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Calderón-Zygmund theory has been traditionally developed 
on metric measure spaces satisfying additional regularity 
properties. In the lack of good metrics, we introduce a new 
approach for general measure spaces which admit a Markov 
semigroup satisfying purely algebraic assumptions. We shall 
construct an abstract form of ‘Markov metric’ governing the 
Markov process and the naturally associated BMO spaces, 
which interpolate with the Lp-scale and admit endpoint in-
equalities for Calderón-Zygmund operators. Motivated by 
noncommutative harmonic analysis, this approach gives the 
first form of Calderón-Zygmund theory for arbitrary von Neu-
mann algebras, but is also valid in classical settings like 
Riemannian manifolds with nonnegative Ricci curvature or 
doubling/nondoubling spaces. Other less standard commuta-
tive scenarios like fractals or abstract probability spaces are 
also included. Among our applications in the noncommuta-
tive setting, we improve recent results for quantum Euclidean 
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spaces and group von Neumann algebras, respectively linked 
to noncommutative geometry and geometric group theory.

© 2020 Published by Elsevier Inc.

Introduction

The analysis of linear operators associated to singular kernels is a central topic in 
harmonic analysis and partial differential equations. A large subfamily of these maps is 
under the scope of Calderón-Zygmund theory, which exploits the relation between metric 
and measure in the underlying space to provide sufficient conditions for Lp boundedness. 
The Calderón-Zygmund decomposition [5] or the Hörmander smoothness condition for 
the kernel [26] combine the notions of proximity in terms of the metric with that of 
smallness in terms of the measure. The doubling and/or polynomial growth conditions 
between metric and measure yield more general forms of the theory [13,46,47,61,62]. To 
the best of our knowledge, the existence of a metric in the underlying space is always 
assumed in the literature.

In this paper, we introduce a new form of Calderón-Zygmund theory for general 
measure spaces admitting a Markov semigroup which only satisfies purely algebraic 
assumptions. This is especially interesting for measure spaces where the geometric in-
formation is poor. It includes abstract probability spaces or fractals like the Sierpinski 
gasket, where a Dirichlet form is defined. It is also worth mentioning that our approach 
recovers Calderón-Zygmund theory for classical spaces and provides alternative forms 
over them. In spite of these promising directions —very little explored here— our main 
motivation has been to develop a noncommutative form of Calderón-Zygmund theory for 
noncommutative measure spaces (von Neumann algebras) where the notions of quantum 
metric [37,55,56] seem inefficient.

A great effort has been done over the last years to produce partial results towards 
a noncommutative Calderón-Zygmund theory [21,25,29,31,45,49]. The model cases con-
sidered so far are all limited to (different) noncommutative forms of Euclidean spaces, 
described as follows:

A) Tensor products. Let f = (fjk) : Rn → B(�2) be a matrix-valued function and 
consider the tensor product extension of a standard Calderón-Zygmund operator acting 
on f , formally given by

Tf(x) =
ˆ

Rn

k(x, y)f(y) dy =
(
Tfjk(x)

)
jk

for x /∈ suppf.

The Lp-boundedness of this map in the associated (tensor product) von Neumann al-
gebra M = L∞(Rn)⊗̄B(�2) trivially follows for p > 1 from the vector-valued theory, 
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due to the UMD nature of Schatten p-classes. On the contrary, no endpoint estimate for 
p = 1 is possible using vector-valued methods. The original argument in [49] —also in a 
recent simpler form [3]— combines noncommutative martingales with a pseudolocaliza-
tion principle for classical Calderón-Zygmund operators. More precisely, a quantification 
of how much L2-mass of a singular integral is concentrated around the support of the 
function on which it acts. This inequality has been the key tool in the recent solution 
of the Nazarov-Peller conjecture [7], a strengthening of the celebrated Krein conjecture 
[58] on operator Lipschitz functions.

B) Crossed products. New Lp estimates for Fourier multipliers in group von Neumann 
algebras have recently gained considerable momentum for its connections to geometric 
group theory. The first Hörmander-Mikhlin type theorem in this direction [31] exploited 
finite-dimensional cocycles of the given group G to transfer the problem to the cocycle 
Hilbert space H = Rn. To find sufficient regularity for Lp-boundedness amounts to 
study Calderón-Zygmund operators in the crossed products L∞(Rn) � G induced by 
the cocycle action. Nonequivariant extensions of CZOs on these von Neumann algebras 
were investigated in [31], after identifying the right BMO space for the length function 
determined by the cocycle. These operators have the form

ˆ

G

fg � λ(g) dμ(g) �→
ˆ

G

Tg(fg) � λ(g) dμ(g).

Here μ, λ respectively denote the Haar measure and left regular representation on the 
(unimodular) group G, whereas Tg = αgTαg−1 is a twisted form of a classical CZO T
on Rn by the cocycle action α. We refer to [32,50] for further results.

C) Quantum deformations. PDEs in matrix algebras and ‘noncommutative manifolds’ 
appear naturally in theoretical physics. Pseudodifferential operators were introduced 
by Connes in 1980 to study a quantum form of the Atiyah-Singer index theorem over 
these algebras. These techniques have been underexploited over the last 30 years, due 
to fundamental obstructions to understand singular integral theory in this context. The 
core of singular integrals and pseudodifferential operator Lp-theory was developed in 
[21] over the archetypal algebras of noncommutative geometry. It includes quantum tori, 
Heisenberg-Weyl algebras and other quantum deformations of Rn of great interest in 
quantum field theory, string theory and quantum probability. This was the first approach 
to a ‘fully noncommutative’ Calderón-Zygmund theory for CZOs not acting on copies of 
Rn as tensor or crossed product factors, but still related to Euclidean methods.

We introduce in this paper the first form of Calderón-Zygmund theory valid for gen-
eral (semifinite) von Neumann algebras. As we explained above, the main difficulty arises 
from the lack of very standard geometric tools, like the existence of a nice underlying 
metric or the construction of suitable covering lemmas. We shall circumvent it using a 
very different approach based on algebraic properties of a given Markov process. Our 
applications cover a wide variety of scenarios which will be discussed, giving especial em-
phasis to noncommutative forms of Euclidean spaces and locally compact abelian groups, 
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which are our main classical models. In the first case, we shall weaken/optimize the CZ 
conditions on quantum Euclidean spaces [21]. In the second case, LCA groups correspond 
to quantum groups which are both commutative and cocommutative [59]. We shall give 
CZ conditions for convolution maps over quantum groups. In the cocommutative (non 
necessarily commutative) context, this includes group von Neumann algebras.

Calderón-Zygmund extrapolation

Based on the behavior of the Hilbert transform in the real line, the main goal of 
Calderón-Zygmund theory is to establish regularity properties on the kernel of a singular 
integral operator, so that L2-boundedness automatically extrapolates to Lp boundedness 
for 1 < p < ∞. A singular integral operator in a Riemannian manifold (X, d, μ) admits 
the kernel representation

Tkf(x) =
ˆ

X

k(x, y)f(y) dμ(y) for x /∈ suppf.

Namely, Tk is only assumed a priori to send test functions into distributions, so that it 
admits a distributional kernel in X×X which coincides in turn with a locally integrable 
function k away from the diagonal x = y, where the kernel presents certain singularity. 
This already justifies the assumption x /∈ suppf in the kernel representation. The work 
in [5,26] culminated in the following sufficient conditions on a singular integral operator 
in Rn for its Lp-boundedness:

i) L2-boundedness

∥∥Tk : L2(Rn) → L2(Rn)
∥∥ < ∞.

ii) Hörmander kernel smoothness

ess sup
x,y∈Rn

ˆ

|x−z|>2|x−y|

∣∣k(x, z) − k(y, z)
∣∣ +

∣∣k(z, x) − k(z, y)
∣∣ dz < ∞.

Historically, this was used to prove a weak endpoint inequality in L1. The same holds for 
Riemannian manifolds with nonnegative Ricci curvature [1]. Alternatively it is simpler to 
use L2-boundedness and the kernel smoothness condition to prove L∞ → BMO bound-
edness. The result then follows by well-known duality and interpolation arguments. Our 
strategy resembles this approach:

P1. Identify the appropriate BMO spaces.
P2. Prove the expected interpolation results with Lp spaces.
P3. Provide conditions on CZO’s which yield L∞ → BMO boundedness.
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In the classical setting, we typically find H1/BMO spaces associated to a metric or 
a martingale filtration. Duong and Yan [17,18] extended this theory replacing some 
averages over balls in the metric space by semigroups of positive operators, although 
the existence of a metric was still assumed. This assumption was removed in [30,44]
providing a theory of semigroup type BMO spaces with no further assumptions on the 
given space. In particular, we could say that Problems 1 and 2 were solved in [30], 
but it has been unclear since then how to provide natural CZ conditions which imply 
L∞ → BMO estimates. In this paper we solve P3 by splitting it into:

P3a. Construct a ‘metric’ governing the Markov process.
P3b. Define ‘metric BMO’ spaces which still interpolate with the Lp scale.
P3c. Provide CZ conditions giving L∞ → BMO boundedness for metric BMO’s.

P3a. Markov metrics. Given a Markov semigroup S = (St)t≥0 on the semifinite von 
Neumann algebra (M, τ) —in other words, formed by normal self-adjoint cpu maps 
St— we introduce a Markov metric for it as any family

Q =
{(

Rj,t, σj,t, γj,t
)

: (j, t) ∈ Z+ ×R+

}
composed of normal completely positive unital (cpu) maps Rj,t : M → M and elements 
σj,t, γj,t of M with γj,t ≥ 1M, such that the following estimates (which show how the 
Markov metric governs the Markov semigroup in a controlled way) hold:

i) Hilbert module majorization: 
〈
ξ, ξ

〉
St

≤
∑
j≥1

σ∗
j,t

〈
ξ, ξ

〉
Rj,t

σj,t.

ii) Metric integrability condition: kQ = sup
t>0

∥∥∥∑
j≥1

σ∗
j,tγ

2
j,tσj,t

∥∥∥ 1
2

M
< ∞.

Here 〈 , 〉Φ is the M-valued inner product on M⊗̄M for any cpu map Φ, given by 
〈a ⊗b, a′⊗b′〉Φ = b∗Φ(a∗a′)b′. Markov metrics are a priori unrelated to Rieffel’s quantum 
metric spaces [55,56]. They present on the contrary vague similarities with abstract 
formulations of classical CZ theory in the absence of CZ kernels and/or doubling measures 
[2,61]. We shall explain what motivates our definition below and we shall also illustrate 
how Euclidean and other classical metrics fit in.

P3b. Metric type BMO spaces. Let

‖f‖BMOc
S = sup

t≥0

∥∥∥(St(f∗f) − (Stf)∗(Stf)
) 1

2
∥∥∥
M

and ‖f‖BMOS = max{‖f‖BMOc
S , ‖f∗‖BMOc

S}. We shall define the semigroup type BMO 
space BMOS(M) as the weak-∗ closure of M in certain direct sum of Hilbert modules 
determined by S = (St)t≥0. BMOS(M) interpolates with Lp(M) under certain notion 
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of regularity [30] to be recalled below. Given a Markov metric Q associated to this 
semigroup, let us define in addition

‖f‖BMOQ = max
{
‖f‖BMOc

Q , ‖f
∗‖BMOc

Q

}
,

‖f‖BMOc
Q = sup

t>0
inf

Mt cpu
Mt:M→M

sup
j≥1

∥∥∥(γ−1
j,t

[
Rj,t|f |2 − |Rj,tf |2 + |Rj,tf −Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M
.

Theorem A1. Let (M, τ) be a semifinite von Neumann algebra equipped with a Markov 
semigroup S = (St)t≥0. Let us consider a Markov metric Q associated to S = (St)t≥0. 
Then, we find

‖f‖BMOS � kQ ‖f‖BMOQ .

If S = (St)t≥0 is regular, then BMOQ(M) ⊂ BMOS(M) interpolates with Lp(M).

Theorem A1 solves P3b. Its proof is not hard after having defined the right no-
tion of Markov metric and the right BMO norm. Let us note in passing that the term 
Rj,tf −Mtf is there to accommodate nondoubling spaces to our definition in the spirit 
of Tolsa’s RBMO space [61]. As a consequence of Theorem A1, proving L∞ → BMO
boundedness for metric BMO’s (Problem 3c) implies the same result for semigroup BMO 
spaces (Problem 3). Of course, one could try to prove such a statement directly, but it 
seems that the metric/measure relation found with these new notions is crucial for a 
noncommutative CZ theory.

P3c. Calderón-Zygmund operators. The commutative idea behind the notion of Markov 
metric (explained in more detail in the body of the paper) is to find pointwise majorants 
of the integral kernels of our semigroup S = (St)t≥0, so that we can dominate St by 
certain sum of averaging operators over a distinguished family of measurable sets Σj,t(x). 
These sets may be considered as the ‘balls’ in the Markov metric. In the noncommutative 
setting, this pointwise estimates must be written in terms of the given Hilbert module 
majorization and the cpu maps Rj,t must be averages over certain projections qj,t. Making 
this precise in full generality is one of the challenges of our algebraic approach and too 
technical to be explained at this point of the paper. A simple model case is given by

Rj,tf =
(
(id⊗ τ)(qj,t)

)− 1
2 (id⊗ τ)

(
qj,t(1 ⊗ f)qj,t

)(
(id⊗ τ)(qj,t)

)− 1
2 (Avg)

for certain family of projections qj,t ∈ M⊗̄M. The linear map R̂j,t(1 ⊗ f) = Rj,tf

trivially amplifies to M⊗̄M. We may also consider similar formulas for the cpu maps 
Mt in the metric BMO norm. (Avg) allows to identify the Markov metric in terms of the 
‘balls’ qj,t instead of the corresponding averaging maps Rj,t.

