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Abstract—Robot manipulation and grasping mechanisms have
received considerable attention in the recent past, leading to
development of wide-range of industrial applications. This paper
proposes the development of an autonomous robotic grasping
system for object sorting application. RGB-D data is used by the
robot for performing object detection, pose estimation, trajectory
generation and object sorting tasks. The proposed approach
can also handle grasping on certain objects chosen by users.
Trained convolutional neural networks are used to perform object
detection and determine the corresponding point cloud cluster of
the object to be grasped. From the selected point cloud data, a
grasp generator algorithm outputs potential grasps. A grasp filter
then scores these potential grasps, and the highest-scored grasp
will be chosen to execute on a real robot. A motion planner
will generate collision-free trajectories to execute the chosen
grasp. The experiments on AUBO robotic manipulator show the
potentials of the proposed approach in the context of autonomous
object sorting with robust and fast sorting performance.

Index Terms—robot manipulation; grasping; deep learning;
object sorting;

I. INTRODUCTION

Object sorting has numerous applications in a diverse range

of environments and contexts, ranging from household and

industrial settings to agriculture and pharmaceutical industries.

However, objects sorting tasks performed by human beings are

tedious and error-prone in nature, especially over extended

periods of time. In order to improve on the deficiencies of

human-based sorting applications, the use of autonomous or

semi-autonomous robots has been proposed in recent studies

[1]–[4]. In [1], Gupta at al. proposed a framework, which

sorted the simple Duplo bricks by size and color by using

depth data to determine the grasp pose for the bricks. However,

its application was limited to very light objects with simple
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geometries. In [2], Zeng at al. proposed an robotic pick-

and-place system, which was able to grasp and recognize

objects in cluttered environment. In this algorithm, the object

recognizing happened after grasping, and it seemed suitable

for the cleaning task than object’s sorting. In [3], Guerin et

al. applied an unsupervised deep neural network for a robotic

manipulator to classify the object based on feature extraction

and standard clustering algorithm. It sorted well the objects

with similar geometries, however, it failed to classify the same

type objects with different dimensions.

To work in complex environment [5], [6], an autonomous

sorting machine should have the following capabilities: (i)

detection and classification of objects with different shapes,

sizes and physical properties, (ii) optimal object grasping, and

(iii) trajectory generation and motion planning within the 3D

environment. In this paper, we present our development of

an autonomous object sorting system using robotic grasping

mechanism. By using deep neural networks, the system is able

to detect multiple types of objects, select an optimal grasping

object, and its optimal grasp pose, perform the grasp action

on a real robotic manipulator. Particularly, the contribution of

this paper are:

• development of a complete integration system of robotic

sorting manipulator,

• combination of two convolutional neural networks

(CNNs) to be able to process RGB-D data to do both

duties of object detection and object grasping.

Combining with Trajopt [7] motion planner, the experiments

on AUBO robotic manipulator show the potentials of the

proposed approach in the context of autonomous object sorting

with robust and fast sorting performance.

This paper has been divided into five sections. In sec-

tion II, state-of-the-art, related to object detection, grasping

mechanisms and robotic motion planning for pick-and-place

operations, will be presented. Section III will discuss the

salient features of the proposed method for development of

object sorting system using autonomous robotic manipulator

and Deep CNNs. Section IV will discuss the different aspects

of the experimentation and associated results. Section V will

conclude the research findings and provide recommendations

for future research in relevant research area.

II. RELATED WORK

This section discusses the state-of-the-art technologies in

Object Detection and Object Grasping.

Object Detection. The sorting system runs in real-time
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Fig. 1: Proposed approach.

manners and performs both detection and grasping work.

