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The variational quantum eigensolver has been proposed as a low-depth quantum cir-

cuit that can be employed to examine strongly correlated systems on today’s noisy
intermediate-scale quantum computers. We examine details associated with the factor-

ized form of the unitary coupled-cluster variant of this algorithm. We apply it to a

simple strongly correlated condensed-matter system with nontrivial behavior—the four-
site Hubbard model at half filling. This work shows some of the subtle issues one needs

to take into account when applying this algorithm in practice, especially to condensed-

matter systems.
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1. Introduction

We have entered the dawn of the age of quantum computers. At this time, fully

fault-tolerant quantum computers that can run high-depth circuits do not exist.

But there are a number of different hardware platforms that are available for al-

gorithms that are low-depth and robust to noise. Such machines have been termed

noisy intermediate-scale quantum (NISQ) computers by John Preskill.1 One of

the most promising algorithms for such systems is the so-called variational quan-

tum algorithm2 (VQE), which employs low-depth circuits that first create the trial

wavefunction on the quantum computer and then measure the expectation value for

1
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a particular term in Hamiltonian. One repeats this operation until the expectation

value for one term is determined accurately enough and then repeats until all terms

in the Hamiltonian are computed. The variational energy for the given trial wave-

function is then accumulated on a classical computer. To complete the algorithm,

the variational parameters in the trial wavefunction are varied and then optimized

to determine the best approximation to the ground-state energy and the ground-

state wavefunction. This last step can be quite challenging to implement because

the quantum computers are noisy, implying the variational estimates will include

noise and be more challenging to optimize. Nevertheless, the IBM group completed

an initial study3 on this in 2017 (using simple molecules like H2 in a minimal ba-

sis). Since then, a number of more complex calculations have been attempted.4,5,6

But we still have not yet come close to achieving any results similar in complex-

ity to those that can be performed using conventional coupled-cluster (or other

techniques) on classical computers.

There are many aspects that need to be taken into account in optimizing a

calculation to be run on a quantum computer. A recent review,7 summarizes the

current state-of-the-art and a National Science Foundation report8 looks to the

future of the field. In addition, a number of different ways to approach these types

of VQE algorithms have been proposed. We mention one which uses importance-

sampling ideas to optimize the algorithm most efficiently.9

A conventional coupled-cluster approximation, in its most efficient formulation,

applies an exponential operator to the best single-particle (mean-field) approximate

wavefunction; the operator being applied is simplest if the system is expressed in

the natural-orbital basis, which is the optimal single-particle product wavefunction

for the system. In this case, there are no singles excitations (because singles excita-

tions simply redefine the single-particle basis) and the coupled-cluster ansatz starts

with doubles excitations. Note that in many molecular systems, it is challenging to

determine this natural orbital basis, so singles excitations are often included into

the ansatz—in the work here, we find that the momentum-space basis turns out

to be the natural-orbital basis for this problem, so we will not require any sin-

gles excitations. The doubles excitations are precisely what you would expect: one

removes one occupied spin-up electron and one occupied spin-down electron from

the product state and moves them to one unoccupied spin-up and one unoccupied

spin-down orbital; we can also remove and excite pairs of electrons of the same

spin. We work in the sector with minimal absolute magnitude of the z-component

of spin (here 〈Ŝz〉 = 0), and so we must preserve that expectation value for each

term in the excited many-body states that will be included in the expansion of the

wavefunction. A conventional coupled-cluster calculation would include all possible

doubles excitations (respecting the constraint) and can be extended to include all

possible triples, quadruples, and so forth (sometimes the core-electrons are frozen

and not eligible to be excited in order to reduce the scope of the calculation).