As it happens in classical Calderón-Zygmund theory, we need to impose some addi-
tional properties in the Markov metric to establish a good relation with the underlying 
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(noncommutative) measure. We have split these into algebraic and analytic conditions, 
further details will be given in the text. Let us just mention that the algebraic ones are 
inherent to noncommutativity and hold trivially in commutative cases. The analytic ones 
provide forms of Jensen’s inequality and a measure/metric growth condition. Once we 
know the Markov metric satisfies these conditions, we may introduce Calderón-Zygmund 
operators. Assume that T (AM) ⊂ M for a map T acting on a weak-∗ dense subalge-
bra AM ⊂ M such that AM has dense intersection with Lp(M) for any 1 ≤ p < ∞. 
The goal is to establish sufficient Calderón-Zygmund conditions on T for L∞ → BMOc

boundedness. These are noncommutative forms of standard properties. Again, it is un-
necessary to introduce them here in full generality, we do it in Section 2. In the model 
case above, our CZ conditions are:

i) L∞(Lc
2)-boundedness

∥∥∥(id⊗ τ)
(
(id⊗ T )(x)∗(id⊗ T )(x)

) 1
2
∥∥∥
M

�
∥∥(id⊗ τ)(x∗x) 1

2
∥∥
M,

for x ∈ M⊗̄M such that 
∥∥(id ⊗ τ)(x∗x)

∥∥
M < ∞.

ii) Size ‘kernel’ conditions
• M̂t

(∣∣(id ⊗ T )
(
(1 ⊗ f)(Aj,t − at)

)∣∣2) � γ2
j,t‖f‖2

M,

• R̂j,t

(∣∣(id ⊗ T )
(
(1 ⊗ f)(Aj,t − aj,t)

)∣∣2) � γ2
j,t‖f‖2

M,
for any f ∈ AM and certain family of operators Aj,t, aj,t ∈ M⊗̄M with Aj,t ≥ aj,t.

iii) Hörmander ‘kernel’ conditions
• Φj,t

(∣∣δ((id ⊗ T )
(
(1 ⊗ f)(1 − aj,t)

))∣∣2) � γ2
j,t‖f‖2

M,

• Ψj,t

(∣∣δ((id ⊗ T )
(
(1 ⊗ f)(1 −Aj,t)

))∣∣2) � γ2
j,t‖f‖2

M,
for certain family of normal cpu linear maps Φj,t, Ψj,t : M⊗̄M → M.

In condition ii), Aj,t and aj,t play the role of ‘dilated balls’ from qj,t. In the last 
condition, δ is the derivation x �→ x ⊗ 1 − 1 ⊗ x acting on the second leg of the tensor 
product. In the Euclidean case, these conditions reduce to L2-boundedness and the 
classical size/smoothness conditions for the kernel. Our general conditions include many 
more amplification algebras and derivations, other than M⊗̄M and δ. Any map T :
AM → M satisfying the above CZ-conditions will be called a column CZ-operator.

Theorem A2. Let (M, τ) be a semifinite von Neumann algebra equipped with a Markov 
semigroup S = (St)t≥0 with associated Markov metric Q fulfilling our algebraic and 
analytic assumptions. Then, any column CZ-operator T defines a bounded operator

T : AM → BMOc
Q(M).

If S is regular, interpolation and duality give similar conditions for Lp-boundedness.



8 M. Junge et al. / Advances in Mathematics 376 (2021) 107443
A generalized form of Theorem A2 is the main result of this paper. It is easy to 
recover Euclidean CZ-extrapolation from it. In the Euclidean and many other doubling 
scenarios, the size kernel condition ii) does not play any role. Our next goal is to explore 
how the general form of Theorem A2 applies in concrete von Neumann algebras with 
specific Markov metrics. It is worth mentioning that our regularity assumption holds for 
all the relevant examples in this paper.

Applications

Algebraic Calderón-Zygmund theory applies in classical and noncommutative measure 
spaces. In the commutative context, we shall limit ourselves to prove that algebraic and 
classical theories match in three important cases: Euclidean spaces with both Lebesgue 
or Gaussian measures and Riemannian manifolds with non-negative Ricci curvature. We 
shall not explore further implications in new commutative scenarios, like abstract prob-
ability spaces or fractals equipped with specific Dirichlet forms. In the noncommutative 
context, we start by analyzing the model case of matrix-valued functions from a very 
general viewpoint. We also consider Calderón-Zygmund operators over matrix algebras, 
generalizing triangular truncations as the archetype of singular integral operator. Most 
importantly, our abstract theory applies to quantum Euclidean spaces and quantum 
groups, which constitute our main motivations in this paper.

It will be useful to specify the form that our Calderón-Zygmund operators take when 
come associated to a concrete kernel. Our applications below include CZ conditions on 
the kernel. In the basic model case above, we set

Tkf = (id⊗ τ)
(
k(1 ⊗ f)

)
(Ker 1)

for some kernel k affiliated to M⊗̄Mop. Recall that the opposite structure (Mop is the 
same algebra M endowed with the reversed product a · b = ba) in the second tensor leg 
of the kernel for this (standard) model was already justified in [21]. It is a feature of CZ 
theory which can only be witnessed in noncommutative algebras. It will also be useful 
to generalize a bit our model case before analyzing any concrete application. Consider 
an auxiliary von Neumann algebra A equipped with a n.s.f. trace ϕ, a ∗-homomorphism 
σ : M → A⊗̄M and the representation

Sk̃f = (id⊗ ϕ)
(
k̃ flip ◦ σ(f)

)
(Ker 2)

for some kernel k̃ affiliated to M⊗̄Aop. Of course, when A = M and σ(f) = 1 ⊗ f

we recover our model case above, with kernel representation (Ker 1). This more general 
framework requires to redefine Rj,t in (Avg) and the CZ conditions, as we shall do in the 
body of the paper. The advantage is to take A as an elementary (commutative) algebra, 
from which we can transfer metric information. One may think of σ as a corepresentation 
in the terminology of quantum groups. Theorem A2 still holds in this case. We shall refer 
to intrinsic or transferred theories when using the model case A = M or its generalization 
respectively.
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Quantum Euclidean spaces. As geometrical spaces with noncommuting spatial coordi-
nates, quantum Euclidean spaces have appeared frequently in the literature of mathe-
matical physics, in the contexts of string theory and noncommutative field theory. These 
algebras play the role of a central and testing example in noncommutative geometry as 
well. The singular integral operators on quantum Euclidean spaces naturally appear in 
the recent study of Connes’ quantized calculus [40,42,57] and noncommutative harmonic 
analysis [10,21,22,64]. Let

Θ ∈ Mn(R)

be anti-symmetric. Briefly, the quantum Euclidean space RΘ is the von Neumann algebra 
generated by certain family of unitaries {uj(s) : 1 ≤ j ≤ n, s ∈ R} satisfying

uj(s)uj(t) = uj(s + t),
uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

Define λΘ(ξ) = u1(ξ1)u2(ξ2) · · ·un(ξn) and set

f =
ˆ

Rn

f̌Θ(ξ)λΘ(ξ) dξ = λΘ(f̌Θ),

for f̌Θ ∈ Cc(Rn). The trace on RΘ is determined by

τΘ(f) = τΘ

⎛⎝ˆ

Rn

f̌Θ(ξ)λΘ(ξ) dξ

⎞⎠ = f̌Θ(0).

When Θ = 0, Lp(RΘ, τΘ) reduces to Lp(Rn) with the Lebesgue measure. Precise defini-
tions and a theory of singular integrals for RΘ appear in [21]. The main result relies on 
gradient kernel conditions for the intrinsic model (Ker 1). Remarkably, we show in this 
paper that the transference model (Ker 2)

σΘ : RΘ � λΘ(ξ) �→ expξ ⊗λΘ(ξ) ∈ L∞(Rn)⊗̄RΘ

goes further, since it just requires Hörmander type smoothness for the kernel. Here expξ

stands for the ξ-th character exp(2πi〈ξ, ·〉) in Rn. There is a close relation between both 
models in this case

π̃Θ(m⊗ expξ) = mλΘ(ξ)∗ ⊗ λΘ(ξ), ∀m ∈ RΘ and Tk(f) = Sk̃(f) for k = π̃Θ(k̃).

Another crucial map is the ∗-homomorphism

πΘ : L∞(Rn) � expξ �→ λΘ(ξ) ⊗ λΘ(ξ)∗ ∈ RΘ⊗̄Rop
Θ .
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If BR denotes the Euclidean R-ball centered at the origin, define the projections aR =
πΘ(15BR

) and a⊥R = 1 − aR. Set kσ = (σΘ ⊗ idRop
Θ

)(k) ∈ L∞(Rn)⊗̄RΘ⊗̄Rop
Θ and define 

the derivation δϕ(x, y) = ϕ(x) − ϕ(y) to set the kernel condition in L∞(Rn)⊗̄RΘ⊗̄Rop
Θ

sup
|x|≤R,|y|≤R

∣∣∣δ((id⊗ id⊗ τΘ)
[
kσ(1 ⊗ 1 ⊗ f)(1 ⊗ a⊥R)

])
(x, y)

∣∣∣ � ‖f‖RΘ . (Hör)

As we shall justify in the paper, (Hör) is the right form of Hörmander kernel condition 
in this framework. The column BMO-norm admits in RΘ an equivalent form

‖f‖BMOc(RΘ) ≈ ‖σΘ(f)‖BMOc(Rn;RΘ)

for the operator-valued BMO space BMOc(Rn; RΘ) from [43]. These are all the ingredi-
ents to obtain Calderón-Zygmund extrapolation over quantum Euclidean spaces. Namely, 
the general form of Theorem A2 then yields the following theorem.

Theorem B1. Tk is bounded from RΘ to BMOc(RΘ) provided:

i) Tk is bounded on L2(RΘ).
ii) The kernel condition (Hör) holds.

Interpolation and duality give similar (symmetrized) conditions for Lp-boundedness.

Theorem B1 improves the main CZ extrapolation theorem in [21] by reducing the gra-
dient kernel condition there to the (more flexible) Hörmander integral condition above, 
as we shall prove along the paper. In fact, the result which we shall finally prove is 
slightly more general than the statement above.

Quantum groups. Let G be a locally compact group with a left invariant Haar measure μ. 
When G is abelian, the Fourier transform carries the convolution algebra L1(G, μ) into 
the multiplication algebra L∞(Ĝ, ̂μ) associated to the dual group with its (normalized) 
Haar measure. However, when G is not abelian, we can not construct the dual group 
and the multiplication algebra above becomes the group von Neumann algebra which 
is generated by the left regular representation of G. These algebras are basic models of 
(noncommutative, but still cocommutative) quantum groups, over which we shall study 
singular integrals.

Let G be a locally compact quantum group of Kac type —precise definitions in the 
body of the paper— with comultiplication Δ and left-invariant and right-invariant Haar 
weights ψ, ϕ. Given a weak-∗ dense subalgebra A of L∞(G) and a linear map T satisfying 
T (A) ⊂ L∞(G), it is is a convolution map when

(T ⊗ idG) ◦ Δ = Δ ◦ T = (idG ⊗ T ) ◦ Δ.
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To simplify the problem, we shall consider the case where G admits an α-doubling 
intrinsic Markov metric. That is, the projections which generate the cpu maps Rj,t’s 
satisfy

ψ(qα(j),t)
ψ(qj,t)

≤ cα

for a strictly increasing function α : N → N with α(j) > j and a constant cα.

Theorem B2. Let G be a locally compact quantum group of Kac type and assume it comes 
equipped with a convolution semigroup S = (St)t≥0 which admits an α-doubling intrinsic 
Markov metric. Let T : A → L∞(G) be a convolution map defined on a weakly dense 
∗-subalgebra A of L∞(G) such that

i) T is bounded on L2(G).
ii) 1

|ψ(qj,t)|2
(ψ ⊗ ψ)

(
(qj,t ⊗ qj,t)

∣∣δ(T (fq⊥α(j),t
)∣∣2) � ‖f‖2

L∞(G).

Then, the linear map T extends to a bounded map T : L∞(G) → BMOc
S(L∞(G)).

As usual, Lp estimates follow from symmetrized conditions by interpolation and du-
ality when the Markov semigroup S = (St)t≥0 is regular. In fact, we shall prove a more 
general statement which incorporates tensor products with an additional algebra (M, τ). 
Theorem B2 is proved one more time from Theorem A2. In fact, it is conceivable to re-
move the α-doubling restriction and still make the convolution map bounded under an 
additional size kernel condition.

Noncommutative transference. In a different direction, we shall finish this paper with 
a section devoted to noncommutative forms of Calderón-Cotlar method of transference 
[4,12,14]. The basic idea is to transfer Lp estimates of convolution maps on quantum 
groups to a much wider class of maps which arise by transference. We refer to [6,8,10,
48,50,54] for other forms of transference in the context of group von Neumann algebras 
and quantum tori.

1. Markov metrics

An abstract form of Calderón-Zygmund theory incorporating noncommutative alge-
bras lacks standard geometrical tools. Given a Markov semigroup on a von Neumann 
algebra —a semigroup of normal cpu self-adjoint maps on the given algebra— we shall 
construct a ‘metric’ governing the Markov process. Our model case in a commutative 
measure space (Ω, μ) is a Markov semigroup of linear maps of the form

Stf(x) =
ˆ

st(x, y)f(y) dμ(y).

Ω
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The idea is to find pointwise majorants of the form

st(x, y) ≤
∞∑
j=1

|σj,t(x)|2
μ(Σj,t(x))χΣj,t(x)(y), (1.1)

so that Stf(x) is dominated by a given combination of averaging operators over certain 
measurable sets Σj,t(x). These sets will determine some sort of metric on (Ω, μ) under 
additional integrability properties. Naively, we may think of them as balls or coronas 
around x in the hidden metric with radii depending on (j, t). In this section we formalize 
this idea and construct BMO spaces with respect to the associated ‘Markov metric’ which 
satisfy the expected interpolation results.

1.1. Hilbert modules

A noncommutative measure space is a pair (M, τ) formed by a semifinite von Neu-
mann algebra M and a n.s.f. trace τ . We assume in what follows that the reader is 
familiar with basic terminology from noncommutative integration theory [36,60]. Non-
expert readers may proceed by fixing a measure space (Ω, μ) with M = L∞(Ω) and τ
the integral operator associated to μ. Given a cpu map Φ : M → M, we may construct 
the Lp(M)-Hilbert module Lp(M⊗̄ΦM). Namely consider the seminorm on M ⊗M

‖ξ‖Lp(M⊗̄ΦM) =
∥∥√〈ξ, ξ〉Φ

∥∥
Lp(M)

determined by the L p
2
(M)-valued inner product

〈∑
j
aj ⊗ bj ,

∑
k
a′k ⊗ b′k

〉
Φ

=
∑

j,k
b∗jΦ(a∗ja′k)b′k.

