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Abstract

Metamodel-based approaches to reliability analysis, e.g. adaptive Kriging, are computationally challenged
by the complexity of reliability problems, thus limiting the application of these methods to problems that
are low-dimensional or not rare. Here, we propose a reliability analysis approach via integration of subset

simulation and adaptive kriging (RASA) for unbiased estimation of failure probabilities of high-
dimensional or rare event problems. Concepts of Conditional Failure Probability Curves and Dynamic
Learning Function are introduced to decompose the original problem to sub-reliability problems and
adaptively identify intermediate failure thresholds of limit state functions corresponding to the sub-
reliability problems. The reliability decomposition and the establishment of target intermediate failure
thresholds are guided by the available computational capacity; thus, enabling RASA to control the
computational cost associated with the estimation of the intermediate failure thresholds in each subset and
consequently to analyze the reliability of medium to high-dimensional problems or rare events. Three
numerical examples are investigated as benchmark to explore the performance of the proposed method.
Results indicate that the proposed method has high accuracy and has the ability to adjust to available
computational resources.

Key words: Reliability analysis; Surrogate model; Subset Simulation, Adaptive Kriging; Condition
Failure Probability Curve; Dynamic Learning Function,

Nomenclature
C Function of the NJZex Maximum number of Xt Training samples
computational capacity candidate design
samples in Kriging-
based SS
C, Required Computational | p Parameter sets for Xir Next best training samples
storage Kriging surrogate model
COVpmes Coefficient of variation of| p, Intermediate probability | ¥ Vector of the responses
o Ames ; .
Py of failure from Kriging
COVpss  Coefficient of variation of | p, Optimal intermediate Z The Gaussian process
A - .
Py probability of failure
COVipy  Coefficient of variation of | Py Probability of failure B The vector of coefficients
ppnes (ground truth) for Kriging basis
f The Kriging basis ﬁfdi Probability of failure Tinr Stopping criterion
function estimated with threshold
deterministic indicator
F The vector of f peres Probability of failure 7] The vector of
estimated through MCS hyperparameters for
Kriging
g True limit state function mecs Probability of failure 0, pdf of identified
estimated through intermediate failure
Kriging-based MCS thresholds
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J Estimated limit state PfSi Probability of failure Ug The mean value of Kriging
function estimated with stochastic responses
indicator
Ji True sub-limit state Pge Probability of failure p Probability density
function in SS estimated with SS function (pdf)
Ji Estimated sub-limit state ﬁf“ Probability of failure a? Variance of Gaussian
function in SS estimated through Process
Kriging-based SS
I, Indicator based on g Dk Intermediate failure ng The variance of Kriging
probability for SS Responses
I 31' Indicator based on g Pr Intermediate failure 1) pdf of Gaussian
probability for Kriging- distribution
based SS
m Number of samples for r Correlation vector (> cdf of Gaussian
Kriging training distribution
Ngg Number of subsets R The Kriging correlation | Q Probabilistic domain of x
function between two
points
Negs Number of candidate S Pool of generated Qf Failure domain of
desigp samples for any samples in f
algorithm
Ny Number of the dimension | t; True intermediate failure | 0; The ith subsets in Subset
of random variables thresholds Simulation
Nycs Number of samples for t; Estimated intermediate Qq Failure domain of {2
MCS failure thresholds
N Number of candidate X The vector of random
design samples in SS variables

1. Introduction

Reliability analysis has become increasingly essential in various fields of engineering and science. These
analyses are often concerned with the quantitative assessment of the safety of systems. In the processes of
design and manufacturing complex systems such as rockets and their propulsion systems, satellites and
Unmanned Aerial Vehicles, reliability analysis is crucial for considering extreme requirements of mission
success under unpredictable conditions [1]. Reliability analysis is also embedded in the procedure of
‘design by reliability’, which ensures that estimated reliabilities of designed mechanical components and
systems are acceptable [2]. Moreover, safety is a critically important consideration in nuclear engineering,
since the failure of a nuclear power plant may lead to devastating consequences for the society [3].
Another area of interest is the hazard performance of structures and infrastructure systems. These systems
are vulnerable against various hazards such as earthquake, tsunami, flood, and tornado [4]. Reliability
analysis enables analyzing the performance of components and systems in terms of the probability of
failing to meet a prescribed objective considering aleatoric and epistemic uncertainties. Therefore,
estimation of failure probability, here denoted as Py, is indispensable for quantification of risks and design
and risk management of various systems. In this article, Py is commonly defined as:

0

where p(x) is the Probability Density Function (PDF) of the random variables, x, {2 is the domain of x,
0y<o 1s the integration domain where the performance function satisfies g(x) < 0, and I is the indicator

P dx = | 1,p(dx W)

gx)=<o
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function, with I;=1, when g(x) < 0 and I;=0 when g(x) > 0. A number of techniques have been
developed and implemented for estimating reliability or other tasks of uncertainty quantification. These
include, among others, crude Monte Carlo simulation (MCS) [5], [6], importance sampling [7] , Subset
Simulation (SS) [8], first or second order reliability method (FORM & SORM) [9], [10] and surrogate
model-based approaches such as those based on response surface [11], [12], [13], polynomial chaos
expansion [ 14], support vector regression [15], [16], or Kriging [17]-[20].

Kriging-based reliability analysis methods have gained significant attention due to their
computational efficiency and accuracy. Different from other surrogate models that provide only the best
estimate of responses, Kriging model for outputs provide a normal distribution with Kriging mean and
variance. By taking advantage of the stochastic output model, the limit state in reliability problems can be
adaptively refined by strategically enriching the set of training points in the vicinity of the limit state
g(x) = 0. Advancements in Kriging-based reliability analysis are elaborated in [17], [21], [22]. Among
these methods, Efficient Global Reliability Analysis (EGRA) by Bichon et al. [23] and Adaptive Kriging
with Monte Carlo Simulation(AK-MCS) by Echard et al. [17] are widely accepted and used as benchmark
to analyze the performance of other techniques. To enhance sampling strategies for rare events, Echard et
al. [7], Balesdent et al. [24] and Dubourg et al. [25] used importance sampling techniques in association
with adaptive Kriging models. Moreover, studies in [26],[27], and [28] have proposed combining Subset
Simulation and Kriging. Truncating insignificant candidate samples that have small values of probability
density is also shown to be an effective strategy in improving the computational efficiency of Kriging-
based reliability analysis [12], [13], [29]. While past developments enhanced the performance of Kriging-
based reliability analysis in different aspects, these methods still face key challenges. For example,
training a Kriging model becomes extremely computationally demanding or even intractable when the
reliability problems involve a large number of random variables. To obtain reliable estimates for
problems with small failure probability, a very large number of candidate design samples are required.
Significant computational demands are faced in these cases due to complex matrix operations needed for
constructing correlation functions for training and candidate design samples as well as optimization
procedures for estimating hyper-parameters. These limitations for Kriging-based methods have significant
implications for their applicability, as real-world reliability problems are often high-dimensional or have
small failure probability.

To address this gap, a new method called Reliability Analysis using Subset simulation and Adaptive
Kriging (RASA) is proposed in this paper. This approach integrates Kriging surrogate modeling with
Subset Simulation. The main idea behind RASA is to decompose highly computationally demanding or
intractable problems such as high-dimensional reliability problems to a number of sub-reliability
problems each with a controlled number of candidate design samples for adaptive Kriging. This is
accomplished by training Kriging surrogate models based on the candidate design samples in the subsets
via Subset Simulation and not the entire candidate design samples, which is used in regular Kriging-based
reliability analysis. The intermediate failure probability, denoted as p,, in Subset Simulation is
considerably larger than the target failure probability, P¢. The implication is that the required number of
candidate design samples in the subsets is significantly smaller than the total number of candidate
samples in regular Kriging-based MCS. The relatively very small number of candidate design samples in
the subsets offers the Kriging model the capability to tackle computationally demanding reliability
problems such as high dimensional or rare event problems. Moreover, RASA can strategically adjust p,,
and the number of candidate design samples in each subset, denoted as N, to satisfy the requirement of
the coefficient of variation of estimated failure probability, denoted as C OVp;s. If the required threshold of

C OVp;s is not prescribed, RASA can also find the optimal value of p, and Ny, to minimize the coefficient

of variation. However, the most challenging task here is to identify the intermediate failure thresholds in
the process of implementing Subset Simulation based on the information provided by the Kriging model.
Toward this goal, two novel concepts called Conditional Failure Probability Curve (CFPC) and Dynamic
Learning Function (DLF) are proposed in this article. CFPC is a curve that represents the relation between
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the value of intermediate failure threshold and intermediate failure probability with the corresponding
confidence interval. On the other hand, DLF is a learning function to strategically add training points that
can reduce the uncertainty near the identified intermediate thresholds. After the final intermediate failure
threshold is identified to be smaller than zero, conditional failure probability for the last subset is
estimated to complete the RASA algorithm. The proposed reliability analysis method offers the capability
to control the number of candidate design samples throughout the process to completely avoid the
otherwise computational intractability of complex reliability problems. Three numerical examples are
presented in this article to showcase the performance of the proposed method in solving challenging
problems.

