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Promising results show the gre:it i)otential of this new dataset
to the robotics and computer vision communities.

I. INTRODUCTION

Deep learning has significantly improved robustness and
efficiency of autonomous driving in terms of visual percep-
tion, planning, and mapping. Public datasets play a crucial
role here. For example, being the first large scale au-
tonomous driving public dataset, KITTI [12] has been widely
adopted for developing and evaluating many state-of-the-
art autonomous driving algorithms, or their key components
such as object recognition, in the past several years. However,
it remains unconfirmed if these algorithms generalize well
to unseen scenarios, e.g., with different scanning patterns or
range, mostly due to the lack of corresponding datasets for
validation.

In this paper, we introduce Cirrus, a new long-range bi-
pattern LiDAR dataset for autonomous driving tasks. Cirrus
is developed to enhance existing public LiDAR datasets
with additional diversity in terms of sensor model, range,
and scanning pattern. A long effective range allows object
detection at a far distance and leaves sufficient time to
react, especially in high-speed driving scenarios. While being
constrained by sensor capability, existing datasets usually
contain point clouds of limited ranges, e.g., 120m for KITTI,
and 70m for nuScenes [3], and largely restrict trained al-
gorithms to low-speed driving scenarios. When cars drive
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Fig. 1: Example LiDAR point clouds from the Cirrus dataset
with bounding boxes. Distance is marked in white.

at 75 mph, the 120m effective range of KITTI and the
70m of nuScenes allow only 3.5s and 2s reaction time,
respectively. Thus, in Cirrus, we adopt LiDAR sensors of
a 250-meter effective range, as shown in Figure 1, to better
support developing and evaluating algorithms for high-speed
scenarios. We present a side-by-side visualization of point
clouds from different datasets in a bird-eye view in Figure 2.
Note that, in a point cloud, with respect to distance, the object
size stays constant, but the point density varies. Therefore
the long effective range of the new dataset provides rich
samples with various degrees of point densities, serving a
good benchmark for developing algorithms robust across
ranges.

In the Cirrus dataset, data are collected using two scanning
patterns. Besides the standard uniform pattern, the Gaussian
pattern gives extra flexibility by enabling sampling with a
focus on a particular direction. For example, on urban roads,
cars drive in a relatively complex environment space, but at
a relatively low speed. In this case, the uniform scanning
pattern can provide perception from a wide viewing angle
at a reduced range. While driving on highways, cars move
at a much higher speed, but the environment is considerably
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Fig. 2: Point cloud samples from different datasets. Warmer colors indicate longer point distances. The respective effective
ranges are marked. When cars drive at 75mph, the 120m, 70m, and 250m effective ranges allow 3.5s, 2s and 7.5s reaction

time, respectively.

simpler. Gaussian scanning pattern can enable longer range
detection by focusing on the forward direction, thus allowing
for longer reaction time in cases of emergency. This new
dataset enables exploring the merits of each scanning pattern,
so that two patterns can be adaptively switched, ideally with
a single underlying analysis model through adaptation, based
on the driving scenarios for an optimized range-angle trade-
off.

The here introduced Cirrus public' dataset provides fully
annotated long-range and bi-pattern paired point clouds, and
enables several potential research topics with great practical
impacts. Based on the aforementioned unique properties,
we adopt 3D object detection as a sample application, and
perform a series of preliminary experiments on cross-range,
cross-device, and cross-pattern adaptations, to illustrate im-
portant properties and potential usages of this dataset. We
report results on standard 3D object detection in LiDAR,
to serve as a baseline for follow-up studies. We invite the
community to together explore the Cirrus dataset on various
tasks for autonomous driving.

Our main contributions are summarized as follows:

e We introduce a new long-range bi-pattern LiDAR
dataset with exhaustive eight-category object annota-
tions in point clouds over the entire 250-meter sensor
effective range.