Then Lp(M⊗̄ΦM), 1 ≤ p < ∞ stands for the norm completion of the algebraic ten-
sor product, and M⊗̄ΦM denotes for the completion in the strong operator topology 
determined by ξα → ξ when τ(〈ξ − ξα, ξ − ξα〉Φ g) → 0 for all g ∈ L1(M). When Φ
is normal, M⊗̄ΦM is the dual space of L1(M⊗̄ΦM) (see [34]) and the abstract char-
acterization of Hilbert modules [51] yields a weak-∗ continuous right M-module map 
ρ : M⊗̄ΦM → L∞(M; Hc), which takes values in the Hilbert space valued noncom-
mutative L∞ space L∞(M; Hc) (see e.g. [28]) and satisfies 〈ξ, η〉Φ = ρ(ξ)∗ρ(η). Let us 
collect a few properties which will be instrumental along this paper.

Lemma 1.1. Given a normal cpu map Φ : M → M:

i)
〈
ξ1 + ξ2, ξ1 + ξ2

〉
Φ ≤ 2

〈
ξ1, ξ1

〉
Φ + 2

〈
ξ2, ξ2

〉
Φ,

ii)
∥∥f ⊗ 1M − 1M ⊗ Φf

∥∥
M⊗̄ΦM =

∥∥Φ|f |2 − |Φf |2
∥∥ 1

2
M,

iii)
∣∣Φf − g

∣∣2 ≤
〈
f ⊗ 1M − 1M ⊗ g, f ⊗ 1M − 1M ⊗ g

〉
,
Φ
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iv)
∥∥f ⊗ 1M − 1M ⊗ Φf

∥∥
M⊗̄ΦM ∼ inf

g∈M

∥∥f ⊗ 1M − 1M ⊗ g
∥∥
M⊗̄ΦM,

v) If Φ ≤cp

∑
k βkΨk, then

‖ξ‖M⊗̄ΦM ≤
(∑

k
βk‖ξ‖2

M⊗̄Ψk
M

) 1
2
.

Proof. The first inequality follows from hermitianity of the inner product and the iden-
tity 〈ξ, η〉Φ = ρ(ξ)∗ρ(η) explained above. The second one is straightforward from the 
definition of M⊗̄ΦM. The third inequality follows from Kadison-Schwarz inequality af-
ter expanding both sides. The lower estimate in iv) holds trivially with constant 1, while 
the upper estimate holds with constant 2 since

f ⊗ 1M − 1M ⊗ Φf = (f ⊗ 1M − 1M ⊗ g) − (1M ⊗ (Φf − g))

and the second term on the right hand side is estimated using iii). Finally, for the last 
inequality let ξ =

∑
k ak ⊗ bk and define the column matrices A∗ =

∑
k a

∗
k ⊗ ek1 and 

B =
∑

k bk ⊗ ek1. Then we find〈
ξ, ξ

〉
Φ =

∑
j,k

b∗jΦ(a∗jak)bk = B∗Φ(A∗A)B

≤
∑

k
βkB

∗Ψk(A∗A)B =
∑

k
βk

〈
ξ, ξ

〉
Ψk

. �
1.2. Markov semigroups and metrics

Throughout the article we will assume that the underlying noncommutative measure 
space (M, τ) comes equipped with a Markov semigroup S = (St)t≥0. That is, a weak-∗
continuous semigroup of normal cpu (completely positive unital) operators (St)t≥0 on M
with the additional symmetric assumption

τ(St(f)g) = τ(fSt(g)) for all f, g ∈ M∩ L1(M).

Note that τ(Stf) = τ(f) for all f , so St’s are faithful and are contractive on L1(M). 
By interpolation, St’s extend to contractions on Lp(M) (1 ≤ p < ∞) and satisfy 
limt→0 Stf = f in Lp(M) for all f ∈ Lp(M).

Also recall that S admits an infinitesimal negative generator

Af = lim
t→0

t−1(f − St(f))

defined on dom(A) =
⋃

1≤p≤∞ domp(A), where domp(A) is given by

domp(A) =
{
f ∈ Lp(M) : lim

t→0
t−1(St(f) − f) converges in Lp(M)

}
.

It is easy to see that 1
s

´ s

0 St(f)dt ∈ domp(A) for any s > 0, f ∈ Lp(M), so domp(A) is 
dense in Lp(M) for p < ∞, and is weak-∗ dense in M for p = ∞. We will denote by Ap
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the restriction of A on domp(A).
A Markov metric associated to (M, τ) and S is determined by a family

Q =
{(

Rj,t, σj,t, γj,t
)

: (j, t) ∈ Z+ ×R+

}
where Rj,t : M → M are normal completely positive unital maps satisfying Rj,tf = f

for f ∈ kerA∞, the fixed-point subspace of the semigroup S, and σj,t, γj,t are elements 
of the von Neumann algebra M with γj,t ≥ 1M, so that the estimates below hold:

i) Hilbert module majorization: 
〈
ξ, ξ

〉
St

≤
∑
j≥1

σ∗
j,t

〈
ξ, ξ

〉
Rj,t

σj,t, ∀ξ ∈ M ⊗M,

ii) Metric integrability condition: kQ = sup
t>0

∥∥∥∑
j≥1

σ∗
j,tγ

2
j,tσj,t

∥∥∥ 1
2

M
< ∞.

Our notion of Markov metric is easily understood for our (commutative) model case 
above. Let S = (St)t≥0 be a Markov semigroup on (Ω, μ) with associated kernels st(x, y)
satisfying the pointwise estimate (1.1). Given ξ : Ω × Ω → C essentially bounded, we 
have

〈
ξ, ξ

〉
St

=
ˆ

Ω

st(x, y)|ξ(x, y)|2 dμ(y) ≤
∞∑
j=1

|σj,t(x)|2
μ(Σj,t(x))

ˆ

Σj,t(x)

|ξ(x, y)|2 dμ(y). (1.2)

This means that Rj,tf(x) is the average of f ∈ L∞(Ω) over the set Σj,t(x). Reciprocally, 
if we take ξk(x, y) = φk(y0−y) to be an approximation of identity around y0, we recover 
the pointwise estimates for the kernel st(x, y0). In other more general contexts, the upper 
bounds for the kernel or even the kernel description of the semigroup might not have the 
same form. As we shall see, many of these cases can still be handled via Hilbert module 
majorization. We shall provide along the paper a wide variety of examples which fall into 
these possible classes.

1.3. Semigroup BMOs

Given a noncommutative measure space (M, τ) and a Markov semigroup S = (St)t≥0
acting on (M, τ), we may define the semigroup BMOS -norm as

‖f‖BMOS = max
{
‖f‖BMOr

S , ‖f‖BMOc
S

}
,

where the row and column BMO norms are given by

‖f‖BMOr
S = sup

t≥0

∥∥∥(St(ff∗) − (Stf)(Stf)∗
) 1

2
∥∥∥
M
,

‖f‖BMOc
S = sup

∥∥∥(St(f∗f) − (Stf)∗(Stf)
) 1

2
∥∥∥
M
.

t≥0



M. Junge et al. / Advances in Mathematics 376 (2021) 107443 15
This definition makes sense since we know from the Kadison-Schwarz inequality that 
|Stf |2 ≤ St|f |2. The null space of this seminorm is kerA∞, the fixed-point subspace 
of our semigroup. Indeed, if ‖f‖BMOS = 0 we know from [11] that f belongs to the 
multiplicative domain of St, so that

τ(gf) = τ(St/2(gf)) = τ(St/2(g)St/2(f)) = τ(gSt(f)).

This proves that f is fixed by the semigroup. Reciprocally, kerA∞ is a ∗-subalgebra of 
M by [27,35]. [27] only deals with the state case, but the proof there carries over to the 
semifinite trace case since we have the additional symmetric assumption on St. Thus, 
the seminorm vanishes on kerA∞. In particular, we obtain a norm after quotienting out 
kerA∞. Letting wt(f) = f ⊗ 1 − 1 ⊗ Stf , this provides us with a map

f ∈ M w�−→
(
wt(f)

)
t≥0 ∈

⊕
t≥0

M⊗̄St
M

which becomes isometric when we equip M with the norm in BMOc
S . Given a net 

(fλ)λ ∈ M with uniform bounded BMOc
S -norm (i.e. supλ ‖fλ‖BMOc

S < ∞), we say (fλ)λ
S-weak-∗ converges if (w(fλ))λ weak-∗-converges in 

⊕
t≥0 M⊗̄St

M. That is to say, for 
any t, m > 0, aj , bj ∈ L2(M), and x =

∑m
j=1 aj ⊗ bj ∈ L1(M⊗̄St

M), the following 
equivalent inner products

τ
(
〈wt(fλ), x〉St

)
= τ

(
〈fλ ⊗ 1 − 1 ⊗ Stfλ,

m∑
j=1

aj ⊗ bj〉St

)

= τ
(
f∗
λ(

m∑
j=1

ajSt(bj) − St(St(aj)bj))
)

(1.3)

converges. This allows us to define the atomic hc
1 space. Let Atomc be the collection of 

all ξ’s of the form

ξ =
m∑
j=1

ajSt(bj) − St(St(aj)bj)

for some t, m > 0, aj , bj ∈ L2(M) and

‖
m∑
j=1

aj ⊗ bj‖L1(M⊗̄St
M) = 1.

For any g ∈ Span(Atomc), let

‖g‖hc
1,at

= inf{
∑

|ck| : g =
n∑

ckξk, ξk ∈ Atomc}

k k=1
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It is easy to see that for any g ∈ Span(Atomc), ‖g‖hc
1,at

≥ ‖g‖L1(M). We define hc
1,at(S)

to be the ‖ · ‖hc
1,at

-closure of Span(Atomc), which is contained in L1(M). Let L◦
∞(M) =

L∞(M)/kerA∞. By (1.3), it is clear that

(L◦
∞(M), ‖ · ‖BMOc

S ) ⊂ (hc
1,at(S))∗

and a ‖ · ‖BMOc
S -bounded net S-weak-∗ converges iff it weak-∗ converges in (hc

1,at)∗. It is 
also clear that (L◦

∞(M), ‖ · ‖BMOc
S ) separates points in the whole space hc

1,at(S), so it is 
weak-∗ dense in (hc

1,at(S))∗. Recall two convergent nets are equivalent if their differences 
converge to 0. Define BMOc

S as the collection of all the equivalence classes of S-weak-∗
convergent nets (fλ)λ with supλ ‖fλ‖BMOc

S < ∞. So BMOc
S is the weak-∗ closure of 

(L◦
∞(M), ‖ · ‖BMOc

S ) in (hc
1,at(S))∗, thus equals (hc

1,at(S))∗.
Similarly, we may define BMOS as the intersection BMOr

S ∩ BMOc
S , where the row 

BMO follows by taking adjoints above. The natural operator space structure is given by

Mm(BMOS(M)) = BMOŜ(Mm(M)) with Ŝt = idMm
⊗ St.

Remark 1.2. Incidentally, we note that BMOS is written as bmo(S) in [30].

1.4. Markov regularity and interpolation

It will be essential for us to provide interpolation results between semigroup type BMO
spaces and the corresponding noncommutative Lp spaces [53]. It is a hard problem to 
identify the minimal regularity on the semigroup S = (St)t≥0 which suffices for this 
purpose. We will recall in this subsection an interpolation theory from [30].

We say that a semigroup S = (St)t≥0 admits a reversed Markov dilation if there 
exists a larger semifinite von Neumann algebra (N , ̃τ), a decreasing filtration (N[s)s≥0
with corresponding conditional expectations E[s, and a family of trace preserving ∗-
homomorphisms πs : M → N[s such that

E[s(πt(f)) = πs(Ss−tf), for all t < s, x ∈ M.

This implies that m(f) = (ms(f))s≥0 with

ms(f) = πs(Ssf),

is a martingale with respect to the reversed filtration (N[s). A Markov semigroup S =
(St)t≥0 is called regular if it admits a reversed Markov dilation and for each 2 ≤ p < ∞, 
there exists a weakly dense subset Bp ⊂ Lp(N ) so that, for every f ∈ Bp the associated 
martingale m(f) = (ms(f))s≥0 has almost uniformly continuous path. In other words, 
for every T > 0 and ε > 0 there exists a projection e such that τ̃(1 − e) < ε and 
fe : [0, T ] � t �→ mt(f)e ∈ N is continuous.
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Define

L◦
p(M) = Lp(M)/kerAp =

{
f ∈ Lp(M) : lim

t→∞
Stf = 0

}
.

As it was explained in [30], the space L◦
p(M) is complemented in Lp(M), 1 ≤ p ≤ ∞, 

and [L◦
1(M), BMOS ] form an interpolation couple. The following result will be crucial 

in what follows, we refer the reader to [30] for a detailed proof.

Theorem 1.3. If S = (St)t≥0 is a regular Markov semigroup

[
BMOS , L

◦
p(M)

]
p/q

�cb L◦
q(M) for all 1 ≤ p < q < ∞.

Note that interpolation against the full space Lp(M) is meaningless since BMOS does 
not distinguish the fixed-point space of the semigroup. Very roughly, we shall typically 
apply the above result to a CZO which is bounded on L2(M) and sends a weak-∗
dense subalgebra A ⊂ M to BMOS , and A has dense intersection with Lp(M) for any 
1 ≤ p < ∞. Recalling the projection map Jp : Lp(M) → L◦

p(M) and letting T denote 
the CZO, we find by interpolation that

JpT : Lp(M) ∩ A ⊂
[
A, L2(M)

]
2/p →

[
BMOS , L

◦
2(M)

]
2/p = L◦

p(M) ⊂ Lp(M).

Then the density of Lp(M) ∩A give us the boundedness of JpT from Lp(M) to L◦
p(M). 

To obtain Lp boundedness of T , it suffices to assume that T leaves the fixed-point 
space invariant and is bounded on it. It should be noticed though, that in many cases 
the Lp boundedness of the CZO follows automatically. For instance, in Rn with the 
Lebesgue measure and the heat semigroup, it turns out that Lp = L◦

p. On the other 
hand, the fixed-point space for the Poisson semigroup on the n-torus is just composed of 
constant functions and the corresponding projection can be estimated apart regarded as 
a conditional expectation. Moreover, the same applies for Fourier multipliers on arbitrary 
discrete groups. The Lp boundedness for 1 < p < 2 will follow by taking adjoints under 
certain symmetry on the hypotheses.

