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ABSTRACT

We improve the upper bound on superbridge index sb[K] in terms of bridge index
b[K] from sb[K] ≤ 5b[K] − 3 to sb[K] ≤ 3b[K] − 1.
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1. Introduction

In a seminal paper [7], Kuiper introduced superbridge index for knots, a variation

of the better-known bridge index, first introduced by Schubert in [10]. Let K be a

particular embedding of a knot in 3-space, which we will refer to as a conformation,

and let [K] denote the set of all conformations that are equivalent to it, generating

the same knot type. Letting v represent a unit vector giving a direction in 3-space

to which we will project the knot, we can define bridge index as follows.

Definition 1.1. The bridge index of a knot [K] is given by

b[K] = min
K∈[K]

min
v∈S2

(# of local maxima of K in direction v).

Given this formulation of bridge index, it is simple to give Kuiper’s variant.

Definition 1.2. The superbridge index of a knot is given by

sb[K] = min
K∈[K]

max
v∈S2

(# of local maxima of K in direction v).

It is obvious from the definition that sb[K] ≥ b[K]. In fact, in [7], Kuiper proved

that sb[K] > b[K] for any nontrivial knot. Superbridge index is related to several

other invariants.

Definition 1.3. The geometric degree of a knot conformation K is the

greatest number of times that a plane intersects the knot conformation, denoted

d(K). The geometric degree of a knot type [K] is given by

d[K] = min
K∈[K]

d(K).

This was defined by Kuiper in [7] and is the same as the supertrunk of a knot

defined by Ozawa in [9]. Note that d[K] is always even since if a plane is tangent

to an embedding of the knot K, we can move the plane slightly to obtain one

fewer intersections, and otherwise, intersections pair up according to how they are

connected by the knot to one side of the plane. Each such pair creates at least one

local maximum in the normal direction to the plane. This also demonstrates the

following useful result.

Lemma 1.4. d[K] ≤ 2sb[K].
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One of the reasons that superbridge index is interesting is its relationship with

one of the most natural invariants for knots.

Definition 1.5. The stick index of a knot type, denoted s[K], is the least number

of sticks glued end-to-end to obtain a conformation of that knot type.

In [4], Jin noted the following.

Lemma 1.6. sb[K] ≤ s[K]/2.

Proof. Choose a stick conformation that realizes the stick number. Then for any

choice of a direction vector v ∈ S2, the maxima can only occur at vertices or along

entire edges. Since for every maximum, there must be a corresponding minimum,

the superbridge number of this conformation is at most s[K]/2. Therefore the super-

bridge index, which is the minimum over all conformations, is also bounded above

by s[K]/2.

Information about superbridge index has been very useful in determining stick

index as in [4–6].

In [7], Kuiper determined the geometric degree of all torus knots, denoted Tp,q

with p < q, and then used Lemma 1.4 together with upper bounds to determine

superbridge index for all torus knots as well:

Theorem 1.7. For p < q, d(Tp,q) = min{4p, 2q} and sb(Tp,q) = min{2p, q}.

In the same paper, Kuiper also proved that sb[K] ≤ 2β[K], where β[K] is the

braid index of [K]. In [1], it was proved that sb[K] ≤ 5b[K] − 3. Here, we obtain

the following improvement of that upper bound.

Theorem 1.8. sb[K] ≤ 3b[K]− 1.

Thus, we now know bridge index sandwiches superbridge index via b[K] + 1 ≤
sb[K] ≤ 3b[K]− 1.

The outline of the proof is as follows. Given a knot with bridge index n = b[K],

we construct a particular conformation of the knot and show that this confor-

mation has no more than 3b[K] − 1 maxima in any direction. This implies that

sb[K] ≤ 3b[K] − 1. To obtain the particular conformation, we begin with an n-

plat of the knot, with all maxima at one height and all minima at another height.

We free one strand and place the conformation in a neighborhood of the curve

η(t) = (cos t, sin t, cos2 t), which appears as in Fig. 1, so that the one free strand

goes around the entire curve and the rest of the projection is concentrated in the

neighborhood of the first quadrant. We then add additional strands, two from the

image of each maximum to the corresponding minimum, with the strands following

the curve. This generates a singular knot, which we can use to show that the subset

corresponding to the original knot has at most 3b[K]− 1 maxima in any direction.
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Fig. 1. The curve η(t) = (cos t, sin t, cos2 t).

Theorem 1.8 implies the superbridge index of any 2-bridge knot is either 3, 4 or

5. In [8], Milnor proves that every nontrivial knot has geometric degree at least 6.

Hence Lemma 1.4 yields:

Corollary 1.9. Any 2-bridge knot has geometric degree 6, 8 or 10.