« The proposed dataset contains paired point clouds col-
lected simultaneously with Gaussian and uniform scan-
ning patterns, which enables studies on cross-pattern
adaptation in point clouds.

o We adopt 3D object detection in LiDAR as a sample
task, and conduct extensive experiments to study model
adaptations across ranges, devices, and scanning pat-
terns. Promising results show the great value of this
new dataset for future research in the vision and robotics
communities.

IThe full dataset will be released upon manuscript acceptance. Ex-
amples are available at https://developer.volvocars.com/
open—-datasets.

II. RELATED WORK

In the past few years, large scale annotated datasets have
greatly boosted the research on the perception of the au-
tonomous driving. Datasets with various sensor setups have
been introduced as the development tools for autonomous
driving systems. An RGB camera is the most prevalent
sensor thanks to its advantages including the low cost in
terms of both hardware and annotations, and the tremendous
existing research achievements in computer vision, thus is
widely adopted in public datasets [2], [4], [9], [36]. The rich
appearance information in RGB images makes it a suitable
choice for inferring semantic. The works [2], [9] provide
high-quality pixel-level annotations, and are widely adopted
in the research of semantic segmentation for autonomous
driving. Especially the S5k images with fine annotations
and large-scale coarsely annotated samples have paved the
way for deep learning based driving support algorithms [5],
[22], [24]. Recently, newly released large scale datasets
like BDD100K [36] and D?—city [4] further enrich the
diversity of public datasets by including samples collected
under different weathers. Recent datasets like Apolloscape
[17] with 144k annotated samples, BDD100K [36] with
100k annotated samples, and Mapillary Vistas [23] with 25k
samples, significantly enlarge the scale of data for model
training. However, the significant drawbacks of images-only
datasets largely restrict the real-world performance of the
image-only systems. First of all, the inference of distance
information from the images is inherently non-trivial and the
precision cannot be guaranteed. And the fastly decreased ob-
ject size in images with respect to the object distance makes
it an undesired choice for detecting long-range objects, and
therefore is unsuitable for high-speed scenarios where ahead
planning is crucial.

To compensate the drawbacks of RGB cameras, object
detection with multiple cameras or sensors other than RGB
cameras became a popular direction. LiDAR is widely
adopted for the perception of autonomous driving for the
significant advantages including precise localizing and dis-
tance measurement, relatively lower noise comparing to RGB
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Fig. 3: Sensor placements for the dataset collection. All
coordination axes follow the right hand rule.

images, and the ability to fully perceive multiple angles
with a single sensor. With the fast development of the deep
network based point cloud processing methods [26], [27],
[33] and sparse convolution [21], [13], [14], [16], [15],
various algorithms [37], [31], [35], [19] are developed to
efficiently detect object in point clouds. The advantages
of the LiDAR sensors and the algorithms make them in-
dispensable components for modern autonomous driving
systems, algorithms [1], [6], [19], [20], [32], [35], [37],
and multi-modality datasets [3], [7], [8], [12], [25]. KITTI
[12] provides over 7K annotated samples collected with
cameras and LiDAR. The stereo images and GPS/IMU data
further enables various tasks for autonomous driving. The
KAIST dataset [8] provides data with RGB/thermal camera,
RGB stereo, LiDAR, and GPS/IMU, and high diversity with
samples collected in both daytime and nighttime. However,
the practical value of KAIST is largely restricted by its
limited size and 3D annotations. The intrinsic limitation of
LiDAR also cannot be neglected. Apart from the high cost
on hardware, the effective range becomes a bottleneck to the
wide adoption of LiDAR in all environments. Radar sensors,
as another popular range sensor, have much longer perception
range (250m typically), and lower hardware costs. But the
low point density of radar sensors prevents it from being a
qualified replacement to LiDAR. So far only the nuScenes
dataset [3] provides point clouds collected with radars.

With the help of modern computer graphics and game
engines, synthesized datasets like Playing for Data [28],
CARLA [10], Virtual KITTI [11], and SYNTHIA [29],
reduce the cost of collecting data, although the performance
are sometimes restricted due to the domain shifts between
synthesized and real-world data.