Thus, it requires that the used algorithms should meet the

real-time running, and provide the coordinates of detected

objects. Applying deep neural network in object detection has

improved in term of accuracy and real-time processing even

with limited computational resources [8]. The CNNs in [9],

[10] are region proposal based framework, which mapped

straightly from image pixels to bounding box coordinates

and class probabilities, thus reduce time expense for shared

convolution parameters. Liu et al. [10] proposed a Single

Shot MultiBox Detector (SSD), which takes advantage of a

set of default anchor boxes with different aspect ratios and

scales to discretize the output space of bounding boxes. To

handle objects with various sizes, the CNN fuses predictions

from multiple feature maps with different resolutions. Given

the VGG16 [11] backbone architecture, SSD adds several

feature layers to the end of the network to predict the offsets

to default boxes with different scales and aspect ratios and

their associated confidences. The network is trained with a

weighted sum of localization loss and confidence loss. SSD

runs at 59 frame per second (FPS) with 28.1 mean Average

Precision (mAP), however, it does not handle well with small

objects.

Redmon et al. [9] proposed a novel framework called

YOLO to predict both confidences for multiple categories

and bounding boxes. The YOLOv3 consists of 53 conv layers

of which some conv layers construct ensembles of inception

modules with 1x1 reduction layers followed by 3 x 3 conv

layers. It is able to process an image in 22 ms at 28.2 mAP

and classify more than 80 object classes. With real-time

operation capabilities, efficient performance and versatility

for object detection, YOLOv3 was a good option for our

proposed system. Even though, we need to modify the output

of YOLO to get the centroid of each object selection.

Grasp Detection. The use of point cloud data with

CNN has been used to provide a reliable object grasp pose

with varying pose and finger gripper configurations [6], [12].

In [13], [14], the authors tried to find good grasp poses using

RGB-D image frames with single-state regression to obtain

bounding boxes containing target objects. The algorithm in

[13] reached great speed up to 3 FPS on a GPU and high

accuracy of 90.0% on image-wise split. However, it only

provided the pose in 2D, and lacked of pose orientation

in depth direction. The algorithms in [14] considered the

depth data and outputted reliable grasp poses, which can be

graspable for finger gripper configuration. The drawback is

that it is is not a real-time application due to the processing

time.

In [15], [16], the authors used another neural network called

Grasp Pose Detection (GPD) to improve the quality of detected

grasp poses. The input of the CNN was the object point

cloud data, which processes the local geometry and graspable

surfaces of the objects. To speed up the processing time, the

authors proposed two new representation of grasp candidates

and trained the CNN with large online depth datasets obtained

from idealized CAD model. Their approach, however, failed to

address the difficulty of distinguishing between two adjacent

objects as the algorithm avoids point cloud segmentation. As a

result, there is also no direct way to grasp a specific object of

interest. If the problem of point cloud segmentation is solved,

it means that a grasp pose is generated for a single standing

object, this approach is suitable with our work and provide a

reliable grasp for specific type of object.

III. THE PROPOSED METHOD

The proposed approach included three stages as shown in

Figure 1:

• Object selection: In this stage, the robot system has to

select one object out of a multitude of different objects

present within a given environment. The priority for

object selection can be specified by the users, in terms

of the following criteria: proximity, object class, physical

properties. If there are multiple objects in the same type,

the system needs criteria to score them and grasp each

item in a predefined order. This step uses the first CNN

to detect, select then output the point cloud cluster of the

selected object, which is sent to the second deep network

to generate the grasps.

• Grasp Pose Selection: In this step, the input is the selected

object’s point cloud data, which is used to estimate and

generate grasp poses on the object. The second CNN

generates a number of different poses, then the most

suitable grasping pose is selected. This requires a filter

applied on candidate grasp poses, which is scored and
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Fig. 2: Flowchart of selecting an object to grasp.

the highest scored pose is selected and given as output

to the next step.

• Object Grasping and Sorting: A motion planner is used

to generate a trajectory that helps the robot’s gripper to

reach the desired grasp pose for grasping target object.

It is important for the generated robot trajectory to

be collision-free. The motion planner, therefore, needs

a model of the environment so that it can check for

collisions when generating trajectories.

A. Object Selection
It is challenging to perform object detection directly using

point cloud data as input. Several visual cues such as colors or

shapes, that are normally used to recognize an object can be

affected. To overcome the challenge, color images and point

cloud data are combined to make the decision. The steps for

object selection are illustrated in Figure 2. RGB images of

items are given as input to an image detector to put a bounding

box around the selected object.
YOLOv3 provides the performance metrics for object de-

tection and selection, which is used to score each item in the

same class in case multiple items are available. The object

with the highest score is given as output to the next process.