Remark 1.4. On commutative or semicommutative von Neumann algebras, the existence 
of a Markov dilation is called the martingale problem and a Markov semigroup is regular 
if it is diffusion. Noncommutative diffusion Markov semigroups and their regularity were 
recently studied in [33] for the case of finite von Neumann algebras. At the moment, 
there is no written argument on the existence of Markov dilations on semifinite von 
Neumann algebras. However, we should recall that all the concrete examples in this paper 
are regular. Our commutative models are the heat semigroup, the Ornstein-Uhlenbeck 
semigroup and the Laplace-Beltrami semigroup and all of them satisfy our regularity 
assumption. Regular Markov dilations in our noncommutative examples (matrix algebras 
and quantum Euclidean spaces) can be deduced by transference. Indeed, we shall embed 
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these algebras into larger semicommutative ones and the Markov process arises from an 
amplification of the classical heat semigroup.

Remark 1.5. Let us comment on the case of general semifinite von Neumann algebras, 
where the results of [33] do not formally apply. Given a Markov semigroup S = (St)t≥0 =
(e−tA)t≥0, we may first fix a finite projection e, a small s > 0 and consider the new 
generator

As,e = ideMe − Se
s

s

with Se
s(f) = eSs(efe)e being selfadjoint. Then As,e generates a regular Markov semi-

group on eMe. So the interpolation between the semigroup BMOs and Lp and the 
corresponding semigroup Hp-Lp equivalence which apprear in [30] hold for e−tAs,e . We 
expect that an approximation argument is enough to prove the same equivalence for the 
original semigroup St for 2 < p < ∞, and that a BMO interpolation theory would hold 
for general Markov semigroups on semifinite von Neumann algebras.

1.5. Markov metric BMOQ

Let us now introduce a Markov metric type BMO space for von Neumann algebras and 
relate it with the semigroup type BMO spaces defined above. Given a Markov semigroup 
S = (St)t≥0 acting on (M, τ), consider a Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈
Z+ × R+} as defined above and define ‖f‖BMOQ = max{‖f‖BMOc

Q , ‖f∗‖BMOc
Q}, where 

the column BMO-norm is given by

sup
t>0

inf
Mt cpu

sup
j≥1

∥∥∥(γ−1
j,t

[
Rj,t|f |2 − |Rj,tf |2 + |Rj,tf −Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

and the infimum runs over normal cpu maps Mt : M → M satisfying Mt(f) = f for 
f ∈ kerA∞. The row norm is estimated in the same way. Define, for g ∈ L1(M),

‖g‖hc
1,Q = sup{|τ(f∗g)| : f ∈ L◦

∞(M), ‖f‖BMOc
Q ≤ 1}. (1.4)

We will see in the theorem below that, ‖ ·‖BMOc
S � ‖ ·‖BMOc

Q
on L◦

∞(M). So ‖f‖hc
1,Q < ∞

for any f ∈ hc
1,at(S) (see its definition in Section 1.3). Let hc

1,Q be the ‖ · ‖hc
1,Q-closure of 

(hc
1,at(S), ‖ · ‖hc

1,Q), which is contained in L1(M). It is clear that (L◦
∞(M), ‖ · ‖BMOc

Q) ⊂
(hc

1,Q)∗. Let BMOc
Q be its weak-∗ closure in (hc

1,Q)∗. That is the linear space of all 
equivalence classes of ‖ · ‖BMOc

Q -bounded, weak-∗ convergent nets (fλ)λ ∈ L◦
∞(M) in 

(hc
1,Q)∗. For such a net (fλ)λ, define the norm of its equivalence class as

‖[(fλ)λ]‖BMOc
Q = sup

‖g‖hc ≤1
lim
λ

|τ(f∗
λg)|.
1,Q
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We have BMOc
Q is equal to the whole space (hc

1,Q)∗, since it separates points in hc
1,Q. 

Similarly, we may define BMOQ as the intersection BMOr
Q ∩ BMOc

Q, where the row 
BMO follows by taking adjoints above. Since γj,t ≥ 1M, the inverses exist and L∞(M)
embeds in BMOQ. Indeed, using that Rj,t and Mt are cpu, the square bracket above is 
bounded by 2‖f‖2

∞1M and γ−2
j,t ≤ 1M.

Now, recalling the value of the constant kQ in our definition of Markov metric, we 
prove that BMOQ embeds in BMOS .

Theorem 1.6. Let (M, τ) be a noncommutative measure space equipped with a Markov 
semigroup S = (St)t≥0. Let us consider a Markov metric Q associated to S = (St)t≥0. 
Then, we find

‖f‖BMOS � kQ ‖f‖BMOQ .

In particular, we see that L∞(M) ⊂ BMOQ ⊂ BMOS and[
BMOQ, L

◦
p(M)

]
p/q

� L◦
q(M) for all 1 ≤ p < q < ∞

for any Markov metric Q associated to a regular Markov semigroup S = (St)t≥0.

Proof. Let us set

ξt = f ⊗ 1M − 1M ⊗Mtf

= (f ⊗ 1M − 1M ⊗Rj,tf) + (1M ⊗ (Rj,tf −Mtf)) = ξ1
j,t + ξ2

j,t.

The assertion follows from Lemma 1.1 and our definition of Markov metric

‖f‖BMOc
S = sup

t>0

∥∥∥(St|f |2 − |Stf |2
) 1

2
∥∥∥
M

= sup
t>0

∥∥f ⊗ 1M − 1M ⊗ Stf
∥∥
M⊗̄St

M

� sup
t>0

∥∥f ⊗ 1M − 1M ⊗Mtf
∥∥
M⊗̄St

M = sup
t>0

‖〈ξt, ξt〉St
‖

1
2
M

� sup
t>0

∥∥∥∑
j≥1

σ∗
j,t

[
〈ξ1

j,t, ξ
1
j,t〉Rj,t

+ 〈ξ2
j,t, ξ

2
j,t〉Rj,t

]
σj,t

∥∥∥ 1
2

M

≤ kQ‖f‖BMOc
Q .

The identities are clear. The first inequality follow from Lemma 1.1 iv), the second one 
from the Hilbert module majorization associated to the Markov metric and Lemma 1.1 i). 
To justify the last inequality, note that the square bracket inside the term on the left 
equals Rj,t|f |2−|Rj,tf |2 + |Rj,tf−Mtf |2. Hence, left multiplication by γj,tγ

−1
j,t and right 

multiplication by γ−1
j,t γj,t yields the given inequality with kQ the metric integrability 
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constant. From the above inequalities, we see that the null space of the seminorm ‖ ·
‖BMOQ on M is again kerA∞. Combining this with (1.3), we see that hc

1,Q contains hc
1,at

as a dense subset. So BMOQ ⊂ BMOS . The interpolation result follows from Theorem 1.3
and the embeddings L∞(M) ⊂ BMOQ ⊂ BMOS . The proof is complete. �
Remark 1.7. Let ξ =

∑
j Aj ⊗Bj , with

Aj =
(
ajαβ

)
and Bj =

(
bjαβ

)
elements of Mm(M). If Ŝt = idMm

⊗ St, it turns out that

〈
ξ, ξ

〉
Ŝt

=
(

m∑
α=1

〈∑
j,β

ajαβ ⊗ bjβγ1︸ ︷︷ ︸
ηα,γ1

,
∑
j,β

ajαβ ⊗ bjβγ2︸ ︷︷ ︸
ηα,γ2

〉
St

)
γ1,γ2

∈ Mm(M).

This can be used to provide an operator space structure on BMOQ. Namely, the canonical 
choice for the matrix norms is Mm(BMOQ(M)) = BMOQ̂(Mm(M)) where the Markov 
metric on Mm(M)

Q̂ =
{(

idMm
⊗Rj,t,1Mm

⊗ σj,t,1Mm
⊗ γj,t

)}
is associated to the extended semigroup (Ŝt)t≥0. Then, we trivially obtain that kQ̂ =
kQ < ∞. However, according to the identity above for 〈ξ, ξ〉Ŝt

, the Hilbert module 
majorization takes the form(

m∑
α=1

〈
ηα,γ1 , ηα,γ2

〉
St

)
γ1,γ2

≤
∑
j≥1

(
σ∗
j,t

m∑
α=1

〈
ηα,γ1 , ηα,γ2

〉
Rj,t

σj,t

)
γ1,γ2

.

This gives a matrix-valued generalization of our Hilbert module majorization for S =
(St)t≥0 on M, to be checked when we use this o.s.s. Theorem 1.6 yields a cb-embedding 
of BMOQ into BMOS under this assumption. According to the characterization (1.2), it 
holds for Markov metrics on commutative spaces (Ω, μ).

1.6. The Euclidean metric

Before using Markov metrics in our approach to Calderón-Zygmund theory, it is 
illustrative to recover the Euclidean metric from a suitable Markov semigroup. Let 
S = (Ht)t≥0 denote the (regular) heat semigroup on Rn, with kernels

ht(x, y) = 1
n
2

exp
(−|x− y|2)

.

(4πt) 4t
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Take Q =
{
(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ ×R+

}
determined by

• σ2
j,t ≡ 2e√

π
j

n
2 e−j and γ2

j,t ≡ j
n
2 ≥ 1,

• Rj,tf(x) = 1
|B√

4jt(x)|

ˆ

B√
4jt(x)

f(y) dy.

Note that σj,t and γj,t are allowed to be essentially bounded functions in Rn, but in 
this case it suffices to take constant functions. In the definition of Rj,t, we write Br(x)
to denote the Euclidean ball in Rn centered at x with radius r. It is clear that Rj,t

defines a cpu map on L∞(Rn) and Rj,tf = f for any f ∈ kerA∞, since kerA∞ is the 
space of constant functions in this case. To show that Q defines a Markov metric, we 
need to check that it provides a Hilbert module majorization of the heat semigroup and 
the metric integrability condition holds. The latter is straightforward, while the Hilbert 
module majorization reduces to check that

ht(x, y) ≤ 2e√
π

∑
j≥1

j
n
2 e−j

|B√
4jt(x)|χB√

4jt(x)(y).

This can be justified by determining the unique corona centered at x with radii √
4(j − 1)t and 

√
4jt where y lives, details are left to the reader. Note that we could 

have taken γj,t ≡ 1 and still obtain a Markov metric. Our choice will be justified below 
and also in the next section, where we shall need γj,t ≡ j

n
2 to compare BMOQ with 

other BMO spaces which interpolate. Before that, our only evidences that this is the 
right Markov metric in the Euclidean case are the fact that the Rj,t’s are averages over 
Euclidean balls and the isomorphism

BMOQ = BMORn ,

where the latter space is the usual BMO space in Rn

‖f‖BMORn = sup
B⊂Rn

( 1
|B|

ˆ

B

∣∣f(x) − fB
∣∣2 dx) 1

2
.

Here, the supremum is taken over all Euclidean balls B in Rn and fB stands for the 
average of f over B. Let us justify this isomorphism. If we pick Mtf(x) = R1,tf(x) it 
follows from a standard calculation that

∣∣Rj,tf(x) −Mtf(x)
∣∣2 (1.5)

=
∣∣∣ 1
|B√

4t(x)|

ˆ

B√ (x)

(
f(y) − fB√

4jt(x)
)
dy

∣∣∣2

4t
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≤ j
n
2

|B√
4jt(x)|

ˆ

B√
4jt(x)

∣∣f(y) − fB√
4jt(x)

∣∣2 dy = j
n
2
(
Rj,t|f |2 − |Rj,tf |2

)
(x).

This automatically yields the following inequality

‖f‖2
BMOQ � sup

j,t
ess sup
x∈Rn

1
|B√

4jt(x)|

ˆ

B√
4jt(x)

∣∣f(y) − fB√
4jt(x)

∣∣2 dy ≤ ‖f‖2
BMORn .

The converse is even simpler, since taking j = 1 we obtain

‖f‖2
BMORn = sup

t>0
ess sup
x∈Rn

1
|B√

4t(x)|

ˆ

B√
4t(x)

∣∣f(y) − fB√
4t(x)

∣∣2 dy
= sup

t>0

∥∥∥γ−1
1,t

[
R1,t|f |2 − |R1,tf |2

]
γ−1
1,t

∥∥∥
L∞(Rn)

≤ ‖f‖2
BMOQ .

Remark 1.8. The term |Rj,tf −Mtf | did not play a significant role at this point. More 
generally, the above argument also works for any doubling metric space Ω equipped 
with a Borel measure μ: μ(B(x, 2r)) ≤ Cμ(B(x, r)) for every x ∈ Ω and r > 0, with 
B(x, r) = {y ∈ Ω : dist(x, y) ≤ r}. As we shall see later, the additional term |Rj,tf−Mtf |
in the BMOQ-norm appears to include Tolsa’s RBMO spaces [61] in those measure spaces 
(Ω, μ) for which we can find an appropriate Dirichlet form which provides us with a 
Markov semigroup acting on (Ω, μ).

Remark 1.9. A related semigroup BMO norm is

‖f‖BMOc
S = sup

t≥0

∥∥∥(Ht

[
|f −Htf |2

]) 1
2
∥∥∥
∞
.

All the norms consider so far are equivalent for the heat semigroup S = (Ht)t≥0 on Rn, 
generated by the Laplacian Δ =

∑n
j=1 ∂

2
xj

. In fact, we may also consider by subordina-
tion the Poisson semigroup P = (Pt)t≥0 on Rn generated by the square root 

√
−Δ, or 

even other subordinations [20]. Then, elementary calculations give the following norm 
equivalences up to dimensional constants

‖f‖BMORn ∼ ‖f‖BMOP ∼ ‖f‖BMOP ∼ ‖f‖BMOS ∼ ‖f‖BMOS ∼ ‖f‖BMOQ .

Moreover, let R = L∞(Rn)⊗̄M denote the von Neumann algebra tensor product of 
L∞(Rn) with a noncommutative measure space (M, τ). Define the norm in BMOR as 
‖f‖BMOR = max{‖f‖BMOc

R , ‖f∗‖BMOc
R}, where

‖f‖BMOc
R = sup

B balls

∥∥∥( 1
|B|

ˆ ∣∣f(x) − fB
∣∣2dx) 1

2
∥∥∥
M
.