This approach is currently the state-of-the-art in computing energies for quantum

chemistry problems with weak correlations.
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The conventional coupled-cluster ansatz works with a nonunitary operator ap-

plied to the initial product state. Because of this, the expansion of the exponential

in a power series truncates after no more than four terms (since the interaction is

only a two-body interaction). This is what provides most of the efficiency in carrying

out these calculations on classical computers. The unitary coupled-cluster ansatz is

different. It applies a unitary operator to the initial product state. In such a case,

the operator does not truncate after a small number of terms and so it has been a

challenging approach to implement on a classical computer. But, because most op-

erations on a quantum computer are unitary, it is an ideal approach in the quantum

domain. If T̂ is the excitation operator that is used in the conventional coupled-

cluster approach, where we approximate the wavefunction via |ψCC〉 = exp(T̂ )|ψ0〉,
then the corresponding unitary coupled cluster approximation is normally written

as |ψUCC〉 = exp(T̂ − T̂ †)|ψ0〉.
There are two different ways to implement the unitary coupled-cluster approx-

imation. One is to exponentiate all the terms at once, while the other is to write

down the ansatz in a factorized form (which we show explicitly below). The factor-

ized form is the most efficient way to apply the ansatz on NISQ machines, as doubles

excitations can be implemented with simple circuits,5 whereas the full exponential

form requires a Trotterization to implement (one can view a “single-Trotter step”

approximation as being the same as a factorized form for the ansatz). Some will

argue that the fully exponentiated form is the “correct” unitary coupled-cluster ap-

proximation (most likely because it is unique), but our perspective is that all forms

of the unitary coupled-cluster approximation are valid trial wavefunctions and we

simply are searching for the best one. Note that the factorized form of the ansatz

is not unique, because many of the different factors do not commute, and then

the order that they are applied will yield different results. Of course, by including

higher-order excitations, we can ameliorate this issue by adjusting the additional

parameters in the ansatz wavefunction.

Following the work of Evangelista, Chan, and Scuseria,10 we define the excitation

operators in a general form as follows (our notation is slightly different than theirs

to conform with the norms of the Hubbard model):

Âabc···ijk··· = −iĉ†aĉ
†
b ĉ
†
c · · · · · · ĉk ĉj ĉi . (1)

Here, the spin-orbital index a, b, c, · · · denotes both the quantum number (which

will be momentum here) and the spin of the unoccupied spin-orbital that we excite

to and i, j, k, · · · denotes the occupied spin-orbital that we excite from; the extra

factor of −i is employed so that the unitary operator is the exponential of i× ĥ, for

some Hermitian operator ĥ. Note also that the ordering of the destruction operators

is opposite to the order in the multi-index subscript. The number of terms in the

subscript and superscript must match and they determine the order of the excitation

(singles, doubles, triples, etc.). Note that the indices are also constrained to conserve

〈Sz〉, so the number of up-spin orbitals in {i, j, k, · · · } is the same as the number of

up-spin orbitals in {a, b, c, · · · }.
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We use real numbers with the same indices as the excitation operators θabc···ijk··· to

denote the angles associated with a given unitary coupled-cluster excitation. The

full exponential form of the unitary coupled-cluster excitation operator is written

schematically in the form

ÛUCC = e
i
∑
θabc···
ijk···

[
Âabc···

ijk···+(Âabc···
ijk···)

†
]
, (2)

where the sum is over all possible excitations used in the given approximation

(singles, doubles, triples, etc.); the angles are the variational parameters. In the

factorized form, the excitation operator is expressed as

Û ′UCC =
∏

e
iθabc···

ijk···

[
Âabc···

ijk···+(Âabc···
ijk···)

†
]
, (3)

where the ordering of the terms in the product is now important, as it determines

different approximations, since generically different factors do not commute. Hence,

we need to choose an ordering scheme for the factors in a given ansatz. One spe-

cific procedure10 uses an “inversion” algorithm to find the relevant ordering of the

unitary coupled cluster factors.