The center of the bounding box s2D (as shown in Figure 3)

is calculated.
In another process, point cloud data of different objects is

filtered to remove noise, outliers, and reduce the amount of

data by using the following: statistical filter, a voxel filter, and

a working space filter. A workspace filter is used to remove

the data points that do not belong to a predefined workspace.

At this step, plane segmentation and target extraction is used

to separate the items as shown in Figure 4.
Also shown in Figure 4, the 3D centroid coordinates of

each object ci3D are calculated, where i is index for the object

cluster i. These centroids are then projected to get 2D points

ci3Dp in the image coordinate (using the camera calibration

parameters). At the last step, the Euclidean distances between

s2D and ci3Dp are calculated, and the smallest distance is

used to determine the corresponding cluster belonging to the

selected object:

Fig. 3: Objects detection by using YOLOv3 network.

Fig. 4: Corresponding clusters of objects in Figure 5 are

separated. The red, green, and blue bars are xyz axes of the

camera’s depth coordinate frame.

• Calculate the distance di for cluster i:

d2i = (s2Dx
− ci3Dpx

)2 + (s2Dy
− ci3Dpy

)2.

• Compare and pick the cluster with the smallest distance.

All the coordinates in the formula are calculated from the

camera base frame.
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Fig. 5: Four objects to be selected. The cup is chosen to be

grasped.

To illustrate the process, for instance, a cup is the target

object to be grasped by the manipulator. The process to

determine the corresponding cluster is shown in Figure 5. The

yellow squares are c3Dp points, and the red circle is s2D,

which is calculated from the coordinates of the bounding box

of the cup returned by the trained YOLOv3 network. The

nearest yellow square to the red circle determines the third

cluster from the left (as shown in Figure 4) belongs to the

object to be grasped (the cup). After that, the grasp detection

algorithm can be performed on this cluster.

In Figure 4, four set of green points corresponding to the

point cloud data of four objects shown in Figure 5. The red,

green, and blue bars denote x, y, and z axes of camera’s depth

coordinate frame.

B. Grasp Generation and Filtering

The flowchart for grasp posture estimation and generation

is illustrated in Figure 6. After having the cluster of the

grasped object, the algorithm for Grasp Pose Detection [16] is

performed. Each point in the cloud is associated with a single

viewpoint, from which the point is captured. The algorithm

also considers the geometric parameters of the robot gripper

and a subset of points CG belonging to target objects.

To have the subset of points that belong to objects of

interest CG, those central points calculated earlier from the

labeled bounding boxes and spheres of points around them are

used. With point cloud data and centroid points as inputs, the

algorithm samples points uniformly around CG. After that, the

algorithm calculates the surface normal and an axis of major

principal curvature of the object surface. Potential grasp pose

candidates are generated at regular orientations orthogonal

to the curvature axis. These grasp poses are then pushed

forward until the fingers make contact with the point cloud.

The grasps poses without any data points between the fingers

are discarded. The remaining grasp poses are given as input to

a four-layered CNN for pose classification between viable and

non-viable grasping poses. At this step, the algorithm is used

for scoring grasp poses to pick the grasp pose with highest

score. The algorithm gives a high score for grasps that are

at the upper part of the object (higher chance of successful

grasps). It also considers the gripper orientations and poses if

they are similar to the current pose of the gripper or points

towards the robot position. This helps to minimize the robot’s

movements. In Figure 7, the best pose to grasp is the red one.

C. Grasp Execution

To execute the chosen grasp on a real robot, there is a need

to generate a collision-free trajectory, which transforms the

current gripper’s pose to the desired grasp pose. To check

for collisions, TrajOpt [7] needs an accurate simulated model

of the environment, which includes the robot model and the

point cloud data of objects in the robot base coordinate. The

execution of the chosen grasp was illustrated in Figure 8.

As all the objects that the camera sees are in the camera

coordinate, there is a need to calculate a transformation

matrix from this coordinate to the robot base coordinate. The

Aruco tags [17] were used to calculate the transformation

matrix through the end-effector coordinate of the robot. These

coordinates are defined in Figure 9.

