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Abstract

A significant challenge with reliability-based design optimization (RBDO) is the high
computational cost associated with the double-loop structure that entails a large number of function
calls for both the optimization process and reliability analysis. Several decoupling methods have
been developed to improve the efficiency of RBDO. In addition, surrogate models have been used
to replace the original time-consuming models and improve the computational efficiency. This
paper proposes a novel quantile-based sequential RBDO method using Kriging surrogate models
for problems with independent constraint functions. An error-controlled adaptive Kriging scheme
is integrated to derive accuracy information of surrogate models and develop a strategy that
facilitates independent training of the models for the performance function. The proposed
independent training avoids unnecessary performance function evaluations while ensuring the
accuracy of reliability estimates. Moreover, a new sampling approach is proposed that allows
refinement of surrogate models for both deterministic and probabilistic constraints. Five numerical
examples are carried out to demonstrate the performance of the proposed method. It is observed
that the proposed method is able to converge to the optimum design with significantly fewer
function evaluations than the state-of-the-art methods based on surrogate models given the
constraint functions are independent.
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1. Introduction

Deterministic design optimization (DDO) provides the optimum design of structures and systems

while satisfying some performance constraints without considering uncertainties. A typical DDO
problem is often formulated as follows:

find.d
min. J(d) )
s.t. gi(d)<0,i=12,..,m
d<d<ad*
where J(+) and g;(*) are the objective function and the i;, performance function, respectively, d is
the vector of design variables, m is the number of constraints, and d* and d* are the lower and
upper bound vector of design variables, respectively. The feasible region is defined as g;(d) < 0,
i.e., the failure occurs when the limit state function g;(d) is positive. Note that in some literature,
the sign convention could be the opposite.
However, there are large uncertainties in many phenomena of practical engineering, including
many variabilities in the fabrication processes and operation conditions (Liu et al., 2018b, 2020).
The uncertainties can cause the unreliability of the optimal design yielded by DDO. On the other
hand, reliability-based design optimization (RBDO) accounts for the variations of the performance
induced by the uncertainties and therefore is able to find optimal solutions that are reliable. A
typical RBDO problem can be formulated as follows:
find.d, p,
min. J(d, uy, ”p)
s.t. Pr(gi(d,x,p) >0) < ®(-pH,i=12,..,m
d<d<d4,u'<p <pt

(2)



where d is the deterministic design vector, x and p are the random design and parameter vectors
with the mean of p, and w,,, respectively and Pr (g;(-) > 0) is the probability that the iy

performance function g;(*) is violated. ®(—pf) is the target failure probability for the iy
constraint where ®@(-) is the standard normal cumulative density function (CDF) and f3; is the iy
target reliability index. u, ! and p,* are the lower and upper bound vector of the mean of the
random design variables, respectively.

RBDO intrinsically involves a double loop structure that contains an outer loop of DDO and
an inner loop of reliability analysis due to the nature of the probabilistic constraints. There are two
main approaches for dealing with the probabilistic constraints: reliability index approach (RIA) (Tu
et al., 1999) and performance measure approach (PMA) (Tu et al., 1999). RIA takes the
probabilistic constraint in the format of reliability index. PMA, on the other hand, uses an inverse
transformation of constraints in RIA. It has been found that PMA tends to be more robust and
converge faster compared to RIA (Lee et al., 2002; Ramu et al., 2006; Tu et al., 1999; Valdebenito
and Schuéller, 2010). Many methods are proposed to deal with the optimization problem in PMA,
such as Advanced Mean Value (AMV) method (Wu, 1994; Wu et al., 1990), Conjugate Mean Value
(CMV) method and Hybrid Mean Value (HMV) method (Youn et al., 2003). However, the double
loop or nested structure in both PMA and RIA renders some RBDO problems extremely
computationally demanding. This challenge arises as reliability analyses, which are often time
consuming, are required in each iteration of the optimization process. Many methods have been
developed to deal with the high computational burden of RBDO problems. Chen et al. (1997)
converted the double loop structure into a single loop single structure by replacing the probabilistic
constraint with an approximate deterministic constraint based on the value of the design variables.
Wu et al. (2001) proposed the safety-factor approach that uses approximately equivalent
deterministic constraints for RBDO problems. Du and Chen (2004) proposed the well-known
sequential optimization and reliability assessment (SORA) where the deterministic constraints are
shifted towards the probabilistic constraints progressively by the amount determined by the inverse
most probable points (iMPPs). Yang and Gu (2004) found that SORA and SFA are conceptually
identical and work identically in the standard normal space. Koch et al. (2004) proposed the
approximate moment approach (AMA) that also transforms the probabilistic constraints to
approximated deterministic constraint via Taylor series expansion at the mean values. Yi et al.
(2016) proposed an efficient approximate sequential optimization reliability assessment (ASORA)
method based on SORA. These methods all improve the efficiency of RBDO, although they usually
entail some degree of simplification of the performance functions, and therefore introduce
approximation errors.

In RBDO problems, function calls, which could be required many times by both reliability
analysis and optimization process, often entail time-consuming model evaluations especially for
problems that involve high-fidelity finite element models. Even with the aforementioned methods
developed to improve the efficiency of RBDO, the number of function calls can still be formidable
when the model evaluations are highly expensive. In recent years, surrogate models are used to
replace the time-consuming original models to improve the efficiency of reliability analysis as well
as RBDO. Many surrogate models or meta-models can be used for this purpose, among which
Polynomial Response Surface (Giunta et al., 2006; Romero et al., 2004; Zhao et al., 2017),
Polynomial Chaos Expansion (PCE) (Blatman and Sudret, 2010), Support Vector Regression
(SVR) (Bourinet, 2016; Dai et al., 2012), Radial Basis Function (RBF) (Li et al., 2020) and Kriging
(Bichon et al., 2008; Dubourg et al., 2011; Echard et al., 2011; Li et al., 2019; Moustapha et al.,
2016; Song et al., 2019; Wang and Shafieezadeh, 2019; Zhang et al., 2020) are the most popular.
Kriging, due to its ability to provide estimates of the expected model response and the associated
variance, has gained significant popularity. Kriging-based reliability methods such as Efficient
Global Reliability Analysis (EGRA) (Bichon et al., 2008) and Active learning reliability method
combining Kriging and Monte Carlo Simulation (AK-MCS) (Echard et al., 2011) have utilized



these features to locate the next “best” training points and adaptively build surrogate models,
starting the trend of using Kriging in reliability analysis (Echard et al., 2013; Fauriat and Gayton,
2014; Huang et al., 2016; Lv et al., 2015; Wang and Shafieezadeh, 2019, 2018). In the area of
RBDO, there are also numerous Kriging-based methods, some of which are reviewed here.
Mourelatos (2005) leveraged optimal Latin hypercube sampling and Kriging model for a RBDO of
crankshaft main bearings. Pretorius et al. (2004) used Kriging and HMV to solve a continuous
casting design optimization problem. Lee and Jung (2008) proposed a sampling technique named
constraint boundary sampling (CBS) to improve the accuracy and efficiency of Kriging-based
RBDO. Lee at al. (2011) presented a sampling-based RBDO approach using Kriging and a
stochastic sensitivity analysis. Dubourg et al. (2011) developed a strategy to solve RBDO problems
with the Kriging surrogate models built in so-called augmented reliability space and subset
simulation. Zhuang and Pan (2012) proposed an expected relative improvement (ERI) sampling
criterion and used it to construct surrogate models for SORA. Bichon et al. (2012) investigated the
use of the efficient global optimization (EGO) and EGRA to construct Kriging surrogate models
for RBDO problems. Inspired by CBS, Chen et al. (2015) proposed an importance boundary
sampling (IBS) method to enhance the efficiency of RBDO. Moustapha et al. (2016) proposed a
quantile-based, conservative optimization procedure for structures in an uncertain environment
using Kriging surrogate models. Liu et al. (2017) proposed an adaptive local range sampling
method for RBDO using SVR and Kriging. Inspired by SORA, Li et al. (2019) and Li et al. (2020)
proposed similar quantile-based sequential optimization methods using RBF and Kriging,
respectively. In both methods, computationally cheap surrogate models are used. The reduced cost
of function evaluations allows the estimation of quantile of the target failure probabilities, which
can be used as the shift from the deterministic constraints to probabilistic constraints. Both methods
showed their accuracy and efficiency through numerical examples. However, the stopping criterion
used in both methods are not directly related to the accuracy of reliability analysis. In addition, the
training points are shared among different constraint functions, introducing unnecessary model
evaluations when the constraint functions are independent from each other. For instance, in the
studies of transmission line systems, the conductors and the tower can have separate high-fidelity
finite element models that can be analyzed independently (Darestani et al., 2020; Ma et al., 2020).

