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Abstract  
Metamodel-based approaches to reliability analysis, e.g. adaptive Kriging, are computationally challenged 
by the complexity of reliability problems, thus limiting the application of these methods to problems that 
are low-dimensional or not rare. Here, we propose a reliability analysis approach via integration of subset 
simulation and adaptive kriging (RASA) for unbiased estimation of failure probabilities of high-
dimensional or rare event problems. Concepts of Conditional Failure Probability Curves and Dynamic 
Learning Function are introduced to decompose the original problem to sub-reliability problems and 
adaptively identify intermediate failure thresholds of limit state functions corresponding to the sub-
reliability problems. The reliability decomposition and the establishment of target intermediate failure 
thresholds are guided by the available computational capacity; thus, enabling RASA to control the 
computational cost associated with the estimation of the intermediate failure thresholds in each subset and 
consequently to analyze the reliability of medium to high-dimensional problems or rare events. Three 
numerical examples are investigated as benchmark to explore the performance of the proposed method. 
Results indicate that the proposed method has high accuracy and has the ability to adjust to available 
computational resources. 
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𝑔𝑔� Estimated limit state 
function 

𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 Probability of failure 
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𝜎𝜎𝑔𝑔�2 The variance of Kriging 
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distribution 
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𝑁𝑁𝑑𝑑 Number of the dimension 
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𝑡𝑡𝑖𝑖 True intermediate failure 
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𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 Number of samples for 
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1. Introduction 
Reliability analysis has become increasingly essential in various fields of engineering and science. These 
analyses are often concerned with the quantitative assessment of the safety of systems. In the processes of 
design and manufacturing complex systems such as rockets and their propulsion systems, satellites and 
Unmanned Aerial Vehicles, reliability analysis is crucial for considering extreme requirements of mission 
success under unpredictable conditions [1]. Reliability analysis is also embedded in the procedure of 
‘design by reliability’, which ensures that estimated reliabilities of designed mechanical components and 
systems are acceptable [2]. Moreover, safety is a critically important consideration in nuclear engineering, 
since the failure of a nuclear power plant may lead to devastating consequences for the society [3]. 
Another area of interest is the hazard performance of structures and infrastructure systems. These systems 
are vulnerable against various hazards such as earthquake, tsunami, flood, and tornado [4]. Reliability 
analysis enables analyzing the performance of components and systems in terms of the probability of 
failing to meet a prescribed objective considering aleatoric and epistemic uncertainties. Therefore, 
estimation of failure probability, here denoted as 𝑃𝑃𝑓𝑓, is indispensable for quantification of risks and design 
and risk management of various systems. In this article, 𝑃𝑃𝑓𝑓 is commonly defined as: 
 

𝑃𝑃𝑓𝑓 = � 𝜌𝜌(𝒙𝒙)
𝛺𝛺𝑔𝑔(𝒙𝒙)≤0

𝑑𝑑𝑑𝑑 = � 𝐼𝐼𝑔𝑔(𝒙𝒙)𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙
𝛺𝛺

(1) 

 
where 𝜌𝜌(𝒙𝒙) is the Probability Density Function (PDF) of the random variables, x, 𝛺𝛺 is the domain of x, 
𝛺𝛺𝑔𝑔≤0 is the integration domain where the performance function satisfies 𝑔𝑔(𝒙𝒙) ≤ 0, and 𝐼𝐼𝑔𝑔 is the indicator 
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function, with 𝐼𝐼𝑔𝑔=1, when 𝑔𝑔(𝒙𝒙) ≤ 0 and 𝐼𝐼𝑔𝑔=0 when 𝑔𝑔(𝒙𝒙) > 0. A number of techniques have been 
developed and implemented for estimating reliability or other tasks of uncertainty quantification. These 
include, among others, crude Monte Carlo simulation (MCS) [5], [6], importance sampling [7] , Subset 
Simulation (SS) [8], first or second order reliability method (FORM & SORM) [9], [10] and surrogate 
model-based approaches such as those based on response surface [11], [12], [13], polynomial chaos 
expansion [14], support vector regression [15], [16], or Kriging [17]–[20].  

Kriging-based reliability analysis methods have gained significant attention due to their 
computational efficiency and accuracy. Different from other surrogate models that provide only the best 
estimate of responses, Kriging model for outputs provide a normal distribution with Kriging mean and 
variance. By taking advantage of the stochastic output model, the limit state in reliability problems can be 
adaptively refined by strategically enriching the set of training points in the vicinity of the limit state 
𝑔𝑔(𝒙𝒙) = 0. Advancements in Kriging-based reliability analysis are elaborated in [17], [21], [22]. Among 
these methods, Efficient Global Reliability Analysis (EGRA) by Bichon et al. [23] and Adaptive Kriging 
with Monte Carlo Simulation(AK-MCS) by Echard et al. [17] are widely accepted and used as benchmark 
to analyze the performance of other techniques. To enhance sampling strategies for rare events, Echard et 
al. [7], Balesdent et al. [24] and Dubourg et al. [25] used importance sampling techniques in association 
with adaptive Kriging models. Moreover, studies in [26],[27], and [28] have proposed combining Subset 
Simulation and Kriging. Truncating insignificant candidate samples that have small values of probability 
density is also shown to be an effective strategy in improving the computational efficiency of Kriging-
based reliability analysis [12], [13], [29]. While past developments enhanced the performance of Kriging-
based reliability analysis in different aspects, these methods still face key challenges. For example, 
training a Kriging model becomes extremely computationally demanding or even intractable when the 
reliability problems involve a large number of random variables. To obtain reliable estimates for 
problems with small failure probability, a very large number of candidate design samples are required.  
Significant computational demands are faced in these cases due to complex matrix operations needed for 
constructing correlation functions for training and candidate design samples as well as optimization 
procedures for estimating hyper-parameters. These limitations for Kriging-based methods have significant 
implications for their applicability, as real-world reliability problems are often high-dimensional or have 
small failure probability.  

To address this gap, a new method called Reliability Analysis using Subset simulation and Adaptive 
Kriging (RASA) is proposed in this paper. This approach integrates Kriging surrogate modeling with 
Subset Simulation. The main idea behind RASA is to decompose highly computationally demanding or 
intractable problems such as high-dimensional reliability problems to a number of sub-reliability 
problems each with a controlled number of candidate design samples for adaptive Kriging. This is 
accomplished by training Kriging surrogate models based on the candidate design samples in the subsets 
via Subset Simulation and not the entire candidate design samples, which is used in regular Kriging-based 
reliability analysis. The intermediate failure probability, denoted as 𝑝𝑝𝑜𝑜, in Subset Simulation is 
considerably larger than the target failure probability, 𝑃𝑃𝑓𝑓. The implication is that the required number of 
candidate design samples in the subsets is significantly smaller than the total number of candidate 
samples in regular Kriging-based MCS. The relatively very small number of candidate design samples in 
the subsets offers the Kriging model the capability to tackle computationally demanding reliability 
problems such as high dimensional or rare event problems. Moreover, RASA can strategically adjust 𝑝𝑝𝑜𝑜 
and the number of candidate design samples in each subset, denoted as 𝑁𝑁𝑠𝑠𝑠𝑠, to satisfy the requirement of 
the coefficient of variation of estimated failure probability, denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. If the required threshold of 
𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is not prescribed, RASA can also find the optimal value of 𝑝𝑝𝑜𝑜 and 𝑁𝑁𝑠𝑠𝑠𝑠 to minimize the coefficient 
of variation. However, the most challenging task here is to identify the intermediate failure thresholds in 
the process of implementing Subset Simulation based on the information provided by the Kriging model. 
Toward this goal, two novel concepts called Conditional Failure Probability Curve (CFPC) and Dynamic 
Learning Function (DLF) are proposed in this article. CFPC is a curve that represents the relation between 
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the value of intermediate failure threshold and intermediate failure probability with the corresponding 
confidence interval. On the other hand, DLF is a learning function to strategically add training points that 
can reduce the uncertainty near the identified intermediate thresholds. After the final intermediate failure 
threshold is identified to be smaller than zero, conditional failure probability for the last subset is 
estimated to complete the RASA algorithm. The proposed reliability analysis method offers the capability 
to control the number of candidate design samples throughout the process to completely avoid the 
otherwise computational intractability of complex reliability problems. Three numerical examples are 
presented in this article to showcase the performance of the proposed method in solving challenging 
problems. 

The paper is organized in seven sections. In Section 2, the elements of Kriging along with stochastic 
indicator-based MCS are briefly reviewed. Section 3 presents an overview of Subset Simulation. In 
Section 4, the proposed method RASA is presented along with several theorems and propositions. In 
Section 5, Conditional Failure Probability Curves and Dynamic Learning Function with corresponding 
computational details are introduced. In Section 6, two examples with different dimensions and failure 
probabilities are investigated to examine the applicability and performance of RASA for challenging 
problems. Section 7 presents the conclusions of this research. 
 
2. Adaptive Kriging-based Reliability Analysis 
2.1 The Kriging elements 
The Kriging or the Gaussian Process Regression (GPR), 𝑔𝑔�(𝒙𝒙), has been widely used in reliability analysis 
for its high accuracy and efficiency [30]. The mathematical form of this model is shown below, 
 

𝑔𝑔�(𝒙𝒙) = 𝐹𝐹(𝜷𝜷,𝒙𝒙) +  𝑍𝑍(𝒙𝒙) = 𝜷𝜷𝑇𝑇𝒇𝒇(𝒙𝒙) + 𝑍𝑍(𝒙𝒙) (2) 
 
where 𝐹𝐹(𝜷𝜷,𝒙𝒙) is the regression component representing the general trend of the response and 𝑍𝑍(𝒙𝒙) is the 
stochastic interpolation based on the Gaussian assumption. 𝐹𝐹(𝜷𝜷,𝒙𝒙) can be expanded to 𝒇𝒇(𝒙𝒙) as the 
Kriging basis and 𝜷𝜷 as the regression coefficients. 𝜷𝜷𝑇𝑇𝑓𝑓(𝒙𝒙) often takes ordinary (𝛽𝛽0), linear 
(𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1 ) or quadratic (𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1 + ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑁𝑁𝑑𝑑
𝑗𝑗=𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1 ) forms, where 𝑁𝑁𝑑𝑑 is the dimension of 

the random variable x. The ordinary Kriging model is implemented throughout this paper. Moreover, 
𝑍𝑍(𝒙𝒙) is a Gaussian process with zero mean and covariance matrix as shown below, 
 

Cov �𝑍𝑍(𝒙𝒙𝑖𝑖),𝑍𝑍�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗;𝜽𝜽� (3) 
 
where Cov(∙) denotes the operation of covariance, 𝜎𝜎2 is the process variance or the generalized mean 
square error of the regression component, 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 are two observations, and 𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� is the 
correlation function representing the correlation of the process with hyper-parameter 𝜽𝜽. Candidate forms 
of these correlation functions include linear, exponential, Gaussian, and Matérn functions, among others. 
In this paper, the Gaussian kernel function is implemented, which has the following formulation, 
 

𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� = � exp �−𝜃𝜃𝑘𝑘�𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�
2�

𝑁𝑁𝑑𝑑

𝑘𝑘=1

(4) 

 
The hyper-parameter 𝜽𝜽 can be estimated via maximum likelihood estimation (MLE) or cross validation 
[30]. Moreover, the anisotropic Kriging model is adopted in this study, which means that the hyper-
parameter 𝜽𝜽 is optimized in each dimension. To keep the consistency with previous studies, the range of 
𝜃𝜃𝑘𝑘in the optimization process is considered as (0,10) [4]. The maximum likelihood estimation of 𝜽𝜽 can 
be presented as, 
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𝜽𝜽 =  argmin
𝜽𝜽′

��𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽′��
1
𝑚𝑚 𝜎𝜎2� (5) 

where 𝑚𝑚 denotes the number of training samples for Kriging. Accordingly, the regression coefficient 𝜷𝜷, 
and the Kriging estimated mean and variance can be determined as follows [30], 
 

𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀  
𝜇𝜇𝑔𝑔�(𝒙𝒙) = 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1(𝒚𝒚 − 𝑭𝑭𝑭𝑭)  

𝜎𝜎𝑔𝑔�2(𝒙𝒙) = 𝜎𝜎2(1− 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1𝒓𝒓(𝒙𝒙) + (𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙))𝑇𝑇(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1(𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙)− 𝒇𝒇(𝒙𝒙))) (6) 
 
where 𝜎𝜎2 denotes the process variance calculated as 1

𝑚𝑚
(𝒚𝒚 − 𝜷𝜷𝜷𝜷)𝑡𝑡𝑹𝑹−1(𝒚𝒚 − 𝜷𝜷𝜷𝜷) and 𝑭𝑭 is the matrix of the 

basis function, 𝒇𝒇(𝒙𝒙), evaluated at known training points, i.e. 𝐹𝐹𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑗𝑗(𝒙𝒙𝑖𝑖), 𝑖𝑖 = 1, 2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑝𝑝, 
where 𝑝𝑝 is the pth element of the regression term, 𝒓𝒓(𝒙𝒙) is the vector of correlation between known 
training points 𝒙𝒙𝑖𝑖 and an unknown point 𝒙𝒙: 𝑟𝑟𝑖𝑖 = 𝑅𝑅(𝒙𝒙,𝒙𝒙𝑖𝑖,𝜽𝜽), 𝑖𝑖 = 1,2 …𝑚𝑚, and 𝑅𝑅 is the autocorrelation 
matrix for known training points: 𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗,𝜽𝜽�, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑚𝑚. The responses from 
Kriging follow a normal distribution with Kriging mean 𝜇𝜇𝑔𝑔�(𝒙𝒙) and Kriging variance 𝜎𝜎𝑔𝑔�2(𝒙𝒙), 
 

𝑔𝑔�(𝒙𝒙) ~ 𝑁𝑁�𝜇𝜇𝑔𝑔�(𝒙𝒙),𝜎𝜎𝑔𝑔�2(𝒙𝒙)� (7) 
 
Compared with points that are farther away from the training points, responses of points close to the 
training points are expected to have less uncertainty.  
 