2. Formalism

It turns out that one can immediately evaluate the exponential of each term in

Eq. (3). The derivation is straightforward. First note that each of the operators Â

and Â† square to 0 for any two multi-indices where {i, j, k, · · · } and {a, b, c, · · · } are

disjoint sets (as we have in the unitary coupled-cluster ansatz). Now, we examine

(Â+ Â†)2 = ÂÂ† + Â†Â. A direct calculation shows that this becomes

(Â+ Â†)2 = n̂a1 n̂a2 · · · n̂an(1− n̂i1)(1− ni2) · · · (1− n̂in)

+(1− n̂a1)(1− n̂a2) · · · (1− n̂an)n̂i1 n̂i2 · · · n̂in , (4)

where n̂α = ĉ†αĉα is the number operator for spin-orbital α and we denote the n-

element set {a, b, c, · · · } as {a1, a2, · · · , an} and similarly for {i, j, k · · · }. The cube

then follows to be

(Â+ Â†)3 = ÂÂ†Â+ Â†ÂÂ† = Â+ Â† (5)

after using Eq. (4); note that n̂αĉ
†
α = ĉ†α and n̂αĉα = 0 are needed to verify this

result. This means that all odd powers in the power-series expansion for exp[iθ(Â+

Â†)] are proportional to Â+ Â†, while the even powers (after the zeroth power) are

all proportional to the term in Eq. (4). This allows us to immediately evaluate the

exponential as

e
iθ
[
Â

a1···an
i1···in

+(Âa1···an
i1···in )

†
]

= Î + i sin θ

[
Âa1···ani1···in +

(
Âa1···ani1···in

)†]
+ (cos θ − 1) [n̂a1 n̂a2 · · · n̂an(1− n̂i1)(1− ni2) · · · (1− n̂in)

+(1− n̂a1)(1− n̂a2) · · · (1− n̂an)n̂i1 n̂i2 · · · n̂in ] . (6)
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Fig. 1. Schematic of the Hubbard model. (Top) U = 0 band structure showing the four energy

levels; (bottom left) real-space schematic of the lattice with periodic boundary conditions (lines
indicate lattice sites connected by hopping); and (bottom right) momentum-space schematic for

the modular arithmetic of kj .

This is a general identity for any unitary coupled-cluster operator factor. Note

that if it acts on a state that neither Â nor Â† can excite, then the operator

just multiplies by the identity operator. If it can do an excitation, then we obtain

a cosine multiplying the original state and a sine multiplying the excited state;

sometimes the excitation could correspond to a lower-energy state of the single-

particle problem.

The problem we work on is a four-site Hubbard model11 on a ring with periodic

boundary conditions. In real space, the Hubbard Hamiltonian is

Ĥ = −t
∑
〈ij〉σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓. (7)

Here, the sites are numbered 1, 2, 3 and 4, with even sites neighbors of odd sites and

vice versa (see Fig. 1). The hopping integral is t and the on-site Coulomb repulsion

is U . We will work in momentum space, where we define creation and annihilation

operators via

ĉkσ =
1

2

∑
j

e−ikj ĉjσ and ĉ†kσ =
1

2

∑
j

eikj ĉ†jσ. (8)
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The Hubbard Hamiltonian transforms into

Ĥ =
∑
i

εi(n̂ki↑ + n̂ki↓) +
U

4

∑
ijk

ĉ†ki+kk↑ĉki↑ĉ
†
kj−kk↓ĉkj↓. (9)

Because of the periodic boundary conditions, we have kj = πj/2, with j ∈
{0, 1, 2, 3}. The summations over momentum are all performed modulo 4 for the

momentum index. The band energies are found from εi = −2t cos(ki); they are

illustrated in Fig. 1. One can see for U = 0, the ground state is degenerate.

