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A B S T R A C T

Max-pressure traffic signal control has many desirable properties. It is analytically proven
to maximize network throughput if demand could be served by any signal control. Despite
its network-level stability properties, the control itself is decentralized and therefore easily
computed by individual intersection controllers. Discussions with city engineers have suggested
that a major barrier to implementation in practice is the non-cyclical phase actuation of max-
pressure control, which can actuate any phase, in arbitrary order, to serve the queue(s) with
highest pressure. This arbitrary phase selection may be confusing to travelers expecting a signal
cycle, and is therefore unacceptable to some city traffic engineers. This paper revises the original
max-pressure control to include a signal cycle constraint. The max-pressure control must actuate
an exogenous set of phases in order, with each phase actuated at least one time step per
cycle. Each cycle has a maximum length, but the length can be reduced if desired. Within
those constraints, we define a modified max-pressure control and prove its maximum stability
property. The revised max-pressure control takes the form of a model predictive control with a
one cycle lookahead, but we prove that the optimal solution can be easily found by enumerating
over phases. The policy is still decentralized. Numerical results show that as expected, the
cyclical max-pressure control performs slightly worse than the original max-pressure control due
to the additional constraints, but with the advantage of greater palatability for implementation
in practice.

1. Introduction

Intersections are a major bottleneck for urban networks. To optimize traffic signal timings, recent studies (Wongpiromsarn et al.,
2012; Varaiya, 2013; Le et al., 2015) proposed max-pressure control techniques which use observed queue lengths to adaptively
adjust signal timings. The key desirable properties of max-pressure control are maximum stability, i.e. max-pressure control is
analytical proven to serve all demand if the demand could be served by any signal timing. Another nice property is decentralized
control, in which the network-wide optimal solution can be found by a local computation at each intersection that depends only on
the immediately upstream and downstream links.

Given these favorable characteristics, we seek to resolve a major practical issue that discourages implementation by city
engineers. Specifically, drivers prefer traffic signals to follow a cyclical phase structure. Most work on max-pressure control (building
off Wongpiromsarn et al., 2012; Varaiya, 2013) use a time step-based phase selection. (Le et al., 2015, has a signal cycle, but the cycle
length is fixed and phase durations can be arbitrarily small.) Although a non-cyclical phase selection may improve throughput, the
limitations include potentially unbounded waiting times and the appearance of phases being ‘‘skipped’’ for waiting drivers. Due to
the need to also serve pedestrians, and the desire to avoid complaints about phase skipping from drivers, city engineers in Minnesota
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have criticized the lack of a signal cycle during discussions about implementing max-pressure control in practice. Instead of leaving
this issue to be addressed by practitioners in an ad-hoc practical sense that obviates the analytical properties, this paper aims to
develop the maximum stability properties of max-pressure control under the constraint that phases follow a signal cycle structure.

The contributions of this paper are as follows: We modify Varaiya (2013)’s max-pressure control model and policy to follow a
ignal cycle with a maximum cycle length. The cycle length is adaptive with a maximum value. Each phase must be actuated at
east once in order during each cycle. The cycle length constraint restricts the size of the stable region, but we prove that the new
ax-pressure policy still has maximum stability (among signal timings that also follow the cycle length constraint). The resulting
olicy takes the form of a model predictive control, but we prove the equivalence of a simpler one-time step solution method.
umerical results compare delays and throughput for max-pressure control with and without the cyclical structure constraints.

The remainder of this paper is organized as follows. Section 2 reviews previous work on max-pressure policies for intersection
ontrol. Section 3 defines and proves the stability properties of a cycle-based max-pressure control. Numerical results on the
owntown Austin city network are presented in Section 4, and we conclude in Section 5.

. Literature review

The max pressure algorithm was initially developed for wireless network packet transmission by Tassiulas and Ephremides
1992). In recent years, there have been several publications adapting max pressure control to signalized intersections. Gregoire et al.
2014a) and Varaiya (2013) defined max-pressure control and proved its stability for store-and-forward queueing models, which are
imilar to the point queue model for traffic flow. Recognizing that point queues are not a realistic model of traffic flow, Xiao et al.
2014) proved the stability of a max-pressure control policy for a network of spatial queues. Gregoire et al. (2014b) also studied
ax-pressure control within spatial queues, but did not prove the stability of their policy. Li and Jabari (2019) used a continuous

ime model to obtain a provably-stable max-pressure control using kinematic wave theory for traffic flow, although the density
unction must be known exactly to solve the policy.

Several papers have used max-pressure techniques for novel technologies. Le et al. (2017) seeks to influence drivers’ behavior
n order to increase network efficiency. Rey and Levin (2019) studied max-pressure control for autonomous vehicle intersection
anagement, with the goal of providing human-driven vehicles access to the intersection in a throughput-optimal fashion. Chen

t al. (2020) reported a similar result for throughput-optimal pedestrian access. Levin et al. (2019) used max-pressure control to
ptimize dynamic lane reversal with autonomous vehicle intersection control. All aforementioned papers include proofs of stability.

The max-pressure policy is complex and not all previous studies have included an analytical proof of stability. Instead, simulations
ave been used to show the effectiveness of implementation. Sun and Yin (2018) compared max-pressure control to coordinated
ctuated traffic signals in VISSIM, with very favorable results. Mercader et al. (2020) and Dixit et al. (2020) studied pressure-based
olicies using travel times instead of queue lengths through experiments on real traffic, showing improvements in flow and delay,
espectively. Since analytical stability establishes maximum throughput when demand is in the stable region, but does not otherwise
ompare delays or other performance metrics, such simulation and experimental results are valuable for evaluating the benefits.

The most similar previous studies to this one also considered a cycle-based signal selection with the aim of actuating each of
predefined set of phases in order each cycle. Many previous studies building off Varaiya (2013)’s model can actuate phases in

andom order, without any concept of a signal cycle. Le et al. (2015) specified the time step to be one signal cycle, instead of
electing one phase per time step like most previous studies. The advantages to this approach include potentially allocating any real
umber time to each phase, as opposed to being limited to integer numbers of time steps per phase. However, there does not appear
o be a minimum time allocated to each phase in their model, which may reduce the usability of green phases due to the startup
elay. Like this paper, Pumir et al. (2015) and Anderson et al. (2018) actuated one phase per time step, and required that each phase
e actuated once per signal cycle for some minimum time. Unlike this paper, their signal cycles had fixed duration, which has two
isadvantages. Due to lost time, longer cycles are needed to increase capacity, but shorter cycles can achieve smaller waiting times.
fixed cycle length requires a fixed, rather than demand-responsive, approach to balancing capacity against waiting times. Second,

heir phase durations for the entire cycle are determined at the start of the cycle, which means that the arrival of vehicles does
ot immediately affect the signal phase. These two issues are addressed by this paper, which develops a model predictive control
ycle-based max-pressure policy with adaptive cycle length.

. Methodology

We define a maximum-stability traffic signal phase policy that obeys the constraints of cyclical phase selection. Stability refers to
the property of serving all demand. If demand is unserved, then the number of vehicles in the network will increase in expectation
over time. In contrast, if the network is stable, then the throughput is equal to the input rate of demand. These qualitative definitions
will be made more clear by the analytical development in this section.

Like most work on max-pressure intersection control, the methodology proceeds along several steps. First, we construct a store-
and-forward queueing model to represent the traffic network, with modifications for cyclical phase selection. Using this model, we
define analytically the set of demand rates that could be served by any traffic signal timing. We then provide a signal phase policy
2

that serves any stabilizable demand, and prove its stability properties.



Transportation Research Part C 120 (2020) 102828M.W. Levin et al.


c
c

l
w
l
a
r

w
d
r

W
𝑑
c
p

𝑠

w
l
i
c
s

3

t
t
e
m
l
t

g
e
d


𝑝
𝑠

W
o

W

3.1. Network model

Consider a network  = ( ,) with nodes  and directed links . The set of nodes is divided into junctions i and centroids
z. The set of links is divided into internal links i and entry links e. Entry links connect a centroid to a junction. Internal links

onnect two junctions. All vehicles enter the network on an entry link and travel through the network until reaching their destination
entroid. Route choice is modeled through exogenous turning proportions.

