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ABSTRACT

We improve the upper bound on superbridge index sb[K] in terms of bridge index
b[K] from sb[K] < 5b[K]| — 3 to sb[K] < 3b[K] — 1.
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1. Introduction

In a seminal paper [7], Kuiper introduced superbridge index for knots, a variation
of the better-known bridge index, first introduced by Schubert in [10]. Let K be a
particular embedding of a knot in 3-space, which we will refer to as a conformation,
and let [K] denote the set of all conformations that are equivalent to it, generating
the same knot type. Letting v represent a unit vector giving a direction in 3-space
to which we will project the knot, we can define bridge index as follows.

Definition 1.1. The bridge index of a knot [K] is given by

b[K] = min min (# of local maxima of K in direction v).
Ke[K])ves?

Given this formulation of bridge index, it is simple to give Kuiper’s variant.

Definition 1.2. The superbridge index of a knot is given by

sb[K] = min max(# of local maxima of K in direction v).
Ke[K] ves?
It is obvious from the definition that sb[K] > b[K]. In fact, in 7], Kuiper proved
that sb[K] > b[K] for any nontrivial knot. Superbridge index is related to several
other invariants.

Definition 1.3. The geometric degree of a knot conformation K is the
greatest number of times that a plane intersects the knot conformation, denoted
d(K). The geometric degree of a knot type [K] is given by
d[K] = min d(K).
Ke[K]

This was defined by Kuiper in [7] and is the same as the supertrunk of a knot
defined by Ozawa in [9]. Note that d[K] is always even since if a plane is tangent
to an embedding of the knot K, we can move the plane slightly to obtain one
fewer intersections, and otherwise, intersections pair up according to how they are
connected by the knot to one side of the plane. Each such pair creates at least one
local maximum in the normal direction to the plane. This also demonstrates the
following useful result.

Lemma 1.4. d[K] < 2sb[K].

2150009-2



Superbridge and bridge indices for knots

One of the reasons that superbridge index is interesting is its relationship with
one of the most natural invariants for knots.

Definition 1.5. The stick index of a knot type, denoted s[K], is the least number
of sticks glued end-to-end to obtain a conformation of that knot type.

n [4], Jin noted the following.

Lemma 1.6. sb[K] < s[K]/2.

Proof. Choose a stick conformation that realizes the stick number. Then for any
choice of a direction vector v € $2, the maxima can only occur at vertices or along
entire edges. Since for every maximum, there must be a corresponding minimum,
the superbridge number of this conformation is at most s[K]/2. Therefore the super-
bridge index, which is the minimum over all conformations, is also bounded above
by s[K]/2. O

Information about superbridge index has been very useful in determining stick
index as in [4-6].

In [7], Kuiper determined the geometric degree of all torus knots, denoted T}, 4
with p < ¢, and then used Lemma 1.4 together with upper bounds to determine
superbridge index for all torus knots as well:

Theorem 1.7. For p < ¢, d(T} ) = min{4p, 2¢} and sb(T}, ) = min{2p, ¢}.

In the same paper, Kuiper also proved that sb[K]
braid index of [K]. In [1], it was proved that sb[K] <
the following improvement of that upper bound.

< 2f[K], where G[K] is the
5b[K| — 3. Here, we obtain

Theorem 1.8. sb[K] < 3b[K] —

Thus, we now know bridge index sandwiches superbridge index via b[K]+ 1 <
sb[K] < 3b[K] —

The outline of the proof is as follows. Given a knot with bridge index n = b[K],
we construct a particular conformation of the knot and show that this confor-
mation has no more than 3b[K] — 1 maxima in any direction. This implies that
sb[K] < 3b[K] — 1. To obtain the particular conformation, we begin with an n-
plat of the knot, with all maxima at one height and all minima at another height.
We free one strand and place the conformation in a neighborhood of the curve
n(t) = (cost,sint,cos?t), which appears as in Fig. 1, so that the one free strand
goes around the entire curve and the rest of the projection is concentrated in the
neighborhood of the first quadrant. We then add additional strands, two from the
image of each maximum to the corresponding minimum, with the strands following
the curve. This generates a singular knot, which we can use to show that the subset
corresponding to the original knot has at most 3b[K| — 1 maxima in any direction.
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Fig. 1. The curve n(t) = (cost,sint, cos?t).

Theorem 1.8 implies the superbridge index of any 2-bridge knot is either 3, 4 or
5. In [8], Milnor proves that every nontrivial knot has geometric degree at least 6.
Hence Lemma 1.4 yields:

Corollary 1.9. Any 2-bridge knot has geometric degree 6, 8 or 10.