The paper is organized in seven sections. In Section 2, the elements of Kriging along with stochastic
indicator-based MCS are briefly reviewed. Section 3 presents an overview of Subset Simulation. In
Section 4, the proposed method RASA is presented along with several theorems and propositions. In
Section 5, Conditional Failure Probability Curves and Dynamic Learning Function with corresponding
computational details are introduced. In Section 6, two examples with different dimensions and failure
probabilities are investigated to examine the applicability and performance of RASA for challenging
problems. Section 7 presents the conclusions of this research.

2. Adaptive Kriging-based Reliability Analysis

2.1 The Kriging elements

The Kriging or the Gaussian Process Regression (GPR), §(x), has been widely used in reliability analysis
for its high accuracy and efficiency [30]. The mathematical form of this model is shown below,

g =F(B,x)+ Z(x) = BTf(x) + Z(x) (2)

where F(f, x) is the regression component representing the general trend of the response and Z(x) is the
stochastic interpolation based on the Gaussian assumption. F (f3, x) can be expanded to f(x) as the
Kriging basis and f8 as the regression coefficients. 87 f (x) often takes ordinary (S,), linear

([30+Z§V:‘11 Bix;) or quadratic (B, + le-v:dl Bix; + Z?]:dl Z?]:di Bijxix;) forms, where N is the dimension of
the random variable x. The ordinary Kriging model is implemented throughout this paper. Moreover,
Z(x) is a Gaussian process with zero mean and covariance matrix as shown below,

Cov (Z(xl),Z(x])) = UZR(xi,xj; 0) (3)

where Cov(-) denotes the operation of covariance, o2 is the process variance or the generalized mean
square error of the regression component, x; and x; are two observations, and R(xl-, Xj; 0) is the
correlation function representing the correlation of the process with hyper-parameter 8. Candidate forms
of these correlation functions include linear, exponential, Gaussian, and Matérn functions, among others.
In this paper, the Gaussian kernel function is implemented, which has the following formulation,

Ng
R(x,%;0) = | [ exp (—0*(xk - x)7) @)
k=1

The hyper-parameter @ can be estimated via maximum likelihood estimation (MLE) or cross validation
[30]. Moreover, the anisotropic Kriging model is adopted in this study, which means that the hyper-
parameter 0 is optimized in each dimension. To keep the consistency with previous studies, the range of
6%in the optimization process is considered as (0,10) [4]. The maximum likelihood estimation of @ can
be presented as,
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1
0 = argmin <|R(xi, x;0')|™ 02> (5)
0’

where m denotes the number of training samples for Kriging. Accordingly, the regression coefficient f3,
and the Kriging estimated mean and variance can be determined as follows [30],

B= (FFR'F)"'F'R™'Y
ug(x) = fT(0)B + 1" ()R (y - F)
05(0) = o?(L =T (@R 'r(x) + F'R'1(x) — fQ)N'F'RFH)(F'R1(x) - f(x)))  (6)

where a2 denotes the process variance calculated as % (y — BF)'R™1(y — BF) and F is the matrix of the
basis function, f(x), evaluated at known training points, i.e. F;; = fj(x;),i=1,2,..,m;j =12, ..,p,
where p is the pth element of the regression term, r(x) is the vector of correlation between known
training points x; and an unknown point x: ; = R(x,x;,0), i = 1,2...m, and R is the autocorrelation
matrix for known training points: R;; = R(xi,xj, 0), i=12,..,m;j=12,..,m The responses from
Kriging follow a normal distribution with Kriging mean p4(x) and Kriging variance Jg (x),

gx) ~ N (1g(x), 2 (%)) (7)

Compared with points that are farther away from the training points, responses of points close to the
training points are expected to have less uncertainty.

2.2 Adaptive Kriging-based reliability analysis

Reliability analysis methods based on adaptive Kriging aim to replace the true limit state function (LSF)
with a Kriging model. The surrogate model is adaptively trained to reach the desired accuracy. The
general procedure of these methods is summarized in Algorithm 1.

Algorithm 1. Adaptive Kriging-based Reliability Analysis

1.  Define initial parameters such as Kriging trends, optimization algorithm types, Generating initial
candidate design samples S with sampling techniques (e.g., Latin Hypercube Sampling (LHS)).

2. Randomly select initial training samples x;, from S and evaluate their responses, g(x¢;).

3. Construct the Kriging model §(x) based on x;, and g(x¢,).

4. Estimate the mean u4(x), standard deviation o(x) and p}”“ for S with §(x) using the
deterministic or stochastic indicator.

5. Search for the next best training points X}, using a learning function and update the set of
training samples X,..

6. Check if the stopping criterion is satisfied:
(a) If satisfied, go to step 7.
(b) If not satisfied, estimate the response g(x},) for xz, and go back to step 3.

7. Output 13}""'5 )

Two indicator functions are available for Kriging-based MCS: the deterministic indicator [17], [31] and
the stochastic indicator [25], [32] (denoted as DI and SI, respectively, hereafter). For DI, the probability
of failure can be estimated as,

1 Nmcs
e =pfi= o L(x), x€S (8)
MCS =1
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where Pf‘” is the estimated failure probability with DI based on the Kriging model. Ny;-s denotes the
number of samples, x; , generated from the probability distribution of random variables and / gc is the
indicator function for DI,

L, ug(x) =<0

[gi(xi) = {0’ llg(xz) >0’ X €S (9)

The estimate of failure probability based on stochastic indicator can be derived as,

1 1 — pg(x)
pmes — psi — E[[U] — z 16} <#>, x; €S (10)
s 77 Nucs Nucs —~ ag(x;) l
Nmcs
U= Z I5(x;),x;, € S (11)

i=1

where 13]5 ! is the estimated failure probability with SI based on the Kriging model, E[-] is the expectation
operator, and | 5i (x;) denotes the indicator function for stochastic indicator,

[— ~ x
(1, with probability & <:g(—i)l)>
I5H(x;) = gt X, €S (12)

—u~(x; ,
0, with probability 1 — & <M>
ag(x;)

where @(x) is the cumulative distribution function (CDF) of the univariate standard normal distribution.
The performance of the SI-based MCS is equivalent to the deterministic classification-based approach

32]. Note that U is a random variable, thus, P£* is the mean value of L according to Eq. (11). In this
f N
McCS

paper, the SI-based MCS is adopted because it has the capability to provide stochastic information for the
estimated failure probabilities.

3. Subset Simulation

By adaptively decomposing the original limit state function into a series of computationally less
demanding LSFs with intermediate failure thresholds, Au and Beck [8] proposed Subset Simulation to
efficiently estimate probabilities of failure. Let’s denote the subsets in Subset Simulation as 2; D (2, D

DAy = Lpand O = ﬂ?fl 12;, where ngg denotes the number of subsets and ()¢ is the failure domain
equivalent to the original LSF. The subset {2; is the failure domain corresponding to the LSF,

02 ={x:g(x) < t;} (13)

where t; is the so-called intermediate failure threshold: t; > t, > -+ > t,,; = 0. An illustration of Subset
Simulation is shown in Fig. 1. The probability of failure can then be estimated as,

Nss Nngs—1
P~ = () =P [ )2 ) =P | | P@nala) (1)
i=1 i=1
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where P(2,) and P(42;,1]£2;) can be estimated using MCS and MCMC with the corresponding limit state
functions g(x) < t;, respectively. The probability of failure can be estimated as,

ngs—1 Nss
pee =Py [ [ P@ala) = [ (15)
i=1 =1

In the implementation of Subset Simulation, the intermediate conditional probability is typically set as:
P(02,:1192;) = py = 0.1. It is shown that the speed of convergence and accuracy are related to the
definition of p,. The steps for implementing Subset Simulation are presented in Algorithm 2.

Algorithm 2. Subset Simulation

1. Generate Ngg samples x;, = 1,... Ngg through the crude MCS and evaluate their responses
g(xi), k =1,... Ngs.

2. i=1

3. (a)Ifi = 1, determine t; such that P(2;) = p,.
(b) If i > 1, determine the intermediate failure thresholds t; such that the conditional probabilities
satisfy P(02;41192;) ~ po.

4. Generate samples in {2; 1 using the Markov Chain Monte Carlo Simulation technique (MCMC),

where i > 1.

i =i+ 1. Return to step 3, if t; > 0; otherwise, continue to step 6.

Estimate the last failure probability p, = P("Qnss |'Qnss_1) for the final subset (2, with t,, = 0.

