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ABSTRACT

New information obtained through measurements provide an opportunity to update estimates of a system’s reliability.
For equality type information, reliability updating is a daunting task. The current state-of-art method, reliability
updating with equality information using adaptive Kriging (RUAK), integrates an adaptive Kriging process with a
transformation of equality information into inequality information. The stopping criterion for training the Kriging
model relies on the estimated error for prior failure probability, thus leaving the potential for the true error in posterior
failure probability to exceed acceptable thresholds. This study presents a method to estimate, for a given confidence
level, the maximum error in posterior failure probability in adaptive Kriging-based reliability updating. Moreover, a
two-phase approach is proposed for active learning and adaptive training of Kriging models in reliability updating
problems. The new stopping criterion based on the maximum error of posterior failure probability ensures the accuracy
of Kriging and thus the reliability estimates, while the two-phase scheme avoids unnecessary training hence improving
the efficiency of reliability updating. Four numerical examples are considered to investigate the performance of the
proposed approach. It is demonstrated that this method offers the ability to balance between the accuracy of reliability
estimates and the computational demand.

Key words: Reliability updating; Reliability analysis, Surrogate model; Adaptive Kriging, Posterior probability error,
Measurements, Monitoring

1. Introduction

Real-world systems are typically under the influence of uncertainties. In the reliability domain, the probability of
failure quantifies the probability of a system failing to meet a specific performance requirement. It is a vital
measurement of performance that considers uncertainties. Let X = [X;, X5, ..., X;;] denote the continuous random
variable vector representing the uncertainties with joint probability density function fx(x). The failure probability of
interest, denoted as Pr(E) or Py, can be defined as:

P =Pr(E) =Prig) <0) = |  fxGdx ©
XENE

where E is the failure event whose domain is denoted as 2, and g(X) is the limit state function representing the status
of the system. Reliability analysis methods can be categorized into three groups: approximation methods, simulation
methods and metamodel-based methods [1]. Approximation methods, such as first and second order reliability method
(FORM and SORM) ) [2], [3] approximate the limit state function using Taylor series expansion. These techniques
are efficient, but they can be inaccurate for highly nonlinear problems due to the approximation error. Simulation
methods such as Monte Carlo Simulation (MCS) [4], Importance Sampling (IS) [4] and Subset Simulation are often
used; however, they are computationally costly as they require numerous model evaluations to ensure small coefficient
of variation; IS also requires an accurate importance distribution, which may be difficult to acquire. Metamodel-based
methods use limited model evaluations to construct metamodels, also referred to as surrogate models, to mimic the
behavior of the original time-consuming limit state functions and subsequently to estimate the failure probability. This
group of methods can be both efficient and accurate for problems that do not involve large scale or discontinuous
responses if a surrogate model is well-constructed in an efficient manner. Polynomial Response Surface [5]-[7],
Polynomial Chaos Expansion (PCE) [8], Support Vector Regression (SVR) [9], [10], and Kriging [11] are among
popular surrogate models. Kriging surrogate model, because of its ability to provide uncertainty information, has
gained significant popularity in the community of reliability analysis in the recent decade. Inspired by Jones et al. [12],
Bichon et al. [13] proposed Efficient Global Reliability Analysis that used Kriging model to perform reliability
analysis. Echard et al. [11] developed an active learning reliability method combining Kriging and Monte Carlo
Simulation (AK-MCS) where the famous U’ learning function was proposed. Bect et al. [14] derived stepwise
uncertainty reduction strategies from a Bayesian formulation of the reliability analysis problem. Picheny et al. [15]
proposed an adaptive strategy to build a Kriging model based on an explicit trade-off between reduction in global
uncertainty and exploration of regions of interest. Gaspar et al. [16] showed that Kriging models provide gains of
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accuracy and efficiency for structural reliability analysis. Gaspar et al. [17] proposed an adaptive Kriging-based trust
region method to search for the design point with IS. Xiao et al. [18] used active learning Kriging to address system
reliability based-design optimization problems.

For existing structures, circumstances can arise when it becomes necessary to re-evaluate the reliability. Such
circumstances can include, among others, when damages are observed, the use of the structure is to be changed, or the
life time is extended [2]. Information about the state of systems and their properties or their environment collected
through observations and monitoring has become more available. This information can be used to re-evaluate the
reliability of systems. In reliability updating, the posterior failure probability represents the probability of a structure
or system failing given such information. The posterior failure probability can be calculated using the following
equation:

, Pr(ENZ)  Jxefognag,n.nag,) fx@dx

! =
Pr?) fxe{nzl N..NQz,} fx(x)dx

where Z represents the observation of intersection of events Zy,Z,,...,Z, whose domains are defined as
07,0z, ...,0z, , respectively. The information here is often of two types: inequality information and equality
information [19]. The information Z; can be categorized as inequality, if it can be formulated as follows:

02z, = {h;(x) < 0} (3)
where h;(x) denotes the information function. An example of inequality information is that no defect is observed, i.e.,
the system response minus the critical value is smaller than zero. On the other hand, equality information is often
representative of quantitative measurements of system characteristics, and can be formulated as follows:

2, = (h(x) = 0) )
Between the two types, the inequality one is easier to deal with, and the posterior probability of failure given inequality
information can be estimated using conventional reliability methods. The main difficulty of reliability updating lies in
how to handle equality information: if one of the Z;s is of the equality type, the integrals in both denominator and
numerator in Eq. (2) will become zero. In other words, the domain {2, is a surface in the space of x if any of the
information event is of the equality type. Thus, Eq. (2) cannot be solved directly using traditional structural reliability
methods mentioned above. It should be noted that there are two viewpoints toward the estimation of P'. The first
approach is to directly perform reliability updating using Eq. (2). The other approach involves updating the distribution
of the random variables with Bayesian updating and then performing reliability analysis with the updated distribution.
The latter method is obviously computationally very demanding compared to the first approach [20].