B
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Then, the same norm equivalences hold in the semicommutative case

‖f‖BMOR ∼ ‖f‖BMOP⊗
∼ ‖f‖BMOP⊗

∼ ‖f‖BMOS⊗
∼ ‖f‖BMOS⊗

,

where S⊗,t = St ⊗ idM and P⊗,t = Pt ⊗ idM. Moreover, by Remark 1.7, all these norms 
are in turn equivalent to the norm in BMOQR , with the Markov metric which arises 
tensorizing the canonical one with the identity/unit of M.

2. Algebraic CZ theory

In classical Calderón-Zygmund theory, Lp boundedness of CZOs follows from L2
boundedness under a smoothness condition on the kernel. Our next goal is to iden-
tify which are the analogues of these conditions for semifinite von Neumann algebras 
equipped with a Markov metric, and to show Lp boundedness of CZOs fulfilling them. 
Our new conditions are certainly surprising. The boundedness for p = 2 must be replaced 
by a certain mixed-norm estimate (which reduces in the classical theory to L2 bounded-
ness), while Hörmander kernel smoothness will be formulated intrinsically without any 
reference to the kernel. These abstract assumptions will adopt a more familiar form in 
the specific cases that we shall consider in the forthcoming sections.

In order to give a Calderón-Zygmund framework for von Neumann algebras we start 
with some initial considerations, which determine the general form of Markov metrics 
that we shall work with. Consider a Markov metric Q associated to a Markov semigroup 
S = (St)t≥0 acting on (M, τ). Then, we shall assume that the cpu maps Rj,t from Q are 
of the following form

M ρj−→ Nρ
Eρ−→ ρ1(M) � M,

Rj,tf = Eρ(qj,t)−
1
2 Eρ

(
qj,tρ2(f)qj,t

)
Eρ(qj,t)−

1
2 ,

(2.1)

where ρ1, ρ2 : M → Nρ are injective ∗-homomorphisms into certain von Neumann 
algebra Nρ, the map Eρ : Nρ → ρ1(M) is an operator-valued weight which will be 
defined later and the qj,t’s are projections in Nρ. In particular, we shall assume that our 
formula for Rj,tf makes sense so that qj,t and qj,tρ2(f)qj,t belong to the domain of Eρ, see 
Section 2.1 for further details. Our model provides a quite general form of Markov metric 
which includes the Markov metric for the heat semigroup considered before. Indeed, take 
Nρ = L∞(Rn ×Rn) with ρ1f(x, y) = f(x) and ρ2f(x, y) = f(y). Let Eρ be the integral 
in Rn with respect to the variable y and set

qj,t(x, y) = χB√
4jt(x)(y) = χB√

4jt(y)(x) = χ|x−y|<
√

4jt.

Then, it is straightforward to check that we recover from (2.1) the Rj,t’s for the heat 
semigroup. Note that the qj,t(x, ·)’s reproduce in this case all the Euclidean balls in Rn. 
Morally, this is why we call Q a Markov metric, since it codifies some sort of underlying 
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metric in (M, τ). According to our definition of BMOQ, we shall also consider projections 
qt in Nρ and cpu maps

Mtf = Eρ(qt)−
1
2 Eρ

(
qtρ2(f)qt

)
Eρ(qt)−

1
2 . (2.2)

In this case, to show that BMOQ is equivalent to BMORn , we have seen in Paragraph 1.6, 
the non trivial part is to prove ‖f‖BMOQ � ‖f‖BMORn . Note that in the definition of 
BMOQ-norm, the infimum is taken for all cpu maps Mt. So it is enough to show the 
inequality for some particular Mt.

2.1. Operator-valued weights

In this subsection we briefly review the definition and basic properties of operator-
valued weights from [23,24]. A unital, weakly closed ∗-subalgebra is called a von Neumann 
subalgebra. A conditional expectation EM : N → M onto a von Neumann subalgebra M
is a positive unital projection satisfying the bimodular property EM(a1fa2) = a1EM(f)a2
for all a1, a2 ∈ M. It is called normal if supα EM(fα) = EM(supα fα) for bounded 
increasing nets (fα) in N+. A normal conditional expectation such that τ ◦ EM = τ

exists if and only if the restriction of τ to the von Neumann subalgebra M remains 
semifinite [60].

The extended positive part M̂+ of the von Neumann algebra M is the set of lower 
semicontinuous maps m : M∗,+ → [0, ∞] which are linear on the positive cone, m(λ1φ1+
λ2φ2) = λ1m(φ1) + λ2m(φ2) for λj ≥ 0 and φj ∈ M∗,+. The extended positive part 
is closed under addition, increasing limits and is fixed by the map x �→ a∗xa for any 
a ∈ M. It is clear that M+ sits in the extended positive part. When M is abelian, 
we find M � L∞(Ω, μ) for some measure space (Ω, μ) and the extended positive part 
corresponds in this case to the set of μ-measurable functions on Ω (module sets of zero 
measure) with values in [0, ∞]. A harder characterization of the extended positive part 
for arbitrary von Neumann algebras was found by Haagerup in [23]. Assume that M
acts on H and consider a positive operator A affiliated with M with spectral resolution 
A =

´
R+

λdeλ. Then, we may construct an associated element in M̂+

mA(φ) =
ˆ

R+

λd(φ(eλ)).

In general, any m ∈ M̂+ has a unique spectral resolution

m(φ) =
ˆ

R+

λd(φ(eλ)) + ∞φ(p)

where the eλ’s form an increasing family of projections in M and p is the projection 
1M − limλ eλ. Moreover, the map λ �→ eλ is strongly continuous from the right and we 
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find that e0 = 0 iff m does not vanish on M+
∗ \{0}, while p = 0 iff the family of φ ∈ M+

∗
with m(φ) < ∞ is dense in M+

∗ .
Operator-valued weights appear as “unbounded conditional expectations” and the 

simplest nontrivial model is perhaps a partial trace EM = trA ⊗ idM with N = A⊗̄M
and A a semifinite non-finite von Neumann algebra. In general, an operator-valued weight
from N to M is just a linear map

EM : N+ → M̂+ satisfying EM(a∗fa) = a∗EM(f)a

for all a ∈ M. As usual, EM is called normal when supα EM(fα) = EM(supα fα) for 
bounded increasing nets (fα) in N+. Since a∗fb = 1

4
∑3

k=0 i
−k(a + ikb)∗f(a + ikb)

by polarization, we see that bimodularity of conditional expectations is equivalent to 
EM(a∗fa) = a∗EM(f)a for a ∈ M. In particular, the fundamental properties which 
operator-valued weights loose with respect to conditional expectations are unitality and 
the fact that unboundedness is allowed for the image. Additionally, when M = C the 
map EM becomes an ordinary weight on N . In analogy with ordinary weights, we take

Lc
∞(N ; EM) =

{
f ∈ N :

∥∥EM(f∗f)
∥∥
M < ∞

}
.

Note that when EM = trA ⊗ idM with N = A⊗̄M, Lc
∞(N ; EM) are the Hilbert space 

valued noncommutative L∞ spaces defined in [28], which we denote by Lc
2(A)⊗̄M. Let 

NEM be the linear span of f∗
1 f2 with f1, f2 ∈ Lc

∞(N ; EM). Then we find

i) NEM = span{f ∈ N+ : ‖EMf‖ < ∞},
ii) Lc

∞(N ; EM) and NEM are two-sided modules over M,
iii) EM has a unique linear extension EM : NEM → M satisfying

EM(a1fa2) = a1EM(f)a2 with f ∈ NEM and a1, a2 ∈ M.

In particular, if EM(1) = 1 we recover a conditional expectation onto M. An operator-
valued weight EM is called faithful if EM(f∗f) = 0 implies f = 0 and semifinite when 
Lc
∞(N ; EM) is σ-weakly dense in N . It is of interest to determine for which pairs (N , M)

we may construct n.s.f. operator-valued weights. Among other results, Haagerup proved 
in [24] that this is the case when both von Neumann algebras are semifinite and there ex-
ists a unique trace preserving one. Note that conditional expectations do not always exist 
in this case. He also proved that given EMj

n.s.f. operator-valued weights in (Nj , Mj)
for j = 1, 2, there exists a unique n.s.f. operator-valued weight EM1⊗M2 associated to 
(N1⊗̄N2, M1⊗̄M2) such that (φ1 ⊗ φ2) ◦ EM1⊗M2 = (φ1 ◦ EM1) ⊗ (φ2 ◦ EM2) for any 
pair (φ1, φ2) of normal semifinite faithful weights on (M1, M2).
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2.2. Algebraic/analytic conditions

The identity

Tf(x) =
ˆ

Ω

k(x, y)f(y) dμ(y)

is just a vague expression to consider classical Calderón-Zygmund operators. It is well-
known that particular realizations as above are only meaningful outside the support of f
and understanding k as a distribution which coincides with a locally integrable function 
on Rn × Rn \ Δ. Instead of that, we shall not specify any kernel representation of our 
CZOs since our conditions below will be formulated in a more intrinsic way. These kernel 
representations will appear later on in this paper with the concrete examples that we 
shall consider.

Let T be a densely defined operator on M, which means that Tf ∈ M for all f
in a weak-∗ dense subalgebra AM of M. Our assumption does not necessarily hold 
for classical Calderón-Zygmund operators defined in abelian von Neumann algebras 
(M, τ) = L∞(Ω, μ), but it is true for the truncated singular integral operators satis-
fying the standard size condition for the kernel, take for instance AM = M ∩ L1(M). 
In particular, this is not a crucial restriction since we shall be able to take Lp-limits as 
far as our estimates below are independent of T . Our aim is to settle conditions on T of 
CZ type assuring that T : L∞(M) → BMOc

Q, provided (M, τ) comes equipped with a 
Markov metric Q. In this paragraph, we establish some preliminary algebraic and ana-
lytic conditions on the Markov metric and the CZO. Consider injective ∗-homomorphisms 
π1, π2 : M → Nπ and an operator-valued weight Eπ : Nπ → π1(M) which may or may 
not coincide with ρ1, ρ2 and Eρ from (2.1). Assume there exists a map defined on a 
weak-∗ dense subalgebra ANπ

of Nπ

T̂ : ANπ
⊂ Nπ → Nρ

satisfying T̂ ◦ π2 = ρ2 ◦ T on AM.
(2.3)

Algebraic conditions:

i) Q-monotonicity of Eρ

Eρ(qj,t|ξ|2qj,t) ≤ Eρ(|ξ|2)

for all ξ ∈ Nρ and every projection qj,t determined by Q via the identity in (2.1). 
Similarly, we assume the same inequality holds when we replace the qj,t’s by the qt’s 
appearing in (2.2).

ii) Right B-modularity of T̂

T̂
(
η π1ρ

−1
1 (b)

)
= T̂ (η)b
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for all η ∈ ANπ
and all b lying in some von Neumann subalgebra B of ρ1(M) which 

includes Eρ(qt), Eρ(qj,t) and ρ1(γj,t) for every projection qt and qj,t determined by 
Q via the identities in (2.1) and (2.2).

As we shall see both conditions trivially hold in the classical theory, where the first 
condition essentially says that integrating a positive function over a “Markov metric ball” 
is always smaller than integrating it over the whole space, while the second condition 
allows to take out x-dependent functions from the y-dependent integral defining T . Our 
conditions remain true in many other situations, which will be explored below in this 
paper. Nevertheless, condition i) suggests that certain amount of commutativity might 
be necessary to work with Markov metrics.

To state our analytic conditions we introduce an additional von Neumann algebra 
Nσ containing Nρ as a von Neumann subalgebra. Then, we consider derivations δ :
Nρ → Nσ given by the difference δ = σ1 − σ2 of two ∗-homomorphisms, so that δ(ab) =
σ1(a)σ1(b) −σ2(a)σ2(b) = δ(a)σ1(b) +σ2(a)δ(b) as expected. We also consider the natural 
amplification maps which are normal cpu maps defined on Nρ,

R̂j,t : Nρ � ξ �→ Eρ(qj,t)−
1
2 Eρ(qj,tξqj,t)Eρ(qj,t)−

1
2 ∈ ρ1(M),

M̂t : Nρ � ξ �→ Eρ(qt)−
1
2 Eρ(qtξqt)Eρ(qt)−

1
2 ∈ ρ1(M).

Analytic conditions:

i) Mean differences conditions
• R̂j,t(ξ∗ξ) − R̂j,t(ξ)∗R̂j,t(ξ) ≤ Φj,t

(
δ(ξ)∗δ(ξ)

)
,

•
[
R̂j,t(ξ) − M̂t(ξ)

]∗[
R̂j,t(ξ) − M̂t(ξ)

]
≤ Ψj,t

(
δ(ξ)∗δ(ξ)

)
,

for some derivation δ : Nρ → Nσ and cpu maps Φj,t, Ψj,t : Nσ → ρ1(M).
ii) Metric/measure growth conditions

• 1 ≤ π1ρ
−1
1 Eρ(qt)−

1
2 Eπ(a∗tat)π1ρ

−1
1 Eρ(qt)−

1
2 � π1ρ

−1
1 (γ2

j,t),
• 1 ≤ π1ρ

−1
1 Eρ(qj,t)−

1
2 Eπ(a∗j,taj,t)π1ρ

−1
1 Eρ(qj,t)−

1
2 � π1ρ

−1
1 (γ2

j,t),
for some family of operators at, aj,t ∈ Nπ to be determined later on.

A complete determination of the operators at and aj,t is only possible after imposing 
additional size and smoothness conditions in our definition of Calderón-Zygmund oper-
ator below. Nevertheless, we shall see that these operators will play the role of “dilated 
Markov balls” as it is the case in classical CZ theory. In fact, in the classical case our last 
condition trivially holds for doubling measures, and also for measures of polynomial or 
even exponential growth provided we find a Markov metric with large enough γj,t’s. Our 
assertions will be illustrated below. The first condition takes the form in the classical 
case of a couple of easy consequences of Jensen’s inequality, namely
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−
ˆ

B1

|f |2dμ−
∣∣∣ −ˆ
B1

fdμ
∣∣∣2 ≤ −

ˆ

B1×B1

∣∣f(y) − f(z)
∣∣2dμ(y)dμ(z),

∣∣∣ −
ˆ

B1

fdμ − −
ˆ

B2

fdμ
∣∣∣2 ≤ −

ˆ

B1×B2

∣∣f(y) − f(z)
∣∣2dμ(y)dμ(z).