• An Aruco tag is attached on the end-effector of the

robot (the gripper is temporarily removed) so that the

transformation matrix between the tag’s coordinate Ctag

and the end-effector coordinate Ce is known.

• The transformation matrix between Ctag and the camera

coordinate Ccam can be computed using any Aruco tag

software package. We use aruco ros, and the detection

result is shown in Figure 9.

• The transformation matrix between the Ce and Cbase is

provided by the forward kinematics of the robot.

The homogeneous transformation matrix between Ccam and

Cbase is the multiplication of the above matrices:

M base
cam = M base

e Me
tagM

tag
cam.

Using M base
cam , the point cloud data in Ccam can be easily con-

verted to Cbase. Using this matrix, the point cloud data from

the camera’s coordinate can be transformed and displayed

them in the robot base coordinate using OpenRave [18] as

shown in Figure 10.

After transformation has been performed to Cbase that

includes the robot, the objects, and the desired grasp pose;

TrajOpt will generate a collision-free trajectory. The trajectory

is a series of 6-joint position tuples, which can then be

successfully performed on the actual robot.

IV. EXPERIMENT

A. Hardware

An AUBO-i5 robot from AuboRobotics 6-DOF with pay-

load of 5 kg is used in the practical experimentation. The robot

is controlled using a Python driver provided by the manufac-

turer. A Robotiq 2-finger 85 adaptive gripper is mounted on

the arm. The gripper is position-controlled with positional and

force feedback and adjustable gripping force between 20N and
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Fig. 6: Grasp generation & filtering on the selected item.

Fig. 7: Eight highest scored poses to grasp an object and the

best pose is in red. This posture points toward the object and is

similar to the current gripper’s pose. Moreover, the contacting

point of grasp pose in on the upper part of the target object.

235N. For the vision system, Asus Xtion Pro RGB-D camera

has been used. The camera outputs 640x480 RGB images

along with point cloud data. The camera is fixed at a position

on a table during the experiment. The whole setup is illustrated

in Figure 11.

B. Camera Calibration

As grasping objects require accurate positional information,

it is essential for the camera to be properly calibrated. There

are two different calibration procedures for RGB and depth

images that have been performed.

• RGB calibration: We use the procedure mentioned in this

ROS tutorial 1. A checkerboard of size 8x6 is used in this

step.

• Depth calibration: The camera that we use is notorious for

having depth error without calibration. We also suffered

the same error of about 5 cm at a distance of 50 cm.

It can be seen in Figure 12, the tag from point cloud

data is moved 5 cm in front of the actual position. We

follow the instructions for calibrating the depth sensor by

using jsk pcl ros package 2. The idea is to align the depth

estimation from RGB images with the depth calculated

from the depth sensor. We used the same size checker-

board with a smaller grid in order to cover the better

our working space while performing the calibration. After

calibration, the error is reduced to 1 cm.

1http://wiki.ros.org/camera calibration/Tutorials/MonocularCalibration
2https://jsk-recognition.readthedocs.io/en/latest/jsk pcl ros/calibration.html

C. Training YOLOv3

Object image data was collected using online images from 4

categories: lotion bottles, deodorant bottles, cups, and cans. To

come up with this list, we need to test the performance of GDP

algorithm on these objects to make sure that the algorithm can

generate valid grasps poses. Some transparent objects are not

effectively detected by laser beams from the camera, due to

which, they were not used the experimentation. Additionally,

the neural network used in GPD algorithm to generate grasp

poses was trained in certain objects, as a result, it might not

generalize with novel objects. A total of 800 images for each

class were used for training and validation. After that, the

data was manually labelled and fine-tuning was performed

with the instruction for training with custom objects from a

GitHub repository 3. For the selected object dataset, 80% of

the total images for training and 20% of the images dataset

for testing. The default configuration of weights and hyper-

parameters has been chosen for training of object classification

model (from darknet53.conv.74). The final performance of the

trained object classification model is 84.39% mAP and 0.5

Intersection over Union (IOU). An example of detected objects

is shown in Figure 3. The trained network is used to return

the coordinates of rectangles to cover the detected objects.

