of known
methods such as adiabatic (or approximate diabatic)
state preparation, the variational quantum eigensolver
(VQE) [22, 23], the quantum approximate optimization
algorithm (QAOA) [24], quantum walk algorithms, or
amplitude amplifications to construct the best approach
with the given system and resource limitations [25–27].
We also note that isolating a narrow, low-energy window
can still be exponentially hard for certain problems, but
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we expect other Gibbs state preparation algorithms to
suffer here as well [9].

Users are able to tailor the MEGA based on heuris-
tics or previously known information about the system
of interest. In the strictness sense one would want de-
tailed analysis on how the width of the energy window
must scale with system size and temperature in order to
produce a thermodynamic equivalent ensemble. Within
the MEGA framework one may choose to construct more
complicated schemes such as energy filters, post-selection
methods to restrict the energy variance or use various
time averaging techniques to ensure stationary.

Another property that may speed up the convergence
of the MEGA is in systems where the correlations de-
cay exponentially. In this case, we can associate a
temperature-dependent correlation length, ξ(β) to the
Gibbs state of a specific system. When ξ(β) has a fi-
nite length, then sampling from a Gibbs state prepared
on a system size proportional to the correlation length
efficiently yields the behavior of a Gibbs state prepared
on the same system in the thermodynamic limit [13, 21].
One might be able to construct schemes which bound the
correlation length of a given MEGA ensemble.

The ideal setting, where MEGA would yield a sparse
ensemble, is in systems where the eigenstate thermal-
ization hypothesis (ETH) holds. The ETH ansatz states
that when a random pure state is chosen from a superpo-
sition of states originating from a narrow energy window
(lying away from the edges of the spectrum of generic
non-integrable systems), then the matrix elements of typ-
ical few-body observables take the form [18]:

〈Em|Ô|En〉 = Omc(Ē)δmn + e−
S(Ē)

2 fO(Ē, ω)Rmn. (14)

Here, Omc(Ē) is the microcanonical average of the ob-

servable Ô centered at the average energy Ē of the nar-
row energy window and S(Ē) is the thermodynamic en-
tropy defined by exp[S(Ē)] = Ē

∑′
n δε(Ē − En), where

the restricted sum is over the number of states within
a smeared delta function centered at Ē. fO(Ē, ω) is a
smooth function of its arguments with ω = En−Em and
Rmn is a random number with zero mean and unit vari-
ance. Here one can see that as the number of states
within the energy window become exponentially large
then the fluctuations about the microcanonical ensem-
ble become exponentially suppressed.

An alternative way to underpin the convergence of the
MEGA is via the many-body sum rules for Green’s func-
tions [28–30]. It is well known that the integral of the
spectral function for fermionic systems is equal to one.
It is less known that higher moments also satisfy sum
rules, which depend on parameters in the Hamiltonian
and some simple thermodynamic expectation values. In
the time domain, these sum rules represent the equal time
Green’s function values and the low-order derivatives at
equal time. Hence, if the wavefunctions in the MEGA
ensemble share the same expectation values as the Gibbs
ensemble, then the first n derivatives of the Green’s func-
tion will be correctly reproduced by the MEGA. This

implies that the MEGA will be accurate even with rel-
atively poor choices for the wavefunctions if they pos-
sess the correct expectation values for reproducing the
first n moments. For example, the retarded local Green’s
function has a zeroth moment that is independent of the
choice of ensemble and a first and second moment (at half
filling) that depends only on the chemical potential and
the interaction energy. Similarly, for the lesser Green’s
function, all wavefunctions with the right electron den-
sity have the correct zeroth moment. This general princi-
ple implies that we expect deviations between the MEGA
and the Gibbs distribution to set in once the relative time
is long enough. But, because these correlation functions
typically decay over a finite time range, once the MEGA
ensemble is large enough to properly represent this time
interval, it will produce the same results as the Gibbs
ensemble to a specified degree of accuracy.

One drawback of MEGA is that we cannot dial in spe-
cific temperatures, instead one generally has approximate
bounds in terms of what consists of low vs. high energy
for a given Hamiltonian. By preparing a state in a nar-
row energy window, one can then extract the effective
temperature via our post-processing procedure employ-
ing the ratio of the lesser and greater Green’s functions
in frequency space.