2.2 Adaptive Kriging-based reliability analysis 
Reliability analysis methods based on adaptive Kriging aim to replace the true limit state function (LSF) 
with a Kriging model. The surrogate model is adaptively trained to reach the desired accuracy. The 
general procedure of these methods is summarized in Algorithm 1.  
 

Algorithm 1. Adaptive Kriging-based Reliability Analysis 
1. Define initial parameters such as Kriging trends, optimization algorithm types, Generating initial 

candidate design samples S with sampling techniques (e.g., Latin Hypercube Sampling (LHS)).  
2. Randomly select initial training samples 𝒙𝒙𝑡𝑡𝑡𝑡 from S and evaluate their responses, 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡). 
3. Construct the Kriging model 𝑔𝑔�(𝒙𝒙) based on 𝒙𝒙𝑡𝑡𝑡𝑡 and 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡). 
4. Estimate the mean 𝜇𝜇𝑔𝑔�(𝒙𝒙), standard deviation 𝜎𝜎𝑔𝑔�(𝒙𝒙) and 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 for S with 𝑔𝑔�(𝒙𝒙) using the 

deterministic or stochastic indicator. 
5. Search for the next best training points 𝒙𝒙𝑡𝑡𝑡𝑡∗  using a learning function and update the set of 

training samples 𝒙𝒙𝑡𝑡𝑡𝑡. 
6. Check if the stopping criterion is satisfied: 

 (a) If satisfied, go to step 7. 
 (b) If not satisfied, estimate the response 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡∗ ) for 𝒙𝒙𝑡𝑡𝑡𝑡∗  and go back to step 3. 

7. Output 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. 
 
Two indicator functions are available for Kriging-based MCS: the deterministic indicator [17], [31] and 
the stochastic indicator [25], [32] (denoted as DI and SI, respectively, hereafter). For DI, the probability 
of failure can be estimated as, 
 

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� 𝐼𝐼𝑔𝑔(𝒙𝒙𝑖𝑖)
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, 𝒙𝒙 ∈ 𝑆𝑆 (8) 
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where 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 is the estimated failure probability with DI based on the Kriging model. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 denotes the 
number of samples, 𝒙𝒙𝑖𝑖  , generated from the probability distribution of random variables and 𝐼𝐼𝑔𝑔�

𝑑𝑑𝑑𝑑 is the 
indicator function for DI, 
 

𝐼𝐼𝑔𝑔�
𝑑𝑑𝑑𝑑(𝒙𝒙𝑖𝑖) = �

1, 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0
0, 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) > 0 , 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (9) 

 
The estimate of failure probability based on stochastic indicator can be derived as,  
 

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
E[𝕌𝕌] =

1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

� Φ�
− 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (10) 

𝕌𝕌 = � 𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖)

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, 𝒙𝒙𝑖𝑖 ∈  𝑆𝑆 (11) 

 
where 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is the estimated failure probability with SI based on the Kriging model, E[∙] is the expectation 
operator, and 𝐼𝐼𝑔𝑔�

𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖) denotes the indicator function for stochastic indicator, 
 

𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧1,                with probability  Φ�

−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�

0, with probability 1−Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
, 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (12) 

 
where  Φ(𝑥𝑥) is the cumulative distribution function (CDF) of the univariate standard normal distribution. 
The performance of the SI-based MCS is equivalent to the deterministic classification-based approach 
[32]. Note that 𝕌𝕌 is a random variable, thus, 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is the mean value of 𝕌𝕌

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
 according to Eq. (11). In this 

paper, the SI-based MCS is adopted because it has the capability to provide stochastic information for the 
estimated failure probabilities.  
 
3. Subset Simulation 
By adaptively decomposing the original limit state function into a series of computationally less 
demanding LSFs with intermediate failure thresholds, Au and Beck [8] proposed Subset Simulation to 
efficiently estimate probabilities of failure. Let’s denote the subsets in Subset Simulation as 𝛺𝛺1 ⊃ 𝛺𝛺2 ⊃
⋯ ⊃ 𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠 = 𝛺𝛺𝑓𝑓 and 𝛺𝛺𝑓𝑓 = ⋂ 𝛺𝛺𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠
𝑖𝑖=1 , where 𝑛𝑛𝑠𝑠𝑠𝑠 denotes the number of subsets and 𝛺𝛺𝑓𝑓 is the failure domain 

equivalent to the original LSF. The subset 𝛺𝛺𝑖𝑖 is the failure domain corresponding to the LSF,  
 

𝛺𝛺𝑖𝑖 = {𝒙𝒙:𝑔𝑔(𝒙𝒙) ≤ 𝑡𝑡𝑖𝑖} (13) 
 
where 𝑡𝑡𝑖𝑖 is the so-called intermediate failure threshold: 𝑡𝑡1 > 𝑡𝑡2 > ⋯ > 𝑡𝑡𝑚𝑚 = 0. An illustration of Subset 
Simulation is shown in Fig. 1. The probability of failure can then be estimated as, 
 

𝑃𝑃𝑓𝑓 ≈ 𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠 = P�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠� = P��𝛺𝛺𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

� = P(𝛺𝛺1) ∙ � P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖)
𝑛𝑛𝑠𝑠𝑠𝑠−1

𝑖𝑖=1

(14) 
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where P(𝛺𝛺1) and P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) can be estimated using MCS and MCMC with the corresponding limit state 
functions 𝑔𝑔(𝒙𝒙) ≤ 𝑡𝑡𝑖𝑖, respectively. The probability of failure can be estimated as, 
 

𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠 = P(𝛺𝛺1) ∙ � P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖)
𝑛𝑛𝑠𝑠𝑠𝑠−1

𝑖𝑖=1

= �𝑝𝑝𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

(15) 

 
In the implementation of Subset Simulation, the intermediate conditional probability is typically set as: 
P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) ≈ 𝑝𝑝0 = 0.1. It is shown that the speed of convergence and accuracy are related to the 
definition of 𝑝𝑝0. The steps for implementing Subset Simulation are presented in Algorithm 2.  
 

Algorithm 2. Subset Simulation 
1. Generate 𝑁𝑁𝑆𝑆𝑆𝑆 samples 𝒙𝒙𝑘𝑘  = 1, … 𝑁𝑁𝑆𝑆𝑆𝑆  through the crude MCS and evaluate their responses 

𝑔𝑔(𝒙𝒙𝑘𝑘),𝑘𝑘 = 1, …𝑁𝑁𝑆𝑆𝑆𝑆. 
2. 𝑖𝑖 = 1 
3. (a) If 𝑖𝑖 = 1, determine 𝑡𝑡1 such that P(𝛺𝛺1) ≈ 𝑝𝑝0. 

(b) If 𝑖𝑖 > 1, determine the intermediate failure thresholds 𝑡𝑡𝑖𝑖 such that the conditional probabilities 
satisfy P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) ≈ 𝑝𝑝0.  

4. Generate samples in 𝛺𝛺𝑖𝑖+1 using the Markov Chain Monte Carlo Simulation technique (MCMC), 
where 𝑖𝑖 ≥ 1. 

5. 𝑖𝑖 = 𝑖𝑖 + 1. Return to step 3, if 𝑡𝑡𝑖𝑖 > 0; otherwise, continue to step 6. 
6. Estimate the last failure probability 𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠 = P�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1� for the final subset 𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠with 𝑡𝑡𝑛𝑛𝑠𝑠𝑠𝑠 = 0. 
7. Estimate the failure probability 𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠.  

 
Fig. 1 Illustration of safe and failure domains and the limit state 𝑔𝑔(𝒙𝒙) = 0 in Subset Simulation 

 
4. RASA: The Conceptual Framework  
The core idea of RASA is to control the size of the pool of candidate design samples to enable analysis of 
computationally very demanding reliability problems such as high-dimensional or rare event problems. In 
this paper, high-dimensional problems refer to reliability analysis for limit states that involve 20 or more 
random variables (𝑁𝑁𝑑𝑑 ≥ 20). Toward this goal, Subset Simulation is integrated with the Kriging 
surrogate model to enhance the computational performance of reliability analysis. Generally, a reliable 

𝑋𝑋1 

𝑋𝑋2 

Failure domain 

Ω𝑓𝑓: 𝑔𝑔(𝒙𝒙) ≤ 0 

Safe domain 

Ω𝑠𝑠: 𝑔𝑔(𝒙𝒙) > 0 
𝑔𝑔(𝒙𝒙) = 𝑡𝑡1 

𝑔𝑔(𝒙𝒙) = 𝑡𝑡𝑛𝑛𝑠𝑠𝑠𝑠 = 0 
𝑔𝑔(𝒙𝒙) = 𝑡𝑡2 
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estimate of the probability of failure can be obtained through Algorithm 1. The coefficient of variation of 
failure probability, 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, can be determined as, 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = �
1 − 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (16) 

 
where 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 denotes the number of candidate design samples. If the target 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  is prescribed, the 
required computational capacity 𝐶𝐶𝑟𝑟 to solve the problem can be expressed as, 
 

𝐶𝐶𝑟𝑟 = 𝕔𝕔(𝑁𝑁𝑑𝑑 ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝕡𝕡) (17) 
 
where 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 for Algorithm 1 and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑠𝑠𝑠𝑠 for Algorithm 2, 𝕡𝕡 is the set of parameters defining 
the Kriging surrogate model, and 𝕔𝕔(∙) denotes the required computational capacity for an algorithm 
parameterized by 𝑁𝑁𝑑𝑑, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 and 𝕡𝕡. Basically, 𝐶𝐶𝑟𝑟 increases as 𝑁𝑁𝑑𝑑 and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 increase, 
 

𝐶𝐶𝑟𝑟 ∝ 𝑁𝑁𝑑𝑑 ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 (18) 
 
As 𝑁𝑁𝑑𝑑 is typically prescribed, reducing 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 can improve the computational efficiency. However, 
reducing 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 can increase 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 according to Eq. (16). Therefore, a key task is to design an algorithm 
that satisfies the condition 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 with respect to the prescribed 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, where 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 generally 
refers to the COV of the probability of failure estimated through any appliable algorithm. Toward this 
goal, the next section presents a novel approach to improve the computational efficiency of reliability 
analysis with limited computational capacity.  
 