Consider discretized time. Assume without loss of generality that each link takes 1 time step to traverse at free flow. (Longer
inks can be divided into shorter segments.) Like previous work on max-pressure signal control (Varaiya, 2013; Le et al., 2015),
e track the evolution of queue lengths per link using a store-and-forward queueing model. Let 𝑥𝑖𝑗 (𝑡) be the number of vehicles on

ink 𝑖 waiting to move to link 𝑗. Link queues are separated by turning movements because different turning movements may not be
ctuated simultaneously during a traffic signal. Link queues evolve via conservation of flow. For internal links, flow conservation
esults in

𝑥𝑗𝑘(𝑡 + 1) = 𝑥𝑗𝑘(𝑡) − 𝑦𝑗𝑘(𝑡) +
∑

𝑖∈
𝑦𝑖𝑗 (𝑡)𝑟𝑗𝑘(𝑡) (1a)

here 𝑦𝑗𝑘(𝑡) is the flow of vehicles from 𝑗 to 𝑘 at time 𝑡, which is controlled by traffic signal actuation. Turning proportions 𝑟𝑗𝑘(𝑡)
etermine the proportion of vehicles entering 𝑗 that will next move to 𝑘. We assume that 𝑟𝑗𝑘(𝑡) are independent identically distributed
andom variables with mean 𝑟̄𝑗𝑘. Flow conservation also applies to entry links, but entering flow is determined by the demand 𝑑𝑖(𝑡).

𝑥𝑖𝑗 (𝑡 + 1) = 𝑥𝑖𝑗 (𝑡) − 𝑦𝑖𝑗 (𝑡) + 𝑑𝑖(𝑡)𝑟𝑖𝑗 (𝑡) (1b)

e assume that for each entry link 𝑖 ∈ e, 𝑑𝑖(𝑡) for all 𝑡 are independent identically distributed random variables with mean
𝑖̄. We further assume that 𝑑𝑖(𝑡) has a maximum value 𝑑𝑖, which is reasonable because centroids are likely to have a physical
apacity limitation. The queue length state 𝐱(𝑡) forms a Markov chain with stochasticity due to the random demand 𝐝(𝑡) and turning
roportions 𝐫(𝑡).

Intersection flows 𝑦𝑖𝑗 (𝑡) are controlled by the traffic signal activation. At each time step, a traffic signal phase is selected. Let
𝑖𝑗 (𝑡) ∈ {0, 1} indicate whether turning from (𝑖, 𝑗) is permitted at time step 𝑡. Then 𝑦𝑖𝑗 (𝑡) is defined by

𝑦𝑖𝑗 (𝑡) = min
{

𝑥𝑖𝑗 (𝑡), 𝑠𝑖𝑗 (𝑡)𝑄𝑖𝑗 [1 − 𝐿𝑖𝑗 (𝑡)]
}

(2)

here 𝑄𝑖𝑗 is the capacity of turning movement (𝑖, 𝑗). We assume that 𝑄𝑖𝑗 is bounded. The term 1 − 𝐿𝑖𝑗 (𝑡) reduces capacity by the
ost time 𝐿𝑖𝑗 (𝑡) when the time is in units of 1 time step. We model lost time 𝐿𝑖𝑗 (𝑡) as a function of the phase selection. For instance,
f the same phase is selected for two consecutive time steps, then lost time is 0 during the second of those time steps. When a phase
hanges, then positive lost time may be added to model the all-red and startup delay intervals. We assume that 0 ≤ 𝐿𝑖𝑗 (𝑡) ≤ 1 time
tep.

.2. Traffic signal cycle

The network model defined in Section 3.1 is very similar to Varaiya (2013)’s model. The key difference that we explore in
his paper is constraining the traffic signal phase selection to follow a cycle. Although constraints on phase selection reduce the
hroughput of the max-pressure policy, practical requirements encourage the use of a signal cycle. For instance, many drivers
xpect signals to follow a cycle, and might become frustrated or confused if phases appear in seemingly random order as they
ight using Varaiya (2013)’s max-pressure policy. Furthermore, drivers expect to have a maximum waiting time to receive a green

ight. For these reasons, city traffic engineers are unwilling to implement Varaiya (2013)’s signal phase selection directly, despite
he throughput benefits.

Although Le et al. (2015) assigned green time using a max-pressure policy, they required a fixed cycle length. Furthermore,
reen time could become arbitrarily close to 0 as the pressure increased. In this paper, we assume that the minimum green time for
ach phase is one time step. Like adaptive traffic signals, the cycle length can also change in response to the actual realization of
emand.

Each turning movement (𝑖, 𝑗) is uniquely associated with one node 𝑛, where 𝑖 is an incoming link and 𝑗 is an outgoing link. Let
𝑛 be the set of turning movements associated with 𝑛. Let 𝑛 be the ordered set of phases comprising the signal cycle for 𝑛. Let

𝑛(𝑡) ∈
[

1, |𝑛|
]

be the phase number actuated at time step 𝑡 for node 𝑛. Phases directly determine the turning movement activation
𝑖𝑗 (𝑡). Let 𝜉𝑝𝑖𝑗 ∈ {0, 1} indicate whether phase 𝑝 activates movement (𝑖, 𝑗). Then

𝑠𝑖𝑗 (𝑡) = 𝜉𝑝𝑛(𝑡)𝑖𝑗 (3)

e assume that phases must be actuated in the specified order. To satisfy that, the phase at time step 𝑡 is either the phase at 𝑡 − 1
r the next phase in the cycle:

𝑝𝑛(𝑡) ∈
{

𝑝𝑛(𝑡 − 1), 𝑝𝑛(𝑡 − 1) + 1
}

(4)

ith a concrete definition of phases, we can explicitly define 𝐿(𝐬(𝑡)):

𝐿𝑖𝑗 (𝑡) =

{

𝐿̃𝑛 𝑝𝑛(𝑡) ≠ 𝑝𝑛(𝑡 − 1)
(5)
3

0 𝑝𝑛(𝑡) = 𝑝𝑛(𝑡 − 1)
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Lost time is 0 when the phase remains the same from time 𝑡 − 1 to 𝑡, and equal to 𝐿̃𝑛, an exogenous constant per intersection 𝑛
specifying the lost time (which may depend on intersection geometry or other factors).

Furthermore, each phase must be actuated for at least one time step each cycle. Let 𝐶𝑛 be the maximum cycle length for
intersection 𝑛. 𝐶𝑛 is restricted to an integer number of time steps. Let 𝑐𝑛(𝑡) be the duration of time since the signal cycle started for
node 𝑛 at time step 𝑡. For example, if phase 𝑝𝑛(𝑡 − 1) = |𝑛| (the last phase in the cycle for 𝑛) was actuated at time step 𝑡 − 1, and
𝑛(𝑡) = 1 (the first phase), then 𝑐𝑛(𝑡) = 0 indicates that at time 𝑡 the signal cycle was started for node 𝑛. More generally,

𝑐𝑛(𝑡 + 1) =

{

1 if 𝑝𝑛(𝑡) = |𝑛| and 𝑝𝑛(𝑡 + 1) = 1
𝑐𝑛(𝑡) + 1 else

(6)

o maintain a maximum cycle length, require that 𝑐𝑛(𝑡) ≤ 𝐶𝑛 for all 𝑡. Since each phase is actuated for at least one time step, the
maximum cycle length imposes a constraint on phase actuation:

𝑝𝑛(𝑡) ≥ |𝑛| − (𝐶𝑛 − 𝑐𝑛(𝑡)) (7)

For example, suppose there is 1 time step remaining in the cycle, so 𝐶𝑛 − 𝑐𝑛(𝑡) = 1 with 3 phases total (|𝑛| = 3). Then constraint
7) requires that 𝑝𝑛(𝑡) ≥ 3 − 1 = 2. If 𝑝𝑛(𝑡) = 2, then 𝑝𝑛(𝑡 + 1) = 3 is possible, which would complete the cycle.

.3. Stable region

We first define stability mathematically. The network is stable if the number of vehicles in the network remains bounded in
xpectation. Equivalently, there exists a 𝜅 < ∞ such that

lim
𝑇→∞

sup

⎧

⎪

⎨

⎪

⎩

1
𝑇

𝑇
∑

𝑡=1

∑

((𝑖,𝑗)∈2)

E
[

𝑥𝑖𝑗 (𝑡)
]

⎫

⎪

⎬

⎪

⎭

≤ 𝜅 (8)

It is easy to choose a demand rate vector 𝐝̄ such that no traffic signal timing policy can stabilize it (for instance, demand that
exceeds turning movement capacity). The objective of max-pressure control is to stabilize any demand rate that could be stabilized
by some signal control. To prove the maximum-stability property, we must first define analytically the set of demands that could be
stabilized. Although the stability region is similar to that of Varaiya (2013), the constraint that phases follow an exogenous cycle
affects the demand that can be served. Since demand is stochastic, the stable region is defined in terms of the average demand rates
𝐝̄.