We work at half-filling in the Sz = 0 sector, which has 6 × 6 = 36 different

many-body states in its basis of functions. Lieb’s 1989 analysis12 shows that the

ground state is a nondegenerate singlet for all positive U values. The ground-state

eigenvalue can be shown to be the lowest root of the polynomial equation (in units

of t)

E3 − 3E2U + 2E(U2 − 8) + 24U = 0. (10)

Note that this condensed-matter ground state does not follow Hund’s rules for how

the degeneracy is lifted when U increases from zero. The ground-state wavefunction

can be written as

|ψGS〉 =
∑

i↑<j↑;k↓<l↓

αi↑j↑k↓l↓|i ↑ j ↑ k ↓ l ↓〉. (11)

The state is given by |i ↑ j ↑ k ↓ l ↓〉 = ĉ†ki↑ĉ
†
kj↑ĉ

†
kk↓ĉ

†
kl↓|0〉 and αi↑j↑k↓l↓ are ampli-

tudes for the different terms in the many-body wavefunction. Note that the restric-

tions to i < j and k < l are required by the antisymmetry of the wavefunction.

Numerically, we find that the ground state assumes the following form:

|ψGS〉 = α(|0 ↑ 1 ↑ 0 ↓ 1 ↓〉 − |0 ↑ 3 ↑ 0 ↓ 3 ↓〉) + β(|0 ↑ 1 ↑ 2 ↓ 3 ↓〉+ |0 ↑ 3 ↑ 1 ↓ 2 ↓〉
+ |1 ↑ 2 ↑ 0 ↓ 3 ↓〉+ |2 ↑ 3 ↑ 0 ↓ 1 ↓〉+ 2|0 ↑ 2 ↑ 1 ↓ 3 ↓〉+ 2|1 ↑ 3 ↑ 0 ↓ 2 ↓〉)
+ γ(|2 ↑ 3 ↑ 2 ↓ 3 ↓〉 − |1 ↑ 2 ↑ 1 ↓ 2 ↓〉). (12)

Here, we set α = α0↑1↑0↓1↓ = −α0↑3↑0↓3↓,

β = α0↑1↑2↓3↓ = α0↑3↑1↓2↓ = α1↑2↑0↓3↓ = α2↑3↑0↓1↓ = α0↑2↑1↓3↓/2 = α1↑3↑0↓2↓/2 and

γ = α2↑3↑2↓3↓ = −α1↑2↑1↓2↓. Note how the ground state has many of the coefficents

related to each other (and 26 of them have zero coefficients). This arises from the

high symmetry in the problem (conservation of spin, pseudospin and momentum).

In the limit as U → 0+, we have β → 0 and γ → 0. This leaves α→ 1/
√

2.

We work in momentum space, because the easiest way to implement the unitary

coupled-cluster ansatz is to do so with unitary operator factors applied, in turn, to

a quantum state. This is because the ground state as U → 0+ is the sum of two

product states in momentum space (and can even be written as a unitary operator

acting on one of the states, as we describe below).

Note that we can think of the initial state as a “two-reference” state that the

unitary coupled-cluster operator is applied to. But, we will find as we describe
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State |010̄1̄〉 |030̄3̄〉 |121̄2̄〉 |232̄3̄〉 |012̄3̄〉 |031̄2̄〉 |120̄3̄〉 |230̄1̄〉 |130̄2̄〉 |021̄3̄〉
Operator 1