(2.4)

2.3. CZ extrapolation

Now we introduce CZOs in this context. As we already mentioned, we consider a 
priori densely defined (unbounded) maps T : AM → M whose amplified maps are right 
B-modules according to our algebraic assumptions above. In addition, we impose three 
conditions generalizing L2 boundedness, the size and the smoothness conditions for the 
kernel.

Calderón-Zygmund type conditions:

i) Boundedness condition

T̂ : Lc
∞(Nπ; Eπ) → Lc

∞(Nρ; Eρ).

ii) Size “kernel” condition
• M̂t

(∣∣T̂ (π2(f)(Aj,t − at))
∣∣2) � γ2

j,t‖f‖2
∞,

• R̂j,t

(∣∣T̂ (π2(f)(Aj,t − aj,t))
∣∣2) � γ2

j,t‖f‖2
∞,

for for any f ∈ AM and a family of operators Aj,t ∈ Nπ with Aj,t ≥ aj,t, at to be 
determined.

iii) Smoothness “kernel” condition
• Φj,t

(∣∣δ(T̂ (π2(f)(1 − aj,t))
)∣∣2) � γ2

j,t‖f‖2
∞,

• Ψj,t

(∣∣δ(T̂ (π2(f)(1 −Aj,t))
)∣∣2) � γ2

j,t‖f‖2
∞.

Let T : AM → M be a densely defined map which admits an amplification T̂ satisfy-
ing (2.3). Any such T will be called an algebraic column CZO whenever the amplification 
map is right B-modular and satisfies the CZ conditions we have given above. At first 
sight, our boundedness assumption might appear to be unrelated to the classical con-
dition. The reader could have expected the L2 boundedness of T , but our assumption 
is formally equivalent to it in the classical case and gives the right condition for more 
general algebras. On the other hand, our size and smoothness conditions are intrinsic 
in the sense that the kernel is not specified under this degree of generality. We shall 
recover classical kernel type estimates from our conditions in our examples below. As 
explained above, the operators at, aj,t and Aj,t play the role of dilated Markov balls and 
our conditions were somehow modeled by Tolsa’s arguments in [61]. Perhaps a signifi-
cant difference —in contrast to Tolsa’s approach— is that our smoothness condition is 
analog to a Hörmander type condition, more than the (stronger) Lipschitz regularity 
assumption.



M. Junge et al. / Advances in Mathematics 376 (2021) 107443 29
Theorem 2.1. Let (M, τ) be a noncommutative measure space equipped with a Markov 
semigroup S = (St)t≥0 with associated Markov metric Q which fulfills our algebraic and 
analytic assumptions. Then, any algebraic column CZO T defines a bounded operator

T : AM → BMOc
Q.

Proof. The first goal is to estimate the norm of

A = γ−1
j,t

(
Rj,t|Tf |2 − |Rj,tTf |2

)
γ−1
j,t .

The map Πj,t : M⊗̄Rj,t
M � a ⊗ b �→ 1 ⊗Rj,t(a)b ∈ 1 ⊗M extends to a right (1 ⊗M)-

module projection, which is well-defined in the sense that 〈ξ, ξ〉Rj,t
= 0 implies Πj,t(ξ) =

0. Now, since

A = γ−1
j,t

〈
Tf ⊗ 1 − 1 ⊗Rj,tTf , Tf ⊗ 1− 1 ⊗Rj,tTf

〉
Rj,t

γ−1
j,t ,

we may use Πj,t to deduce the following identity

A =
〈
(id− Πj,t)(Tf ⊗ γ−1

j,t ) , (id− Πj,t)(Tf ⊗ γ−1
j,t )

〉
Rj,t

.

Consider the amplification maps R̂j,t defined on Nρ and Π̂j,t defined by Nρ ⊗ M �
n ⊗ b �→ 1 ⊗ R̂j,t(n)b ∈ 1 ⊗M. It is easy to see that

Rj,t = R̂j,t ◦ ρ2 and Πj,t = Π̂j,t ◦ (ρ2 ⊗ id).

By (2.3), it turns out that A = 〈a, a〉R̂j,t
where

a = (id− Π̂j,t)(ρ2Tf ⊗ γ−1
j,t )

= (id− Π̂j,t)(T̂ π2f ⊗ γ−1
j,t )

= (id− Π̂j,t)
(
T̂ (π2(f)aj,t) ⊗ γ−1

j,t

)
+ (id− Π̂j,t)(T̂

(
π2(f)(1 − aj,t)) ⊗ γ−1

j,t

)
= a1 + a2

According to Lemma 1.1 i), we may estimate A as follows

A �
〈
a1,a1

〉
R̂j,t

+
〈
a2,a2

〉
R̂j,t

= A1 + A2.

Since Π̂j,t(n ⊗ b) = 1 ⊗ R̂j,t(n)b, the Kadison-Schwarz inequality yields〈
Π̂j,t(n⊗ b), Π̂j,t(n⊗ b)

〉
̂ �

〈
n⊗ b, n⊗ b

〉
R̂j,t

.

Rj,t
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In conjunction with Lemma 1.1 i) again, we deduce the following estimate for A1

A1 �
〈
T̂ (π2(f)aj,t) ⊗ γ−1

j,t , T̂ (π2(f)aj,t) ⊗ γ−1
j,t

〉
R̂j,t

= γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)
∣∣2)γ−1

j,t .

In order to bound the term in the right hand side, we apply (2.1) and the properties 
of the operator-valued weight Eρ together with our algebraic conditions. Indeed, we 
first use the Q-monotonicity of Eρ; then the fact that it commutes with the left/right 
multiplication by elements affiliated to M (like γ−1

j,t or Eρ(qj,t)−1/2); finally we use the 
right B-modularity of the amplification of T :

γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)
∣∣2)γ−1

j,t

≤ γ−1
j,t Eρ(qj,t)−

1
2 Eρ

(∣∣T̂ (π2(f)aj,t)
∣∣2)Eρ(qj,t)−

1
2 γ−1

j,t

= Eρ

(
γ−1
j,t Eρ(qj,t)−

1
2
∣∣T̂ (

π2(f)aj,t
)∣∣2Eρ(qj,t)−

1
2 γ−1

j,t

)
= Eρ

∣∣∣T̂(
π2(f)aj,t π1ρ

−1
1

(
Eρ(qj,t)−

1
2 γ−1

j,t

)︸ ︷︷ ︸
ξ1

)∣∣∣2 = Eρ|T̂ (ξ1)|2.

Now, our first CZ condition i) gives the boundedness we need since

‖A1‖M ≤
∥∥T̂ (ξ1)

∥∥2
Lc

∞(Nρ;Eρ) �
∥∥ξ1∥∥2

Lc
∞(Nπ;Eπ)

=
∥∥∥Eπ

(∣∣π2(f)aj,t π1ρ
−1
1

(
Eρ(qj,t)−

1
2 γ−1

j,t

)∣∣2)∥∥∥
M

≤
∥∥∥π1ρ

−1
1

(
γ−1
j,t Eρ(qj,t)−

1
2
)∗Eπ(a∗j,taj,t)π1ρ

−1
1

(
Eρ(qj,t)−

1
2 γ−1

j,t

)∥∥∥
M
‖f‖2

∞.

The last term on the right is dominated by ‖f‖2
∞ according to our second analytic 

condition on metric/measure growth. The estimate for A2 is simpler. Indeed, if we set 
ξ2 = T̂ (π2(f)(1 − aj,t)) then

A2 =
〈
(id− Π̂j,t)(ξ2 ⊗ γ−1

j,t ) , (id− Π̂j,t)(ξ2 ⊗ γ−1
j,t )

〉
R̂j,t

= γ−1
j,t

(
R̂j,t|ξ2|2 −

∣∣R̂j,t(ξ2)
∣∣2)γ−1

j,t ≤ γ−1
j,t Φj,t

(
|δξ2|2

)
γ−1
j,t � ‖f‖2

∞1,

where the first inequality holds for some derivation δ : Nρ → Nσ and some normal cpu 
map Φj,t : Nσ → ρ1(M) by our first analytic condition on mean differences. Then our 
CZ condition iii) on kernel smoothness justifies our last estimate. Our estimates so far 
prove the desired estimate

sup sup
∥∥∥(γ−1

j,t

[
Rj,t|Tf |2 − |Rj,tTf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

� ‖f‖∞.

t>0 j≥1
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Therefore, it remains to estimate the norm of

B = γ−1
j,t

(∣∣Rj,tTf −MtTf
∣∣2)γ−1

j,t .

To do so, we decompose the middle term using (2.3) as follows

Rj,tTf −MtTf

= R̂j,t(ρ2Tf) − M̂t(ρ2Tf)

= R̂j,t

(
T̂
(
π2(f)aj,t

))
− M̂t

(
T̂
(
π2(f)at

))
+
[
R̂j,t

(
T̂
(
π2(f)(1 − aj,t)

))
− M̂t

(
T̂
(
π2(f)(1 − at)

))]
= b1 − b2 + b3.

Letting Bj = γ−1
j,t |bj |2γ−1

j,t we get B � B1 + B2 + B3. By Kadison-Schwarz we get

B1 ≤ γ−1
j,t R̂j,t

(∣∣T̂ (π2(f)aj,t)
∣∣2)γ−1

j,t � ‖f‖2
∞,

where the last inequality was justified in our estimate of A1 above. Replacing qj,t by qt, 
the same argument serves to control the term B2. To estimate B3 we decompose b3 as 
follows

b3 =
[
R̂j,t

(
T̂
(
π2(f)(1 −Aj,t)

))
− M̂t

(
T̂
(
π2(f)(1−Aj,t)

))]
+ R̂j,t

(
T̂
(
π2(f)(Aj,t − aj,t)

))
− M̂t

(
T̂
(
π2(f)(Aj,t − at)

))
= b31 + b32 − b33.

Taking ξ3 = T̂
(
π2(f)(1 −Aj,t)

)
and applying our analytic condition i) on mean differences 

together with our CZ condition iii) on kernel smoothness, we obtain that

γ−1
j,t |b31|2γ−1

j,t � γ−1
j,t Ψj,t

(
|δξ3|2

)
γ−1
j,t � ‖f‖2

∞.

It remains to estimate the terms B32 and B33. Applying the Kadison-Schwarz inequality, 
it is easily checked that these terms are also dominated by ‖f‖2

∞ by means of our CZ 
size kernel condition ii). Altogether, we have justified that

sup
t>0

inf
Mtcpu

sup
j≥1

∥∥∥(γ−1
j,t

[
|Rj,tf −Mtf |2

]
γ−1
j,t

) 1
2
∥∥∥
M

� ‖f‖∞.

Combining our estimates for A and B, we deduce that T : AM → BMOc
Q. �

The AM → BMOr
Q boundedness of the map T is equivalent to the AM → BMOc

Q
boundedness of the map T †(f) = T (f∗)∗. According to this, an algebraic CZO is any 
column CZO T for which T † remains a column CZO. By Theorem 2.1, we know that 
any algebraic CZO T associated to (M, τ, Q) as above is automatically AM → BMOQ
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bounded. Assuming L2 boundedness and regularity of the Markov semigroup, we may 
interpolate via Theorem 1.6. Under the same assumptions for T ∗, we may also dualize 
and obtain the following extrapolation result.

Corollary 2.2. Let (M, τ) be a noncommutative measure space equipped with a Markov 
regular semigroup S = (St)t≥0 and a Markov metric Q = (Rj,t, σj,t, γj,t) fulfilling our 
algebraic and analytic assumptions. Then, every L2-bounded algebraic CZO T satisfies 
that JpT : Lp(M) → L◦

p(M) for p > 2. Applying duality, similar conditions for T ∗ yield 
Lp-boundedness of TJp for every 1 < p < 2.

Remark 2.3. Theorem 2.1 admits a completely bounded version in the category of oper-
ator spaces. Since the operator space structure [19,52] of BMO is determined by

Mm(BMOS(M)) = BMOŜ(Mm(M))

for Ŝ = (idMm
⊗ St)t≥0, we just need to replace M by Mm(M) everywhere, amplify all 

the involved maps by tensorizing with idMm
and require that the hypotheses hold with 

constants independent of m. Then, we obtain the cb-boundedness of T .

Remark 2.4. As noticed in the Introduction, a common scenario is given by the choice 
Nρ = M⊗̄M with ρ1(f) = f ⊗ 1 and ρ2(f) = 1 ⊗ f , together with Eρ = id ⊗ τ and 
πj = ρj for j = 1, 2. In this case, it is clear that the amplification map is given by

T̂ = idM ⊗ T so that T̂ π2 = ρ2T.

In particular, it turns out that the L2 boundedness of T in Corollary 2.2 follows auto-
matically from our CZ boundedness condition i). This is the case in classical Calderón-
Zygmund theory. It is also true when Nρ = M⊗̄A for an auxiliary algebra A and 
ρ2 = flip◦σ, where σ : M → A⊗̄M is a ∗-homomorphism satisfying Eρ◦ρ2(f) = τ(f)1M. 
This leads to another significant family of examples. It is however surprising that in gen-
eral, the L2 boundedness and the CZ boundedness assumptions are a priori unrelated. 
Thus, CZ extrapolation requires in this context to verify two boundedness conditions. 
It would be quite interesting to explore the corresponding “T (1) problems” that arise 
naturally.

2.4. The classical theory revisited

We now illustrate our algebraic approach in the classical context of Euclidean spaces 
with the Lebesgue measure. This will help us to understand some of our conditions 
and will show how some others are automatic in a commutative framework. Take M =
L∞(Rn) with the Lebesgue measure and S = (Ht)t≥0 the heat semigroup Ht = exp(tΔ). 
In Paragraph 1.6 we introduced the Markov metric Q given by
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• σ2
j,t ≡ 2e√

π
j

n
2 e−k and γ2

j,t ≡ j
n
2 ≥ 1,

• Rj,tf(x) = 1
|B√

4jt(x)|

ˆ

B√
4jt(x)

f(y) dy.