III. THE CIRRUS DATASET

The Cirrus dataset contains 6,285 synchronized pairs of
RGB, LiDAR Gaussian, and LiDAR uniform frames. All
samples are fully annotated for eight object categories across
the entire 250-meter LiDAR effective range.

A. Sensor Placements

The data collection car is equipped with the following
Sensors:

Uniform pattern. Gaussian Scanning pattern.
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Fig. 4: Hexbin log-scaled density plots of the number of
LiDAR points inside annotation boxes.

o« An RGB camera with a resolution of 1920 x 650.

e A Luminar Model H2 LiDAR sensor with the Gaussian
scanning pattern, 10Hz, 64 lines per frame, 1550-nm,
250m effective range, > 200 meters range to 10%
reflective target (Lambertian), 120° horizontal FOV, 30°
vertical FOV.

e A Luminar Model H2 LiDAR sensor with the uniform
scanning pattern, 10Hz, 64 lines per frame, 1550-nm,
250m effective range, > 200 meters range to 10%
reflective target (Lambertian),120° horizontal FOV, 30°
vertical FOV.

e IMU and GPS x 2.

The sensor placements are illustrated in Figure 3.

B. Scanning Patterns

Two LiDAR sensors mounted on the car are of the identi-
cal model, each running a particular scanning pattern. Point
clouds are simultaneously captured using both uniform and
Gaussian scanning patterns. These two sensors are calibrated
to have synchronized and aligned point clouds, and thus
annotations can be shared across patterns.

For the LiDAR with the Gaussian scanning pattern, we
set the focus of sweeps to the forward direction of the car,
which in return, gives higher point density to objects ahead
than the uniform pattern. We plot the Hexbin log-scaled
density for both patterns in Figure 4. It is clearly shown in
the plot that point clouds collected with the Gaussian pattern
have higher overall point density inside annotation boxes. For
long-range objects that are more than 200 meters away, the
significantly higher point density in Gaussian pattern point
clouds can potentially enable more accurate estimation of
object attributes and categories.

C. Sensor Synchronization

The exposure of the camera is triggered first with the cor-
responding time stamp captured. When the LiDAR sensors
start firing and getting returns, the times stamps are generated
as well. Then these separate sets of timestamps are sent to
the computing platform (such as NVIDIA DRIVE PX2) and
the gPTP protocol [18] is followed to sync these time stamps.
For instance, the camera yields 30 time stamps per second,
and each LiDAR sensor gives 10 per second. The nearest
matching/syncing across timestamps happens in the PX2.
This is a continuous streaming process.
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Fig. 5: Diverse scenes including both highway and urban-
road scenarios are included in the Cirrus dataset. We include
in the first sample the projected point cloud collected using
Gaussian scanning pattern, and then we visualize all the
projected boxing boxes in the rest of the samples, where
red, blue, and green boxes denote pedestrians, bicycles, and
vehicles, respectively. The top-right sample clearly shows the
high detection range of the Cirrus dataset where large amount
of objects are annotated exhaustively.

D. Annotations

Cirrus provides 6,285 frames from 12 segments of videos.
Both high-speed highway and low-speed urban-road scenar-
ios are included. Example scenes are presented in Figure 5.
All images have gone through an anonymization process
blurring faces and license plates to eliminate personally
identifiable information.

We annotate 8 categories of objects: vehicle, large vehicle,
pedestrian, bicycle, animal, wheeled pedestrian, motorcycle,
and frailer. Objects that do not belong to the aforementioned
categories are annotated as unknown. The statistics of the
annotated categories are plotted in Figure 6(a).

For each object from known categories, we annotate its
spatial position as {x,y, 2} in the LiDAR coordinate. The
shape of each object is represented by its length, width,
and height, as well as the rotation angle (yaw) represented
using a quaternion. Different from the previous datasets,
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(b) Histogram of object distance and comparison against KITTI.

Fig. 6: Histogram of annotations (top) and comparison with
KITTI (bottom).

where the full body of each object is tightly annotated
with a 3D bounding box, the boxes in our dataset contain
object parts that are visible in the point clouds. Since we
focus particularly on far-range object detection, and many
annotations are beyond visual range, it is hard to infer the
full body of every object especially when an object is at a
long distance and cannot be seen clearly in the RGB image.