7.  Estimate the failure probability Pf*.

oW

Failure domain

\Q(: gx) <0

‘__g(x)ztnq =O

T g(x) =t

— gx) =1t

T

Fig. 1 Illustration of safe and failure domains and the limit state g(x) = 0 in Subset Simulation

Safe dom>ﬁ\>

Qs:g(x) >0

4. RASA: The Conceptual Framework

The core idea of RASA is to control the size of the pool of candidate design samples to enable analysis of
computationally very demanding reliability problems such as high-dimensional or rare event problems. In
this paper, high-dimensional problems refer to reliability analysis for limit states that involve 20 or more
random variables (N; = 20). Toward this goal, Subset Simulation is integrated with the Kriging
surrogate model to enhance the computational performance of reliability analysis. Generally, a reliable
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estimate of the probability of failure can be obtained through Algorithm 1. The coefficient of variation of
failure probability, C OVp}ncs, can be determined as,

cov i (16)
P}n“ = chsﬁ;ncs

where N4 denotes the number of candidate design samples. If the target C OVp}ncs is prescribed, the

required computational capacity C, to solve the problem can be expressed as,
Cr = c(Ng, Negs, ) (17)

where N g5 = Ny for Algorithm 1 and N.45 = N for Algorithm 2, p is the set of parameters defining
the Kriging surrogate model, and c(-) denotes the required computational capacity for an algorithm
parameterized by N, N4 and [p. Basically, C,. increases as N; and N4, increase,

CT X Nd’ chs (18)

As N, is typically prescribed, reducing N4 can improve the computational efficiency. However,
reducing N4 can increase C OVp;ncs according to Eq. (16). Therefore, a key task is to design an algorithm

that satisfies the condition COVp ;< COVipy with respect to the prescribed N4, where COVp ; generally

refers to the COV of the probability of failure estimated through any appliable algorithm. Toward this
goal, the next section presents a novel approach to improve the computational efficiency of reliability
analysis with limited computational capacity.

4.1 Proposed RASA method

RASA is aimed at adaptively adjusting N, and p, so that the probability of failure can be estimated with
limited available computationally capacity. First, ﬁfss is roughly estimated based on the initial parameter
sets. Then N, is adaptively updated and adjusted to satisfy the requirement of COVy,.. However, it may
happen that the updated Ngg = NJ¢%* can still not satisfy the condition that C OVp)gs < COVipyp, Where

NIZ%* denotes the max number of candidate design samples that can be carried out and C OVp;S denotes

the COV of the probability of failure estimated through Kriging-based Subset Simulation. Therefore, the
value of p, also needs to be updated in this setting. Hence, the main steps of RASA can be summarized as
adjustment of Ng¢ and p, so that C,. can be controlled subject to the constraint of COVyy,,. Details of the
proposed RASA algorithm are elaborated in Algorithm 3. Due to the fact that not all the training samples
generated in the last subsets can render useful information for the construction of the surrogate model in
the next subsets, only a portion of training samples in previous subsets are selected as the initial training
samples for the next subsets to reduce the computational burden. According to an experimental study, the
portion can be selected as 20%. After p}gs is roughly estimated, Ny, can be updated according to the
following equation (the derivation is presented in section 4.2),

Nss

Ngs = (19)

i=1 COVtzhrﬁk



where ), denotes the intermediate probability of failure in the kth subset estimated through the Kriging
surrogate model. However, Ngg cannot exceed the maximum computational capacity, Nog**. For
Algorithm 3, the minima of C Ofoss can be estimated using the following equation,

pg = arg min COVpss (20)
D0€(0,1) f
s.t.C. < C,

where C,. denotes the algorithmic computational capacity and arg min(-) stands for argument of the
minimum. If Ny, and the intermediate failure probabilities py, k = 1, 2, ..., ny in every subset except the
last one are kept the same, the optimal intermediate failure probability can be determined by the following
equation,

po = arg min COVpss = arg min
Po€(0,1) T pee(o)

Ngs—1 1 — Po p\fgs
= arg min Z +11————
pogE(O,l) [ i=1 Nss“po ( pyss!

= arg min
Po€(0,1)

nssml 1—py Py
+ — (21)
Zi=1 N;;‘Laxpo N;"g,afo?S

Algorithm 3. Reliability Analysis with Subset simulation using Adaptive Kriging (RASA)

1. (a) Define COVyy,., and the initial Ngg and p,.
(b) Generate Ngg samples x;, = 1, ..., Ngs through crude MCS and estimate their responses
g(xr),k=1,..., Ngs.

2. i=1

3. (a)Ifi =1, identify t; using Algorithm 2 such that P(2,) = p,.
(b) If i > 1, determine the intermediate failure thresholds t; using Algorithm 4 such that the
conditional probabilities satisfy P(2;,112;) = po.

4.  Generate samples in (2; through crude MCS (if the probability of failure is not rare) or MCMC

based on the remaining points (i.c., seeds).

[ =i+ 1. Return to step 3 if £ > 0; Otherwise, continue to step 6.

6.  Estimate the intermediate failure probability P = P(42,,_1|42,,) in the last subset £2,, with
t,, = 0 using Algorithm 5.

7. Estimate the failure probability Pfss and C OVpl;ss using Eq. (16) and Eq. (27).
Check
(a) if COVﬁ;S > COVyp,r and Ngg < Ngo®* | increase Ngg using Eq. (19) and go back to step 2.

This step needs to utilize the previous training samples.
(b) if COVp};s > COVypy and Ny = NIZO% 00 to step 9.

(c) if COVpgs < COVpy., output pss.

W

min

9. Estimate p§ with corresponding C OVﬁ;s . Check
(b) if C Ofo]'sfsi" < COVyp,, update p, using Eq. (25) and go back to step 2. This step also needs

to utilize the previous training samples.
(b) else, update p, = pg and repeat step 2-7, and then output Pf“ )
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HSS

where the intermediate probability of failure in the last subset can be estimated as p,, . = prs_l based on
0

the following equation,

po"ss = PF° (22)
Thus,
logPss
N = 09t (23)
logpo

logP3 /i

] where INT[]

denotes the operator that rounds to the nearest larger integer. Hence, Eq. (23) can be further expanded to,

Since ng, is an integer, the total number of subsets can be calculated as nge = INT [

INT logp -11—p, PfSS pfss
po = arg min Z +|1—-———————|/| N3 —————
Po€(0,1) Nmaxpo INT[Z;Z;QJ]— = INT[%]_l
9IPo logpo
Po Po
logPy ]
o INT 1
logP?* 1-py _ Po [“’g”" - B
=argmin|| INT -1 + = 24
o ( [ logpe |~ ) NZ%p, NS @
The corresponding CO Vpss can be estimated as Z?z“l :’_—I;‘E. Moreover, p, can be determined according
SSFo
to the established COVyy,- as,
Po = W (COVipy) (25)
where w1 denotes the inverse of function w, which is defined as,
logﬁfs]
. INT|—2-|-1
~ logPss 1-p, Do [logpo — pss
w(po, P55, Nmax) = [ INT |—| - 1 + __J 26
(Po ss < [ l0gPo ] > NIy Nsr?axpfss (26)

Note that w(+) is typically not a monotonic function, thus, there is a potential that more than one p, can
satisfy Eq. (26). Therefore, one can select a py such that ngg can be minimized. The advantages of the
proposed RASA algorithm are discussed in the next subsections. Moreover, the approach to precisely
identify the intermediate failure thresholds are elaborated in Section 5 by introducing two innovative
concepts called Conditional Failure Probability Curve and Dynamic Learning Function.

4.2 Unbiased property of the stochastic estimator

Classical Subset Simulation tends to obtain samples in the failure region associated with P (£2;,4]2;)
using Markov Chain Monte Carlo simulation (MCMC). This approach is motivated by the fact that
generating samples located in the posterior failure region through brute MCS can be computationally very
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demanding. The MCMC technique facilitates fast generation of samples that follow the posterior
distribution by introducing a proposal density also called ‘jumping distribution’. However, the obtained
samples are often biased due to the mutual correlation of Markov Chains. Mitigating this effect would
require proper definition of the parameters of the proposal density, which becomes challenging as the
dimension of the problem increases, thus leaving the potential for the final estimate of failure probability
by this method to be inaccurate. This limitation can be completely avoided if one takes advantage of the
fast analysis speed of surrogate models. Such models enable generation of all candidate design samples in
subsets through brute MCS. Properties of the stochastic estimator in Algorithm 3 for the analysis of
failure probability are explored through the following theorems.

Theorem 1. The estimate of the probability of failure using Subset Simulation through brute MCS is
unbiased with the coefficient of variation of,

COVIS};S = (2 7)

where ng, denotes the total number of subsets, N is the number of generated candidate design samples
in each subset and p;, is the intermediate probability of failure.

Proof: According to [8] , we have,

Nss Nss

PP — P
E P—f =2616]E[ZLZ]]+ z 6i6j6kE[ZiZjZk]+'“ 1_[& E Hzi (28)
i=1

i>) i>j>k i=1

where 8; denotes the COV of p, and z; is calculated as z; = (P, — px)/9;. Since all the samples are
generated through brute MCS and not MCMC, z;s are mutually uncorrelated; therefore E [ZiZj] = 0 for
i>j, E [zizjzk] =0fori>j>k,and E []_[?:SS1 Zi] = 0. As a result, the stochastic estimator is unbiased.
Moreover, considering the following equation [8],

S 2 Nss Nss 2 Nss
Pf — P 1
E|— =F z 6iZi + z 6i6jZiZj + 1_[ Sizi = Z 516] E[ZiZj] + o0 (—) (29)
Pf e o] : P Nss
i=1 i>j i=1 i,j=1
it can be shown that
n
Pss _p 2 SS
f =
i=j=1

The following equation can be subsequently derived,

N 2
PSS - P Ngs
E [fp—f] =~ Z o? (31)
r i=1
which means that
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COVIs;s = (32)

Thus, the theorem is proved.