In [2] and [3], the authors use quadrisecants to show that there are only finitely
many 3-superbridge knots, all of them in the list 31,41, 52,61, 62, 63, 72, 73, 74, 84, 87
and 8. In this list, 3; and 4; are known to be 3-superbridge knots, and therefore
knots of geometric degree 6. Jeon and Jin conjecture that 3; and 4; are the only
3-superbridge knots.

Corollary 1.10. FEvery 2-bridge knot other than 31,41,52,61,62,63,72,
T3,74,84,87 and 89 has superbridge index 4 or 5.

2. Upper Bound on Superbridge Index

In this section, given a knot type [K], we give the construction of a conformation
that will be used to prove our main theorem: sb[K] < 3b[K] — 1.

Let v € R3 be a unit vector with v = v1i + va) + vsk and let n(t) =
(cost,sint, cos? t).

Kuiper was able to prove that the superbridge index of a knot, sb[K], is bounded
above by twice the braid index of that knot S[K] by taking a braid conformation of
the knot that follows the curve 7(¢). Each string contributes either one or two local
maxima given any direction defined by v. We are adapting Kuiper’s argument, but

using a conformation of a knot that realizes bridge index (instead of braid index),
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and then placing it on the same curve 7(t) to show that sb[K] < 3b[K| — 1, where
b[K] is the bridge index of a knot K.

Since we rely heavily on Kuiper’s argument, we will summarize the argument
here [7]:

Kuiper first notes that the curve 7)(t) has at most two maxima in any direction.
That is, it has superbridge number equal to 2. He then takes a circular r-braid knot
and parameterizes it for a small € > 0 by

Ae(t) = (cos(rt) * (1 4+ Xy (t)),sin(rt) * (1 + e\i(t)), cos (rt) + eXa(t)),

in ¢+ modulo 27, where A\? + A3 < 1. He approximates A;(t) and A\z(t) by finite
linear expressions in cos n;(t) and sin n;(¢) for n; € N, j € Z so that we have finite
polynomials in cos(t) and sin(¢). This creates a conformation of a knot isotopic to
the original r-braid knot that lives inside a torus within the e-neighborhood of 7(¢).
Recalling cos?(t)+ sin?(t) = 1, making the following substitutions:

1= w?

14 w?

and then taking the derivative and setting the dot product with a unit vector equal
to zero, Kuiper obtains an equation of the form

A4r(w)(1 +w2)N72r + €B2N(w) _ O,

where A% and B?Y are polynomials in w with degree 47 and 2)N. We note that

2
cos(t) = 1—}——wu)2’ sin(t)

when e = 0, there are N — 27 roots of i and IV — 27 of —i, and thus there are at most
4r real roots when € = 0. Continuity ensures that for small € > 0, the number of real
roots will not increase, and thus for some conformation of the r-braid knot there
are at most 2r local maxima (since every maximum must have a corresponding
minimum). This leads to the conclusion that sb[K] < 25[K].

For our purposes, we will need the following.

Lemma 2.1. Given any nonzero vector direction v = vli + 02} + vgl%, over the
interval t € (0,7/2), the curve n(t) = (cost,sint,cos®>t) has at most two critical
points when projected to the real line defined by v.

Proof. Take the derivative ' = (—sint,cost, —2sint cost). Critical points occur
when 1’ - v = 0, which is to say

—vysint + vy cost — 2vugsintcost = 0.

Note that when vs = 0, we are projecting to vectors in the xy-plane. Since 7
projects to a circle in the plane, there are exactly two critical points on opposite sides
of the circle for any such vector v, and at most one critical point for 0 < ¢ < 7/2.

When v3 # 0, we obtain:

o sint + ) cost +sintcost = 0.
21)3 21)3
Let a = ”—13 and b = ;TU: Then we have asint 4+ bcost + sintcost = 0. When

2v
0<t<m/2, wecan let z =sint and v/1 — 22 = cost where 0 < z < 1.
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Restating the problem now, we would like to show that the function ¢;(z) =
ax + (b4 x)v/1 — 22 has at most two zeros for 0 < 2 < 1 for all possible choices of
real numbers a and b. We consider various possibilities for a and b.

Case 1. a = 0. Then x = —b is the only zero, which may or may not be in the
interval (0,1), depending on the value of b.
Case 2. b= 0. Then a = —v/1 — 22 and z = v/1 — a? is the only potential zero in
(0,1), and appearing as a zero depending on the value of a.

We now assume both a and b are nonzero. Taking g;(x) = 0, moving the ax
term to the other side of the equation and squaring yields

a’z? = b + 202 + (1 — b*)x? — 2bx® — 2%,
Thus every zero of g; is also a zero of
f=0"+2bz+ (1 —a®—b*)a? — 22 — 2.