−θ1Â2↑3↓
1↑0↓ c1 s1

−θ1Â3↑2↓
0↑1↓ c21 s21 c1s1 c1s1

θ2Â
2↑3↑2↓3↓
0↑1↑0↓1↓ µ12 c1s1 c1s1

−π4 Â
3↑3↓
1↑1↓

µ12√
2

−µ12√
2

c1s1 c1s1

θ3Â
2↑3↑
0↑1↑

µ12√
2
c3 −µ12√

2

µ12√
2
s3 c1s1 c1s1

θ3Â
2↓3↓
0↓1↓

µ12√
2
c23 −µ12√

2

µ12√
2
s23

µ12√
2
c3s3

µ12√
2
c3s3 c1s1 c1s1

−θ3Â1↑2↑
0↑3↑

µ12√
2
c23 −µ12√

2
c3

µ12√
2
s23

µ12√
2
c3s3

µ12√
2
s3

µ12√
2
c3s3 c1s1 c1s1

−θ3Â1↓2↓
0↓3↓

µ12√
2
c23 −µ12√

2
c23 −µ12√

2
s23

µ12√
2
s23

µ12√
2
c3s3

µ12√
2
c3s3

µ12√
2
c3s3

µ12√
2
c3s3 c1s1 c1s1

−θ4Â2↑2↓
0↑0↓

µ12µ34√
2

−µ12µ34√
2

−µ12ν34√
2

µ12ν34√
2

µ12√
2
c3s3

µ12√
2
c3s3

µ12√
2
c3s3

µ12√
2
c3s3 c1s1 c1s1

Table 1. Schematic of the unitary factors needed to construct the ground state. We use a compact
notation for the state, where the up spin labels are numbers and the down spins have overbars on

the numbers. We use the abbreviations ci = cos θi, si = sin θi, µij = cos2 θi cos θj − sin2 θi sin θj
and νij = cos2 θi sin θj + sin2 θi cos θj . We constrain tan θ2 = − tan2 θ1 in the quad unitary to

cancel the coefficient of the |232̄3̄〉 state. The unitary factor that is applied is exp[iθα(Âα + Â†
α)].

Each row gives the current wavefunction after the corresponding unitary operator factor has been
applied to the previous row wavefunction. Blank table elements correspond to coefficients equal

to zero.

different ways to create the unitary coupled-cluster ansatz, that it can be convenient

to create the entire state via unitary factors being applied to a single initial product

state. More importantly, the factorized form of the unitary coupled-cluster ansatz

is not unique.

The choice for how to express the ground-state wavefunction in terms of the uni-

tary coupled-cluster ansatz is worked out next. We choose to work with excitation

operators that are only doubles or are doubles and quads. This is possible with the

simplified form of the ground-state wavefunction. Note how all of the terms multi-

plied by β and γ are reached by double excitations from the states multiplied by α

(which is the state that survives in the noninteracting limit). Nevertheless, it is not

clear that one can create this state via a factorized unitary coupled-cluster ansatz

that includes only doubles, because the products of doubles excitations can lead to

quadruple excitations. Because of the small size of this system, the quadruple ex-

citations correspond to the state where all occupied spin-orbitals are interchanged

with all unoccupied spin orbitals. Indeed, the solution we show here does require

one quad excitation to produce the exact ground state.

Table 1 depicts a schematic of the different factors applied to construct the exact

wavefunction. We expand our wavefunction in a basis where the creation operators

are applied in numerical order from lowest to highest starting with the up spins and

followed by the down spins. Knowing this convention is important to obtain the

correct signs in the wavefunction after each unitary factor is applied. The strategy

to construct the ground state is to start with the state |0 ↑ 1 ↑ 0 ↓ 1 ↓〉 = |010̄1̄〉 and

apply two unitary factors which create the two terms that have a 2β prefactor in the

exact ground state. This is accomplished with the first two unitary operators. But it
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creates an extraneous, unwanted factor proportional to the |2 ↑ 3 ↑ 2 ↓ 3 ↓〉 = |232̄3̄〉
product state. We apply the quad operator with tan θ2 = − tan2 θ1 to remove the

unwanted state without disturbing the double excitations that we already created.

Then we apply a π/4 rotation to create the |0 ↑ 3 ↑ 0 ↓ 3 ↓〉 = |030̄3̄〉 state. Next

we use four same-spin double excitations to create the four remaining terms that

multiply β. The last operation is to create the γ terms from the α terms.

