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Abstract 
A significant challenge with reliability-based design optimization (RBDO) is the high 
computational cost associated with the double-loop structure that entails a large number of function 
calls for both the optimization process and reliability analysis. Several decoupling methods have 
been developed to improve the efficiency of RBDO. In addition, surrogate models have been used 
to replace the original time-consuming models and improve the computational efficiency. This 
paper proposes a novel quantile-based sequential RBDO method using Kriging surrogate models 
for problems with independent constraint functions. An error-controlled adaptive Kriging scheme 
is integrated to derive accuracy information of surrogate models and develop a strategy that 
facilitates independent training of the models for the performance function. The proposed 
independent training avoids unnecessary performance function evaluations while ensuring the 
accuracy of reliability estimates. Moreover, a new sampling approach is proposed that allows 
refinement of surrogate models for both deterministic and probabilistic constraints. Five numerical 
examples are carried out to demonstrate the performance of the proposed method. It is observed 
that the proposed method is able to converge to the optimum design with significantly fewer 
function evaluations than the state-of-the-art methods based on surrogate models given the 
constraint functions are independent. 
Key words: RBDO; Adaptive Kriging; Surrogate model; Reliability analysis; Sampling strategy; 
Error control 
1. Introduction 
Deterministic design optimization (DDO) provides the optimum design of structures and systems 
while satisfying some performance constraints without considering uncertainties. A typical DDO 
problem is often formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅) 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝑖𝑖(𝒅𝒅) ≤ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢 

(1) 

where 𝐽𝐽(∙) and 𝑔𝑔𝑖𝑖(∙) are the objective function and the 𝑖𝑖𝑡𝑡ℎ performance function, respectively, 𝒅𝒅 is 
the vector of design variables, 𝑚𝑚 is the number of constraints, and 𝒅𝒅𝑙𝑙 and 𝒅𝒅𝑢𝑢 are the lower and 
upper bound vector of design variables, respectively. The feasible region is defined as 𝑔𝑔𝑖𝑖(𝒅𝒅) ≤ 0, 
i.e., the failure occurs when the limit state function 𝑔𝑔𝑖𝑖(𝒅𝒅) is positive. Note that in some literature, 
the sign convention could be the opposite. 
However, there are large uncertainties in many phenomena of practical engineering, including 
many variabilities in the fabrication processes and operation conditions (Liu et al., 2018b, 2020). 
The uncertainties can cause the unreliability of the optimal design yielded by DDO. On the other 
hand, reliability-based design optimization (RBDO) accounts for the variations of the performance 
induced by the uncertainties and therefore is able to find optimal solutions that are reliable. A 
typical RBDO problem can be formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.  𝑃𝑃𝑃𝑃 (𝑔𝑔𝑖𝑖(𝒅𝒅,𝒙𝒙,𝒑𝒑) > 0) ≤ Φ(−𝛽𝛽𝑖𝑖𝑡𝑡), 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

(2) 
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where 𝒅𝒅 is the deterministic design vector, 𝒙𝒙 and 𝒑𝒑 are the random design and parameter vectors 
with the mean of 𝝁𝝁𝒙𝒙  and 𝝁𝝁𝒑𝒑 , respectively and 𝑃𝑃𝑃𝑃 (𝑔𝑔𝑖𝑖(∙) > 0)  is the probability that the 𝑖𝑖𝑡𝑡ℎ 
performance function 𝑔𝑔𝑖𝑖(∙)  is violated. Φ(−𝛽𝛽𝑖𝑖𝑡𝑡)  is the target failure probability for the 𝑖𝑖𝑡𝑡ℎ 
constraint where Φ(∙) is the standard normal cumulative density function (CDF) and 𝛽𝛽𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ 
target reliability index. 𝝁𝝁𝒙𝒙𝑙𝑙  and 𝝁𝝁𝒙𝒙𝑢𝑢  are the lower and upper bound vector of the mean of the 
random design variables, respectively. 

RBDO intrinsically involves a double loop structure that contains an outer loop of DDO and 
an inner loop of reliability analysis due to the nature of the probabilistic constraints. There are two 
main approaches for dealing with the probabilistic constraints: reliability index approach (RIA) (Tu 
et al., 1999) and performance measure approach (PMA) (Tu et al., 1999). RIA takes the 
probabilistic constraint in the format of reliability index. PMA, on the other hand, uses an inverse 
transformation of constraints in RIA. It has been found that PMA tends to be more robust and 
converge faster compared to RIA (Lee et al., 2002; Ramu et al., 2006; Tu et al., 1999; Valdebenito 
and Schuëller, 2010). Many methods are proposed to deal with the optimization problem in PMA, 
such as Advanced Mean Value (AMV) method (Wu, 1994; Wu et al., 1990), Conjugate Mean Value 
(CMV) method and Hybrid Mean Value (HMV) method (Youn et al., 2003). However, the double 
loop or nested structure in both PMA and RIA renders some RBDO problems extremely 
computationally demanding. This challenge arises as reliability analyses, which are often time 
consuming, are required in each iteration of the optimization process. Many methods have been 
developed to deal with the high computational burden of RBDO problems. Chen et al. (1997) 
converted the double loop structure into a single loop single structure by replacing the probabilistic 
constraint with an approximate deterministic constraint based on the value of the design variables. 
Wu et al. (2001) proposed the safety-factor approach that uses approximately equivalent 
deterministic constraints for RBDO problems. Du and Chen (2004) proposed the well-known 
sequential optimization and reliability assessment (SORA) where the deterministic constraints are 
shifted towards the probabilistic constraints progressively by the amount determined by the inverse 
most probable points (iMPPs). Yang and Gu (2004) found that SORA and SFA are conceptually 
identical and work identically in the standard normal space. Koch et al. (2004) proposed the 
approximate moment approach (AMA) that also transforms the probabilistic constraints to 
approximated deterministic constraint via Taylor series expansion at the mean values. Yi et al. 
(2016) proposed an efficient approximate sequential optimization reliability assessment (ASORA) 
method based on SORA. These methods all improve the efficiency of RBDO, although they usually 
entail some degree of simplification of the performance functions, and therefore introduce 
approximation errors. 

In RBDO problems, function calls, which could be required many times by both reliability 
analysis and optimization process, often entail time-consuming model evaluations especially for 
problems that involve high-fidelity finite element models. Even with the aforementioned methods 
developed to improve the efficiency of RBDO, the number of function calls can still be formidable 
when the model evaluations are highly expensive. In recent years, surrogate models are used to 
replace the time-consuming original models to improve the efficiency of reliability analysis as well 
as RBDO. Many surrogate models or meta-models can be used for this purpose, among which 
Polynomial Response Surface (Giunta et al., 2006; Romero et al., 2004; Zhao et al., 2017), 
Polynomial Chaos Expansion (PCE) (Blatman and Sudret, 2010), Support Vector Regression 
(SVR) (Bourinet, 2016; Dai et al., 2012), Radial Basis Function (RBF) (Li et al., 2020) and Kriging 
(Bichon et al., 2008; Dubourg et al., 2011; Echard et al., 2011; Li et al., 2019; Moustapha et al., 
2016; Song et al., 2019; Wang and Shafieezadeh, 2019; Zhang et al., 2020) are the most popular. 
Kriging, due to its ability to provide estimates of the expected model response and the associated 
variance, has gained significant popularity. Kriging-based reliability methods such as Efficient 
Global Reliability Analysis (EGRA) (Bichon et al., 2008) and Active learning reliability method 
combining Kriging and Monte Carlo Simulation (AK-MCS) (Echard et al., 2011) have utilized 
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these features to locate the next “best” training points and adaptively build surrogate models, 
starting the trend of using Kriging in reliability analysis (Echard et al., 2013; Fauriat and Gayton, 
2014; Huang et al., 2016; Lv et al., 2015; Wang and Shafieezadeh, 2019, 2018). In the area of 
RBDO, there are also numerous Kriging-based methods, some of which are reviewed here. 
Mourelatos (2005) leveraged optimal Latin hypercube sampling and Kriging model for a RBDO of 
crankshaft main bearings. Pretorius et al. (2004) used Kriging and HMV to solve a continuous 
casting design optimization problem. Lee and Jung (2008) proposed a sampling technique named 
constraint boundary sampling (CBS) to improve the accuracy and efficiency of Kriging-based 
RBDO. Lee at al. (2011) presented a sampling-based RBDO approach using Kriging and a 
stochastic sensitivity analysis. Dubourg et al. (2011) developed a strategy to solve RBDO problems 
with the Kriging surrogate models built in so-called augmented reliability space and subset 
simulation. Zhuang and Pan (2012) proposed an expected relative improvement (ERI) sampling 
criterion and used it to construct surrogate models for SORA. Bichon et al. (2012) investigated the 
use of the efficient global optimization (EGO) and EGRA to construct Kriging surrogate models 
for RBDO problems. Inspired by CBS, Chen et al. (2015) proposed an importance boundary 
sampling (IBS) method to enhance the efficiency of RBDO. Moustapha et al. (2016) proposed a 
quantile-based, conservative optimization procedure for structures in an uncertain environment 
using Kriging surrogate models. Liu et al. (2017) proposed an adaptive local range sampling 
method for RBDO using SVR and Kriging. Inspired by SORA, Li et al. (2019) and Li et al. (2020) 
proposed similar quantile-based sequential optimization methods using RBF and Kriging, 
respectively. In both methods, computationally cheap surrogate models are used. The reduced cost 
of function evaluations allows the estimation of quantile of the target failure probabilities, which 
can be used as the shift from the deterministic constraints to probabilistic constraints. Both methods 
showed their accuracy and efficiency through numerical examples. However, the stopping criterion 
used in both methods are not directly related to the accuracy of reliability analysis. In addition, the 
training points are shared among different constraint functions, introducing unnecessary model 
evaluations when the constraint functions are independent from each other. For instance, in the 
studies of transmission line systems, the conductors and the tower can have separate high-fidelity 
finite element models that can be analyzed independently (Darestani et al., 2020; Ma et al., 2020).   

In order to address these gaps, this paper proposes a quantile-based sequential RBDO method 
using independent training with error-controlled adaptive kriging and a novel sampling approach. 
The proposed method aims to solve RBDO problems with independent performance functions. In 
the proposed method, the maximum error rates of the surrogate models for constraint functions are 
derived to measure the accuracy of the models for reliability analysis. This error information also 
allows the surrogate models of different constraint functions to be trained independently, avoiding 
unnecessary evaluations of models while ensuring the accuracy of the surrogate models. In 
addition, a sampling strategy facilitated by the independent training is proposed to improve the 
construction of surrogate models for constraint functions. The sampling approach selects training 
points considering refining the models on both deterministic and probabilistic constraints, of which 
the latter is often not considered in existing sampling approaches. The performance of the proposed 
method is demonstrated via five numerical examples.  

This paper consists of six sections. In Section 2, a review of commonly used RBDO methods 
is given. In Section 3, the adaptive Kriging method and the error-based stopping criterion are 
presented. Next in Section 4, a new sampling approach is proposed, and its integration along with 
error-based stopping criterion into RBDO and the overall structure of the proposed method are 
elaborated. In Section 5, five numerical examples are carried out to demonstrate the efficiency and 
accuracy of the proposed method. Conclusions are drawn in Section 6. 