Therefore there are at most four zeros of g; over all values of x. Define go =
—ax+ (b+2x)v1 — 2. Then f = g1 - g2, so any zeros of go are also zeros of f. Also,
since a # 0, the zeros of g, are distinct from the zeros of g;.

However, ga(—1) = a and g2(1) = —a. Thus, g2 has at least one zero and
therefore g; has at most three zeros over all values of x. We now continue to
consider cases.

Case 3. a > 0 and b > 0. Then clearly for 0 < z < 1, all terms in g; are positive
and there are no zeros.

Case 4. a < 0 and b < 0. Then g;(—1) > 0 and ¢1(0) < 0, so g1 has a zero in
the z-interval (—1,0). Therefore it can have at most two zeros remaining for the
interval (0,1).

Case 5. a < 0 and b > 0. Let hy = |a|z and hy = (b + z)v/1 — 22. Then a zero of

g1 satisfies hy = ho. But hf = % which yields critical points at SLESVAERS jlb2+8.

So there is only one maximum for positive z, and k4 < 0. Further ho(0) = b > 0.
So the ray of slope |a| defined by hy can only cross the graph of ho once for x > 0,
and we have at most one zero of g1 in the z-interval (0,1).

Case 6. a > 0and b < 0. Let j; = —az and j; = (b+x)v/1 — 22. Then a zero of g;

. . . . —2x2_ s sy . —b+/b2
satisfies j1 = jo. But jj = %, and again critical points occur at —2EVL+8 4b +8

Since b < 0, only one critical point occurs for z > 0, which is a maximum and
J2(0) = b < 0. Also j2(1) = 0, so the ray given by j; = —ax can cross the graph of
ho at most once, and g; has at most one zero for 0 < x < 1. O

In order to prove Theorem 1.8, we utilize n-plats. An n-plat is constructed
from an open braid with 2n strings, by pairing off the adjacent endpoints, left to
right on the top and then also on the bottom and then gluing simple arcs with
one local maximum/minimum to each pair of endpoints. Every n-bridge knot has
a representation as an n-plat obtained by taking an n-bridge presentation and
stretching all of the local maxima up to the same level and stretching down all of
the local minima to the same level, increasing the number of crossings as necessary.
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(a)

(b)

Fig. 2. Freeing the leftmost strand in an n-plat.

Lemma 2.2. Given an n-plat representation of a knot or link, we can always free
one strand, while preserving the fact we have an n-plat.

Proof. In the braid portion of the n-plat representation, the leftmost string s,
which starts at the top in the first position, ends at the bottom in some position i.
We can add crossings at the bottom of the braid in order to move the string back
to the left so that it also ends in the first position, still preserving the fact we have
an n-plat representation of the same link. For any other string that it crosses, it
must do so an even number of times. Then pull s taut, so it appears as a vertical
strand. Although this may create many additional crossings, we still have an n-plat
representation. If some of the resulting strands to the left of the taut string are
nested, as in Fig. 2(a), we can fold them back so that the only regions to the left
of s that remain are un-nested bigons.

Starting with the topmost such, we can lift the string making the bigon up over
the top of the plat and down the other side, as in Fig. 2(b), removing the bigon
while preserving the n-plat. Repeating with all bigons, we now have an n-plat
presentation with a free strand on the left. O

2.1. The construction

Given any knot K with bridge index n, we begin with an n-plat projection P in
the zy-plane such that P realizes the bridge index of K, all local maxima occur
at y = 1, all local minima occur at y = 0, and the strands travel from maxima to
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Fig. 3. Isotoping an n-plat to within an e-neighborhood of the unit circle.

minima without inflection points with respect to the y-direction. By Lemma 2.2, we
free the leftmost strand. We call this strand loose. Next we isotope our conformation
such that it all lies within a small § > 0 of the zy-plane, and such that the entire
conformation other than the loose strand is confined to a § neighborhood of the
sub-arc of the curve f(t) = (cos(t),sin(¢)) defined by .1 < ¢t < m/2 — .1 The loose
strand goes around the far side of the circle. See Fig. 3.