Demand for entry links can be propagated to demand for internal links. Let 𝑓𝑖 be the average traffic volume for link 𝑖. For entry
links,

𝑓𝑖 = 𝑑𝑖 (9a)

For internal links, 𝑓𝑖 can be determined by conservation of flow:

𝑓𝑗 =
∑

𝑖∈
𝑓𝑖 𝑟̄𝑖𝑗 (9b)

Actual flow rates of 𝐟 can only be achieved if the network is stable, otherwise the capacity will be insufficient to admit flow of 𝑓𝑖
n one or more links. The derivation of 𝐟 from 𝐝̄ is useful because it analytically describes the average flow that must be served on
ach internal link in the network as well as the entry links. Notice that the equivalence of 𝐝̄ with 𝐟 does not guarantee that flow of
will be realized. 𝐟 does not represent average flow on links for unstable networks. 𝐟 is merely the conversion of average entering
emand 𝐝̄ and average turning proportions 𝐫̄ into link demand.

By Proposition 1 of Varaiya (2013), for every demand rate 𝐝̄ and turning proportions 𝐫̄, there exists an unique average flow
ector 𝐟 . The network can be stabilized if the average traffic volume can be served by some signal control. Equivalently, there must
xist an average signal activation 𝑠̄𝑖𝑗 and average lost time 𝐿̄𝑖𝑗 such that

𝑓𝑖 𝑟̄𝑖𝑗 ≤ 𝑠̄𝑖𝑗𝑄𝑖𝑗
(

1 − 𝐿̄𝑖𝑗
)

(10)

here

𝑠̄𝑖𝑗 = lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
𝑠𝑖𝑗 (𝑡) (11)

is the average signal activation time from the signal phase sequence 𝑠𝑖𝑗 (𝑡) and

𝐿̄𝑖𝑗 = lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
𝐿𝑖𝑗 (𝑡) (12)

s the average lost time. Since 𝑠𝑖𝑗 (𝑡) satisfies the signal cycle structure, certain bounds can be derived for 𝑠̄𝑖𝑗 and 𝐿̄𝑖𝑗 . It is easier to
efine the proportion of time that each phase is activated, which we denote by 𝜆𝑝𝑛 for phase 𝑝 of node 𝑛. 𝜆𝑝𝑛 satisfies

|𝑛|
∑

𝜆𝑝𝑛 = 1 (13)
4

𝑝=1
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Since each phase is activated at least once per cycle, 𝜆𝑝𝑛 ≥
1
𝐶𝑛

also. Then the upper bound can be derived from the number of phases,
since phase 𝑝 can be activated at most 𝐶𝑛 − |𝑛| − 1 times:

𝜆𝑝𝑛 ∈
[

1
𝐶𝑛

,
𝐶𝑛 − |𝑛| − 1

𝐶𝑛

]

(14)

roposition 1. For any 𝝀𝑛 satisfying constraint (14), there exists a phase sequence 𝑝𝑛(𝑡) with

lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
1(𝑝𝑛(𝑡) = 𝑝) = 𝜆𝑝𝑛 (15)

for all 𝑝 ∈
[

1, |𝑛|
]

where 1(⋅) is the indicator function.

Proof. For any 𝜖 > 0, for all 𝑝 ∈
[

1, |𝑛|
]

there exists a rational number 𝑘𝑝
𝑀 ∈

[

𝜆𝑝𝑛 − 𝜖, 𝜆𝑝𝑛 + 𝜖
]

with ∑
|𝑛|
𝑝=1 𝑘𝑝 = 1 since ∑

|𝑛|
𝑝=1 𝜆

𝑝
𝑛 = 1.

Then if each phase 𝑝 is chosen 𝑘𝑝 out of 𝑀 times,
|

|

|

|

|

|

1
𝑇

𝑇
∑

𝑡=1
1(𝑝𝑛(𝑡) = 𝑝) − 𝜆𝑝𝑛

|

|

|

|

|

|

=
|

|

|

|

|

𝑘𝑝
𝑀

− 𝜆𝑝𝑛
|

|

|

|

|

≤ 𝜖 (16)

ecause the rational numbers are dense in the real numbers, which achieves convergence to 𝝀𝑛. □

Proposition 1 proves that 𝜆𝑝𝑛 in the set defined by Eq. (14) is attainable given a sufficiently long sequence of phase selections.
iven 𝜆𝑝𝑛, we can define 𝑠̄𝑖𝑗 :

𝑠̄𝑖𝑗 =
|𝑛|
∑

𝑝=1
𝜆𝑝𝑛𝜉

𝑝
𝑖𝑗 (17)

Let  be the set of feasible average signal activation matrices 𝐬̄.

 =

{

𝐬̄ ∶ 𝑠̄𝑖𝑗 =
|𝑛|
∑

𝑝=1
𝜆𝑝𝑛𝜉

𝑝
𝑖𝑗 , 𝜆

𝑝
𝑛 ∈

[

1
𝐶𝑛

,
𝐶𝑛 − |𝑛| − 1

𝐶

]

,
|𝑛|
∑

𝑝=1
𝜆𝑝𝑛 = 1

}

(18)

be the set of feasible average signal activations. 𝐿̄𝑖𝑗 is more difficult to define. However, given a number of phases 𝑛, 𝐿̄𝑖𝑗 can be
lower-bounded:

𝐿̄𝑖𝑗 ≥
𝐿̃𝑛

|

|

|

|

{

𝑝𝑛 ∶ 𝜉𝑝𝑛𝑖𝑗 = 1 and 𝜉𝑝𝑛−1𝑖𝑗 ≠ 1
}

|

|

|

|

𝐶𝑛
(19)

For the purposes of defining the stable region, we assume that condition (19) holds with equality, meaning that the average control 𝐬̄
uses the minimum lost time. This is not limiting because decreasing the lost time increases the capacity as per equation. Therefore,
a control 𝐬̄ with minimum lost time can stabilize any demand in the stable region. Let 𝑄̂𝑖𝑗 be the maximum capacity from (𝑖, 𝑗)
determined by Eq. (19), i.e.

𝑄̂𝑖𝑗 = 𝑄𝑖𝑗

⎛

⎜

⎜

⎜

⎝

1 −
𝐿̃𝑛

|

|

|

|

{

𝑝𝑛 ∶ 𝜉𝑝𝑛𝑖𝑗 = 1 and 𝜉𝑝𝑛−1𝑖𝑗 ≠ 1
}

|

|

|

|

𝐶𝑛

⎞

⎟

⎟

⎟

⎠

(20)

Every signal cycle of intersection 𝑛, when the phase switches from a phase 𝑝𝑛−1 that does not activate (𝑖, 𝑗) to a phase 𝑝𝑛 that activates
(𝑖, 𝑗), lost time must be incurred. Assuming a maximum cycle length of 𝐶𝑛, the number of phase switches determines the lower bound
on 𝐿̄𝑖𝑗 . Since the order of phases is fixed, the quantity of lost time per cycle is also fixed. However, a larger average lost time could
be achieved if the cycle duration is less than the maximum of 𝐶𝑛. Corollary 1 states that any 𝝀𝑛 can be achieved with a cycle length
of 𝐶𝑛. Equivalently, the minimum 𝐿̄𝑖𝑗 can be achieved for any 𝝀𝑛.

orollary 1. For any 𝝀𝑛 satisfying constraint (14), there exists a phase sequence 𝑝𝑛(𝑡) with

lim
𝛤→∞

1
𝛤

𝛤
∑

𝛾=1

1
𝐶𝑛

𝐶𝑛
∑

𝑡=1
1(𝑝𝑛(𝑡 + 𝛾𝐶𝑛) = 𝑝) = 𝜆𝑝𝑛 (21)

for all 𝑝 ∈
[

1, |𝑛|
]

where 1(⋅) is the indicator function.

Proof. By Proposition 1, there exists a 𝑇 such that

lim 1
𝑇
∑

1(𝑝𝑛(𝑡) = 𝑝) = 𝜆𝑝𝑛 (22)
5

𝑇→∞ 𝑇 𝑡=1
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Repeating the sequence a discrete 𝐶𝑛 times,

lim
𝑇→∞

1
𝑇𝐶𝑛

𝑇𝐶𝑛
∑

𝑡=1
1(𝑝𝑛(𝑡) = 𝑝) = 𝜆𝑝𝑛 □ (23)

Let  be the set of demand rates such that constraint (10) holds.  is the stability region, i.e. the set of demands such that some
ignal phase sequence provides enough average capacity to serve the average demand. When 𝐝̄ is on the boundary of , the Markov
hain representing the queueing model can be null recurrent but not positive recurrent. Therefore, consider the set 0 which is the
nterior of , i.e. where constraint (10) holds with strict inequality. Then there exists an 𝜖 > 0 such that

𝑓𝑖 𝑟̄𝑖𝑗 − 𝑠̄𝑖𝑗𝑄𝑖𝑗
(

1 − 𝐿̄𝑖𝑗
)

≤ −𝜖 (24)

We will define a max-pressure policy that stabilizes the network if 𝐝̄ ∈ 0, and use 𝜖 in the proof of stability.

Proposition 2. If 𝐝̄ ∉ , then there does not exist a signal control policy that can stabilize the network.