4.1 Proposed RASA method 
RASA is aimed at adaptively adjusting 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0 so that the probability of failure can be estimated with 
limited available computationally capacity. First, 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is roughly estimated based on the initial parameter 
sets. Then 𝑁𝑁𝑠𝑠𝑠𝑠 is adaptively updated and adjusted to satisfy the requirement of 𝐶𝐶𝐶𝐶𝐶𝐶thr. However, it may 
happen that the updated 𝑁𝑁𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 can still not satisfy the condition that 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 < 𝐶𝐶𝐶𝐶𝐶𝐶thr, where 
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 denotes the max number of candidate design samples that can be carried out and 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 denotes 
the COV of the probability of failure estimated through Kriging-based Subset Simulation. Therefore, the 
value of 𝑝𝑝0 also needs to be updated in this setting. Hence, the main steps of RASA can be summarized as 
adjustment of 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0 so that 𝐶𝐶𝑟𝑟 can be controlled subject to the constraint of 𝐶𝐶𝐶𝐶𝐶𝐶thr. Details of the 
proposed RASA algorithm are elaborated in Algorithm 3. Due to the fact that not all the training samples 
generated in the last subsets can render useful information for the construction of the surrogate model in 
the next subsets, only a portion of training samples in previous subsets are selected as the initial training 
samples for the next subsets to reduce the computational burden. According to an experimental study, the 
portion can be selected as 20%. After 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is roughly estimated,  𝑁𝑁𝑠𝑠𝑠𝑠 can be updated according to the 
following equation (the derivation is presented in section 4.2), 
 

𝑁𝑁𝑠𝑠𝑠𝑠 = �
1 − 𝑝̂𝑝𝑘𝑘
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑝̂𝑝𝑘𝑘

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

(19) 
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where 𝑝̂𝑝𝑘𝑘 denotes the intermediate probability of failure in the kth subset estimated through the Kriging 
surrogate model. However, 𝑁𝑁𝑠𝑠𝑠𝑠 cannot exceed the maximum computational capacity, 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. For 
Algorithm 3, the minima of 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 can be estimated using the following equation, 
 

𝑝𝑝0∗ = arg min
𝑝𝑝0∈(0,1)

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 (20) 
s. t.𝐶𝐶𝑟𝑟 < 𝐶𝐶𝑐𝑐 

 
where 𝐶𝐶𝑐𝑐 denotes the algorithmic computational capacity and arg min(∙) stands for argument of the 
minimum. If 𝑁𝑁𝑠𝑠𝑠𝑠 and the intermediate failure probabilities 𝑝̂𝑝𝑘𝑘 ,𝑘𝑘 = 1, 2, … ,𝑛𝑛𝑠𝑠𝑠𝑠 in every subset except the 
last one are kept the same, the optimal intermediate failure probability can be determined by the following 
equation, 
 

𝑝𝑝0∗ = arg min
𝑝𝑝0∈(0,1)

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 = arg min
𝑝𝑝0∈(0,1)

��
1 − 𝑝̂𝑝𝑘𝑘
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝̂𝑝𝑘𝑘

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

= arg min
𝑝𝑝0∈(0,1)

��
1 − 𝑝𝑝0
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝0

𝑛𝑛𝑠𝑠𝑠𝑠−1

𝑖𝑖=1
+ �1 −

𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑝𝑝0
𝑛𝑛𝑠𝑠𝑠𝑠−1

� /�𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑝𝑝0
𝑛𝑛𝑠𝑠𝑠𝑠−1

��

= arg min
𝑝𝑝0∈(0,1)

��
1 − 𝑝𝑝0
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝0

𝑛𝑛𝑠𝑠𝑠𝑠−1

𝑖𝑖=1
+
𝑝𝑝0
𝑛𝑛𝑠𝑠𝑠𝑠−1 − 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠
� (21)

 

 
Algorithm 3. Reliability Analysis with Subset simulation using Adaptive Kriging (RASA) 
1. (a) Define 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟, and the initial 𝑁𝑁𝑆𝑆𝑆𝑆 and 𝑝𝑝0. 

(b) Generate 𝑁𝑁𝑆𝑆𝑆𝑆 samples 𝒙𝒙𝑘𝑘  = 1, … ,𝑁𝑁𝑆𝑆𝑆𝑆 through crude MCS and estimate their responses 
𝑔𝑔(𝒙𝒙𝑘𝑘),𝑘𝑘 = 1, … ,𝑁𝑁𝑆𝑆𝑆𝑆. 

2. 𝑖𝑖 = 1 
3. (a) If 𝑖𝑖 = 1, identify 𝑡𝑡1 using Algorithm 2 such that P(𝛺𝛺1) ≈ 𝑝𝑝0. 

(b) If 𝑖𝑖 > 1, determine the intermediate failure thresholds 𝑡𝑡𝑖𝑖 using Algorithm 4 such that the 
conditional probabilities satisfy P(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) ≈ 𝑝𝑝0.  

4. Generate samples in 𝛺𝛺𝑖𝑖 through crude MCS (if the probability of failure is not rare) or MCMC 
based on the remaining points (i.e., seeds). 

5. 𝑖𝑖 = 𝑖𝑖 + 1. Return to step 3 if 𝑡̂𝑡 > 0; Otherwise, continue to step 6. 
6. Estimate the intermediate failure probability 𝑃𝑃�0𝑚𝑚 = P(𝛺𝛺𝑚𝑚−1|𝛺𝛺𝑚𝑚) in the last subset 𝛺𝛺𝑚𝑚with 

𝑡𝑡𝑚𝑚 = 0 using Algorithm 5. 
7. Estimate the failure probability 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 and  𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 using Eq. (16) and Eq. (27). 
8. Check 

(a) if 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 > 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 and 𝑁𝑁𝑠𝑠𝑠𝑠 ≤ 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, increase 𝑁𝑁𝑆𝑆𝑆𝑆 using Eq. (19) and go back to step 2. 
This step needs to utilize the previous training samples. 

(b) if 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 > 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 and 𝑁𝑁𝑠𝑠𝑠𝑠 ≥ 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, go to step 9. 
(c) if 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟, output 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. 

9. Estimate 𝑝𝑝0∗ with corresponding 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚. Check  

(b) if 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟, update 𝑝𝑝0 using Eq. (25) and go back to step 2. This step also needs 

to utilize the previous training samples. 
(b) else, update 𝑝𝑝0 = 𝑝𝑝0∗ and repeat step 2-7, and then output 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. 
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where the intermediate probability of failure in the last subset can be estimated as 𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠 =
𝑃𝑃�𝑓𝑓
𝑠𝑠𝑠𝑠

𝑝𝑝0
𝑛𝑛𝑠𝑠𝑠𝑠−1 based on 

the following equation, 
 

𝑝𝑝0𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 (22) 
 
Thus, 
 

𝑛𝑛𝑠𝑠𝑠𝑠 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
(23) 

 

Since 𝑛𝑛𝑠𝑠𝑠𝑠 is an integer, the total number of subsets can be calculated as 𝑛𝑛𝑠𝑠𝑠𝑠 = INT �
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓

𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�, where INT[∙] 

denotes the operator that rounds to the nearest larger integer. Hence, Eq. (23) can be further expanded to, 
 

𝑝𝑝0∗ = arg min
𝑝𝑝0∈(0,1)

⎣
⎢
⎢
⎡
�

1 − 𝑝𝑝0
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝0

INT�
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓

𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�−1

𝑖𝑖=1
+

⎝

⎛1 −
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑝𝑝0
INT�

𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓
𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�−1

⎠

⎞ /

⎝

⎛𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑝𝑝0
INT�

𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓
𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�−1

⎠

⎞

⎦
⎥
⎥
⎤

= arg min
𝑝𝑝0∈(0,1)

⎣
⎢
⎢
⎢
⎡
�INT �

𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
� − 1�

1 − 𝑝𝑝0
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝0

+
𝑝𝑝0

INT�
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓

𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�−1

− 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

⎦
⎥
⎥
⎥
⎤

(24)

 

 

The corresponding 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 can be estimated as �∑ 1−𝑝𝑝0∗

𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0∗
𝑛𝑛𝑠𝑠𝑠𝑠
𝑖𝑖=1 . Moreover, p0 can be determined according 

to the established 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 as, 
 

𝑝𝑝0 = 𝕨𝕨−1(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟) (25) 
 
where 𝕨𝕨−1 denotes the inverse of function 𝕨𝕨, which is defined as, 
 

𝕨𝕨�𝑝𝑝0,𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠,𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚� = ��INT �
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
� − 1�

1 − 𝑝𝑝0
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝0

+
𝑝𝑝0

INT�
𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓

𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
�−1

− 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠
(26) 

 
Note that 𝕨𝕨(∙) is typically not a monotonic function, thus, there is a potential that more than one p0 can 
satisfy Eq. (26). Therefore, one can select a p0 such that nss can be minimized. The advantages of the 
proposed RASA algorithm are discussed in the next subsections. Moreover, the approach to precisely 
identify the intermediate failure thresholds are elaborated in Section 5 by introducing two innovative 
concepts called Conditional Failure Probability Curve and Dynamic Learning Function. 
 
4.2 Unbiased property of the stochastic estimator 
Classical Subset Simulation tends to obtain samples in the failure region associated with 𝑃𝑃(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) 
using Markov Chain Monte Carlo simulation (MCMC). This approach is motivated by the fact that 
generating samples located in the posterior failure region through brute MCS can be computationally very 



-11- 

 

demanding. The MCMC technique facilitates fast generation of samples that follow the posterior 
distribution by introducing a proposal density also called ‘jumping distribution’. However, the obtained 
samples are often biased due to the mutual correlation of Markov Chains. Mitigating this effect would 
require proper definition of the parameters of the proposal density, which becomes challenging as the 
dimension of the problem increases, thus leaving the potential for the final estimate of failure probability 
by this method to be inaccurate.  This limitation can be completely avoided if one takes advantage of the 
fast analysis speed of surrogate models. Such models enable generation of all candidate design samples in 
subsets through brute MCS. Properties of the stochastic estimator in Algorithm 3 for the analysis of 
failure probability are explored through the following theorems. 
 
Theorem 1. The estimate of the probability of failure using Subset Simulation through brute MCS is 
unbiased with the coefficient of variation of, 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≅ ��
1 − 𝑝̂𝑝𝑘𝑘
𝑁𝑁𝑠𝑠𝑠𝑠𝑝̂𝑝𝑘𝑘

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

(27) 

 
where 𝑛𝑛𝑠𝑠𝑠𝑠 denotes the total number of subsets, 𝑁𝑁𝑠𝑠𝑠𝑠 is the number of generated candidate design samples 
in each subset and 𝑝𝑝𝑘𝑘 is the intermediate probability of failure. 
 
Proof: According to [8] , we have, 
 

𝐸𝐸 �
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑓𝑓

𝑃𝑃𝑓𝑓
� = �𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗�

𝑖𝑖>𝑗𝑗

+ � 𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗𝛿𝛿𝑘𝑘𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗𝕫𝕫𝑘𝑘�
𝑖𝑖>𝑗𝑗>𝑘𝑘

+ ⋯��𝛿𝛿𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

�𝐸𝐸 ��𝕫𝕫𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

� (28) 

 
where 𝛿𝛿𝑖𝑖 denotes the COV of 𝑝̂𝑝𝑘𝑘 and 𝕫𝕫𝑖𝑖 is calculated as 𝕫𝕫𝑖𝑖 = (𝑝̂𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘)/𝛿𝛿𝑖𝑖. Since all the samples are 
generated through brute MCS and not MCMC, 𝕫𝕫𝑖𝑖s are mutually uncorrelated; therefore 𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗� = 0 for 
i > j, 𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗𝕫𝕫𝑘𝑘� = 0 for 𝑖𝑖 > 𝑗𝑗 > 𝑘𝑘, and 𝐸𝐸�∏ 𝕫𝕫𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠
𝑖𝑖=1 � = 0. As a result, the stochastic estimator is unbiased. 

Moreover, considering the following equation [8], 
 

𝐸𝐸 �
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑓𝑓

𝑃𝑃𝑓𝑓
�
2

= 𝐸𝐸 ��𝛿𝛿𝑖𝑖𝕫𝕫𝑖𝑖 + �𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗
𝑖𝑖>𝑗𝑗

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

+ �𝛿𝛿𝑖𝑖𝕫𝕫𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

�

2

= � 𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖,𝑗𝑗=1

𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗� + 𝑜𝑜 �
1
𝑁𝑁𝑠𝑠𝑠𝑠

� (29) 

 
it can be shown that 
 

𝐸𝐸 �
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑓𝑓

𝑃𝑃𝑓𝑓
�
2

≅ � 𝛿𝛿𝑖𝑖𝛿𝛿𝑗𝑗

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=𝑗𝑗=1

𝐸𝐸�𝕫𝕫𝑖𝑖𝕫𝕫𝑗𝑗� (30) 

 
The following equation can be subsequently derived, 
 

𝐸𝐸 �
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑓𝑓

𝑃𝑃𝑓𝑓
�
2

≅� 𝜎𝜎𝑖𝑖2
𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1
(31) 

 
which means that 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≅ ��
1 − 𝑝̂𝑝𝑘𝑘
𝑁𝑁𝑠𝑠𝑠𝑠𝑝̂𝑝𝑘𝑘

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1

(32) 

 
Thus, the theorem is proved. 
 