Moreover, as we explained at the beginning of this section

Rj,tf = Eρ(qj,t)−
1
2 Eρ

(
qj,tρ2(f)qj,t

)
Eρ(qj,t)−

1
2

satisfies our basic assumption (2.1). Here the amplification von Neumann algebra is Nρ =
L∞(Rn × Rn), the ∗-homomorphisms ρjf(x1, x2) = f(xj), the projections qj,t(x, y) =
χB√

4jt(x)(y), and the operator-valued weight Eρ is the integration map with respect to 
the second variable. The cpu map Mt which appears in the definition of BMOQ is still 
taken by Mt = R1,t as in Paragraph 1.6.

Taking Nπ = Nρ, AM = L2(Rn) ∩ L∞(Rn) and T a standard CZO in Rn, the 
algebraic conditions trivially hold in this case. Let Ex

j,k,t = B√
4jt(x) ×B√

4kt(x). Taking 
Φj,t and Ψj,t to be the averaging maps over Ex

j,j,t and Ex
j,1,t respectively and the family 

of dilated balls (Aj,t(x, y), aj,t(x, y)) = (χαB√
4jt(x)(y), χ5B√

4jt(x)(y)) with a ≥ 5, we may 
recover the conditions as we explained right after stating them. Let us now show how our 
algebraic CZ conditions hold from the classical ones. The boundedness condition reduces 
to the classical one, see Remark 4.2 A). Our size conditions can be rewritten as follows:

• ess sup
x∈Rn

−
ˆ

B√
4t(x)

∣∣∣ ˆ

aB√
4jt(x)\5B√

4t(x)

k(y, z)f(z)dz
∣∣∣2dy � j

n
2 ‖f‖2

∞,

• ess sup
x∈Rn

−
ˆ

B√
4jt(x)

∣∣∣ ˆ

aB√
4jt(x)\5B√

4jt(x)

k(y, z)f(z)dz
∣∣∣2dy � j

n
2 ‖f‖2

∞.

The above conditions follow from the usual size condition

|k(y, z)| � 1
|z − y|n .

Next, taking Ex
j,k,t as above, our smoothness conditions are:

• ess sup
x∈Rn

−
ˆ

Ex
j,1,t

( ˆ

(5B√
4jt(x))c

(
k(y1, z) − k(y2, z)

)
f(z)dz

)2
dy1dy2 � j

n
2 ‖f‖2

∞,

• ess sup
x∈Rn

−
ˆ

Ex

( ˆ

(aB√ (x))c

(
k(y1, z) − k(y2, z)

)
f(z)dz

)2
dy1dy2 � j

n
2 ‖f‖2

∞.

j,j,t 4jt
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The above conditions easily follow from the usual Hörmander condition

ess sup
y1,y2∈Rn

ˆ

|y1−z|≥2|y1−y2|

|k(y1, z) − k(y2, z)| dz < ∞.

Note that our algebraic CZ conditions are slightly weaker than the classical CZ condi-
tions, but still sufficient for L∞ → BMO and Lp-boundedness of the CZ map.

Remark 2.5. Our size condition is only used to estimate B in the proof of Theorem 2.1. 
We saw in Paragraph 1.6 that B � A for the Euclidean metric. Thus, our size condition 
is not necessary here, as it also happens in the classical formulation.

3. Applications I — Commutative spaces

In this section we give specific constructions of Markov metrics on two basic com-
mutative spaces: Riemannian manifolds with nonnegative Ricci curvature and Gaussian 
measure spaces. Beyond the Euclidean-Lebesguean setting considered above, these are 
the most relevant settings over which Calderón-Zygmund theory has been studied. As 
a good illustration of our algebraic method, we shall recover the extrapolation results. 
Noncommutative spaces will be explored later on.

3.1. Riemannian manifolds

Let (Ω, μ) be a measure space equipped with a Markov semigroup, so that we may 
construct the corresponding semigroup type BMO space. In order to study the L∞ →
BMO boundedness of CZOs in (Ω, μ) it is essential to identify a Markov metric to work 
with. Now we provide sufficient conditions for a semigroup on a Riemannian manifold to 
yield a Markov metric satisfying our algebraic/analytic conditions, so that Theorem 2.1
is applicable. Let us consider an n-dimensional complete Riemannian manifold (M, g)
equipped with the geodesic distance d determined by the Riemannian metric g. Denote 
the volume of a geodesic ball centered at x with radius r by volg(Br(x)). Let SM be a 
Markov semigroup on M given by

SM,tf(x) =
ˆ

M

st(x, y)f(y) dy.

Proposition 3.1. Assume that

i) M has Ricci curvature ≥ 0.
ii) The kernel admits an upper bound

st(x, y) � φ(t)n+ε

n+ε
,
volg(Bφ(t)(x))(d(x, y) + φ(t))
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for some strictly positive function φ and some parameter ε > 0.

Then SM admits a Markov metric satisfying the algebraic/analytic conditions.

Proof. If Σj,t(x) = B2jφ(t)(x), by estimating the upper bound on the corona centered at 
x with radii 2j−1φ(t) and 2jφ(t), our assumption gives

st(x, y) �
∞∑
j=1

2−j(n+ε)

volg(Σ0,t(x))χΣj,t(x)(y). (3.1)

According to Davies [15, Theorem 5.5.1], non-negative Ricci curvature implies

volg(Br(x)) ≤ cnr
n,

volg(Bγr(x)) ≤ γnvolg(Br(x))

for all x ∈ M , r > 0 and γ > 1. In particular, volg(Σj,t(x)) ≤ 2jnvolg(Σ0,t(x)). By (3.1), 
this implies that (σj,t, γj,t) = (2−jε/2, 1) forms a Markov metric for SM in conjunction 
with the averaging maps

Rj,tf(x) = −
ˆ

Σj,t(x)

f(y)dy for (j, t) ∈ Z+ ×R+.

By assumption ii), kerA∞ the fixed-point subspace of SM is the space of constant func-
tions on M , so Rj,tf = f for any f ∈ kerA∞.

Our construction for M = L∞(M) and AM = L∞(M) ∩ L2(M) follows the basic 
model in the Introduction and the one used above in the Euclidean setting: Nρ = Nπ =
M⊗̄M with ρj the canonical inclusion maps and qj,t(x, y) = χΣj,t(x)(y) = χΣj,t(y)(x). 
Then, the algebraic conditions for the Markov metric are obviously satisfied. Let us now 
check the analytic conditions. Taking Nσ = M⊗̄M⊗̄M, the derivation δ : Nρ → Nσ

given by δ(a ⊗ b) = a ⊗ (1 ⊗ b − b ⊗ 1) and the maps Mt = R1,t, it turns out that the 
mean difference conditions follow from Jensen’s inequality on normalized balls of (M, g)
as it follows from our comments after the definition of the analytic conditions. It remains 
to consider the metric/measure growth conditions. By taking aj,t(x, y) = χΣj+1,t,(x)(y)
and (qt, at) = (q1,t, a1,t), these conditions reduce to show that

volg(B2j+1φ(t)(x)) ≈ volg(B2jφ(t)(x)).

This follows in turn from the fact that M has a non-negative Ricci curvature. �
Let (M, g) be a complete Riemannian manifold with non-negative Ricci curvature 

and let Δ be the Laplace-Beltrami operator. The heat semigroup SΔ generated by Δ is 
regular and admits a kernel on (M, g) satisfying the upper bound estimate mentioned in 
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the above proposition. We know from Davies [15, Theorem 5.5.11] that the heat kernel 
satisfies

ht(x, y) ≤
aδ

volg(B√
t(x)) exp

(
− d(x, y)2

4(1 + δ)t

)
(3.2)

for any δ > 0 and certain constant aδ. This implies that

ht(x, y) � aδ
volg(B√

t(x))
(4(1 + δ)t)n+ε

2

(d(x, y)2 + 4(1 + δ)t)n+ε
2

� (
√

4(1 + δ)t)n+ε

volg(B√
4(1+δ)t(x))(d(x, y) +

√
4(1 + δ)t)n+ε

,

which gives the expected upper bound with φ(t) =
√

4(1 + δ)t.

Remark 3.2. Once we have confirmed that algebraic and analytic conditions hold for the 
Markov process generated by the Laplace-Beltrami operator Δ, it should be noticed that 
our CZ conditions are again implied by the classical ones. Arguing as in Remarks 1.8
and 2.5, we see that the Ricci curvature assumption allows us to ignore our size kernel 
conditions. Next, it is straightforward to check that the boundedness condition reduces in 
this case to standard L2-boundedness. Finally, our discussion in section 2.4 shows that 
our smoothness kernel condition is guaranteed under the classical Hörmander kernel 
condition. Note in addition that our conditions also hold in the row case. In particular, 
classical CZOs in (M, g) become algebraic CZOs. Moreover, the gaussian upper estimate 
(3.2) indicates that in (M, g) with the heat semigroup SΔ we have L◦

p(M) = Lp(M, g)
for 1 < p < ∞.

By the discussion above, we have all the ingredients to apply Theorem 2.1 and Corol-
lary 2.2. Let us illustrate it for the Riesz transforms on (M, g). Consider the Riemannian 
gradient ∇ = (∂1, ∂2, . . . , ∂n) on (M, g). The Riesz transform on (M, g) is formally de-
fined by

R = (Rj) = ∇(−Δ)− 1
2 with Rj = ∂j(−Δ)− 1

2 .

Then we may recover Bakry’s theorem [1] using our algebraic approach. Indeed integra-
tion by parts gives ‖|∇f |‖2 = ‖Δ 1

2 f‖2 which implies L2-boundedness of Riesz transforms. 
Moreover, the Hörmander condition follows from [9,41].

Corollary 3.3. Let (M, g) be a complete n-dimensional Riemannian manifold with non-
negative Ricci curvature. Then for all 1 < p < ∞, there exists a constant Cp > 0 such 
that

‖Rjf‖Lp(M,g) ≤ Cp‖f‖Lp(M,g) for all 1 ≤ j ≤ n.
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3.2. The Gaussian measure

Now we study the Ornstein-Uhlenbeck semigroup on the Euclidean space equipped 
with its Gaussian measure, which satisfies as well our regularity assumption. We shall 
first construct a Markov metric for it. Then we shall prove that our algebraic/analytic and 
Calderón-Zygmund conditions hold for the standard CZOs in this setting. The generator 
of the Ornstein-Uhlenbeck semigroup O = (Ot)t≥0 is the operator

L = Δ
2 − x · ∇

on (Rn, μ) with dμ(y) = exp(−|y|2)dy. We have

Otf(x) = 1
(π − πe−2t)n

2

ˆ

Rn

exp
(
− |e−tx− y|2

1 − e−2t

)
f(y) dy

= 1
(π − πe−2t)n

2

ˆ

Rn

exp
(
|x|2 − |etx− y|2

e2t − 1

)
f(y) dμ(y).

First, we establish a useful lemma showing that the local behavior —i.e. for small 
values of t— of the semigroup type BMO norm for the Ornstein-Uhlenbeck semigroup 
determines it completely.

Lemma 3.4. Given δ > 0, there exists Cδ > 0 such that

sup
t≥0

∥∥Ot|f |2 − |Otf |2
∥∥
∞ ≤ Cδ sup

t<δ

∥∥Ot|f |2 − |Otf |2
∥∥
∞.

Proof. It is easy to check that

Otf(x) = Hv(t)f(e−tx), (3.3)

for v(t) = 1
4 (1 − e−2t) and the heat semigroup Ht = exp(tΔ). Given t > 0 and f ∈

L∞(Rn), let F (s) = Hs|Ht−sf |2 for 0 ≤ s ≤ t. According to the definition of Ht, we 
obtain the following identity

∂sF = (∂sHs)|Ht−sf |2 + Hs[(∂sHt−sf)∗(Ht−sf)] + Hs[(Ht−sf)∗(∂sHt−sf)]

= ΔHs|Ht−sf |2 −Hs[(ΔHt−sf)∗(Ht−sf)] −Hs[(Ht−sf)∗(ΔHt−sf)]

= Hs[Δ|Ht−sf |2 − (ΔHt−sf)∗(Ht−sf) − (Ht−sf)∗(ΔHt−sf)]

= 2Hs|∇Ht−sf |2.

Kadison-Schwarz inequality gives for 0 < u < s
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Hu|∇Ht−uf |2 = Hu|Hs−u∇xHt−sf |2 ≤ Hs|∇xHt−sf |2

which implies that ∂sF is increasing and F is convex. Rearranging the inequality F (s) ≤
1
2 (F (0) + F (2s)), we get H2t|f |2 − |H2tf |2 ≤ 2Ht(Ht|f |2 − |Htf |2) for any t ≥ 0. Then, 
the L∞ contractivity of Ht gives∥∥H2kt|f |2 − |H2ktf |2

∥∥
∞ ≤ 2k

∥∥Ht|f |2 − |Htf |2
∥∥
∞. (3.4)

On the other hand, choosing kδ such that 2kδv(δ) ≥ 1
4 and applying (3.3) and (3.4)

sup
t≥0

∥∥Ot|f |2 − |Otf |2
∥∥
∞ = sup

t< 1
4

∥∥Ht|f |2 − |Htf |2
∥∥
∞

≤ sup
t<2kδv(δ)

∥∥Ht|f |2 − |Htf |2
∥∥
∞

≤ 2kδ sup
t<δ

∥∥Ot|f |2 − |Otf |2
∥∥
∞. �

By the lemma above, it suffices to construct a Markov metric for (Ot)t≥0 with 0 <
2t < 1

18 . Let v =
√
e2t − 1 and consider the following family of balls and coronas in the 

gaussian space for (j, t) ∈ Z+ ×R+

Σj,t(x) = B(etx,
√
jv) and Ωj,t(x) = Σj,t(x) \ Σj−1,t(x).

Let j0 = j0(x, t) be the smallest possible integer j satisfying that 0 ∈ Σj,t(x).

The case n = 1. If 1 ≤ j < j0, let

D−
j,t(x) =

{
y ∈ Ωj,t(x) : et|x| −

√
jv ≤ |y| ≤ et|x| −

√
j − 1v

}
,

D+
j,t(x) =

{
y ∈ Ωj,t(x) : et|x| +

√
j − 1v ≤ |y| ≤ et|x| +

√
jv

}
.