A number of techniques have been proposed to solve reliability updating with equality information. Madsen [21]
showed that the posterior probability of failure can be estimated using the partial derivatives of the probabilities by
introducing a dummy parameter. However, this approach can lead to significant errors and is not practical in many
cases [19]. In Strurel software [22], first-order and second order approximations to surface integration are used, and
this approach offers acceptable efficiency and accuracy for linear reliability problems. However, for nonlinear
problems, the error of this approach may not be negligible. Straub [19] proposed a new approach by transferring the
equality information into inequality information with an auxiliary standard normal random variable. This method
facilitates updating reliability by converting the original problem into two traditional structural reliability problems.
It achieves sufficient accuracy and efficiency with simulation methods [19]. However, there are two main drawbacks
for the method. First, the numerator of Eq. (2) is concerned with the probability of a joint event, which is typically a
rare event with a very small probability. Thus, a large number of function evaluations are needed in the simulation
methods. Moreover, re-evaluation of the numerator in Eq. (2) is required when new information becomes available,
increasing the number of limit state function evaluations. To overcome the aforementioned limitations, Wang and
Shafieezadeh [20] proposed an efficient metamodel-based reliability updating approach called Reliability Updating
with equality information using Adaptive Kriging (RUAK). RUAK uses Straub’s information type transformation [19]
and integrates an adaptive Kriging approach into reliability updating. The adaptive Kriging approach refines the
surrogate model adaptively by adding a training point in each iteration until a certain stopping criterion is satisfied.
RUAK uses an error-based stopping criterion (ESC) [23], which involves the maximum error of the prior failure
probability. As the posterior failure probability is the final outcome of reliability updating, using ESC has the potential
to lead to an immature stop of the surrogate model construction, and hence an inaccurate posterior failure probability
estimate.

In applications concerning reliability analysis and updating, reaching ‘acceptable’ accuracy often supersedes
computational efficiency as an unacceptably inaccurate result will have no or very limited value no matter how
efficiently it is derived. Without an approach to estimate the error, it will be unknown to what degree the results are
reliable and useful. While methods such as Reliability analysis through Error rate-based Adaptive Kriging (REAK)
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[24] and ESC have been developed for error quantification in reliability analysis methods, no such method currently
exists for reliability updating. Therefore, an approach is needed to reliably estimate error in posterior failure
probability and integrate this estimate in the stoppage criteria of adaptive analyses. This capability will allow the user
to strike a balance between the desired accuracy and computational demand.

This paper proposes a method to estimate the maximum error of posterior failure probability for Kriging-assisted
reliability updating with equality information. The maximum error here is derived for a given confidence level and is
incorporated as the stopping criterion for the adaptive construction of the surrogate model used in reliability updating.
The approach also leverages a two-phase scheme to avoid unnecessary calls to the limit state function. The
performance of the proposed method is demonstrated through four numerical examples in comparison with the original
RUAK. The rest of the paper is organized as follows. Section 2 provides a review of the Kriging surrogate model,
ESC and RUAK. Section 3 introduces the proposed method for estimating the maximum error of posterior failure
probability. The following section presents the two-phase approach to reliability updating. Four numerical examples
are discussed in Section 5. Section 6 provides the conclusions of this study.

2. Reliability Updating using Adaptive Kriging
This section first introduces the Kriging surrogate model. Then, ESC and RUAK approach are reviewed.
2.1 The Kriging surrogate model
Kriging surrogate models have gained popularity in metamodel-based reliability analysis-related studies [11], [20],
[24]-[27]. In those methods, the limit state function g(X), which is usually evaluated using a time-consuming finite
element model, can be regarded as a draw of a Gaussian process. A Kriging surrogate model §(X) can be described
by the following equation [28]:

gxX) =BTfX) +Z(X) )
where f(X) is the Kriging basis that consists of p arbitrary functions f;(X),i = 1,2, ...,p, B is the vector of
corresponding set of coefficients 8;,i = 1,2, ..., p, BT f(X) represents the long term trend and Z(x) is a stationary
Gaussian process. The trend can have formulations including constant (8,), linear (8, + Xi-, BiX;) and quadratic
Bo + 21 Bixi + X1y 25:1 Bijx;x;) [29]. The Gaussian process Z(X) has a zero mean and a covariance matrix that

can be represented as:
cov (2(x®),2(xP)) = 2R (=D, x; 6) (6)
where o2 is the process variance and R(x¥, x00; @) is the correlation function of two points x¥,i = 1,2, ..., Nyycs

and x0), j=1,2,.., Ny in the candidate design points § generated through MCS with hyper parameters 8. The
correlation function used in this paper is the Gaussian correlation function, which can be formulated as follows:

n
. . . N 2
R(x(l),x(f); g) - | | exp (—9" (xl(cl) _ xlgj)) ) )
k=1
@

where x,;” is the k., dimension of x@, and 6% is the k,, hyperparameter. When 6% are the same, R is called an
isotropic correlation function, otherwise, it is called an anisotropic correlation model. In this paper, the anisotropic
correlation function is used in which 8%,k = 1,2, ...,n can be different.
With a set of m training points [xtr(l), X @, ., %, ] and the corresponding function values Y =
[9(x:x ™), g(xrP), ..., g(x:,7™)], B and 62 can be calculated using the following equations [12]:
B= (FTR'F)"'FTR" 'Y (8)

1
%= — (Y —FB)"R (Y — FB) 9
where F is the matrix of f(X) with Fj = fj(xtr(i)),i =12,..,m,j=1.2,..,p, and R is the autocorrelation matrix
with R;; = R(x: @, x,,9;8),i = 1,2,...,m,j = 1,2,...,m. As B and ¢ depend on 8 through R, it is required to

obtain the values in . In this paper, 0 is estimated through maximum likelihood estimation (MLE) method [30]. The
formulation based on MLE is as follows:

1
0" = argmin <|R(xtr(i),xtr(j); 0)|™ 02> (10)
0

The optimization method used to solve the problem is genetic algorithm [31]. Given the results of the optimization
problem, for an unknown point x, the predicted function value through the Kriging model can be estimated using the
following equation [29]:

ug(x) = fTOB + 1" (R (Y — FP) 1D
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where r(x) is the correlation vector between x known training points x,®,i =1,2,..,m with r;(x) =
R (x, x,D; 0). Note that p4 is the mean value of the predicted function value with variance of agz [29]:

a5 (x) = o*(1+ u" (X)(F'R'F)'u(x) — r" (x)R™'r(x)) (12)
where u(x) = FTR™'r(x) — f(x). The predicted function values all follow a normal distribution with the mean and
variances estimated using Eq. (11) and Eq. (12). Once a well-constructed Kriging surrogate model is obtained,
simulation methods such as MCS can be used to estimate the failure probability with the surrogate model replacing
the original time-consuming model.