In [2] and [3], the authors use quadrisecants to show that there are only finitely

many 3-superbridge knots, all of them in the list 31, 41, 52, 61, 62, 63, 72, 73, 74, 84, 87

and 89. In this list, 31 and 41 are known to be 3-superbridge knots, and therefore

knots of geometric degree 6. Jeon and Jin conjecture that 31 and 41 are the only

3-superbridge knots.

Corollary 1.10. Every 2-bridge knot other than 31, 41, 52, 61, 62, 63, 72,

73, 74, 84, 87 and 89 has superbridge index 4 or 5.

2. Upper Bound on Superbridge Index

In this section, given a knot type [K], we give the construction of a conformation

that will be used to prove our main theorem: sb[K] ≤ 3b[K] − 1.

Let v ∈ R
3 be a unit vector with v = v1î + v2ĵ + v3k̂ and let η(t) =

(cos t, sin t, cos2 t).

Kuiper was able to prove that the superbridge index of a knot, sb[K], is bounded

above by twice the braid index of that knot β[K] by taking a braid conformation of

the knot that follows the curve η(t). Each string contributes either one or two local

maxima given any direction defined by v. We are adapting Kuiper’s argument, but

using a conformation of a knot that realizes bridge index (instead of braid index),
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and then placing it on the same curve η(t) to show that sb[K] ≤ 3b[K]− 1, where

b[K] is the bridge index of a knot K.

Since we rely heavily on Kuiper’s argument, we will summarize the argument

here [7]:

Kuiper first notes that the curve η(t) has at most two maxima in any direction.

That is, it has superbridge number equal to 2. He then takes a circular r-braid knot

and parameterizes it for a small ε > 0 by

λε(t) = (cos(rt) ∗ (1 + ελ1(t)), sin(rt) ∗ (1 + ελ1(t)), cos2(rt) + ελ2(t)),

in t modulo 2π, where λ2
1 + λ2

2 ≤ 1. He approximates λ1(t) and λ2(t) by finite

linear expressions in cos nj(t) and sin nj(t) for nj ∈ N, j ∈ Z so that we have finite

polynomials in cos(t) and sin(t). This creates a conformation of a knot isotopic to

the original r-braid knot that lives inside a torus within the ε-neighborhood of η(t).

Recalling cos2(t)+ sin2(t) = 1, making the following substitutions:

cos(t) =
2w

1 + w2
, sin(t) =

1 − w2

1 + w2
,

and then taking the derivative and setting the dot product with a unit vector equal

to zero, Kuiper obtains an equation of the form

A4r(w)(1 + w2)N−2r + εB2N (w) = 0,

where A4r and B2N are polynomials in w with degree 4r and 2N . We note that

when ε = 0, there are N −2r roots of i and N −2r of −i, and thus there are at most

4r real roots when ε = 0. Continuity ensures that for small ε > 0, the number of real

roots will not increase, and thus for some conformation of the r-braid knot there

are at most 2r local maxima (since every maximum must have a corresponding

minimum). This leads to the conclusion that sb[K] ≤ 2β[K].

For our purposes, we will need the following.

Lemma 2.1. Given any nonzero vector direction v = v1î + v2ĵ + v3k̂, over the

interval t ∈ (0, π/2), the curve η(t) = (cos t, sin t, cos2 t) has at most two critical

points when projected to the real line defined by v.

Proof. Take the derivative η′ = (− sin t, cos t,−2 sin t cos t). Critical points occur

when η′ · v = 0, which is to say

−v1 sin t + v2 cos t − 2v3 sin t cos t = 0.

Note that when v3 = 0, we are projecting to vectors in the xy-plane. Since η

projects to a circle in the plane, there are exactly two critical points on opposite sides

of the circle for any such vector v, and at most one critical point for 0 < t < π/2.

When v3 �= 0, we obtain:

v1

2v3
sin t +

−v2

2v3
cos t + sin t cos t = 0.

Let a = v1

2v3

and b = −v2

2v3

. Then we have a sin t + b cos t + sin t cos t = 0. When

0 < t < π/2, we can let x = sin t and
√

1 − x2 = cos t where 0 < x < 1.
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Restating the problem now, we would like to show that the function g1(x) =

ax + (b + x)
√

1 − x2 has at most two zeros for 0 < x < 1 for all possible choices of

real numbers a and b. We consider various possibilities for a and b.

Case 1. a = 0. Then x = −b is the only zero, which may or may not be in the

interval (0,1), depending on the value of b.

Case 2. b = 0. Then a = −
√

1 − x2 and x =
√

1 − a2 is the only potential zero in

(0, 1), and appearing as a zero depending on the value of a.

We now assume both a and b are nonzero. Taking g1(x) = 0, moving the ax

term to the other side of the equation and squaring yields

a2x2 = b2 + 2bx + (1 − b2)x2 − 2bx3 − x4.