In order to address these gaps, this paper proposes a quantile-based sequential RBDO method
using independent training with error-controlled adaptive kriging and a novel sampling approach.
The proposed method aims to solve RBDO problems with independent performance functions. In
the proposed method, the maximum error rates of the surrogate models for constraint functions are
derived to measure the accuracy of the models for reliability analysis. This error information also
allows the surrogate models of different constraint functions to be trained independently, avoiding
unnecessary evaluations of models while ensuring the accuracy of the surrogate models. In
addition, a sampling strategy facilitated by the independent training is proposed to improve the
construction of surrogate models for constraint functions. The sampling approach selects training
points considering refining the models on both deterministic and probabilistic constraints, of which
the latter is often not considered in existing sampling approaches. The performance of the proposed
method is demonstrated via five numerical examples.

This paper consists of six sections. In Section 2, a review of commonly used RBDO methods
is given. In Section 3, the adaptive Kriging method and the error-based stopping criterion are
presented. Next in Section 4, a new sampling approach is proposed, and its integration along with
error-based stopping criterion into RBDO and the overall structure of the proposed method are
elaborated. In Section 5, five numerical examples are carried out to demonstrate the efficiency and
accuracy of the proposed method. Conclusions are drawn in Section 6.

2. Typical RBDO Methods

This section presents an overview of commonly used RBDO methods.



2.1 RIA
In RIA, reliability indexes are used to represent the probabilistic constraints of RBDO. The
formulation of RBDO in RIA is as follows:
find.d, p,
min. J(d, iy, 1)
s.t. B =pLi=12,...m
d'<d<d'p'<p<p"
where B; is the iy, reliability index for performance function g; corresponding to [d, py, Hp],
which can be acquired by solving the sub-optimization problem formulated as follows:
min. §; = ||U]|
s.t. G(d,U) =0 (4)
where U is the independent standard normal random variable vectors corresponding to the original
random variable vector x* = [x,p], and G; is the probabilistic constraint, i.e., G;(d,U) =

gi(d, x,p). The sub-optimization problem can be solved using the Hasofer-Lind and Rackwitz-
Fiessler (HL-RF) method (Hasofer and Lind, 1974; Liu and Der Kiureghian, 1991).

(3)

2.2 PMA
In contrast to RIA, PMA uses an inverse transformation of constraints in RIA
find.d, p,
[ . dJ 1]

s.t. G; =20,i=12,...,m
d<d<d4,u'<p <pt
where G| is the maximum of the performance function with respect to the points that have the target
reliability index, which is the solution to the following sub-optimization problem:
G; = max(G,(d, 0) ©
s.t. ||U|| =f;

The sub-optimization can be solved using the AMV method (Wu, 1994; Wu et al., 1990), CMV
method and HMV method (Youn et al., 2003).

Both RIA and PMA are based on the computationally costly double-loop structure. Many
methods are developed to convert the double-loop into a single loop or a serial loop. Some of these
decoupling methods are introduced in the next sub-section.

2.3 Decoupling methods
Decoupling methods convert the double-loop structure into a serial loop structure. In this
subsection, the commonly used decouple method, SORA, is introduced followed by the quantile-
based methods with surrogate models.
2.3.1 SORA
Du and Chen (2004) proposed SORA that transforms the double loop structure into sequence of
deterministic optimizations and reliability analyses. In each iteration, a deterministic optimization
and reliability analyses are performed. The reliability analyses provide the most probable points
(MPPs) that can be used to calculate the shift, which are subsequently used to convert the
deterministic constraints to probabilistic constraints. The RBDO problem using SORA can be
formulated as follows:
find.d, p,
min. J(d, . 1)
s.t. Gi(d, py — 58 1y —597) 20,0 = 1,2, ...,m
d'<d<d'p'<p<p"

(7)



where sik) and s;k) are shift value vectors for random variable x and p, respectively, in kg,

iteration. They can be obtained using the following equation:

) Y _ (,,&k-1 (k-1) _(k—1)
(Sx »Sp ) = (ﬂx 'l‘p) - (xMPP 'Pupp ) (8)
where u;k_l) is the optimal point in the (k — 1), iteration, xl(\;‘; Pl ) is the vector corresponding to

x of MPPs in the original design space in (k — 1), iteration, and pl(lffgpl) is the vector

corresponding to p of MPPs in the original design space in the (k — 1), iteration. In SORA, MPPs
can be obtained by solving the sub-optimization problem in PMA (Eq. (6)). The shift for a simple
2D example is depicted in Fig. 1. As shown in this figure, in every iteration, the constraints are
shifted closer towards the actual probabilistic constraints. The flowchart of SORA is summarized
in Fig. 2.
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SORA decouples the double loop structure to improve the efficiency, however, it is based on
MPPs, which are imaginary points that may not truly reflect the reliability of the structure or system.
In the next sub-section, the quantile-based methods, which are similar to SORA yet independent of
MPPs, are introduced.

2.3.2 Quantile-based methods with surrogate models
Inspired by SORA, Li et al. (2019) and Li et al. (2020) proposed the quantile-based sequential
methods with RBF and Kriging, respectively. The surrogate models, which are significantly
cheaper to evaluate, allow leveraging Monte Carlo Simulation (MCS) for reliability analysis.
Instead of using MPP-based shifts, they utilize the shifts calculated by MCS. Thus, the error
introduced by the approximation in MPP is eliminated and only the error introduced by the
surrogate models is of concern. The RBDO problem using the quantile-based method is formulated
as follows:
find.d, p,
min. J(d, uy, ”p)
s.t. gi(d, e 1tp) + ci(k) >0,i=12,..,m
d'<d<d'p'<p<p"

where ci(k) is the shift for i;; deterministic constraint in k;, iteration and it can be calculated using
the following equation:

e = coF(@(B1)|g:) - g (4%, 1V, ) (10)
where d*~1 is the optimal deterministic design variable in the (k — 1), iteration,
CDF~1(®(BD)|g;) is the inverse cumulative distribution function (CDF) with respect to target
reliability ®(B}) for g;, which corresponds to the quantile of the target reliability. The inverse CDF
can be determined by fitting a distribution to a population of MCS. This type of fitting problem can
be solved using techniques in Li et al. (2018a, 2018c), in this paper, fitdist in MATLAB is used to
fit the distribution. The MCS population requires a large number of function evaluations, which are
possible thanks to the utilization of the surrogate models. The main idea of the quantile-based
sequential methods is quite similar to SORA, where the constraints are shifted towards the
probabilistic constraints gradually. However, instead of shifting the constraints through design
variables, it shifts the constraints through offsets Cl-(k) on constraint functions. The shift for a simple
2D example using the methods is depicted in Fig. 3. An offset is applied to the constraint for the
purpose of shifting. In these methods, the surrogate model is refined adaptively during the
sequential optimization process. The approaches in Li et al. (2019) and Li et al. (2020) can be both
summarized in the flowchart in Fig. 4. Note that the surrogate model in dashed box is exclusive in
Li et al. (2020), as only Kriging can provide uncertainty information that helps the identification of
the next “best” training points. Both methods use the aforementioned process and adaptively enrich
the surrogate models sequentially during the process of RBDO.
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Li et al. (2019) initialized the RBF surrogate models with (2n; + 1) points obtained via
Latin Hypercube sampling (LHS), where n, is the dimension of the design variables, and then
added results of the deterministic optimization as the training points until some convergence
requirement is met. Then the method enters the process of Eq. (9) using the constructed surrogate
model and the current optimal point is added as the training point in each iteration until the shift
converges. The use of the current optimal point as the training point may lead to local optima or
inaccurate surrogate models which cannot represent the true reliability of the structure or system.
In addition, RBF cannot provide the uncertainty information as Kriging to instruct the construction
of the surrogate model. Li et al. (2020), on the other hand, used the Kriging surrogate model and
took advantage of the uncertainty information. They used LHS to get 5ny or 10n, initial training
points and then entered the process of Eq. (9) directly. In the optimization process, they refined the
Kriging surrogate model by adding both the current optimal points and a point informed by the
uncertainty information. In Li et al. (2020), all performance functions share the same training
points, which may result in unnecessary or ineffective training for some performance functions in
problems with independent performance functions. In addition, the accuracy of surrogate
constraints in terms of the reliability is not known. Hence, we propose a new quantile-based method
with adaptive Kriging to tackle these problems. In the next section, an overview of Kriging and an
error-based stopping criterion are presented.

