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ABSTRACT  
New information obtained through measurements provide an opportunity to update estimates of a system’s reliability. 
For equality type information, reliability updating is a daunting task. The current state-of-art method, reliability 
updating with equality information using adaptive Kriging (RUAK), integrates an adaptive Kriging process with a 
transformation of equality information into inequality information. The stopping criterion for training the Kriging 
model relies on the estimated error for prior failure probability, thus leaving the potential for the true error in posterior 
failure probability to exceed acceptable thresholds. This study presents a method to estimate, for a given confidence 
level, the maximum error in posterior failure probability in adaptive Kriging-based reliability updating. Moreover, a 
two-phase approach is proposed for active learning and adaptive training of Kriging models in reliability updating 
problems. The new stopping criterion based on the maximum error of posterior failure probability ensures the accuracy 
of Kriging and thus the reliability estimates, while the two-phase scheme avoids unnecessary training hence improving 
the efficiency of reliability updating. Four numerical examples are considered to investigate the performance of the 
proposed approach. It is demonstrated that this method offers the ability to balance between the accuracy of reliability 
estimates and the computational demand. 
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1. Introduction 
Real-world systems are typically under the influence of uncertainties. In the reliability domain, the probability of 
failure quantifies the probability of a system failing to meet a specific performance requirement. It is a vital 
measurement of performance that considers uncertainties. Let 𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛] denote the continuous random 
variable vector representing the uncertainties with joint probability density function 𝑓𝑓𝑿𝑿(𝒙𝒙). The failure probability of 
interest, denoted as 𝑃𝑃𝑃𝑃(𝐸𝐸) or 𝑃𝑃𝑓𝑓, can be defined as: 

𝑃𝑃𝑓𝑓 = 𝑃𝑃𝑃𝑃(𝐸𝐸) = 𝑃𝑃𝑃𝑃(𝑔𝑔(𝑿𝑿) ≤ 0) = � 𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙
𝒙𝒙∈𝛺𝛺𝐸𝐸

 (1) 

where 𝐸𝐸 is the failure event whose domain is denoted as 𝛺𝛺𝐸𝐸, and 𝑔𝑔(𝑿𝑿) is the limit state function representing the status 
of the system. Reliability analysis methods can be categorized into three groups: approximation methods, simulation 
methods and metamodel-based methods [1]. Approximation methods, such as first and second order reliability method 
(FORM and SORM) ) [2], [3] approximate the limit state function using Taylor series expansion. These techniques 
are efficient, but they can be inaccurate for highly nonlinear problems due to the approximation error. Simulation 
methods such as Monte Carlo Simulation (MCS) [4], Importance Sampling (IS) [4] and Subset Simulation are often 
used; however, they are computationally costly as they require numerous model evaluations to ensure small coefficient 
of variation; IS also requires an accurate importance distribution, which may be difficult to acquire. Metamodel-based 
methods use limited model evaluations to construct metamodels, also referred to as surrogate models, to mimic the 
behavior of the original time-consuming limit state functions and subsequently to estimate the failure probability. This 
group of methods can be both efficient and accurate for problems that do not involve large scale or discontinuous 
responses if a surrogate model is well-constructed in an efficient manner. Polynomial Response Surface [5]–[7], 
Polynomial Chaos Expansion (PCE) [8], Support Vector Regression (SVR) [9], [10], and Kriging [11] are among 
popular surrogate models. Kriging surrogate model, because of its ability to provide uncertainty information, has 
gained significant popularity in the community of reliability analysis in the recent decade. Inspired by Jones et al. [12], 
Bichon et al. [13] proposed Efficient Global Reliability Analysis that used Kriging model to perform reliability 
analysis. Echard et al. [11] developed an active learning reliability method combining Kriging and Monte Carlo 
Simulation (AK-MCS) where the famous 𝑈𝑈′  learning function was proposed. Bect et al. [14] derived stepwise 
uncertainty reduction strategies from a Bayesian formulation of the reliability analysis problem. Picheny et al. [15] 
proposed an adaptive strategy to build a Kriging model based on an explicit trade-off between reduction in global 
uncertainty and exploration of regions of interest. Gaspar et al. [16] showed that Kriging models provide gains of 
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accuracy and efficiency for structural reliability analysis. Gaspar et al. [17] proposed an adaptive Kriging-based trust 
region method to search for the design point with IS. Xiao et al. [18] used active learning Kriging to address system 
reliability based-design optimization problems.  

For existing structures, circumstances can arise when it becomes necessary to re-evaluate the reliability.  Such 
circumstances can include, among others, when damages are observed, the use of the structure is to be changed, or the 
life time is extended [2]. Information about the state of systems and their properties or their environment collected 
through observations and monitoring has become more available. This information can be used to re-evaluate the 
reliability of systems. In reliability updating, the posterior failure probability represents the probability of a structure 
or system failing given such information. The posterior failure probability can be calculated using the following 
equation: 

𝑃𝑃𝑓𝑓′ =
𝑃𝑃𝑃𝑃(𝐸𝐸 ∩ 𝑍𝑍)
𝑃𝑃𝑃𝑃(𝑍𝑍) =

∫ 𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙𝒙𝒙∈�𝛺𝛺𝐸𝐸∩𝛺𝛺𝑍𝑍1∩…∩𝛺𝛺𝑍𝑍𝑚𝑚�

∫ 𝑓𝑓𝑿𝑿(𝒙𝒙)𝑑𝑑𝒙𝒙𝒙𝒙∈�𝛺𝛺𝑍𝑍1∩…∩𝛺𝛺𝑍𝑍𝑚𝑚�

 (2) 

where 𝑍𝑍  represents the observation of intersection of events 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑚𝑚  whose domains are defined as  
𝛺𝛺𝑍𝑍1 ,𝛺𝛺𝑍𝑍2 , … ,𝛺𝛺𝑍𝑍𝑚𝑚 , respectively. The information here is often of two types: inequality information  and equality 
information [19]. The information 𝑍𝑍𝑖𝑖 can be categorized as inequality, if it can be formulated as follows: 

𝛺𝛺𝑍𝑍𝑖𝑖 = {ℎ𝑖𝑖(𝒙𝒙) ≤ 0} (3) 
where ℎ𝑖𝑖(𝒙𝒙) denotes the information function. An example of inequality information is that no defect is observed, i.e., 
the system response minus the critical value is smaller than zero. On the other hand, equality information is often 
representative of quantitative measurements of system characteristics, and can be formulated as follows: 

𝛺𝛺𝑍𝑍𝑖𝑖 = {ℎ𝑖𝑖(𝒙𝒙) = 0} (4) 
Between the two types, the inequality one is easier to deal with, and the posterior probability of failure given inequality 
information can be estimated using conventional reliability methods. The main difficulty of reliability updating lies in 
how to handle equality information: if one of the 𝑍𝑍𝑖𝑖s is of the equality type, the integrals in both denominator and 
numerator in Eq. (2) will become zero. In other words, the domain 𝛺𝛺𝑍𝑍 is a surface in the space of 𝒙𝒙 if any of the 
information event is of the equality type. Thus, Eq. (2) cannot be solved directly using traditional structural reliability 
methods mentioned above. It should be noted that there are two viewpoints toward the estimation of Pf′. The first 
approach is to directly perform reliability updating using Eq. (2). The other approach involves updating the distribution 
of the random variables with Bayesian updating and then performing reliability analysis with the updated distribution. 
The latter method is obviously computationally very demanding compared to the first approach [20]. 

A number of techniques have been proposed to solve reliability updating with equality information. Madsen [21] 
showed that the posterior probability of failure can be estimated using the  partial derivatives of the probabilities by 
introducing a dummy parameter. However, this approach can lead to significant errors and is not practical in many 
cases [19]. In Strurel software [22], first-order and second order approximations to surface integration are used, and 
this approach offers acceptable efficiency and accuracy for linear reliability problems. However, for nonlinear 
problems, the error of this approach may not be negligible. Straub [19] proposed a new approach by transferring the 
equality information into inequality information with an auxiliary standard normal random variable. This method 
facilitates updating reliability by converting the original problem into two traditional structural reliability problems. 
It achieves sufficient accuracy and efficiency with simulation methods [19]. However, there are two main drawbacks 
for the method. First, the numerator of Eq. (2) is concerned with the probability of a joint event, which is typically a 
rare event with a very small probability. Thus, a large number of function evaluations are needed in the simulation 
methods. Moreover, re-evaluation of the numerator in Eq. (2) is required when new information becomes available, 
increasing the number of limit state function evaluations. To overcome the aforementioned limitations, Wang and 
Shafieezadeh [20] proposed an efficient metamodel-based reliability updating approach called Reliability Updating 
with equality information using Adaptive Kriging (RUAK). RUAK uses Straub’s information type transformation [19] 
and integrates an adaptive Kriging approach into reliability updating. The adaptive Kriging approach refines the 
surrogate model adaptively by adding a training point in each iteration until a certain stopping criterion is satisfied. 
RUAK uses an error-based stopping criterion (ESC) [23], which involves the maximum error of the prior failure 
probability. As the posterior failure probability is the final outcome of reliability updating, using ESC has the potential 
to lead to an immature stop of the surrogate model construction, and hence an inaccurate posterior failure probability 
estimate.  

In applications concerning reliability analysis and updating, reaching ‘acceptable’ accuracy often supersedes 
computational efficiency as an unacceptably inaccurate result will have no or very limited value no matter how 
efficiently it is derived. Without an approach to estimate the error, it will be unknown to what degree the results are 
reliable and useful. While methods such as Reliability analysis through Error rate-based Adaptive Kriging (REAK) 
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[24] and ESC have been developed for error quantification in reliability analysis methods, no such method currently 
exists for reliability updating. Therefore, an approach is needed to reliably estimate error in posterior failure 
probability and integrate this estimate in the stoppage criteria of adaptive analyses. This capability will allow the user 
to strike a balance between the desired accuracy and computational demand. 