4.3 The computational capability of RASA

This section demonstrates the computational capability of RASA in estimating the probability of failure
relative to regular reliability analysis methods. Moreover, it is shown that for a given constraint on
computational capacity, RASA can analyze the probability of rarer events. These features are
demonstrated via the following theorems.

Theorem 2. Let A}”CS and 13}55 denote the probability of failure by Algorithm 1 and Algorithm 3,
respectively. The superior computational performance of Algorithm 3 relative to Algorithm 1 can be
demonstrated by the following two cases:

(i) If the numbers of candidate design samples for Algorithm 1 and Algorithm 3 are kept the same (i.e.,
Nppes = Ny for both algorithms), Algorithm 3 can analyze events with lower probability compared to
Algorithm 1. In fact, the logarithmic ratio of the smallest failure probability that Algorithm 3 can analyze
relative to Algorithm 1 can be determined as follows,

ﬁss
f
log <A )
mecs

(i1) If the target probability of failure for Algorithm 1 and Algorithm 3 are kept the same, Algorithm 3 has
lower computational demand compared to Algorithm 1 in analyzing the same problem. The ratio of the
required number of candidate design samples via Subset Simulation over crude MCS can be estimated as,

COVZ_N,
log(chsCOVchr + 1) + 1t+sspol

L(PPS, P = 0gpo (33)

Ni p}ncs(l - po)logﬁfss
Npnes po(l - ﬁ;ncs)logpo

T(Nsrs: Nr;.ws) = (34)

where COVyy,,- denotes the threshold of COV for the probability of failure, NJ; and N;,.s denote the
required number of candidate design samples in Algorithm 1 and Algorithm 3, respectively.

Proof: For case (i) considering Eq. (16), the rarest event that can be analyzed using MCS technique with
Ny samples for a COV less than COVyy,- s,

_ 1
mcs — 35
f NpnesCOVZ, + 1 (3%)

Set the intermediate failure probabilities in every subset to be the same p;, = p,, thus, for the Subset
Simulation-based approach, the number of subsets for intermediate failure thresholds can be determined
according to the Eq. (27). Consequently,

_ COVchrNsspo
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Hence, the rarest event that can be analyzed by the Subset Simulation-based approach has the probability
of,

COVtzhrNsspo
pfSS — p(;lss — p() 1-po (37)
Therefore,
COVrNssPo 1 COVrNesPo
L(Pss, pmes) = |lo 1=Po = |log| (N,,..COVZ _ +1 17Po
(P, Pf"es) gl ( », /<chsC0Vt2hr +1> 9| (NpesCOVgy + 1)p,
COV3 N,
_ zog(chscovfhr+1)+—1””p“p° 09P0 (38)
— Po

For case (ii), the required number of candidate design samples for Algorithm 1 can be estimated
according to Eq. (16),

1-ppes
Prrescov,

T —
NTHCS -

(39)

From Eq. (22), (23) and (27), ﬁ}fs is treated as a constant equal to 13}”05 , thus N5 can be estimated as,

_@a- Po)loyp)fs

* = COVZ, pologrs (40)
Therefore,
TN, Neg) = - = (“ —Po)logh f“) (f — P ) _ (= po)loghy® PPeecov,
Nines  \COVijpologpe) " \P["*COVj3,,)  COVypologpo 1 — P
_ e - pologh (41)

po(1 — Pf**)logp,

which proves the theorem.

5. RASA: The Implementation Process

In this section, we present an approach to adaptively identify the intermediate failure thresholds t; in Eq.
(13) through two novel techniques called Conditional Failure Probability Curve and Dynamic Learning
Function. First, CFPC is developed to construct a relation between the defined intermediate failure
thresholds and failure probability in the selected subsets and characterize the associated confidence
intervals. DLF, on the other hand, facilitates effective enrichment of the training set with optimal
candidate design samples.

5.1 Conditional Failure Probability Curve
In the procedure of Subset Simulation, the failure thresholds t; are searched to satisfy the requirement
below,
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P(02;1102) =P(g(x) <t) =py, XEUL (42)
s.t. t; = 0

where p, is the intermediate failure probability. In RASA, we substitute the true performance function
g(x) with the Kriging surrogate model §(x); however, this surrogate model may not ensure precise
identification of the true ¢; in Eq. (13). Thus, an important task of RASA is to search for an estimate of ¢;
here denoted as £; such that £; = t;. Hereafter, {; and t; are noted by t and t, respectively, for the purpose
of notational simplicity. The goal can be achieved by targeted training of the Kriging surrogate model. In
this context, the Conditional Failure Probability Curve can be defined as a function of the variable t*,

p(t") = P(Gx) <t™), t*=0 (43)

where p; (t*) denotes the intermediate failure probability in the kth subset parametrized by the variable
t*, and g(x) is the constructed Kriging surrogate model. The corresponding stochastic indicator can be
defined as,

Nmcs

1 —(ug(x;) — t*)>
Nucs z q)< Ug(xi) ' (44)

i=1

pr(t") =

A conceptual sketch of CPFC is shown in Fig. 2. (a) with impacts of training on the estimation of ¢ shown
in subplots (a) and (b). Note that if £ changes, the estimated failure probability changes accordingly.

Pk
Mean-of pK / pk Mearrof pK
——————————— £n Clofn
T UT [JK A =Fanves tJK
Rl ks A Y o A
’// e /’/, /, .
e - ’ 1
A 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
————— 1 I
~ * ~ *
t t t t
(a) (b)

Fig. 2 Conditional Failure Probability Curves with (a) only initial training samples and (b) sufficient
training samples in the vicinity of the limit state g(x) — £ = 0.

In Fig. 2, the black solid line and red dashed lines denote the mean and confidence interval (CI) of py,
respectively. Here, { is the estimated intermediate failure threshold satisfying the following condition,

P < =py, x€ (45)

However, the identified intermediate failure thresholds £ are not equal to the true value t. Therefore, the
corresponding confidence intervals that reflect the uncertainty of the intermediate failure threshold £
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should be characterized. For an intermediate failure threshold t*, the probability of failure can be
estimated as,

Nmcs

1 —(ug(x) —t*
Herp (Pi(€) = Elpie ()] = 57— Z o (M)
i=1

(46)
Og (x;)
where t¢rp, (pk (t*)) denotes the mean of the conditional failure probability that is parameterized by t*.

According to the Central Limit Theorem (CLT), t* follows a normal distribution with the following
variance,

2 . . 1 pg(x) —t° —(pg(x) — t*)
oFplpe) = V(o) = ) @ (o)) @
The probability model of t* can be represented as,
pr(t*)~N (#cfp(Pk(t*)),Uczfp(Pk(t*))) (48)

where O'szp (pk (t*)) denotes the variance of the conditional failure probability. Thus, the probability that
pr (™) is equal to py can be estimated as,

(po - ucfp(pk(t*)))z

Poe=po (P |tterp (i), 026, (01 () ) = —= exp| — - (49)
Considering the entire probabilistic space, the PDF of t can be determined as,
_ c t* , ? t*
0,(t") = Pk po(Polﬂ £p(Pr(9),026, (Pr( ))) (50)

ffooo Ppr=po (ﬂcfp (pk(t*)),aczfp (pk(t*)))dt*

where 6, denotes the pdf of t. In this article, the intermediate failure threshold £ is determined using MLE
as follows,

t = argmax 0. (t*) = E[t] (51)
t*€R

In Fig. 2, £ can be identified as the point on the X-axis that corresponds to p, on the Y-axis. As the
number of training samples in Kriging surrogate model increases, the variance of the random variable t
decreases, thus £ converges to t. The confidence interval of p, (t*) can be derived using a method
developed by the authors in [33]. Moreover, if the current subset of candidate design samples is denoted
as {2y, the probability of failure using the Kriging model based on stochastic indicator can be estimated
as,

E[U(t*
e = B -

In this approach, for each candidate design sample, x;, Igi (x;,t") follows a Bernoulli distribution,
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Igi(xi' t*)NB (.ub (xi' t*)' O.lg (xir t*)) » X € 'Qi' (53)

—(My(xi)—t*))
og(xi)

and o is the variance of the Bernoulli distribution, where o (x; t*) = uy, (x;, t*)(l — up(x;, t*)). As
U(t™) can be derived as the sum of I, (x;, t*), x; € £2;, it follows that U(t*) follows a Poisson Binomial
distribution (PBD). As shown in [34], the distribution of U(t*) can be denoted as,

where B is the Bernoulli distribution, u,(x;) is the Bernoulli mean with py (x;,t*) = @ (

U(E)~PB (py(t), 0 (¢, B(t") (54)

where uy(t*) and o (t*) are the mean value and variance of U(t*), respectively. B(t*) denotes the
corresponding Bernoulli distribution of each candidate design samples. According to the probabilistic
properties of Poisson Binomial distribution, uy(t*) = Zlivz“l up(x;, t*) and o (t*) =

Zivfl Up (x;, t*)(l — up (x;, t*)). Therefore, the CI of U(t™) with confidence level a can be derived as,

U € <@u31 (%,t*),@ujl (1- %t)) (55)

where @y (*) is the inverse CDF of PBD with mean py(t*) and variance o3 (t*) and « is the confidence
level (e.g. @ = 0.05). Subsequently, according to the Central Limit Theorem, it can be shown that U(t*)
in distribution converges to a normal distribution,

U(Ee) ~ N (uy(e), a3 (t") (56)
The CI of U(t™) can then be obtained as,

U € lpy™) = veou(), py™) + yveou(t)], (57)
X ES

where y.; = 1.96 for the confidence level a = 0.05. The large N, in Kriging-based reliability analysis
problems satisfies the requirement of CLT yielding accurate confidence intervals for U(t*). Accordingly,
the CI of p; (t*) can be derived by integrating Eq. (52) and (57),

1
pr(t*) € N—[Htu(f*) = Yeiou(t), put™) + veiou(tH)], (58)

xiES

One should note that the confidence bounds tighten as the number of training samples in the Kriging
model increases. However, to accurately estimate the true intermediate failure probability thresholds ¢;,
the variance near £ should be significantly reduced. Thus, the training samples are strategically selected in
the vicinity of the limit state §(x) — £ = 0 using a new learning function in RASA. In the next section,
this learning function and an implementation algorithm are introduced to adaptively reduce the
uncertainty of £.