The proof is analogous to Theorem 2 of Varaiya (2013). If 𝐝̄ and 𝐫̄ are known with 𝐝̄ ∈ 0, then it is easy to design a fixed signal
timing that stabilizes the network. 𝐫̄ is often estimated for current signal timing practice (i.e. the proportion of vehicles making left
and right turns). However, 𝐝̄ is more difficult to obtain. The adaptive max-pressure control in Section 3.4 can stabilize the network
without knowing 𝐝̄.

3.4. Max-pressure policy

Because the max-pressure policy is constrained to follow a signal cycle, intuitively it must maintain some awareness of the current
state of the cycle. This awareness is provided by defining an integer program that looks ahead for a planning horizon of  . In this
section,  is used to represent a planning horizon, whereas 𝑇 is used at the end of the time horizon (so  ≤ 𝑇 ). At time step 𝑡 the
integer program is solved on the horizon 𝑡+ 𝜏 ∈ [𝑡, 𝑡+  − 1] and the first step of the solution is implemented. At time step 𝑡+ 1 the
integer program is again solved, and the (possibly) updated solution is used for time step 𝑡 + 1.

First, define the weight for turning movement (𝑖, 𝑗), 𝑤𝑖𝑗 (𝑡), as

𝑤𝑖𝑗 (𝑡) = 𝑥𝑖𝑗 (𝑡) −
∑

𝑖∈
𝑥𝑗𝑘(𝑡)𝑟̄𝑗𝑘 (25)

This pressure has an intuitive interpretation of seeking to move vehicles from long queues to short queues. However, the precise
form is analytically necessary for the stability proof.

Let 𝑧𝑝𝑛(𝑡) ∈ {0, 1} indicate whether phase 𝑝 is activated for node 𝑛 at time 𝑡. Notice that 𝑧𝑝𝑛(𝑡− 1) is exogenous and determined by
𝑝𝑛(𝑡 − 1), specifically

𝑧𝑝𝑛(𝑡 − 1) =

{

1 𝑝 = 𝑝𝑛(𝑡 − 1)
0 else

(26)

To ensure that only one phase is selected,
|𝑛|
∑

𝑝=1
𝑧𝑝𝑛(𝑡 + 𝜏) = 1 ∀𝑛 ∈ i,∀𝜏 ∈

[

0,  − 1
]

(27)

Since phases proceed in order, 𝑧𝑝(𝑡) is constrained by 𝑧𝑝(𝑡 − 1). Eq. (4) can be written as the following constraint:

𝑧𝑝𝑛(𝑡 + 𝜏) ≤ 𝑧𝑝𝑛(𝑡 + 𝜏 − 1) + 𝑧𝑝−1𝑛 (𝑡 + 𝜏 − 1) ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(28)

which requires that 𝑧𝑝𝑛(𝑡) = 1 only if phase 𝑝 or 𝑝 − 1 was active at time 𝑡 − 1. Since phases follow a cycle, when 𝑝 = 1 phase 𝑝 − 1
refers to phase |𝑛|. The phase selection binary variables are also used to determine the lost time:

𝐿𝑖𝑗 (𝑡) = 𝐿̃𝑖𝑗

𝑛
∑

𝑝=1

(

𝑧𝑝𝑛(𝑡) − 𝑧𝑝𝑛(𝑡 + 1)
)

∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(29)

The term 𝑧𝑝𝑛(𝑡) − 𝑧𝑝𝑛(𝑡 + 1) is equal to 1 only when the phase changes from 𝑝 to 𝑝 + 1, and is equal to 0 otherwise.
Notice also that 𝑐𝑛(𝑡 − 1) is exogenous, and determines the number of time steps remaining before the maximum cycle length is

reached. Let 𝜑𝑛(𝑡) ∈ {0, 1} indicate whether the cycle restarts at time 𝑡 for node 𝑛.

𝜑𝑛(𝑡 + 𝜏) ≤ 𝑧1𝑛(𝑡 + 𝜏) − 𝑧|𝑛|
𝑛 (𝑡 + 𝜏 − 1) ∀𝑛 ∈ i,∀𝜏 ∈

[

0,  − 1
]

(30)

which admits 𝜑𝑛(𝑡) = 1 only when the phase at node 𝑛 switches from |𝑛| to phase 1 from time 𝑡− 1 to 𝑡. Let 𝑐𝑛(𝑡) be the number of
time steps since the cycle was started, as defined by Eq. (6):

𝑐𝑛(𝑡 + 𝜏) =

{

𝑐𝑛(𝑡 + 𝜏 − 1) + 1 𝜑𝑛(𝑡 + 𝜏) = 0
∀𝑛 ∈ i,∀𝜏 ∈

[

0,  − 1
]

(31)
6
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Constraints (31) can be linearized as

𝑐𝑛(𝑡 + 𝜏) ≥ 𝑐𝑛(𝑡 + 𝜏 − 1) + 1 −𝑀𝜑𝑛(𝑡 + 𝜏) ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(32a)

𝑐𝑛(𝑡 + 𝜏) ≤ 𝑐𝑛(𝑡 + 𝜏 − 1) + 1 +𝑀𝜑𝑛(𝑡 + 𝜏) ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(32b)

𝑐𝑛(𝑡 + 𝜏) ≥ 1 −𝑀(1 − 𝜑𝑛(𝑡 + 𝜏)) ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(32c)

𝑐𝑛(𝑡 + 𝜏) ≤ 1 +𝑀(1 − 𝜑𝑛(𝑡 + 𝜏)) ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(32d)

where 𝑀 is a large positive constant. The maximum cycle length is enforced by the constraint

𝑐𝑛(𝑡 + 𝜏) ≤ 𝐶𝑛 ∀𝑛 ∈ i,∀𝜏 ∈
[

0,  − 1
]

(33)

Constraint (7) is included through the combination of constraints (31) and (33). Constraint (31) increments the cycle length timer
𝑐𝑛(𝑡 + 𝜏) per time step, except when the cycle restarts by actuating the first phase. Constraint (33) restricts the maximum value of
the cycle timer, which forces the cycle to restart for feasibility.

The final constraint relates 𝑠𝑖𝑗 (𝑡 + 𝜏) with the phase selection:

𝑠𝑖𝑗 (𝑡 + 𝜏) =
|𝑛|
∑

𝑝=1
𝑧𝑝𝑛(𝑡)𝜉

𝑝
𝑖𝑗 ∀𝑛 ∈ i,∀𝜏 ∈

[

0,  − 1
]

(34)

The max-pressure policy is found by solving the following integer linear program:

max 1


 −1
∑

𝜏=0

∑

(𝑖,𝑗)∈2

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗
(

1 − 𝐿𝑖𝑗 (𝑡 + 𝜏)
)

𝑤𝑖𝑗 (𝑡) (35)

s.t. (27)–(30), (32a)–(34)

The optimal solution to problem (35) at time 𝑡, 𝐬⋆(𝑡), is actuated at time step 𝑡. The remainder of the horizon of the optimal solution,
𝐬⋆(𝑡 + 𝜏) for 𝑡 ∈

[

1, 
]

, is included only for planning purposes and discarded after actuating the solution at time 𝑡. Problem (35)
essentially defines a model predictive control approach. The signal phase selection is optimized for  time steps ahead, and the first
time step of the optimal solution is actuated.

Le et al. (2015) also studied a cyclical max-pressure policy. Unlike the policy (35), Le et al. (2015) assigns a time of
𝐶𝑛𝛥𝑡 exp{𝜂𝑤𝜎 (𝑡)}

∑

𝜋∈𝑛 exp{𝜂𝑤𝜋 (𝑡)}
where 𝑤𝜋 (𝑡) is the weight for phase 𝜋 at time 𝑡 and 𝜂 is an adjustment parameter. If the pressure for one phase

is arbitrarily large (or small), then the proportion of the cycle length allocated to that phase can become arbitrarily close to 𝐶𝑛
or 0, respectively). In contrast, policy (35) will assign at least one time step to each phase per cycle, for a minimum of 𝛥𝑡 and a
aximum of 𝛥𝑡(1− |𝑛|) time per cycle. However, this is but a side-effect of the main difference between these two policies. Le et al.

2015) has a fixed cycle length, whereas the cycle length of policy (35) can vary between |𝑛|𝛥𝑡 and 𝐶𝑛𝛥𝑡 via constraint (33).

roposition 3. The max-pressure control (35) has a decentralized solution.

roof. The optimal solution to problem (35) for any node 𝑛 is independent of the decision variables at other nodes: the selection
f 𝑠𝑖𝑗 (𝑡 + 𝜏) and 𝐿𝑖𝑗 (𝑡 + 𝜏) are independent of other nodes, and 𝑤𝑖𝑗 (𝑡) is exogenous. □

Problem (35) specifies decision variables for the entire network. However, the constraints can be separated by node, i.e. none of
he constraints for decision variables for node 𝑛 affect the decision variables for any other node 𝑛′. Consequently, problem (35) can
e decentralized, i.e. it can be solved separately at each node for the phases specific to that node. Like other work on max-pressure
ontrol (Varaiya, 2013; Le et al., 2015), the decentralized property simplifies the solution method.