Thus every zero of g1 is also a zero of

f = b2 + 2bx + (1 − a2 − b2)x2 − 2bx3 − x4.

Therefore there are at most four zeros of g1 over all values of x. Define g2 =

−ax+(b+x)
√

1 − x2. Then f = g1 · g2, so any zeros of g2 are also zeros of f . Also,

since a �= 0, the zeros of g2 are distinct from the zeros of g1.

However, g2(−1) = a and g2(1) = −a. Thus, g2 has at least one zero and

therefore g1 has at most three zeros over all values of x. We now continue to

consider cases.

Case 3. a > 0 and b > 0. Then clearly for 0 < x < 1, all terms in g1 are positive

and there are no zeros.

Case 4. a < 0 and b < 0. Then g1(−1) > 0 and g1(0) < 0, so g1 has a zero in

the x-interval (−1, 0). Therefore it can have at most two zeros remaining for the

interval (0,1).

Case 5. a < 0 and b > 0. Let h1 = |a|x and h2 = (b + x)
√

1 − x2. Then a zero of

g1 satisfies h1 = h2. But h′
2 = 1−2x2−bx√

1−x2
which yields critical points at −b±

√
b2+8

4 .

So there is only one maximum for positive x, and h′′
2 < 0. Further h2(0) = b > 0.

So the ray of slope |a| defined by h1 can only cross the graph of h2 once for x > 0,

and we have at most one zero of g1 in the x-interval (0,1).

Case 6. a > 0 and b < 0. Let j1 = −ax and j2 = (b+x)
√

1 − x2. Then a zero of g1

satisfies j1 = j2. But j′2 = 1−2x2−bx√
1−x2

, and again critical points occur at −b±
√

b2+8
4 .

Since b < 0, only one critical point occurs for x > 0, which is a maximum and

j2(0) = b < 0. Also j2(1) = 0, so the ray given by j1 = −ax can cross the graph of

h2 at most once, and g1 has at most one zero for 0 < x < 1.

In order to prove Theorem 1.8, we utilize n-plats. An n-plat is constructed

from an open braid with 2n strings, by pairing off the adjacent endpoints, left to

right on the top and then also on the bottom and then gluing simple arcs with

one local maximum/minimum to each pair of endpoints. Every n-bridge knot has

a representation as an n-plat obtained by taking an n-bridge presentation and

stretching all of the local maxima up to the same level and stretching down all of

the local minima to the same level, increasing the number of crossings as necessary.
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(a)

(b)

Fig. 2. Freeing the leftmost strand in an n-plat.

Lemma 2.2. Given an n-plat representation of a knot or link, we can always free

one strand, while preserving the fact we have an n-plat.

Proof. In the braid portion of the n-plat representation, the leftmost string s,

which starts at the top in the first position, ends at the bottom in some position i.

We can add crossings at the bottom of the braid in order to move the string back

to the left so that it also ends in the first position, still preserving the fact we have

an n-plat representation of the same link. For any other string that it crosses, it

must do so an even number of times. Then pull s taut, so it appears as a vertical

strand. Although this may create many additional crossings, we still have an n-plat

representation. If some of the resulting strands to the left of the taut string are

nested, as in Fig. 2(a), we can fold them back so that the only regions to the left

of s that remain are un-nested bigons.

Starting with the topmost such, we can lift the string making the bigon up over

the top of the plat and down the other side, as in Fig. 2(b), removing the bigon

while preserving the n-plat. Repeating with all bigons, we now have an n-plat

presentation with a free strand on the left.

2.1. The construction

Given any knot K with bridge index n, we begin with an n-plat projection P in

the xy-plane such that P realizes the bridge index of K, all local maxima occur

at y = 1, all local minima occur at y = 0, and the strands travel from maxima to
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Fig. 3. Isotoping an n-plat to within an ε-neighborhood of the unit circle.

minima without inflection points with respect to the y-direction. By Lemma 2.2, we

free the leftmost strand. We call this strand loose. Next we isotope our conformation

such that it all lies within a small δ > 0 of the xy-plane, and such that the entire

conformation other than the loose strand is confined to a δ neighborhood of the

sub-arc of the curve f(t) = (cos(t), sin(t)) defined by .1 < t < π/2 − .1 The loose

strand goes around the far side of the circle. See Fig. 3.

We next proceed with a similar construction to [1] by attaching two strands

to each non-loose maximum such that the ith maximum is connected to the ith

minimum with a point of singularity at the attachments. Furthermore, we can do

this in such a way that the extra strands we have added wind around the z-axis with

a height of zero in the z-direction and do not cross any other added strands or any

part of the projection in the xy-plane and every added strand stays within a small

ε-neighborhood of the unit circle in the xy-plane defined by f(t) = (cos(t), sin(t)),

as in the left side of Fig. 4. We now have a (2n − 1)-braid conformation of a

Fig. 4. Adding the loose strands and placing on the curve η(t).
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singular knot K̂ because the leftmost maximum of the original n-plat contributed

one loose strand, and the other n − 1 maxima each contribute two added strands.