 
2. Typical RBDO Methods 
This section presents an overview of commonly used RBDO methods.   
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2.1 RIA 
In RIA, reliability indexes are used to represent the probabilistic constraints of RBDO. The 
formulation of RBDO in RIA is as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.  𝛽𝛽𝑖𝑖 ≥ 𝛽𝛽𝑖𝑖𝑡𝑡, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

(3) 

where 𝛽𝛽𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ  reliability index for performance function 𝑔𝑔𝑖𝑖  corresponding to [𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑] , 
which can be acquired by solving the sub-optimization problem formulated as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚.𝛽𝛽𝑖𝑖 = ||𝑼𝑼|| 
𝑠𝑠. 𝑡𝑡.  𝐺𝐺𝑖𝑖(𝒅𝒅,𝑼𝑼) = 0 (4) 

where 𝑼𝑼 is the independent standard normal random variable vectors corresponding to the original 
random variable vector 𝒙𝒙𝑡𝑡 = [𝒙𝒙,𝒑𝒑] , and 𝐺𝐺𝑖𝑖  is the probabilistic constraint, i.e., 𝐺𝐺𝑖𝑖(𝒅𝒅,𝑼𝑼) =
𝑔𝑔𝑖𝑖(𝒅𝒅, 𝒙𝒙,𝒑𝒑). The sub-optimization problem can be solved using the Hasofer-Lind and Rackwitz-
Fiessler (HL-RF) method (Hasofer and Lind, 1974; Liu and Der Kiureghian, 1991). 
 
2.2 PMA 
In contrast to RIA,  PMA uses an inverse transformation of constraints in RIA 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.  𝐺𝐺𝑖𝑖∗ ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

(5) 

where 𝐺𝐺𝑖𝑖∗ is the maximum of the performance function with respect to the points that have the target 
reliability index, which is the solution to the following sub-optimization problem:  

𝐺𝐺𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝑖𝑖(𝒅𝒅,𝑼𝑼)) 
𝑠𝑠. 𝑡𝑡.  �|𝑼𝑼|� = 𝛽𝛽𝑖𝑖𝑡𝑡 

(6) 

The sub-optimization can be solved using the AMV method (Wu, 1994; Wu et al., 1990), CMV 
method and HMV method (Youn et al., 2003). 

Both RIA and PMA are based on the computationally costly double-loop structure. Many 
methods are developed to convert the double-loop into a single loop or a serial loop. Some of these 
decoupling methods are introduced in the next sub-section. 

 
2.3  Decoupling methods 
Decoupling methods convert the double-loop structure into a serial loop structure. In this 
subsection, the commonly used decouple method, SORA, is introduced followed by the quantile-
based methods with surrogate models. 
2.3.1  SORA 
Du and Chen (2004) proposed SORA that transforms the double loop structure into sequence of 
deterministic optimizations and reliability analyses. In each iteration, a deterministic optimization 
and reliability analyses are performed. The reliability analyses provide the most probable points 
(MPPs) that can be used to calculate the shift, which are subsequently used to convert the 
deterministic constraints to probabilistic constraints. The RBDO problem using SORA can be 
formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.  𝐺𝐺𝑖𝑖(𝒅𝒅,𝝁𝝁𝒙𝒙 − 𝒔𝒔𝒙𝒙
(𝑘𝑘) ,𝝁𝝁𝒑𝒑 − 𝒔𝒔𝒑𝒑

(𝑘𝑘)) ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

(7) 
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where 𝒔𝒔𝒙𝒙
(𝒌𝒌)  and 𝒔𝒔𝒑𝒑

(𝒌𝒌)  are shift value vectors for random variable 𝒙𝒙  and 𝒑𝒑 , respectively, in 𝑘𝑘𝑡𝑡ℎ 
iteration. They can be obtained using the following equation: 

�𝒔𝒔𝒙𝒙
(𝑘𝑘), 𝒔𝒔𝒑𝒑

(𝑘𝑘)� = �𝝁𝝁𝒙𝒙
(𝑘𝑘−1),𝝁𝝁𝒑𝒑� − �𝒙𝒙𝑀𝑀𝑀𝑀𝑀𝑀

(𝑘𝑘−1),𝒑𝒑𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘−1)� (8) 

where 𝝁𝝁𝒙𝒙
(𝑘𝑘−1) is the optimal point in the (𝑘𝑘 − 1)𝑡𝑡ℎ iteration, 𝒙𝒙𝑀𝑀𝑀𝑀𝑀𝑀

(𝑘𝑘−1)  is the vector corresponding to 
𝒙𝒙  of MPPs in the original design space in (𝑘𝑘 − 1)𝑡𝑡ℎ  iteration, and 𝒑𝒑𝑀𝑀𝑀𝑀𝑀𝑀

(𝑘𝑘−1)   is the vector 
corresponding to 𝒑𝒑 of MPPs in the original design space in the (𝑘𝑘 − 1)𝑡𝑡ℎ iteration. In SORA, MPPs 
can be obtained by solving the sub-optimization problem in PMA (Eq. (6)). The shift for a simple 
2D example is depicted in Fig. 1. As shown in this figure, in every iteration, the constraints are 
shifted closer towards the actual probabilistic constraints. The flowchart of SORA is summarized 
in Fig. 2. 

 
Fig.1   Constraint shift in SORA 

 
 

 
Fig.2   Flowchart of SORA 

 

Input �𝒅𝒅(𝟎𝟎),𝝁𝝁𝒙𝒙
(𝟎𝟎) � 

Set 𝑘𝑘 = 1 

Perform reliability analysis 
Obtain MPP and calculate s 

�𝒔𝒔𝒙𝒙
(𝑘𝑘), 𝒔𝒔𝒑𝒑

(𝑘𝑘)� = �𝝁𝝁𝒙𝒙
(𝑘𝑘−1),𝝁𝝁𝒑𝒑� − �𝒙𝒙𝑀𝑀𝑀𝑀𝑀𝑀

(𝑘𝑘−1),𝒑𝒑𝑀𝑀𝑀𝑀𝑀𝑀
(𝑘𝑘−1)� 

Solve deterministic optimization problem for 𝒅𝒅(𝑘𝑘),𝝁𝝁𝒙𝒙
(𝑘𝑘) : 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.   𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.   𝐺𝐺𝑖𝑖(𝒅𝒅,𝝁𝝁𝒙𝒙 − 𝒔𝒔𝒙𝒙
(𝑘𝑘) ,𝝁𝝁𝒑𝒑 − 𝒔𝒔𝒑𝒑

(𝑘𝑘)) ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢 ,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

Converge
? 

End 

 𝑘𝑘 = 𝑘𝑘 + 1 

No 

Yes 
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SORA decouples the double loop structure to improve the efficiency, however, it is based on 
MPPs, which are imaginary points that may not truly reflect the reliability of the structure or system. 
In the next sub-section, the quantile-based methods, which are similar to SORA yet independent of 
MPPs, are introduced. 
2.3.2  Quantile-based methods with surrogate models 
Inspired by SORA, Li et al. (2019) and Li et al. (2020) proposed the quantile-based sequential 
methods with RBF and Kriging, respectively. The surrogate models, which are significantly 
cheaper to evaluate, allow leveraging Monte Carlo Simulation (MCS) for reliability analysis. 
Instead of using MPP-based shifts, they utilize the shifts calculated by MCS. Thus, the error 
introduced by the approximation in MPP is eliminated and only the error introduced by the 
surrogate models is of concern. The RBDO problem using the quantile-based method is formulated 
as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝑖𝑖�𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑� + 𝑐𝑐𝑖𝑖
(𝑘𝑘) > 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 

𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

(9) 

where 𝑐𝑐𝑖𝑖
(𝑘𝑘) is the shift for 𝑖𝑖𝑡𝑡ℎ deterministic constraint in 𝑘𝑘𝑡𝑡ℎ iteration and it can be calculated using 

the following equation: 
𝑐𝑐𝑖𝑖

(𝑘𝑘) = 𝐶𝐶𝐶𝐶𝐹𝐹−1�Φ�𝛽𝛽𝑖𝑖𝑡𝑡��𝑔𝑔𝑖𝑖� − 𝑔𝑔𝑖𝑖 �𝒅𝒅(𝑘𝑘−1),𝝁𝝁𝒙𝒙
(𝑘𝑘−1),𝝁𝝁𝒑𝒑� (10) 

where 𝒅𝒅(𝑘𝑘−1)  is the optimal deterministic design variable in the (𝑘𝑘 − 1)𝑡𝑡ℎ  iteration, 
𝐶𝐶𝐶𝐶𝐹𝐹−1(Φ(𝛽𝛽𝑖𝑖𝑡𝑡)|𝑔𝑔𝑖𝑖) is the inverse cumulative distribution function (CDF) with respect to target 
reliability Φ(𝛽𝛽𝑖𝑖𝑡𝑡) for 𝑔𝑔𝑖𝑖, which corresponds to the quantile of the target reliability. The inverse CDF 
can be determined by fitting a distribution to a population of MCS. This type of fitting problem can 
be solved using techniques in Li et al. (2018a, 2018c), in this paper, fitdist in MATLAB is used to 
fit the distribution. The MCS population requires a large number of function evaluations, which are 
possible thanks to the utilization of the surrogate models. The main idea of the quantile-based 
sequential methods is quite similar to SORA, where the constraints are shifted towards the 
probabilistic constraints gradually. However, instead of shifting the constraints through design 
variables, it shifts the constraints through offsets 𝑐𝑐𝑖𝑖

(𝑘𝑘) on constraint functions. The shift for a simple 
2D example using the methods is depicted in Fig. 3. An offset is applied to the constraint for the 
purpose of shifting. In these methods, the surrogate model is refined adaptively during the 
sequential optimization process. The approaches in Li et al. (2019) and Li et al. (2020) can be both 
summarized in the flowchart in Fig. 4. Note that the surrogate model in dashed box is exclusive in 
Li et al. (2020), as only Kriging can provide uncertainty information that helps the identification of 
the next “best” training points. Both methods use the aforementioned process and adaptively enrich 
the surrogate models sequentially during the process of RBDO.  
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Fig. 3   Constraint shift in quantile-based sequential optimization 

 

 
Fig.4   Flowchart of quantile-based sequential optimization 

 

Construct surrogate 
models before 

 

Perform reliability analysis using MCS 
Calculate 𝑐𝑐𝑖𝑖

(𝑘𝑘) 
𝑐𝑐𝑖𝑖

(𝑘𝑘) = 𝐶𝐶𝐶𝐶𝐹𝐹−1(𝛷𝛷(𝛽𝛽𝑖𝑖𝑡𝑡)|𝑔𝑔𝑖𝑖) − 𝑔𝑔𝑖𝑖�𝒅𝒅(𝑘𝑘−1),𝝁𝝁𝒙𝒙
(𝑘𝑘−1),𝝁𝝁𝒑𝒑� 

Solve deterministic optimization problem for 𝒅𝒅(𝑘𝑘),𝝁𝝁𝒙𝒙
(𝑘𝑘) : 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  𝒅𝒅,𝝁𝝁𝒙𝒙 
𝑚𝑚𝑚𝑚𝑚𝑚.   𝐽𝐽(𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑) 

𝑠𝑠. 𝑡𝑡.   𝑔𝑔𝑖𝑖�𝒅𝒅,𝝁𝝁𝒙𝒙,𝝁𝝁𝒑𝒑�+ 𝑐𝑐𝑖𝑖
(𝑘𝑘) > 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 

𝒅𝒅𝑙𝑙 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝑢𝑢 ,𝝁𝝁𝒙𝒙𝑙𝑙 ≤ 𝝁𝝁𝒙𝒙 ≤ 𝝁𝝁𝒙𝒙𝑢𝑢 

Converge? 

End 

 𝑘𝑘 = 𝑘𝑘 + 1 

Input �𝒅𝒅(𝟎𝟎),𝝁𝝁𝒙𝒙
(𝟎𝟎) � 

Set 𝑘𝑘 = 1 

Refine surrogate models using 
uncertainty information 

Refine surrogate models using 
the current optimal point 

No 

Yes 
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Li et al. (2019) initialized the RBF surrogate models with (2𝑛𝑛𝑑𝑑 + 1) points obtained via 
Latin Hypercube sampling (LHS), where 𝑛𝑛𝑑𝑑 is the dimension of the design variables, and then 
added results of the deterministic optimization as the training points until some convergence 
requirement is met. Then the method enters the process of Eq. (9) using the constructed surrogate 
model and the current optimal point is added as the training point in each iteration until the shift 
converges. The use of the current optimal point as the training point may lead to local optima or 
inaccurate surrogate models which cannot represent the true reliability of the structure or system. 
In addition, RBF cannot provide the uncertainty information as Kriging to instruct the construction 
of the surrogate model. Li et al. (2020), on the other hand, used the Kriging surrogate model and 
took advantage of the uncertainty information. They used LHS to get 5𝑛𝑛𝑑𝑑 or 10𝑛𝑛𝑑𝑑 initial training 
points and then entered the process of Eq. (9) directly. In the optimization process, they refined the 
Kriging surrogate model by adding both the current optimal points and a point informed by the 
uncertainty information. In Li et al. (2020), all performance functions share the same training 
points, which may result in unnecessary or ineffective training for some performance functions in 
problems with independent performance functions. In addition, the accuracy of surrogate 
constraints in terms of the reliability is not known. Hence, we propose a new quantile-based method 
with adaptive Kriging to tackle these problems. In the next section, an overview of Kriging and an 
error-based stopping criterion are presented. 