Having specified the max-pressure policy, the next step is to prove maximum stability, i.e. that if the network with demand rates
f 𝐝̄ can be stabilized by some signal policy, then the max-pressure policy will stabilize the network. The goal of Proposition 4 and
emma 1 is to establish that a planning horizon of  = 𝐶𝑛 is sufficient. Proposition 4 also simplifies the solution to problem (35).
emma 1 is directly used in the proof of stability. Proposition 4 is stated per node 𝑛 because problem (35) can be decentralized by
roposition 3. The condition that lost time is minimized does not limit the proof of stability because minimizing lost time results in
he largest stable region.

roposition 4. For each node 𝑛, define phase 𝑝⋆ as

𝑝⋆ ∈ arg max
𝑝∈[1,|𝑛|]

∑

(𝑖,𝑗)∈𝑛

𝜉𝑝𝑖𝑗𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) (36)

hen the lost time is equal to its minimum value, an optimal solution to

max 1
𝐶𝑛

𝐶𝑛−1
∑

𝜏=0

∑

(𝑖,𝑗)∈𝑛

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗
(

1 − 𝐿𝑖𝑗 (𝑡 + 𝜏)
)

𝑤𝑖𝑗 (𝑡) (37)

is to actuate 𝑝⋆ for 𝐶𝑛 −
(

|𝑛| − 1
)

time steps out of 𝐶𝑛.
7
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Proof. During any 𝐶𝑛 consecutive time steps, each phase is actuated at least once because 𝐶𝑛 is the maximum cycle duration. Ignore
the positive constant 1

𝐶𝑛
, then ∑𝐶𝑛−1

𝜏=0
∑

(𝑖,𝑗)∈𝑛
𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗

(

1 − 𝐿𝑖𝑗 (𝑡 + 𝜏)
)

𝑤𝑖𝑗 (𝑡) can be rewritten as

𝐶𝑛−1
∑

𝜏=0

∑

(𝑖,𝑗)∈𝑛

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗
(

1 − 𝐿𝑖𝑗 (𝑡 + 𝜏)
)

𝑤𝑖𝑗 (𝑡)

=
𝑛
∑

𝑝=1

∑

(𝑖,𝑗)∈𝑛

𝜉𝑝𝑖𝑗𝑄𝑖𝑗 (1 − 𝐿̃𝑛)𝑤𝑖𝑗 (𝑡) +
𝐶𝑛−|𝑛|
∑

𝜏=0

∑

(𝑖,𝑗)∈𝑛

∑

𝑝∈𝑛

𝑧𝑝𝑛(𝑡 + 𝜏)𝜉𝑝𝑖𝑗𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) (38)

where 𝐿𝑖𝑗 (𝑡+𝜏) = 0 in the second part of the right hand side because the lost time is minimized. Since the term ∑𝑛
𝑝=1

∑

(𝑖,𝑗)∈𝑛
𝜉𝑝𝑖𝑗𝑄𝑖𝑗

(1 − 𝐿̃𝑛)𝑤𝑖𝑗 (𝑡) is common to any feasible policy, the objective is to maximize ∑𝐶𝑛−|𝑛|
𝜏=0

∑

(𝑖,𝑗)∈𝑛

∑

𝑝∈𝑛
𝑧𝑝𝑛(𝑡 + 𝜏)𝜉𝑝𝑖𝑗𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡).

𝐶𝑛−|𝑛|
∑

𝜏=0

∑

(𝑖,𝑗)∈𝑛

∑

𝑝∈𝑛

𝑧𝑝𝑛(𝑡 + 𝜏)𝜉𝑝𝑖𝑗𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) ≤
𝐶𝑛−|𝑛|
∑

𝜏=0

∑

(𝑖,𝑗)∈𝑛

𝜉𝑝
⋆

𝑖𝑗 𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) (39)

=
(

|𝑛| − 𝐶𝑛
)

∑

(𝑖,𝑗)∈𝑛

𝜉𝑝
⋆

𝑖𝑗 𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) (40)

hich is the simplified policy. □

Proposition 4 provides a simple solution to problem (35): find the phase

𝐬⋆ = arg max
⎧

⎪

⎨

⎪

⎩

∑

(𝑖,𝑗)∈2

𝑠𝑖𝑗𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡)

⎫

⎪

⎬

⎪

⎭

(41)

nd actuate it as soon as possible, following the signal cycle. Since the set of phases per intersection is exogenous and finite, this
an be solved by enumeration.

Lemma 1 is used to compare the max-pressure policy to the average stabilizing control 𝐬̄. Lemma 1 may initially seem obvious,
ut is interesting for two reasons. First, 𝑠⋆𝑖𝑗 (𝑡) ∈ {0, 1} whereas 𝑠̄𝑖𝑗 ∈ [0, 1], so 𝑠̄𝑖𝑗 may not be in the feasible region of 𝑠𝑖𝑗 (𝑡). Second,
emma 1 establishes that a planning horizon of  = 𝐶𝑛 is sufficiently long to achieve stability.

emma 1. Let 𝐬⋆(𝑡+ 𝜏), 𝜏 ∈ [0, 𝐶𝑛 − 1] be the optimal solution to (35). Assume the signal control is chosen with minimum lost time. Then
or any node 𝑛,

1
𝐶𝑛

𝐶𝑛−1
∑

𝜏=0

∑

(𝑖,𝑗)∈2

𝑠⋆𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡) ≥
∑

(𝑖,𝑗)∈2

𝑠̄𝑖𝑗𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡) (42)

roof. By Proposition 4,

1
𝐶

𝐶−1
∑

𝜏=0

∑

(𝑖,𝑗)∈2

𝑠⋆𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡) =

∑
|𝑛|
𝑝=1

∑

(𝑖,𝑗)∈𝑛
𝜉𝑝𝑖𝑗𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡) +

(

𝐶 − |𝑛|
)
∑

(𝑖,𝑗)∈𝑛
𝜉𝑝

⋆

𝑖𝑗 𝑄𝑖𝑗𝑤𝑖𝑗 (𝑡)

𝐶
(43)

≥
|𝑛|
∑

𝑝=1

∑

(𝑖,𝑗)∈𝑛

𝜆𝑝𝑛𝜉
𝑝
𝑖𝑗𝑄̂𝑖𝑗𝑤𝑖𝑗 (𝑡) (44)

for any ∑
|𝑛|
𝑝=1 𝜆

𝑝
𝑛 = 1 because the optimal solution is to provide as much cycle time as possible to phase 𝑝⋆. By Proposition 1, any

̄𝑖𝑗 corresponds to a 𝝀𝑛 satisfying ∑
|𝑛|
𝑝=1 𝜆

𝑝
𝑛 = 1, which establishes inequality (42). □

Note that the proposed method does not always choose the maximum cycle length because the model predictive control algorithm
is updated at each time step. It is optimal in the model predictive control to actuate the phase with highest pressure for as long
as possible. However, since the pressure is likely to decrease once a phase is actuated, at the next time step a different phase may
have the highest pressure instead, which results in a phase switch. Actuating the highest pressure phase for a maximum cycle length
occurs only when queues are so long that the phase pressure remains high after a full cycle length. When queues are shorter, cycle
lengths will also decrease as phase switching occurs more frequently. Therefore, the cycle length adapts to the observed queues.