During the process of the model construction, uncertainty information offered by the Kriging model can help
with the identification of the next best training points and the stopping criterion for the construction of the surrogate
model for reliability analysis. Echard et al. [11] proposed the U’ learning function with the following form:

U,(x) — |#§(x)| (13)

Og (x)

The U’ learning function identifies points that are close to the limit state, have high uncertainty or both at the same
time. The U’ learning function represents a reliability index for the risk of making wrong sign estimation of the limit
state function. The point with the smallest U’ learning function, i.e., the point whose sign of the limit state function
value has the highest probability of being wrongly estimated, is regarded as the next best training point. The U’
learning function can also be used as Kriging model’s stopping criterion, which is defined as min(U’(x)) = 2. When
the stopping criterion is satisfied, the Kriging model is deemed to be sufficiently accurate. When the stopping criterion
is not satisfied, a new training point is added for the construction of the surrogate model. This approach, which
gradually adds training points to refine the surrogate model until some stopping criterion is satisfied, is regarded as
adaptive Kriging. However, most existing stopping criteria do not directly relate to the error in estimated failure
probabilities. Wang and Shafieezadeh [23] proposed an error-based stopping criterion (ESC) to address this limitation.
The stopping criterion is reviewed in the next subsection.
2.2 The Error-based stopping criterion
Wang and Shafieezadeh [23] proposed the ESC that estimates the maximum error of failure probability introduced by
the Kriging model. ESC stops the surrogate model construction when the estimated maximum error of failure
probability is smaller than a predefined threshold €gy,.. In ESC, the maximum error for the failure probability estimated
using the Kriging surrogate model is determined using the following equation:
— ~ | = A 1 (14)
Ny =S¢ Nf + S¢
where f\l} is the estimated number of failure points by the surrogate model in the MCS population, f}‘and S¥ are the

Emax = max(

upper bounds of S‘f and S;, respectively, and ff and S are the total number of wrong sign estimations in the estimated
failure and safe domains Qf and {2, respectively. Wang and Shafieezadeh [23] showed that S; and .S} follow two
Poisson binomial distributions with mean and variance shown below, respectively:

Ny Ny

S,~PB Z p}rse Z P}se (1 — pse) (15)
i=1 i=1
Ny Ny

§f~PB Z Piwse ‘Z Piwse (1 _ Piwse ) (16)
i=1 i=1

where PB denotes the Poisson Binomial distribution, Ny is the number of points in O, and P¥¢ denotes the
probability of wrong sign estimation for x¥ in §, which can be calculated as:

e = o (-U'(x)) (17)
where @(+) is the cumulative density function (CDF) of a standard normal distribution. Therefore, given a significance
level a (usually 5%), the upper and lower bounds of S; and .§f can be found as:

5 € [63 (%) 05 (1- %)] (18)

5 €103 (5).05! (1-3)] (19)
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where 05251 and @S_fl are the inverse CDFs of the two Poisson Binomial distributions. For more details for the

computation of €,,,,, readers are referred to [23].
The RUAK approach, which uses ESC as the stopping criterion, is introduced in the next subsection.

2.3 Reliability updating using adaptive Kriging

Wang and Shafieezadeh [20] proposed RUAK to estimate the posterior failure probability. In RUAK, using the Bayes’

theorem the posterior failure probability Pf’ breaks down into three components: prior failure probability Py,

probability of observations Pr(Z), and conditional probability of observations Pr(Z|E). The estimated posterior

failure probability ﬁf’ by the Kriging model can be represented as:
A;ZPr(PZIE) Py 20)

r(Z)
where Pr(Z|E) is the estimated Pr(Z|E) where the failure event E is determined by the Kriging model, and ﬁf is the

corresponding estimated prior failure probability. Note that " herein denotes that the value under is determined by
the Kriging model and carries the error as a result of the Kriging model. Therefore, based on the well-constructed
surrogate model §(X), Py can be estimated as:
5 _ T Iy(x©)
p= IO @1)
mcs
where I5(+) is the corresponding indicator function:
; 1, hen §(xV) <0
L) ={y et )= (22)
0, when §(x®) > 0
For the calculation of Pr(Z), RUAK adopts equality information transformation in [19]. Pr(Z) can be explicitly
obtained via MCS:
i . Z;V:nics I (x(’),pi) (23)
€1 chs
where q is a constant representing proportional relationship between Pr(Z|X = x) and the likelihood function L(x)
of the observation Z. Note that Z here is independent of the failure event, thus the Kriging model is not involved here.
L(x) corresponds to the information function h(x) = 0 and can be expressed as L(x) = f;(s,, — s(x)), with f; being
the probability density function of the measurement error ¢, s, being the measurement of a property in Z and s(x)

Pr(Z) =

being the property expressed in terms of X, which can be x or any function of x. Moreover, ¢; = mar L) and I, (%)
is the corresponding indicator function expressed as:
1,  whenh,(x®,p) <0
L(x;,p;) = . 24
(X0, pi) {0’ when he(x(l)'Pi) >0 (24)

where h, () is an augmented limit state function for transforming equality information into inequality information:
he(x,p) = p — c1L(x) (25)
where p is an auxiliary standard uniform random variable. Thus, Pr(Z) herein is regarded as the probability of failure
according to the augmented limit state function h, (-). Similarly, the probability of the observations conditional on the
failure event Pr(Z|E) can be determined using MCS as follows:
8 .
~ S Le(x'D,p;
prziey = L. 2= 2 p) (26)
(o5} Ny

where x are the points in {;, which is determined by the Kriging model §(X), ¢, =

1 .
W and IZ+(') is the

indicator function given by:
ht(x'D) 1.
IZ+(X'(j),pj) _ {1, when ilj (x, ' ,p]) <0 @7
0, when h} (x (]),p]-) >0

where hi (") is the second augmented limit state function corresponding to the transformation from equality
information into inequality one:

A he (@ x) =p = cL(x) (28)
Note that h{ (*) carries the error introduced by the Kriging model as all points considered herein are the failure points
x’ according to the Kriging model §(X) of the actual limit state function g(X). Thus, Pr(Z|E) herein is regarded as
the probability of failure according to the second augmented limit state function A () for points in ﬁf. Once all three
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components are obtained, Pf' can be easily calculated using Eq. (20). The reader is referred to Wang and Shafieezadeh
[20] for more detail.