 
3. Adaptive Kriging Method  
As mentioned in Section 1, Kriging surrogate models are commonly used in reliability analysis and 
RBDO. In this section, a review of Kriging surrogate models is given first as follows. 
 
3.1 Kriging surrogate model 
Let 𝑔𝑔�𝑿𝑿𝑔𝑔� denote the original model with variables 𝑿𝑿𝑔𝑔, which contains all the variables including 
both deterministic and random variables in the problem. The stochastic estimator of 𝑔𝑔�𝑿𝑿𝑔𝑔� based 
on Kriging shown by 𝑔𝑔��𝑿𝑿𝑔𝑔� can be formulated as follows: 

𝑔𝑔��𝑿𝑿𝑔𝑔� = 𝐹𝐹�𝜷𝜷, 𝒙𝒙𝑔𝑔� +  ℊ𝓅𝓅�𝒙𝒙𝑔𝑔� = 𝜷𝜷𝑇𝑇𝒇𝒇�𝒙𝒙𝑔𝑔� + ℊ𝓅𝓅�𝒙𝒙𝑔𝑔� (11) 
where 𝒙𝒙𝑔𝑔 is the vector of random variables, 𝐹𝐹�𝜷𝜷,𝒙𝒙𝑔𝑔� are regression elements, and ℊ𝓅𝓅�𝒙𝒙𝑔𝑔� is a 
Gaussian process. 𝐹𝐹�𝜷𝜷,𝒙𝒙𝑔𝑔� is the product of 𝒇𝒇�𝒙𝒙𝑔𝑔�, which is the Kriging basis, and 𝜷𝜷, which is 
the corresponding set of coefficients. The Gaussian process ℊ𝓅𝓅�𝒙𝒙𝑔𝑔�  has a zero mean and a 
covariance matrix. The covariance matrix can be formulated as: 

𝐶𝐶𝐶𝐶𝐶𝐶 �ℊ𝓅𝓅 �𝒙𝒙𝑔𝑔
(𝑖𝑖)� ,ℊ𝓅𝓅 �𝒙𝒙𝑔𝑔

(𝑗𝑗)�� = 𝜎𝜎2𝑅𝑅 �𝒙𝒙𝑔𝑔
(𝑖𝑖),𝒙𝒙𝑔𝑔

(𝑗𝑗);𝜽𝜽� (12) 

where 𝜎𝜎2  is the process variance or the generalized mean square error (MSE) from the 
regression,  𝒙𝒙𝑔𝑔

(𝑖𝑖)  and 𝒙𝒙𝑔𝑔
(𝑗𝑗)  are any two observations, and 𝑅𝑅 �𝒙𝒙𝑔𝑔

(𝑖𝑖),𝒙𝒙𝑔𝑔
(𝑗𝑗);𝜽𝜽�  is the kernel function 

parametrized by 𝜽𝜽, it represents the correlation between observations 𝒙𝒙𝑔𝑔
(𝑖𝑖)and 𝒙𝒙𝑔𝑔

(𝑗𝑗). The Gaussian 
kernel function is used in this study, which can be formulated as: 

𝑅𝑅 �𝒙𝒙𝑔𝑔
(𝑖𝑖),𝒙𝒙𝑔𝑔

(𝑗𝑗);𝜽𝜽� = �𝑒𝑒𝑒𝑒𝑒𝑒�−𝜃𝜃𝑘𝑘 �𝑥𝑥𝑔𝑔𝑘𝑘
(𝑖𝑖) − 𝑥𝑥𝑔𝑔𝑘𝑘

(𝑗𝑗)�
2
�

𝑁𝑁

𝑘𝑘=1

 (13) 

where 𝑥𝑥𝑔𝑔𝑘𝑘
(𝑖𝑖)  is the 𝑘𝑘𝑡𝑡ℎ  dimension of 𝒙𝒙𝑔𝑔

(𝑖𝑖)  and 𝜽𝜽  can be estimated via the Maximum Likelihood 
Estimation (MLE) method via the DACE toolbox (Lophaven et al., 2002a, 2002b). The formulation 
based on MLE is as follows: 

𝜽𝜽∗ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜽𝜽

��𝑹𝑹�𝒙𝒙𝑔𝑔
(𝑖𝑖),𝒙𝒙𝑔𝑔

(𝑗𝑗);𝜽𝜽��
1
𝑚𝑚  𝜎𝜎2� (14) 
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where 𝑚𝑚 is the number of training points. The regression coefficients 𝜷𝜷, and the predicted mean 
and variance can be then determined as follows (“UQLab Kriging (Gaussian process modelling) 
manual,” 2017): 

 𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀  
𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔� = 𝒇𝒇𝑇𝑇�𝒙𝒙𝑔𝑔�𝜷𝜷 + 𝒓𝒓𝑇𝑇�𝒙𝒙𝑔𝑔�𝑹𝑹−1(𝒚𝒚 − 𝑭𝑭𝑭𝑭) (15) 

     𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔� = 𝜎𝜎2 − 𝜎𝜎2𝒓𝒓𝑇𝑇�𝒙𝒙𝑔𝑔�𝑹𝑹−1𝒓𝒓�𝒙𝒙𝑔𝑔� + 𝜎𝜎2𝑢𝑢𝑇𝑇�𝒙𝒙𝑔𝑔�(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑢𝑢�𝒙𝒙𝑔𝑔�    
where 𝑭𝑭  is the matrix of the basis function 𝒇𝒇�𝒙𝒙𝑔𝑔� , i.e., 𝐹𝐹𝑖𝑖𝑖𝑖 =  𝐵𝐵𝑗𝑗 �𝒙𝒙𝑔𝑔

(𝑖𝑖)� , 𝑖𝑖 = 1, 2, … ,𝑚𝑚 ; 𝑗𝑗 =

1,2, … ,𝑝𝑝, 𝒓𝒓�𝒙𝒙𝑔𝑔� is the correlation between known  a training points 𝒙𝒙𝑔𝑔
(𝑖𝑖) and another point 𝒙𝒙𝑔𝑔: 𝑟𝑟𝑖𝑖 =

𝑅𝑅 �𝒙𝒙𝑔𝑔,𝒙𝒙𝑔𝑔
(𝑖𝑖),𝜽𝜽� , 𝑖𝑖 = 1,2 …𝑚𝑚 , 𝑹𝑹  is the autocorrelation matrix for known training points: 𝑅𝑅𝑖𝑖𝑖𝑖 =

 𝑅𝑅 �𝒙𝒙𝑔𝑔
(𝑖𝑖),𝒙𝒙𝑔𝑔

(𝑗𝑗),𝜽𝜽�, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑚𝑚, and 𝑢𝑢�𝒙𝒙𝑔𝑔� = 𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓�𝒙𝒙𝑔𝑔� − 𝒇𝒇�𝒙𝒙𝑔𝑔�. Thus, 𝑔𝑔��𝒙𝒙𝑔𝑔� 
can be presented as follows: 

𝑔𝑔��𝒙𝒙𝑔𝑔� ~ 𝑁𝑁 �𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔�,𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔�� (16) 
where 𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔� is estimated Kriging mean and 𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔� is the corresponding variance, which is the 
uncertainty information. In adaptive Kriging methods for reliability analysis and RBDO, training 
points are adaptively added to refine the surrogate model until some criterion is met. The 
uncertainty information offered by the Kriging model can be used for the identification of next best 
training points in the population of MCS and to develop appropriate criteria to stop training. Many 
learning functions have been proposed to offer the instruction on training point selection and 
stopping criterion, such as 𝑈𝑈  learning function (Echard et al., 2011) and expected feasibility 
function (EFF) (Bichon et al., 2012). Wang and Shafieezadeh (2018) proposed an efficient error 
rate-based stopping criterion (ESC) for adaptive reliability analysis. This stopping criterion will be 
used in this study. An overview of this approach is presented in the next sub-section.  
 
3.2  Error-based stopping criterion for reliability analysis 
The stopping criterion for ending the surrogate construction is quite important in adaptive Kriging 
methods. A loose stopping criterion may result in an inaccurate result, while. an overly conservative 
one may lead to a large number of unnecessary trainings. To address this challenge, an efficient 
stopping criterion for reliability analysis named ESC was proposed in Wang and Shafieezadeh 
(2018). In ESC, the maximum error rate 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 for the estimated probability of failure is derived and 
taken as a criterion to evaluate the accuracy of the Kriging surrogate model in representing a 
performance function. This maximum error rate can be estimated using the following equation: 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑎𝑎 ��
𝑁𝑁�𝑓𝑓

𝑁𝑁�𝑓𝑓 − 𝑆̂𝑆𝑓𝑓𝑢𝑢
− 1� , �

𝑁𝑁�𝑓𝑓
𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢 

− 1�� (17) 

where 𝑁𝑁�𝑓𝑓 is the estimated number of failure points by the surrogate model, 𝑆̂𝑆𝑓𝑓𝑢𝑢and 𝑆̂𝑆𝑠𝑠𝑢𝑢 are the upper 
bounds of 𝑆̂𝑆𝑓𝑓 and 𝑆̂𝑆𝑠𝑠, respectively, 𝑆̂𝑆𝑓𝑓 is the total number of wrong sign estimations in the estimated 
failure domain 𝛺𝛺�𝑓𝑓 by the surrogate model, and 𝑆̂𝑆𝑠𝑠 is the one in estimated safe domain 𝛺𝛺�𝑠𝑠 by the 
surrogate model. It has been shown in Wang and Shafieezadeh (2018) that both 𝑆̂𝑆𝑠𝑠 and 𝑆̂𝑆𝑓𝑓 follow a 
Poisson binomial distribution with mean and variance shown below: 

𝑆̂𝑆𝑠𝑠~𝑃𝑃𝑃𝑃��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 
𝑁𝑁�𝑠𝑠

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 )
𝑁𝑁�𝑠𝑠 

𝑖𝑖=1

� (18) 

𝑥𝑥𝑖𝑖 ∈  𝛺𝛺�𝑠𝑠  
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𝑆̂𝑆𝑓𝑓~𝑃𝑃𝑃𝑃��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 

𝑁𝑁�𝑓𝑓

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 )

𝑁𝑁�𝑓𝑓 

𝑖𝑖=1

� (19) 

𝑥𝑥𝑖𝑖 ∈ 𝛺𝛺�𝑓𝑓  
where 𝑃𝑃𝑃𝑃 represents the Poison Binomial distribution and 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 is the probability of wrong sign 

estimation for 𝑥𝑥𝑖𝑖, which can be computed as 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛷𝛷 �− �𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔��
𝜎𝜎𝑔𝑔��𝒙𝒙𝑔𝑔�

�, where 𝛷𝛷(∙) is the standard 

normal cumulative density function. Thus, the upper and lower bounds of 𝑆̂𝑆𝑠𝑠  and 𝑆̂𝑆𝑓𝑓  with a 
confidence level 𝛼𝛼 can be found as: 

𝑆̂𝑆𝑠𝑠 ∈ �𝜣𝜣𝑆̂𝑆𝑠𝑠
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑠𝑠

−1 �1 −
𝛼𝛼
2
�� (20) 

  

𝑆̂𝑆𝑓𝑓 ∈ �𝜣𝜣𝑆̂𝑆𝑓𝑓
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 �1 −
𝛼𝛼
2
�� (21) 

where 𝜣𝜣𝑆̂𝑆𝑠𝑠
−1 and 𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 are the inverse CDF of the Poisson binomial distribution. For the detail of the 
derivation, the reader is referred to Wang and Shafieezadeh (2018). 