We next proceed with a similar construction to [1] by attaching two strands
to each non-loose maximum such that the i** maximum is connected to the 7t"
minimum with a point of singularity at the attachments. Furthermore, we can do
this in such a way that the extra strands we have added wind around the z-axis with
a height of zero in the z-direction and do not cross any other added strands or any
part of the projection in the xy-plane and every added strand stays within a small
e-neighborhood of the unit circle in the xy-plane defined by f(t) = (cos(t),sin(t)),
as in the left side of Fig. 4. We now have a (2n — 1)-braid conformation of a

Fig. 4. Adding the loose strands and placing on the curve n(t).
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singular knot K because the leftmost maximum of the original n-plat contributed
one loose strand, and the other n — 1 maxima each contribute two added strands.
If we call the interior of the 2n — 2 added strands collectively L, then we note
that K\ L is isotopic to our original knot K. As noted in [1], the singular points of
attachment do not affect Kuiper’s parameterization using functions A (¢) and A2 ()
to find a conformation isotopic to K. Since our conformation is currently within
an e-neighborhood of the unit circle on the x — y plane and within a small § of the
x — y plane in the z-direction, we can change the z coordinates to be within an
e-neighborhood of the function cos?(t), as shown on the right in Fig. 4. Thus for
€ > 0, we have

K. (t) = (cos((2n — 1)t)(1 + eAp (1)), sin((2n — 1)t)(1 + €A1 (1)),
x cos?((2n — 1)t) + ea(t)),

where A2 + A3 < 1. We note that K.(t) defines a (2n—1)-braid that sits within an e-
wide tubular neighborhood of 7(t). Furthermore, the section of the curve containing
the crossings associated with the knot K lie in a region around ¢ = 7/4. This means
most of the curve n(t) is followed only by the original single loose strand and the
added strands L.

Proof of Theorem 1.8. We will use K. to obtain a bound on the superbridge
number of our original knot [K] by examining sb(K.(t)) and discounting the added
strands (because the knot ends at the extrema where we added the extra strands).
Let v = v11 4 v2) + vsk be a vector that defines the direction to which we project
and let J, = Ke \ L. Let E be the collection of 2n — 2 points on J. where the
additional strands are attached, and call points on J. that are not in E interior
points.

We know that n has at most two critical points in the direction of v in the arc
defined by 0 < t < /2. When there are two critical points on the arc, since they
are adjacent on the curve, at most one is a maximum.

We can choose € small enough that the variation in each strand due to the func-
tions A1 and A5 is not greater than the curvature of the larger curve 7. Thus, each
string of the braid will have a critical point that is very close to the corresponding
critical point on 7.

For direction vectors that yield one maximum for 7 and that maximum is not in
the interval 0 < ¢ < 7/2, there are no maxima at the interior points of J. excluding
the loose strand. However, if there is a minimum in the interval 0 < ¢t < 7/2,
then all of the points in E can be maxima for J.. In addition the loose strand has
another maximum. So in this case, the total number of maxima can be at most
2n—2)+1=2n—-1.

For direction vectors that yield two maxima for 7, both of which are not in the
arc of ) given by 0 < ¢t < 7/2, we know that each of the 2n — 2 added strands and
the one original loose strand contribute 2 local maxima. However, we can ignore
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the maxima contributed by all the 2n — 2 added strands, and instead view the
2n — 2 points in F as the only other potential maxima. This leaves us with at
most 2n — 2 4+ 2 = 2n total maxima since the original loose strand contributes two
maxima.

For a direction vector that has a maximum in the arc on 7 corresponding to
the interval 0 < t < 7/2, Lemma 2.1 limits us to at most two critical points. When
there are two critical points, at most one can be a maximum. If all the critical
points on the individual strings occur in the region containing the n-plat, each
of the 2n — 1 strands of the n-plat contributes one maximum. Each strand also
contains a minimum, which means that the corresponding n — 1 singular points in
E where we glued on the additional strands will appear as maxima of the original
knot. The loose strand will also have a potential maximum on it, so we have a total
of 2n—1)+ (n — 1)+ 1 = 3n — 1 possible maxima.

If there is only one maximum and no minimum on the arc corresponding to
0 <t < /2, we have at most (2n — 2) 4+ 1 maxima, the last coming from the loose
strand.

When critical points occur in the interval corresponding to 0 < ¢ < 7/2 but
do not necessarily correspond to critical points on J., we must be careful about
the transition of critical points around the singular points in F. As we change
our direction vector v, we know that the region around each singular point will
resemble Fig. 5. Each string of the singular braid can contribute at most one local
maximum in this region. As we vary the projection vector and see the two maxima
corresponding to a pair of strands in J. that share that singular point moving to
the singular point, we stop counting each at the instant the maximum coincides
with the singularity. The first to pass through the singularity does not cause a
change in the count of maxima for J. since it is replaced by the maximum at
the singularity. The second maximum, when reaching the singularity disappears as
a maximum for J.. Thus, the total number of maxima does not go up when we
transition maxima out of the interior of the strands of .J. O

NN
N

Fig. 5. The local maxima at the singularity points as v rotates counterclockwise. Each strand
contributes zero or one maxima.
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