This paper proposes a method to estimate the maximum error of posterior failure probability for Kriging-assisted 
reliability updating with equality information. The maximum error here is derived for a given confidence level and is 
incorporated as the stopping criterion for the adaptive construction of the surrogate model used in reliability updating. 
The approach also leverages a two-phase scheme to avoid unnecessary calls to the limit state function. The 
performance of the proposed method is demonstrated through four numerical examples in comparison with the original 
RUAK. The rest of the paper is organized as follows. Section 2 provides a review of the Kriging surrogate model, 
ESC and RUAK. Section 3 introduces the proposed method for estimating the maximum error of posterior failure 
probability. The following section presents the two-phase approach to reliability updating. Four numerical examples 
are discussed in Section 5. Section 6 provides the conclusions of this study.  
2. Reliability Updating using Adaptive Kriging 
This section first introduces the Kriging surrogate model. Then, ESC and RUAK approach are reviewed. 
2.1 The Kriging surrogate model 
Kriging surrogate models have gained popularity in metamodel-based reliability analysis-related studies [11], [20], 
[24]–[27]. In those methods, the limit state function 𝑔𝑔(𝑿𝑿), which is usually evaluated using a time-consuming finite 
element model, can be regarded as a draw of a Gaussian process. A Kriging surrogate model 𝑔𝑔�(𝑿𝑿) can be described 
by the following equation [28]: 

𝑔𝑔�(𝑿𝑿) = 𝜷𝜷𝑻𝑻𝒇𝒇(𝑿𝑿) + 𝑍𝑍(𝑿𝑿) (5) 
where 𝒇𝒇(𝑿𝑿)  is the Kriging basis that consists of 𝑝𝑝  arbitrary functions 𝑓𝑓𝑖𝑖(𝑿𝑿), 𝑖𝑖 = 1,2, … , 𝑝𝑝 , 𝜷𝜷  is the vector of 
corresponding set of coefficients 𝛽𝛽𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑝𝑝, 𝜷𝜷𝑻𝑻𝒇𝒇(𝑿𝑿) represents the long term trend and 𝑍𝑍(𝒙𝒙) is a stationary 
Gaussian process. The trend can have formulations including constant (𝛽𝛽0), linear (𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) and quadratic 
(𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ) [29]. The Gaussian process 𝑍𝑍(𝑿𝑿) has a zero mean and a covariance matrix that 

can be represented as: 
𝐶𝐶𝐶𝐶𝐶𝐶 �𝑍𝑍�𝒙𝒙(𝑖𝑖) �,𝑍𝑍�𝒙𝒙(𝑗𝑗) �� = 𝜎𝜎2𝑅𝑅(𝒙𝒙(𝑖𝑖),𝒙𝒙(𝑗𝑗);𝜽𝜽) (6) 

where 𝜎𝜎2 is the process variance and 𝑅𝑅(𝒙𝒙(𝑖𝑖),𝒙𝒙(𝑗𝑗);𝜽𝜽) is the correlation function of two points 𝒙𝒙(𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝒙𝒙(𝑗𝑗), 𝑗𝑗 = 1,2, … ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  in the candidate design points 𝑺𝑺 generated through MCS with hyper parameters 𝜽𝜽. The 
correlation function used in this paper is the Gaussian correlation function, which can be formulated as follows: 

𝑅𝑅�𝒙𝒙(𝑖𝑖),𝒙𝒙(𝑗𝑗);𝜽𝜽� = � exp (−𝜃𝜃𝑘𝑘 �𝑥𝑥𝑘𝑘
(𝑖𝑖) − 𝑥𝑥𝑘𝑘

(𝑗𝑗)�
2

)
𝑛𝑛

𝑘𝑘=1

 (7) 

where 𝑥𝑥𝑘𝑘
(𝑖𝑖)  is the 𝑘𝑘𝑡𝑡ℎ  dimension of 𝒙𝒙(𝑖𝑖) , and 𝜃𝜃𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  hyperparameter. When 𝜃𝜃𝑘𝑘  are the same, 𝑅𝑅  is called an 

isotropic correlation function, otherwise, it is called an anisotropic correlation model. In this paper, the anisotropic 
correlation function is used in which 𝜃𝜃𝑘𝑘 , 𝑘𝑘 = 1,2, … ,𝑛𝑛 can be different. 

With a set of 𝑚𝑚  training points [𝒙𝒙𝑡𝑡𝑡𝑡
(1),𝒙𝒙𝑡𝑡𝑡𝑡(2), … ,𝒙𝒙𝑡𝑡𝑡𝑡(𝑚𝑚) ]  and the corresponding function values 𝒀𝒀 =

[𝑔𝑔�𝒙𝒙𝑡𝑡𝑡𝑡(1)�,𝑔𝑔�𝒙𝒙𝑡𝑡𝑡𝑡(2)�, … ,𝑔𝑔�𝒙𝒙𝑡𝑡𝑡𝑡(𝑚𝑚)�], 𝜷𝜷 and 𝜎𝜎2 can be calculated using the following equations [12]: 
𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀 (8) 

  

𝜎𝜎2 =
1
𝑚𝑚

(𝒀𝒀 − 𝑭𝑭𝜷𝜷)𝑇𝑇𝑹𝑹−1(𝒀𝒀 − 𝑭𝑭𝜷𝜷) (9) 

where 𝑭𝑭 is the matrix of 𝒇𝒇(𝑿𝑿) with 𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑗𝑗�𝒙𝒙𝑡𝑡𝑡𝑡(𝑖𝑖)�, 𝑖𝑖 = 1,2, … ,𝑚𝑚, 𝑗𝑗 = 1,2, … , 𝑝𝑝, and 𝑹𝑹 is the autocorrelation matrix 
with 𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑅𝑅�𝒙𝒙𝑡𝑡𝑡𝑡(𝑖𝑖),𝒙𝒙𝑡𝑡𝑡𝑡(𝑗𝑗);𝜽𝜽�, 𝑖𝑖 = 1,2, … ,𝑚𝑚, 𝑗𝑗 = 1,2, … ,𝑚𝑚. As 𝜷𝜷 and 𝜎𝜎2  depend on 𝜽𝜽 through 𝑹𝑹, it is required to 
obtain the values in 𝜽𝜽. In this paper, 𝜽𝜽 is estimated through maximum likelihood estimation (MLE) method [30]. The 
formulation based on MLE is as follows: 

𝜽𝜽∗ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜽𝜽

��𝑹𝑹�𝒙𝒙𝑡𝑡𝑡𝑡(𝑖𝑖),𝒙𝒙𝑡𝑡𝑡𝑡(𝑗𝑗);𝜽𝜽��
1
𝑚𝑚 𝜎𝜎2� (10) 

The optimization method used to solve the problem is genetic algorithm [31]. Given the results of the optimization 
problem, for an unknown point 𝒙𝒙, the predicted function value through the Kriging model can be estimated using the 
following equation [29]: 

𝜇𝜇𝑔𝑔�(𝒙𝒙) =  𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1(𝒀𝒀 − 𝑭𝑭𝜷𝜷) (11) 
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where 𝒓𝒓(𝒙𝒙)  is the correlation vector between 𝒙𝒙  known training points 𝒙𝒙𝑡𝑡𝑡𝑡(𝑖𝑖), 𝑖𝑖 = 1,2, . . ,𝑚𝑚  with 𝑟𝑟𝑖𝑖(𝒙𝒙) =
𝑅𝑅�𝒙𝒙,𝒙𝒙𝑡𝑡𝑡𝑡(𝑖𝑖);𝜽𝜽�. Note that 𝜇𝜇𝑔𝑔�  is the mean value of the predicted function value with variance of 𝜎𝜎𝑔𝑔�2 [29]: 

𝜎𝜎𝑔𝑔�2(𝒙𝒙) = 𝜎𝜎2(1 + 𝒖𝒖𝑇𝑇(𝒙𝒙)(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝒖𝒖(𝒙𝒙) − 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1𝒓𝒓(𝒙𝒙)) (12) 
where 𝒖𝒖(𝒙𝒙) = 𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙). The predicted function values all follow a normal distribution with the mean and 
variances estimated using Eq. (11) and Eq. (12). Once a well-constructed Kriging surrogate model is obtained, 
simulation methods such as MCS can be used to estimate the failure probability with the surrogate model replacing 
the original time-consuming model.  

During the process of the model construction, uncertainty information offered by the Kriging model can help 
with the identification of the next best training points and the stopping criterion for the construction of the surrogate 
model for reliability analysis. Echard et al. [11] proposed the 𝑈𝑈′ learning function with the following form: 

𝑈𝑈′(𝒙𝒙) =
|𝜇𝜇𝑔𝑔�(𝒙𝒙)|
𝜎𝜎𝑔𝑔�(𝒙𝒙)

 (13) 

The 𝑈𝑈′ learning function identifies points that are close to the limit state, have high uncertainty or both at the same 
time. The 𝑈𝑈′ learning function represents a reliability index for the risk of making wrong sign estimation of the limit 
state function. The point with the smallest 𝑈𝑈′ learning function, i.e., the point whose sign of the limit state function 
value has the highest probability of being wrongly estimated, is regarded as the next best training point. The 𝑈𝑈′ 
learning function can also be used as Kriging model’s stopping criterion, which is defined as 𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈′(𝒙𝒙)) ≥ 2. When 
the stopping criterion is satisfied, the Kriging model is deemed to be sufficiently accurate. When the stopping criterion 
is not satisfied, a new training point is added for the construction of the surrogate model. This approach, which 
gradually adds training points to refine the surrogate model until some stopping criterion is satisfied, is regarded as 
adaptive Kriging. However, most existing stopping criteria do not directly relate to the error in estimated failure 
probabilities. Wang and Shafieezadeh [23] proposed an error-based stopping criterion (ESC) to address this limitation. 
The stopping criterion is reviewed in the next subsection. 
2.2 The Error-based stopping criterion 
Wang and Shafieezadeh [23] proposed the ESC that estimates the maximum error of failure probability introduced by 
the Kriging model. ESC stops the surrogate model construction when the estimated maximum error of failure 
probability is smaller than a predefined threshold 𝜖𝜖𝑡𝑡ℎ𝑟𝑟. In ESC, the maximum error for the failure probability estimated 
using the Kriging surrogate model is determined using the following equation: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 ��
𝑁𝑁�𝑓𝑓