The ratio of the lesser to greater Green’s function,
which we employ to test the accuracy of the MEGA for
a given calculation, is derived in the grand-canonical en-
semble. But the calculation procedure described above
worked with a fixed filling of the electrons. This is fine
for a large enough system, because the microcanonical,
canonical, and grand-canonical ensembles all yield the
same results [31, 32]. But for finite sized lattices, one
may do better by adding states with different Fermion
fillings, or by weighting states in the ensemble by Boltz-
mann factors to improve the convergence of the MEGA.
We expect the MEGA framework to become more feasi-
ble when simulating large system sizes.

One additional limitation is of numerical precision in
verifying the fluctuation-dissipation theorem to extract
T for instances where there is a gap in the local density
of states at the chemical potential. Here, we run into
the problem of trying to divide two numbers that are
approximately zero in the gap region.

The main limiting factor, which restricts near term use,
is the time evolution needed to extract the Green’s func-
tions. Here, we will need to extract the Green’s functions
for many time steps extending out to at least a charac-
teristic decay time t = td (where the Green’s function
becomes vanishingly small). Optimistically, we expect
the circuit depth here to scale linearly with the number
of Trotter steps and hence linearly with td. The depth of
each Trotter step will scale polynomially on the number
of sites/orbitals. With these circuit depth requirements,
we expect the MEGA to be applicable once circuit depths
required for modest time evolution can be reached [33].
The MEGA approach is also limited by the complexity of
preparing states within a narrow energy window, which
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can be difficult for certain systems, but this complexity
will also limit other Gibbs state preparation algorithms
as well.

The advantage of using the MEGA is in the sim-
ple implementation and the efficient use of the avail-
able qubits. Fermionic systems usually require 2L qubits
per lattice via the Jordan-Wigner mapping to a corre-
sponding spin Hamiltonian. There also exist parity map-
pings such as the Bravyi-Kitaev map that only require
L qubits [34]. Also, correlation functions such as single-
particle Green’s functions can be extracted using a single
ancilla qubit [7, 8]. Given this information the MEGA
should require at most 2L+ 1 qubits.

IV. NUMERICAL RESULTS

To test the validity of this approach, we focus on the
repulsive 1-D Fermi-Hubbard model and its variants [35].
This well known model aims to minimally account for
the electron correlations by imposing an interaction that
repels two electrons of opposite spin only when they are
on the same site. The Hamiltonian is given by:

ĤHubb = −t
∑
i,σ

(c†i,σci+1,σ + h.c.) + U
∑
i

ni,↑ni,↓ (15)

where, t is the strength of the electron hopping, and U is
the on-site repulsion term. We note the redundant use of
notation here where the parameter, t, is used to represent
both the energy scale of the hopping term and time. Also
the parameter U is similar to the time evolution opera-
tor Û(t), which are differentiated by the operator symbol
in the time-evolution operator. The context in the text
should clarify the intended interpretation of these sym-
bols.

In one dimension, the model is integrable, and can
be solved by the Bethe ansatz, so it is not expected to
thermalize to the proper Gibbs ensemble because of the
macroscopic number of symmetries the model exhibits.
Nevertheless, we show, adjusting certain parameters of
this model allows us to predict the effectiveness of the
MEGA protocol in larger nonintegrable systems. For
concreteness, we also add integrability breaking terms to
the Fermi-Hubbard model and compare the performance
when these terms are added. When the new terms are
added the Hamiltonian becomes

Ĥ = ĤHubb + Ĥ ′ (16)

where

Ĥ ′ = −t′
∑
i,σ

(ĉ†i,σ ĉi+2,σ + h.c.) + U ′
∑
i

N̂iN̂i+1 (17)

and N̂i = (n̂i,↑ + n̂i,↓).
To begin, we will examine the half-filled 1-D Hubbard

model with periodic boundary conditions with a large
on-site interaction of U/t = 10, t′ = U ′ = 0. This specific

case is interesting because it exemplifies the ideal behav-
ior of a system obeying the ETH. As one can see in Fig. 2,
when restricted to the first energy band (spin band), both
the double occupancy and the k = 0-momentum become
smooth functions of the eigenstate energy. This is indica-
tive of the strong-ETH in the extreme sense, where every
eigenstate is typical. The spectrum as a whole does not
obey the ETH, so these results do not indicate physical
behavior in the thermodynamic limit. Nevertheless this
behavior in the lowest band should give insight into the
performance of these approximations in an ideal setting.