If 𝑤𝑖𝑗 (𝑡) were replaced with 𝑤𝑖𝑗 (𝑡 + 𝜏) in problem (35), then The stability proof should follow easily. The disadvantage in using
𝑤𝑖𝑗 (𝑡 + 𝜏) is that predicting 𝑤𝑖𝑗 (𝑡 + 𝜏) is not so easy. By definition, 𝑤𝑖𝑗 (𝑡 + 𝜏) = 𝑥𝑖𝑗 (𝑡 + 𝜏) −

∑

𝑖∈ 𝑥𝑗𝑘(𝑡 + 𝜏)𝑟̄𝑗𝑘, so we must estimate
𝑖𝑗 (𝑡 + 𝜏). Given the queue dynamics of Eq. (1a), the obvious estimation is

E
[

𝑥𝑗𝑘(𝑡 + 𝜏)
]

= E

[

𝑥𝑗𝑘(𝑡 + 𝜏 − 1) − 𝑦𝑗𝑘(𝑡 + 𝜏 − 1) +
∑

𝑖∈
𝑦𝑖𝑗 (𝑡 + 𝜏 − 1)𝑟𝑗𝑘(𝑡 + 𝜏 − 1)

]

(45)

or node 𝑗, this requires calculating E
[

𝑦𝑖𝑗 (𝑡 + 𝜏 − 1)
]

, i.e. the expected incoming flow. Estimating the incoming flow can be split into
8

wo parts. First, if link (𝑖, 𝑗) is an internal link, then 𝑦𝑖𝑗 (𝑡+ 𝜏 −1) is determined by the signal control 𝑠𝑖𝑗 (𝑡+ 𝜏 −1), which is a decision
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variable in problem (35). That removes the decentralized property. Second, if link (𝑖, 𝑗) is an entry link, then E
[

𝑦𝑖𝑗 (𝑡)
]

= 𝑑𝑖 𝑟̄𝑖𝑗 , which
equires knowledge of the demand. Another way of calculating E

[

𝑦𝑖𝑗 (𝑡 + 𝜏 − 1)
]

is to use the stable region flows 𝑓𝑖 𝑟̄𝑖𝑗 , but computing
𝑖 requires knowing the average demand. Determining the average demand requires extensive work across the network, whereas
nstalling a single max-pressure controller ideally requires only vehicle detectors on the incoming links. Furthermore, fluctuations
n the daily average demand due to random events (such as weather patterns) would result in prediction errors unless the average
emands were accurately adjusted. To summarize, we use 𝑤𝑖𝑗 (𝑡) instead of 𝑤𝑖𝑗 (𝑡+ 𝜏) to reduce the data requirements and retain the
ecentralized property.

.5. Maximum stability property

We now proceed to prove the maximum stability property of the proposed max-pressure control. We establish that if 𝐝̄ ∈ 0, then
he max-pressure policy will stabilize the network. Due to Proposition 2, if 𝐝̄ ∉ , then no signal timing policy can achieve stability.
t the boundary of , null recurrence to a stable state can be achieved, but not positive recurrence. Therefore, Propositions 2 and 5

ogether establish maximum stability. We first prove two supporting lemmas, then establish Proposition 5. Let 𝐶 = max𝑛 ∈ i
{

𝐶𝑛
}

e the maximum of the maximum cycle lengths of all intersections.

emma 2. For any control 𝐬, if

∃𝜅1 < ∞ s.t. E
⎡

⎢

⎢

⎣

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 1))2 − (𝑥𝑖𝑗 (𝑡))2
|

|

|

|

|

|

𝐱(𝑡)
⎤

⎥

⎥

⎦

≤ 𝜅1 − 𝜖|𝐱(𝑡)| (46)

hen

∃𝜅2 < ∞ s.t. 1
𝐶

𝐶
∑

𝜏=1
E
⎡

⎢

⎢

⎣

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡))2
|

|

|

|

|

|

𝐱(𝑡 + 𝜏)
⎤

⎥

⎥

⎦

≤ 𝜅2 − 𝜖|𝐱(𝑡)| (47)

roof. By Eq. (46),

1
𝐶

𝐶
∑

𝜏=1
E
⎡

⎢

⎢

⎣

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡))2
|

|

|

|

|

|

𝐱(𝑡 + 𝜏)
⎤

⎥

⎥

⎦

≤ 1
𝐶

𝐶
∑

𝜏=1
𝜅1 − 𝜖|𝐱(𝑡 + 𝜏)| (48)

≤ 1
𝐶

𝐶
∑

𝜏=1
𝜅1 − 𝜖

∑

(𝑖,𝑗)∈2

(

𝑥𝑖𝑗 (𝑡) − 𝐶𝑄𝑖𝑗
)

(49)

≤ 𝜅2 − 𝜖
∑

(𝑖,𝑗)∈2

(

𝑥𝑖𝑗 (𝑡)
)

(50)

= 𝜅2 − |𝐱(𝑡)| (51)

ecause 𝑥𝑖𝑗 (𝑡 + 𝜏) − 𝑥𝑖𝑗 (𝑡) ≥ −𝐶𝑄𝑖𝑗 . □

Lemma 3 establishes the main bounds on the Lyapunov function when the max-pressure control is used.

emma 3. When the max-pressure policy is used with 𝐝̄ ∈ 0,

E
⎡

⎢

⎢

⎣

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡 + 𝜏))2
|

|

|

|

|

|

𝐱(𝑡)
⎤

⎥

⎥

⎦

≤ 𝜅 − 𝜖|𝐱(𝑡)| (52)

Proof. Let 𝛿𝑖𝑗 (𝑡) = 𝑥𝑖𝑗 (𝑡 + 1) − 𝑥𝑖𝑗 (𝑡). Then

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡 + 𝜏))2 = 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝛿𝑖𝑗 (𝑡 + 𝜏))2 + 𝛿𝑖𝑗 (𝑡 + 𝜏)𝑥𝑖𝑗 (𝑡 + 𝜏) (53)

ecause 𝛿𝑖𝑗 (𝑡) ≤
∑

(𝑘,𝑖)∈2 𝑄𝑘𝑖 and 𝑄𝑘𝑖 is bounded, 1
𝐶
∑𝐶

𝜏=1
∑

(𝑖,𝑗)∈2 E
[

(𝛿𝑖𝑗 (𝑡 + 𝜏))2
]

is also bounded. Use the definition of 𝛿𝑖𝑗 (𝑡) to
xpand 1

𝐶
∑𝐶

𝜏=1
∑

(𝑖,𝑗)∈2 𝛿𝑖𝑗 (𝑡 + 𝜏)𝑥𝑖𝑗 (𝑡 + 𝜏):

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝛿𝑖𝑗 (𝑡 + 𝜏)𝑥𝑖𝑗 (𝑡 + 𝜏) = 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(

∑

𝑘∈
𝑦𝑘𝑖(𝑡 + 𝜏)𝑝𝑖𝑗 (𝑡 + 𝜏) − 𝑦𝑖𝑗 (𝑡 + 𝜏)

)

𝑥𝑖𝑗 (𝑡 + 𝜏) (54)

= 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑦𝑖𝑗 (𝑡 + 𝜏)

(

∑

𝑘∈
𝑝𝑗𝑘(𝑡 + 𝜏)𝑥𝑗𝑘(𝑡 + 𝜏) − 𝑥𝑖𝑗 (𝑡 + 𝜏)

)

(55)
9
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Taking the expected value,

E
⎡

⎢

⎢

⎣

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑦𝑖𝑗 (𝑡 + 𝜏)

(

∑

𝑘∈
𝑝𝑗𝑘(𝑡 + 𝜏)𝑥𝑗𝑘(𝑡 + 𝜏) − 𝑥𝑖𝑗 (𝑡 + 𝜏)

)

|

|

|

|

|

|

𝐱(𝑡)
⎤

⎥

⎥

⎦

= 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑦𝑖𝑗 (𝑡 + 𝜏)

(

∑

𝑘∈
𝑝̄𝑗𝑘𝑥𝑗𝑘(𝑡 + 𝜏) − 𝑥𝑖𝑗 (𝑡 + 𝜏)

)

= − 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑦𝑖𝑗 (𝑡 + 𝜏)𝑤𝑖𝑗 (𝑡 + 𝜏) (56)

Expand 𝑦𝑖𝑗 (𝑡 + 𝜏):

− 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑦𝑖𝑗 (𝑡 + 𝜏)𝑤𝑖𝑗 (𝑡 + 𝜏) =

− 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡 + 𝜏)

+ 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡)) − 𝑦𝑖𝑗 (𝑡 + 𝜏))𝑤𝑖𝑗 (𝑡 + 𝜏) (57)

If 𝑤𝑖𝑗 (𝑡 + 𝜏) ≥ 𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 then 𝑦𝑖𝑗 (𝑡 + 𝜏) = 𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡)), rendering that term equal to 0. Therefore,

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡)) − 𝑦𝑖𝑗 (𝑡 + 𝜏))𝑤𝑖𝑗 (𝑡 + 𝜏) ≤ 1
𝐶

𝐶
∑

𝜏=1
(𝑄𝑖𝑗 )2 = (𝑄𝑖𝑗 )2 (58)

ontinue working with − 1
𝐶
∑𝐶

𝜏=1
∑

(𝑖,𝑗)∈2 𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡 + 𝜏). Because −𝑄𝑖𝑗 ≤ 𝑥𝑖𝑗 (𝑡 + 1) − 𝑥𝑖𝑗 (𝑡) ≤ −
∑

𝑘∈ 𝑄𝑘𝑖,
𝑖𝑗 (𝑡 + 1) −𝑤𝑖𝑗 (𝑡) ≤ −𝑄𝑖𝑗 −

∑

𝑘∈ 𝑄𝑘𝑗 = 𝛥𝑖𝑗 .