𝑁𝑁�𝑓𝑓 − 𝑆̂𝑆𝑓𝑓𝑢𝑢
− 1� , �

𝑁𝑁�𝑓𝑓
𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢 

− 1�� (14) 

where 𝑁𝑁�𝑓𝑓 is the estimated number of failure points by the surrogate model in the MCS population, 𝑆̂𝑆𝑓𝑓𝑢𝑢and 𝑆̂𝑆𝑠𝑠𝑢𝑢 are the 
upper bounds of 𝑆̂𝑆𝑓𝑓 and 𝑆̂𝑆𝑠𝑠, respectively, and 𝑆̂𝑆𝑓𝑓 and 𝑆̂𝑆𝑠𝑠 are the total number of wrong sign estimations in the estimated 
failure and safe domains 𝛺𝛺�𝑓𝑓 and 𝛺𝛺�𝑠𝑠, respectively. Wang and Shafieezadeh [23] showed that  𝑆̂𝑆𝑠𝑠 and 𝑆̂𝑆𝑓𝑓 follow two 
Poisson binomial distributions with mean and variance shown below, respectively: 

𝑆̂𝑆𝑠𝑠~𝑃𝑃𝑃𝑃 ��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  
𝑁𝑁�𝑠𝑠

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  )
𝑁𝑁�𝑠𝑠 

𝑖𝑖=1

� (15) 

  

𝑆̂𝑆𝑓𝑓~𝑃𝑃𝑃𝑃��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  

𝑁𝑁�𝑓𝑓

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  )

𝑁𝑁�𝑓𝑓 

𝑖𝑖=1

� (16) 

where 𝑃𝑃𝑃𝑃  denotes the Poisson Binomial distribution, 𝑁𝑁�𝑠𝑠  is the number of points in Ω�𝑠𝑠 , and 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  denotes the 
probability of wrong sign estimation for 𝒙𝒙(𝑖𝑖) in 𝑺𝑺, which can be calculated as: 

𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛷𝛷 �−𝑈𝑈′�𝒙𝒙(𝑖𝑖)�� (17) 
where 𝛷𝛷(∙) is the cumulative density function (CDF) of a standard normal distribution. Therefore, given a significance 
level 𝛼𝛼 (usually 5%), the upper and lower bounds of 𝑆̂𝑆𝑠𝑠 and 𝑆̂𝑆𝑓𝑓 can be found as: 

𝑆̂𝑆𝑠𝑠 ∈ [𝜣𝜣𝑆̂𝑆𝑠𝑠
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑠𝑠

−1 �1 −
𝛼𝛼
2
�] (18) 

  
𝑆̂𝑆𝑓𝑓 ∈ [𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 �
𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 �1 −
𝛼𝛼
2
�] (19) 
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where 𝜣𝜣𝑆̂𝑆𝑠𝑠
−1  and 𝜣𝜣𝑆̂𝑆𝑓𝑓

−1  are the inverse CDFs of the two Poisson Binomial distributions. For more details for the 
computation of 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚, readers are referred to [23].  

The RUAK approach, which uses ESC as the stopping criterion, is introduced in the next subsection. 
2.3 Reliability updating using adaptive Kriging 
Wang and Shafieezadeh [20] proposed RUAK to estimate the posterior failure probability. In RUAK, using the Bayes’ 
theorem the posterior failure probability 𝑃𝑃𝑓𝑓′  breaks down into three components: prior failure probability 𝑃𝑃𝑓𝑓 , 
probability of observations 𝑃𝑃𝑃𝑃(𝑍𝑍), and conditional probability of observations 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸). The estimated posterior 
failure probability 𝑃𝑃�𝑓𝑓′ by the Kriging model can be represented as: 

𝑃𝑃�𝑓𝑓′ =
𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) ∙ 𝑃𝑃�𝑓𝑓

𝑃𝑃𝑃𝑃(𝑍𝑍)  (20) 

where 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) is the estimated 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) where the failure event 𝐸𝐸 is determined by the Kriging model, and 𝑃𝑃�𝑓𝑓 is the 
corresponding estimated prior failure probability. Note that “ � ” herein denotes that the value under is determined by 
the Kriging model and carries the error as a result of the Kriging model. Therefore, based on the well-constructed 
surrogate model 𝑔𝑔�(𝑿𝑿), 𝑃𝑃�𝑓𝑓 can be estimated as: 

𝑃𝑃�𝑓𝑓 =  
∑ 𝐼𝐼𝑔𝑔��𝒙𝒙(𝑖𝑖)�𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 (21) 

where 𝐼𝐼𝑔𝑔�(∙) is the corresponding indicator function: 

𝐼𝐼𝑔𝑔��𝒙𝒙(𝑖𝑖)� = �1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑔𝑔�(𝒙𝒙(𝑖𝑖)) ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑔𝑔�(𝒙𝒙(𝑖𝑖)) > 0 

 (22) 

For the calculation of 𝑃𝑃𝑃𝑃(𝑍𝑍), RUAK adopts equality information transformation in [19]. 𝑃𝑃𝑃𝑃(𝑍𝑍) can be explicitly 
obtained via MCS: 

𝑃𝑃𝑃𝑃(𝑍𝑍) =
𝑞𝑞
𝑐𝑐1
∙
∑ 𝐼𝐼𝑍𝑍�𝒙𝒙(𝑖𝑖), 𝑝𝑝𝑖𝑖�
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
 (23) 

where 𝑞𝑞 is a constant representing proportional relationship between 𝑃𝑃𝑃𝑃(𝑍𝑍|𝑿𝑿 = 𝒙𝒙) and the likelihood function 𝐿𝐿(𝒙𝒙) 
of the observation 𝑍𝑍. Note that 𝑍𝑍 here is independent of the failure event, thus the Kriging model is not involved here. 
𝐿𝐿(𝒙𝒙) corresponds to the information function ℎ(𝒙𝒙) = 0 and can be expressed as 𝐿𝐿(𝒙𝒙) = 𝑓𝑓𝜀𝜀(𝑠𝑠𝑚𝑚 − 𝑠𝑠(𝒙𝒙)), with 𝑓𝑓𝜀𝜀 being 
the probability density function of the measurement error 𝜀𝜀, 𝑠𝑠𝑚𝑚 being the measurement of a property in 𝑍𝑍 and 𝑠𝑠(𝒙𝒙) 
being the property expressed in terms of 𝐱𝐱, which can be 𝐱𝐱 or any function of 𝐱𝐱. Moreover, 𝑐𝑐1 = 1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙))
 and 𝐼𝐼𝑍𝑍(∙) 

is the corresponding indicator function expressed as: 

𝐼𝐼𝑧𝑧(𝒙𝒙𝑖𝑖, 𝑝𝑝𝑖𝑖) = �
1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ𝑒𝑒�𝒙𝒙(𝑖𝑖), 𝑝𝑝𝑖𝑖� ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ𝑒𝑒�𝒙𝒙(𝑖𝑖), 𝑝𝑝𝑖𝑖� > 0 

 (24) 

where ℎ𝑒𝑒(∙) is an augmented limit state function for transforming equality information into inequality information: 
ℎ𝑒𝑒(𝒙𝒙, 𝑝𝑝) = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿(𝒙𝒙) (25) 

where 𝑝𝑝 is an auxiliary standard uniform random variable. Thus, 𝑃𝑃𝑃𝑃(𝑍𝑍) herein is regarded as the probability of failure 
according to the augmented limit state function ℎ𝑒𝑒(∙). Similarly, the probability of the observations conditional on the 
failure event 𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) can be determined using MCS as follows:  

𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) =
𝑞𝑞
𝑐𝑐2
∙
∑ 𝐼𝐼𝑍𝑍�+�𝒙𝒙′(𝑗𝑗), 𝑝𝑝𝑗𝑗�
𝑁𝑁�𝑓𝑓
𝑗𝑗=1

𝑁𝑁�𝑓𝑓
 (26) 

where 𝒙𝒙′  are the points in Ω�𝑓𝑓 , which is determined by the Kriging model 𝑔𝑔�(𝑿𝑿), 𝑐𝑐2 = 1
𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝒙𝒙′)�

 and 𝐼𝐼𝑍𝑍+(∙) is the 

indicator function given by: 

𝐼𝐼𝑍𝑍�+�𝒙𝒙′(𝑗𝑗), 𝑝𝑝𝑗𝑗� = �
1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ�𝑒𝑒+�𝒙𝒙′(𝑗𝑗), 𝑝𝑝𝑗𝑗� ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ�𝑒𝑒+�𝒙𝒙′(𝑗𝑗), 𝑝𝑝𝑗𝑗� > 0 

 (27) 

where ℎ�𝑒𝑒+(∙)  is the second augmented limit state function corresponding to the transformation from equality 
information into inequality one: 

ℎ�𝑒𝑒+(𝑝𝑝,𝒙𝒙′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝒙𝒙′) (28) 
Note that ℎ�𝑒𝑒+(∙) carries the error introduced by the Kriging model as all points considered herein are the failure points 
𝒙𝒙′ according to the Kriging model 𝑔𝑔�(𝑿𝑿) of the actual limit state function 𝑔𝑔(𝑿𝑿). Thus, 𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) herein is regarded as 
the probability of failure according to the second augmented limit state function ℎ�𝑒𝑒+(∙) for points in Ω�𝑓𝑓. Once all three 
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components are obtained, 𝑃𝑃�𝑓𝑓′ can be easily calculated using Eq. (20). The reader is referred to Wang and Shafieezadeh 
[20] for more detail.  

This methodology has two main advantages: (1) estimations of 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) are computationally efficient 
and (2) once the estimation of 𝑃𝑃�𝑓𝑓  is ready, reliability updating becomes efficient whenever the observations and 
information are changing. However, this method has one main drawback: it uses ESC as the stopping criterion for the 
construction of Kriging surrogate model, and ESC only considers the error of the prior probability of failure 𝑃𝑃�𝑓𝑓 
whereas the posterior failure probability 𝑃𝑃�𝑓𝑓′ is of interest. In the three components required to calculate 𝑃𝑃�𝑓𝑓′, 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) 
is estimated using points in the estimated failure domain, which is determined by the Kriging model. The wrong sign 
estimation will affect not only 𝑃𝑃�𝑓𝑓, but also 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸). The actual error of 𝑃𝑃�𝑓𝑓′ can be larger than the maximum error of 
𝑃𝑃�𝑓𝑓 estimated by ESC. This drawback may lead to an immature stoppage of training of the surrogate model. Thus, an 
estimation of the maximum error of 𝑃𝑃�𝑓𝑓′ is desired to be used as the stopping criterion for the Kriging model construction 
for reliability updating. In this paper, we propose a method to estimate the maximum error of the final output 𝑃𝑃�𝑓𝑓′. The 
method is introduced in the next section. 