FIG. 2. Scatter plots of the average double occupancy
(〈n̂i,↑n̂i,↓〉) and k = 0 momentum occupation (〈n̂k=0,σ〉) with
respect to each energy eigenstate. One can see that when we
restrict to the spin band (outlined in red) these observables
are smooth monotonic decreasing functions of the eigenstate
energy.

In general, we are more interested in simulating
strongly correlated electrons rather than weakly corre-
lated electrons, because weak correlation is amenable
to many classical numerical techniques. Choosing low-
energy states is relatively simple here, because at infinite
interaction, there are no double occupancies at and be-
low half filling. These states are also easy to generate on
a quantum computer as product states. So, our strat-
egy is to initialize the system in a state with no double
occupancy, ramp the state adiabatically from infinite in-
teraction to finite interaction, and employ such a state
as one of the states in the MEGA ensemble.

For these simulations, we employ exact diagonalization
and use a MEGA consisting of the two Neél states, each
time evolved with a time-dependent Hamiltonian. We
initially set the interaction energy to U/t = 500, making t
our energy scale. We also set h̄ = kb = 1. We then evolve
the system with a time dependent interaction energy that
ramps from U/t = 500 to U/t = 10 given by the time
evolution operator of:

Ûprep(t) = T
{

exp
[
− i
∫ t

0

dt′ĤHubb(t
′)
]}

(18)

where the time dependence of the interaction energy in
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the Hubbard Hamiltonian is given by U(t) = 490e−t/5 +
10. Here, our final set consists of:{

Ûprep(τ)| ↑↓↑ ...〉, Ûprep(τ)| ↓↑↓, ...〉
}
, (19)

where τ is the total ramp time. We choose to start with
the simple Neél state because it is a product state in the
localized basis, which would be trivial to prepare on a
quantum computer. The Neél state is one of the

(
N
N/2

)
degenerate product states in the ground state at U =
∞. At large but finite U , the Neél states will have an
overlap with the ground state and a couple other low-
lying energy states. When ramping down to a smaller
U we are guaranteed to stay in the spin band as long
as we ramp slow enough. One could also ramp up from
U/t = 0, but initializing a quantum computer to the
Fermi sea is a more complicated circuit.

FIG. 3. Imaginary parts of the local lesser Green’s function
calculated with the MEGA approximation (blue curve) and
with the exact Gibbs state (red curve). Here we see that the
MEGA becomes accurate at longer and longer times as the
system size increases.

The trends in Fig. 3 and Fig. 4 show what we would
naively expect when examining this ideal system. The
local Green’s functions, when approximated by just two
states, resemble the exact results for longer and longer
times as we increase the system size. The finite size ef-
fects prevent the the Green’s function from truly decay-
ing to zero.

Unfortunately, the large gap in the local density of
states makes extracting the effective temperature numer-
ically unstable. We also examine a local density-density
defined by:

D>
ii,σ(t) = −i

[
〈n̂i,σ(t)n̂i,σ(0)〉 − 〈n̂i,σ〉〈n̂i,σ〉

]
(20)

D<
ii,σ(t) = −i

[
〈n̂i,σ(0)n̂i,σ(t)〉 − 〈n̂i,σ〉〈n̂i,σ〉

]
. (21)

As shown in Fig. 5 while this correlator is capable of ex-
tracting the correct temperature with the canonical en-
sembleit requires a large number of states in our MEGA

FIG. 4. Local density of states for L = 4, 6, 8, 10. The gap
is still identifiable for the 4-site ring but each band quickly
converges to the true result as the system size increases.

approach for the results to properly converge. When us-
ing our set of the two adiabatically prepared states for
the MEGA approach the results diverge more quickly in
the real time domain, which leads to a noisy fit when ex-
tracting the temperature. Fig. 5 shows that within this
MEGA ensemble there is still a large error present in the
temperature extraction.