This methodology has two main advantages: (1) estimations of P; and Pr(Z|E) are computationally efficient
and (2) once the estimation of I3f is ready, reliability updating becomes efficient whenever the observations and
information are changing. However, this method has one main drawback: it uses ESC as the stopping criterion for the
construction of Kriging surrogate model, and ESC only considers the error of the prior probability of failure I3f
whereas the posterior failure probability ISf’ is of interest. In the three components required to calculate I3f’, Pr(Z|E)
is estimated using points in the estimated failure domain, which is determined by the Kriging model. The wrong sign
estimation will affect not only I3f, but also Pr(Z|E). The actual error of I3f’ can be larger than the maximum error of
I3f estimated by ESC. This drawback may lead to an immature stoppage of training of the surrogate model. Thus, an
estimation of the maximum error of ISf’ is desired to be used as the stopping criterion for the Kriging model construction
for reliability updating. In this paper, we propose a method to estimate the maximum error of the final output 1’5;. The
method is introduced in the next section.

3. Error Estimation for the Posterior Failure Probability

As mentioned in Section 2, using the surrogate model may introduce errors due to the potential for wrong estimation
of the domain of sample points. The maximum error of the posterior failure probability cannot be easily estimated.
Here, it is proposed to evaluate the error of conditional probability Pr(Z|E) first. Once the maximum error of Pr(Z|E)
is obtained, given the maximum error of prior failure probability offered by ESC, the maximum error of I3f' can be
easily estimated. Before introducing the approach for estimating the error of Pr(Z|E), the source of error is discussed
first.

In estimating Pr(Z|E), the error occurs when the sample points in the MCS population are misclassified in the
prior failure probability estimation. First, Pr(Z|E) is calculated using the points that are determined by the surrogate
model to be in the failure domain, thus misclassified points in both ﬁf and ), can have an impact on the accuracy of
the conditional probability estimation. The actual points in failure domain can be obtained by adding points that are
misclassified in the survival domain to the failure domain and removing points that are misclassified in the failure
domain. Second, according to Eq. (26), ¢2 depends on the value of max (L(x")), which may also be affected when
adding and removing misclassified points with large likelihood function values. The error of Pr(Z|E) can therefore
be calculated as follows:

I Npe 1 Ny
g Pr(zIE) _ Pr(Z|E) — Pr (Z|E)" _ C2 Nf c;" Ny @9
" Pr (Z|E)" 1N,
c" N

where Pr (Z|E)* is the true value of Pr(Z|E), Nf+ is the number of estimated failure points that ‘fail’ again according
to the limit state Eq. (28), i.e., h} (p;, x'?) < 0, (hereafter abbreviated as LSF1), Ny, is the true counterpart, ¢, is the
estimated value of the constant in Eq. (26), and ¢, is the true counterpart.

According to Eq. (29), the estimation of €,,4," " (ZIE) is achievable once the estimate of the range of Pr (Z|E)" is

known. Given that q is the proportionality constant that will be canceled out, the problem can be transferred into
1

c*

o . 1N . N .
estimating the range of Pr (Z|E)*/q, i.e., C—*f, which can be seen as the product of — and % The first term is
2 Nf f

quite straightforward and can be regarded as a monotone decreasing function for c,* > 0. The main difficulty lies in
L N o .
the estimation of the range of the second term I* The derivation of the bounds is presented next.

N
3.1 Upper bound of N, /N ’
First consider Case I, in which 5}‘ points in ﬁf are misclassified. Thus, .§'}‘ points with larger U’ learning function
values (more likely to be misclassified) in the estimated failure domain are identified. Removing these 5’}‘ points will
cause the denominator Ny to decrease from f\l} to Nf - 5‘}‘ In addition, if the removed points contain the points with
the largest likelihood function value, & should increase to c,", causing more points in ﬁf to “fail” according to LSF1.

This increased ¢, can be regarded as the upper bound of ¢, and is denoted as c,*. It is calculated using the following
equation:
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ot = —1 -

max (L(x'7))

where x'~ represents the failure points in ﬁf with the .§}‘ points removed. Let LSF2 denote the LSF! with c, replaced
by c,*. Note that the removed points may also contain the points that “fail” according to LSF2, resulting in a decrease
in the numerator N¢,.. To offset the impact, when considering the numerator, no point is actually removed, however,
the numerator may still increase due to the adoption of ¢,* in LSF?2. This is referred to as Case 2 where all the removed

(30)

points did not fail according to LSF/. For the denominator, §}‘ points are still removed. Therefore, % for the
f

combined case (/ and 2) can be formulated as follows:
N cl2 N
(L) = N 3D
~ Ny N =5
where Ny, is the number of the points in the original {2 that “fail” according to LSF2. Nevertheless, this is not the

N . . . . P . . . ~ ~
true upper bound of %, as if there are also points misclassified in {2, the action of moving points from () to {J; can
f

. N . . . . : ~ ~
also potentially cause % to increase. This action will not only add the number of the added points from ()5 to £ to
f

the denominator, but also add the number of the added points that fail according to LSF2 to the numerator. Let a
denote fV}+u and b denote Nf - Afu. It is obvious that b is often larger than a. Then let ¢ denote the number of the

added points from £ to ﬁf that “fail” according to Eq. (28) with c," and d denote the number of added points that do

cl12
not “fail” according to Eq. (28) with c,*. Therefore, after adding ¢ + d points to the failure domain, (Ijvﬁ) can be
f
written in the form of:
a+tc =1 b—a+d
b+c+d =~ b+c+d (32)