We plot the histogram of object distances for the vehicle
(car) category in Figure 6(b), where it is clearly shown that a
large amount of objects appear across the 250-meter effective
range. Note that the farthest annotation reaches a distance of
over 350 meters. The histogram comparison against KITTI
[12] is also included in Figure 6(b). Cirrus provides sig-
nificantly larger amount of vehicles and objects are widely
spread across the longer effective range comparing to KITTI.

IV. 3D OBJECT DETECTION AND MODEL ADAPTATION

In this section, we present sample tasks, 3D object detec-
tion and model adaptation on the newly introduced Cirrus
dataset, to illustrate its unique properties and potential us-
ages. We start this section with evaluation metrics we adopt
for this new dataset, and then briefly introduce a benchmark
setting for detection and adaptation experiments. All baseline
results will be presented in Section V.



TABLE I: 3D object detection with VoxelNet and the Cirrus dataset.

TABLE II: 3D object detection TABLE III: Cross-range adaptation.

Model adaptation improves the de-

- - with state-of-the-art methods.
Pattern Metric ‘ Near range Mid range Far range Overall ‘ € = 0.006 is set as default for tection performance across the entire
DDS 0.6954 0.5594 0.3412 0.6444 wDDS. effective range.
Gaussian wDDS (e = 0.003) 0.7112 0.5612 0.3517 0.6546
S wDDS (e = 0.006) 0.7232 0.5885 0.3884 0.6630 [ Methods [ DDS  wDDS | [ Range | DDS  wDDS |

wDDS (e = 0.009) 0.7421 0.5904 0.3908 0.6691 VoxelNet | 0.6444  0.6630 Near range | 0.7237 0.7291

Uniform DDS 0.6297 0.4388 0.3012 0.5672 SECOND | 0.6621 0.6819 Far range | 0.6018 0.6098
wDDS (e = 0.006) 0.6618 0.5013 0.3234 0.5908 PointRCNN | 0.6672  0.6788 Overall 0.6543  0.6825

Precision-recall curve Precision-recall curve, £=0.006

Precision
Precision

(a) Mean Average Precision. (b) Mean Average Precision with

weighted threshold (e = 0.006).

Fig. 7: Precision-recall curves.

A. Evaluation Metrics

3D object detection requires accurate estimation of object
category, location, and pose. As pointed out in [3], 3D
intersection over union (IoU) is sensitive to minor drifts for
objects with small spatial dimensions such as pedestrians.
In our case, since we adopt partial annotations for objects
that are not fully visible in the point clouds, we observe
unstable assessments for long-range object detection using
IoU, which is thus unreliable to faithfully quantify the algo-
rithm performance. Inspired by the nuScenes detection score
(NDS) in [3], we propose a new decoupled detection score
(DDS) that independently evaluates mean average precision
for spatial locations, and box attribute estimation for spatial
dimensions and poses. DDS is computed as
1
DDS = i(mAP + aloU), (1)
where mAP and aloU are mean average precision and aligned
intersection over union, respectively, as detailed next.
Mean Average Precision. The partial annotations for the
limited-visibility objects including small, occluded, and far
distant objects, make the standard IoU based mAP metric
over-sensitive to small spatial drifts on the prediction. In or-
der to decouple the object localization and the box attribution
estimation, we use mAP to independently evaluate the preci-
sion of object location prediction. Specifically, following [3],
a match in average precision is defined by threshholding the
3D spatial distance between the ground-truth and predicted
object center d in 3D coordinates. AP is calculated as the
normalized area under the precision-recall curve. The final

mAP is calculated by the average over the multiple matching
threshold T = {0.5,1,2,4} as

1
mZAPt.

teT

mAP = ()

Aligned Intersection over Union. With the precision of loca-
tion prediction measured by mAP, we now introduce aligned
intersection over union (aloU) as the metric to measure the
precision of box attribute estimation. We calculate aloU as
the IoU after aligning the 3D center point of the predicted
and the ground-truth object boxes. In this way, aloU only
considers the precision of the box shape in terms of both the
object dimensions and yaw angle. The spatial drifts are not
included in the calculation of aloU since they are already
measured by mAP.