If we call the interior of the 2n − 2 added strands collectively L, then we note

that K̂\L is isotopic to our original knot K. As noted in [1], the singular points of

attachment do not affect Kuiper’s parameterization using functions λ1(t) and λ2(t)

to find a conformation isotopic to K̂. Since our conformation is currently within

an ε-neighborhood of the unit circle on the x− y plane and within a small δ of the

x − y plane in the z-direction, we can change the z coordinates to be within an

ε-neighborhood of the function cos2(t), as shown on the right in Fig. 4. Thus for

ε > 0, we have

K̂ε(t) = (cos((2n − 1)t)(1 + ελ1(t)), sin((2n − 1)t)(1 + ελ1(t)),

× cos2((2n − 1)t) + ελ2(t)),

where λ2
1 +λ2

2 ≤ 1. We note that K̂ε(t) defines a (2n−1)-braid that sits within an ε-

wide tubular neighborhood of η(t). Furthermore, the section of the curve containing

the crossings associated with the knot K lie in a region around t = π/4. This means

most of the curve η(t) is followed only by the original single loose strand and the

added strands L.

Proof of Theorem 1.8. We will use K̂ε to obtain a bound on the superbridge

number of our original knot [K] by examining sb(K̂ε(t)) and discounting the added

strands (because the knot ends at the extrema where we added the extra strands).

Let v = v1î + v2ĵ + v3k̂ be a vector that defines the direction to which we project

and let Jε = K̂ε \ L. Let E be the collection of 2n − 2 points on Jε where the

additional strands are attached, and call points on Jε that are not in E interior

points.

We know that η has at most two critical points in the direction of v in the arc

defined by 0 < t < π/2. When there are two critical points on the arc, since they

are adjacent on the curve, at most one is a maximum.

We can choose ε small enough that the variation in each strand due to the func-

tions λ1 and λ2 is not greater than the curvature of the larger curve η. Thus, each

string of the braid will have a critical point that is very close to the corresponding

critical point on η.

For direction vectors that yield one maximum for η and that maximum is not in

the interval 0 < t < π/2, there are no maxima at the interior points of Jε excluding

the loose strand. However, if there is a minimum in the interval 0 < t < π/2,

then all of the points in E can be maxima for Jε. In addition the loose strand has

another maximum. So in this case, the total number of maxima can be at most

(2n − 2) + 1 = 2n− 1.

For direction vectors that yield two maxima for η, both of which are not in the

arc of η given by 0 < t < π/2, we know that each of the 2n − 2 added strands and

the one original loose strand contribute 2 local maxima. However, we can ignore
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the maxima contributed by all the 2n − 2 added strands, and instead view the

2n − 2 points in E as the only other potential maxima. This leaves us with at

most 2n− 2 + 2 = 2n total maxima since the original loose strand contributes two

maxima.

For a direction vector that has a maximum in the arc on η corresponding to

the interval 0 < t < π/2, Lemma 2.1 limits us to at most two critical points. When

there are two critical points, at most one can be a maximum. If all the critical

points on the individual strings occur in the region containing the n-plat, each

of the 2n − 1 strands of the n-plat contributes one maximum. Each strand also

contains a minimum, which means that the corresponding n − 1 singular points in

E where we glued on the additional strands will appear as maxima of the original

knot. The loose strand will also have a potential maximum on it, so we have a total

of (2n − 1) + (n − 1) + 1 = 3n − 1 possible maxima.

If there is only one maximum and no minimum on the arc corresponding to

0 < t < π/2, we have at most (2n− 2) + 1 maxima, the last coming from the loose

strand.

When critical points occur in the interval corresponding to 0 < t < π/2 but

do not necessarily correspond to critical points on Jε, we must be careful about

the transition of critical points around the singular points in E. As we change

our direction vector v, we know that the region around each singular point will

resemble Fig. 5. Each string of the singular braid can contribute at most one local

maximum in this region. As we vary the projection vector and see the two maxima

corresponding to a pair of strands in Jε that share that singular point moving to

the singular point, we stop counting each at the instant the maximum coincides

with the singularity. The first to pass through the singularity does not cause a

change in the count of maxima for Jε since it is replaced by the maximum at

the singularity. The second maximum, when reaching the singularity disappears as

a maximum for Jε. Thus, the total number of maxima does not go up when we

transition maxima out of the interior of the strands of Jε.

Fig. 5. The local maxima at the singularity points as v rotates counterclockwise. Each strand
contributes zero or one maxima.
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