4.3 The computational capability of RASA 
This section demonstrates the computational capability of RASA in estimating the probability of failure 
relative to regular reliability analysis methods. Moreover, it is shown that for a given constraint on 
computational capacity, RASA can analyze the probability of rarer events. These features are 
demonstrated via the following theorems. 
 
Theorem 2. Let 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 denote the probability of failure by Algorithm 1 and Algorithm 3, 
respectively.  The superior computational performance of Algorithm 3 relative to Algorithm 1 can be 
demonstrated by the following two cases:  
(i) If the numbers of candidate design samples for Algorithm 1 and Algorithm 3 are kept the same (i.e., 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑠𝑠𝑠𝑠 for both algorithms), Algorithm 3 can analyze events with lower probability compared to 
Algorithm 1. In fact, the logarithmic ratio of the smallest failure probability that Algorithm 3 can analyze 
relative to Algorithm 1 can be determined as follows, 
 

Ƚ�𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠,𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚� = �𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�� = �𝑙𝑙𝑙𝑙𝑙𝑙�𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 + 1� +
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0

1 − 𝑝𝑝0
𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0� (33) 

 
(ii) If the target probability of failure for Algorithm 1 and Algorithm 3 are kept the same, Algorithm 3 has 
lower computational demand compared to Algorithm 1 in analyzing the same problem. The ratio of the 
required number of candidate design samples via Subset Simulation over crude MCS can be estimated as, 
 

𝒯𝒯(𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟 ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 ) =

𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 =

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑝𝑝0)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝑝𝑝0�1 − 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
(34) 

 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 denotes the threshold of COV for the probability of failure, 𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟  and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟  denote the 
required number of candidate design samples in Algorithm 1 and Algorithm 3, respectively. 
 
Proof: For case (i) considering Eq. (16), the rarest event that can be analyzed using MCS technique with 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 samples for a COV less than 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 is, 
 

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 + 1
(35) 

 
Set the intermediate failure probabilities in every subset to be the same 𝑝̂𝑝𝑘𝑘 = 𝑝𝑝0, thus, for the Subset 
Simulation-based approach, the number of subsets for intermediate failure thresholds can be determined 
according to the Eq. (27). Consequently, 
 

𝑛𝑛𝑠𝑠𝑠𝑠 =
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0

1 − 𝑝𝑝0
(36) 
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Hence, the rarest event that can be analyzed by the Subset Simulation-based approach has the probability 
of, 
 

𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 = 𝑝𝑝0
𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑝𝑝0

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟
2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0
1−𝑝𝑝0 (37) 

 
Therefore,  
 

Ƚ�𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠,𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚� = �𝑙𝑙𝑙𝑙𝑙𝑙��𝑝𝑝0

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟
2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0
1−𝑝𝑝0 � /�

1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 + 1

��� = �𝑙𝑙𝑙𝑙𝑙𝑙��𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 + 1�𝑝𝑝0

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟
2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0
1−𝑝𝑝0 ��

= �𝑙𝑙𝑙𝑙𝑙𝑙�𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 + 1� +
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝0

1 − 𝑝𝑝0
𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0� (38)

 

 
For case (ii), the required number of candidate design samples for Algorithm 1 can be estimated 
according to Eq. (16), 
 

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 =

1 − 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2
(39) 

 
From Eq. (22), (23) and (27), 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is treated as a constant equal to 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, thus 𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟  can be estimated as,  
 

𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟 =
(1 − 𝑝𝑝0)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑝𝑝0𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
(40) 

 
Therefore, 
 

𝒯𝒯(𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟 ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 ) =

𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 = �

(1 − 𝑝𝑝0)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑝𝑝0𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
� /�

1− 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2
� =

(1 − 𝑝𝑝0)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2 𝑝𝑝0𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
∙
𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟2

1 − 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

=
𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑝𝑝0)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝0�1 − 𝑃𝑃�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝0
(41)

 

 
which proves the theorem. 
 
5. RASA: The Implementation Process 
In this section, we present an approach to adaptively identify the intermediate failure thresholds 𝑡𝑡𝑖𝑖 in Eq. 
(13) through two novel techniques called Conditional Failure Probability Curve and Dynamic Learning 
Function. First, CFPC is developed to construct a relation between the defined intermediate failure 
thresholds and failure probability in the selected subsets and characterize the associated confidence 
intervals. DLF, on the other hand, facilitates effective enrichment of the training set with optimal 
candidate design samples.  
 
5.1 Conditional Failure Probability Curve  
In the procedure of Subset Simulation, the failure thresholds 𝑡𝑡𝑖𝑖 are searched to satisfy the requirement 
below, 
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𝑃𝑃(𝛺𝛺𝑖𝑖+1|𝛺𝛺𝑖𝑖) = 𝑃𝑃(𝑔𝑔(𝒙𝒙) ≤ 𝑡𝑡𝑖𝑖) = 𝑝𝑝0 , 𝒙𝒙 ∈ 𝛺𝛺𝑖𝑖 (42) 

s. t.   𝑡𝑡𝑖𝑖 ≥ 0  
 
where 𝑝𝑝0 is the intermediate failure probability. In RASA, we substitute the true performance function 
𝑔𝑔(𝒙𝒙) with the Kriging surrogate model 𝑔𝑔�(𝒙𝒙); however, this surrogate model may not ensure precise 
identification of the true 𝑡𝑡𝑖𝑖 in Eq. (13). Thus, an important task of RASA is to search for an estimate of 𝑡𝑡𝑖𝑖 
here denoted as 𝑡̂𝑡𝑖𝑖 such that 𝑡̂𝑡𝑖𝑖 ≅ 𝑡𝑡𝑖𝑖. Hereafter, 𝑡̂𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 are noted by 𝑡̂𝑡 and t, respectively, for the purpose 
of notational simplicity. The goal can be achieved by targeted training of the Kriging surrogate model. In 
this context, the Conditional Failure Probability Curve can be defined as a function of the variable 𝑡𝑡∗, 
 

𝑝𝑝𝑘𝑘(𝑡𝑡∗) =  𝑃𝑃(𝑔𝑔�(𝒙𝒙) ≤ 𝑡𝑡∗), 𝑡𝑡∗ ≥ 0 (43) 
 
where 𝑝𝑝𝑘𝑘(𝑡𝑡∗) denotes the intermediate failure probability in the kth subset parametrized by the variable 
𝑡𝑡∗, and 𝑔𝑔�(𝒙𝒙) is the constructed Kriging surrogate model. The corresponding stochastic indicator can be 
defined as, 
 

𝑝𝑝𝑘𝑘(𝑡𝑡∗) =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� Φ�

−�𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡𝑡∗�
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, (44) 

 
A conceptual sketch of CPFC is shown in Fig. 2. (a) with impacts of training on the estimation of 𝑡̂𝑡 shown 
in subplots (a) and (b). Note that if 𝑡̂𝑡 changes, the estimated failure probability changes accordingly. 
 

 
 

 

            (a)              (b) 
Fig. 2 Conditional Failure Probability Curves with (a) only initial training samples and (b) sufficient 
training samples in the vicinity of the limit state 𝑔𝑔�(𝒙𝒙) − 𝑡̂𝑡 = 0. 
 
In Fig. 2, the black solid line and red dashed lines denote the mean and confidence interval (CI) of 𝑝𝑝𝑘𝑘, 
respectively. Here, 𝑡̂𝑡 is the estimated intermediate failure threshold satisfying the following condition,  
 

𝑃𝑃(𝑔𝑔�(𝒙𝒙) ≤ 𝑡̂𝑡) = 𝑝𝑝0 , 𝒙𝒙 ∈ 𝛺𝛺𝑖𝑖 (45) 
 
However, the identified intermediate failure thresholds 𝑡̂𝑡 are not equal to the true value 𝑡𝑡. Therefore, the 
corresponding confidence intervals that reflect the uncertainty of the intermediate failure threshold 𝑡̂𝑡 

𝑝𝑝𝑘𝑘 

𝑡𝑡∗ 𝑡̂𝑡 

CI of 𝑝𝑝𝑘𝑘 

  

Mean of 𝑝𝑝𝑘𝑘 

  

𝑝𝑝0 

CI of 𝑝𝑝𝑘𝑘 

  

Mean of 𝑝𝑝𝑘𝑘 

  

𝑝𝑝𝑘𝑘 

𝑝𝑝0 

𝑡̂𝑡 𝑡𝑡∗ 
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should be characterized. For an intermediate failure threshold 𝑡𝑡∗, the probability of failure can be 
estimated as, 
 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)� = 𝐸𝐸[𝑝𝑝𝑘𝑘(𝑡𝑡∗)] =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� 𝛷𝛷�

−�𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡𝑡∗�
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

(46) 

 
where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)� denotes the mean of the conditional failure probability that is parameterized by 𝑡𝑡∗. 
According to the Central Limit Theorem (CLT), 𝑡𝑡∗ follows a normal distribution with the following 
variance, 
 

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑘𝑘(𝑡𝑡∗)� =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2 � 𝛷𝛷�
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡𝑡∗

𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)
�𝛷𝛷 �

−�𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡𝑡∗�
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

(47) 

 
The probability model of 𝑡𝑡∗ can be represented as, 
 

𝑝𝑝𝑘𝑘(𝑡𝑡∗)~𝑁𝑁�𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)�,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)�� (48) 
 
where 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)� denotes the variance of the conditional failure probability. Thus, the probability that 
𝑝𝑝𝑘𝑘(𝑡𝑡∗) is equal to 𝑝𝑝0 can be estimated as, 
 

𝜑𝜑𝑝𝑝𝑘𝑘=𝑝𝑝0 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)|𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)�,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)�� =
1

√2𝜋𝜋𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)�
𝑒𝑒𝑒𝑒𝑒𝑒�−

�𝑝𝑝0 − 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)��
2

2𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)�
� (49) 

 
Considering the entire probabilistic space, the PDF of 𝑡𝑡 can be determined as, 
 

𝛩𝛩𝑡𝑡(𝑡𝑡∗) =
𝜑𝜑𝑝𝑝𝑘𝑘=𝑝𝑝0�𝑝𝑝0|𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)�,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐

2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)��

∫ 𝜑𝜑𝑝𝑝𝑘𝑘=𝑝𝑝0�𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑘𝑘(𝑡𝑡∗)�,𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
2 �𝑝𝑝𝑘𝑘(𝑡𝑡∗)��𝑑𝑑𝑡𝑡∗∞

−∞

(50)  

 
where 𝛩𝛩𝑡𝑡 denotes the pdf of 𝑡𝑡. In this article, the intermediate failure threshold 𝑡̂𝑡 is determined using MLE 
as follows, 
 

𝑡̂𝑡 = arg max 
𝑡𝑡∗∈ℝ

 𝛩𝛩t(𝑡𝑡∗) = E[t] (51) 
 
In Fig. 2, 𝑡̂𝑡 can be identified as the point on the X-axis that corresponds to 𝑝𝑝0 on the Y-axis. As the 
number of training samples in Kriging surrogate model increases, the variance of the random variable t 
decreases, thus 𝑡̂𝑡 converges to t. The confidence interval of 𝑝𝑝𝑘𝑘(𝑡𝑡∗) can be derived using a method 
developed by the authors in [33].  Moreover, if the current subset of candidate design samples is denoted 
as 𝛺𝛺𝑘𝑘, the probability of failure using the Kriging model based on stochastic indicator can be estimated 
as, 
 

𝑝𝑝𝑘𝑘(𝑡𝑡∗) =  
E[𝕌𝕌(𝑡𝑡∗)]
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

(52) 

 
In this approach, for each candidate design sample, 𝒙𝒙𝑖𝑖, 𝐼𝐼𝑔𝑔�

𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖 , 𝑡𝑡∗) follows a Bernoulli distribution, 
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𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)~𝐵𝐵 �𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖, 𝑡𝑡∗),𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)� ,𝒙𝒙𝑖𝑖 ∈  𝛺𝛺𝑖𝑖 , (53) 

 

where B is the Bernoulli distribution, 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖) is the Bernoulli mean with 𝜇𝜇b(𝒙𝒙𝑖𝑖 , 𝑡𝑡∗) =  Φ�
−�𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)−𝑡𝑡∗�

𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)
� 

and 𝜎𝜎𝑏𝑏2 is the variance of the Bernoulli distribution, where 𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖 𝑡𝑡∗) =  𝜇𝜇b(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)�1 − 𝜇𝜇b(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)�. As 
𝕌𝕌(𝑡𝑡∗) can be derived as the sum of 𝐼𝐼𝑔𝑔(𝒙𝒙𝑖𝑖, 𝑡𝑡∗), 𝒙𝒙𝑖𝑖 ∈  𝛺𝛺𝑖𝑖, it follows that 𝕌𝕌(𝑡𝑡∗) follows a Poisson Binomial 
distribution (PBD). As shown in [34], the distribution of 𝕌𝕌(𝑡𝑡∗) can be denoted as, 
 

𝕌𝕌(𝑡𝑡∗)~𝑃𝑃𝑃𝑃 �𝜇𝜇𝕌𝕌(𝑡𝑡∗),𝜎𝜎𝕌𝕌2(𝑡𝑡∗),𝐵𝐵(𝑡𝑡∗)� (54) 
 
where 𝜇𝜇𝕌𝕌(𝑡𝑡∗) and 𝜎𝜎𝕌𝕌2(𝑡𝑡∗) are the mean value and variance of 𝕌𝕌(𝑡𝑡∗), respectively. 𝐵𝐵(𝑡𝑡∗) denotes the 
corresponding Bernoulli distribution of each candidate design samples. According to the probabilistic 
properties of Poisson Binomial distribution, 𝜇𝜇𝕌𝕌(𝑡𝑡∗)   =  ∑ 𝜇𝜇b(𝒙𝒙𝑖𝑖, 𝑡𝑡∗) 𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1 and 𝜎𝜎𝕌𝕌2(𝑡𝑡∗) =
 ∑ 𝜇𝜇b(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)�1 − 𝜇𝜇b(𝒙𝒙𝑖𝑖, 𝑡𝑡∗)�𝑁𝑁𝑠𝑠𝑠𝑠 

𝑖𝑖=1 . Therefore, the CI of 𝕌𝕌(𝑡𝑡∗) with confidence level 𝛼𝛼 can be derived as,  
 

𝕌𝕌(𝑡𝑡∗) ∈ �𝜣𝜣𝕌𝕌
−1 �

𝛼𝛼
2

, 𝑡𝑡∗� ,𝜣𝜣𝕌𝕌
−1 �1 −

𝛼𝛼
2

, 𝑡𝑡∗�� , (55) 

 
where 𝜣𝜣𝕌𝕌

−1(∙) is the inverse CDF of PBD with mean 𝜇𝜇𝕌𝕌(𝑡𝑡∗) and variance 𝜎𝜎𝕌𝕌2(𝑡𝑡∗) and 𝛼𝛼 is the confidence 
level (e.g. 𝛼𝛼 = 0.05). Subsequently, according to the Central Limit Theorem, it can be shown that 𝕌𝕌(𝑡𝑡∗) 
in distribution converges to a normal distribution,  
 

𝕌𝕌(𝑡𝑡∗)  ~ 𝑁𝑁�𝜇𝜇𝕌𝕌(𝑡𝑡∗),𝜎𝜎𝕌𝕌2(𝑡𝑡∗)� (56) 
 
The CI of 𝕌𝕌(𝑡𝑡∗) can then be obtained as, 
 

𝕌𝕌(𝑡𝑡∗)   ∈ [𝜇𝜇𝕌𝕌(𝑡𝑡∗) −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌(𝑡𝑡∗),   𝜇𝜇𝕌𝕌(𝑡𝑡∗) +  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌(𝑡𝑡∗)], (57)
𝒙𝒙𝑖𝑖 ∈  𝑆𝑆  

 
where  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96 for the confidence level α = 0.05. The large 𝑁𝑁𝑠𝑠𝑠𝑠 in Kriging-based reliability analysis 
problems satisfies the requirement of CLT yielding accurate confidence intervals for 𝕌𝕌(𝑡𝑡∗). Accordingly, 
the CI of 𝑝𝑝𝑘𝑘(𝑡𝑡∗)  can be derived by integrating Eq. (52) and (57), 
 

𝑝𝑝𝑘𝑘(𝑡𝑡∗)   ∈
1
𝑁𝑁𝑠𝑠𝑠𝑠

[𝜇𝜇𝕌𝕌(𝑡𝑡∗) −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌(𝑡𝑡∗),   𝜇𝜇𝕌𝕌(𝑡𝑡∗) + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌(𝑡𝑡∗)], (58)

𝒙𝒙𝑖𝑖 ∈  𝑆𝑆
 

 
One should note that the confidence bounds tighten as the number of training samples in the Kriging 
model increases. However, to accurately estimate the true intermediate failure probability thresholds 𝑡𝑡𝑖𝑖, 
the variance near 𝑡̂𝑡 should be significantly reduced. Thus, the training samples are strategically selected in 
the vicinity of the limit state 𝑔𝑔�(𝒙𝒙) − 𝑡̂𝑡 = 0 using a new learning function in RASA. In the next section, 
this learning function and an implementation algorithm are introduced to adaptively reduce the 
uncertainty of 𝑡̂𝑡. 
 
5.2 Dynamic Learning Function  
In this section, we introduce Dynamic Learning Function to facilitate strategic selection of best training 
samples from candidate design samples in the next subset. As the number of training points increases, the 
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width of the CI of 𝑝𝑝𝑘𝑘(𝑡̂𝑡) in Eq. (52) (e.g. the distance between the two dashed red lines in Fig. 2) 
decreases. Thus, identifying 𝑡𝑡 is equivalent to reducing the uncertainty in the vicinity of the limit state 
𝑔𝑔�(𝒙𝒙) − 𝑡̂𝑡 = 0.   
 
Theorem 3. Considering 𝜌𝜌 �𝑔𝑔�(𝒙𝒙𝑖𝑖),𝑔𝑔��𝒙𝒙𝑗𝑗�� = 0, the optimal active learning strategy for identifying the 
true intermediate failure threshold 𝑡𝑡 can be expressed as follows, 
 

𝒙𝒙𝑡𝑡𝑡𝑡∗ = arg  max
𝒙𝒙 ∈𝛺𝛺𝑖𝑖

�Φ�
−�𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡̂𝑡�

𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)
�Φ�

𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡̂𝑡
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�� (59) 

 
where 𝜌𝜌 �𝑔𝑔�(𝒙𝒙𝑖𝑖),𝑔𝑔��𝒙𝒙𝑗𝑗�� denotes the correlation between the response of 𝑔𝑔�(𝒙𝒙𝑖𝑖) and 𝑔𝑔��𝒙𝒙𝑗𝑗�, 𝒙𝒙𝑡𝑡𝑡𝑡∗  denotes the 
new training samples, and 𝑡̂𝑡 is the identified intermediate failure threshold in the last iteration. 
 
Proof: After the estimated intermediate failure threshold 𝑡̂𝑡 is identified in the current iteration, the 
variance of the intermediate failure threshold can be estimated according to the Central Limit Theorem as, 
 

Var�𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠� = Var �
1
𝑁𝑁𝑠𝑠𝑠𝑠

𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠� =

1
𝑁𝑁𝑠𝑠𝑠𝑠2

Var�𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠� =

1
𝑁𝑁𝑠𝑠𝑠𝑠2

Var ��𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖)

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

� =
1
𝑁𝑁𝑠𝑠𝑠𝑠2

�Var�𝐼𝐼𝑔𝑔�
𝑠𝑠𝑠𝑠(𝒙𝒙𝑖𝑖)�

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

=

∑ Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

��1 −Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

��𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠2
=
∑ Φ�

−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�Φ�
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) − 𝑡̂𝑡
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠2
(60)

 

 
Note the fact that the following equation always holds true as 𝒙𝒙𝑖𝑖 is selected as the next training point, 
 

lim
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)→0

�Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

��1 −Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

��� = 0 (61) 

 
Let 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠′ denote the stochastic estimator of failure probability after new training samples are added. If 
𝜌𝜌 �𝑔𝑔�(𝒙𝒙𝑖𝑖),𝑔𝑔��𝒙𝒙𝑗𝑗�� = 0, the optimal learning strategy can be represented as, 
 

𝒙𝒙𝑡𝑡𝑡𝑡∗ = arg max  
𝒙𝒙𝑖𝑖 ∈S

�Var�𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠� − Var�𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠′�� 

= arg max  
𝒙𝒙𝑖𝑖 ∈S

1
𝑁𝑁𝑠𝑠𝑠𝑠2

��Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑘𝑘 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑘𝑘) �Φ�

𝜇𝜇𝑔𝑔�(𝒙𝒙𝑘𝑘 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑘𝑘) �

𝑁𝑁𝑠𝑠𝑠𝑠

𝑘𝑘=1

− ��Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑘𝑘 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑘𝑘) �Φ�

𝜇𝜇𝑔𝑔�(𝒙𝒙𝑘𝑘 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑘𝑘) �

𝑁𝑁𝑠𝑠𝑠𝑠

𝑘𝑘=1

− Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�Φ�
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

���  

= arg max  
𝒙𝒙𝑖𝑖 ∈S

Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�Φ�
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖 − 𝑡̂𝑡)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

� , 𝑖𝑖 = 1,2, …𝑁𝑁𝑠𝑠𝑠𝑠 (62) 
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This result shows that the learning strategy without considering Kriging correlation tends to select points 
with the highest contribution to the variance of 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. The method to adaptively estimate 𝑡𝑡 is summarized in 
Algorithm 4. Note that 𝑡̂𝑡 changes in each iteration. The stopping criterion for dynamic learning can be set 
based on the variance of 𝑝𝑝𝑘𝑘(𝑡̂𝑡) as follows, 
 

lim
𝛤𝛤= 𝜎𝜎𝕌𝕌𝜇𝜇𝕌𝕌

≤𝛤𝛤𝑡𝑡ℎ𝑟𝑟→0
(𝑡̂𝑡 ≅ 𝑡𝑡 ) (63) 

 
where 𝛤𝛤 is the stopping index and 𝛤𝛤𝑡𝑡ℎ𝑟𝑟 is the corresponding threshold. Initially, when the number of 
training points is insufficient, 𝑡̂𝑡 will not be accurate to satisfy 𝑡̂𝑡 ≅ 𝑡𝑡. However, 𝑡̂𝑡 will asymptotically 
converge to 𝑡𝑡 as new training points accumulate near the limit state 𝑔𝑔�(𝒙𝒙) − 𝑡̂𝑡 = 0. Therefore, two 
adaptive processes exist in the proposed method. First, the uncertainty or the variance at  𝑡̂𝑡 (i.e., 𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖, 𝑡̂𝑡)) 
is reduced adaptively by adding training samples using the proposed Dynamic Learning Function. 
Second, the estimated intermediate failure threshold 𝑡̂𝑡 adaptively converges to the true one (i.e. 𝑡𝑡𝑖𝑖 in Eq. 
(13)) via the addition of the new training points.  
 

Algorithm 4. Searching for 𝑡𝑡𝑖𝑖 using DLF and CFPC 
1. Prepare the initial training points 𝒙𝒙𝑖𝑖𝑖𝑖. Keep 𝒙𝒙𝑖𝑖𝑖𝑖 and 𝑔𝑔(𝒙𝒙𝑖𝑖𝑖𝑖) the same for all simulations. 

Also, generate candidate design samples 𝑆𝑆𝑘𝑘 from the subset 𝛺𝛺𝑘𝑘, if 𝑘𝑘 ≥ 2. 
2. Construct the Kriging model 𝑔𝑔�𝑘𝑘(∙) based on the current set of training points. 
3. Build the CFPC according to Eq. (44). 
4. Search for 𝑡̂𝑡 according to Eq. (51). 
5. Search for the next training point 𝒙𝒙𝑡𝑡𝑡𝑡∗  using Dynamic Learning Function according to Eq. 

(59) and update the set of training points. 
6. Check if the stopping criterion is satisfied according to Eq. (63): 

(a) If satisfied, go to step 7. 
(b) If not satisfied, estimate the response for 𝒙𝒙𝑡𝑡𝑡𝑡∗  and return to step 2. 