This formula can be regarded as a function with respect to ¢ and a function with respect to d, respectively. It is observed
that the function with respect to ¢ is monotonically increasing for ¢ = 0 considering the right-hand side and the
function with respect to d is monotonically decreasing for d = 0 considering the left-hand side. Hence after adding ¢

c12
+ d points to the failure domain, (%) reaches its maximum when c reaches its maximum and d = 0. This is
f

denoted as Case 3 where all points among the S¥ points added from £ to Q2 are ones that “fail” according to LSF2.
Note that the S* points are points with larger U’ learning function values in {2, and are identified similar to Case I. In

N . . . . . .
other words, % reaches its maximum when the combined case (/, 2 and 3), i.e., the extreme case, is considered. The
f

upper bound of % will therefore have the following form:
f
(E)u _ Nepu + Npyss (33)
Nf Nf - Sfy +Nf+ss
where NHSS is the number of points in S that fail according to LSF2.
3.2 Lower bound of N, /N¢

N . .. . . . a . -
The lower bound of % can be found in a similar fashion by first considering Case 4 where S¢ points in ()5 are
f

misclassified. Adding S* points with larger U’ learning function values to the failure domain will cause the
denominator N to increase from Nf. In addition, if the added points contain the points with the largest likelihood
function value, &, should decrease to ¢,", causing fewer points in Qf to fail according to LSFI. The decreased ¢, can
be regarded as the lower bound of ¢," and is denoted as c,'. This term is determined using the following equation:
1
2 = nax (L)) (34
where x'* represents the failure points in ﬁf with the S* points added. Let LSF3 denote the LSFI where c, is replaced

by c¢,'. Note that the added points may also contain the points that “fail” according to LSF3, causing an increase in the
numerator N¢, . To offset the impact, when considering the numerator, no point is added, however, the numerator may
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still decrease due to the adoption of ¢, in LSF3. This is referred to as Case 5 where all the added points did not fail
according to LSFI. For the denominator, $¥ points are still added. Therefore, % for this extreme case can be
f

formulated as follows:

ec45 &5
Nrs+ = _Nw (35)
N Nf + g;‘

where fV}+ ; is the number of the points in the original .@fthat fail according to LSF3. Similarly, this is not a true lower

N . . . A . N . . .
bound of %, as the action of removing points from (2 can potentially cause % to decrease. This action will subtract
f f

the number of the removed points from ﬁf from the denominator and the number of the removed points that fail

according to LSF'3 from the numerator. Similarly, let e denote N}H and f'denote N} + S¥. It is obvious that fis often

larger than e. Then let g denote the number of the removed points from ﬁf that “fail” according to LSF3 and 4 denote

the number of the removed points that do not “fail” according to LSF'3. So, after removing g + 4 points from the failure
Npy

c45
domain, (N—) can be written in the form of:
f

e—g f—e—h

f-g-h f-g-h

In the same fashion, this formula can be regarded as a monotonically decreasing function with respect to g for g = 0
considering the right-hand side and a monotonically increasing function with respect to 4 for # > 0 considering the

. . . . AN o
left-hand side. Hence after moving g + /4 points to the failure domain, (f) reaches its minimum when g reaches
f

(36)

its maximum and 4 = 0. This is denoted as Case 6 where all points among the $¥ points added from (2, to ﬁf are the

ones that “fail” according to LSF'3. In other words, f reaches its minimum when the combined case (4, 5 and 6), i.e.,
f

. . N .
the extreme case, is considered. The lower bound of % can therefore be determined as follows:
f

(ﬁ)l e 37)
A \ N ) TR A SE Ry

where Ny ¢ is the number of points in S¢* that fail according to LSF3.

3.3 Posterior failure probability error

Since the upper and lower bounds of NN—’:' are found, the estimation of the upper and lower bounds of Pr (Z|E)*/q is

straightforward. The upper and lower bounds of c¢,* are also obtained during the process of estimating the range of

Pr (Z|E)*/q. The upper and lower bounds of Pr (Z|E)*/q can be easily calculated as the product of upper and lower
1

bounds of — and Ijvﬁ Hence the maximum error of the Pr (Z|E) can be formulated using the following equation:

Cz* f

i&_i(&)u l&_i(%)l
¢ Ny '\ Ny C2 Ny "\ Ny

L0 L(%)l
'\ Ny c* \ Ny

Pf' can be regarded as the product of P and Pr(Z|E) divided by Pr(Z), where only the first two items introduce error.

A Pr(Z|E) _
Emax = max

(38)

Once the estimate of the maximum error of Pr(Z|E) is obtained, along with the maximum error of Pr (E), the
maximum error of 13} can be determined as follows:

~ P _ A P A~  Pr(Z|E A P ~  Pr(ZIE

Emaxf=€maxf+€max T(|)+€maxfxemax T(I) (39)
The derivation can be found in Appendix. The derived é,,,, fully considers the possible errors of posterior probability
of failure, providing an accurate stopping criterion for training the surrogate model for estimation of the posterior
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probability of failure. A new reliability updating approach that adopts €max’ T as the stopping criterion is proposed,
which will be introduced in the next section.

4. The Two-Phase RUAK approach



An approach for reliability updating with equality information with surrogate model is proposed in this section. In
contrast to RUAK, the proposed method leverages the maximum error of posterior failure probability as the stopping
criterion. In addition, a two-phase scheme is proposed here to improve the efficiency of the posterior failure probability
estimation. According to Eq. (39), it can be observed that &,,4,"" (E12) i always larger than €,,,,"" “ZIE) Moreover, it
requires more computations. Therefore, in the first phase, ESC is used to estimate the prior failure probability error
until the error reaches the threshold of 5% like in the original RUAK. In the second phase, the posterior failure
probability error is calculated to evaluate the proposed stopping criterion. The flowchart of the approach is shown in
Fig. 1. The details of each step are summarized below:
o Step 1: Generating initial candidate design samples. First, Ny s candidate design samples are generated using
Latin Hypercube Sampling and the set of samples is denoted as S.
o Step 2: Initial training points. Randomly select an initial set of training points denoted as X;, from §.
o Step 3: Phase 1 Kriging construction. Enter phase 1: Construct the Kriging meta-model §(X) with current X,
This construction is based on UQLab [30] in this paper.
o Step 4: Kriging prediction. The Kriging responses ug(x) and variances agz (x4) are obtained from the current
Kriging model §(X) for every point in §. According to responses pi5(x), the failure probability I3f is estimated via
MCS.
e Step 5: Identification of the next training point. The point with the smallest value of U’ learning function in S is
selected as the next best training point.
o Step 6: Updating the training points. Add the identified next training point to X,
o Step 7: Maximum error estimation of Pr. Use ESC to estimate the maximum error of Py: &g, .
o Step 8: Checking the Phase 1 stopping criterion based on the maximum error. Check the stopping criterion:

A Pr (E)

€max < €thr (40)
where €.y, is the error threshold. If the stopping criterion is not satisfied, then the process moves to Step 3; otherwise,
to Step 9.
o Step 9: Checking the coefficient of variation of the failure probability. The sufficiency of the population of § is
checked using:

1-P
f
NucsPr (41

COfo =

If COVp . is smaller than the predefined threshold 5%, then the process moves to Step 10. Otherwise, an additional
number N, of candidate design samples Ag should be added to S, and the process should move back to Step 4.

o Step 10: Phase 2 Kriging Construction. Enter Phase 2: Use the current X, to construct the Kriging meta-model
9(X,)-

e Step 11: Kriging prediction. The Kriging responses p5(x) and variances agz (x) are obtained from the current
Kriging model §(X) for every point in S.

o Step 12: Identification of the next training point. The point with the smallest value of U’ learning function is
selected as the next best training point in S.

o Step 13: Updating the training points. Add the next training point to X,

o Step 14: Maximum error estimation of P'f. Use Eq. (33), Eq. (37)-(39) to estimate the maximum error of ﬁ'f:

. Pr(E|2)
emax .

o Step 15: Checking the Phase 2 stopping criterion based on the maximum error. Check the stopping criterion:
é Pr(E|Z) - € (42)
max = Ethr

If the stopping criterion is not satisfied, then the process moves to Step 10; otherwise, to Step 16.
e Step 16: Calculating Pr(Z) and estimating Py and Pr(Z|E). Pr(Z) can be calculated using Eq. (23) and Py and
Pr(Z|E) can be estimated using Eq. (21) and Eq. (26), respectively using the well-trained surrogate model §(X).
o Step 17: Estimating the posterior failure probability Pf’. Estimate the posterior failure probability using Eq. (20).

The proposed method avoids the unnecessary computation of €4, " (E12) by adopting the two-phase scheme.
The stopping criterion based on the maximum error of the posterior failure probability provides an accurate stop signal

for the construction of surrogate model. The performance of the approach is demonstrated through four numerical
examples in the next section.
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Fig.1 Flowchart of proposed approach
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5. Numerical examples
In order to test the accuracy of the proposed approach, four numerical examples are investigated, and the results are
compared with the original RUAK. The posterior failure probabilities obtained from crude MCS with 10° function
evaluations are used as the reference to calculate the error of the posterior failure probabilities obtained from RUAK
and the proposed approach. For each example, the computation is repeated 30 times. To offset the impact of the
randomness introduced by the auxiliary standard uniform random variable p, the three methods share the same
realization of p in each computation.
5.1. Linear and normal case
The first example investigates the performance of reliability updating methods for a linear problem involving multiple
normal random variables [19]. The limit state function is defined as:

gX) =2X, +3X, + 6X3 +4X, — X5 — 2Xs — 4X, — 4X;g (43)
where X = [X], ..., Xg] are identically distributed independent normal random variables with mean puy = 10 and
standard deviation gy = 2. In this example, three observations are considered with measurement errors &1, &y,2, and
Ems, respectively. The equality information is described by the following functions:

hy(xi, X1, Emi) = X+ X1 — 20 + &1 = 1,2,3 (44)

All three measurement errors are identical independent standard normal random variables. Thus, the likelihood
function can be formulated as follows:

3 3
L(x) = HLi(xi:le) = nqo(ZO = X; = Xi41) (45)
i=1 i=1

where ¢ is the probability density function of the standard normal variable, x;, x,, X3 and x, are samples of X;, X;, X5
and X,, respectively. For all problems in this section, the threshold of the stopping criterion is set as €., = 0.05, the
coefficient of variation of Pf is also set as 0.05, the number of initial training samples randomly chosen using LHS is
12, and the initial number of candidate design points is Ng = 10* with Ny, = 10*.

2.5 ‘ 1.4 210
- Prior prob. error et s g oo | sem——— Upper bound
- ---- Post. prob. error 12+ '\ Estimated
) Phase boundary | | - YA Lower bound
; /
i 1t
g 19 T 08
& Ly o
2 ‘. j N
m 1 ‘l/ - : ! ,;, a; 0.6
e ¥ 0.4
0.5 . o
o 0.2
o o T \ " , | ‘ ,
10 20 30 40 50 60 70 45 50 55 60 65 70
Training points number Training points number
Fig.2 Error rates during the training process for Fig.3 Upper and lower bounds for Pr (Z|E)*/q
the Two-Phase approach during the training process

The results for the proposed method are summarized in Table 1 and are compared with the results obtained using
RUAK. Both approaches use UQLab [30] for the surrogate model construction and share the same configuration. This
process is also applied to the other examples. Results are based on repeating the computations 30 times. The error is
based on the comparison between the posterior failure probability determined using the considered approaches and
MCS. Fig.2 shows the error rates during the training process for the proposed approach. As shown in the figure, in the
first phase, the maximum error rate for the prior failure probability is recorded until it reaches the 5% threshold. In
the second phase, the training process continues until the maximum error rate for the posterior probability error is less
than the 5% threshold. Fig. 3 shows the upper and lower bounds for Pr (Z|E)*/q during the training process of the
second phase. The curve in the middle is the estimated value, which lies between the upper and lower bounds. It can
be observed that in both Fig. 2 and Fig. 3 there are fluctuations in the curves for the second phase. This fluctuation is
expected due to the randomness introduced by the auxiliary standard uniform random variable p. A “bad” realization
of a set of p may lead to a quite slow convergence rate. Thus, in each iteration of the approach, a different set of p is
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generated to avoid potential slow convergence, hence the fluctuations. It is seen that the proposed approach
substantially reduces both the average and maximum error compared to RUAK. As shown in the Table 1, the average
error rate of the 30 runs with the original RUAK is 6.5%, which exceeds the predefined threshold, while the one with
the Two-Phase RUAK is 2.1%, which is controlled under the threshold. Using the original RUAK, the maximum error
from 30 replicate sets is 23.3%, while this error using the Two-Phase RUAK is limited to 5.6%.