 The estimate of the maximum error offers information on the accuracy of the constructed 
Kriging in terms of representing the reliability of the structure or system. For the adaptive process, 
a stopping criterion is set as 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 , where 𝜖𝜖𝑡𝑡ℎ𝑟𝑟  is a prescribed threshold. The adaptive 
training process of the Kriging model can be terminated when 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 is smaller than the prescribed 
threshold 𝜖𝜖𝑡𝑡ℎ𝑟𝑟.  

In existing RBDO methods that use adaptive surrogate models, the training points for 
different performance functions are often shared in the iterative process of the optimization, and 
the enrichment is performed for each surrogate model for the performance function in each 
iteration. This limitation is due to the fact that other than the convergence stopping criterion for the 
optimization process (e.g. the convergence check later described in Step 6 of Section 4.3), there is 
no stopping criterion for the surrogate models of individual performance functions. However due 
to different complexities of performance functions, the number of training points required for the 
surrogate model construction can be different. Therefore, some enrichment actions for some 
surrogate models, especially in the late period of the optimization process, can be unnecessary.  

The ESC approach, albeit developed for reliability analysis, can be leveraged to avoid the 
unnecessary trainings of the surrogate model construction for RBDO, as reliability analysis is an 
essential part in RBDO. With the help of ESC, one can be notified of the accuracy of the current 
performance function surrogate models in terms of analyzing the reliability, and then can determine 
if additional surrogate model enrichment is still desired. Given such accuracy information, the 
training process of each surrogate model for the performance functions is allowed to be performed 
independently from each other. And in this fashion, unnecessary training for sufficiently accurate 
surrogate models can be avoided. In this study, a new quantile-based sequential RBDO method that 
takes advantage of the independent training is proposed in the next section. 

 
4. The proposed quantile-based sequential method with error-controlled 
independent training and independent constraint boundary sampling 
The main idea of the proposed method is similar to the one depicted in Fig. 4. Kriging surrogate 
models are used to replace the objective function and performance functions; however, ESC is 
integrated in a way that it allows independent training of the Kriging surrogate model for each 
performance function. The independent training allows all the training points of a surrogate model 
to be fully in favor of the construction for each individual performance function, hence providing 
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higher efficiency compared to traditional methods, which share training points among different 
performance function surrogate models. In addition, the independent training also facilitates a new 
sampling method based on CBS. While CBS considers only deterministic constraints and shares 
point among performance function surrogate models, the proposed sampling approach selects 
points considering the improvement of both deterministic and probabilistic constraints 
simultaneously for each surrogate model independently. The sampling of training points is first 
introduced in the next two sub-sections.  
 
4.1 The training point sampling before optimization 
Based on authors’ experience, the initial training points can have a huge impact on the result. 
Insufficient number of initial training points may lead to a wrong final result; and too many training 
points unnecessarily add to the computational cost. To avoid both situations, an approach similar 
to the enrichment in Moustapha et al. (2016) is taken. Echard et al. (2011) proposed the 𝑈𝑈 learning 
function, which is formulated as follows: 

𝑈𝑈 =
�𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔��
𝜎𝜎𝑔𝑔��𝒙𝒙𝑔𝑔�

 (22) 

When the value of the learning function is small for a point, it means either the limit state function 
value of the point is close to the limit state (i.e., the numerator is small), or we are uncertain about 
the limit state function value of the point (i.e., the denominator is large). The point with the smallest 
learning function value is of interest. This learning function is used as the sampling criterion and 
stopping criterion for reliability analysis as follows. The process adaptively adds the point with the 
smallest 𝑈𝑈 from a MCS population until 𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑔𝑔
(𝑈𝑈) > 2. For the first step of Kriging construction 

before the sequential process, only semi-accurate models are required. Thus, this criterion can be 
relaxed as follows: 

𝜌𝜌 =
𝑛𝑛𝑈𝑈>2
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

> 𝜌𝜌𝑡𝑡ℎ (23) 

where 𝑛𝑛𝑈𝑈>2  is the number of points with a 𝑈𝑈 learning function larger than 2, 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  is the total 
population of MCS, thus, 𝜌𝜌 is the percentage of points with a 𝑈𝑈 learning function larger than 2 in 
the total population, and 𝜌𝜌𝑡𝑡ℎ is a prescribed threshold. In this study, it is found that 99% is a suitable 
value for 𝜌𝜌𝑡𝑡ℎ. 

In the proposed method, for each performance function, LHS is first used to generate (2𝑛𝑛𝑑𝑑 +
1)  points for the construction of the initial surrogate model. Then a sufficiently large MCS 
population is generated, and training points are adaptively added until 𝜌𝜌 > 𝜌𝜌𝑡𝑡ℎ. Different from Li 
et al. (2019) and Li et al. (2020), the training of surrogate model for each performance function is 
independent of each other and doesn’t share the training points. This allows the enrichment of the 
surrogate model to be specialized for each individual performance function and all training points 
for a surrogate model to help the construction exclusively, resulting in higher effectiveness. The 
aforementioned enrichment is only for the performance functions. For the objective function, 
(2𝑛𝑛𝑑𝑑 + 1) points via LHS are used for the initial construction of the surrogate model. Once the 
initial construction of the surrogate models for both objective and performance functions is 
complete, the method enters the sequential process described in Eq. (9) and (10) and a new adaptive 
enrichment approach is taken in the next step. This approach is introduced in the next sub-section.  

 
4.2 A new sampling approach 
During the process of sequential optimization, the adaptive enrichment of performance is 
continued. In each iteration of Eq. (9) and (10), new training points are added to refine the surrogate 
model. For the objective function, only the optimum in the feasible region is of interest, thus, the 
enrichment is focused on the current optimal point. In each iteration, the current optimal point is 
taken as the next training point for the surrogate model that represents the objective function. 
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For performance functions, according to Eq. (10), the offset is determined by 
𝑔𝑔𝑖𝑖 �𝒅𝒅(𝑘𝑘−1),𝝁𝝁𝒙𝒙

(𝑘𝑘−1),𝝁𝝁𝒑𝒑�  and 𝐶𝐶𝐶𝐶𝐹𝐹−1(Φ(𝛽𝛽𝑖𝑖𝑡𝑡) |𝑔𝑔𝑖𝑖) . The former is the value of the performance 
function with respect to the previous optimal point. Naturally, same as the surrogate model 
construction for the objective function, the current optimal point should also be added as a training 
point. The latter is governed by the reliability of the structure or system with regard to the 
performance function, so the boundary between the safe domain Ωs  and failure domain Ωf  is 
important. Inspired by CBS (Lee and Jung, 2008), a new sampling approach is proposed here to 
facilitate the surrogate model construction.  
The original CBS is defined as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝜙𝜙(
𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔)
𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�

)
𝑚𝑚

𝑖𝑖=1

                 𝑖𝑖𝑖𝑖 𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) ≥ 0 ∀𝑖𝑖 

0                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (24) 

where 𝜙𝜙  is the standard normal probability density function (PDF). Similar to the 𝑈𝑈  learning 
function, the CBS aims to locate the point that is close to the limit state and has large variance in 
the feasible domain. The value of CBS increases when the point approaches the vicinity of the 
boundary or has a large variance since PDF has the largest value when 

𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔)
𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�

= 0; hence the name 

constraint boundary sampling. In addition, the points in the infeasible domain are not of interest, 
so CBS becomes zero for infeasible points. However, in its original form, all constraints, i.e., 
performance functions, are considered simultaneously. And the training points are shared among 
performance functions. One problem is that the shared training points cannot be equally beneficial 
to all performance functions. In this study, thanks to the independent training, we propose a new 
sampling approach named independent constraint boundary sampling (ICBS) that is more effective 
for individual performance functions by virtue of independent training. The new ICBS is defined 
as follows:  

𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆1𝑖𝑖 = �  𝜙𝜙�
𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔)
𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�

�                  𝑖𝑖𝑖𝑖 𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) ≥ 0 ∀𝑖𝑖 

0                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (25) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆1𝑖𝑖  is the sampling criterion for the 𝑖𝑖𝑡𝑡ℎ performance function. For the surrogate model of 
𝑖𝑖𝑡𝑡ℎ performance function, the next “best” training point should be the point with the largest 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆1𝑖𝑖  
value. As can be easily observed, this ICBS is just the original CBS that is focused on an individual 
performance function. When sampling the next best training point for a performance function, only 
the point that is close to boundary of this specific performance function and is also in the feasible 
region of this specific performance function is selected. This sampling approach can avoid the 
undesirable influence of other performance functions.  
However, this 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆1𝑖𝑖  only considers deterministic constraints described in Eq. (1). As shown in 
Fig. 3, the optimal point is actually on active probabilistic constraint. The core of this quantile-
based method is to transfer the RBDO problem into a serial of shifted deterministic optimization 
problems, of which the shifted deterministic constraints are equivalent to the probabilistic 
constraint. As a result, the accuracy of probabilistic constraints, i.e., shifted deterministic 
constraints, should also be guaranteed. In each iteration of adaptive Kriging method, not only is the 
“best” next training points for each deterministic constraint found, but also one for each 
probabilistic constraint is identified. The “best” point regarding the probabilistic constraints, 
similar to the deterministic constraints, is determined through the following equation: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆2𝑖𝑖 = � 𝜙𝜙�
𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) + 𝑐𝑐𝑖𝑖

(𝑘𝑘)

𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�
�               𝑖𝑖𝑖𝑖 𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) ≥ 0 ∀𝑖𝑖 

0                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (26) 
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Compared to 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆1𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆2𝑖𝑖  aims to locate the point that is close to the probabilistic constraint 
boundary and has larger variance; the value of it increases when the point approaches the boundary 
of the probabilistic constraints or has a large variance, since PDF has the largest value when 
𝐺𝐺𝚤𝚤��𝒙𝒙𝑔𝑔�+𝑐𝑐𝑖𝑖

(𝑘𝑘)

𝜎𝜎𝑔𝑔��𝒙𝒙𝑔𝑔�
= 0. Similarly, the point with the largest value of 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆2𝑖𝑖  is the next best training point. 

In our proposed method, for the surrogate model construction of an individual performance 
function, only one point is selected additional to the optimal point. Above all, considering both 
deterministic and probabilistic constraints, ICBS can be defined as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖 =

⎩
⎨

⎧
 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜙𝜙�

𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔)
𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�

� ,𝜙𝜙�
𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) + 𝑐𝑐𝑖𝑖

(𝑘𝑘)

𝜎𝜎𝑔𝑔𝚤𝚤��𝒙𝒙𝑔𝑔�
��                𝑖𝑖𝑖𝑖 𝜇𝜇𝑔𝑔𝚤𝚤�(𝒙𝒙𝑔𝑔) ≥ 0 ∀𝑖𝑖 

                 0                                                               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (27) 

The point with the largest 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖 should be the next training point. This 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖 automatically 
chooses the “best” feasible point that benefits either the deterministic constraint or the probabilistic 
constraint the most based on the CBS values for both constraints. Note that in the original CBS, a 
sampling criterion considering the nearest distance from the existing training points to the sample 
point was also proposed. However, this sampling criterion requires the distance calculation for 
every training point candidate, hence the potential for high computational cost. To address this 
challenge,  the skip scheme in Li et al. (2020) is adopted here: if the minimum distance from the 
next “best” point to the existing training points in the standard normal space is smaller than 0.2𝛽𝛽𝑖𝑖𝑡𝑡, 
the next “best” point is skipped. This scheme also helps the Kriging surrogate model avoid ill 
conditioning. In the next sub-section, the procedure of the proposed method is elaborated. 