Equating the expansion in the last row of the Table 1 then allows us to determine

the angles. We have

θ1 =
1

2
sin−1(4β) (13)

θ2 = tan−1
(
− tan2 θ1

)
(14)

θ3 =
1

2
sin−1

(
2
√

2β

µ12

)
(15)

θ4 = tan−1
(
γ

α

)
− tan−1

(
tan2 θ3

)
. (16)

State |010̄1̄〉 |030̄3̄〉 |121̄2̄〉 |232̄3̄〉 |012̄3̄〉 |031̄2̄〉 |120̄3̄〉 |230̄1̄〉 |130̄2̄〉 |021̄3̄〉
Operator 1

−θ1Â2↑3↓
1↑0↓ c1 s1

−θ1Â3↑2↓
0↑1↓ c21 s21 c1s1 c1s1

−π4 Â
3↑3↓
1↑1↓

c21√
2

− c21√
2

s21√
2

s21√
2

c1s1 c1s1

θ3Â
2↑3↑
0↑1↑

c21√
2
c3 − c21√

2

s21√
2

s21√
2
c3 − s21√

2
s3

c21√
2
s3 c1s1 c1s1

θ3Â
2↓3↓
0↓1↓

c21c
2
3+s

2
1s

2
3√

2
− c21√

2

s21√
2

c21s
2
3+s

2
1c

2
3√

2

c21−s
2
1√

2
c3s3

c21−s
2
1√

2
c3s3 c1s1 c1s1

−θ3Â1↑2↑
0↑3↑

c21c
2
3+s

2
1s

2
3√

2
− c21√

2
c3

s21√
2
c3

c21s
2
3+s

2
1c

2
3√

2

c21−s
2
1√

2
c3s3

s21√
2
s3

c21√
2
s3

c21−s
2
1√

2
c3s3 c1s1 c1s1

−θ3Â1↓2↓
0↓3↓

c21c
2
3+s

2
1s

2
3√

2

−c21c
2
3+s

2
1s

2
3√

2

−c21s
2
3+s

2
1c

2
3√

2

c21s
2
3+s

2
1c

2
3√

2

c21−s
2
1√

2
c3s3

c3s3√
2

c3s3√
2

c21−s
2
1√

2
c3s3 c1s1 c1s1

−θ4Â2↑2↓
0↑0↓

c21c
2
3+s

2
1s

2
3√

2
c4 +

−c21s
2
3+s

2
1c

2
3√

2
s4

−c21c
2
3+s

2
1s

2
3√

2
c4 +

c21s
2
3+s

2
1c

2
3√

2
s4

−c21s
2
3+s

2
1c

2
3√

2
c4 − c21c

2
3+s

2
1s

2
3√

2
s4

c21s
2
3+s

2
1c

2
3√

2
c4 +

c21c
2
3−s

2
1s

2
3√

2
s4

c21−s
2
1√

2
c3s3

c3s3√
2

c3s3√
2

c21−s
2
1√

2
c3s3 c1s1 c1s1

Table 2. Schematic for approximating the ground state by using only the doubles (we use the

same strategy as the exact state preparation except we omit the quad rotation). By not applying
the quadruples term, we inevitably break the symmetry of the wave function.

Table 2 shows a schematic for an approximate ground-state preparation if we

only use the doubles terms. The sin2 θ1 term for |232̄3̄〉 that was eliminated by the

quadruple rotation now remains, adding extra terms for the coefficients of |030̄3̄〉,
|232̄3̄〉, as well as |230̄1̄〉. Because of the extra terms created by not applying the

quadruples factor, we obtain an approximate state that does not have the proper

symmetry. This means it cannot be equated to the exact ground state. Since we

cannot produce the exact ground state, we have to decide how to proceed. While

one could perform a minimization of the energy to determine the best angles, we

choose a different strategy. We solve for the angles, similar to what we did before,

but by ignoring the contributions to the amplitudes that break the symmetry and

are given by higher powers of sin θ1. The equations for calculating the angles of the
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variational ansatz employed in this approximation then become

θ1 =
1

2
sin−1(4β) (17)

θ3 =
1

2
sin−1

(
2
√

2β

c21

)
(18)

θ4 = tan−1
( γ
α

)
− tan−1

(
tan2 θ3

)
. (19)

Of course, as θ1 becomes larger, this approximation becomes worse, and this is a

primary reason why we see the largest deviations for the approximate ground-state

energy for large U . Note that because we did not minimize the variational energy,

this approximate wavefunction does not produce the best variational energy.