3. Adaptive Kriging Method
As mentioned in Section 1, Kriging surrogate models are commonly used in reliability analysis and
RBDO. In this section, a review of Kriging surrogate models is given first as follows.

3.1 Kriging surrogate model
Let g(X g) denote the original model with variables X4, which contains all the variables including

both deterministic and random variables in the problem. The stochastic estimator of g(X g) based
on Kriging shown by g (X g) can be formulated as follows:

9(Xg) = F(B.xg) + g(xg) = B"f(xg) + 92(x4) (11)
where x is the vector of random variables, F (ﬁ, xg) are regression elements, and ggo(xg) is a
Gaussian process. F (ﬁ, xg) is the product of f (xg), which is the Kriging basis, and 8, which is
the corresponding set of coefficients. The Gaussian process gp (xg) has a zero mean and a
covariance matrix. The covariance matrix can be formulated as:

cov (%a (). 92 (xg))) =o?R (x{",x;6) (12)
where o2 is the process variance or the generalized mean square error (MSE) from the

regression, xg) and xg )

parametrized by 6, it represents the correlation between observations xg)and xg ). The Gaussian
kernel function is used in this study, which can be formulated as:

are any two observations, and R (xg),xg ) ;0 ) is the kernel function

N
, , , N2
R (xg),xg); 0) = 1_[ exp (—Qk (xgk) — xg{)) ) (13)
k=1
where xé? is the k;, dimension of xg) and @ can be estimated via the Maximum Likelihood

Estimation (MLE) method via the DACE toolbox (Lophaven et al., 2002a, 2002b). The formulation
based on MLE is as follows:

0" = arggnin<|R(xg),xg); 0)|% 02> (14)



where m is the number of training points. The regression coefficients B8, and the predicted mean
and variance can be then determined as follows (“UQLab Kriging (Gaussian process modelling)
manual,” 2017):
B= (FTR™'F)"'FTR 'y
ug(xg) = f7(xg)B + 77 (x5 )R (y — FP) (15)
05(xg) = 0% —a*r"(x,)R7'r(xy) + azuT(xg)(FTR‘lF)‘lu‘(xg)
where F is the matrix of the basis function f(xg), ie., Fij = Bj (xm), i=12,...m;j=

g
12,..,p, r(xg) is the correlation between known a training points x and another point x4: 1; =

g

R (xg,xg),e), i=12..m, R is the autocorrelation matrix for known training points: R;; =

R (xg),xg),e), i=12..,mj=12.,m andu(x,) = FFR'r(x,;) — f(x,). Thus, §(x,)
can be presented as follows:

g(xg) ~N (”é(xg)’ a; (xg)) (16)
where ug (xg) is estimated Kriging mean and O'gg (xg) is the corresponding variance, which is the
uncertainty information. In adaptive Kriging methods for reliability analysis and RBDO, training
points are adaptively added to refine the surrogate model until some criterion is met. The
uncertainty information offered by the Kriging model can be used for the identification of next best
training points in the population of MCS and to develop appropriate criteria to stop training. Many
learning functions have been proposed to offer the instruction on training point selection and
stopping criterion, such as U learning function (Echard et al., 2011) and expected feasibility
function (EFF) (Bichon et al., 2012). Wang and Shafieezadeh (2018) proposed an efficient error
rate-based stopping criterion (ESC) for adaptive reliability analysis. This stopping criterion will be
used in this study. An overview of this approach is presented in the next sub-section.

3.2 Error-based stopping criterion for reliability analysis

The stopping criterion for ending the surrogate construction is quite important in adaptive Kriging
methods. A loose stopping criterion may result in an inaccurate result, while. an overly conservative
one may lead to a large number of unnecessary trainings. To address this challenge, an efficient
stopping criterion for reliability analysis named ESC was proposed in Wang and Shafieezadeh
(2018). In ESC, the maximum error rate &,,,, for the estimated probability of failure is derived and
taken as a criterion to evaluate the accuracy of the Kriging surrogate model in representing a
performance function. This maximum error rate can be estimated using the following equation:

Ny Ny
1|, [—L—-1 (17)
N; - §} N + 8

€max = max(

where IVf is the estimated number of failure points by the surrogate model, }‘and S¥ are the upper
bounds of ¢ and S, respectively, S¢ is the total number of wrong sign estimations in the estimated
failure domain ﬁf by the surrogate model, and S; is the one in estimated safe domain {2, by the
surrogate model. It has been shown in Wang and Shafieezadeh (2018) that both S and S5 follow a
Poisson binomial distribution with mean and variance shown below:

Ny N
S,~PB EZPWW,EZwa(l—PV”) (18)
i=1 i=1
X S .QAS



Ny N¢

§f~PB Z Piwse ’Z Piwse (1 _ Piwse) (19)
i=1 i=1
X € .QAf

where PB represents the Poison Binomial distribution and P}V*¢ is the probability of wrong sign

estimation for x;, which can be computed as P;}**¢ = @ (— %ﬁgy), where @(+) is the standard
9\Xg
normal cumulative density function. Thus, the upper and lower bounds of S, and §f with a

confidence level a can be found as:

s.e (032 (5) 057 (1-5)) @)
= <@§)} (%) 05" (1- %)) (21)

where OSTSl and OSTfl are the inverse CDF of the Poisson binomial distribution. For the detail of the

derivation, the reader is referred to Wang and Shafieezadeh (2018).

The estimate of the maximum error offers information on the accuracy of the constructed
Kriging in terms of representing the reliability of the structure or system. For the adaptive process,
a stopping criterion is set as €4y < €¢pyr, Where €45, is a prescribed threshold. The adaptive
training process of the Kriging model can be terminated when €,,,,, is smaller than the prescribed
threshold €4y,

In existing RBDO methods that use adaptive surrogate models, the training points for
different performance functions are often shared in the iterative process of the optimization, and
the enrichment is performed for each surrogate model for the performance function in each
iteration. This limitation is due to the fact that other than the convergence stopping criterion for the
optimization process (e.g. the convergence check later described in Step 6 of Section 4.3), there is
no stopping criterion for the surrogate models of individual performance functions. However due
to different complexities of performance functions, the number of training points required for the
surrogate model construction can be different. Therefore, some enrichment actions for some
surrogate models, especially in the late period of the optimization process, can be unnecessary.