7. Output 𝑡̂𝑡. 
 
In the estimation of failure probability using RASA, two stages are distinguished: (a) estimation of the 
next failure threshold when 𝑡̂𝑡 > 0 and (b) estimation of the probability of failure in the last subset when 
𝑡̂𝑡 < 0. The analyses for the first case can be conducted according to Algorithm 4. However, the failure 
probability in the last subset, 𝑃𝑃�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1�, can be estimated as, 
 

𝑃𝑃�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1� = 𝑃𝑃(𝑔𝑔(𝒙𝒙) ≤ 0) , 𝒙𝒙 ∈ 𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1 (64) 
 
where 𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠 is the final subset. In this case, the failure probability can be estimated following Algorithm 3. 
It should be noted that training samples generated for the previous subsets are not close to the new limit 
state for the current subset, except for the case in the last subset. Therefore, their contribution to 
enhancing the accuracy of the Kriging model for the next subset is insignificant. Moreover, considering 
these points in the construction of the Kriging surrogate model for the next subsets is computationally 
inefficient and can often lead to high computational demand. Due to these reasons, training samples 
generated for the previous subsets are not used in searching for the next intermediate threshold and only 
the initial training samples, 𝒙𝒙𝑖𝑖𝑖𝑖, are used as the starting set for every subset. The method for estimating 
the conditional failure probability in the last subset follows the same principle of adaptive Kriging-based 
reliability analysis methods such as those in [4], [17]. This process is summarized in Algorithm 5. 
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Algorithm 5. Estimating the conditional failure probability for the last subset 
1. Use training points generated for the last subset in Algorithm 4 and generate candidate 

design samples 𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠−1 from the subset 𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1. 
2. Construct the Kriging model 𝑔𝑔�𝑛𝑛𝑠𝑠𝑠𝑠(∙) based on the current set of training points 𝒙𝒙𝑡𝑡𝑡𝑡. 
3. Estimate the mean 𝜇𝜇𝑔𝑔�𝑛𝑛𝑠𝑠𝑠𝑠(𝒙𝒙), standard deviation 𝜎𝜎𝑔𝑔�𝑛𝑛𝑠𝑠𝑠𝑠(𝒙𝒙), and 𝑃𝑃�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1� for 

𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠−1 with 𝑔𝑔�𝑛𝑛𝑠𝑠𝑠𝑠(∙). 
4. Search for the next best training point 𝒙𝒙𝑡𝑡𝑡𝑡∗  using the learning function in Eq. (59), 

where 𝑡̂𝑡 = 0. Update the set of training samples.  
5. Check if the stopping criterion is satisfied: 

 (a) If satisfied, go to step 7. 
 (b) If not satisfied, estimate the response 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡∗ ) for 𝒙𝒙𝑡𝑡𝑡𝑡∗  and go back to step 3. 

6. Output 𝑃𝑃�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠�𝛺𝛺𝑛𝑛𝑠𝑠𝑠𝑠−1�. 
 
6. Numerical Investigations 
In this section, three examples are investigated to evaluate the computational capabilities of RASA in 
solving computationally demanding reliability problems. The number of random variables for these three 
examples increases from 9 to 30 and to 110 with different levels of nonlinearity in the limit state. By 
controlling 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0, RASA is shown to effectively leverage the available computational capacity to 
arrive at reliable and unbiased estimates of failure probabilities. 
 
6.1 Turbine example with small probability of failure 
The first example is a non-linear problem with the small probability of failure of 1.5 × 10−4 [35], [36]. 
As shown in Fig. 3, the cantilever tube is subject to three types of external forces including shear forces 
𝐹𝐹1 and 𝐹𝐹2, axial force 𝐹𝐹𝑥𝑥 and torsional moment Ft. The probability distribution properties of the involved 
nine random inputs are summarized in Table 1. The performance function is defined as, 
 

𝑔𝑔(𝑥𝑥) = 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 −  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 (65) 
 
where 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 is the strength capacity and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum von Mises stress calculated as, 
 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =  �𝜎𝜎𝑥𝑥2 + 3𝜏𝜏𝑧𝑧𝑧𝑧2 (66) 

 

 
Fig. 3 Cantilever tube and involved variables in Example 1. 
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𝜎𝜎𝑥𝑥 =
𝐹𝐹𝑥𝑥 + 𝐹𝐹1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 + 𝐹𝐹2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2

𝐴𝐴
+
𝑀𝑀𝑀𝑀
𝐼𝐼

(67) 

 
where 𝜃𝜃1 =  5°, 𝜃𝜃2 = 10°, and A is the tube area. Moreover, τzx is the torsional stress, M is the bending 
moment, c is the radius and I is the moment of inertia. These variables are calculated as, 
 

𝑀𝑀 =  𝐹𝐹1𝐿𝐿1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 + 𝐹𝐹2𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 (68) 
𝐴𝐴 =  

𝜋𝜋
4

[𝑑𝑑2 − (𝑑𝑑 − 2𝑠𝑠)2] (69) 

𝑐𝑐 =  
𝑑𝑑
2

(70) 

𝐼𝐼 =  
𝜋𝜋

64
[𝑑𝑑4 − (𝑑𝑑 − 2𝑠𝑠)4] (71) 

𝜏𝜏𝑧𝑧𝑧𝑧 =
𝐹𝐹𝑡𝑡𝑑𝑑
2𝐽𝐽

(72) 

𝐽𝐽 =  2𝐼𝐼 (73) 
 
Table 1. Random variables used in Example 1.  

Random variable Distribution type Parameter 1 Parameter 2 
𝑠𝑠 Normal 5 mm (μ) 0.1 mm (σ) 
𝑑𝑑 Normal 42 mm (μ) 0.5 mm (σ) 
𝐹𝐹1 Normal 3.0 kN (μ) 0.3 kN (σ) 
𝐹𝐹2 Normal 3.0 kN (μ) 0.3 kN (σ) 
𝐹𝐹𝑡𝑡 Normal 90.0 Nm (μ) 9.0 Nm (σ) 
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 Normal 220.0 MPa (μ) 22.0 MPa (σ) 
𝐿𝐿1 Uniform 119.75 mm (lb) 120.25 mm (ub) 
𝐿𝐿2 Uniform 59.75 mm (lb) 60.25 mm (ub) 
𝐹𝐹𝑥𝑥 Gumbel 12.0 kN (μ) 1.2 kN (σ) 

*Note: 𝜇𝜇 and 𝜎𝜎 represent the mean and standard deviation, and lb and ub the lower and upper bounds of random 
variables, respectively. 
 
In the implementation of Algorithm 3, 𝑁𝑁𝑠𝑠𝑠𝑠 = 5000, 𝑝𝑝0 = 0.1, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.05 and the stopping threshold 
𝛤𝛤𝑡𝑡ℎ𝑟𝑟 = 0.005 in Eq. (63) are initially set. Computational details regarding the convergence history of 𝑡̂𝑡𝑖𝑖, 
effects of 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0 as well as the computational performance of this method compared to other 
approaches are elaborated in subsections 6.1.1 to 6.1.4. 
 
6.1.1 Convergence history for intermediate failure thresholds 
To check whether the intermediate thresholds 𝑡𝑡𝑖𝑖s are accurately identified, the true intermediate failure 
thresholds are estimated using the true performance function. The convergence histories for the 
identification of  𝑡̂𝑡𝑖𝑖 are presented in Fig. 4. Moreover, the identified intermediate thresholds 𝑡𝑡𝑖𝑖 and 𝑡̂𝑡𝑖𝑖, and 
the number of new calls to the performance function, Ncall, are summarized in Table 2. To investigate the 
evolution of the CFPC, Fig. 5 shows the shrinkage of the CIs of  𝑡̂𝑡1 as the number of calls to the 
performance function increases. 
 

Table 2. Identified intermediate failure thresholds using g(x)/g�(x)for Example 1. 
Performance 

function 𝑡𝑡1 or 𝑡̂𝑡1(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) t2 or 𝑡̂𝑡2(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑡𝑡3 or 𝑡̂𝑡3(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑡𝑡3 or 𝑡̂𝑡3(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑔𝑔(𝑥𝑥) 54.900 29.87 11.33 −3.80 
𝑔𝑔�(𝑥𝑥) 55.00(50+ 63) 29.80(58) 11.40(67) −3.77(80) 
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As shown in Table 2, the intermediate thresholds estimated using the proposed method are very close 
to those estimated via Subset Simulation. Specifically, the intermediate thresholds based on 5000 samples 
are identified as 𝑡̂𝑡1 = 54.90, 𝑡̂𝑡2 = 29.80, 𝑡̂𝑡3 = 11.40 and 𝑡̂𝑡4 = −3.77, while the true intermediate 
thresholds are 𝑡𝑡1 = 55.00, 𝑡𝑡2 = 29.87, 𝑡𝑡3 = 11.33 and 𝑡𝑡4 = −3.80, respectively. It should be noted that 
the accuracy of 𝑡̂𝑡𝑖𝑖 can be improved by reducing the stopping threshold 𝛤𝛤𝑡𝑡ℎ𝑟𝑟 in Eq. (63). Based on results 
presented in Fig. 4 and 5, the following observations can be drawn:  
• RASA can accurately identify the intermediate failure thresholds 𝑡𝑡𝑖𝑖. The estimated limit states 𝑔𝑔�(𝒙𝒙) =

𝑡̂𝑡𝑖𝑖, 𝑖𝑖 = 1, … ,4 deviate from the corresponding true limit states 𝑔𝑔(𝒙𝒙) = 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1, … 4 for the case where 
only the initial training set is used to construct the Kriging model. However, as the number of training 
samples increases adaptively, the accuracy of the estimated limit states increases. This feature can be 
observed also from the convergence history of  𝑡̂𝑡𝑖𝑖 in Fig. 4, where the estimated thresholds converge 
rapidly to the true thresholds. Deviations of 𝑡̂𝑡𝑖𝑖 from 𝑡𝑡𝑖𝑖 at the early stages (i.e., when Ncall is small) are 
primarily due to the yet inadequate accuracy of the Conditional Failure Probability Curve that 
generates large variance for the intermediate failure probability 𝑝𝑝𝑜𝑜, as shown in Fig. 5 (a) and (b).  

  
         (a)          (b) 

  
   (c)   (c) 

Fig. 4. Convergence history for the estimated intermediate failure threshold for (a) 𝑡̂𝑡1, (b) 𝑡̂𝑡2, (c) 𝑡̂𝑡3, and 
(d) 𝑡̂𝑡4. 

 
• Uncertainty of 𝑝𝑝𝑜𝑜 is significantly reduced as the number of strategically selected training points via the 

proposed Dynamic Learning Function increases. As shown in Fig. 5, the confidence interval for the 
estimated intermediate failure probability 𝑝̂𝑝𝑜𝑜 tightens as 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 increases. In this example, 𝑡̂𝑡1 is 
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identified as 56.65, 55.64, 55.25 and 55.00 for 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 50, 70, 90 and 110, respectively. This quantity 
finally convergences to 55.00, while 𝑡𝑡1 = 54.90. After the forth intermediate failure threshold 𝑡̂𝑡4 is 
found to be smaller than zero, the conditional failure probability 𝑃𝑃(𝛺𝛺𝑚𝑚|𝛺𝛺𝑚𝑚−1) in the last subset is 
accurately estimated using Algorithm 3.  

 

  
         (a)          (b) 

  
        (c)         (d) 

Fig. 5. Illustration of Conditional Failure Probability Curve for identifying t1 with (a)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 30, (b) 
 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 50,  (c)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 70,  and  (d)  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 110. 

 
6.1.2 Adjustment of 𝑵𝑵𝒔𝒔𝒔𝒔 and 𝒑𝒑𝟎𝟎 in RASA 
Following the steps presented in Algorithm 3, the number of candidate design samples in the subsets 
needs to be increased. According to Eq. (16) and (19), the minimum required number of candidate design 
samples for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑁𝑁𝑠𝑠𝑠𝑠 are estimated as 2.30 × 106 and 1.27 × 104, respectively. Matrix operations 
among other computations that are involved in Kriging-based MCS techniques such as AK-MCS [37], 
EGRA [38], REAK [39] limit the maximum number of candidate samples that can be considered using 
regular PCs (e.g., Intel(R) Core(TM) i5-6300HQ CPU, RAM 16.00GB). To effectively utilize the 
available computational capacity, we have set 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 6 × 104. For Subset Simulation, the new number 
of candidate design samples is set as 1.3 × 104, which means that 8000 extra candidate design samples 
need to be added for the previous subsets. Due to this update in the candidate design samples, the 
intermediate failure thresholds also need to be updated. Results for the updated intermediate failure 
thresholds and the final estimates of the failure probability are summarized in Table 3. 
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Table 3. Intermediate failure thresholds using updated candidate design samples for Example 1.  
𝑁𝑁𝑠𝑠𝑠𝑠 𝑡̂𝑡1 𝑡̂𝑡2 𝑡̂𝑡3 𝑡̂𝑡4 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 

0.5 × 104 55.00 29.80 11.40 −3.77 1.744 × 10−4 
1.3 × 104 55.34 28.26 −11.15 −3.66 1.792 × 10−4 

 
Results in Table 3 are based on the requirement that 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.05, which may not be sufficiently small 
to yield a reliable estimate of failure probability. For this purpose, in some cases, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 is set as small as 
0.015 to obtain a more stable estimate of failure probabilities. For this case according to Eq. (16) and (19), 
the minimum required number of candidate design samples for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑁𝑁𝑠𝑠𝑠𝑠 are estimated as 2.55 × 107 
and 1.41 × 105, respectively. However, 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥 = 6 × 104 is applied to this problem, which is smaller 
than the required value of 1.41 × 105. Therefore, the value of p0 is adjusted to satisfy the required 
𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. According to Eq. (24), the minimum value of 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is estimated as 0.0136, which means that a 
p0 exists such that the estimated 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is equal to 0.015. Moreover, Fig. 6 illustrates the relation 
between 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 and 𝑝𝑝0 based on Eq. (25). According to Fig. 6,  𝑝𝑝0 = 0.43 can satisfy the requirement 
that 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.015 with 𝑁𝑁𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. 
 