Table 1 Reliabiliﬁ uEdatinE results for the linear and normal examEle based on 30 reElicate sets

Posterior failure

Methodology probability fi\rlll(l:?il:r?rcglﬁs Average error Maximum error
average
MCS 1.1x 1073 108 - -
RUAK 1.1x 1073 40-49 6.5% 23.3%
Two-Phase RUAK 1.1x 1073 54-75 2.1% 5.6%

5.2. Structural system case
The second example is a classical structural system problem studied by many researchers [32], [33]. The problem
investigates an elastoplastic frame that is subject to a horizontal load H and a vertical load V as shown in Fig. 4. It is
a series system reliability problem considering three failure mechanisms: sway, beam, and combined mechanisms.
The plastic-moment capacities of this structure are denoted by Ry, Ry, ..., Rs. The limit state functions corresponding
to the three mechanisms can be easily obtained through plastic analysis. The limit state function of the system can be
defined as the minimum of three limit state functions as follows:
R+ R, +R,+Rs—5H
g(V,H,R) = min R, +2R; + R, =5V (46)
Ry + 2R3+ 2R, + Rs —5H — 5V
where H follows the Gumbel distribution, V' follows the Gamma distribution and Ry, R, ..., R5 all follow the
lognormal distribution and are correlated. The properties of the random variables are summarized in Table 2.

Table 2 Random variables in structural szstem examele

Random variable Distribution type Mean C.OvV Correlation
R;,i=1,..,5(kN.m) Joint Lognormal 150 0.2 Pmr = 0.3

H(kN) Gumbel 50 0.4 Independent

V (kN) Gamma 60 0.2 Independent

Two measurements M, and M are considered for R, and Rz, respectively. The corresponding measurement errors
Ema and g5 both follow independent normal distributions with a mean of 0 and a standard deviation of 15 kN. m.
The equality information can be described by the following equations:

hi(Ry &mi) = Ry — My + &pi, 1 = 4,5 (47)
where M, and M5 are taken as 150 kN. m and 200 kKN. m, respectively. Thus, the corresponding likelihood function
can be formulated as:

L(r) =@ My —1,) - 9" (M5 — 15) (48)
where 7, and r5 are samples from R, and Rs, and ¢ is the probability density function of normal distribution with
mean 0 and standard deviation of 15 kN. m. In the implementation of both approaches, the number of initial training
samples is set to 12 and the initial number of candidate design points is Ng = 10* with Ny = 10*. The results of this
case based on 30 replicate sets are presented in Table 3.

As shown in Table 3, the average error of Two-Phase RUAK is 2.5%, which is below the threshold of 5%. On
the other hand, the original RUAK has an average error of 8.3%. Moreover, the maximum error of the original RUAK
reaches 46.6% while the Two-Phase RUAK has a maximum error of 12.4%. For the original RUAK, the average of
the posterior failure probabilities from 30 computations is different from the one derived using MCS, while the average
of the posterior failure probabilities from two-phase RUAK is the same as MCS.
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Rz Rs R4

Rl R5

a. Sway mechanism b. Beam mechanism c. Combined mechanism
Fig. 4 Ductile structural frame with three failure mechanisms

Table 3 Reliability updating results for the structural system example based on 30 replicate sets.

Posterior failure

Methodology probability ﬁi\rlllcl:?il:frcglfls Average error Maximum error
average
MCS 6.9 x 1073 10° - -
RUAK 6.7 x 1073 43-117 8.3% 46.6%
Two-Phase RUAK 6.9 x 1073 92-261 2.5% 6.4%

5.3. Example with 10 dimensions and multiple measurements

The third example is a 23-bar truss bridge with ten input random variables [34], [35]. The example investigates
reliability updating with multiple measurements. As shown in Fig. 5, the bridge, which consists of 11 horizontal bars
and 12 diagonal bars, is subject to 6 vertical forces P = [Py, ..., Pg]. A; and A, are the cross-sectional areas of
horizontal and diagonal bars, respectively, and E; and E, are the corresponding Young’s moduli. All the random
variables are stored in a vector X = [Py, P,, P, P,, Ps, Ps, A1, A5, E1, E,]. The limit state function of the problem is as
follows:

g(X) =0.14 — |dis(X)| (49)
where dis(X) is the displacement at the midpoint and is calculated using matrix structural analysis. The probabilistic
information of the ten independent random variables in X can be found in Table 4. For this example, the number of
initial training samples is set to 12 and the initial number of candidate design points is Ng = 10* with Ny = 10*.
Four measurements of P;, P,, A; and A, are considered with the corresponding errors &,; and &,,,, which both
follow a normal distribution with mean 0 and standard deviation 0.5 X 10* N and &,,3 and &,,4, which follow a normal
distribution with mean 0 and standard deviation 1 X 10~* m?. The information functions can be expressed as follows:

hi(Py,&m) = P, — 85 % 10* + g5
hy(Py, em1) = P, — 7.5 X 10* + £,
h3(Ay, &m3) = A; — 1.85 X 1073 + ¢35
hy(As, 604) = A, —09 %1073 + ¢,

(50)
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Therefore, the corresponding likelihood function can be represented as:
L(x) = @™ (em1) - @ (€ma) - @**(€m3) - 9> (E1na) (51)
= @?(8.5x 10* = P,) - @'?(7.5 X 10* — Pg) - @>*(1.85 x 1073 — A;) - @>*(0.9 x 1073 — 4,)
where ¢ is the probability density function of normal distribution with mean 0 and standard deviation 0.5 X 10*
and @3* is the probability density function of normal distribution with mean 0 and standard deviation 1 X 107%,

|P1 Fz |P3 P4 ‘Ps

24 m
Fig. 5 Truss bridge with the example

Table 4. Random variables in ten-dimensional example with multiple measurements.