The ESC approach, albeit developed for reliability analysis, can be leveraged to avoid the
unnecessary trainings of the surrogate model construction for RBDO, as reliability analysis is an
essential part in RBDO. With the help of ESC, one can be notified of the accuracy of the current
performance function surrogate models in terms of analyzing the reliability, and then can determine
if additional surrogate model enrichment is still desired. Given such accuracy information, the
training process of each surrogate model for the performance functions is allowed to be performed
independently from each other. And in this fashion, unnecessary training for sufficiently accurate
surrogate models can be avoided. In this study, a new quantile-based sequential RBDO method that
takes advantage of the independent training is proposed in the next section.

4. The proposed quantile-based sequential method with error-controlled

independent training and independent constraint boundary sampling

The main idea of the proposed method is similar to the one depicted in Fig. 4. Kriging surrogate
models are used to replace the objective function and performance functions; however, ESC is
integrated in a way that it allows independent training of the Kriging surrogate model for each
performance function. The independent training allows all the training points of a surrogate model
to be fully in favor of the construction for each individual performance function, hence providing

10



higher efficiency compared to traditional methods, which share training points among different
performance function surrogate models. In addition, the independent training also facilitates a new
sampling method based on CBS. While CBS considers only deterministic constraints and shares
point among performance function surrogate models, the proposed sampling approach selects
points considering the improvement of both deterministic and probabilistic constraints
simultaneously for each surrogate model independently. The sampling of training points is first
introduced in the next two sub-sections.

4.1 The training point sampling before optimization

Based on authors’ experience, the initial training points can have a huge impact on the result.
Insufficient number of initial training points may lead to a wrong final result; and too many training
points unnecessarily add to the computational cost. To avoid both situations, an approach similar
to the enrichment in Moustapha et al. (2016) is taken. Echard et al. (2011) proposed the U learning
function, which is formulated as follows:

g (%)l
a5(x,)
When the value of the learning function is small for a point, it means either the limit state function
value of the point is close to the limit state (i.e., the numerator is small), or we are uncertain about
the limit state function value of the point (i.e., the denominator is large). The point with the smallest
learning function value is of interest. This learning function is used as the sampling criterion and
stopping criterion for reliability analysis as follows. The process adaptively adds the point with the
smallest U from a MCS population until rriin(U) > 2. For the first step of Kriging construction

g

U= (22)

before the sequential process, only semi-accurate models are required. Thus, this criterion can be
relaxed as follows:

Ny>2
p=—"">pu (23)

chs
where ny~, is the number of points with a U learning function larger than 2, N, is the total

population of MCS, thus, p is the percentage of points with a U learning function larger than 2 in
the total population, and p;, is a prescribed threshold. In this study, it is found that 99% is a suitable
value for p;,.

In the proposed method, for each performance function, LHS is first used to generate (2n,; +
1) points for the construction of the initial surrogate model. Then a sufficiently large MCS
population is generated, and training points are adaptively added until p > p,;,. Different from Li
et al. (2019) and Li et al. (2020), the training of surrogate model for each performance function is
independent of each other and doesn’t share the training points. This allows the enrichment of the
surrogate model to be specialized for each individual performance function and all training points
for a surrogate model to help the construction exclusively, resulting in higher effectiveness. The
aforementioned enrichment is only for the performance functions. For the objective function,
(2n4 + 1) points via LHS are used for the initial construction of the surrogate model. Once the
initial construction of the surrogate models for both objective and performance functions is
complete, the method enters the sequential process described in Eq. (9) and (10) and a new adaptive
enrichment approach is taken in the next step. This approach is introduced in the next sub-section.

4.2 A new sampling approach

During the process of sequential optimization, the adaptive enrichment of performance is
continued. In each iteration of Eq. (9) and (10), new training points are added to refine the surrogate
model. For the objective function, only the optimum in the feasible region is of interest, thus, the
enrichment is focused on the current optimal point. In each iteration, the current optimal point is
taken as the next training point for the surrogate model that represents the objective function.
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For performance functions, according to Eq. (10), the offset is determined by
Ji (d(k D, kv up) and CDF~1(®(B}) |g;). The former is the value of the performance

function with respect to the previous optimal point. Naturally, same as the surrogate model
construction for the objective function, the current optimal point should also be added as a training
point. The latter is governed by the reliability of the structure or system with regard to the
performance function, so the boundary between the safe domain Qg and failure domain () is
important. Inspired by CBS (Lee and Jung, 2008), a new sampling approach is proposed here to
facilitate the surrogate model construction.

The original CBS is defined as follows:

Hg, (xg). g) . S 0vi
otherwise
where ¢ is the standard normal probablhty density function (PDF). Similar to the U learning
function, the CBS aims to locate the point that is close to the limit state and has large variance in
the feasible domain. The value of CBS increases when the point approaches the vicinity of the
ﬂgl( g)
91( g)
constraint boundary sampling. In addition, the points in the infeasible domain are not of interest,
so CBS becomes zero for infeasible points. However, in its original form, all constraints, i.e.,
performance functions, are considered simultaneously. And the training points are shared among
performance functions. One problem is that the shared training points cannot be equally beneficial
to all performance functions. In this study, thanks to the independent training, we propose a new
sampling approach named independent constraint boundary sampling (ICBS) that is more effective
for individual performance functions by virtue of independent training. The new ICBS is defined
as follows:

boundary or has a large variance since PDF has the largest value when —=-——= = 0; hence the name

‘ l{(’;}(xg) . ,
ICBS! = <—U@(xg) if ug,(xg) = 0Vi (25)
0 otherwise

where ICBS! is the sampling criterion for the i, performance function. For the surrogate model of
irn, performance function, the next “best” training point should be the point with the largest ICBS}
value. As can be easily observed, this ICBS is just the original CBS that is focused on an individual
performance function. When sampling the next best training point for a performance function, only
the point that is close to boundary of this specific performance function and is also in the feasible
region of this specific performance function is selected. This sampling approach can avoid the
undesirable influence of other performance functions.

However, this ICBS! only considers deterministic constraints described in Eq. (1). As shown in
Fig. 3, the optimal point is actually on active probabilistic constraint. The core of this quantile-
based method is to transfer the RBDO problem into a serial of shifted deterministic optimization
problems, of which the shifted deterministic constraints are equivalent to the probabilistic
constraint. As a result, the accuracy of probabilistic constraints, i.e., shifted deterministic
constraints, should also be guaranteed. In each iteration of adaptive Kriging method, not only is the
“best” next training points for each deterministic constraint found, but also one for each
probabilistic constraint is identified. The “best” point regarding the probabilistic constraints,
similar to the deterministic constraints, is determined through the following equation:

(r)
' Hg, (xg) +¢; : ;
cast - [o(Giy)  irmat = on @)
0 otherwise
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Compared to ICBS!, ICBS} aims to locate the point that is close to the probabilistic constraint
boundary and has larger variance; the value of it increases when the point approaches the boundary
of the probabilistic constraints or has a large variance, since PDF has the largest value when
= (®)
G, ; . . . P .. .
%}:C)‘ = 0. Similarly, the point with the largest value of ICBS} is the next best training point.
g\*g
In our proposed method, for the surrogate model construction of an individual performance
function, only one point is selected additional to the optimal point. Above all, considering both

deterministic and probabilistic constraints, ICBS can be defined as follows:

( Hg, (xg) ug: (%) + ¢ _ _
s e o)) oz
0 otherwise

The point with the largest ICBS® should be the next training point. This ICBS® automatically
chooses the “best” feasible point that benefits either the deterministic constraint or the probabilistic
constraint the most based on the CBS values for both constraints. Note that in the original CBS, a
sampling criterion considering the nearest distance from the existing training points to the sample
point was also proposed. However, this sampling criterion requires the distance calculation for
every training point candidate, hence the potential for high computational cost. To address this
challenge, the skip scheme in Li et al. (2020) is adopted here: if the minimum distance from the
next “best” point to the existing training points in the standard normal space is smaller than 0.2f,
the next “best” point is skipped. This scheme also helps the Kriging surrogate model avoid ill
conditioning. In the next sub-section, the procedure of the proposed method is elaborated.