This scenario demonstrates the difference in results for
a given MEGA ensemble when examining different re-
sponse functions, and well as the difference in the ex-
tracted effective temperature. Here, we see that a small
MEGA ensemble accurately converges for single-particle
Green’s functions, but the gap in the local density of
states prevents a proper test of convergence due to nu-
merical precision errors. On the other hand, the density-
density correlator is capable of accurately testing for con-
vergence but requires the MEGA to use a larger set of
states. This does bring up an important point. Different
response functions may require different size ensembles in
the MEGA. For response functions that can be measured
with smaller ensembles, the quantum computation will
be more efficient than for functions that require larger
ensembles or that have large correlation lengths.

To demonstrate tests for convergence and tempera-
ture extraction with single-particle Green’s functions, we
work with a half-filled 10-site 1-D Hubbard model with
U/t = 2, where there is no longer a gap in the local den-
sity of states. Here the spin band is no longer separated
from the rest of the spectrum, so ETH-like effects no
longer hold, eliminating the ability of sparse window sam-
pling to efficiently describe the thermal behavior. Figure
6 compares the ratio of G<ii,σ(ω)/G>ii,σ(ω) for the Gibbs
state at T = 0.65 to a corresponding microcanonical win-
dow. The energy window for the micro-canonical en-
semble ranges from −7.00t ≤ E ≤ −6.41t. We can see
from Fig. 6(a)-(b) that the local Green’s function fits do
not yield the correct temperature for either the canoni-
cal or micro-canonical ensembles that we have used, but
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FIG. 5. Canonical Gibbs fit using the density-density correlator instead of the single-particle Green’s functions for
a 10-site system with U/t = 10. (a)-(b) The real and imaginary parts of the MEGA approximation used here,{
Ûprep(τ)| ↑↓↑ ...〉, Ûprep(τ)| ↓↑↓, ...〉

}
, diverge from the corresponding Gibbs state at earlier times for this correlator than

with single-particle Green’s functions. (c) The figure also shows that the effective temperature can be properly extracted when
a large enough ensemble is used. (d) We see that the current MEGA ensemble exhibits large fluctuations and the fit for the
effective temperature yields β = 2.1 where the proper Gibbs state, at the same energy of the MEGA ensemble, has an inverse
temperature of β = 2.7. This indicates that the current ensemble used for the MEGA has not properly converged and will need
a larger set of states.

the chemical potential does converge properly. The easy
convergence of µ is not indicative of the Hubbard model
at different fillings because this test case is performed
at half-filling, whose chemical potential is uniquely de-
termined by the particle-hole symmetry. When turning
to the local density-density correlator, in Fig. 6(c)-(d),
we see a much larger confidence in the extraction of the
proper temperature for each of the ensembles.

The errors that are present in these fits stem from two
factors. The first being the finite energy density of the
eigenvalues. Here, in the frequency domain, each of these
correlators is represented by a sum over delta functions.
When using small clusters there can be large fluctua-
tions in small frequency windows due to sudden changes
in spectral weight as eigenstates enter or leave a win-
dow. This can generally be alleviated by moving to larger
temperature for calculations on smaller clusters. For low
temperature, one would needs to move to larger systems
sizes to extract correct results or one may be able to

employ spectral broadening techniques. Once again, in
situations where the correlation function is decaying in
the time domain, enforcing the decay for all future times
is another method that produces a continuous spectra
and removes the artifacts of the delta functions.

The second driver of the error stems from situations
where both lesser and greater response functions are close
to zero. Here, we run into numerical precision problems
from trying to divide two small numbers. In these in-
stances, the best option is to employ a different corre-
lator that does not suffer from both lesser and greater
values being small. Convergence will also be related to
the form in which the underlying operators of each cor-
relation function spread in space and time. These are
non-trivial results that normally cannot be determined
before computing the results.