3. Error Estimation for the Posterior Failure Probability  
As mentioned in Section 2, using the surrogate model may introduce errors due to the potential for wrong estimation 
of the domain of sample points. The maximum error of the posterior failure probability cannot be easily estimated. 
Here, it is proposed to evaluate the error of conditional probability 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) first. Once the maximum error of 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) 
is obtained, given the maximum error of prior failure probability offered by ESC, the maximum error of 𝑃𝑃�𝑓𝑓′ can be 
easily estimated. Before introducing the approach for estimating the error of 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸), the source of error is discussed 
first. 

In estimating 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸), the error occurs when the sample points in the MCS population are misclassified in the 
prior failure probability estimation. First, 𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸) is calculated using the points that are determined by the surrogate 
model to be in the failure domain, thus misclassified points in both 𝛺𝛺�𝑓𝑓 and 𝛺𝛺�𝑠𝑠 can have an impact on the accuracy of 
the conditional probability estimation. The actual points in failure domain can be obtained by adding points that are 
misclassified in the survival domain to the failure domain and removing points that are misclassified in the failure 
domain. Second, according to Eq. (26), c2 depends on the value of 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙′)), which may also be affected when 
adding and removing misclassified points with large likelihood function values. The error of 𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) can therefore 
be calculated as follows: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
Pr (𝑍𝑍|𝐸𝐸) =  �

𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) − 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗

𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗
� = �

�
1
𝑐̂𝑐2
𝑁𝑁�𝑓𝑓+
𝑁𝑁�𝑓𝑓

− 1
𝑐𝑐2∗

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

1
𝑐𝑐2∗

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
� (29) 

where 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗ is the true value of 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸), 𝑁𝑁�𝑓𝑓+ is the number of estimated failure points that ‘fail’ again according 
to the limit state Eq. (28), i.e., ℎ�𝑒𝑒+�𝑝𝑝𝑗𝑗 ,𝒙𝒙′(𝑗𝑗)� ≤ 0, (hereafter abbreviated as LSF1), 𝑁𝑁𝑓𝑓+ is the true counterpart, 𝑐̂𝑐2 is the 
estimated value of the constant in Eq. (26), and 𝑐𝑐2∗ is the true counterpart.  

According to Eq. (29), the estimation of 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
Pr (𝑍𝑍|𝐸𝐸) is achievable once the estimate of the range of Pr (𝑍𝑍|𝐸𝐸)∗ is 

known. Given that q is the proportionality constant that will be canceled out, the problem can be transferred into 
estimating the range of 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞, i.e., 1

𝑐𝑐2∗
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

, which can be seen as the product of 1
𝑐𝑐2∗

 and 
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

. The first term is 

quite straightforward and can be regarded as a monotone decreasing function for 𝑐𝑐2∗ > 0. The main difficulty lies in 
the estimation of the range of the second term 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

. The derivation of the bounds is presented next. 

3.1 Upper bound of 𝑁𝑁𝑓𝑓+/𝑁𝑁𝑓𝑓 
First consider Case 1, in which 𝑆̂𝑆𝑓𝑓𝑢𝑢 points in 𝛺𝛺�𝑓𝑓 are misclassified. Thus, 𝑆̂𝑆𝑓𝑓𝑢𝑢 points with larger 𝑈𝑈′ learning function 
values (more likely to be misclassified) in the estimated failure domain are identified. Removing these 𝑆̂𝑆𝑓𝑓𝑢𝑢 points will 
cause the denominator 𝑁𝑁𝑓𝑓 to decrease from 𝑁𝑁�𝑓𝑓 to 𝑁𝑁�𝑓𝑓 −  𝑆̂𝑆𝑓𝑓𝑢𝑢. In addition, if the removed points contain the points with 
the largest likelihood function value, 𝑐𝑐2�  should increase to 𝑐𝑐2*, causing more points in 𝛺𝛺�𝑓𝑓 to “fail” according to LSF1. 
This increased 𝑐̂𝑐2  can be regarded as the upper bound of 𝑐𝑐2* and is denoted as 𝑐𝑐2𝑢𝑢. It is calculated using the following 
equation: 
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𝑐𝑐2𝑢𝑢 =
1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙′−))
 (30) 

where 𝒙𝒙′− represents the failure points in 𝛺𝛺�𝑓𝑓 with the 𝑆̂𝑆𝑓𝑓𝑢𝑢 points removed. Let LSF2 denote the LSF1 with 𝑐𝑐2 replaced 
by 𝑐𝑐2𝑢𝑢. Note that the removed points may also contain the points that “fail” according to LSF2, resulting in a decrease 
in the numerator 𝑁𝑁𝑓𝑓+. To offset the impact, when considering the numerator, no point is actually removed, however, 
the numerator may still increase due to the adoption of 𝑐𝑐2𝑢𝑢 in LSF2. This is referred to as Case 2 where all the removed 
points did not fail according to LSF1. For the denominator, 𝑆̂𝑆𝑓𝑓𝑢𝑢  points are still removed. Therefore, 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 for the 

combined case (1 and 2) can be formulated as follows: 

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑐𝑐12

=
𝑁𝑁�𝑓𝑓+𝑢𝑢

𝑁𝑁�𝑓𝑓 −  𝑆̂𝑆𝑓𝑓𝑢𝑢
 (31) 

where 𝑁𝑁�𝑓𝑓+u is the number of the points in the original 𝛺𝛺�𝑓𝑓 that “fail” according to LSF2. Nevertheless, this is not the 
true upper bound of 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

, as if there are also points misclassified in 𝛺𝛺�𝑠𝑠, the action of moving points from 𝛺𝛺�𝑠𝑠 to 𝛺𝛺�𝑓𝑓 can 

also potentially cause 
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 to increase. This action will not only add the number of the added points from 𝛺𝛺�𝑠𝑠 to 𝛺𝛺�𝑓𝑓 to 

the denominator, but also add the number of the added points that fail according to LSF2 to the numerator. Let a 
denote 𝑁𝑁�𝑓𝑓+u and b denote 𝑁𝑁�𝑓𝑓 −  𝑆̂𝑆𝑓𝑓𝑢𝑢. It is obvious that b is often larger than a. Then let c denote the number of the 
added points from 𝛺𝛺�𝑠𝑠 to 𝛺𝛺�𝑓𝑓 that “fail” according to Eq. (28) with 𝑐𝑐2𝑢𝑢 and d denote the number of added points that do 

not “fail” according to Eq. (28) with 𝑐𝑐2𝑢𝑢. Therefore, after adding c + d points to the failure domain, �𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓
�
𝑐𝑐12

 can be 

written in the form of:  

𝑎𝑎 + 𝑐𝑐
𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑

= 1 −
𝑏𝑏 − 𝑎𝑎 + 𝑑𝑑
𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑

 
 

(32) 

This formula can be regarded as a function with respect to c and a function with respect to d, respectively. It is observed 
that the function with respect to c is monotonically increasing for c ≥ 0 considering the right-hand side and the 
function with respect to d is monotonically decreasing for d ≥ 0 considering the left-hand side. Hence after adding c 

+ d points to the failure domain, �𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓
�
𝑐𝑐12

 reaches its maximum when c reaches its maximum and d = 0. This is 

denoted as Case 3 where all points among the 𝑆̂𝑆𝑠𝑠𝑢𝑢 points added from 𝛺𝛺�𝑠𝑠 to 𝛺𝛺�𝑓𝑓 are ones that “fail” according to LSF2. 
Note that the 𝑆̂𝑆𝑠𝑠𝑢𝑢 points are points with larger 𝑈𝑈′ learning function values in 𝛺𝛺�𝑠𝑠 and are identified similar to Case 1. In 
other words, 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 reaches its maximum when the combined case (1, 2 and 3), i.e., the extreme case, is considered. The 

upper bound of 
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 will therefore have the following form: 

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑢𝑢

=
𝑁𝑁�𝑓𝑓+𝑢𝑢 + 𝑁𝑁�𝑓𝑓+ss

𝑁𝑁�𝑓𝑓 −  𝑆̂𝑆𝑓𝑓𝑢𝑢 + 𝑁𝑁�𝑓𝑓+ss
 (33) 

where 𝑁𝑁�𝑓𝑓+ss is the number of points in 𝑆̂𝑆𝑠𝑠𝑢𝑢 that fail according to LSF2.  
3.2 Lower bound of 𝑁𝑁𝑓𝑓+/𝑁𝑁𝑓𝑓 
The lower bound of 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 can be found in a similar fashion by first considering Case 4 where 𝑆̂𝑆𝑠𝑠𝑢𝑢  points in 𝛺𝛺�𝑠𝑠 are 

misclassified. Adding 𝑆̂𝑆𝑠𝑠𝑢𝑢  points with larger 𝑈𝑈′  learning function values to the failure domain will cause the 
denominator 𝑁𝑁𝑓𝑓 to increase from 𝑁𝑁�𝑓𝑓. In addition, if the added points contain the points with the largest likelihood 
function value, 𝑐̂𝑐2 should decrease to 𝑐𝑐2*, causing fewer points in 𝛺𝛺�𝑓𝑓 to fail according to LSF1. The decreased 𝑐̂𝑐2  can 
be regarded as the lower bound of 𝑐𝑐2* and is denoted as 𝑐𝑐2𝑙𝑙 . This term is determined using the following equation: 

𝑐𝑐2𝑙𝑙 =
1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙′+))
 (34) 

where 𝒙𝒙′+ represents the failure points in 𝛺𝛺�𝑓𝑓 with the 𝑆̂𝑆𝑠𝑠𝑢𝑢 points added. Let LSF3 denote the LSF1 where 𝑐𝑐2 is replaced 
by 𝑐𝑐2𝑙𝑙. Note that the added points may also contain the points that “fail” according to LSF3, causing an increase in the 
numerator 𝑁𝑁𝑓𝑓+. To offset the impact, when considering the numerator, no point is added, however, the numerator may 
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still decrease due to the adoption of 𝑐𝑐2𝑙𝑙  in LSF3. This is referred to as Case 5 where all the added points did not fail 
according to LSF1. For the denominator, 𝑆̂𝑆𝑠𝑠𝑢𝑢  points are still added. Therefore, 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 for this extreme case can be 

formulated as follows: 