4.3 Procedure of the proposed method
With the help of ESC and independent training and ICBS, the main steps of the proposed method
are summarized as follows:

o Step 1: Input the initial design point and initialize the offsets ci(o) . Input the initial design point:

[d(o);llio)]. Meanwhile, initialize the offset for all performance functions: ci(o) =0,i=
1,2,..,m.

o Step 2: Construct the surrogate models before sequential optimization. Use uniform
distribution to generate (2n,; + 1) LHS points for the objective function and each performance
function. Then, for each performance function, generate an MCS population of the random
variables with a size of 1x10*and from it adaptively add training points with the smallest U
learning function value until the relaxed criterion described in Eq. (23) is met. The training
point set for the objective function is denoted as Sj; and the training point set for the i,y
performance function is denoted as S;,i = 1,2, ..., m.

o Step 3: Initialize the sequential optimization process. Set the iteration number k = 1, and set
the training indicator ind; = 1,1 = 1,2,.., m for all surrogate models of performance functions.

o Step 4: Sequential Optimization. Solve the deterministic optimization for the problem

described in Eq. (9) and (10) using the offset ci(k_l),i = 1,2, ...,m and the current surrogate
models for objective function and performance function. The current optimal result is
[d%; u{?).

e Step 5: New offset calculation. Use [d®; M;k)] as the mean and generate an MCS population
S, that is sufficient for the reliability analysis. For examples of this paper, the numberis 1x10°.
Fit a distribution to the MCS population using fitdist in MATLAB and calculate the quantile

corresponding to the target reliability probability: CDF _1(<I>(ﬁf)| gi). Then use Eq. (10) to
9]

calculate the new offset c;
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o Step 6: Convergence check. Check if any of the convergence criteria is met: ” ci(k) -

ci(k_l)” <1.0x1073 or ”[d(k);u;k)] - [d(k_l);u;k_l)]” <1.0x1073. If so, jump to
Step 11. If not, go to Step 7.

o Step 7: Add the optimal point as the training point for the objective function. For the objective
function surrogate model, if the minimum distance from the current optimal point to the points
in Sy in the standard normal space is larger than 0.2 min (Bf),i = 1,2, ..., m, add the optimal
point as the training point; otherwise, skip the optimal point.

e Step 8: Training indicator update. If the distance between [d®); [,l;k)] and [d*~D; uik_l)] in
the standard normal space is larger than 0.2 min (8)),i = 1,2,..,m, set ind; = 1,i =
1,2,...,m.

o Step 9: Ignore the inactive constraints’ training. As the optimization proceeds, the training of
surrogate models for the inactive constraints is not necessary. However, in the first few
iterations, the determination of activity of constraints may not be accurate. Therefore, after a
few iterations (5 is used in the paper, however, a large number can be used to ensure the
accuracy in practice), we can ignore the inactive constraints. When k > 5, set ind; = 0 for the
inactive constraints in the result of Step 4.

o Step 10: Add training points for performance functions. For the i, performance function
surrogate model with ind; = 1, if the minimum distance from the current optimal point to the
points in S; in the standard normal space is larger than 0.25f, add the optimal point to S;;
otherwise, skip the optimal point. In addition, for the i;;, performance function surrogate model
with ind; = 1, select the “best” point based on ICBS using Eq. (27), if the minimum distance
from the “best” point to the points in S; in the standard normal space is larger than 0.23f, add
the “best” point to S;; otherwise, skip the optimal point.

e Step 11: Error-based stopping criterion check. For the i;; performance function surrogate
model with ind; = 1, use Eq. (21) to calculate the maximum error of the surrogate model in
terms of failure probability, if the maximum error is smaller than the prescribed threshold €.,
set ind; = 0; otherwise, set ind; = 1.

o Step 12: Update the surrogate models. Use the updated Sy and S;,i = 1,2, ..., m, to construct
the new surrogate models for the objective function and performance functions, respectively.
k = k + 1. Then, jump back to Step 4.

e Step 13: End. The result is final and end the process.

The flowchart of the proposed method is presented in Fig. 5-6. Fig.6 is a supplement to Fig

5. In the proposed method, the error-based stopping criterion allows the understanding of the

accuracy of an individual performance function with regards to the reliability. When the surrogate

model of a performance function is sufficiently accurate, i.e., épqy < €tnr» adding new training
points is not necessary. By avoiding unnecessary function evaluations, the computational cost is
reduced. Note that when the current optimal point moves to a certain degree from the previous point

(it is defined in Step 8 as the distance between [d(; u;k)] and [d*~D; u;k_l)] in the standard

normal space being larger than 0.2 min (8),i = 1,2, ..., m ), the previous maximum errors may

not be representative anymore, thus, new training points are still required and the maximum error
needs to be reevaluated in the iteration. In addition, in Step 9, the inactive constraints, which are
not our main focus, are ignored for adding training points to further avoid unnecessary function
evaluations. Ignoring the inactive constraints can be crucial as for inactive constraints the actual
failure probabilities are often extremely small, resulting in difficulties in the refinement of the
surrogate model. Without ignoring the inactive constraints, significantly more training points
needed to satisfy the ESC requirement. The points that are too close to the existing training points
are also skipped as in Step 7 and 10. The proposed ICBS helps to refine the surrogate models
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considering both deterministic and probabilistic constraints. The performance of the proposed
method is demonstrated through five numerical examples in the next section.

[ Input (d(o), uio) ) ]

Setc” =0,i =12,..,m

Construct Initial surrogate models for
objective function and performance
functions with (2n4 + 1) points
L2
Refine the surrogate models for
performance functions until p > pyp.
The training sample sets are S and
S,i=12..,m
v
Setk=1
Set the training indicator ind; =
L,i=12,...m
v
Solve deterministic optimization problem for d®, [Jgk):
find.d, p,
min. J(d, iy, 1p)

s.t. gi(d, py )+c-(k) >0,i=12,..,m

i\ Hx Mp i ’ 2Ly aeey
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Fig. 5 Flowchart of the proposed method: Part A
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Fig. 6 Flowchart of the proposed method: Part B. Surrogate model refinement for each g;

5. Numerical Examples

In this section, the performance of the proposed method along with several state-of-the-art methods
are compared for four representative mathematical and engineering examples and one application
example on the optimization of overhead transmission line. The prescribed threshold €, is set to
5% and p is set to 99%. The function call comparisons for all examples are based on the assumption
that the constraint functions are independent from each other. All numerical examples are tested
using the DACE toolbox (Lophaven et al., 2002a, 2002b) in MATLAB 2019a.

5.1 Classic 2D problem

The first numerical example is a classical 2D RBDO problem that has been widely used in the
literature (Cho and Lee, 2011; Li et al., 2019; Yang and Gu, 2004; Yi et al., 2016). It has two
random design variables and three nonlinear constraints. The two random design variables are
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statistically independent and follow normal distributions. The center point [5, 5]” is selected as the
initial design point. The problem is formulated as follows:
find.py = [.uxluuxz]T
MIN. fyy + Uy
Pr(gi(x) >0) < ®(=gf), Bf=3, i=123 (28)
S.t. OSMx1S10, OSHxZS].O
xj~N(py;,0.32), j =12

where
2
X1 X2
=1-
g1(x) 20 i 2
(x1 +x; —5) (x1 —x, —12)
=1- — : 29
9:(®) = - (29)
) =1 80
xX) = _—_—
93 x?+8x,+5