5.2 Dynamic Learning Function
In this section, we introduce Dynamic Learning Function to facilitate strategic selection of best training
samples from candidate design samples in the next subset. As the number of training points increases, the
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width of the CI of py (£) in Eq. (52) (e.g. the distance between the two dashed red lines in Fig. 2)
decreases. Thus, identifying t is equivalent to reducing the uncertainty in the vicinity of the limit state
gx)—t=o.

Theorem 3. Considering p (g (x), g (xj)) = 0, the optimal active learning strategy for identifying the
true intermediate failure threshold ¢ can be expressed as follows,

Xi, = arg max [q) (—(,ug (xo) - t)> P (,ug (xg) - t)] (59)

xen; ag(x;) a5(x;)

where p (g (x), g (xj)) denotes the correlation between the response of §(x;) and g (xj), xi, denotes the
new training samples, and { is the identified intermediate failure threshold in the last iteration.

Proof: After the estimated intermediate failure threshold £ is identified in the current iteration, the
variance of the intermediate failure threshold can be estimated according to the Central Limit Theorem as,

NSS NSS

Var[ ] = Var [—IS‘] = NZ Var[[“] = —Var Zl“(xl) SZS;Var[Igi(xi)]

Nee  [—Hg(x; = 1) (i — t) o o [ —Hg(x; — ) us(x) —1t
Z CI)( O'g(xl) ><1 (D< O'g(xl) )) ZN CD( ig(xl) >¢)< gO'g(xi) >

2 2
Nss Nss

(60)

Note the fact that the following equation always holds true as x; is selected as the next training point,

: —ug(x; — ) —ug(x — D\ _
Ug%}vril)l_)() @ (—Gg = ) (1 - <—Ug = )) =0 (61)

Let Pfs ¥ denote the stochastic estimator of failure probability after new training samples are added. If

p ( Igx), g (xj)) = 0, the optimal learning strategy can be represented as,

= Var[P§t] — Var[P5Y
Xir argj;rirgsx [ ar[ f] ar[ (i ]]

NSS A A
_ i —g(xy — f)) <#g(xk - t))
TR VR kz ? ( EHERI RAPAED
NSS A A~ A ~
_ —ug(x) — t)) <Hg(xk - t)) _ <—.Ug(xi - t)) <#g(xi - f))
2, q’( 5@ )\ )TN\ Tt )P\ et
= aréinelsax O] <_“jg(?;; t)> O] <#g0(;(ix_i)t)> ,i=12,..Ng (62)
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This result shows that the learning strategy without considering Kriging correlation tends to select points
with the highest contribution to the variance of ISfS '. The method to adaptively estimate ¢ is summarized in

Algorithm 4. Note that £ changes in each iteration. The stopping criterion for dynamic learning can be set
based on the variance of py (£) as follows,

lim (t=t) (63)

oy
I <T'tpr—0
wy=Ten

where I is the stopping index and [y, is the corresponding threshold. Initially, when the number of
training points is insufficient, £ will not be accurate to satisfy £ = t. However, £ will asymptotically
converge to t as new training points accumulate near the limit state §(x) — ¢ = 0. Therefore, two
adaptive processes exist in the proposed method. First, the uncertainty or the variance at £ (i.e., o7 (x;, £))
is reduced adaptively by adding training samples using the proposed Dynamic Learning Function.
Second, the estimated intermediate failure threshold £ adaptively converges to the true one (i.e. t; in Eq.
(13)) via the addition of the new training points.

Algorithm 4. Searching for t; using DLF and CFPC
1. Prepare the initial training points x;,,. Keep x;, and g(x;,) the same for all simulations.
Also, generate candidate design samples S;, from the subset 2, if k = 2.
Construct the Kriging model gy () based on the current set of training points.
Build the CFPC according to Eq. (44).
Search for £ according to Eq. (51).
Search for the next training point x;, using Dynamic Learning Function according to Eq.
(59) and update the set of training points.
6. Check if the stopping criterion is satisfied according to Eq. (63):
(a) If satisfied, go to step 7.
(b) If not satisfied, estimate the response for x;, and return to step 2.
7. Output £.

bl ol

In the estimation of failure probability using RASA, two stages are distinguished: (a) estimation of the
next failure threshold when £ > 0 and (b) estimation of the probability of failure in the last subset when
t < 0. The analyses for the first case can be conducted according to Algorithm 4. However, the failure
probability in the last subset, P('Qnss |'Qnss_1)’ can be estimated as,

P(2n, |, 1) =P(g(x) <0), X€ED, 4 (64)

where (2, _is the final subset. In this case, the failure probability can be estimated following Algorithm 3.
It should be noted that training samples generated for the previous subsets are not close to the new limit
state for the current subset, except for the case in the last subset. Therefore, their contribution to
enhancing the accuracy of the Kriging model for the next subset is insignificant. Moreover, considering
these points in the construction of the Kriging surrogate model for the next subsets is computationally
inefficient and can often lead to high computational demand. Due to these reasons, training samples
generated for the previous subsets are not used in searching for the next intermediate threshold and only
the initial training samples, x;,,, are used as the starting set for every subset. The method for estimating
the conditional failure probability in the last subset follows the same principle of adaptive Kriging-based
reliability analysis methods such as those in [4], [17]. This process is summarized in Algorithm 5.
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Algorithm 5. Estimating the conditional failure probability for the last subset

1. Use training points generated for the last subset in Algorithm 4 and generate candidate
design samples S, __; from the subset 2, _;.

2. Construct the Kriging model g,,_ (-) based on the current set of training points x..

3. Estimate the mean ., (x), standard deviation TG (x), and P('Qnss |"Qnss_1) for

Snss—l with gnss QF
4.  Search for the next best training point x;, using the learning function in Eq. (59),
where £ = 0. Update the set of training samples.
5. Check if the stopping criterion is satisfied:
(a) If satisfied, go to step 7.
(b) If not satisfied, estimate the response g(x},) for xz, and go back to step 3.
6. Output P(2,,_ |0 1)

6. Numerical Investigations

In this section, three examples are investigated to evaluate the computational capabilities of RASA in
solving computationally demanding reliability problems. The number of random variables for these three
examples increases from 9 to 30 and to 110 with different levels of nonlinearity in the limit state. By
controlling Ngs and py, RASA is shown to effectively leverage the available computational capacity to
arrive at reliable and unbiased estimates of failure probabilities.

6.1 Turbine example with small probability of failure

The first example is a non-linear problem with the small probability of failure of 1.5 X 10~% [35], [36].
As shown in Fig. 3, the cantilever tube is subject to three types of external forces including shear forces
F; and F,, axial force F, and torsional moment F;. The probability distribution properties of the involved
nine random inputs are summarized in Table 1. The performance function is defined as,

g(x) = Ocap — Omax (65)

where 0., is the strength capacity and 0,4y is the maximum von Mises stress calculated as,

Omax = ,’0'9? + 3T§x (66)

z
y S| F2 F;
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Fig. 3 Cantilever tube and involved variables in Example 1.
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FE, + F;sin8, + F,sinf, Mc
4 T

o = (67)

where 6; = 5°, 6, = 10°, and A is the tube areca. Moreover, T,y is the torsional stress, M is the bending
moment, c is the radius and I is the moment of inertia. These variables are calculated as,

M = F1L1C0591 +F2L2C0592 (68)
T
A= 7 [d? — (d — 25)?] (69)
-2 (70)
T N 2
[ = —[d*—(d—2s)* 71
—[d* = (d - 25)"] (71)
Fid
T =57 (72)
J=2I (73)
Table 1. Random variables used in Example 1.
Random variable Distribution type Parameter 1 Parameter 2
s Normal 5 mm (p) 0.1 mm (o)
d Normal 42 mm (p) 0.5 mm (o)
F; Normal 3.0 kN () 0.3 kN (o)
F, Normal 3.0 kN () 0.3 kN (o)
F; Normal 90.0 Nm (p) 9.0 Nm (o)
Ocap Normal 220.0 MPa (p) 22.0 MPa (o)
Ly Uniform 119.75 mm (Ib) 120.25 mm (ub)
L, Uniform 59.75 mm (Ib) 60.25 mm (ub)

E, Gumbel 12.0 kN (n) 1.2 kN (o)

*Note: u and o represent the mean and standard deviation, and Ib and ub the lower and upper bounds of random
variables, respectively.