Weighted Decoupled Detection Score. One of the unique
properties of our new dataset is the long effective range
and the exhaustive annotations across the entire range. In
practice, we consistently observe that the overall perfor-
mance on the Cirrus dataset is largely constrained by the
far-ranges objects which have low-density points and severe
occlusions. To fairly evaluate the performance cross all
ranges, we further propose a weighted decoupled detection
score (wDDS), which uses a dynamic threshold for objects at
different distances. Specifically, we introduce a new weight
factor w, which is calculated as

3)

where d is the distance to an object on a 2D plane, € is
a positive constant, and € 0 equals to DDS without
weighting. The weight factor w is applied by multiplying
it with the matching threshold T, so that objects at a
far distance will have relatively large thresholds, and the
matching thresholds for the objects at a near distance remain
close to T.

The proposed DDS and wDDS consider only single object
category without taking into account the classification accu-
racy. When jointly detecting multiple classes of objects, DDS
and wDDS for each category are calculated and reported
separately.

w=exp(e-d),

V. EXPERIMENTS

In this section, we adopt 3D object detection as a sam-
ple application, and perform a series of model adaptation
experiments. Vehicle (including large vehicle) is selected
as the target category to detect. Vehicles dominate the
objects annotated in our dataset, and their wide existence
across the entire effective range in the current version of
our dataset provides reliable assessments to the algorithm
performance. We start with standard 3D object detection
and report baseline performance obtained on state-of-the-
art 3D object detection methods including VoxelNet [37],
SECOND [35], and PointRCNN [30]. Various model adap-
tation experiments, including cross-device, cross-pattern, and



TABLE 1IV: Cross-device adaptation experiments
performed on KITTI — Cirrus. Different amounts
of annotated data in Cirrus are marked in the table.

tively.

TABLE V: Cross-pattern compatibility. G TABLE VI: Cross-pattern model performance after
and U denote Gaussian and uniform, respec-

joint training and model adaptation.

\ Methods | DDS wDDS Method Joint training Adaptations
Pretrained 0.6506 _ 0.6612 [ Pattern [ DDS wDDS | Metric DDS wDDS DDS wDDS
Model adaptation (25%) | 0.6511  0.6606 G—U[ 05492 0.5523 Gaussian | 0.6692  0.6770 | 0.6865  0.6991
Model adaptation (50%) | 0.6609  0.6824 U—G| 05514 0.5713 Uniform | 0.5914  0.6107 | 0.6057  0.6212
Model adaptation (full) | 0.6688  0.6904

cross-range, are then conducted to validate the value of the
proposed benchmark for future research in LiDAR. VoxelNet
[37] provides a principle way of efficient object detection
in point clouds, and is used as the baseline network for
performing adaptation experiments. And a Gaussian scanning
pattern is selected as the default pattern besides the cross-
pattern adaptation, where data for both patterns are used.

A. 3D Object Detection

We start with standard 3D object detection using the new
Cirrus dataset. We train VoxelNet to detect vehicles repre-
sented by bounding boxes with 3D location, 3D dimension,
and yaw angle in LiDAR. To produce gridded features for
convolutional layers, following [37], we convert the point
clouds into equally spaced 3D voxels. The detection range
is set to be [0, 250] x [—50, 50] x [—3, 1] meters along the X,
Y, Z axis, respectively. The voxel size is set to be vW = 0.2,
vH = 0.2, vD = 0.4 meters, which leads to gridded feature
maps with a size of 1250 x 500 x 10 that allow accurate box
location estimation at high resolution feature maps.