Random variable Distribution Mean Standard deviation
P, — P, (N) Gumbel 6.5 x 10 6.5 x 10°
Ay (m?) Lognormal 2x1073 2x107*
A, (m?) Lognormal 1x1073 1x 107
E; (Pa) Lognormal 2.1 x 101! 2.1 x 10%°
E, (Pa) Lognormal 2.1 x 10! 2.1 x 100

The results for this example are summarized in Table 5. It is evident that with slightly more training points, the
average error of Two-Phase RUAK is 43% smaller than that of RUAK. Moreover, Two-Phase RUAK has the
maximum error of 5.6%, while the maximum error of RUAK is 11.9%.

Table 5. Reliabilitz uEdating results for 10-dimensional examgle based on 30 reelicate sets.

Posterior failure

Methodology probability fé\r]ll(l:?il:frcglfls Average error Maximum error
average
MCS 1.25x 1072 106 - -
RUAK 1.26 x 1072 74-97 3.7% 11.9%
Two-Phase RUAK 1.25x 1072 87-122 2.1% 5.6%

5.4. Oscillator example
The last example is an un-damped single degree of freedom system with six random variables as shown in Fig. 6.
The details of this model can be found in [11], [36]-[39]. The performance function is described below:

2F;, . ((uo tl>
—=sin
mw? 2
where w, is the system frequency and is calculated using / % All random variables in this example follow normal

g(kl, kz, m,r,ty, Fl) = 3r —

(52)

distributions. The properties of the six random variables are summarized in Table 6. In this example, two observations
are considered with measurement errors of €, and &,,,. The equality information is described by the following
function:
hi()=r—1+¢&y, (53)
h,(F1) = F; — 0.9 + &,
The measurement errors are statistically independent and identical normal random variables with the mean of 0 and
the standard deviation of 10~1. Thus, the likelihood function can be formulated as follows:

Lx) =@ (1 —x.) ¢ (1 —xg) (54)
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where ¢ is the probability density function of the normal distribution with mean of 0 and standard deviation of 1071,
x, and xg, are samples of r and Fy, respectively. For this example, the number of initial training samples is set to 12
and the initial number of candidate design points is Ng = 10°® with Ny, = 106.

F@)
(1)
C] FJ
F@
C2 m
{1 t
Fig. 6 Oscillator
Table 6. Random variables in nonlinear oscillator.
Random variable Distribution Mean Standard deviation
m Normal 1 0.05
ky Normal 1 0.1
k, Normal 0.1 0.01
r Normal 0.5 0.05
F, Normal 1 0.2
t, Normal 1 0.2

The results for this example are summarized in Table 7. It is demonstrated that the original RUAK, when dealing
with this problem with extremely low posterior probability of failure, cannot effectively control the errors of the final
output. The average error of RUAK has reached 22.4% and the maximum error is as high as 47.7%. The proposed
method, on the other hand, effectively controls the errors using the developed more accurate stopping criterion for the
posterior failure probability. The average of the posterior failure probabilities based on 30 replicate sets by the
proposed the method is exactly the same as the reference by MCS, while the one by RUAK is smaller.

Table 7. Reliabilitz quatin% results for nonlinear oscillator based on 30 reelicate sets.

Posterior failure

Methodology probability fi\rlll(l:?il:r?rcglﬁs Average error Maximum error
average
MCS 2.8x107° 107 - -
RUAK 3.2x 1075 24-28 22.4% 47.7%
Two-Phase RUAK 2.8x 1075 77-149 0.4% 0.9%

6. Conclusions

This paper introduces a method to calculate the posterior failure probability error, and a two-phase RUAK approach
that takes advantage of the posterior failure probability error estimation. The error estimation of the final output allows
a stopping criterion for the Kriging model construction that assures desired accuracy for reliability updating. The two-
phase scheme minimizes the computational demand in achieving the desired accuracy. Four numerical examples,
including a linear and normal problem, a structural system and a ten-dimensional problem with multiple measurements
are investigated to examine the accuracy improvement of the proposed approach. For each example, the calculation is
repeated 30 times to test the robustness. It is observed that the average errors of the final outputs of the proposed
method are significantly smaller and the maximum errors are contained more effectively compared to the state-of-the-
art method RUAK. The fact that the error-based stopping criterion used in RUAK is not able to capture the actual
posterior failure probability error sometimes leads to premature stops of the refinement of the surrogate model,
meanwhile the proposed method yields significantly more accurate results at the cost of more computational costs.
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Appendix
As noted in Eq. (20) I”}i is the product of 13f and Pr(Z|E) divided by Pr(Z). It should be noted that Pr(Z) does not
involve the Kriging model. Therefore, the error introduced in Pf' as a result of the Kriging model, only ﬁf and Pr(Z|E)
are of interest. It is obvious the following equation holds:
., PrZIE)P,  Pr(Z|E)P; x (1£ &) x (1 + éPr) 55)
I pr(zy Pr(Z)
where éP@IE) and  €Pr are the error of Pr(Z|E) and Pf caused by the Kriging model, respectively. The actual
posterior failure probability Pf’ can be expressed using the following equation:

Pr(Z|E)P;
A 56
s Pr(2) (56)
Dividing Eq. (55) by Eq. (56), we have:
s P
1+ &P :P—]:: (147D x (1 + &Pr) (57)
f
As both éPZIE) and éPf are positive by definition, the following equation holds:
(1£ePEB) x (1+7r) < (14 €PUIB)) x (14 €7r) = 1+ €PUIE) 4 &Pr 4 ePUIE) x Py (58)
Combining Eq. (5§7) an Eq. (58), we have:
ePF < EPUIE) 4 ¢Pr 4 pPUIE)  gPf (59)

Taking the maxima of all elements in Eq. (54), we have Eq. (39).
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