3. Results

Using the exact ground-state preparation, we now determine the angles that enter

into the factorized form of the unitary-coupled-cluster ansatz to see how they vary

as we go from weak to strong coupling. While, in principle, a quantum computer

can handle any angle, it is interesting to investigate how they behave as a function

of U to understand better how the unitary coupled-cluster approximation works.

Fig. 2. Plot of the three unitary coupled cluster angles that depend on U for the creation of the
exact ground state (the fifth angle remains always equal to π/4). Inset, we show how the angles

behave as U →∞. One can see that θ1 approaches π/4, while the other angles remain significantly

smaller.

In Fig. 2, we show the exact angles that enter the unitary coupled cluster ansatz

(the fifth angle is always equal to π/4 for all U). Since the ground state can be cre-

ated by applying only one factor to the initial product wavefunction, we anticipate

that the angles, denoted θi should all start off small and grow with U . Indeed, they

all grow linearly, except for θ2, which depends quadratically on θ1 initially.
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Fig. 3. Comparison of the exact ground-state energy (blue) and the approximate energy (orange)

for the approximate unitary coupled cluster ansatz wavefunction that uses only doubles excitations.

Inset is the fidelity of the approximate wavefunction, given by F = |〈ψapprox.|ψexact〉|2.

In Fig. 3, we show the approximate energy and the fidelity of the ansatz to

produce the ground state. Even with a high fidelity, the approximate energy begins

to differ significantly from the true result.

Fig. 4. Angles for the doubles-only unitary coupled cluster ansatz. These angles are quite similar

to the corresponding angles for the exact state preparation.

The angles for the doubles-only excitations are nearly the same as the corre-

sponding angles used in preparing the exact ground-state wavefunction. Hence, by

including the extra quad rotation, we are able to significantly improve the accuracy

of the calculation. while we can figure this out precisely when we know the exact

wavefunction, the requirement to include a quad rotation in the right position (of
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the different factors) and with exactly the right angle would be difficult to guess a

priori.

4. Conclusions

The unitary coupled cluster ansatz is one of the most promising low-depth circuits

that can be employed in a variational quantum eigensolver. The factorized form is

especially attractive because it allows one to implement each factor with a simple

circuit. Since there has been only limited work done on understanding how this

unitary coupled cluster approach works for strongly correlated systems of interest

to condensed matter, we have decided to investigate the behavior in one of the

simplest cases—the case of half-filling on a four-site repulsive Hubbard model. Here,

we find that one can actually create the ground state exactly by employing the same

type of circuit for all positive U , with angles that all are smaller than π/4. Many of

the angles remain quite small; when the angles are small, then higher-order terms

in the expansion of the exponent are unimportant, and the coupled-cluster ansatz

simplifies, at least conceptually.

But there are some tradeoffs in adopting this factorized form for the variational

approach. One of the biggest issues is that the ansatz is not unique. This arises from

the choice of the order of the unitary factors, which affects the final wavefunction.

Without having some scheme to determine the proper order, one can be left in a

situation where it will be difficult (or perhaps even impossible) to perform the best

optimization of the ansatz. We examined this issue, which was not so severe here,

by comparing an exact state preparation with a doubles-only ansatz.

One interesting future direction might be to study how one can impose the

symmetries of the system into the unitary coupled cluster approach (especially for

condensed-matter systems, that typically have much more symmetry than chemical

systems). Indeed, perhaps this requirement could help in resolving some of the

nonuniqueness of the order of the factors, by requiring certain “block” orderings of

the factors to be able to preserve the symmetry of the system.

In the end, our work indicates that this approach could be promising for

condensed-matter systems too, but cautions that the optimization problem may

be much more challenging than just having to deal with optimization in the pres-

ence of significant noise.
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