Models for point clouds with Gaussian and uniform scan-
ning patterns are trained separately. The results are presented
in Table I. To comprehensively evaluate the algorithm robust-
ness across range, we divide the 250 meter effective range
into three levels: 0-70 meters as the near range, 70-150 meter
as the mid range, and 150-250 meters as the far range. The
performance for each range is reported separately, followed
by an overall performance across the entire detection range.
We report performance measured by both DDS and wDDS
with 4 values of €, and the precision-recall curves with e = 0
and ¢ = 0.006 are plotted in Figure 7(a) and Figure 7(b).
We select € = 0.006 as the default setting of wDDS in the
following experiments.

We further provide results on more state-of-the-art meth-
ods in Table II for benchmarking future methods.

B. LiDAR Model Adaptations

Cross-range Adaptation We firstly show that, for a long
effective range, we can improve the overall algorithm robust-
ness by encouraging consistent deep features across the entire
range. We adopt the framework of range adaptation proposed
in our previous work [34] for promoting consistent feature
across range both locally and globally. We use point clouds
with Gaussian pattern, and divide the 250-meter effective
range into two areas, with 0-100 meter as the near range and
100-250m as the far range to perform cross-range adaptation
from near range to far range. The results are presented in
Table III; we report DDS and wDDS after adaptation on

near-range, mid-range, and far-range areas. The performance
improvements indicates that the invariant feature benefits
object detection across the entire effective range.
Cross-device Adaptation. We now consider a more chal-
lenging setting, where the cross-domain data is collected by
different sensor models. We adopt point clouds in KITTI,
which are collected using LiDAR sensor with shorter ef-
fective range and uniform scanning pattern, and perform
the cross-device adaptation experiments. To further validate
the practical value of model adaptation against insufficient
annotated data, we progressively remove annotated data from
Cirrus to show the model adaptation performance with insuf-
ficient annotated data. Note that different from the previous
two adaptation experiments, where the network parameters
are shared across domains completely, we train domain-
specific detection heads for each domain due to the difference
on annotation protocol (full-body annotation for KITTI and
partially annotation for Cirrus). The results are presented in
Table IV. We also present results on training the network
using reduced amount of data from Cirrus alone to show the
performance improvement with model adaptation.
Cross-pattern Adaptation. In this experiment, we perform
model adaptation across the Gaussian and the uniform scan-
ning patterns, so that one common model supports dynamic
switching between different scanning patterns. We start with
directly feeding a model trained using one scanning pattern
with point clouds from the other pattern. As shown in
Table V, accuracies drop for point clouds collected with
different scanning pattern compared to overall accuracies in
Table I, which indicates that the two scanning patterns are
inherently different and the model cannot be shared across
patterns directly. Based on the aforementioned empirical
observations, we perform model adaptation with both paired
and unpaired cross-pattern point clouds.

Cross-pattern Adaptation with Paired Data. Since we collect
our dataset using two LiDAR sensors with different scan-
ning patters simultaneously, and the coordinates are well-
calibrated, we have paired data with consistent annotations.
For cross-pattern adaptation with paired data, we directly
feed the network with paired point clouds with two patterns
and minimize the distance between two features. Feature
extractor and detection heads are shared across two patterns.
The results are presented in Table VI as joint training.
Cross-pattern Adaptation with Unpaired Data. Paired cross-
domain data is expensive to collect. In practice, unpaired
data is usually more accessible. In this experiment, we man-
ually shuffle the data collected using Gaussian and uniform
scanning patterns, and adopt the adaptation framework to




encourage invariant features for both patterns. The results are
presented in Table VI as adaptations. Training the network
with model adaptation outperforms joint training, indicating
the explicit invariant feature imposed by model adaptation
improves the generalization of deep networks to different
scanning patterns.

VI. CONCLUSION

In this paper, we introduced Cirrus, a new long-range bi-
pattern LiDAR dataset for autonomous driving. The new
dataset significantly enriches the diversity of public LIDAR
datasets by providing point clouds with 250-meter effective
range, as well as Gaussian and uniform scanning patterns.
We presented details on the dataset collection and object
annotation. 3D object detection in LiDAR is presented as
an example task using the Cirrus dataset, and various model
adaptation experiments are performed to illustrate important
properties and sample usages of this new public dataset.
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