In the implementation of Algorithm 3, Ngg = 5000, py = 0.1, COVyy,- = 0.05 and the stopping threshold
Iip = 0.005 in Eq. (63) are initially set. Computational details regarding the convergence history of £;,
effects of Ngg and p, as well as the computational performance of this method compared to other
approaches are elaborated in subsections 6.1.1 to 6.1.4.

6.1.1 Convergence history for intermediate failure thresholds

To check whether the intermediate thresholds ¢;s are accurately identified, the true intermediate failure
thresholds are estimated using the true performance function. The convergence histories for the
identification of {; are presented in Fig. 4. Moreover, the identified intermediate thresholds t; and t;, and
the number of new calls to the performance function, N,j;, are summarized in Table 2. To investigate the
evolution of the CFPC, Fig. 5 shows the shrinkage of the CIs of £ as the number of calls to the
performance function increases.

Table 2. Identified intermediate failure thresholds using g(x)/g(x)for Example 1.
Performance

function tl or f1 (Ncall) t2 or f2 (Ncall) t3 or £3 (Ncall) t3 or £3 (Ncall)
g(x) 54.900 29.87 11.33 —3.80
§(x) 55.00(50+ 63) 29.80(58) 11.40(67) —3.77(80)
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As shown in Table 2, the intermediate thresholds estimated using the proposed method are very close

to those estimated via Subset Simulation. Specifically, the intermediate thresholds based on 5000 samples

are identified as t; = 54.90, £, = 29.80, t; = 11.40 and £, = —3.77, while the true intermediate

thresholds are t; = 55.00, t, = 29.87, t; = 11.33 and t, = —3.80, respectively. It should be noted that
the accuracy of £; can be improved by reducing the stopping threshold I}, in Eq. (63). Based on results
presented in Fig. 4 and 5, the following observations can be drawn:

RASA can accurately identify the intermediate failure thresholds t;. The estimated limit states g(x) =
t;,i = 1, ...,4 deviate from the corresponding true limit states g(x) = t;,i = 1, ... 4 for the case where
only the initial training set is used to construct the Kriging model. However, as the number of training
samples increases adaptively, the accuracy of the estimated limit states increases. This feature can be
observed also from the convergence history of £; in Fig. 4, where the estimated thresholds converge
rapidly to the true thresholds. Deviations of £; from t; at the early stages (i.e., when N,y is small) are
primarily due to the yet inadequate accuracy of the Conditional Failure Probability Curve that
generates large variance for the intermediate failure probability p,, as shown in Fig. 5 (a) and (b).

58 55

. . . . . . 5 N
===t 50 - ==t
57
\‘—/\ 45
e v v v v v . . N

35

55

54

40 60 80 100 120 40 60 80 100 120
Ncall Ncall
(a) (b)

30 15

ts —
25 -t 10 -y

20 5 \\

47 S

40 60 80 100 120 40 60 80 100 120
N, call N, call

(©) (c)

Fig. 4. Convergence history for the estimated intermediate failure threshold for (a) £, (b) ,, (c) £, and
(d) E4.

Uncertainty of p,, is significantly reduced as the number of strategically selected training points via the
proposed Dynamic Learning Function increases. As shown in Fig. 5, the confidence interval for the
estimated intermediate failure probability p, tightens as N,,;; increases. In this example, £; is
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identified as 56.65, 55.64, 55.25 and 55.00 for N,,;; = 50, 70, 90 and 110, respectively. This quantity
finally convergences to 55.00, while t; = 54.90. After the forth intermediate failure threshold £, is
found to be smaller than zero, the conditional failure probability P (£2,,|£2,,—1) in the last subset is
accurately estimated using Algorithm 3.

0.11 . . . 0.11

— Do — Do
——95% CI of p, ——95% CI of p,
0.105 | 0.105 |
<£ 0.1 | <£ 0.1 L
0.095 | 0.095 |
0.09 I I I 0.09 I I .
54 55 56 57 58 54 55 56 57 58
b b
(a) (b)
0.11 . . . 0.11
0.105 | ] 0.105 L
(Q“‘ 0.1 (Q“‘ 0.1
— Do
A ——95% CI of P,
— Do
0.095 | 95% CI Ofﬁo 0.095 L
0.09 . . . 0.09 . . .
54 55 56 57 58 54 55 56 57 58
tA] £1
(c) (d)

Fig. 5. Illustration of Conditional Failure Probability Curve for identifying t; with (a) N.4; = 30, (b)
Nea =50, (¢) Negyy = 70, and (d) Negy = 110.

6.1.2 Adjustment of Ny and p, in RASA

Following the steps presented in Algorithm 3, the number of candidate design samples in the subsets
needs to be increased. According to Eq. (16) and (19), the minimum required number of candidate design
samples for N, . and N are estimated as 2.30 X 10° and 1.27 X 10*, respectively. Matrix operations
among other computations that are involved in Kriging-based MCS techniques such as AK-MCS [37],
EGRA [38], REAK [39] limit the maximum number of candidate samples that can be considered using
regular PCs (e.g., Intel(R) Core(TM) i5-6300HQ CPU, RAM 16.00GB). To effectively utilize the
available computational capacity, we have set N/#%* = 6 x 10*. For Subset Simulation, the new number
of candidate design samples is set as 1.3 X 10%, which means that 8000 extra candidate design samples
need to be added for the previous subsets. Due to this update in the candidate design samples, the
intermediate failure thresholds also need to be updated. Results for the updated intermediate failure
thresholds and the final estimates of the failure probability are summarized in Table 3.
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Table 3. Intermediate failure thresholds using updated candidate design samples for Example 1.

Nss f1 EZ f3 £4 Pfss
0.5 x 10* 55.00 29.80 11.40 —-3.77 1.744 x 10™*
1.3 x 10* 55.34 28.26 —11.15 —3.66 1.792 x 10~*

Results in Table 3 are based on the requirement that COV,y,- = 0.05, which may not be sufficiently small
to yield a reliable estimate of failure probability. For this purpose, in some cases, COV,y, is set as small as
0.015 to obtain a more stable estimate of failure probabilities. For this case according to Eq. (16) and (19),
the minimum required number of candidate design samples for N, and N, are estimated as 2.55 x 107
and 1.41 x 105, respectively. However, N*%* = 6 x 10* is applied to this problem, which is smaller
than the required value of 1.41 X 10°. Therefore, the value of p, is adjusted to satisfy the required

C OVp;S. According to Eq. (24), the minimum value of C OVp;s is estimated as 0.0136, which means that a

po exists such that the estimated C OVp;s is equal to 0.015. Moreover, Fig. 6 illustrates the relation
between C OVp;S and p, based on Eq. (25). According to Fig. 6, p, = 0.43 can satisfy the requirement
that COVp;s < COVypy = 0.015 with Ngg = NJg*.

0.14

0 0.2 0.4 0.6 0.8 1

Po
Fig.6 C OVp;s vs po in Example 1.

Table 4. Intermediate failure thresholds using the updated p, for Example 1.

Po fl f2 f3 £4 pfss
0.1 55.34 28.26 —11.15 0.452 1.792 x 10~*
0.43 81.62 64.31 52.06 42.12 1.828 x 107*

Hence, the number of subsets is increased from 4 to 11, which means that the corresponding intermediate
failure thresholds are also updated. The comparison of the first four intermediate failure thresholds for

pPo = 0.1 and 0.43 are summarized in Table 4. According to Theorem 2, T (NZ;, N}y..s) is estimated as
0.0236 for this set, which means that Algorithm 3 needs a very small portion of the number of candidate
design samples needed for Algorithm 1. This capability facilitates analysis of problems that would
otherwise require high computational resources.

6.1.3 Computational performance of the proposed method
The computational performance of some of the state-of-the-art methods for Example 1 is summarized in
Table 5. For this problem with 9-random inputs and the level of failure probability at 1.801 X 10~* based
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on the pure MCS simulation, algorithms such as EGRA, AK-MCS, ISKRA, and REAK would require
107samples to achieve COVyy,,- = 0.015. This very large number is not computationally feasible to
analyze using most regular PCs. The results here are compared with two other Subset Simulation-based
method including AK-SS [26] and the method proposed by Ling et al. [40], which hereafter is referred to
as AK-SS (Ling et al.).

Table 5. The comparison of computational performances among EGRA, AK-MCS, ISKRA, REAK, AK-
SS, AK-SS (Ling et al.) and RASA.