− 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡 + 𝜏) ≤ − 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))(𝑤𝑖𝑗 (𝑡) + 𝛥𝑖𝑗 ) (59)

ince − 1
𝐶
∑𝐶

𝜏=1
∑

(𝑖,𝑗)∈2 𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝛥𝑖𝑗 is bounded, we are left with − 1
𝐶
∑𝐶

𝜏=1
∑

(𝑖,𝑗)∈2 𝑠𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡). Since
̄ ∈ 0, there exists some control 𝐬̄ ∈  such that Eq. (46) holds (Varaiya, 2013). By Lemma 2, Eq. (46) implies that

− 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠̄𝑖𝑗𝑄𝑖𝑗
(

1 − 𝐿̄𝑖𝑗
)

𝑤𝑖𝑗 (𝑡) ≤ 𝜅 − 𝜖|𝐱(𝑡)| (60)

𝐬̄ may not correspond to a phase activation, but by Lemma 1,

− 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠⋆𝑖𝑗 (𝑡 + 𝜏)𝑄𝑖𝑗 (1 − 𝐿𝑖𝑗 (𝑡))𝑤𝑖𝑗 (𝑡) ≤ − 1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

𝑠̄𝑖𝑗𝑄𝑖𝑗
(

1 − 𝐿̄𝑖𝑗
)

𝑤𝑖𝑗 (𝑡) (61)

≤ 𝜅 − 𝜖|𝐱(𝑡)| (62)

hich achieves equation (52) for the max-pressure policy. □

roposition 5. If 𝐝̄ ∈ 0, then the max-pressure policy is stabilizing.

roof. By Lemma 3,

1
𝐶

𝐶
∑

𝜏=1
E
⎡

⎢

⎢

⎣

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡 + 𝜏))2
|

|

|

|

|

|

𝐱(𝑡)
⎤

⎥

⎥

⎦

≤ 𝜅 − 𝜖|𝐱(𝑡)| (63)

Taking the sum over 𝑇 on both sides,

1
𝑇

𝑇
∑

𝑡=1
E
⎡

⎢

⎢

⎣

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑡 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝑡 + 𝜏))2
⎤

⎥

⎥

⎦

≤ 1
𝑇

𝑇
∑

𝑡=1
(𝜅 − 𝜖|𝐱(𝑡)|)

implifying,

1
𝑇
E
⎡

⎢

⎢

1
𝐶

𝐶
∑ ∑

(𝑥𝑖𝑗 (𝑇 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝜏))2
⎤

⎥

⎥

≤ 1
𝑇

𝑇
∑

(𝜅 − 𝜖|𝐱(𝑡)|) (64)
10

⎣

𝜏=1 (𝑖,𝑗)∈2
⎦

𝑡=1
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𝜖
𝑇

𝑇
∑

𝑡=1
|𝐱(𝑡)| + 1

𝑇
E
⎡

⎢

⎢

⎣

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑇 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝜏))2
⎤

⎥

⎥

⎦

≤ 𝜅 (65)

Taking the limit as 𝑇 → ∞,

lim
𝑇→∞

⎛

⎜

⎜

⎝

𝜖
𝑇

𝑇
∑

𝑡=1
|𝐱(𝑡)| + 1

𝑇
E
⎡

⎢

⎢

⎣

1
𝐶

𝐶
∑

𝜏=1

∑

(𝑖,𝑗)∈2

(𝑥𝑖𝑗 (𝑇 + 𝜏 + 1))2 − (𝑥𝑖𝑗 (𝜏))2
⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

≤ 𝜅 (66)

implifying,

lim
𝑇→∞

𝜖
𝑇

𝑇
∑

𝑡=1
|𝐱(𝑡)| ≤ 𝜅 (67)

hich results in lim𝑇→∞
1
𝑇
∑𝑇

𝑡=1 |𝐱(𝑡)| ≤
𝜅
𝜖 . □

3.6. Discussion

It is important to qualify the context of the maximum stability result. The cyclical max-pressure policy has maximum stability
among controls which follow the same constraints, namely that the signal phases are organized into a cycle of length 𝐶𝑛 or less,
each phase is actuated at least once per cycle, and the phases are actuated in a predefined order. These constraints reduce the size
of the stability region, yet the cyclical max-pressure control achieves maximum stability within this reduced region. Nevertheless,
the cyclical max-pressure control may not perform as well as previous controls (e.g. Varaiya, 2013). The purpose of defining this
control is to satisfy practical considerations of city engineers and travelers, who may be unwilling to implement an unconstrained
max-pressure control which can select phases in arbitrary order.

4. Numerical results

To test the effects of a cycle length on max-pressure intersection control, simulations on the downtown Austin city network
(shown in Fig. 1) were conducted. The downtown Austin city network consists of 171 zones, 546 intersections, and 1247 links,
and was calibrated to match observed morning peak characteristics in 2011 by the Network Modeling Center at The University of
Texas at Austin. The network includes most of the central business district of Austin, Texas, as well as arterials north of the city
and the two major north–south freeways. Simulations were performed with a time step of 15 s and a total duration of 3 h, with
demand entering throughout the simulation. Demand followed the same origin–destination distribution pattern, but was uniformly
scaled to explore stability. The original network includes signal phases for many intersections, and those same phases were used
(with adjusted timings) in the cyclical max-pressure control. Lost times were 2 s per phase. The original demand is specified as
62,836 vehicles over 2 h. The network appears to be unstable at that demand, so scaled-down demands are used here. (Although
the network is unstable at its original demand, the peak period has limited duration resulting in queue lengths dissipating as the
peak period ends).

The numerical results presented here compare the cyclical max-pressure (hereafter referred to as cycle-MP) control to the non-
yclical max-pressure (referred to as MP) control of Varaiya (2013). We compare cycle-MP to MP on several metrics, including
hroughput and waiting times at intersections. It is important to note that we do not expect cycle-MP to perform better than MP
n most metrics. The performance of cycle-MP is limited by the requirement to actuate each phase at least once per cycle and the
xogenous phase selection. Actuating each phase at least once per cycle reduces the size of the stability region as per equation (7),
nd also creates delay between observing a queue and actuated a phase for it by constraint (28). Exogenous phase selection limits
he set of phases that may be actuated to a predefined set of phases that are actuated in order, 𝑛. 𝑛 is a subset of all admissible

phases for the cycle (as defined by the dual-ring controller). When 𝑛 is a strict subset, some phases may be actuated by MP but not
by cycle-MP. Obviously, these constraints will reduce performance. However, these constraints come with the significant practical
benefit of cycle-based phases with max-pressure signal timing for maximum stability. Therefore, we interpret these numerical results
as an evaluation of the performance costs of including a cyclical phase structure in the traffic signal.

4.1. Stability comparison

First, we compare the stability of the networks according to definition (8). Essentially, we evaluate whether the total number
of vehicles in the network is increasing over time for different demand levels. Fig. 2 compares the network stability of MP and
cycle-MP models with cycle lengths of 120 s and 450 s. Demand maintained the origin–destination proportions of the original
calibrated network but was scaled up or down as necessary. At a demand rate of 18,000 vehicles per hour, all three policies appear
to be stable with the number of vehicles in the network initially increasing then appearing to plateau at a constant. However, as
the demand increases to up to 26,000 vehicles per hour, the traditional max-pressure control model remains stable but both of the
cycle length models start becoming unstable. Unsurprisingly, MP has a larger stable region than cycle-MP and is therefore able to
stabilize the network at higher demand levels. Cycle-MP is limited both by actuating each phase at least once per cycle, and by the
exogenously specified set of phases.
11
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Fig. 1. Map of the downtown Austin city network.

Figs. 2(b) and 2(c) compare stability between cycle-MP with cycle length 120 s and 450 s. Recall that 120 s (respectively 450 s) is
the maximum permissible cycle length, but smaller cycle lengths can be chosen in real-time by the cycle-MP controller. The results
are very similar, with the cycle length of 120 s resulting in a slightly higher rate of increase. These minor differences are likely
attributed to how actuating each phase at least once per cycle is not limiting in practical networks where demand arrives regularly
from each approach. Fig. 2 suggests that the main limitation to the stable region occurs from the exogenous phase selection instead.

4.2. Travel times

Fig. 3 compares the average travel time of MP versus cycle-MP with cycle length of 225 s. Although vehicles in the modified
max-pressure scenario have a higher average travel time, the difference is only around 3 min. Also, the difference in performance
between the two models remains relatively constant as demand increases. The higher travel time is likely attributed to higher delays
at intersections resulting from the requirement to actuate phases in order. This constraint can cause a delay of several time steps
between observing a large queue and actuating the most appropriate phase for that queue.