 
4.3 Procedure of the proposed method 
With the help of ESC and independent training and ICBS, the main steps of the proposed method 
are summarized as follows: 
• Step 1: Input the initial design point and initialize the offsets 𝑐𝑐𝑖𝑖

(0) . Input the initial design point: 
[𝒅𝒅(0);𝝁𝝁𝒙𝒙

(0) ]. Meanwhile, initialize the offset for all performance functions: 𝑐𝑐𝑖𝑖
(0) = 0, 𝑖𝑖 =

1,2, … ,𝑚𝑚. 
• Step 2: Construct the surrogate models before sequential optimization. Use uniform 

distribution to generate (2𝑛𝑛𝑑𝑑 + 1) LHS points for the objective function and each performance 
function. Then, for each performance function, generate an MCS population of the random 
variables with a size of 1×104 and from it adaptively add training points with the smallest U 
learning function value until the relaxed criterion described in Eq. (23) is met. The training 
point set for the objective function is denoted as 𝑆𝑆0; and the training point set for the 𝑖𝑖𝑡𝑡ℎ 
performance function is denoted as 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚. 

• Step 3: Initialize the sequential optimization process. Set the iteration number 𝑘𝑘 = 1, and set 
the training indicator 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1, 𝑖𝑖 = 1,2, . . ,𝑚𝑚 for all surrogate models of performance functions.  

• Step 4: Sequential Optimization. Solve the deterministic optimization for the problem 
described in Eq. (9) and (10) using the offset 𝑐𝑐𝑖𝑖

(𝑘𝑘−1), 𝑖𝑖 = 1,2, … ,𝑚𝑚 and the current surrogate 
models for objective function and performance function. The current optimal result is 
[𝒅𝒅(𝑘𝑘);𝝁𝝁𝒙𝒙

(𝑘𝑘)].  
• Step 5: New offset calculation. Use [𝒅𝒅(𝑘𝑘);𝝁𝝁𝒙𝒙

(𝑘𝑘)] as the mean and generate an MCS population 
𝑆𝑆𝑐𝑐 that is sufficient for the reliability analysis. For examples of this paper, the number is  1×106. 
Fit a distribution to the MCS population using fitdist in MATLAB and calculate the quantile 
corresponding to the target reliability probability: 𝐶𝐶𝐶𝐶𝐹𝐹−1�Φ�𝛽𝛽𝑖𝑖𝑡𝑡��𝑔𝑔𝑖𝑖�. Then use Eq. (10) to 
calculate the new offset 𝑐𝑐𝑖𝑖

(𝑘𝑘). 



  
          14 

• Step 6: Convergence check. Check if any of the convergence criteria is met:  � 𝑐𝑐𝑖𝑖
(𝑘𝑘) −

 𝑐𝑐𝑖𝑖
(𝑘𝑘−1)� ≤ 1.0 × 10−3  or �[𝒅𝒅(𝑘𝑘);𝝁𝝁𝒙𝒙

(𝑘𝑘)] − [𝒅𝒅(𝑘𝑘−1);𝝁𝝁𝒙𝒙
(𝑘𝑘−1)]� ≤ 1.0 × 10−3 . If so, jump to 

Step 11. If not, go to Step 7. 
• Step 7: Add the optimal point as the training point for the objective function. For the objective 

function surrogate model, if the minimum distance from the current optimal point to the points 
in 𝑆𝑆0 in the standard normal space is larger than 0.2 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽𝑖𝑖𝑡𝑡), 𝑖𝑖 = 1,2, … ,𝑚𝑚, add the optimal 
point as the training point; otherwise, skip the optimal point. 

• Step 8: Training indicator update. If the distance between [𝒅𝒅(𝑘𝑘);𝝁𝝁𝒙𝒙
(𝑘𝑘)] and [𝒅𝒅(𝑘𝑘−1);𝝁𝝁𝒙𝒙

(𝑘𝑘−1)] in 
the standard normal space is larger than 0.2 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽𝑖𝑖𝑡𝑡), 𝑖𝑖 = 1,2, … ,𝑚𝑚 , set 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1, 𝑖𝑖 =
1,2, … ,𝑚𝑚. 

• Step 9: Ignore the inactive constraints’ training. As the optimization proceeds, the training of 
surrogate models for the inactive constraints is not necessary. However, in the first few 
iterations, the determination of activity of constraints may not be accurate. Therefore, after a 
few iterations (5 is used in the paper, however, a large number can be used to ensure the 
accuracy in practice), we can ignore the inactive constraints. When 𝑘𝑘 > 5, set 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 0 for the 
inactive constraints in the result of Step 4. 

• Step 10: Add training points for performance functions. For the 𝑖𝑖𝑡𝑡ℎ  performance function 
surrogate model with 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1, if the minimum distance from the current optimal point to the 
points in 𝑆𝑆𝑖𝑖  in the standard normal space is larger than 0.2𝛽𝛽𝑖𝑖𝑡𝑡, add the optimal point to 𝑆𝑆𝑖𝑖; 
otherwise, skip the optimal point. In addition, for the 𝑖𝑖𝑡𝑡ℎ performance function surrogate model 
with 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1, select the “best” point based on ICBS using Eq. (27), if the minimum distance 
from the “best” point to the points in 𝑆𝑆𝑖𝑖 in the standard normal space is larger than 0.2𝛽𝛽𝑖𝑖𝑡𝑡, add 
the “best” point to 𝑆𝑆𝑖𝑖; otherwise, skip the optimal point. 

• Step 11: Error-based stopping criterion check. For the 𝑖𝑖𝑡𝑡ℎ  performance function surrogate 
model with 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1, use Eq. (21) to calculate the maximum error of the surrogate model in 
terms of failure probability, if the maximum error is smaller than the prescribed threshold 𝜖𝜖𝑡𝑡ℎ𝑟𝑟, 
set 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 0; otherwise, set 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖 = 1.  

• Step 12: Update the surrogate models. Use the updated 𝑆𝑆0 and 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚, to construct 
the new surrogate models for the objective function and performance functions, respectively. 
𝑘𝑘 = 𝑘𝑘 + 1. Then, jump back to Step 4. 

• Step 13: End. The result is final and end the process.  
The flowchart of the proposed method is presented in Fig. 5-6. Fig.6 is a supplement to Fig 

5. In the proposed method, the error-based stopping criterion allows the understanding of the 
accuracy of an individual performance function with regards to the reliability. When the surrogate 
model of a performance function is sufficiently accurate, i.e., 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟, adding new training 
points is not necessary. By avoiding unnecessary function evaluations, the computational cost is 
reduced. Note that when the current optimal point moves to a certain degree from the previous point 
(it is defined in Step 8 as the distance between [𝒅𝒅(𝑘𝑘);𝝁𝝁𝒙𝒙

(𝑘𝑘)] and [𝒅𝒅(𝑘𝑘−1);𝝁𝝁𝒙𝒙
(𝑘𝑘−1)] in the standard 

normal space being larger than 0.2 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽𝑖𝑖𝑡𝑡), 𝑖𝑖 = 1,2, … ,𝑚𝑚 ), the previous maximum errors may 
not be representative anymore, thus, new training points are still required and the maximum error 
needs to be reevaluated in the iteration. In addition, in Step 9, the inactive constraints, which are 
not our main focus, are ignored for adding training points to further avoid unnecessary function 
evaluations. Ignoring the inactive constraints can be crucial as for inactive constraints the actual 
failure probabilities are often extremely small, resulting in difficulties in the refinement of the 
surrogate model. Without ignoring the inactive constraints, significantly more training points 
needed to satisfy the ESC requirement. The points that are too close to the existing training points 
are also skipped as in Step 7 and 10. The proposed ICBS helps to refine the surrogate models 
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considering both deterministic and probabilistic constraints. The performance of the proposed 
method is demonstrated through five numerical examples in the next section. 

 

 
Fig. 5   Flowchart of the proposed method: Part A 



  
          16 

 
Fig. 6   Flowchart of the proposed method: Part B. Surrogate model refinement for each 𝑔𝑔𝑖𝑖 

 
5. Numerical Examples 
In this section, the performance of the proposed method along with several state-of-the-art methods 
are compared for four representative mathematical and engineering examples and one application 
example on the optimization of overhead transmission line. The prescribed threshold 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 is set to 
5% and 𝜌𝜌 is set to 99%. The function call comparisons for all examples are based on the assumption 
that the constraint functions are independent from each other. All numerical examples are tested 
using the DACE toolbox  (Lophaven et al., 2002a, 2002b) in MATLAB 2019a. 
 
5.1 Classic 2D problem 
The first numerical example is a classical 2D RBDO problem that has been widely used in the 
literature (Cho and Lee, 2011; Li et al., 2019; Yang and Gu, 2004; Yi et al., 2016). It has two 
random design variables and three nonlinear constraints. The two random design variables are 
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statistically independent and follow normal distributions. The center point [5, 5]T is selected as the 
initial design point. The problem is formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝝁𝝁𝒙𝒙 = [𝜇𝜇𝑥𝑥1,𝜇𝜇𝑥𝑥2]𝑇𝑇 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝜇𝜇𝑥𝑥1 + 𝜇𝜇𝑥𝑥2 

𝑠𝑠. 𝑡𝑡.�
𝑃𝑃 𝑟𝑟(𝑔𝑔𝑖𝑖(𝒙𝒙) > 0) ≤ Φ�−𝛽𝛽𝑖𝑖𝑡𝑡�,    𝛽𝛽𝑖𝑖𝑡𝑡 = 3,    𝑖𝑖 = 1,2,3
0 ≤ 𝜇𝜇𝑥𝑥1 ≤ 10,   0 ≤ 𝜇𝜇𝑥𝑥2 ≤ 10                                 
𝑥𝑥𝑗𝑗~𝑁𝑁�𝜇𝜇𝑥𝑥𝑥𝑥, 0.32�,   𝑗𝑗 = 1,2                                         

  
(28) 

where 

𝑔𝑔1(𝒙𝒙) = 1 −
𝑥𝑥12𝑥𝑥2

20
,                                                           

𝑔𝑔2(𝒙𝒙) = 1 −
(𝑥𝑥1 + 𝑥𝑥2 − 5) 2 

30
−

(𝑥𝑥1 − 𝑥𝑥2 − 12) 2 
120

, 

𝑔𝑔3(𝒙𝒙) = 1 −
80

𝑥𝑥12 + 8𝑥𝑥2 + 5
                                              

(29) 

Fig. 7 shows the constraint comparison for the surrogate models and the true performance 
functions along with the training points before and in the optimization process. As shown in the 
figures, the training points are characterized for each performance function independently. In this 
manner, the surrogate models can be built more efficiently. It can also be observed that the surrogate 
models are quite accurate in the region of active constraints, while 𝑔𝑔�3(𝒙𝒙) is not quite accurate. 
However, 𝑔𝑔�3(𝒙𝒙) is not an active constraint, so it is not of much interest. The trends of maximum 
error estimated using ESC for the two active constraints are shown in Fig. 8. The maximum errors 
for 𝑔𝑔�1(𝒙𝒙) and 𝑔𝑔�2(𝒙𝒙) reach the threshold at fourth and eighth generation, respectively, indicating 
both surrogate models are sufficiently accurate to represent the reliability of the system. For the 
objective function, the training point number are 9, and for the three performance functions, the 
numbers are 13, 10 and 14, respectively. The final results of the proposed method are shown in 
Table 1. Compared with other RBDO methods (SLSV and SORA (Yang and Gu, 2004); ASORA 
(Yi et al., 2016); SSRBO (Li et al., 2019)), it can be observed that the proposed method substantially 
reduces the number of function evaluations. In this example, the strategy of ignoring inactive 
constraints does have a significant impact, as during the process the distance that the estimated 
optimal point moves exceeds the criterion of 0.2 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽𝑖𝑖𝑡𝑡) defined in Step 8, resulting in the 
reactivation of the refinement of the inactive constraint surrogate model. However, with the help 
of ICBS, the efficiency of the refinement of surrogate models are improved compared to all the 
other methods, as for each active constraint surrogate model the number of training points has been 
significantly reduced. Due to the stochasticity in the construction of the Kriging model, which 
results from randomness in the initial training points, the computation using the proposed method 
is repeated ten times to test the robustness. The number of function evaluations fluctuates between 
43 and 59, which are all far smaller than the existing methods. 
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(a) Training points for 𝑔𝑔�1 (b) Training points for 𝑔𝑔�2 