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑒𝑒𝑒𝑒45

=
𝑁𝑁�𝑓𝑓+𝑙𝑙

𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢 
 (35) 

where 𝑁𝑁�𝑓𝑓+𝑙𝑙 is the number of the points in the original 𝛺𝛺�𝑓𝑓that fail according to LSF3. Similarly, this is not a true lower 
bound of 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

, as the action of removing points from 𝛺𝛺�𝑓𝑓 can potentially cause 
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 to decrease. This action will subtract 

the number of the removed points from 𝛺𝛺�𝑓𝑓 from the denominator and the number of the removed points that fail 
according to LSF3 from the numerator. Similarly, let 𝑒𝑒 denote 𝑁𝑁�𝑓𝑓+l and f denote 𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢. It is obvious that f is often 
larger than e. Then let g denote the number of the removed points from 𝛺𝛺�𝑓𝑓 that “fail” according to LSF3 and h denote 
the number of the removed points that do not “fail” according to LSF3. So, after removing g + h points from the failure 

domain, �𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓
�
𝑐𝑐45

 can be written in the form of: 

𝑒𝑒 − 𝑔𝑔
𝑓𝑓 − 𝑔𝑔 − ℎ

= 1 −
𝑓𝑓 − 𝑒𝑒 − ℎ
𝑓𝑓 − 𝑔𝑔 − ℎ

 (36) 

In the same fashion, this formula can be regarded as a monotonically decreasing function with respect to g for g ≥ 0 
considering the right-hand side and a monotonically increasing function with respect to h for h ≥ 0 considering the 

left-hand side. Hence after moving g + h points to the failure domain, �𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓
�
𝑐𝑐45

 reaches its minimum when g reaches 

its maximum and h = 0. This is denoted as Case 6 where all points among the 𝑆̂𝑆𝑠𝑠𝑢𝑢 points added from 𝛺𝛺�𝑠𝑠 to 𝛺𝛺�𝑓𝑓 are the 
ones that “fail” according to LSF3. In other words, 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 reaches its minimum when the combined case (4, 5 and 6), i.e., 

the extreme case, is considered. The lower bound of 
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 can therefore be determined as follows: 

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑙𝑙

=
𝑁𝑁�𝑓𝑓+𝑙𝑙 − 𝑁𝑁�𝑓𝑓+𝑠𝑠𝑠𝑠

𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢  − 𝑁𝑁�𝑓𝑓+𝑠𝑠𝑠𝑠
 (37) 

where 𝑁𝑁�𝑓𝑓+𝑠𝑠𝑠𝑠 is the number of points in 𝑆̂𝑆𝑓𝑓𝑢𝑢 that fail according to LSF3. 
3.3 Posterior failure probability error 
Since the upper and lower bounds of 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

 are found, the estimation of the upper and lower bounds of 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞 is 

straightforward. The upper and lower bounds of 𝑐𝑐2∗ are also obtained during the process of estimating the range of 
𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞. The upper and lower bounds of 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞 can be easily calculated as the product of upper and lower 
bounds of 1

𝑐𝑐2∗
 and 

𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

. Hence the maximum error of the 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸) can be formulated using the following equation: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸) = 𝑚𝑚𝑚𝑚𝑚𝑚

⎝

⎜
⎛
�
�

1
𝑐̂𝑐2
𝑁𝑁�𝑓𝑓+
𝑁𝑁�𝑓𝑓

− 1
𝑐𝑐2𝑙𝑙

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑢𝑢

1
𝑐𝑐2𝑙𝑙

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑢𝑢 �

� , �
�

1
𝑐̂𝑐2
𝑁𝑁�𝑓𝑓+
𝑁𝑁�𝑓𝑓

− 1
𝑐𝑐2𝑢𝑢

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑙𝑙

1
𝑐𝑐2𝑢𝑢

�
𝑁𝑁𝑓𝑓+
𝑁𝑁𝑓𝑓

�
𝑙𝑙 �

�

⎠

⎟
⎞

 (38) 

𝑃𝑃�𝑓𝑓′ can be regarded as the product of 𝑃𝑃�𝑓𝑓 and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) divided by 𝑃𝑃𝑃𝑃(𝑍𝑍), where only the first two items introduce error. 
Once the estimate of the maximum error of 𝑃𝑃�𝑟𝑟(𝑍𝑍|𝐸𝐸) is obtained, along with the maximum error of 𝑃𝑃𝑃𝑃 (𝐸𝐸), the 
maximum error of 𝑃𝑃�𝑓𝑓′ can be determined as follows: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃�𝑓𝑓
′

= 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑓𝑓 + 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸) + 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑓𝑓 × 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸) (39) 
The derivation can be found in Appendix. The derived 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 fully considers the possible errors of posterior probability 
of failure, providing an accurate stopping criterion for training the surrogate model for estimation of the posterior 
probability of failure. A new reliability updating approach that adopts 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃�𝑓𝑓
′
  as the stopping criterion is proposed, 

which will be introduced in the next section. 

4. The Two-Phase RUAK approach 



-9- 
 

An approach for reliability updating with equality information with surrogate model is proposed in this section. In 
contrast to RUAK, the proposed method leverages the maximum error of posterior failure probability as the stopping 
criterion. In addition, a two-phase scheme is proposed here to improve the efficiency of the posterior failure probability 
estimation. According to Eq. (39), it can be observed that 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 (𝐸𝐸|𝑍𝑍) is always larger than 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸). Moreover, it 

requires more computations. Therefore, in the first phase, ESC is used to estimate the prior failure probability error 
until the error reaches the threshold of 5% like in the original RUAK. In the second phase, the posterior failure 
probability error is calculated to evaluate the proposed stopping criterion. The flowchart of the approach is shown in 
Fig. 1. The details of each step are summarized below: 
• Step 1: Generating initial candidate design samples. First, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 candidate design samples are generated using 
Latin Hypercube Sampling and the set of samples is denoted as 𝑺𝑺.  
• Step 2: Initial training points. Randomly select an initial set of training points denoted as 𝑿𝑿𝑡𝑡𝑡𝑡  from 𝑺𝑺.  
• Step 3: Phase 1 Kriging construction. Enter phase 1: Construct the Kriging meta-model 𝑔𝑔�(𝑿𝑿) with current 𝑿𝑿𝑡𝑡𝑡𝑡 . 
This construction is based on UQLab [30] in this paper. 
• Step 4: Kriging prediction. The Kriging responses 𝜇𝜇𝑔𝑔�(𝒙𝒙) and variances 𝜎𝜎𝑔𝑔�2(𝒙𝒙𝑔𝑔) are obtained from the current 
Kriging model 𝑔𝑔�(𝑿𝑿) for every point in 𝑺𝑺. According to responses 𝜇𝜇𝑔𝑔�(𝒙𝒙), the failure probability 𝑃𝑃�𝑓𝑓 is estimated via 
MCS. 
• Step 5: Identification of the next training point. The point with the smallest value of 𝑈𝑈′ learning function in 𝑺𝑺 is 
selected as the next best training point.  
• Step 6: Updating the training points. Add the identified next training point to 𝑿𝑿𝑡𝑡𝑡𝑡 . 
• Step 7: Maximum error estimation of 𝑃𝑃�𝑓𝑓. Use ESC to estimate the maximum error of 𝑃𝑃�𝑓𝑓: 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 (𝐸𝐸). 
• Step 8: Checking the Phase 1 stopping criterion based on the maximum error. Check the stopping criterion: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃 (𝐸𝐸) ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 (40) 

where 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 is the error threshold. If the stopping criterion is not satisfied, then the process moves to Step 3; otherwise, 
to Step 9.  
• Step 9: Checking the coefficient of variation of the failure probability. The sufficiency of the population of 𝑺𝑺 is 
checked using: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 = �
1 − 𝑃𝑃�𝑓𝑓
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃�𝑓𝑓

 

 

(41) 

If 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 is smaller than the predefined threshold 5%, then the process moves to Step 10. Otherwise, an additional 
number 𝑁𝑁∆𝑆𝑆 of candidate design samples ∆𝑺𝑺 should be added to S, and the process should move back to Step 4. 
• Step 10: Phase 2 Kriging Construction. Enter Phase 2: Use the current 𝑿𝑿𝑡𝑡𝑡𝑡  to construct the Kriging meta-model 
𝑔𝑔��𝑿𝑿𝑔𝑔�.  
• Step 11: Kriging prediction. The Kriging responses 𝜇𝜇𝑔𝑔�(𝒙𝒙) and variances 𝜎𝜎𝑔𝑔�2(𝒙𝒙) are obtained from the current 
Kriging model 𝑔𝑔�(𝑿𝑿) for every point in 𝑺𝑺. 
• Step 12: Identification of the next training point. The point with the smallest value of 𝑈𝑈′ learning function is 
selected as the next best training point in 𝑺𝑺. 
• Step 13: Updating the training points. Add the next training point to 𝑿𝑿𝑡𝑡𝑡𝑡 . 
• Step 14: Maximum error estimation of 𝑃𝑃�′𝑓𝑓. Use Eq. (33), Eq. (37)-(39) to estimate the maximum error of 𝑃𝑃�′𝑓𝑓: 
𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 (𝐸𝐸|𝑍𝑍). 
• Step 15: Checking the Phase 2 stopping criterion based on the maximum error. Check the stopping criterion: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃 (𝐸𝐸|𝑍𝑍) ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 (42) 

If the stopping criterion is not satisfied, then the process moves to Step 10; otherwise, to Step 16.  
• Step 16: Calculating 𝑃𝑃𝑃𝑃(𝑍𝑍) and estimating 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸). 𝑃𝑃𝑃𝑃(𝑍𝑍) can be calculated using Eq. (23) and 𝑃𝑃𝑓𝑓 and 
𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) can be estimated using Eq. (21) and Eq. (26), respectively using the well-trained surrogate model 𝑔𝑔�(𝑿𝑿).  
• Step 17: Estimating the posterior failure probability 𝑃𝑃𝑓𝑓′. Estimate the posterior failure probability using Eq. (20). 

The proposed method avoids the unnecessary computation of 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑃𝑃 (𝐸𝐸|𝑍𝑍) by adopting the two-phase scheme. 