Fig. 3 also compares the travel times of Le et al. (2015)’s method using the same cycle length of 225 s. Overall, Le et al. (2015)’s
method was observed to be significantly worse than cycle-MP. We believe the differences are primarily due to cycle-MP shortening
the cycle length adaptively in response to real-time demand. We can understand this behavior with the following example. Consider
a 2-phase traffic signal with a cycle length of 120 s, and a 15 s time step, and for simplicity, assume no downstream queues. Suppose
that demand is exactly 30veh/hr per phase, which is also 1veh per cycle per phase. If the pressure for each phase at time 𝑡 was
equal to 1, the proportional time controller of Le et al. (2015) would allocate 60 s to each phase. The vehicle queued for phase 1
receives 60 s green time, and the vehicle queued for phase 2 must wait 60 s. In contrast, cycle-MP would switch to phase 2 after
the first time step, resulting in a waiting time of 15 s. The method of Le et al. (2015) would continue to allocate 60 s per phase,
while cycle-MP would actuate the phase with the longer queue length every 15 s.

Fig. 4(a) shows the difference between the average travel time per link between MP and cycle-MP with cycle length of 225 s. The
average travel time per link was computed and averaged across all links in the network, and the difference in that value between
the two models is plotted. Cycle-MP results in a higher travel time per link, however as demand increases the difference in average
travel time is almost constant. The difference is also relatively small at around 1.5 s per link.

Fig. 4(b) shows the difference in link travel time between cycle-MP with cycle length of 225 s and MP, but with only the highest-
delay link at every intersection. The highest-delay links were chosen using the MP scenario. Since cycle-MP actuates each phase at
least once per cycle, the idea is to determine whether cycle-MP reduces delay for the highest-delay link at each intersection, which
should be the link benefiting most from the cyclical phase structure. Surprisingly, cycle-MP has a higher delay than MP even on the
12
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Fig. 2. Network stability.

Fig. 3. Average travel time.

worst-performing links. However as demand increases the difference in performance appears to decrease. At lower demands, MP
may naturally actuate each phase because demand is easily served. At higher demands, MP may be more likely to actuate phases
for high-demand approaches, whereas cycle-MP ensures that low-demand approaches receive some green time each cycle.

4.3. Intersection waiting times

Fig. 5 shows the number of occurrences that a vehicle has to wait at an intersection for more than a certain amount of time
between cycle max-pressure and regular max-pressure control. The graph is essentially a reverse cumulative distribution function.
For every value of waiting time on the 𝑥 axis, the corresponding count on the 𝑦 axis is the total number of times vehicles have
had to wait 𝑥 or more seconds at an intersection throughout the duration of the simulation. Each vehicle is only counted once per
intersection.

Fig. 5(a) shows the difference in intersection waiting times between cycle-MP with cycle length of 225 s and MP for a demand
of 10,000 vehicles per hour. Although cycle-MP performs worse than MP for waiting times up to 180 s, the difference is not drastic
nd diminishes for waiting times more than 225 s. For waiting times greater than 180 s, almost no difference is observed. (Although
13
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Fig. 4. Link travel times.

Fig. 5. Intersection waiting times.

the cycle length is 225 s, greater delays are possible if capacity is insufficient for the queue.) Fig. 5(b) shows a similar trend for
a demand of 18,000 vehicles per hour. These results suggest that higher waiting times for cycle-MP are mostly due to cycle-based
delays in actuating the best phase, as expected for the cyclical phase structure.

Fig. 5 also includes results from the method of Le et al. (2015), and shows that the higher average travel times seen in Fig. 3
corresponds to higher intersection waiting times. This fits the explanation that the fixed cycle length results in higher vehicle delays
when using Le et al. (2015)’s method. Higher intersection waiting times are observed for both 10,000 and 18,000 vehicles per hour.
Even at higher demand levels, there are likely many intersections where the full 225 s cycle length is longer than needed to serve
all demand, resulting in higher delays.

4.4. Comparing worst performing turns per intersection

Fig. 6 describes histograms of the average red light time for the turn at every intersection with the highest average red light
time (determined from the MP scenario). The average red light time for every turn in the network was recorded, and the turns with
the highest red light time for their respective intersections were added to the histograms. A maximum cycle length of 225 s was
used for cycle-MP. These results are the most favorable for cycle-MP, as expected. Fig. 6(a) shows that with MP and a demand of
0,000 vehicles per hour, there are a significant amount of turns that have an average red light time of more than 400 s, while
ycle-MP with a cycle length of 225 s there are no turns that have an average red light time of more than 225 s (as expected from
he maximum cycle length). Fig. 6(b) shows that similar results are obtained with a demand of 18,000 vehicles per hour.

These results show the practical benefit achieved by cycle-MP: a reduction in the longest waiting time for any specific turning
movement. As expected, in some scenarios MP will have a large waiting time because phase selection is arbitrary. Although MP
is also more likely than cycle-MP to have a waiting time less than 50 s, it is also possible to have waiting times of greater than
400 s. Such waiting times could result in significant complaints by drivers and/or pedestrians waiting for a phase that actuates their
crosswalk.

We further refine Fig. 6 by studying the waiting times of vehicles at the worst turn per intersection. Fig. 7(b) shows histograms
of the average waiting time for the turn at every intersection with the highest average waiting time. The average waiting times for
every turn in the network were recorded, and the turns with the highest average waiting time for their respective intersections (based
on the MP scenario) were added to the histograms. Although Fig. 6 shows the longest red light (which could affect pedestrians),
14
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Fig. 6. Red light times for worst performing turns.

Fig. 7. Waiting times for worst performing turns.

ig. 7 shows the time that vehicles spend waiting. While a long red light time might be observed for one turning movement, if no
ehicles are waiting for that turn it is less problematic (but could still affect pedestrians).

Fig. 7(a) shows that with a demand of 10,000 vehicles per hour, MP has better performance for the worst performing turns, with
either model having a single turn with more than 300 s of average waiting time. At low demand, the demand is much less than
he capacity, which means that MP can often actuate phases soon after vehicles arrive. In some cases, cycle-MP must wait to actuate

a phase due to the signal cycle. However, Fig. 7(b) shows that as we increase the demand to 18,000 vehicles per hour, both models
have some turns that have a very high average waiting time, with MP having more turns with average waiting times of 300 s or
more compared to cycle-MP with cycle length of 225 s. At high demand, MP prefers to actuate phases to serve long queues, whereas
cycle-MP actuates each phase once per cycle. Cycle-MP still has some high waiting times of greater than 400 s due to insufficient
capacity for a long queue, but most waiting times are less than the cycle length.

5. Conclusions

Due to practical issues with implementing max-pressure control raised by city traffic engineers, this paper presents a revised
max-pressure control in which phases are actuated in an exogenous ordering defining a signal cycle. The duration (number of time
steps) that each phase is actuated is still decided by the max-pressure control, but a maximum cycle length constraint is imposed.
Smaller cycle lengths can be chosen by the max-pressure control in response to real-time queues. Consequently, the stability region
(set of demand rates that can be served) is reduced by both the constraint of a maximum cycle length and an exogenously-specified
phase cycle. This stability region applies to any traffic signal timing that follows the maximum cycle length and exogenous phase
cycle constraints. We define a modified max-pressure control and prove maximum stability under these constraints, meaning it can
serve any demand in the stability region. The modified max-pressure control takes the form of a decentralized model predictive
controller with a lookahead time of one cycle length. However, we prove that it can be solved by enumerating over phases, so it is
no more computationally intensive than the max-pressure control of Varaiya (2013).

Numerical results on the downtown Austin city network suggest that in practical networks, the maximum cycle length constraint
is not a major limitation on performance because demand arrives regularly from all approaches. The demand is therefore more
balanced, and the extremes of the phase durations restricted by a maximum cycle length are not needed. However, the exogenously-
specified phases seems to limit the stability region. Overall, performance is slightly worse with this cycle-based max-pressure control
15
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than the original max-pressure control of Varaiya (2013), which is expected. The main benefits occur in how the constraints
achieve a signal cycle that is acceptable to city engineers and travelers while retaining the analytical maximum stability result.
Pedestrians waiting for crosswalk actuation should also benefit because a maximum cycle length results in a maximum waiting time
for pedestrians, unlike the original max-pressure control (Varaiya, 2013). We hope that the analytical results will inspire rigorous
methods for traffic engineers to implement max-pressure control while retaining practically-desirable behavior.

These results would benefit from additional numerical analyses on city networks in future work using microsimulation tools,
ike Sun and Yin (2018) did for standard max-pressure control. In addition, revising the flow model to use kinematic wave theory,
ike Li and Jabari (2019) would improve its applicability to traffic networks. Major advantages of using kinematic wave theory
nclude links having finite queue buffers and travel speeds through links being affected by density Another possible extension is
evising the cycle constraints so that each turning movement must be actuated at least once per cycle, but with potentially varying
hases. Although the resulting traffic signal might not follow a recognizable cycle, it would still have the desirable characteristic of
aximum waiting time for any turning movement.
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