. 5 — Accounts Is the estimate Unbiased
Methodologies Fr Nea ECC for COV reliable estimator
MCS 1.801x 10™* 1 x 107 - - - -
EGRA - - Yes No Depends on Ny s Yes
AK-MCS - - Yes Yes Depends on Ny Yes
ISKRA - - Yes No Depends on Ny s No
REAK - - Yes Yes Depends on Ny s No

Depends on the

ok Depends definition of
(po =0.1& Ny = 1.477x107™*  >500  onp, and Yes etinition o1 No
10000) N proposal sampling
58 for MCMC
st
(po = 0.1& Ngg = 1.639 x 107* 412 on p, and No , No
13000) N proposal sampling
> for MCMC
RASA 1.828x 107* 318 No Yes Depends on Ngg Yes

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R)
Core(TM) i5-6300HQ CPU, RAM 16.00GB.

Compared to other Kriging-based Subset Simulation techniques e.g., [26], [40], three major advantages of
RASA stand out. First, failure probability analysis using RASA is not hampered by the number of random
inputs and the probability of the rare event. By adaptively adjusting the value of Ny, and py, RASA takes
advantage of its algorithmic capability to leverage available computational resources to solve complex
problems. This feature is unique to RASA and is not present in other methods in the literature. For
example, the method proposed by Ling et al. [40] neglects the check needed for C OVp;S. Hence, it can

easily lead to high computational demand or a large deviation of the estimated failure probability from the
true value if Ny is set inappropriately. Second, due to the quick and effortless analysis of performance
functions using Kriging surrogate models, the conditional failure probabilities can be quickly estimated
through the surrogate-based MCS and not the MCMC technique. This approach can be used to derive
unbiased estimates for conditional failure probabilities and improve the accuracy of the results. For
example, the probability of failure estimated through the AK-SS and the method by Ling et al. [40] are
1.4 x 10~* and 1.639 x 10™*, which are not close to the one estimated through the pure MCS. This is in
part due to the effect of using MCMC to generate samples in the subsets, which requires sophisticated
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definitions of the proposal (jumping) sampling function. Finally, RASA can not only provide the
convergence history of the estimated intermediate failure thresholds, but also their corresponding
confidence intervals.

6.2 A truss structure with 30 input variables
In the second example, the performance of RASA is investigated for structural reliability analysis of a 23-

bar truss with 30 input random variables. These variables represent uncertainties in member sizes and

properties as well as external loads. The configuration of the structure is shown in Fig. 7. In this figure, 1

to 12 denote the 12 types of bars in the truss. Moreover, the horizontal and diagonal bars are 4 m and 2v/2
m long, respectively. The performance function of this example is defined as,

g(x) = 0.15—|A],

(35)

where A is the vertical displacement at the midpoint of the truss. The structure is subject to six vertical
point loads, V; to Vg. These loads follow Gumbel distributions. A; — A;, and E; — E;, are random
variables representing the cross-section area and Young’s modulus of bars, respectively, as shown in Fig.
7. Probability distributions of these 30 random variables are presented in Table 6. For this example, 50
initial training samples are generated, the number of candidate design samples for each subset is set as
5000, COVyy,, = 0.015 and I, is set as 5 X 1073, Analysis results for this example are summarized in

Table 7. Moreover, the convergence history of estimated intermediate thresholds are shown in Fig. 8.

6.2.1 Convergence history of intermediate failure thresholds
According to the results summarized in Table 7, RASA is very efficient in identifying the intermediate
thresholds t;. In this example, £, £, and £5 are identified as 0.01681, 0.0052 and -0.0044, respectively,

which are very precise considering the true values t; = 0.01679, t, = 0.00528 and t; = —0.00446.
Initially, Pfss is roughly estimated as 2.81 X 1073 as shown in Table 7. According to the convergence

history, the number of calls to the performance function increases significantly for this example compared
to the problem with small number of random variables. Specifically, N.,;; is equal to 238, 349 and 327
for identifying the three intermediate failure thresholds.

Yl V, V3
¢ 4 L § 5 Y
rA ‘P\
7 8 y 10 171,/ 12\ 12
1 2 3
Rl

24 m

Fig. 7 The truss with 30 random variables in Example 2.
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Fig. 8. Convergence history of estimated intermediate failure threshold for (a) 1, (b) ¢, and (c) t3 for
Example 2.
Table 6. Random variables in Example 2.
Random variable Distribution Mean Cov
Vi — Vg Gumbel 6.5 X 10*(N) 0.1
A, — A Lognormal 2 x 1073 (m?) 0.1
AL —Ag Lognormal 1.5 x 1073 (m?) 0.1
A; —Ag Lognormal 1.2 X 1073 (m?) 0.1
Ao —Aq, Lognormal 1.0 X 1073 (m?) 0.1
E, —E; Lognormal 2.1 x 10 (N/m) 0.1
E, — Eg Lognormal 2.0 X 10! (N/m) 0.1
E, — Eq Lognormal 1.8 x 10! (N/m) 0.1
Eio —Ep, Lognormal 1.6 X 10! (N/m) 0.1

*COV denotes the coefficient of variation.
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Table 7. Identified intermediate failure thresholds using g(x)/g(x)for Example 2.

Performance t, or t; t, or t, ts or i3 pss
function ( Ncall) ( Ncall) ( Ncall) r
g(x) 0.01695 0.0058 —0.0037 2.81 x 1073
A 0.0169 0.0058 —0.0037 _3
g(x) (50 + 188) (48 +351) (80 +247) 281x10

6.2.2 Adjustment of Ny and p, in RASA

According to Eq. (16) and (19), the minimum required number of candidate design samples for N,,,.; and
N, are estimated as 2.55 X 107 and 1.58 x 10° for this case, respectively. Following the same steps for
the previous example, the number of candidate design samples in the subsets needs to be increased.
According to Eq. (16) and (19), the minimum required number of candidate design samples for N,,.; and
N, are estimated as 2.30 X 10° and 1.27 X 10%, respectively. Based on a few experiments, it is realized
that the maximum number of candidate design samples that can be handled by the considered PC is about
Nmax = 5 x 10* for this problem. The new N, cannot guarantee C OVf,;s < COVyp,y, therefore, the value

of py should be adjusted to leverage the available computational capacity such that this condition can be
satisfied. According to Eq. (24), the minimum value of C OVp;S that can be reached is 0.0109. This result

subsequently indicates that a p, exists that yields the estimated C OVp;s of 0.015.

0.1

0.08

0.02 L

Po
Fig.9 C OVﬁ;s VS po in Example 2.

Fig. 9 illustrates the relation between C OVp;s and p, based on Eq. (25). According to Fig. 9, p, = 0.3
can satisfy the requirement that C OVf,;s < COVipy = 0.015 with Ngg = Nig?*. Hence, the number of

subsets is increased from 3 to 5, which means the corresponding intermediate failure thresholds are also
updated. The comparison of the first three intermediate failure thresholds for p, = 0.1 and 0.3 are
summarized in Table 8.

Table 8. Intermediate failure thresholds using updated candidate design samples for Example 2.

Ngs Po fl fZ f3 ﬁfss
0.5 x 10* 0.1 0.0169 0.0058 —0.0037 2.81x 1073
5% 10* 0.3 0.0243 0.0162 0.0089 2.77 x 1073
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6.2.3 Computational performance compared to other methods

Due to the strict requirement of COVyp,,- = 0.015, methods such as AK-MCS [17], EGRA [38] and REAK
[4] that rely on large pools of candidate design samples (Ny,es = 2.55 X 107) fail to perform well for this
example with 30 random variables. Two methods including AK-SS [26] and the method proposed by
Ling et al. [40] are applied to this problem and compared with the proposed method. Simulation results
for Example 2 are summarized in the Table 9. The probability of failure estimated through RASA is
found to be very close to the estimate by MCS. This accuracy stems in part from the unbiased property of
the proposed estimator as proved in Theorem 1. On the other hand, AK-SS and the method by AK-SS
(Ling et al.) fail to guarantee an accurate estimate of the failure probability. For example, the estimated
failure probability can be unreliable if the initial number of candidate design samples is smaller than

5 x 10%, and fails to satisfy the requirement that the COV of estimated failure probability should be
smaller than COV,p,.. The relative errors in failure probability estimates by AK-SS, AK-SS (Ling et al.)
and RASA are 15.3%, 10.2% and 1.1%, respectively. However, RASA requires a higher number of calls
to the performance function compared with the two other approaches. Generally, RASA is more accurate
in terms of the final estimated failure probability. It should be noted that in reliability problems, meeting a
target accuracy very often supersedes lowering the computational demand, as the implications of incorrect
decisions based on inaccurate reliability estimates can be significant.

Table 9. The comparison of computational performances of AK-SS, AK-SS (Ling et al.) and RASA for
Example 2.

Is the .
Methodologies Neau P ECC ﬁ):cggi; estimate i?&iii?
reliable
MCS 1x 108 2.74x1073 - - - -
AK-SS Depends on Depends on
(o =01& Nyg = 1322 232x1073 ) pan N Yes  definiionof  No
10000) o ss MCMC
AK-SS(Ling) Depends on
(o= 01& Ny = 1124 246 x 1073 Depenﬁv"n No  definitionof  No
10000) Po an€ Nss MCMC
RASA 1536 277 x 1073 No Yes Deple\;lds M Yes
SS

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R)
Core(TM) 15-6300HQ CPU, RAM 16.00GB.