The stopping criterion based on the maximum error of the posterior failure probability provides an accurate stop signal 
for the construction of surrogate model. The performance of the approach is demonstrated through four numerical 
examples in the next section. 
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Fig.1 Flowchart of proposed approach 
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5. Numerical examples 
In order to test the accuracy of the proposed approach, four numerical examples are investigated, and the results are 
compared with the original RUAK. The posterior failure probabilities obtained from crude MCS with 106 function 
evaluations are used as the reference to calculate the error of the posterior failure probabilities obtained from RUAK 
and the proposed approach. For each example, the computation is repeated 30 times. To offset the impact of the 
randomness introduced by the auxiliary standard uniform random variable 𝑝𝑝 , the three methods share the same 
realization of 𝑝𝑝 in each computation. 
5.1. Linear and normal case 
The first example investigates the performance of reliability updating methods for a linear problem involving multiple 
normal random variables [19]. The limit state function is defined as: 

𝑔𝑔(𝑿𝑿) = 2𝑋𝑋1 + 3𝑋𝑋2 + 6𝑋𝑋3 + 4𝑋𝑋4 − 𝑋𝑋5 − 2𝑋𝑋6 − 4𝑋𝑋7 − 4𝑋𝑋8 (43) 
where 𝑿𝑿 = [𝑋𝑋1, … ,𝑋𝑋8]  are identically distributed independent normal random variables with mean 𝜇𝜇𝑋𝑋 = 10  and 
standard deviation 𝜎𝜎𝑋𝑋 = 2. In this example, three observations are considered with measurement errors 𝜀𝜀𝑚𝑚1, 𝜀𝜀𝑚𝑚2, and 
𝜀𝜀𝑚𝑚3, respectively. The equality information is described by the following functions: 

ℎ𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, 𝜀𝜀𝑚𝑚𝑚𝑚) = 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖+1 − 20 + 𝜀𝜀𝑚𝑚𝑚𝑚, 𝑖𝑖 = 1,2,3 (44) 
All three measurement errors are identical independent standard normal random variables. Thus, the likelihood 
function can be formulated as follows: 

𝐿𝐿(𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑖𝑖+1)
3

𝑖𝑖=1

= �𝜑𝜑(20 − 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1)
3

𝑖𝑖=1

 (45) 

where 𝜑𝜑 is the probability density function of the standard normal variable, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 and 𝑥𝑥4 are samples of 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 
and 𝑋𝑋4, respectively. For all problems in this section, the threshold of the stopping criterion is set as 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05, the 
coefficient of variation of 𝑃𝑃�𝑓𝑓 is also set as 0.05, the number of initial training samples randomly chosen using LHS is 
12, and the initial number of candidate design points is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. 

  
 Fig.2 Error rates during the training process for 

the Two-Phase approach 
Fig.3 Upper and lower bounds for 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞 

during the training process 
 

The results for the proposed method are summarized in Table 1 and are compared with the results obtained using 
RUAK. Both approaches use UQLab [30] for the surrogate model construction and share the same configuration. This 
process is also applied to the other examples. Results are based on repeating the computations 30 times. The error is 
based on the comparison between the posterior failure probability determined using the considered approaches and 
MCS. Fig.2 shows the error rates during the training process for the proposed approach. As shown in the figure, in the 
first phase, the maximum error rate for the prior failure probability is recorded until it reaches the 5% threshold. In 
the second phase, the training process continues until the maximum error rate for the posterior probability error is less 
than the 5% threshold. Fig. 3 shows the upper and lower bounds for 𝑃𝑃𝑃𝑃 (𝑍𝑍|𝐸𝐸)∗/𝑞𝑞 during the training process of the 
second phase. The curve in the middle is the estimated value, which lies between the upper and lower bounds. It can 
be observed that in both Fig. 2 and Fig. 3 there are fluctuations in the curves for the second phase. This fluctuation is 
expected due to the randomness introduced by the auxiliary standard uniform random variable 𝑝𝑝. A “bad” realization 
of a set of 𝑝𝑝 may lead to a quite slow convergence rate. Thus, in each iteration of the approach, a different set of 𝑝𝑝 is 
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generated to avoid potential slow convergence, hence the fluctuations. It is seen that the proposed approach 
substantially reduces both the average and maximum error compared to RUAK. As shown in the Table 1, the average 
error rate of the 30 runs with the original RUAK is 6.5%, which exceeds the predefined threshold, while the one with 
the Two-Phase RUAK is 2.1%, which is controlled under the threshold. Using the original RUAK, the maximum error 
from 30 replicate sets is 23.3%, while this error using the Two-Phase RUAK is limited to 5.6%.  
 
Table 1 Reliability updating results for the linear and normal example based on 30 replicate sets 

Methodology 
Posterior failure 

probability 
average 

Number of 
function calls Average error Maximum error 

MCS 1.1 × 10−3 106 - - 

RUAK 1.1 × 10−3 40-49 6.5% 23.3% 

Two-Phase RUAK 1.1 × 10−3 54-75 2.1% 5.6% 
 
5.2. Structural system case 
The second example is a classical structural system problem studied by many researchers [32], [33]. The problem 
investigates an elastoplastic frame that is subject to a horizontal load 𝐻𝐻 and a vertical load 𝑉𝑉 as shown in Fig. 4. It is 
a series system reliability problem considering three failure mechanisms: sway, beam, and combined mechanisms. 
The plastic-moment capacities of this structure are denoted by 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅5. The limit state functions corresponding 
to the three mechanisms can be easily obtained through plastic analysis. The limit state function of the system can be 
defined as the minimum of three limit state functions as follows:  

𝑔𝑔(𝑉𝑉,𝐻𝐻,𝑹𝑹) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅4 + 𝑅𝑅5 − 5𝐻𝐻
𝑅𝑅2 + 2𝑅𝑅3 + 𝑅𝑅4 − 5𝑉𝑉

𝑅𝑅1 + 2𝑅𝑅3 + 2𝑅𝑅4 + 𝑅𝑅5 − 5𝐻𝐻 − 5𝑉𝑉
 (46) 

where 𝐻𝐻  follows the Gumbel distribution, 𝑉𝑉  follows the Gamma distribution and 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅5  all follow the 
lognormal distribution and are correlated. The properties of the random variables are summarized in Table 2. 
 
Table 2 Random variables in structural system example 

Random variable Distribution type Mean C.O.V Correlation 

𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 1, … ,5(𝑘𝑘𝑘𝑘.𝑚𝑚) Joint Lognormal 150 0.2 𝜌𝜌ln𝑅𝑅 = 0.3 

𝐻𝐻(𝑘𝑘𝑘𝑘) Gumbel 50 0.4 Independent 
𝑉𝑉 (kN) Gamma 60 0.2 Independent 

 
Two measurements 𝑀𝑀4 and 𝑀𝑀5 are considered for 𝑅𝑅4 and 𝑅𝑅5, respectively. The corresponding measurement errors 
𝜀𝜀𝑚𝑚4  and 𝜀𝜀𝑚𝑚5 both follow independent normal distributions with a mean of 0 and a standard deviation of 15 kN. m. 
The equality information can be described by the following equations: 

ℎ𝑖𝑖(𝑅𝑅𝑖𝑖, 𝜀𝜀𝑚𝑚𝑚𝑚) = 𝑅𝑅𝑖𝑖 − 𝑀𝑀𝑖𝑖 + 𝜀𝜀𝑚𝑚𝑚𝑚 , 𝑖𝑖 = 4,5 (47) 
where 𝑀𝑀4 and 𝑀𝑀5 are taken as 150 kN. m and 200 kN. m, respectively. Thus, the corresponding likelihood function 
can be formulated as: 

 𝐿𝐿(𝒓𝒓) = 𝜑𝜑∗(𝑀𝑀4 − 𝑟𝑟4) ∙ 𝜑𝜑∗(𝑀𝑀5 − 𝑟𝑟5) (48) 
where 𝑟𝑟4 and 𝑟𝑟5 are samples from 𝑅𝑅4 and 𝑅𝑅5, and 𝜑𝜑∗ is the probability density function of normal distribution with 
mean 0 and standard deviation of 15 kN. m. In the implementation of both approaches, the number of initial training 
samples is set to 12 and the initial number of candidate design points is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. The results of this 
case based on 30 replicate sets are presented in Table 3.  

As shown in Table 3, the average error of Two-Phase RUAK is 2.5%, which is below the threshold of 5%. On 
the other hand, the original RUAK has an average error of 8.3%. Moreover, the maximum error of the original RUAK 
reaches 46.6% while the Two-Phase RUAK has a maximum error of 12.4%. For the original RUAK, the average of 
the posterior failure probabilities from 30 computations is different from the one derived using MCS, while the average 
of the posterior failure probabilities from two-phase RUAK is the same as MCS. 
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a. Sway mechanism b. Beam mechanism c. Combined mechanism 

Fig. 4 Ductile structural frame with three failure mechanisms 

Table 3 Reliability updating results for the structural system example based on 30 replicate sets. 