 

          

      

(c) Training points for 𝑔𝑔�3  
Fig. 7   Constraint comparison and training points for Example 1 

 

 
Fig. 8   Maximum error trends for the two active constraints 

 
Table 1  Final result and comparison with other methods for Example 1 
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Method Optimum 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐 + 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄) 

SLSV 6.731 (3.434, 3.297) 2.97 3.09 539(55+484 
SORA 6.743 (3.458, 3.285) 2.97 3.05 510(55+455) 
ASORA 6.743 (3.458, 3.285) 2.97 3.05 68(20+48) 
SSRBO 6.743 (3.458, 3.285) 3.009 3.012 112(28+28×3) 
Proposed  6.751 (3.467, 3.282) 3.054 3.017 46(9+37) 

 
5.2 Highly nonlinear 2D problem with multiple MPPs 
The second problem is the modified Haupt example in Li et al. (2020). It has two random design 
variables and two constraints. One constraint concerns a highly nonlinear function and has multiple 
MPPs, and the other constraint is a linear function. The two random design variables are statistically 
independent and follow normal distributions. The initial design point is [2:83 3.52]T, which is the 
same as  Li et al. (2020). The problem is formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝝁𝝁𝒙𝒙 = [𝜇𝜇𝑥𝑥1,𝜇𝜇𝑥𝑥2]𝑇𝑇                       
𝑚𝑚𝑚𝑚𝑚𝑚.  (𝜇𝜇𝑥𝑥1 − 2.9)2 + (𝜇𝜇𝑥𝑥2 − 3.7)2 

𝑠𝑠. 𝑡𝑡.�
𝑃𝑃 𝑟𝑟(𝑔𝑔𝑖𝑖(𝒙𝒙) > 0) ≤ Φ�−𝛽𝛽𝑖𝑖𝑡𝑡�,    𝛽𝛽𝑖𝑖𝑡𝑡 = 2,    𝑖𝑖 = 1,2
0 ≤ 𝜇𝜇𝑥𝑥1 ≤ 3.7,   0 ≤ 𝜇𝜇𝑥𝑥2 ≤ 4                                
𝑥𝑥𝑗𝑗~𝑁𝑁�𝜇𝜇𝑥𝑥𝑥𝑥, 0.22�,   𝑗𝑗 = 1,2                                      

  
(30) 

where 
𝑔𝑔1(𝒙𝒙) = 𝑥𝑥1 sin(4𝑥𝑥1) + 1.1 sin(2𝑥𝑥2), 
𝑔𝑔2(𝒙𝒙) = 3 − 𝑥𝑥1 − 𝑥𝑥2                              (31) 

Fig. 9 shows the constraint comparison for the surrogate models and the true performance 
functions along with the training points before and in the optimization process. The linear constraint 
𝑔𝑔�2(𝒙𝒙) is simple and inactive, so it is not of interest. The training points are shown for 𝑔𝑔�1(𝒙𝒙). It can 
be observed that near the active constraint, the surrogate model 𝑔𝑔�1(𝒙𝒙) is quite accurate. Before the 
optimization process, training points are focused on the deterministic constraint; however, in the 
optimization process, most training points are selected near the probabilistic constraint. For the 
objective function, the training point number are 10, and for the two performance functions, the 
numbers are 20 and 9, respectively. With only 39 function evaluations, the proposed method is able 
to converge to the final result. Although the reliability is 1.988, which is slightly smaller than the 
target reliability of 2, the error of the failure probability compared with the actual one is 2.6%, 
which is smaller than the maximum error estimated by the ESC: 4.3% and within the error threshold 
5%, indicating the effectiveness of ESC in the proposed method. The final results of the proposed 
method are compared with other RBDO methods (PMA and Li et al. (2020)). It can be observed 
that the function evaluations are significantly fewer than other methods. In this example, the 
strategy of ignoring inactive constraints takes effects and ends the refinement of 𝑔𝑔�2(𝒙𝒙) early, thus, 
avoiding unnecessary training. For the active constraint surrogate model, 𝑔𝑔�1(𝒙𝒙), the number of 
training points has been reduced from 29 to 20, as the ICBS helps to locate the most suitable training 
points without being affected by the information from 𝑔𝑔�2(𝒙𝒙). For this numerical example, the 
computation is also repeated ten times to test the robustness. It is observed that the number of 
function evaluations fluctuates between 37 and 54, which are all far smaller than the existing 
methods. 
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Fig. 9   Constraint comparison and training points for Example 2 

 
Table 2  Final result and comparison with other methods for Example 2 
Method Optimum 𝜷𝜷𝟏𝟏 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐 + 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄) 
PMA(HMV) 0.4772 (2.772, 3.021) 1.593 1286 
Li et al. (2020) 0.6828 (2.790, 2.879)  1.999 78 (26+26×2) 
Proposed  0.6716 (2.783, 2.889) 1.988 39 (10+29) 

 
5.3 Welded beam problem 
The welded beam problem (Lee and Lee, 2005; Ramakrishnan and Rao, 1996; Song et al., 2019; 
Yi et al., 2016) aims to minimize the welding cost when subject to constraints on geometry, 
maximum possible stress, and tip deflection. The welded beam structure is shown in Fig. 10. The 
four random design variables are depth and length of welding and height and thickness of the beam, 
and they are statistically independent and follow normal distributions. The initial design point is 
taken as [6.207, 157.8, 210.6, 6.207]T, which is the solution to the deterministic optimization. The 
problem can be formulated as follows: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝝁𝝁𝒙𝒙 = [𝜇𝜇𝑥𝑥1, 𝜇𝜇𝑥𝑥2,𝜇𝜇𝑥𝑥3,𝜇𝜇𝑥𝑥4]𝑇𝑇              
𝑚𝑚𝑚𝑚𝑚𝑚.  𝑐𝑐1𝜇𝜇𝑥𝑥12 𝜇𝜇𝑥𝑥2 + 𝑐𝑐2𝜇𝜇𝑥𝑥3𝜇𝜇𝑥𝑥4(𝑧𝑧2 + 𝜇𝜇𝑥𝑥2) 

𝑠𝑠. 𝑡𝑡.�
𝑃𝑃 𝑟𝑟(𝑔𝑔𝑖𝑖(𝒙𝒙) > 0) ≤ Φ�−𝛽𝛽𝑖𝑖𝑡𝑡�,    𝛽𝛽𝑖𝑖𝑡𝑡 = 3,    𝑖𝑖 = 1,2, . . ,5                                                                       
3.175 ≤ 𝜇𝜇𝑥𝑥1 ≤ 10,   150 ≤ 𝜇𝜇𝑥𝑥2 ≤ 254,   200 ≤ 𝜇𝜇𝑥𝑥3 ≤ 220,   3.175 ≤ 𝜇𝜇𝑥𝑥4 ≤ 10                   
𝑥𝑥1~𝑁𝑁(𝜇𝜇𝑥𝑥1, 0.16932),   𝑥𝑥2~𝑁𝑁(𝜇𝜇𝑥𝑥2, 0.16932),   𝑥𝑥3~𝑁𝑁(𝜇𝜇𝑥𝑥3, 0.01072),   𝑥𝑥4~𝑁𝑁(𝜇𝜇𝑥𝑥4, 0.0

  
(32) 

where 

𝑔𝑔1(𝒙𝒙) =
𝜏𝜏(𝒙𝒙)
𝑧𝑧6

− 1,   𝑔𝑔2(𝒙𝒙) =
𝜎𝜎(𝒙𝒙)
𝑧𝑧7

− 1,                                    

𝑔𝑔3(𝒙𝒙) =
𝑥𝑥1
𝑥𝑥4
− 1,   𝑔𝑔4(𝒙𝒙) =

𝛿𝛿(𝒙𝒙)
𝑧𝑧5

− 1,   𝑔𝑔5(𝒙𝒙) = 1 −
𝑃𝑃𝑐𝑐(𝒙𝒙)
𝑧𝑧1

,  

𝜏𝜏(𝒙𝒙) = �𝑡𝑡(𝒙𝒙)2 + 2𝑡𝑡(𝒙𝒙)𝑡𝑡𝑡𝑡(𝒙𝒙)
𝑥𝑥2

2𝑅𝑅(𝒙𝒙) + 𝑡𝑡𝑡𝑡(𝒙𝒙)2�
1/2

,                   

𝑡𝑡(𝒙𝒙) =
𝑧𝑧1

√2𝑥𝑥1𝑥𝑥2
,   𝑡𝑡𝑡𝑡(𝒙𝒙) = 𝑀𝑀(𝒙𝒙)

𝑅𝑅(𝒙𝒙)
𝐾𝐾(𝒙𝒙),                                       

(33) 



  
          21 

𝑀𝑀(𝒙𝒙) = 𝑧𝑧1 �𝑧𝑧2 +
𝑥𝑥2
2
� ,   𝑅𝑅(𝒙𝒙) =

�𝑥𝑥22 + (𝑥𝑥1 + 𝑥𝑥3)2

2
,                  

𝐾𝐾(𝒙𝒙) = √2𝑥𝑥1𝑥𝑥2 �
𝑥𝑥22

12
+

(𝑥𝑥1 + 𝑥𝑥3)2

2 � ,   𝜎𝜎(𝒙𝒙) =
6𝑧𝑧1𝑧𝑧2
𝑥𝑥32𝑥𝑥4

,              

𝛿𝛿(𝒙𝒙) =
4𝑧𝑧1𝑧𝑧23

𝑧𝑧3𝑥𝑥32𝑥𝑥4
,𝑃𝑃𝑐𝑐(𝒙𝒙) =

4.013𝑥𝑥3𝑥𝑥43�𝑧𝑧3𝑧𝑧4
6𝑧𝑧22

�1 −
𝑥𝑥3

4𝑧𝑧2
�
𝑧𝑧3
𝑧𝑧4

 �, 

where parameters can be found in Table 3. 
 
Table 3 Welded beam parameters 

𝒛𝒛𝟏𝟏 2.6688×104(N) 𝒛𝒛𝟔𝟔 𝟗𝟗.𝟑𝟑𝟑𝟑𝟑𝟑 ×10 (MPa) 
𝒛𝒛𝟐𝟐 3.556×102 (mm) 𝒛𝒛𝟕𝟕 2.0685×102 (MPa) 
𝒛𝒛𝟑𝟑 2.0685×105 (MPa) 𝒄𝒄𝟏𝟏 6.74135×10-5 ($/mm3) 
𝒛𝒛𝟒𝟒 8.274×104 (MPa) 𝒄𝒄𝟐𝟐 2.93585×10-6 ($/mm3) 
𝒛𝒛𝟓𝟓 6.35 (mm)   

 

 
Fig. 10   Welded beam structure 

 
For the objective function and three performance functions, the training point number are 15, 

24, 22, 18, 20 and 21, respectively. The final results of the proposed method are shown in Table 4. 
The results are also compared with other RBDO methods (SORA and ASORA (Yi et al., 2016); 
SORA-ICDE (Ho-Huu et al., 2016); Song et al. (2019)). The reliability of the active constraints is 
calculated using MCS, and the number of function evaluations are the sum of objective and 
constraint function evaluation. The function evaluations needed by the proposed method are 
significantly fewer than other existing RBDO methods. In this example, the effect of ICBS is 
demonstrated by the fact that the active constraint surrogate model that uses the most training 
points, 𝑔𝑔�1(𝒙𝒙), only uses 23 training points for the refinement, while the other Kriging-based 
method uses 46 training points for each constraint surrogate model. The computation is repeated 
ten times to test the robustness, the number of function evaluations fluctuates between 101 and 129, 
which are all far smaller than the existing methods.  