6.3 A building example with 110 random variables

The third example investigates a large frame structure with 110 input random variables. This structure
consists of 35 members denoted by the circled numbers from 1 to 35 as shown in Fig. 10, and is subjected
to five external loads, P; — P5. The performance function of this example is defined as,

g(x) = 0.06 — [4], (74)

where A is the horizontal displacement at the right-top point of this frame (Fig. 10). E; — E3s, [; — I35
and A; — Az are the Young’s modulus, moments of inertia and cross-section areas of the 35 beams and
columns, respectively. Probability distributions of these 110 random variables are presented in Table 10.
For training Kriging models, 50 initial training samples are generated. The initial number of candidate
design samples for each subset is set as 5000, and I, is set as 5 X 1073, The Initial estimate of the
failure probability for this example is 2.89 x 1073, Results of this analysis are summarized in Table 11.
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Table 10. Random variables in Example 3.

Fig. 10 The frame structure with 110 random variables in Example 3.

Random variable  Distribution Mean CoVv
P, — P Gumbel 6.5 x 10* (N) 0.1
E, —E, Lognormal 2.1 X 107(N/m) 0.1
Es — Eyg Lognormal 1.8 x 107(N/m) 0.1
Ey1 — Epg Lognormal 1.6 X 107(N/m) 0.1
E,4 — Ess Lognormal 1.4 x 107(N/m) 0.1

I, — 1, Lognormal 1.5 x 1073(m*) 0.1
Is — I Lognormal 1.2 X 10723(m*) 0.1
Ipp —Iyg Lognormal 0.9 X 107%(m*%) 0.1
Iy — I35 Lognormal 0.7 X 10~?(m*%) 0.1
AL —A, Lognormal 4.0 X 1071(m?) 0.1
As — Ay Lognormal 3.2 x 1071(m?) 0.1
Ay —Ays Lognormal 2.7 X 1071(m?) 0.1
Ayy — Ass Lognormal 2.3 X 10~ 1(m?) 0.1

Fig. 11 shows the convergence history of the estimated intermediate thresholds £;. Specifically, the

identified intermediate thresholds ;, £, and f5 are exactly the same as the true ones t; = 0.0060, t, =
—0.0019. However, considering Eq. (20), C Ofoss is estimated as 0.0639. According to

0.0018 and t3 =

9.




Algorithm 3, the minimum required Ny is 9.07 X 10%, if COV,y,, is set as 0.05. However, NJ9* is

evaluated and set as 1 X 10* for a regular computer such as the one specified earlier in this paper.
According to Eq. (24) for this NJ#?*, the minimum C OVp;s that RASA can reach is 0.024, which is also

illustrated in Fig. 12. Thus, py is set to 0.08 to satisty the requirement of COVyp, = 0.05. Moreover, the
updated intermediate failure probability thresholds are summarized in Table 12. As p, has changed from
0.1 to 0.08, the estimate probability of failure Pf“ is reevaluated as 3.013 x 103 with the corresponding
COVp}gS = (0.0451.

-3 -3

7 % 10 . % 10

ot — i

. —=1

65 . . . . . . \

55 \ R _'Ljﬂ__:\___n_n—.\.__m - -
) . . . . 1
5 0
50 100 150 200 50 100 150 200 250
Ncall Ncall
@ (b)
2 X 10
i3
1 -3

f;

50 100 150 200 250
Ncall
() ) ) )
Fig. 11. Convergence history of intermediate failure thresholds for (a) t;, (b) t,, and (c) t3 in Example 3
starting with 50 initial training samples (py = 0.1 Ngg = 5000).
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Fig. 12 C OVp;S Vs po in Example 3.

Table 11. Identified intermediate failure thresholds using g(x) and g(x) for Example 3.
Performance

function tq or f1 (Ncall) t, or f2 (Ncall) t3 or f3 (Ncall) Pfss
9x) 0.0060 0.0018 —0.0019 2.932x 1073
Jx) 0.0060(50 + 137) 0.0018(194) —0.0019(196) 2.932x 1073
Table 12. Intermediate failure thresholds using updated Ny, and p, for
Example 3.
Po tl or fl t2 or fz t3 or £3 pf‘gs
0.1 0.0060 0.0018 —0.0019 2.932x 1073
0.08 0.0055 0.0012 - 3.013 x 1073

For problems with a large number of random inputs, identification of accurate hyperparameters can be a
challenge. To examine the computational performance of the method and the change in failure probability
estimate for a different number of candidate design samples, the analysis results and the convergence
history of the method with 150 initial training points are summarized in Table 13 and Fig. 13. It is shown
that the intermediate failure threshold in the first subset converges very fast to the true one due to the
large information provided by the initial training samples. However, for the rest of the intermediate
failure thresholds, results follow a similar trend to the case with 50 initial training samples as shown in
Fig. 11. It is recommended to start with a sufficient number of initial training samples e.g., n;, > Ny to
guarantee that the problem is not ill-conditioned. Results in Tables 11-13 point to high capabilities of
RASA in handling high-dimensional reliability problems. By controlling the number of candidate design
samples generated in each subset, RASA can successfully estimate the probability of failure without
requiring sensitivity analysis or other dimension-reduction methods.

Table 13. Identified intermediate failure thresholds using g(x)/g(x) with 110 initial training
samples for Example 3.

Performanc A A " ~

e function tl or tl (Ncall) t2 or t2 (Ncall) t3 or t3 (Ncall) Pfss
Ix) 0.0056 0.0011 —0.0028 3.205 x 1073
ﬁ(x) 0.0056(150 + 82) 0.0011(165) —0.0028(196) 3.206 x 1073
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Fig. 13. Convergence history of intermediate failure thresholds for (a) £;, (b) £,, and (c) 5 in Example 3
starting with 150 initial training samples (p, = 0.08 Ng, = 5000).

Moreover, the computational results for RASA, AK-SS and AK-SS (Ling et al.) are summarized in Table
14. As discussed in section 6.1.3, Kriging-based reliability methods such as EGRA, AK-MCS, and REAK
that need a large pool of candidate design samples can hardly meet the computational limitations for this
problem. Based on Eq. (16), the required number of candidate design samples should be as large as

1.4 X 10° for the level of COV,,,. = 0.05. Direct implementation of crude Kriging-based MCS will
exceed the computational limit of N/?%* = 1 x 10%*. Other Kriging-based Subset Simulation methods
such as AK-SS [26] and the approach by Ling et al. [40] cannot guarantee reliable estimates of failure
probability. For example, the estimated failure probability can be unreliable if the initial number of
candidate design samples is smaller than 1 x 10%, and fails to satisfy the requirement that the COV of
estimated failure probability should be smaller than COVyp,.. In fact, the relative errors in failure
probability estimates by AK-SS, AK-SS (Ling et al.) and RASA are 26.32%, 9.94% and 1.1%,
respectively.
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Table 14. The comparison of computational performance among AK-SS, AK-SS (Ling et al.) and RASA
for Example 3.

. = — Accounts s the estimate Unbiased
Methodologies Fr Neau ECC for COV reliable estimator
MCS 3.017x 1073  1x 108 - - - -
Depends on
AK-SS Depends the definition
(po = 0.1& Ny = 2.232x 1073 >700 on p, Yes of proposal No
10000) and N sampling for
MCMC
Depends on
AK-SS(Ling) Depends the definition
(po = 0.1& Ny = 2.716 x 1073 421 on p, No of proposal No
10000) and Ngg sampling for
MCMC
RASA 3.013x 1073 523 No Yes Deple\?ds on Yes
SS

*ECC means the specified algorithm will exceed the computational capacity of the computer built with Intel(R)
Core(TM) i5-6300HQ CPU, RAM 16.00GB.

7. Conclusion

Metamodel-based reliability analysis methods face significant challenge for computationally demanding
problems such as high-dimensional or rare event reliability problems. To enable tackling such problems
using Kriging-based reliability analysis techniques, a novel method called RASA is proposed here, which
integrates Subset Simulation and Kriging surrogate modeling. The main idea of RASA is to control the
required computational demand by adaptively adjusting the intermediate failure probabilities and the
number of candidate design samples in each subset. Toward this goal, two new concepts are proposed in
this paper to adaptively identify the intermediate failure thresholds: Conditional Failure Probability Curve
(CFPC) and Dynamic Learning Function (DLF). CFPC and DLF enable the process of adaptively
identifying the threshold value for each limit state function with corresponding intermediate probability of
failure. Since the number of candidate design samples in each subset is significantly small compared to
regular Kriging-based reliability approaches such as AK-MCS, RASA has the capability to handle
complex reliability problems. Three numerical examples are investigated to examine the application and
performance of RASA. Results confirm the capabilities of RASA in tackling large, complex reliability
problems and offering reliable estimates of failure probability.
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The algorithms and step-by-step implementation approach for the proposed reliability analysis with Subset
Simulation using adaptive Kriging (RASA) are presented in Algorithms 1 to 5 in the paper. Readers can
use MATLAB and UQLab Kriging package to implement the algorithms and generate the results
presented in the paper.
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