From these bounding boxes, the centroids for target objects

are calculated, as discussed in the previous section.

D. Results

The trajectory generated by TrajOpt, given the transformed

point cloud data, the robot model, and the desired grasp pose

is shown in Figure 13. The scene with point cloud data is

transformed into simpler meshes for collision checking. After

that, the path is generated to transform the current pose of

the gripper to the desired grasp pose. At the final step, the

gripper is able to reach the desired grasp pose to prepare to

grasp the object. The generated trajectory is replayed on the

real robot, which is shown in Figure 14. The figure shows the

accuracy of the generated path where the gripper is able to

come close to the surface without collision. The coke can is

also in the middle of the grasp, ready to be grasped. The path

planning process for all four objects is performed then com-

bined into a single replay. The generated trajectory consists

of multiple 6-joint positions of the robot, which is transmitted

to the robot every 0.1 seconds. The frequency of 10 Hz was

selected to ensure seamless and safe execution of the pro-

posed experimentation. The path planning for grasp pose and

3https://github.com/AlexeyAB/darknet
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Fig. 8: Flowchart of executing the chosen grasp.

Fig. 9: Coordinates: top - Aruco tag’s coordinate Ctag in the

camera coordinate Ccam; middle - end-effector coordinate Ce,

bottom - robot base coordinate Cbase. Color: X,Y, Z = red,

green, blue.

Fig. 10: Simulated environment in OpenRave.

practical execution of object grasping on the four objects can

be seen in https://www.youtube.com/watch?v=ujorCGl5Ieo.

All source code is available on our ARA lab’s GitHub

https://github.com/aralab-unr/GraspInPointCloud.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the development of an autonomous

robotic manipulator for sorting application. Two state-of-the-

art Deep Conventional Neural Networks were used to pro-

cess RGB-D data for both object detection and robust grasp

pose generation. Combining with Trajopt motion planning, it

formed a viable solution for an autonomous sorting robot.

Moreover, this paper also discussed the design of a grasp

filtering, which works as an interface between the existing

grasp pose detection algorithm and the variance in sorting
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Fig. 11: Hardware setup.

Fig. 12: Mitigated depth error after a calibration.

robot system. This can ensure that the different algorithms

can work robustly with our gripper’s configuration.

The proposed system is validated by an experiment utilizing

the detection, grasping and sorting of different object types.

The experiment results on various objects show that our

proposed combination of deep learning-based object detection

model, grasp detection & filtering, and the manipulator control

method is able to provide robust and efficient object grasping

and sorting of different objects. The proposed approach can be

adapted to different types of manipulators, gripper mechanisms

and robots.

There are a few drawbacks to our research, which can be

improved in the future. The first problem is the processing time

due to large amount of data being used by motion planning

and Grasp Pose Detection algorithms. Future research should

focus towards improving the data representation to reduce

the processing data. Another potential improvement would be

towards development of grasp pose filter, which is able to

work efficiently with relative position change between robot

joints and camera. Moreover, combining more cameras will

provide better point cloud data to represent the object, which

in turn will improve the Grasp Pose detection in cluttered

environment.

We also plan to extend this work to multi-manipulator col-

laboration in which both collaborative and distributed control

[19]–[23] and deep reinforcement learning [12], [24]–[26]

will be investigated to allow multiple manipulators to work

together efficiently while avoiding collision. The multi-agent

cooperative control and sensing research in our previous work

[27]–[39] will be utilized.
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(a) Robot & scene loaded. (b) Planning is started. (c) Building trajectories. (d) Path planning finished.

Fig. 13: Planning for one grasp pose by OpenRave. First (a), the robot model, the point cloud data, and the desired grasp pose

of the scene are loaded. The robot coordinate and the desired grasp pose are plotted with X axis (red), Y axis (green), Z axis

(blue). Next (b), the point cloud data is simplified by approximated meshes for collision checking, starting the path planning.

(c) Trajectories is then built. (d) The trajectory (red) is generated successfully without any collision.

Fig. 14: Generated trajectory replayed on the robot. The trajectory consists of a set of 6-joint positions, which is then replayed
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