 
Table 4  Final result and comparison with other methods for Example 3 

Method Optimum 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 𝜷𝜷𝟑𝟑 𝜷𝜷𝟓𝟓 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐
+ 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄) 

SORA 2.592 (5.731, 200.93,  210.64, 6.242) 3.01 3.58 3.01 2.98 198(125+73) 
ASORA 2.592 (5.731, 200.93,  210.64, 6.242) 3.01 3.58 3.01 2.98 167(77+90) 
SORA-ICDE 2.593 (5.730, 201.00,  210.63, 6.240) 3.01 3.29 3 3.12 2119 
Song et al. (2019) 2.591 (5.729, 200.90,  210.60, 6.239) 3.01 3.29 3 3.12 275(45+46×5) 

Structure
weldment

Beam
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Proposed  2.592 (5.729, 201.030,  210.597, 6.239) 3.004 3.010 3.008 3.017 117 (15+102) 
 
5.4 Speed reducer problem 
The fourth example is the well-known speed reducer problem that is used in the literature (Lee and 
Lee, 2005; Li et al., 2020, 2019; Rao, 2019; Song et al., 2019). The objective is to minimize the 
weight of a speed reducer, and the eleven constraints are set on bending and contact stress, 
longitudinal displacement, stress of the shaft, and geometry. The schematic speed reducer 
configuration is shown in Fig. 11. The seven random design variables are gear width, teeth module, 
number of teeth in the pinion, distance between bearings, and axis diameter. These variables are 
statistically independent and follow normal distributions. The initial design point is taken as [3.5, 
0.7, 17, 7.3, 7.72, 3.35, 5.29]T, which is the same as Li et al. (2020). The problem can be formulated 
as follows:  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝝁𝝁𝒙𝒙 = [𝜇𝜇𝑥𝑥1,𝜇𝜇𝑥𝑥2,𝜇𝜇𝑥𝑥3,𝜇𝜇𝑥𝑥4,𝜇𝜇𝑥𝑥5,𝜇𝜇𝑥𝑥6,𝜇𝜇𝑥𝑥7]𝑇𝑇                                                              
𝑚𝑚𝑚𝑚𝑚𝑚.  0.7854𝑥𝑥1𝑥𝑥22(3.3333𝑥𝑥33 + 14.9334𝑥𝑥3 − 43.0934)− 1.508𝑥𝑥1(𝑥𝑥62 + 𝑥𝑥72) 

+7.477(𝑥𝑥63 + 𝑥𝑥73) + 0.7854(𝑥𝑥4𝑥𝑥62 + 𝑥𝑥5𝑥𝑥72) 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧𝑃𝑃 𝑟𝑟(𝑔𝑔𝑖𝑖(𝒙𝒙) > 0) ≤ Φ�−𝛽𝛽𝑖𝑖𝑡𝑡�,    𝛽𝛽𝑖𝑖𝑡𝑡 = 3,    𝑖𝑖 = 1,2, . . ,11 

2.6 ≤ 𝜇𝜇𝑥𝑥1 ≤ 3.6,   0.7 ≤ 𝜇𝜇𝑥𝑥2 ≤ 0.8,   17 ≤ 𝜇𝜇𝑥𝑥3 ≤ 28,
7.3 ≤ 𝜇𝜇𝑥𝑥4 ≤ 8.3,   7.3 ≤ 𝜇𝜇𝑥𝑥5 ≤ 8.3, 2.9 ≤ 𝜇𝜇𝑥𝑥6 ≤ 3.9,
5.0 ≤ 𝜇𝜇𝑥𝑥7 ≤ 5.5                                                                    
𝑥𝑥𝑖𝑖~𝑁𝑁(𝜇𝜇𝑥𝑥𝑥𝑥, 0.0052)                                                              

  

(34) 

where 

𝑔𝑔1(𝒙𝒙) =
27

𝑥𝑥1𝑥𝑥22𝑥𝑥3
− 1,   𝑔𝑔2(𝒙𝒙) =

397.5
𝑥𝑥1𝑥𝑥22𝑥𝑥32

− 1,   𝑔𝑔3(𝒙𝒙) =
1.93𝑥𝑥43

𝑥𝑥2𝑥𝑥3𝑥𝑥64
− 1,              

𝑔𝑔4(𝒙𝒙) =
1.93𝑥𝑥53

𝑥𝑥2𝑥𝑥3𝑥𝑥74
− 1,   𝑔𝑔5(𝒙𝒙) =

�(745𝑥𝑥4/(𝑥𝑥2𝑥𝑥3) )2 + 16.9 × 106

0.1𝑥𝑥63
− 1100, 

𝑔𝑔6(𝒙𝒙) =
�(745𝑥𝑥5/(𝑥𝑥2𝑥𝑥3) )2 + 157.5 × 106

0.1𝑥𝑥63
− 850,   𝑔𝑔7(𝒙𝒙) = 𝑥𝑥2𝑥𝑥3 − 40,    

𝑔𝑔8(𝒙𝒙) = 5 −
𝑥𝑥1
𝑥𝑥2

,   𝑔𝑔9(𝒙𝒙) =
𝑥𝑥1
𝑥𝑥2
− 12,   𝑔𝑔10(𝒙𝒙) =

1.5𝑥𝑥6 + 1.9
𝑥𝑥4

− 1,                     

𝑔𝑔11(𝒙𝒙) =
1.1𝑥𝑥7 + 1.9

𝑥𝑥5
− 1                                                                                            

(35) 

 
Fig. 11   Speed reducer structure 

 
For the objective function and three performance functions, the training point number are 15, 

24, 22, 18, 20 and 21, respectively. The comparison of the results yielded by the proposed method 
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and other state-of-the-art methods (SORA and ASORA (Yi et al., 2016); SSRBO (Li et al., 2019) 
; Li et al. (2020); Song et al. (2019)) are presented in Table 5. The reliability of the active constraints 
is calculated using MCS, and the number of function evaluations are the sum of objective and 
constraint function evaluations. The proposed method is able to converge to optimal result with 
only 269 function evaluations in total, while other methods need more than 400 function 
evaluations. In this example, the effect of ICBS is demonstrated by the fact that the active constraint 
surrogate model that uses the most training points, 𝑔𝑔�5(𝒙𝒙), only uses 29 training points for the 
refinement, while all the other Kriging-based methods use around 40 training points for each 
constraint surrogate model. For the speed reducer problem, the computation is also repeated ten 
times to test the robustness of the proposed approach. It is observed that the number of function 
evaluations fluctuates between 259 and 292, which are all far smaller than the existing methods. 

 
Table 5  Final result and comparison with other methods for Example 4 

Method Optimum 𝜷𝜷𝟓𝟓 𝜷𝜷𝟔𝟔 𝜷𝜷𝟖𝟖 𝜷𝜷𝟏𝟏𝟏𝟏 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐
+ 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄) 

SORA 3040.02 (3.580, 0.7, 17, 7.3, 7.764, 3.366, 5.301) 3.15 3.08 3.07 4.21 521(21+500) 
ASORA 3038.61 (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.301) 3.18 3.08 3.07 4.21 418(22+396) 
SSRBO 3038.66 (3.577, 0.7, 17, 7.3, 7.754, 3.366, 5.301) 3.13 2.95 3.01 3.09 468(39+39×11) 
Li et al (2020) 3038.61 (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 2.998 2.989 3.00 3.00 492(41+41×11) 
Song et al. (2019) 3038.61 (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3.00 3.01 3.01 3.00 422(37+35×11) 
Proposed  3038.98 (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3.004 3.020 3.016 3.009 269 (21+248) 

 
5.5 Overhead transmission line problem 
The last example is on the optimization of an overhead transmission line, which demonstrates a 
practical application of the proposed method to a problem with independent limit state functions. 
The objective of this example is to optimize the costs of the transmission tower and conductors 
under the constraints that both the tower and conductors satisfy their performance requirements 
considering uncertainties. Note that the analyses of the conductors and the towers are performed 
independently as they can be dynamically decoupled due to the large differences in their dynamic 
characteristics (e.g., dominant modal frequencies) and the computational cost of analyzing 
conductors and tower simultaneously in one computational environment is very high. As a result, 
past studies have decoupled towers and conductors and investigated their performance using 
independent models (Darestani et al., 2020; Ma et al., 2020). As a result, an independent surrogate 
model can be constructed for each model. In studies focused on the analysis of the transmission 
line systems, the conductors and the tower can both have high-fidelity finite element models. The 
models of the conductors and the transmission tower are simplified herein, and some assumptions 
are made. As the example is for the purpose of demonstration, further studies with realistic finite 
element models and wind models can be pursued in future research.  



  
          24 

 
Fig. 12   Tower and conductors 

 
The tower considered here is a 25-member space truss as shown in Fig. 12. Similar structures 

are investigated in many other studies (Ho-Huu et al., 2016; Saka, 1990; Toğan and Daloğlu, 2008). 
The structure herein is scaled up to a size of an actual transmission tower (100 ft) as shown in the 
figure. Members of the tower are categorized into 6 groups, which are denoted as [𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴6] T 
(unit: in2), and each of them is regarded as a random design variable that follows a lognormal 
distribution. The grouping details are shown in Table 6. Four conductors are attached to the top two 
nodes of the truss as shown in Fig. 12. All conductors are considered as 1410 ft long on a 1400 ft 
span as shown in Fig. The conductors and the tower are both subject to wind loads that are in the x 
direction as shown in the figure, and the weight on the conductors are also considered. The diameter 
of the conductor 𝐶𝐶𝐶𝐶  is considered as a random design variable that follows a lognormal 
distribution. The random parameters considered herein are the modulus of elasticity of the tower 𝐸𝐸 
and the 3-second gust wind velocity at 10 m above the ground line 𝑉𝑉 (unit: mph), which follow a 
lognormal distribution and a Gumbel distribution, respectively. All the random design variables are 
stored in the vector [𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴6,𝐶𝐶𝐶𝐶] T, and all the random parameters are stored in the vector 
[𝐸𝐸,𝑉𝑉] T. The limit state for the tower is a displacement of 20 inch on either Node 1 or 2; and the 
limit state for the conductor is the tensile strength of 32,000 psi.  