These results show an example of where the MEGA
is able to eventually converge on a representative set of
states, but the size of this set is large and would scale ex-
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FIG. 6. Local density of states and ratio of local lesser and greater Green’s functions for a 10-site system with U/t = 2. The
systems are probed at a temperature of T = 0.65 and we examine the results of the canonical Gibbs state and a micro-canonical
window with −7.00t ≤ E ≤ −6.41t extracted from both the local Green’s function and density-density correlator. (a)-(b) The
local Green’s functions are not able to properly extract the temperature, but do converge to the correct chemical potential.
(c)-(d) The local density-density correlator gives a higher confidence in the temperature extraction for both the canonical and
micro-canonical ensembles compared to the local Green’s functions.

ponentially in system size. There is a possible fix here, as
we expect this system to have a finite correlation length
at finite temperature. In theory, if this finite correlation
length exists, then one should be able to bound the num-
ber of representative states in the MEGA by the size of
the Hilbert space on a region proportional to the given
correlation length. It would still be an open question as
to whether an efficient state preparation scheme is feasi-
ble for the situations where the system exhibits a finite
correlation length. We leave further analysis of this sit-
uation to future work.

Finally, we examine how well the MEGA would ideally
work with more generic nonintegrable systems. This is
achieved by working in a regime with U/t = 3, U ′/t = 1.5
and t′/t = 0.75, where U ′ and t′ are the strengths of
the integrability breaking terms defined in Eq (21). We
examine the behavior of this system again on a 10-site
ring, with a filling now of n = 0.6.

From Fig. 7, we see that the scatter plots of the expec-
tation values of relevant observables do not pinch down to
a smooth single-valued function, as they did in the spin
band above. When we are away from the edges of the

spectrum, we see that most of the points clump together
within a small energy range, and we see a decrease in the
density if we move vertically away from this point. The
ETH conjectures that these fluctuations scale inversely
with the density of states, so as we move to large system
sizes, we would expect the cloud to become narrower, ap-
proaching a single-valued function of the eigenstate en-
ergy. One can also see that there are non-typical states
in Fig. 7 such as the states that have zero double occu-
pancy in the middle of the spectrum. We do not know
if they persist in the thermodynamic limit in the strong
vs. weak ETH sense [36].

For this model, we examine three areas of the en-
ergy spectrum corresponding to temperatures of T =
1.0, 2.0, 4.0. For each temperature, Fig. 8 shows plots
of Im[G<ii,↑(t)] calculated with respect to the canoni-
cal Gibbs state, a micro-canonical window, and a sin-
gle eigenstate, where each gives the same average en-
ergy. At T = 1 we can see from Fig. 7 that the energy
eigenstates are sparsely populated in this regime. As
a result both the micro-canonical and single eigenstate
Green functions have trouble converging for times past
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FIG. 7. Scatter plots for expecation values of double oc-
cupancy and k = 0 momentum occupation with respect to
each energy eigenstate. Here we use a 10-site ring at 0.3
filling, with Hamiltonian parameters of t′/t = 0.75, U/t =
3.0, U ′/t = 1.5. As expected by the ETH ansatz, typical
eigenstates in the bulk of the spectrum have small fluctua-
tions within a narrow energy range.

t ≈ 1. As we move to a temperature of T = 2.0 the spec-
trum has now become a little bit more dense. As a result
the micro-canonical ensemble with a large enough energy
window converges rather well, and the single eigenstate
holds for a slightly longer period of time before deviating
from the canonical Gibbs state result. When we reach a
temperature of T = 4 the spectrum has become rather
dense. Here, a smaller micro-canonical ensemble con-
verges even better than at T = 2, even with a smaller
number of eigenstates in its energy window, and even a
single eigenstate has converged rather well for late times.
The better convergence at larger temperature is what is
expected from the ETH ansatz, as the entropy and den-
sity of states is much larger at higher temperatures.

Further, we continue with using the density-density
correlator to examine temperature convergence as shown
in Fig. 9. For the canonical ensemble we see in Fig. 9(a)
that at low temperature the fit is slightly noisy, due to the
low spectral density in this small cluster. We would ex-
pect the curve to smooth out as the system size increases.
This sets a lower bound on the confidence level of tem-
perature extraction in this energy range. We see that in
Figs. 9(b)-(c), temperature extraction becomes less reli-
able as we reduce the number of energy eigenstates used
in each ensemble. As we move to a larger temperature
regime the fits become more accurate. Fig. 9(d), and
Fig. 9(g) show that temperature extraction for the can-
nonical ensemble becomes accurate at temperatures of
T = 2.0 and T = 4.0. We also see that the energy win-
dow for the micro-canonical ensemble can be narrowed as
the temperature increases, where Fig. 9(e) uses 105 eigen-
states at T = 2.0 and Fig. 9(h) uses 43 eigenstates and
has a more accurate temperature fit. The same trend
continues when trying to extract an effective tempera-