 
Fig. 6 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 vs 𝑝𝑝0 in Example 1. 

 
Table 4. Intermediate failure thresholds using the updated 𝑝𝑝0 for Example 1. 

𝑝𝑝0 𝑡̂𝑡1 𝑡̂𝑡2 𝑡̂𝑡3 𝑡̂𝑡4 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 
0.1 55.34 28.26 −11.15 0.452 1.792 × 10−4 

0.43 81.62 64.31 52.06 42.12 1.828 × 10−4 
 
Hence, the number of subsets is increased from 4 to 11, which means that the corresponding intermediate 
failure thresholds are also updated. The comparison of the first four intermediate failure thresholds for 
𝑝𝑝0 = 0.1 and 0.43 are summarized in Table 4. According to Theorem 2, 𝒯𝒯(𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟 ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟 ) is estimated as 
0.0236 for this set, which means that Algorithm 3 needs a very small portion of the number of candidate 
design samples needed for Algorithm 1. This capability facilitates analysis of problems that would 
otherwise require high computational resources. 
 
6.1.3 Computational performance of the proposed method 
The computational performance of some of the state-of-the-art methods for Example 1 is summarized in 
Table 5. For this problem with 9-random inputs and the level of failure probability at 1.801 × 10−4 based 
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on the pure MCS simulation, algorithms such as EGRA, AK-MCS, ISKRA, and REAK would require 
107samples to achieve 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.015. This very large number is not computationally feasible to 
analyze using most regular PCs. The results here are compared with two other Subset Simulation-based 
method including AK-SS [26] and the method proposed by Ling et al. [40], which hereafter is referred to 
as AK-SS (Ling et al.).  
 
Table 5. The comparison of computational performances among EGRA, AK-MCS, ISKRA, REAK, AK-
SS, AK-SS (Ling et al.) and RASA.  

Methodologies 𝑃𝑃�𝑓𝑓  𝑁𝑁�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ECC Accounts 
for COV 

Is the estimate 
reliable 

Unbiased 
estimator  

MCS 1.801 × 10−4 1 × 107 - - - - 

EGRA - - Yes No Depends on Nmcs Yes 

AK-MCS - - Yes Yes Depends on Nmcs Yes 

ISKRA - - Yes No Depends on Nmcs No 

REAK - - Yes Yes Depends on Nmcs No 

AK-SS 
(po = 0.1& Nss =

10000) 
1.477 × 10−4 >500 

Depends 
on po and 

Nss 
Yes 

Depends on the 
definition of 

proposal sampling 
for MCMC 

No 

AK-SS(Ling) 
(po = 0.1& Nss =

13000) 
1.639 × 10−4 412 

Depends 
on po and 

Nss 
No 

Depends on the 
definition of 

proposal sampling 
for MCMC 

No 

RASA 1.828 × 10−4 318 No Yes Depends on Nss Yes 

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R) 
Core(TM) i5-6300HQ CPU, RAM 16.00GB. 
 
Compared to other Kriging-based Subset Simulation techniques e.g., [26], [40], three major advantages of 
RASA stand out. First, failure probability analysis using RASA is not hampered by the number of random 
inputs and the probability of the rare event. By adaptively adjusting the value of 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0, RASA takes 
advantage of its algorithmic capability to leverage available computational resources to solve complex 
problems. This feature is unique to RASA and is not present in other methods in the literature. For 
example, the method proposed by Ling et al. [40] neglects the check needed for 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠. Hence, it can 
easily lead to high computational demand or a large deviation of the estimated failure probability from the 
true value if 𝑁𝑁𝑠𝑠𝑠𝑠 is set inappropriately. Second, due to the quick and effortless analysis of performance 
functions using Kriging surrogate models, the conditional failure probabilities can be quickly estimated 
through the surrogate-based MCS and not the MCMC technique. This approach can be used to derive 
unbiased estimates for conditional failure probabilities and improve the accuracy of the results. For 
example, the probability of failure estimated through the AK-SS and the method by Ling et al. [40] are 
1.4 × 10−4 and 1.639 × 10−4, which are not close to the one estimated through the pure MCS. This is in 
part due to the effect of using MCMC to generate samples in the subsets, which requires sophisticated 
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definitions of the proposal (jumping) sampling function. Finally, RASA can not only provide the 
convergence history of the estimated intermediate failure thresholds, but also their corresponding 
confidence intervals.  
 
6.2 A truss structure with 30 input variables 
In the second example, the performance of RASA is investigated for structural reliability analysis of a 23-
bar truss with 30 input random variables. These variables represent uncertainties in member sizes and 
properties as well as external loads. The configuration of the structure is shown in Fig. 7. In this figure, 1 
to 12 denote the 12 types of bars in the truss. Moreover, the horizontal and diagonal bars are 4 m and 2√2 
m long, respectively. The performance function of this example is defined as, 
 

𝑔𝑔(𝑥𝑥) = 0.15− |∆|, (35) 
 
where ∆ is the vertical displacement at the midpoint of the truss. The structure is subject to six vertical 
point loads, V1 to V6. These loads follow Gumbel distributions. A1 − A12 and E1 − E12 are random 
variables representing the cross-section area and Young’s modulus of bars, respectively, as shown in Fig. 
7. Probability distributions of these 30 random variables are presented in Table 6. For this example, 50 
initial training samples are generated, the number of candidate design samples for each subset is set as 
5000, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.015 and 𝛤𝛤𝑡𝑡ℎ𝑟𝑟 is set as 5 × 10−3. Analysis results for this example are summarized in 
Table 7. Moreover, the convergence history of estimated intermediate thresholds are shown in Fig. 8. 
 
6.2.1 Convergence history of intermediate failure thresholds 
According to the results summarized in Table 7, RASA is very efficient in identifying the intermediate 
thresholds 𝑡𝑡𝑖𝑖. In this example, 𝑡̂𝑡1, 𝑡̂𝑡2 and 𝑡̂𝑡3 are identified as 0.01681, 0.0052 and -0.0044, respectively, 
which are very precise considering the true values 𝑡𝑡1 = 0.01679, 𝑡𝑡2 = 0.00528 and 𝑡𝑡3 = −0.00446. 
Initially, 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is roughly estimated as 2.81 × 10−3 as shown in Table 7. According to the convergence 
history, the number of calls to the performance function increases significantly for this example compared 
to the problem with small number of random variables. Specifically, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is equal to 238, 349 and 327 
for identifying the three intermediate failure thresholds. 
 
 

 
Fig. 7 The truss with 30 random variables in Example 2. 
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         (a)          (b) 

 
   (c) 

Fig. 8. Convergence history of estimated intermediate failure threshold for (a) 𝑡̂𝑡1, (b) 𝑡̂𝑡2, and (c) 𝑡̂𝑡3 for 
Example 2. 

 
Table 6. Random variables in Example 2. 
Random variable Distribution Mean COV 

V1 − V6 Gumbel 6.5 × 104(N) 0.1 
A1 − A3 Lognormal 2 × 10−3 (m2) 0.1 
A4 − A6 Lognormal 1.5 × 10−3 (m2) 0.1 
A7 − A9 Lognormal 1.2 × 10−3 (m2) 0.1 

A10 − A12 Lognormal 1.0 × 10−3 (m2) 0.1 
E1 − E3 Lognormal 2.1 × 1011 (N/m) 0.1 
E4 − E6 Lognormal 2.0 × 1011 (N/m) 0.1 
E7 − E9 Lognormal 1.8 × 1011 (N/m) 0.1 

E10 − E12 Lognormal 1.6 × 1011 (N/m) 0.1 
*COV denotes the coefficient of variation. 
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Table 7. Identified intermediate failure thresholds using 𝑔𝑔(𝑥𝑥)/𝑔𝑔�(𝑥𝑥)for Example 2. 
Performance 

function 
𝑡𝑡1 or 𝑡̂𝑡1 
( 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑡𝑡2 or 𝑡̂𝑡2 
( 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑡𝑡3 or 𝑡̂𝑡3 
( 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 

𝑔𝑔(𝑥𝑥) 0.01695 0.0058 −0.0037 2.81 × 10−3 

𝑔𝑔�(𝑥𝑥) 0.0169 
(50 + 188) 

0.0058 
(48 + 351) 

−0.0037 
(80 + 247) 2.81 × 10−3 

 
6.2.2 Adjustment of 𝑵𝑵𝒔𝒔𝒔𝒔 and 𝒑𝒑𝟎𝟎 in RASA 
According to Eq. (16) and (19), the minimum required number of candidate design samples for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑁𝑁𝑠𝑠𝑠𝑠 are estimated as 2.55 × 107 and 1.58 × 106 for this case, respectively. Following the same steps for 
the previous example, the number of candidate design samples in the subsets needs to be increased. 
According to Eq. (16) and (19), the minimum required number of candidate design samples for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑁𝑁𝑠𝑠𝑠𝑠 are estimated as 2.30 × 106 and 1.27 × 104, respectively. Based on a few experiments, it is realized 
that the maximum number of candidate design samples that can be handled by the considered PC is about 
𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 5 × 104 for this problem. The new 𝑁𝑁𝑠𝑠𝑠𝑠 cannot guarantee 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟, therefore, the value 
of 𝑝𝑝0 should be adjusted to leverage the available computational capacity such that this condition can be 
satisfied. According to Eq. (24), the minimum value of 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 that can be reached is 0.0109. This result 
subsequently indicates that a 𝑝𝑝0 exists that yields the estimated 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 of 0.015.  
 

 
Fig. 9 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 vs 𝑝𝑝0 in Example 2. 

 
Fig. 9 illustrates the relation between 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 and 𝑝𝑝0 based on Eq. (25). According to Fig. 9,  𝑝𝑝0 = 0.3 
can satisfy the requirement that 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.015 with 𝑁𝑁𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. Hence, the number of 
subsets is increased from 3 to 5, which means the corresponding intermediate failure thresholds are also 
updated. The comparison of the first three intermediate failure thresholds for 𝑝𝑝0 = 0.1 and 0.3 are 
summarized in Table 8. 
 
Table 8. Intermediate failure thresholds using updated candidate design samples for Example 2.  

𝑁𝑁𝑠𝑠𝑠𝑠 𝑝𝑝0 𝑡̂𝑡1 𝑡̂𝑡2 𝑡̂𝑡3 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 
0.5 × 104 0.1 0.0169 0.0058 −0.0037 2.81 × 10−3 
5 × 104 0.3 0.0243 0.0162 0.0089 2.77 × 10−3 
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6.2.3 Computational performance compared to other methods  
Due to the strict requirement of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.015, methods such as AK-MCS [17], EGRA [38] and REAK 
[4] that rely on large pools of candidate design samples (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 2.55 × 107) fail to perform well for this 
example with 30 random variables. Two methods including AK-SS [26] and the method proposed by 
Ling et al. [40] are applied to this problem and compared with the proposed method. Simulation results 
for Example 2 are summarized in the Table 9. The probability of failure estimated through RASA is 
found to be very close to the estimate by MCS. This accuracy stems in part from the unbiased property of 
the proposed estimator as proved in Theorem 1. On the other hand, AK-SS and the method by AK-SS 
(Ling et al.) fail to guarantee an accurate estimate of the failure probability. For example, the estimated 
failure probability can be unreliable if the initial number of candidate design samples is smaller than 
5 × 104, and fails to satisfy the requirement that the COV of estimated failure probability should be 
smaller than 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟. The relative errors in failure probability estimates by AK-SS, AK-SS (Ling et al.) 
and RASA are 15.3%, 10.2% and 1.1%, respectively. However, RASA requires a higher number of calls 
to the performance function compared with the two other approaches. Generally, RASA is more accurate 
in terms of the final estimated failure probability. It should be noted that in reliability problems, meeting a 
target accuracy very often supersedes lowering the computational demand, as the implications of incorrect 
decisions based on inaccurate reliability estimates can be significant. 
 