Methodology 
Posterior failure 

probability 
average 

Number of 
function calls Average error Maximum error 

MCS 6.9 × 10−3 106 - - 

RUAK 6.7 × 10−3 43-117 8.3% 46.6% 

Two-Phase RUAK 6.9 × 10−3 92-261 2.5% 6.4% 
 
5.3. Example with 10 dimensions and multiple measurements 
The third example is a 23-bar truss bridge with ten input random variables [34], [35]. The example investigates 
reliability updating with multiple measurements. As shown in Fig. 5, the bridge, which consists of 11 horizontal bars 
and 12 diagonal bars, is subject to 6 vertical forces 𝑷𝑷 = [𝑃𝑃1, … ,𝑃𝑃6] . 𝐴𝐴1 and 𝐴𝐴2  are the cross-sectional areas of 
horizontal and diagonal bars, respectively, and 𝐸𝐸1  and 𝐸𝐸2  are the corresponding Young’s moduli. All the random 
variables are stored in a vector 𝑿𝑿 = [𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃5,𝑃𝑃6,𝐴𝐴1,𝐴𝐴2,𝐸𝐸1,𝐸𝐸2]. The limit state function of the problem is as 
follows: 

𝑔𝑔(𝑿𝑿) = 0.14 − |𝑑𝑑𝑑𝑑𝑑𝑑(𝑿𝑿)| (49) 
where 𝑑𝑑𝑑𝑑𝑑𝑑(𝑿𝑿) is the displacement at the midpoint and is calculated using matrix structural analysis. The probabilistic 
information of the ten independent random variables in 𝑿𝑿 can be found in Table 4. For this example, the number of 
initial training samples is set to 12 and the initial number of candidate design points is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. 
Four measurements of 𝑃𝑃1,𝑃𝑃2,𝐴𝐴1  and 𝐴𝐴2  are considered with the corresponding errors  𝜀𝜀𝑚𝑚1  and  𝜀𝜀𝑚𝑚2 , which both 
follow a normal distribution with mean 0 and standard deviation 0.5 × 104 N and 𝜀𝜀𝑚𝑚3 and 𝜀𝜀𝑚𝑚4, which follow a normal 
distribution with mean 0 and standard deviation 1 × 10−4 m2. The information functions can be expressed as follows: 

ℎ1(𝑃𝑃1, 𝜀𝜀𝑚𝑚1) = 𝑃𝑃1 − 8.5 × 104 + 𝜀𝜀𝑚𝑚1 
ℎ2(𝑃𝑃2, 𝜀𝜀𝑚𝑚1) = 𝑃𝑃2 − 7.5 × 104 + 𝜀𝜀𝑚𝑚2 

     ℎ3(𝐴𝐴1, 𝜀𝜀𝑚𝑚3) = 𝐴𝐴1 − 1.85 × 10−3 + 𝜀𝜀𝑚𝑚3 
   ℎ4(𝐴𝐴2, 𝜀𝜀𝑚𝑚4) = 𝐴𝐴2 − 0.9 × 10−3 + 𝜀𝜀𝑚𝑚4 

(50) 
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Therefore, the corresponding likelihood function can be represented as: 

𝐿𝐿(𝒙𝒙) = φ1,2(𝜀𝜀𝑚𝑚1) ∙ φ1,2(𝜀𝜀𝑚𝑚2) ∙ φ3,4(𝜀𝜀𝑚𝑚3) ∙ φ3,4(𝜀𝜀𝑚𝑚4) 
= φ1,2(8.5 × 104 − 𝑃𝑃1) ∙ φ1,2(7.5 × 104 − 𝑃𝑃6) ∙ φ3,4(1.85 × 10−3 − 𝐴𝐴1) ∙ φ3,4(0.9 × 10−3 − 𝐴𝐴2) (51) 

where φ1,2 is the probability density function of normal distribution with mean 0 and standard deviation 0.5 × 104 
and φ3,4 is the probability density function of normal distribution with mean 0 and standard deviation 1 × 10−4.  
 

 
Fig. 5 Truss bridge with the example 

Table 4. Random variables in ten-dimensional example with multiple measurements. 
Random variable Distribution Mean Standard deviation 
𝑃𝑃1 − 𝑃𝑃6 (N) Gumbel 6.5 × 104 6.5 × 103 
𝐴𝐴1 (m2) Lognormal 2 × 10−3 2 × 10−4 
𝐴𝐴2 (m2) Lognormal 1 × 10−3 1 × 10−4 
𝐸𝐸1 (Pa) Lognormal 2.1 × 1011 2.1 × 1010 
𝐸𝐸2 (Pa) Lognormal 2.1 × 1011 2.1 × 1010 

 
The results for this example are summarized in Table 5. It is evident that with slightly more training points, the 

average error of Two-Phase RUAK is 43% smaller than that of RUAK. Moreover, Two-Phase RUAK has the 
maximum error of 5.6%, while the maximum error of RUAK is 11.9%. 
 
Table 5. Reliability updating results for 10-dimensional example based on 30 replicate sets.  

Methodology 
Posterior failure 

probability 
average 

Number of 
function calls Average error Maximum error 

MCS 1.25 × 10−2 106 - - 

RUAK 1.26 × 10−2 74-97 3.7% 11.9% 

Two-Phase RUAK 1.25 × 10−2 87-122 2.1% 5.6% 
 
5.4. Oscillator example 
The last example is an un-damped single degree of freedom system with six random variables as shown in Fig. 6. 
The details of this model can be found in [11], [36]–[39]. The performance function is described below: 

𝑔𝑔(𝑘𝑘1, 𝑘𝑘2,𝑚𝑚, 𝑟𝑟, 𝑡𝑡1,𝐹𝐹1) = 3𝑟𝑟 − �
2𝐹𝐹1
𝑚𝑚𝜔𝜔02

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜔𝜔0𝑡𝑡1

2
�� (52) 

where 𝜔𝜔0  is the system frequency and is calculated using �𝑘𝑘1+𝑘𝑘2
𝑚𝑚

. All random variables in this example follow normal 

distributions. The properties of the six random variables are summarized in Table 6. In this example, two observations 
are considered with measurement errors of 𝜀𝜀𝑚𝑚1 and 𝜀𝜀𝑚𝑚2 . The equality information is described by the following 
function: 

ℎ1(𝑟𝑟) = 𝑟𝑟 − 1 + 𝜀𝜀𝑚𝑚1  
ℎ2(𝐹𝐹1) = 𝐹𝐹1 − 0.9 + 𝜀𝜀𝑚𝑚2  (53) 

The measurement errors are statistically independent and identical normal random variables with the mean of 0 and 
the standard deviation of 10−1. Thus, the likelihood function can be formulated as follows: 

𝐿𝐿(𝒙𝒙) = 𝜑𝜑∗(1 − 𝑥𝑥𝑟𝑟) ∙ 𝜑𝜑∗�1 − 𝑥𝑥𝐹𝐹1� (54) 
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where 𝜑𝜑∗ is the probability density function of the normal distribution with mean of 0 and standard deviation of 10−1, 
𝑥𝑥𝑟𝑟  and 𝑥𝑥𝐹𝐹1  are samples of r and F1, respectively. For this example, the number of initial training samples is set to 12 
and the initial number of candidate design points is 𝑁𝑁𝑆𝑆 = 106 with 𝑁𝑁∆𝑆𝑆 = 106.  
 
 

 
Fig. 6 Oscillator 

 
Table 6. Random variables in nonlinear oscillator. 

Random variable Distribution Mean Standard deviation 
𝑚𝑚 Normal 1 0.05 
𝑘𝑘1 Normal 1 0.1 
𝑘𝑘2 Normal 0.1 0.01 
𝑟𝑟 Normal 0.5 0.05 
𝐹𝐹1 Normal 1 0.2 
𝑡𝑡1 Normal 1 0.2 

 
The results for this example are summarized in Table 7. It is demonstrated that the original RUAK, when dealing 

with this problem with extremely low posterior probability of failure, cannot effectively control the errors of the final 
output. The average error of RUAK has reached 22.4% and the maximum error is as high as 47.7%. The proposed 
method, on the other hand, effectively controls the errors using the developed more accurate stopping criterion for the 
posterior failure probability. The average of the posterior failure probabilities based on 30 replicate sets by the 
proposed the method is exactly the same as the reference by MCS, while the one by RUAK is smaller. 
 
Table 7. Reliability updating results for nonlinear oscillator based on 30 replicate sets.  

Methodology 
Posterior failure 

probability 
average 

Number of 
function calls Average error Maximum error 

MCS 2.8 × 10−5 107 - - 

RUAK 3.2 × 10−5 24-28 22.4% 47.7% 

Two-Phase RUAK 2.8 × 10−5 77-149 0.4% 0.9% 
 
6. Conclusions 
This paper introduces a method to calculate the posterior failure probability error, and a two-phase RUAK approach 
that takes advantage of the posterior failure probability error estimation. The error estimation of the final output allows 
a stopping criterion for the Kriging model construction that assures desired accuracy for reliability updating. The two-
phase scheme minimizes the computational demand in achieving the desired accuracy. Four numerical examples, 
including a linear and normal problem, a structural system and a ten-dimensional problem with multiple measurements 
are investigated to examine the accuracy improvement of the proposed approach. For each example, the calculation is 
repeated 30 times to test the robustness. It is observed that the average errors of the final outputs of the proposed 
method are significantly smaller and the maximum errors are contained more effectively compared to the state-of-the-
art method RUAK. The fact that the error-based stopping criterion used in RUAK is not able to capture the actual 
posterior failure probability error sometimes leads to premature stops of the refinement of the surrogate model, 
meanwhile the proposed method yields significantly more accurate results at the cost of more computational costs. 
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Appendix 
As noted in Eq. (20) 𝑃𝑃�𝑓𝑓′ is the product of 𝑃𝑃�𝑓𝑓 and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) divided by 𝑃𝑃𝑃𝑃(𝑍𝑍). It should be noted that 𝑃𝑃𝑃𝑃(𝑍𝑍) does not 
involve the Kriging model. Therefore, the error introduced in 𝑃𝑃�𝑓𝑓′ as a result of the Kriging model, only 𝑃𝑃�𝑓𝑓 and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) 
are of interest. It is obvious the following equation holds: 

𝑃𝑃�𝑓𝑓′ =
𝑃𝑃𝑃𝑃�(𝑍𝑍|𝐸𝐸)𝑃𝑃�𝑓𝑓
𝑃𝑃𝑃𝑃(𝑍𝑍) =

𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸)𝑃𝑃𝑓𝑓 × �1 ± 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸)� × (1 ± 𝜖𝜖̂𝑃𝑃𝑓𝑓)
𝑃𝑃𝑃𝑃(𝑍𝑍)  (55) 

where 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸)  and  𝜖𝜖̂𝑃𝑃𝑓𝑓  are the error of 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸)  and 𝑃𝑃�𝑓𝑓  caused by the Kriging model, respectively. The actual 
posterior failure probability 𝑃𝑃𝑓𝑓′ can be expressed using the following equation: 

𝑃𝑃𝑓𝑓′ =
𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸)𝑃𝑃𝑓𝑓
𝑃𝑃𝑃𝑃(𝑍𝑍)  (56) 

Dividing Eq. (55) by Eq. (56), we have: 

1 + 𝜖𝜖̂𝑃𝑃�𝑓𝑓
′

=
𝑃𝑃�𝑓𝑓′

𝑃𝑃𝑓𝑓′
= �1 ± 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸)� × �1 ± 𝜖𝜖̂𝑃𝑃𝑓𝑓� (57) 

As both 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸) and 𝜖𝜖̂𝑃𝑃𝑓𝑓  are positive by definition, the following equation holds: 
�1 ± 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸)� × �1 ± 𝜖𝜖̂𝑃𝑃𝑓𝑓� ≤ �1 + 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸)� × �1 + 𝜖𝜖̂𝑃𝑃𝑓𝑓� = 1 + 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸) + 𝜖𝜖̂𝑃𝑃𝑓𝑓 + 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸) × 𝜖𝜖̂𝑃𝑃𝑓𝑓  (58) 

Combining Eq. (57) an Eq. (58), we have: 
𝜖𝜖̂𝑃𝑃�𝑓𝑓

′
≤ 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸) + 𝜖𝜖̂𝑃𝑃𝑓𝑓 + 𝜖𝜖̂𝑃𝑃(𝑍𝑍|𝐸𝐸) × 𝜖𝜖̂𝑃𝑃𝑓𝑓 (59) 

Taking the maxima of all elements in Eq. (54), we have Eq. (39). 