Fig. 7 shows the constraint comparison for the surrogate models and the true performance
functions along with the training points before and in the optimization process. As shown in the
figures, the training points are characterized for each performance function independently. In this
manner, the surrogate models can be built more efficiently. It can also be observed that the surrogate
models are quite accurate in the region of active constraints, while §;(x) is not quite accurate.
However, gz (x) is not an active constraint, so it is not of much interest. The trends of maximum
error estimated using ESC for the two active constraints are shown in Fig. 8. The maximum errors
for g; (x) and g, (x) reach the threshold at fourth and eighth generation, respectively, indicating
both surrogate models are sufficiently accurate to represent the reliability of the system. For the
objective function, the training point number are 9, and for the three performance functions, the
numbers are 13, 10 and 14, respectively. The final results of the proposed method are shown in
Table 1. Compared with other RBDO methods (SLSV and SORA (Yang and Gu, 2004); ASORA
(Yietal.,2016); SSRBO (Lietal., 2019)), it can be observed that the proposed method substantially
reduces the number of function evaluations. In this example, the strategy of ignoring inactive
constraints does have a significant impact, as during the process the distance that the estimated
optimal point moves exceeds the criterion of 0.2 min (,Blt ) defined in Step 8, resulting in the
reactivation of the refinement of the inactive constraint surrogate model. However, with the help
of ICBS, the efficiency of the refinement of surrogate models are improved compared to all the
other methods, as for each active constraint surrogate model the number of training points has been
significantly reduced. Due to the stochasticity in the construction of the Kriging model, which
results from randomness in the initial training points, the computation using the proposed method
is repeated ten times to test the robustness. The number of function evaluations fluctuates between
43 and 59, which are all far smaller than the existing methods.
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Fig. 8 Maximum error trends for the two active constraints

Table 1 Final result and comparison with other methods for Example 1
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Method Optimum B+ I Niotar(Nobj + Neon)

SLSV 6.731 (3.434, 3.297) 2.97 3.09 539(55+484
SORA 6.743 (3.458, 3.285) 2.97 3.05 510(55+455)
ASORA 6.743 (3.458, 3.285) 2.97 3.05 68(20+48)
SSRBO 6.743 (3.458, 3.285) 3.009 3.012 112(28+28%3)
Proposed 6.751 (3.467, 3.282) 3.054 3.017 46(9+37)

5.2 Highly nonlinear 2D problem with multiple MPPs
The second problem is the modified Haupt example in Li et al. (2020). It has two random design
variables and two constraints. One constraint concerns a highly nonlinear function and has multiple
MPPs, and the other constraint is a linear function. The two random design variables are statistically
independent and follow normal distributions. The initial design point is [2:83 3.52]7, which is the
same as Li et al. (2020). The problem is formulated as follows:
find. p, = [#xl:#xZ]T
min. (e — 2.9)% + (Uyp — 3.7)?
Pr(gi(x) >0) < ®(—pf), Bf=2 i=12 (30)
s.t.40 Sl'lxl < 37, OSHXZ <4
xj~N(py;,0.22), j =12
where
91(x) = xq sin(4x,) + 1.1sin(2x,), 31)
92(x) =3 —x; —x;

Fig. 9 shows the constraint comparison for the surrogate models and the true performance
functions along with the training points before and in the optimization process. The linear constraint
J-(x) is simple and inactive, so it is not of interest. The training points are shown for §; (x). It can
be observed that near the active constraint, the surrogate model g, (x) is quite accurate. Before the
optimization process, training points are focused on the deterministic constraint; however, in the
optimization process, most training points are selected near the probabilistic constraint. For the
objective function, the training point number are 10, and for the two performance functions, the
numbers are 20 and 9, respectively. With only 39 function evaluations, the proposed method is able
to converge to the final result. Although the reliability is 1.988, which is slightly smaller than the
target reliability of 2, the error of the failure probability compared with the actual one is 2.6%,
which is smaller than the maximum error estimated by the ESC: 4.3% and within the error threshold
5%, indicating the effectiveness of ESC in the proposed method. The final results of the proposed
method are compared with other RBDO methods (PMA and Li et al. (2020)). It can be observed
that the function evaluations are significantly fewer than other methods. In this example, the
strategy of ignoring inactive constraints takes effects and ends the refinement of §, (x) early, thus,
avoiding unnecessary training. For the active constraint surrogate model, §; (x), the number of
training points has been reduced from 29 to 20, as the ICBS helps to locate the most suitable training
points without being affected by the information from g, (x). For this numerical example, the
computation is also repeated ten times to test the robustness. It is observed that the number of
function evaluations fluctuates between 37 and 54, which are all far smaller than the existing
methods.
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Fig. 9 Constraint comparison and training points for Example 2

Table 2 Final result and comparison with other methods for Example 2

Method Optimum B1 Niotat(Nobj + Neon)
PMA(HMV) 04772 (2.772,3.021) 1.593 1286

Lietal. (2020)  0.6828 (2.790,2.879) 1.999 78 (26+26X2)

Proposed 0.6716 (2.783,2.889) 1.988 39 (10+29)

5.3 Welded beam problem
The welded beam problem (Lee and Lee, 2005; Ramakrishnan and Rao, 1996; Song et al., 2019;
Yi et al., 2016) aims to minimize the welding cost when subject to constraints on geometry,
maximum possible stress, and tip deflection. The welded beam structure is shown in Fig. 10. The
four random design variables are depth and length of welding and height and thickness of the beam,
and they are statistically independent and follow normal distributions. The initial design point is
taken as [6.207, 157.8, 210.6, 6.207]7, which is the solution to the deterministic optimization. The
problem can be formulated as follows:
find.py = [.uxl' ﬂerﬂx3rﬂx4]T
MiN. ¢yt fhxp + Cobxsbra(Zz + Ux2)
Pr(gi(x) >0) < ®(-pf), pf=3 i=12..5 (32)
S.t.43.175 < pyg <10, 150 < pyp < 254, 200 < py3 < 220, 3.175 < pyy <10
x1~N(ty1,0.16932), x,~N(Uyp, 0.16932), x3~N(iy3,0.0107%), x4~N (tiys, 0.l
where

910 = %‘ 1, g,(x) = Ug) ~1,
(33)
T(x) = {t(x)z + 2t(x)tt(x) ZI:(Zx) + tt(x)Z}l/z’
£x) = —2 tt()—M()@
Y VT VR

20



X2

M) =2 (z,+=), R(x) =

_ Vxg + (g + x3)?

)

2 2
x2  (x; +x3)? 62,z
12 2 X3X4
47,73 4.013x3x3 /252, X3 |z3
§(x) =——=—,Fx) = 5 - =
Z3X5Xy 6z 4z, |z4
where parameters can be found in Table 3.
Table 3 Welded beam parameters
Zq 2.6688x10*N) Zg 9.377 x10 (MPa)
Z, 3.556x10% (mm) Zy 2.0685%x10% (MPa)
Z3 2.0685x10° (MPa) c1 6.74135x%107 ($/mm?)
Zy 8.274x10* (MPa) cy 2.93585x10¢ ($/mm?)
Zs 6.35 (mm)
Structure F
weldment 1 X,
Beam X,
%
X,

Fig. 10 Welded beam structure

For the objective function and three performance functions, the training point number are 15,
24,22, 18,20 and 21, respectively. The final results of the proposed method are shown in Table 4.
The results are also compared with other RBDO methods (SORA and ASORA (Yi et al., 2016);
SORA-ICDE (Ho-Huu et al., 2016); Song et al. (2019)). The reliability of the active constraints is
calculated using MCS, and the number of function evaluations are the sum of objective and
constraint function evaluation. The function evaluations needed by the proposed method are
significantly fewer than other existing RBDO methods. In this example, the effect of ICBS is
demonstrated by the fact that the active constraint surrogate model that uses the most training
points, g;(x), only uses 23 training points for the refinement, while the other Kriging-based
method uses 46 training points for each constraint surrogate model. The computation is repeated
ten times to test the robustness, the number of function evaluations fluctuates between 101 and 129,
which are all far smaller than the existing methods.