 
Table 6  Grouping details for Example 5 

Group Member No. 
𝑨𝑨𝟏𝟏 1,10,11 
𝑨𝑨𝟐𝟐 2,3,4,5 
𝑨𝑨𝟑𝟑 6,7,8,9,22,23,24,25 
𝑨𝑨𝟒𝟒 12,13 
𝑨𝑨𝟓𝟓 14,15,16,17 
𝑨𝑨𝟔𝟔 18,19,20,21 
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Wind loads depend on multiple factors. According to ASCE 7-10 (2016) the wind load per 
unit length for a non-building structure can be determined using the following formula: 

𝑓𝑓𝑤𝑤 = 𝑞𝑞𝑧𝑧𝐺𝐺𝐶𝐶𝑓𝑓𝐷𝐷 (36) 
where 𝑞𝑞𝑧𝑧 is the velocity pressure at height 𝑧𝑧 on the tower, 𝐺𝐺 is the gust-effect factor (taken as 0.85), 
𝐶𝐶𝑓𝑓 is the force coefficient, and 𝐷𝐷 is the diameter perpendicular to the wind direction (unit: ft). The 
force coefficient 𝐶𝐶𝑓𝑓 considered herein is 2. Alternatively, the wind load on a non-structure building 
can be determined using the following formula: 

𝐹𝐹𝑤𝑤 = 𝑞𝑞𝑧𝑧𝐺𝐺𝐶𝐶𝑓𝑓𝐴𝐴𝑓𝑓 (37) 
where 𝐴𝐴𝑓𝑓  is projected area perpendicular to the wind direction. The wind velocity pressure is 
calculated as follows: 

𝑞𝑞𝑧𝑧 = 0.613𝐾𝐾𝑧𝑧𝐾𝐾𝑑𝑑𝐾𝐾𝑧𝑧𝑧𝑧𝐾𝐾𝑒𝑒𝑉𝑉2 (38) 
where 𝐾𝐾𝑧𝑧 is the velocity pressure exposure coefficient, 𝐾𝐾𝑑𝑑 is the wind directionality factor (taken 
as 1), 𝐾𝐾𝑧𝑧𝑧𝑧 is the wind topographic factor (taken as 1), 𝐾𝐾𝑒𝑒is the elevation factor (taken as 1). The 
velocity pressure exposure coefficient 𝐾𝐾𝑧𝑧 can be calculated using the following formula: 

𝐾𝐾𝑧𝑧 = 2.01(
max (15, 𝑧𝑧)

𝑧𝑧𝑔𝑔
)2 𝛼𝛼�  (39) 

where 𝑧𝑧 is the height from the ground line, and 𝛼𝛼 and 𝑧𝑧𝑔𝑔 are 9.5 and 900 ft, respectively. The 
conductor is considered to be at the height of 100 ft, thus, using Eq. (36), (38) and (39) the wind 
load per unit length for the conductor is as follows: 

𝑓𝑓𝑤𝑤 = 0.00523𝐷𝐷𝑉𝑉2 (𝑙𝑙𝑙𝑙/𝑓𝑓𝑓𝑓) (40) 
Each conductor is considered as a catenary, as shown in Fig. 13 (a). Taking half of Conductor 

1 as the object, it is subject to the resultant force of distributed wind force and weight. The resultant 
force is considered to be a uniformly distributed force. The maximum tension 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 happens at the 
end of the conductor, and it can be decomposed into 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤  and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚_ℎ  as shown in the figure. 
The force from the conductor to the tower 𝐹𝐹 is equal to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 in value but in the opposite direction. 
The force 𝐹𝐹 can also be decomposed into two forces: 𝐹𝐹ℎ that is equal to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚_ℎ  in value but in the 
opposite direction and  𝐹𝐹𝑤𝑤 that is equal to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 in value but in the opposite direction. 𝐹𝐹ℎ is trivial 
here as it will be canceled out by the same force coming from the conductor on the other side on 
the same node. 𝐹𝐹𝑤𝑤 is the only force that needs to be considered from this conductor to the tower. 
As shown in Fig. 13 (b), 𝐹𝐹𝑤𝑤 can be decomposed into a force that is in the wind direction 𝐅𝐅𝐜𝐜𝐜𝐜𝐜𝐜_𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 
and a force that is in the vertical direction 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡. 𝐅𝐅𝐜𝐜𝐨𝐨𝐨𝐨_𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  are equal to the 
wind force and weight of the half of the conductor in Fig. 13 (a), respectively. Thus, there is no 
need to perform analysis of the conductor to know the force from the conductor to the tower, 
rendering the limit state functions for the conductors and the tower independent of each other.  

  
(a) Conductor force diagram (b) Force to tower 

Fig. 13   Force between conductor and tower 
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As the tower is considered as a truss structure, the wind load on the tower is considered to be 
distributed to Node 1~6. The tower is divided into an upper part (consisting of all members 
connecting any two of Node 1~6) and a lower part (consisting of all members connecting any two 
of Node 3~10). For the upper part, the total wind load 𝐹𝐹𝑢𝑢𝑢𝑢 is calculated using Eq. (37), (38) and 
(39), and the load is considered to be a wind force applied to the middle of the upper part (𝑧𝑧 =
75𝑓𝑓𝑓𝑓). The total projected area perpendicular to the wind direction is 200 ft2 (it is assumed in this 
study the area remains unchanged when the sizes of members change). Plugging all the numbers, 
the total wind load on the upper part can be calculated as follows: 

𝐹𝐹𝑢𝑢𝑢𝑢 = 0.985𝑉𝑉2 (𝑙𝑙𝑙𝑙) (41) 
Half of 𝐹𝐹𝑢𝑢𝑢𝑢 is evenly distributed to Node 1 and 2, and the other half is evenly distributed to Node 
3~6. Similarly, considering  𝑧𝑧 = 25𝑓𝑓𝑓𝑓 and 𝐴𝐴𝑓𝑓 = 300𝑓𝑓𝑡𝑡2, the total wind load on the lower part can 
be calculated as follows: 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 = 1.172𝑉𝑉2 (𝑙𝑙𝑙𝑙) (42) 
Half of 𝐹𝐹𝑙𝑙𝑜𝑜𝑜𝑜 is evenly distributed to Node 3~6. The tower is also subject to the loads from the 
conductors. The loading condition of the tower is summarized in Table 7. The displacement of the 
tower is calculated using structural matrix analysis. 
 
Table 7  Load condition of the tower 

Node x direction (lb) z direction (lb) 

1 𝑭𝑭𝒖𝒖𝒖𝒖 𝟒𝟒⁄ + 𝟐𝟐𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄_𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 −𝟐𝟐𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄_𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
2 𝑭𝑭𝒖𝒖𝒖𝒖 𝟒𝟒⁄ + 𝟐𝟐𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄_𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 −𝟐𝟐𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄_𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
3 𝑭𝑭𝒖𝒖𝒖𝒖 𝟖𝟖⁄ + 𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍 𝟖𝟖⁄  0 
4 𝑭𝑭𝒖𝒖𝒖𝒖 𝟖𝟖⁄ + 𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍 𝟖𝟖⁄  0 
5 𝑭𝑭𝒖𝒖𝒖𝒖 𝟖𝟖⁄ + 𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍 𝟖𝟖⁄  0 
6 𝑭𝑭𝒖𝒖𝒖𝒖 𝟖𝟖⁄ + 𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍 𝟖𝟖⁄  0 

 
The objective function to minimize is the total cost of the tower and the conductors. For each 

conductor, only half of the conductor is considered to be in the system. The costs considered herein 
are 10 $/in3 for both conductors and the tower. The initial design point [𝐴𝐴10,𝐴𝐴20, … ,𝐴𝐴60,𝐶𝐶𝐷𝐷0] T is 
set as [0.4, 0.4, 3.4, 1.3, 0.9, 1, 0.125]T. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝝁𝝁𝒙𝒙 = �𝜇𝜇𝐴𝐴1 , 𝜇𝜇𝐴𝐴2, 𝜇𝜇𝐴𝐴3 , 𝜇𝜇𝐴𝐴4 , 𝜇𝜇𝐴𝐴5 ,𝜇𝜇𝐴𝐴6 , 𝜇𝜇𝐶𝐶𝐶𝐶�
𝑇𝑇                                                              

        𝑚𝑚𝑚𝑚𝑚𝑚.  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑃𝑃 𝑟𝑟(𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴6,𝐶𝐶𝐶𝐶,𝑉𝑉,𝐸𝐸) < 0) ≤ Φ(−𝛽𝛽1𝑡𝑡),    𝛽𝛽1𝑡𝑡 = 2,    

𝑃𝑃 𝑟𝑟(𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐶𝐶,𝑉𝑉) < 0) ≤ Φ(−𝛽𝛽2𝑡𝑡),    𝛽𝛽2𝑡𝑡 = 2,
0.2 ≤ 𝜇𝜇𝐴𝐴1 ≤ 3.6,   0.7 ≤ 𝜇𝜇𝐴𝐴2 ≤ 0.8,   17 ≤ 𝜇𝜇𝐴𝐴3 ≤ 28,
7.3 ≤ 𝜇𝜇𝐴𝐴4 ≤ 8.3,   7.3 ≤ 𝜇𝜇𝐴𝐴5 ≤ 8.3, 2.9 ≤ 𝜇𝜇𝐴𝐴6 ≤ 3.9,
 2.9 ≤ 𝜇𝜇𝐶𝐶𝐶𝐶 ≤ 3.9                                                                     

               𝐴𝐴1~𝐿𝐿𝐿𝐿�𝜇𝜇𝐴𝐴1 , 0.042�,𝐴𝐴2~𝐿𝐿𝐿𝐿�𝜇𝜇𝐴𝐴2 , 0.042�,𝐴𝐴3~𝐿𝐿𝑁𝑁�𝜇𝜇𝐴𝐴3 , 0.342� 
             𝐴𝐴4~𝐿𝐿𝐿𝐿�𝜇𝜇𝐴𝐴4 , 0.132�,𝐴𝐴5~𝐿𝐿𝐿𝐿�𝜇𝜇𝐴𝐴5 , 0.092�,𝐴𝐴6~𝐿𝐿𝐿𝐿�𝜇𝜇𝐴𝐴6 , 0.12�   

                 𝐶𝐶𝐶𝐶~𝐿𝐿𝐿𝐿(𝜇𝜇𝐶𝐶𝐶𝐶 , 0.01252)                                                                           
𝐸𝐸~𝐿𝐿𝐿𝐿(107, 106),𝑉𝑉~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(150, 152)                         

  
(34) 
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Fig. 14   Maximum error trends for the two active constraints 

 
Table 8  Final result for Example 5 

Method Optimum 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐
+ 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄) 

Proposed  2763789 (0.2, 0.72, 3, 0.5, 0.4, 0.5, 2.3722) 2.03 2.00 108 (30+78) 
 

Both the proposed method and the approach by Li et al. (2020) are implemented to solve the 
problem. The proposed method is able to reach an optimum solution with 108 total function calls 
including 30 for the objective function and 78 for the constraints, respectively. The solution by the 
proposed method is shown in Table 8. The maximum error trends for the two constraint are shown 
in Fig. 14. It can be observed that although the maximum error for 𝑔𝑔�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is below the threshold 
before the entire process ends, the relocation of the estimated optimal point re-activates the 
refinement of 𝑔𝑔�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. At the end of the process, maximum errors for both constraint surrogate 
models are below the threshold. The method by Li et al. (2020) is not able to converge with even 
600 total function calls and there is no sign of the solution approaching to a feasible solution or 
convergence. In this case where the two constraints are entirely independent of each other, sharing 
the training points among different constraint surrogate models used in the common Kriging-based 
methods can hinder the refinement of the surrogate models. In this approach, the selection of the 
training point in each iteration can only favor the refinement of one of the surrogate models. For 
other surrogate models the information from this training point can not only be uninformative, but 
also may have negative effects. As the process goes on, additional uninformative training points 
can result in ill-conditioned surrogate models, hence the difficulties in convergence. For problems 
that have independent constraint functions, independent training of the surrogate model can 
improve the efficiency and accuracy of the training significantly.   

  
6. Conclusions 
This paper proposes a quantile-based sequential method with adaptive Kriging for solving RBDO 
problems with independent constraint functions. In the proposed approach, Kriging surrogate 
models are used to replace the often computationally demanding original functions in engineering 
problems. The integration of an error-based stopping criterion, referred to as ESC, provides 
information on the error rates of the performance function surrogate models, which can be used as 
a measurement of the accuracy of the surrogate models for reliability estimation. This measurement 
is used to inform whether the surrogate models are sufficiently accurate and develop a strategy for 
the independent training of the models. The proposed approach thus avoids unnecessary function 



  
          28 

evaluations in the refinement of surrogate models while ensuring their accuracy. In addition, a new 
sampling approach named ICBS is proposed. For each individual constraint, ICBS provides 
instructions on how to select training points that can improve the surrogate models for the 
performance functions on both deterministic and probabilistic constraints. The latter feature is often 
not considered when refining the surrogate models in existing methods. The performance of the 
proposed method is demonstrated through five RBDO problems. It is observed that for the first four 
typical RBDO problems, the proposed method is able to find the optimum design with significantly 
higher efficiency than the existing state-of-the-art methods by as much as 40%~60% under the 
assumption that the constraint functions are independent. The fifth example is a practical 
engineering problem where the constraint functions are actually independent. The proposed method 
is able to achieve an optimal solution, while another state-of-the-art method is not able to converge 
for the problem. The proposed method can be used to solve problems with independent constraint 
functions efficiently.   
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