Table 9. The comparison of computational performances of AK-SS, AK-SS (Ling et al.) and RASA for 
Example 2.  

Methodologies  𝑁𝑁�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 ECC Account 
for COV 

Is the 
estimate 
reliable 

Unbiased 
estimator  

MCS 1 × 108 2.74 × 10−3 - - - - 
AK-SS 

(𝑝𝑝𝑜𝑜 = 0.1& 𝑁𝑁𝑠𝑠𝑠𝑠 =
10000) 

1322 2.32 × 10−3 Depends on 
𝑝𝑝𝑜𝑜 and 𝑁𝑁𝑠𝑠𝑠𝑠 

Yes 
Depends on 
definition of 

MCMC 
No 

AK-SS(Ling) 
(𝑝𝑝𝑜𝑜 = 0.1& 𝑁𝑁𝑠𝑠𝑠𝑠 =

10000) 
1124 2.46 × 10−3 Depends on 

𝑝𝑝𝑜𝑜 and 𝑁𝑁𝑠𝑠𝑠𝑠 
No 

Depends on 
definition of 

MCMC 
No 

RASA 1536 2.77 × 10−3 No Yes Depends on 
𝑁𝑁𝑠𝑠𝑠𝑠 

Yes 

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R) 
Core(TM) i5-6300HQ CPU, RAM 16.00GB. 
 
6.3 A building example with 110 random variables 
The third example investigates a large frame structure with 110 input random variables. This structure 
consists of 35 members denoted by the circled numbers from 1 to 35 as shown in Fig. 10, and is subjected 
to five external loads, 𝑃𝑃1 − 𝑃𝑃5. The performance function of this example is defined as, 
 

𝑔𝑔(𝑥𝑥) = 0.06− |∆|, (74) 
 
where ∆ is the horizontal displacement at the right-top point of this frame (Fig. 10). E1 − E35, I1 − I35 
and A1 − A35 are the Young’s modulus, moments of inertia and cross-section areas of the 35 beams and 
columns, respectively. Probability distributions of these 110 random variables are presented in Table 10. 
For training Kriging models, 50 initial training samples are generated. The initial number of candidate 
design samples for each subset is set as 5000, and 𝛤𝛤𝑡𝑡ℎ𝑟𝑟 is set as 5 × 10−3. The Initial estimate of the 
failure probability for this example is 2.89 × 10−3. Results of this analysis are summarized in Table 11.  
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Fig. 10 The frame structure with 110 random variables in Example 3. 

 
Table 10. Random variables in Example 3. 

Random variable Distribution Mean COV 
P1 − P5 Gumbel 6.5 × 104 (N) 0.1 
E1 − E4 Lognormal 2.1 × 107(N/m) 0.1 
E5 − E20 Lognormal 1.8 × 107(N/m) 0.1 
E21 − E23 Lognormal 1.6 × 107(N/m) 0.1 
E24 − E35 Lognormal 1.4 × 107(N/m) 0.1 

I1 − I4 Lognormal 1.5 × 10−2(m4) 0.1 
I5 − I20 Lognormal 1.2 × 10−2(m4) 0.1 
I21 − I23 Lognormal 0.9 × 10−2(m4) 0.1 
I24 − I35 Lognormal 0.7 × 10−2(m4) 0.1 
A1 − A4 Lognormal 4.0 × 10−1(m2) 0.1 
A5 − A20 Lognormal 3.2 × 10−1(m2) 0.1 
A21 − A23 Lognormal 2.7 × 10−1(m2) 0.1 
A24 − A35 Lognormal 2.3 × 10−1(m2) 0.1 

 
Fig. 11 shows the convergence history of the estimated intermediate thresholds 𝑡̂𝑡𝑖𝑖. Specifically, the 
identified intermediate thresholds 𝑡̂𝑡1, 𝑡̂𝑡2 and 𝑡̂𝑡3 are exactly the same as the true ones 𝑡𝑡1 = 0.0060, 𝑡𝑡2 =
0.0018 and 𝑡𝑡3 = −0.0019. However, considering Eq. (20), 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is estimated as 0.0639. According to 
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Algorithm 3, the minimum required 𝑁𝑁𝑠𝑠𝑠𝑠 is 9.07 × 104, if 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 is set as 0.05. However, 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 is 
evaluated and set as 1 × 104 for a regular computer such as the one specified earlier in this paper. 
According to Eq. (24) for this 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, the minimum 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 that RASA can reach is 0.024, which is also 
illustrated in Fig. 12. Thus, 𝑝𝑝0 is set to 0.08 to satisfy the requirement of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.05. Moreover, the 
updated intermediate failure probability thresholds are summarized in Table 12. As p0 has changed from 
0.1 to 0.08, the estimate probability of failure 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 is reevaluated as 3.013 × 10−3 with the corresponding 
𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 = 0.0451. 
 

  
         (a)          (b) 

 
   (c) 

Fig. 11. Convergence history of intermediate failure thresholds for (a) 𝑡̂𝑡1, (b) 𝑡̂𝑡2, and (c) 𝑡̂𝑡3 in Example 3 
starting with 50 initial training samples (𝑝𝑝0 = 0.1 𝑁𝑁𝑠𝑠𝑠𝑠 = 5000). 
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Fig. 12 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 vs 𝑝𝑝0 in Example 3. 

 
Table 11. Identified intermediate failure thresholds using 𝑔𝑔(𝑥𝑥) and 𝑔𝑔�(𝑥𝑥) for Example 3. 

Performance 
function 𝑡𝑡1 or 𝑡̂𝑡1(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑡𝑡2 or t̂2(Ncall) 𝑡𝑡3 or 𝑡̂𝑡3(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 

𝑔𝑔(𝑥𝑥) 0.0060 0.0018 −0.0019 2.932 × 10−3 
𝑔𝑔�(𝑥𝑥) 0.0060(50 + 137) 0.0018(194) −0.0019(196) 2.932 × 10−3 

 
Table 12. Intermediate failure thresholds using updated 𝑁𝑁𝑠𝑠𝑠𝑠 and 𝑝𝑝0 for 
Example 3. 

𝑝𝑝0 𝑡𝑡1 or 𝑡̂𝑡1 𝑡𝑡2 or 𝑡̂𝑡2 𝑡𝑡3 or 𝑡̂𝑡3 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 
0.1 0.0060 0.0018 −0.0019 2.932 × 10−3 

0.08 0.0055 0.0012 - 3.013 × 10−3 
 
For problems with a large number of random inputs, identification of accurate hyperparameters can be a 
challenge. To examine the computational performance of the method and the change in failure probability 
estimate for a different number of candidate design samples, the analysis results and the convergence 
history of the method with 150 initial training points are summarized in Table 13 and Fig. 13. It is shown 
that the intermediate failure threshold in the first subset converges very fast to the true one due to the 
large information provided by the initial training samples. However, for the rest of the intermediate 
failure thresholds, results follow a similar trend to the case with 50 initial training samples as shown in 
Fig. 11. It is recommended to start with a sufficient number of initial training samples e.g., 𝑛𝑛𝑖𝑖𝑖𝑖 > 𝑁𝑁𝑑𝑑  to 
guarantee that the problem is not ill-conditioned. Results in Tables 11-13 point to high capabilities of 
RASA in handling high-dimensional reliability problems. By controlling the number of candidate design 
samples generated in each subset, RASA can successfully estimate the probability of failure without 
requiring sensitivity analysis or other dimension-reduction methods. 
 

Table 13. Identified intermediate failure thresholds using 𝑔𝑔(𝑥𝑥)/𝑔𝑔�(𝑥𝑥) with 110 initial training 
samples for Example 3. 
Performanc
e function 𝑡𝑡1 or 𝑡̂𝑡1(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑡𝑡2 or 𝑡̂𝑡2(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑡𝑡3 or 𝑡̂𝑡3(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑃𝑃�𝑓𝑓𝑠𝑠𝑠𝑠 

𝑔𝑔(𝑥𝑥) 0.0056 0.0011 −0.0028 3.205 × 10−3 
𝑔𝑔�(𝑥𝑥) 0.0056(150 + 82) 0.0011(165) −0.0028(196) 3.206 × 10−3 
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         (a)          (b) 

 
   (c) 

Fig. 13. Convergence history of intermediate failure thresholds for (a) 𝑡̂𝑡1, (b) 𝑡̂𝑡2, and (c) 𝑡̂𝑡3 in Example 3 
starting with 150 initial training samples (𝑝𝑝0 = 0.08 𝑁𝑁𝑠𝑠𝑠𝑠 = 5000). 

 
Moreover, the computational results for RASA, AK-SS and AK-SS (Ling et al.) are summarized in Table 
14. As discussed in section 6.1.3, Kriging-based reliability methods such as EGRA, AK-MCS, and REAK 
that need a large pool of candidate design samples can hardly meet the computational limitations for this 
problem. Based on Eq. (16), the required number of candidate design samples should be as large as 
1.4 × 105 for the level of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.05. Direct implementation of crude Kriging-based MCS will 
exceed the computational limit of 𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 1 × 104. Other Kriging-based Subset Simulation methods 
such as AK-SS [26] and the approach by Ling et al. [40] cannot guarantee reliable estimates of failure 
probability.  For example, the estimated failure probability can be unreliable if the initial number of 
candidate design samples is smaller than 1 × 104, and fails to satisfy the requirement that the COV of 
estimated failure probability should be smaller than 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟. In fact, the relative errors in failure 
probability estimates by AK-SS, AK-SS (Ling et al.) and RASA are 26.32%, 9.94% and 1.1%, 
respectively.  
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Table 14. The comparison of computational performance among AK-SS, AK-SS (Ling et al.) and RASA 
for Example 3.  

Methodologies 𝑃𝑃�𝑓𝑓  𝑁𝑁�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ECC Accounts 
for COV 

Is the estimate 
reliable 

Unbiased 
estimator  

MCS 3.017 × 10−3 1 × 108 - - - - 

AK-SS 
(𝑝𝑝𝑜𝑜 = 0.1& 𝑁𝑁𝑠𝑠𝑠𝑠 =

10000) 
2.232 × 10−3 >700 

Depends 
on 𝑝𝑝𝑜𝑜 

and 𝑁𝑁𝑠𝑠𝑠𝑠 
Yes 

Depends on 
the definition 
of proposal 

sampling for 
MCMC 

No 

AK-SS(Ling) 
(𝑝𝑝𝑜𝑜 = 0.1& 𝑁𝑁𝑠𝑠𝑠𝑠 =

10000) 
2.716 × 10−3 421 

Depends 
on 𝑝𝑝𝑜𝑜 

and 𝑁𝑁𝑠𝑠𝑠𝑠 
No 

Depends on 
the definition 
of proposal 

sampling for 
MCMC 

No 

RASA 3.013 × 10−3 523 No Yes Depends on 
𝑁𝑁𝑠𝑠𝑠𝑠 

Yes 

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R) 
Core(TM) i5-6300HQ CPU, RAM 16.00GB. 
 
7. Conclusion 
Metamodel-based reliability analysis methods face significant challenge for computationally demanding 
problems such as high-dimensional or rare event reliability problems. To enable tackling such problems 
using Kriging-based reliability analysis techniques, a novel method called RASA is proposed here, which 
integrates Subset Simulation and Kriging surrogate modeling. The main idea of RASA is to control the 
required computational demand by adaptively adjusting the intermediate failure probabilities and the 
number of candidate design samples in each subset. Toward this goal, two new concepts are proposed in 
this paper to adaptively identify the intermediate failure thresholds: Conditional Failure Probability Curve 
(CFPC) and Dynamic Learning Function (DLF). CFPC and DLF enable the process of adaptively 
identifying the threshold value for each limit state function with corresponding intermediate probability of 
failure. Since the number of candidate design samples in each subset is significantly small compared to 
regular Kriging-based reliability approaches such as AK-MCS, RASA has the capability to handle 
complex reliability problems. Three numerical examples are investigated to examine the application and 
performance of RASA. Results confirm the capabilities of RASA in tackling large, complex reliability 
problems and offering reliable estimates of failure probability.  
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The algorithms and step-by-step implementation approach for the proposed reliability analysis with Subset 
Simulation using adaptive Kriging (RASA) are presented in Algorithms 1 to 5 in the paper. Readers can 
use MATLAB and UQLab Kriging package to implement the algorithms and generate the results 
presented in the paper.  
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