Table 4 Final result and comparison with other methods for Example 3

Method Optimum

B

B

B3

ps Ntotal (Nobj

+ Neow)
SORA 2.592 (5.731,200.93, 210.64, 6.242) 3.01 3.58 3.01 2.98 198(125+73)
ASORA 2.592 (5.731,200.93, 210.64, 6.242) 3.01 3.58 3.01 2.98 167(77+90)
SORA-ICDE 2.593 (5.730,201.00, 210.63, 6.240) 3.01 3.29 3 3.12 2119
Song et al. (2019) 2.591 (5.729, 200.90, 210.60, 6.239) 3.01 3.29 3 3.12 275(45+46X5)
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Proposed 2.592 (5.729, 201.030, 210.597,6.239)  3.004 _ 3.010 3.008 3.017 117 (15+102)

5.4 Speed reducer problem
The fourth example is the well-known speed reducer problem that is used in the literature (Lee and
Lee, 2005; Li et al., 2020, 2019; Rao, 2019; Song et al., 2019). The objective is to minimize the
weight of a speed reducer, and the eleven constraints are set on bending and contact stress,
longitudinal displacement, stress of the shaft, and geometry. The schematic speed reducer
configuration is shown in Fig. 11. The seven random design variables are gear width, teeth module,
number of teeth in the pinion, distance between bearings, and axis diameter. These variables are
statistically independent and follow normal distributions. The initial design point is taken as [3.5,
0.7,17,7.3,7.72,3.35,5.29]", which is the same as Li et al. (2020). The problem can be formulated
as follows:

find. py = [Kx1, Bz Hxss Hcar Hxs) e ﬂx7]T

min. 0.7854x,x%(3.3333x35 + 14.9334x; — 43.0934) — 1.508x, (xZ + x2)

+7.477(x2 + x3) + 0.7854(x4x2 + x5x7)
Pr(gi(x) >0) < o(-pf), pf=3 i=12,..,11

2.6 S Hxl S 3-6, 0.7 S sz S 0.8, 17 S Hx3 S 28, (34)
S. t. 7.3 S lJ-xAl, S 8-3, 7.3 S lJ-xS S 8-3, 2.9 S lJ-x(, S 3.9,
50 < 7 £55
x;~N(ly;,0.005%)
where
(x) = 27 1 (x) = 397.5 1 ()_1.93x2
Gx Coxix3xg g2'x Coxx3x? gsix) = XpX3xg
1.93x3 745x,/(x,x3) )% + 16.9 x 106
gs(x) = > —1, gs(x) = V745 (5 3))3 ~ 1100,
X2X3X7 0.1x¢
745x</(x,x3) )2 + 157.5 x 10°
go(x) = Y (745x5/ () - — 850, g;(x) = x,x3 — 40, (35)
0.1x;
Xq X1 1.5x¢ + 1.9
=5——’ =__12, == _1J
gs(x) P go(x) X 910(x) —x4
1.1x, + 1.9

g1 (x) = 7 1

X5

Shaft 2
Il
Shaft 1

| X
%
Gear § Pinion
]

_|
Ax T A
— 1] !

Fig. 11 Speed reducer structure

For the objective function and three performance functions, the training point number are 15,
24,22, 18, 20 and 21, respectively. The comparison of the results yielded by the proposed method
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and other state-of-the-art methods (SORA and ASORA (Yi et al., 2016); SSRBO (Li et al., 2019)
; Lietal. (2020); Song et al. (2019)) are presented in Table 5. The reliability of the active constraints
is calculated using MCS, and the number of function evaluations are the sum of objective and
constraint function evaluations. The proposed method is able to converge to optimal result with
only 269 function evaluations in total, while other methods need more than 400 function
evaluations. In this example, the effect of ICBS is demonstrated by the fact that the active constraint
surrogate model that uses the most training points, §s(x), only uses 29 training points for the
refinement, while all the other Kriging-based methods use around 40 training points for each
constraint surrogate model. For the speed reducer problem, the computation is also repeated ten
times to test the robustness of the proposed approach. It is observed that the number of function
evaluations fluctuates between 259 and 292, which are all far smaller than the existing methods.

Table 5 Final result and comparison with other methods for Example 4

Niotal (Nabj

Method Optimum Ps Be Bs P11 +Nooy)
SORA 3040.02 (3.580,0.7,17, 7.3, 7.764, 3.366, 5.301) ~ 3.15 3.08 3.07 421 521(21+500)
ASORA 3038.61 (3.577,0.7,17, 7.3, 7.754, 3.365,5.301)  3.18 3.08 3.07 421 418(22+396)
SSRBO 3038.66 (3.577,0.7, 17, 7.3, 7.754, 3.366, 5.301) ~ 3.13 2.95 3.01 3.09 468(39+39x%11)
Li et al (2020) 3038.61 (3.577,0.7,17, 7.3, 7.754, 3.365,5.302) 2998 2989  3.00 3.00 492(41+41x11)
Song et al. (2019)  3038.61 (3.577,0.7,17, 7.3, 7.754, 3.365,5.302) ~ 3.00 3.01 3.01 3.00 422(37+35%11)
Proposed 3038.98 (3.577,0.7,17,7.3,7.754,3.365,5.302)  3.004  3.020 3.016 _ 3.009 269 (21+248)

5.5 Overhead transmission line problem

The last example is on the optimization of an overhead transmission line, which demonstrates a
practical application of the proposed method to a problem with independent limit state functions.
The objective of this example is to optimize the costs of the transmission tower and conductors
under the constraints that both the tower and conductors satisfy their performance requirements
considering uncertainties. Note that the analyses of the conductors and the towers are performed
independently as they can be dynamically decoupled due to the large differences in their dynamic
characteristics (e.g., dominant modal frequencies) and the computational cost of analyzing
conductors and tower simultaneously in one computational environment is very high. As a result,
past studies have decoupled towers and conductors and investigated their performance using
independent models (Darestani et al., 2020; Ma et al., 2020). As a result, an independent surrogate
model can be constructed for each model. In studies focused on the analysis of the transmission
line systems, the conductors and the tower can both have high-fidelity finite element models. The
models of the conductors and the transmission tower are simplified herein, and some assumptions
are made. As the example is for the purpose of demonstration, further studies with realistic finite
element models and wind models can be pursued in future research.
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The tower considered here is a 25-member space truss as shown in Fig. 12. Similar structures
are investigated in many other studies (Ho-Huu et al., 2016; Saka, 1990; Togan and Daloglu, 2008).
The structure herein is scaled up to a size of an actual transmission tower (100 ft) as shown in the
figure. Members of the tower are categorized into 6 groups, which are denoted as [4;, 45, ..., Ag] ©
(unit: in?), and each of them is regarded as a random design variable that follows a lognormal
distribution. The grouping details are shown in Table 6. Four conductors are attached to the top two
nodes of the truss as shown in Fig. 12. All conductors are considered as 1410 ft long on a 1400 ft
span as shown in Fig. The conductors and the tower are both subject to wind loads that are in the x
direction as shown in the figure, and the weight on the conductors are also considered. The diameter
of the conductor CD is considered as a random design variable that follows a lognormal
distribution. The random parameters considered herein are the modulus of elasticity of the tower E
and the 3-second gust wind velocity at 10 m above the ground line V (unit: mph), which follow a
lognormal distribution and a Gumbel distribution, respectively. All the random design variables are
stored in the vector [A;, 45, ..., Ag, CD] 7, and all the random parameters are stored in the vector
[E,V]". The limit state for the tower is a displacement of 20 inch on either Node 1 or 2; and the
limit state for the conductor is the tensile strength of 32,000 psi.