Acknowledgments 
This research has been partly funded by the U.S. National Science Foundation (NSF) through awards CMMI-1635569, 
1762918, and 2000156. In addition, this work is supported in part by Lichtenstein endowment at The Ohio State 
University. These supports are greatly appreciated. 

Reference 
[1] S. Marelli, R. Schöbi, and B. Sudret, “UQLab User Manual – Structural Reliability (Rare Events Estimation),” 

p. 60. 
[2] O. Ditlevsen and H. O. Madsen, Structural reliability methods, vol. 178. Wiley New York, 1996. 
[3] M. Lemaire, Structural reliability. John Wiley & Sons, 2013. 
[4] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method. John Wiley & Sons, 2016. 
[5] V. J. Romero, L. P. Swiler, and A. A. Giunta, “Construction of response surfaces based on progressive-lattice-

sampling experimental designs with application to uncertainty propagation,” Struct. Saf., vol. 26, no. 2, pp. 
201–219, 2004. 

[6] A. A. Giunta, J. M. McFarland, L. P. Swiler, and M. S. Eldred, “The promise and peril of uncertainty 
quantification using response surface approximations,” Struct. Infrastruct. Eng., vol. 2, no. 3–4, pp. 175–189, 
2006. 

[7] W. Zhao, F. Fan, and W. Wang, “Non-linear partial least squares response surface method for structural 
reliability analysis,” Reliab. Eng. Syst. Saf., vol. 161, pp. 69–77, May 2017, doi: 10.1016/j.ress.2017.01.004. 

[8] G. Blatman and B. Sudret, “An adaptive algorithm to build up sparse polynomial chaos expansions for 
stochastic finite element analysis,” Probabilistic Eng. Mech., vol. 25, no. 2, pp. 183–197, 2010. 

[9] J.-M. Bourinet, “Rare-event probability estimation with adaptive support vector regression surrogates,” 
Reliab. Eng. Syst. Saf., vol. 150, pp. 210–221, 2016. 

[10] H. Dai, H. Zhang, W. Wang, and G. Xue, “Structural reliability assessment by local approximation of limit 
state functions using adaptive Markov chain simulation and support vector regression,” Comput.-Aided Civ. 
Infrastruct. Eng., vol. 27, no. 9, pp. 676–686, 2012. 

[11] B. Echard, N. Gayton, and M. Lemaire, “AK-MCS: an active learning reliability method combining Kriging 
and Monte Carlo simulation,” Struct. Saf., vol. 33, no. 2, pp. 145–154, 2011. 

[12] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Optimization of Expensive Black-Box 
Functions,” J. Glob. Optim., vol. 13, no. 4, pp. 455–492, Dec. 1998, doi: 10.1023/A:1008306431147. 

[13] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland, “Efficient global reliability 
analysis for nonlinear implicit performance functions,” AIAA J., vol. 46, no. 10, pp. 2459–2468, 2008. 

[14] J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, “Sequential design of computer experiments for 
the estimation of a probability of failure,” Stat. Comput., vol. 22, no. 3, pp. 773–793, May 2012, doi: 
10.1007/s11222-011-9241-4. 



-17- 
 

[15] V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N.-H. Kim, “Adaptive Designs of Experiments 
for Accurate Approximation of a Target Region,” J. Mech. Des., vol. 132, no. 7, p. 071008, Jul. 2010, doi: 
10.1115/1.4001873. 

[16] B. Gaspar, A. P. Teixeira, and C. G. Soares, “Assessment of the efficiency of Kriging surrogate models for 
structural reliability analysis,” Probabilistic Eng. Mech., vol. 37, pp. 24–34, Jul. 2014, doi: 
10.1016/j.probengmech.2014.03.011. 

[17] B. Gaspar, A. P. Teixeira, and C. Guedes Soares, “Adaptive surrogate model with active refinement 
combining Kriging and a trust region method,” Reliab. Eng. Syst. Saf., vol. 165, pp. 277–291, Sep. 2017, doi: 
10.1016/j.ress.2017.03.035. 

[18] M. Xiao, J. Zhang, and L. Gao, “A system active learning Kriging method for system reliability-based design 
optimization with a multiple response model,” Reliab. Eng. Syst. Saf., vol. 199, p. 106935, Jul. 2020, doi: 
10.1016/j.ress.2020.106935. 

[19] D. Straub, “Reliability updating with equality information,” Probabilistic Eng. Mech., vol. 26, no. 2, pp. 254–
258, Apr. 2011, doi: 10.1016/j.probengmech.2010.08.003. 

[20] Z. Wang and A. Shafieezadeh, “Real-time high-fidelity reliability updating with equality information using 
adaptive Kriging,” Reliab. Eng. Syst. Saf., vol. 195, p. 106735, Mar. 2020, doi: 10.1016/j.ress.2019.106735. 

[21] H. O. Madsen, “Model updating in reliability theory,” presented at the ICASP 5, 1987. 
[22] S. Gollwitzer, B. Kirchgäßner, R. Fischer, and R. Rackwitz, “PERMAS-RA/STRUREL system of programs 

for probabilistic reliability analysis,” Struct. Saf., vol. 28, no. 1, pp. 108–129, Jan. 2006, doi: 
10.1016/j.strusafe.2005.03.008. 

[23] Z. Wang and A. Shafieezadeh, “ESC: an efficient error-based stopping criterion for kriging-based reliability 
analysis methods,” Struct. Multidiscip. Optim., Nov. 2018, doi: 10.1007/s00158-018-2150-9. 

[24] Z. Wang and A. Shafieezadeh, “REAK: Reliability analysis through Error rate-based Adaptive Kriging,” 
Reliab. Eng. Syst. Saf., vol. 182, pp. 33–45, Feb. 2019, doi: 10.1016/j.ress.2018.10.004. 

[25] C. Zhang, Z. Wang, and A. Shafieezadeh, “Value of Information Analysis via Active Learning and 
Knowledge Sharing in Error-Controlled Adaptive Kriging,” IEEE Access, vol. 8, pp. 51021–51034, 2020, doi: 
10.1109/ACCESS.2020.2980228. 

[26] G. Li, H. Yang, and G. Zhao, “A new efficient decoupled reliability-based design optimization method with 
quantiles,” Struct. Multidiscip. Optim., vol. 61, no. 2, pp. 635–647, Feb. 2020, doi: 10.1007/s00158-019-
02384-7. 

[27] M. Moustapha, B. Sudret, J.-M. Bourinet, and B. Guillaume, “Quantile-based optimization under uncertainties 
using adaptive Kriging surrogate models,” Struct. Multidiscip. Optim., vol. 54, no. 6, pp. 1403–1421, Dec. 
2016, doi: 10.1007/s00158-016-1504-4. 

[28] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments. New York: 
Springer-Verlag, 2003. 

[29] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard, “DACE - A Matlab Kriging Toolbox, Version 2.0,” 
Report, 2002. 

[30] “UQLab Kriging (Gaussian process modelling) manual,” UQLab, the Framework for Uncertainty 
Quantification. http://www.uqlab.com/userguidekriging (accessed May 13, 2017). 

[31] M. Gen and L. Lin, “Genetic Algorithms,” in Wiley Encyclopedia of Computer Science and Engineering, 
American Cancer Society, 2008, pp. 1–15. 

[32] Straub Daniel and Der Kiureghian Armen, “Bayesian Network Enhanced with Structural Reliability Methods: 
Application,” J. Eng. Mech., vol. 136, no. 10, pp. 1259–1270, Oct. 2010, doi: 10.1061/(ASCE)EM.1943-
7889.0000170. 

[33] “Engineering Design Reliability Handbook,” CRC Press, Dec. 22, 2004. 
https://www.crcpress.com/Engineering-Design-Reliability-Handbook/Nikolaidis-Ghiocel-
Singhal/p/book/9780849311802 (accessed May 19, 2018). 

[34] J. Wang, Z. Sun, Q. Yang, and R. Li, “Two accuracy measures of the Kriging model for structural reliability 
analysis,” Reliab. Eng. Syst. Saf., vol. 167, pp. 494–505, Nov. 2017, doi: 10.1016/j.ress.2017.06.028. 

[35] N. Roussouly, F. Petitjean, and M. Salaun, “A new adaptive response surface method for reliability analysis,” 
Probabilistic Eng. Mech., vol. 32, pp. 103–115, Apr. 2013, doi: 10.1016/j.probengmech.2012.10.001. 

[36] S. K. Au and J. L. Beck, “Subset simulation and its application to seismic risk based on dynamic analysis,” J. 
Eng. Mech., vol. 129, no. 8, pp. 901–917, 2003. 

[37] L. Schueremans and D. Gemert, “Benefit of splines and neural networks in simulation based structural 
reliability analysis,” 2005, doi: 10.1016/j.strusafe.2004.11.001. 



-18- 
 

[38] M. R. Rajashekhar and B. R. Ellingwood, “A new look at the response surface approach for reliability 
analysis,” Struct. Saf., vol. 12, no. 3, pp. 205–220, 1993. 

[39] N. Gayton, J. M. Bourinet, and M. Lemaire, “CQ2RS: a new statistical approach to the response surface 
method for reliability analysis,” Struct. Saf., vol. 25, no. 1, pp. 99–121, Jan. 2003, doi: 10.1016/S0167-
4730(02)00045-0. 

 