FIG. 8. Imaginary part of the local greater Green’s function
calculated with the microcanonical ramp state (blue curve),
with the exact canonical Gibbs state (red curve) and with a
single eigenstate (dotted purple curve). As one would expect
from a system obeying the ETH, moving to larger tempera-
tures allows the canonical Gibbs states to be approximated
by an ensemble of a few or even a single energy eigenstate.

ture with a single eigenstate. Fig 9(i) shows that a single
eigenstate corresponding to T = 4.0 begins to yield a
close approximation to the actual temperature. Again,
as the system size is increased, we expect that the mini-
mum extractable temperature for each of these ensembles
should reduce as well.

These results demonstrate the potential effectiveness of
the MEGA in nonintegrable systems. Here, the number
of states needed in a MEGA ensemble is inversely pro-
portional to both the size of the system and the temper-
ature. We see that at large enough temperature/system
size a MEGA ensemble of even a single eigenstate can re-
produce proper thermal properties, as one would expect
from the ETH framework.

There is an ultimate lower bound on the temperature
extraction MEGA is able to achieve for generic non-
integrable systems, as ETH is restricted to eigenstates
that have a finite energy density. Most physical systems
have either finite energy gaps or algebraically decaying
energy gaps as a function of system size. This leads to
a zero energy density in the large system limit, effec-
tively allowing large fluctuations in the matrix elements
of physical observables of relevant energy eigenstates in
this temperature regime. The low-temperature bound
here may again potentially be alleviated if this system ex-
hibits a finite correlation length as previously discussed.
It is also possible that efficient state preparation, in this
low energy state space, can be achieved through the use
of various tensor network states.
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FIG. 9. Least squares temperature fits, using the local density-density correlator, of a 10-site ring at 3/10 filling with t′/t = 0.75,
U ′/t = 1.5 and U/t = 3. The least squares temperature fits are extracted using canonical, micro-canonical, and single eigenstate
ensembles which correspond to T = 1.0, 2.0, 3.0. (a) For T = 1.0, The canonical ensemble fit is able to extract the proper
temperature, but the fit is slightly noisy. (b)-(c) When using a micro-canonical or single eigenstate ensemble, we see that the
fit becomes noisy and less accurate as we reduce the number of states used in an ideal MEGA ensemble. (d)-(f) Examining the
same ensembles at T = 2.0 shows that the spectral weight for the canonical ensemble is large enough for the fit to be ideal, and
the micro-canonical and single eigenstate ensembles start to become more viable options for a sparse MEGA approximation.
(g)-(i) At T = 4.0, we see that both a small micro-canonical energy window and a single eigenstate generate relatively accurate
results.

V. CONCLUSIONS

We have outlined the MEGA protocol as a technique
to examine the thermal properties of typical observables
on quantum computers, and demonstrated its viability
using exact diagonalization on small clusters. The ad-
vantages of MEGA are in its simplicity to implement and
the efficient use of available qubits. While MEGA does
not allow one to initially dial in a specific temperature,
with an initial guess of a single of set of pure states, one
can extract the effective temperature of the system that
is represented by those states. Usually one has a rough

idea as to within what energy range a typical state lies
for what qualifies as low energy. When it is not known
a priori whether MEGA can be employed with a small
finite set of states one can simply implement the MEGA
protocol and examine how quickly β and µ converge. We
also showed numerically how systems that obey the ETH
are well suited for MEGA, in the appropriate tempera-
ture regimes and system sizes.

The efficiency of MEGA is still limited by system size
here as the state preparation procedures and time evo-
lution will scale polynomially with system size. Future
work may include examining different types of correlators



11

and possibly identifying specific properties in the feed-
back process to inform what the next ideal state should
be to ensure faster convergence. While the MEGA is not
well suited for current quantum hardware, it may be im-
plemented on next generation or ”near” term machines
once they are capable of handling the circuit depths re-
quired for modest time evolution.
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