Table 6 Grouping details for Example 5

Group Member No.
A4 1,10,11
A, 2,3,4,5
A 6,7,8,9,22,23,24,25
A, 12,13
As 14,15,16,17
Ag 18,19,20,21
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Wind loads depend on multiple factors. According to ASCE 7-10 (2016) the wind load per
unit length for a non-building structure can be determined using the following formula:

fw = a,GCeD (36)
where q, is the velocity pressure at height z on the tower, G is the gust-effect factor (taken as 0.85),
Cr is the force coefficient, and D is the diameter perpendicular to the wind direction (unit: ft). The
force coefficient Cr considered herein is 2. Alternatively, the wind load on a non-structure building
can be determined using the following formula:

Fy = q,GCr Ay (37)
where Ay is projected area perpendicular to the wind direction. The wind velocity pressure is
calculated as follows:

q, = 0.613K,K,K, K, V? (38)
where K, is the velocity pressure exposure coefficient, K; is the wind directionality factor (taken
as 1), K,; is the wind topographic factor (taken as 1), K,is the elevation factor (taken as 1). The
velocity pressure exposure coefficient K, can be calculated using the following formula:

K, = 2_01(@)2&1 (39)
g
where z is the height from the ground line, and a and z; are 9.5 and 900 ft, respectively. The
conductor is considered to be at the height of 100 ft, thus, using Eq. (36), (38) and (39) the wind
load per unit length for the conductor is as follows:
fw = 0.00523DV? (Ib/ft) (40)

Each conductor is considered as a catenary, as shown in Fig. 13 (a). Taking half of Conductor
1 as the object, it is subject to the resultant force of distributed wind force and weight. The resultant
force is considered to be a uniformly distributed force. The maximum tension Ty, ,, happens at the
end of the conductor, and it can be decomposed into Ty, 4y  and Ty gy p as shown in the figure.
The force from the conductor to the tower F is equal to T, in value but in the opposite direction.
The force F can also be decomposed into two forces: Fy, that is equal to Ty, 4, , in value but in the
opposite direction and F,, that is equal to Ty, 4, \ in value but in the opposite direction. Fy, is trivial
here as it will be canceled out by the same force coming from the conductor on the other side on
the same node. F,, is the only force that needs to be considered from this conductor to the tower.
As shown in Fig. 13 (b), F,, can be decomposed into a force that is in the wind direction Feo wind
and a force that is in the vertical direction Feopn_weight- Feon_wind ad Feon weigne are equal to the
wind force and weight of the half of the conductor in Fig. 13 (a), respectively. Thus, there is no
need to perform analysis of the conductor to know the force from the conductor to the tower,
rendering the limit state functions for the conductors and the tower independent of each other.

z

L w T o
/ F con_wind
705 ft # ¢ Fcon,weight
Loax
T, )
Tower Fo =T v
Wind force VYV VIV VYV VYV YYFYY VI VY y y
. Resultant force W
Weightv
X X
(a) Conductor force diagram (b) Force to tower

Fig. 13 Force between conductor and tower
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As the tower is considered as a truss structure, the wind load on the tower is considered to be
distributed to Node 1~6. The tower is divided into an upper part (consisting of all members
connecting any two of Node 1~6) and a lower part (consisting of all members connecting any two
of Node 3~10). For the upper part, the total wind load F,, is calculated using Eq. (37), (38) and
(39), and the load is considered to be a wind force applied to the middle of the upper part (z =
75ft). The total projected area perpendicular to the wind direction is 200 fi? (it is assumed in this
study the area remains unchanged when the sizes of members change). Plugging all the numbers,
the total wind load on the upper part can be calculated as follows:

F,p = 0.985V2 (1b) (41)
Half of F,, is evenly distributed to Node 1 and 2, and the other half is evenly distributed to Node
3~6. Similarly, considering z = 25ft and Ay = 300f t2, the total wind load on the lower part can
be calculated as follows:

Fiow = 1.172V2 (Ib) (42)
Half of Fj,,, is evenly distributed to Node 3~6. The tower is also subject to the loads from the
conductors. The loading condition of the tower is summarized in Table 7. The displacement of the
tower is calculated using structural matrix analysis.

Table 7 Load condition of the tower

Node x direction (1b) z direction (1b)

1 Fup/4' + 2Fcon_wind _ZFcon_weight
2 Fup/4' + 2Fcon_wind _ZFcon_weight
3 Fyup/8 + Fio,/8 0

4 Fyup/8 + Fio,/8 0

5 Fyup/8 + Fio,/8 0

6 Fyup/8 + Fiy,,/8 0

The objective function to minimize is the total cost of the tower and the conductors. For each
conductor, only half of the conductor is considered to be in the system. The costs considered herein
are 10 $/in? for both conductors and the tower. The initial design point [A19, A2 A6y CDol Tis

setas [0.4,0.4,3.4,1.3,09, 1, 0.125]".
. T
find. p, = [#Al'ﬂAZr#A3'ﬂA4rﬂA5rﬂA6'ﬂCD]
min. Total cost of the tower and conductor
( Pr(grower(A1, Az, ., A6, CD,V,E) < 0) < q)(_ﬁlt)' Blt =2,

P1(Gconductor(CD,V) < 0) < (:I)(—’th), .th =2,
02< Ha, <36, 07< Ua, <08, 17< Ha, <28,

7.3 <y, <83, 7.3 <y, <83, 29 <py, <39, (34)
St 29 <pcp <39

Ay~LN(pta,,0.04?), Ay~LN(pia,,0.04?), A3~LN(pu4,, 0.34%)
Ay~LN(pa,,0.132), As~LN(pia,,0.09?), Ag~LN(pa,,0.1%)

CD~LN (ucp,0.01252%)

E~LN(107,108),V~Gumbel(150,15%)
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Table 8 Final result for Example 5

: N N,pi
Method Optimum B4 B, +t10\lml() obj

Proposed 2763789 (0.2,0.72, 3, 0.5, 0.4, 0.5, 2.3722) 2.03 2.00 108 (30+78)

Both the proposed method and the approach by Li et al. (2020) are implemented to solve the
problem. The proposed method is able to reach an optimum solution with 108 total function calls
including 30 for the objective function and 78 for the constraints, respectively. The solution by the
proposed method is shown in Table 8. The maximum error trends for the two constraint are shown
in Fig. 14. It can be observed that although the maximum error for §.onquctor 1S below the threshold
before the entire process ends, the relocation of the estimated optimal point re-activates the
refinement of §.onauctor- At the end of the process, maximum errors for both constraint surrogate
models are below the threshold. The method by Li et al. (2020) is not able to converge with even
600 total function calls and there is no sign of the solution approaching to a feasible solution or
convergence. In this case where the two constraints are entirely independent of each other, sharing
the training points among different constraint surrogate models used in the common Kriging-based
methods can hinder the refinement of the surrogate models. In this approach, the selection of the
training point in each iteration can only favor the refinement of one of the surrogate models. For
other surrogate models the information from this training point can not only be uninformative, but
also may have negative effects. As the process goes on, additional uninformative training points
can result in ill-conditioned surrogate models, hence the difficulties in convergence. For problems
that have independent constraint functions, independent training of the surrogate model can
improve the efficiency and accuracy of the training significantly.

6. Conclusions

This paper proposes a quantile-based sequential method with adaptive Kriging for solving RBDO
problems with independent constraint functions. In the proposed approach, Kriging surrogate
models are used to replace the often computationally demanding original functions in engineering
problems. The integration of an error-based stopping criterion, referred to as ESC, provides
information on the error rates of the performance function surrogate models, which can be used as
a measurement of the accuracy of the surrogate models for reliability estimation. This measurement
is used to inform whether the surrogate models are sufficiently accurate and develop a strategy for
the independent training of the models. The proposed approach thus avoids unnecessary function
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evaluations in the refinement of surrogate models while ensuring their accuracy. In addition, a new
sampling approach named ICBS is proposed. For each individual constraint, ICBS provides
instructions on how to select training points that can improve the surrogate models for the
performance functions on both deterministic and probabilistic constraints. The latter feature is often
not considered when refining the surrogate models in existing methods. The performance of the
proposed method is demonstrated through five RBDO problems. It is observed that for the first four
typical RBDO problems, the proposed method is able to find the optimum design with significantly
higher efficiency than the existing state-of-the-art methods by as much as 40%~60% under the
assumption that the constraint functions are independent. The fifth example is a practical
engineering problem where the constraint functions are actually independent. The proposed method
is able to achieve an optimal solution, while another state-of-the-art method is not able to converge
for the problem. The proposed method can be used to solve problems with independent constraint
functions efficiently.
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