Then, D−
j,t(x) ∪D+

j,t(x) = Ωj,t(x) and we get

Otf(x) � 1
v

( ∑
ε=±

1≤j<j0

exp(|x|2 − j)
ˆ

Dε
j,t(x)

fdμ +
∑
j≥j0

exp(|x|2 − j)
ˆ

Σj,t(x)

fdμ
)

(3.5)

for any positive f ∈ L∞(R, μ). The above estimate indicates the natural candidates for 
the cpu maps Rj,t and σj,t ∈ L∞(R, μ). When 1 ≤ j < j0 and ε = ±, we define

Rj,t,εf(x) = 1
μ(Dε

j,t(x))

ˆ

Dε
j,t(x)

fdμ and σ2
j,t,ε(x) = 1

v
exp(|x|2 − j)μ(Dε

j,t(x)).

Note here we need an extra index for Rj,t’s when j < j0. This is consistent with the 
assumptions (i) and (ii) in our definition of Markov metric, since we only need the index-
set of Rj,t’s to be countable. On the other hand, if j ≥ j0, we set
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Rj,tf(x) = 1
μ(Σj,t(x))

ˆ

Σj,t(x)

fdμ and σ2
j,t(x) = 1

v
exp(|x|2 − j)μ(Σj,t(x)).

Since kerA∞ the fixed-point subspace of O is the space of constant functions, so Rj,t,ε

and Rj,t fix all the functions in kerA∞. In order to find γj,t,ε and γj,t satisfying the metric 
integrability condition, we need to estimate μ(Dε

j,t(x)) and μ(Σj,t(x)) respectively. Since 
the density function μ is monotone on Dε

j,t(x) we get

μ(D−
j,t(x)) =

ˆ

D−
j,t(x)

e−y2
dy ≤ exp

(
−

∣∣et|x| −√
jv

∣∣2) v√
j
, (3.6)

μ(D+
j,t(x)) =

ˆ

D+
j,t(x)

e−y2
dy ≤ exp

(
−

∣∣et|x| + √
j − 1v

∣∣2) v√
j
. (3.7)

When j ≥ j0 we use the trivial estimate

μ(Σj,t(x)) =
ˆ

Σj,t(x)

e−y2
dy ≤ 2

√
jv.

Combining the estimates obtained above, we deduce for 1 ≤ j < j0

σ2
j,t,− ≤ 1√

j
exp

(
−

∣∣v|x| − et
√

j
∣∣2) and σ2

j,t,+ ≤ 1√
j

exp
(
−

∣∣v|x| + et
√
j − 1

∣∣2).
When j ≥ j0, we have et|x| ≤

√
jv and |x|2 ≤ jv2e−2t < j/4. Therefore

σ2
j,t ≤ 2

√
j exp(|x|2 − j) < 2

√
j exp

(
− 3

4j
)
.

Now we are ready to choose the optimal γ’s for the metric integrability condition in the 
definition of Markov metric. We respectively define for 1 ≤ j < j0 and j ≥ j0

γ2
j,t,ε(x) = exp

( |v|x| + et
√
j − 1|2

2

)
and γ2

j,t(x) = 1√
j

exp
( j

4

)
.

Then it turns out that

sup
x∈R

0<t< 1
36

∑
1≤j<j0

σ2
j,t,−(x)γ2

j,t,−(x) ≤ sup
x∈R

0<t< 1
36

∑
1≤j<j0

1√
j

exp
(
− |6v|x| − et

√
j|2

4

)

≤ sup
x∈R

1

2
ˆ

R

exp
(
− |6v|x| − etu|2

4

)
du < ∞.
0<t< 36
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sup
x∈R

0<t< 1
36

∑
1≤j<j0

σ2
j,t,+(x)γ2

j,t,+(x) ≤ sup
x∈R

0<t< 1
36

∑
1≤j<j0

1√
j

exp
(
− |v|x| + et

√
j − 1|2

2

)

≤ 1 + sup
x∈R

0<t< 1
36

2
ˆ

R

exp
(
− |v|x| + etu|2

2

)
du < ∞.

On the other hand, it is clear that

sup
x∈R

0<t< 1
36

∑
j≥j0

σ2
j,t(x)γ2

j,t(x) ≤
∑
j≥j0

2 exp(− j

2) < ∞.

We have constructed a Markov metric for the Ornstein-Uhlenbeck semigroup.
Let us now verify the analytic conditions, since the algebraic conditions are trivial 

by commutativity. As we mentioned in Subsection 2.2, the first condition is an easy 
consequence of Jensen’s inequality for the Gaussian measure. By the definition of Rj,t,ε

and Rj,t, we get qj,t,ε(x, y) = χDε
j,t(x)(y) and qj,t(x, y) = χΣj,t(x)(y). Thus, it remains to 

find proper aj,t,ε and aj,t to make sure that

μ(Dε
j,t(x)) �

ˆ

R

a2
j,t,ε(x, y) dμ(y) � γ2

j,t,ε(x)μ(Dε
j,t(x))

and similarly for the pairs (Σj,t(x)), a2
j,t(x, y)). When j < j0 we consider the functions 

aj,t,ε(x, y) = χ2Dε
j,t(x)(y), so the lower estimates are trivial. Denote by cj,t,ε(x) the center 

of Dε
j,t(x). Let β = v(

√
j −

√
j − 1). Arguing as in (3.6), we get

exp
(
−

∣∣|cj,t,ε(x)| + β

2
∣∣2) ≤

μ(Dε
j,t(x))
β

≤ exp
(
−

∣∣|cj,t,ε(x)| − β

2
∣∣2),

exp
(
−

∣∣|cj,t,ε(x)| + β
∣∣2) ≤

μ(2Dε
j,t(x))

2β ≤ exp
(
−

∣∣|cj,t,ε(x)| − β
∣∣2).

Since cj,t,±(x) = et|x| ± 1
2v(

√
j +

√
j − 1), this implies that

μ(2Dε
j,t(x))

μ(Dε
j,t(x)) ≤ 2 exp

(
3|cj,t,ε(x)|β − 3

4β
2
)

≤ 2γ2
j,t,ε(x).

The estimate for j ≥ j0 is easier. Take aj,t(x, y) = χ2Σj,t(x)(y). Note

2
√
jv exp

(
− |2

√
jv|2

)
≤ μ(Σj,t(x)) ≤ 2

√
jv,

4
√
jv exp

(
− |3

√
jv|2

)
≤ μ(2Σj,t(x)) ≤ 4

√
jv.

Then, since 0 < 2t < 1 , we get
18
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μ(2Σj,t(x))
μ(Σj,t(x)) ≤ 2 exp(4jv2) ≤ 2 exp( j4) = 2γ2

j,t(x).

Our choice for qt and at correspond to the balls Σ1,t(x) and 2Σ1,t(x).

The case n > 1. The argument is similar, so we just point out the necessary modifications. 
Since v(

√
j−

√
j − 1) < vj−

1
2 , we may pick cnjn−1 balls Ds

j,t(x) for 1 ≤ s ≤ cnj
n−1 with 

radius v
2
√
j
, centered on the sphere

{
y : |y − etx| = v(

√
j +

√
j − 1)

2

}
such that

Ωj,t(x) ⊂
⋃
s≥1

Ds
j,t(x)

and each Ds0
j,t(x) overlaps with at most c′n other balls Ds

j,t(x). Then, if f ≥ 0

Otf(x) � 1
vn

( ∑
j<j0

1≤s≤cnj
n−1

exp(|x|2 − j)
ˆ

Ds
j,t(x)

fdμ +
∑
j≥j0

exp(|x|2 − j)
ˆ

Σj,t(x)

fdμ
)
.

Then, we may consider the following Markov metric(
σ2
j,t,s(x), γ2

j,t,s(x), Rj,t,sf(x)
)

=
(exp(|x|2 − j)

vn
μ(Ds

j,t(x)), j−
n−1

2 exp
( |v|x| + et

√
j − 1|2

2

)
, −

ˆ

Ds
j,t(x)

fdμ
)

for j < j0 and 1 ≤ s ≤ cnj
n−1. When j ≥ j0, we set

(
σ2
j,t(x), γ2

j,t(x), Rj,t,f(x)
)

=
(exp(|x|2 − j)

vn
μ(Σj,t(x)), j−n

2 exp( j4), −
ˆ

Σj,t(x)

fdμ
)
.

The analytic conditions hold under the same choices we made for n = 1.

Corollary 3.5. Let O = (Ot)t≥0 be the Ornstein-Uhlenbeck semigroup and T be a singular 
integral operator defined on L∞(Rn, dμ) with kernel k. More precisely, we have the kernel 
representation

Tf(x) =
ˆ

Rn

k(x, y)f(y) dμ(y) for x /∈ suppf.

Suppose T is bounded on L2(Rn, μ) and it satisfies
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sup
B ball

sup
z∈B
j≥1

ˆ

2j+1B\2jB

|k(z, y)|dμ(y) < ∞, (3.8)

sup
B ball

sup
z1,z2∈B

ˆ

(5B)c

|k(z1, y) − k(z2, y)|dμ(y) < ∞. (3.9)

Then T is a bounded map from L∞(Rn, μ) to the semigroup BMOO space.

Proof. It suffices to prove that our CZ conditions hold. The row and column boundedness 
conditions reduce to L2-boundedness. Let Mt be the averaging map in L∞(Rn, μ) over 
the ball Σ1,t(x). Given 1 ≤ j < j0, define Aj,t,s(x, ·) as the characteristic function over 
the ball Σj+1,t(x). Then Aj,t,s ≤ χ2rDs

j,t(x)∩Σ1,t(x) with r = [2 log2(j + 1)] + 3, where [ ]
stands for the integer part. Therefore, applying (3.8), we have

sup
z∈Σ1,t(x)

ˆ

Σj+1,t(x)\2Σ1,t(x)

|k(z, y)| dμ(y) � r � γ2
j,t,s(x),

sup
z∈Ds

j,t(x)

ˆ

Σj+1,t(x)\2Ds
j,t(x)

|k(z, y)| dμ(y) � r � γ2
j,t,s(x).

For j ≥ j0, let Aj,t(x, ·) = χΣ4j,t(x) ≤ χ2uΣ1,t(x) with u = [log2(2
√
j)] + 1. Applying 

(3.8) as above, we see that T satisfies our size conditions. Moreover, (3.9) implies our 
smoothness conditions as in the Euclidean-Lebesguean setting, Section 2.4. �
Remark 3.6. Since the Gaussian measure is non-doubling, the term Rj,tf −Mtf in the 
Markov metric BMO space BMOQ is essential to characterise the changes of the mean 
values of the function f . This explains the relevance of the size kernel condition in the 
Calderón-Zygmund theory for the gaussian measure.

4. Applications II — Noncommutative spaces

In this section we apply our algebraic approach to study Calderón-Zygmund operators 
in flag von Neumann algebras which originally motivated us and include matrix algebras, 
quantum Euclidean spaces and quantum groups. We start by reconstructing and refining 
the semicommutative theory, which deals with tensor and crossed products with metric 
measure spaces.

4.1. Operator-valued theory

Let (Ω, μ) be a doubling metric space —as in Remark 1.8— and consider a Markov 
semigroup St : L∞(Ω) → L∞(Ω). Let M be a semifinite von Neumann algebra with a 
n.s.f. trace τ . Then we call the semigroup S = (St⊗ idM)t≥0 a semicommutative Markov 
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semigroup. Consider the algebra of essentially bounded functions f : Ω → M equipped 
with the trace

ϕ(f) =
ˆ

Ω

τ(f(y)) dμ(y).

Its weak-∗ closure R = L∞(Ω)⊗̄M is a von Neumann algebra. Assume that there exists a 
Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+×R+} associated to the original Markov 
semigroup on L∞(Ω). Let qj,t(x, y) = χΩx

j,t
(y) stand for the projections determined by Q

via (2.1). We assume in addition that Q satisfies the metric/measure growth condition

μ(Σx
j,t)

μ(Ωx
j,t)

≤ γj,t(x) (4.1)

by choosing aj,t(x, y) = χΣx
j,t

(y). The remaining algebraic and analytic conditions triv-
ially hold in this case. Indeed, the algebraic conditions follow by commutativity and 
analytic conditions just require to pick the right averaging maps according to Jensen’s 
inequality, as explained in (2.4). Note that Q satisfies an operator-valued generalization 
of the Hilbert module majorization in the line of Remark 1.7. Thus Q extends to a 
Markov metric in R by tensorizing with idM and 1M respectively.

Our goal is to study CZO’s formally given by

Tf(x) =
ˆ

Ω

k(x, y) (f(y)) dμ(y) with
{
f : Ω → M1 and x /∈ suppΩf,

k(x, y) ∈ L(L0(M1), L0(M2)).

That is, k(x, y) is linear from τ1-measurable to τ2-measurable operators. If we set Rj =
L∞(Ω)⊗̄Mj , we should emphasize that Lp(Rj) = Lp(Ω; Lp(Mj)). In particular, this 
framework does not fall in the vector-valued theory because we take values in different 
Banach spaces for different values of p, see [49] for further explanations. This class of 
operators is inspired by two distinguished examples with M1 = M = M2:

• Operator-valued case

Tf(x) =
ˆ

Ω

kov(x, y) · f(y) dμ(y).

• Noncommutative model

Tf(x) =
ˆ

Ω

(idM ⊗ τ)
[
knc(x, y) · (1M ⊗ f(y))

]
dμ(y).

In the first case, the kernel takes values in M or even in the complex field and acts 
on f(y) by left multiplication k(x, y)(f(y)) = kov(x, y) · f(y). It is the canonical map 
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when Lp(R) is regarded as the Bochner space Lp(Ω; Lp(M)). On the contrary if we 
simply think of Lp(R) as a noncommutative Lp space, a natural CZO should be an 
integral map with respect to the full trace ϕ =

´
Ω ⊗τ and the kernel should be a ϕ ⊗ϕ-

measurable operator k : Ω × Ω → M⊗̄M. The noncommutative model provides the 
resulting integral formula. Note that this model also falls in our general framework by 
taking k(x, y)(f(y)) = (idM ⊗ τ)[knc(x, y) · (1M ⊗ f(y))].

Theorem 4.1. Let S = (St)t≥0 be a Markov semigroup on (Ω, μ) which admits a Markov 
metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈ Z+ × R+} satisfying the above assumptions. Let 
aj,t(x, y) = χΣx

j,t(y) be the projections determined by Q via (4.1). Consider the CZO 
formally given by

Tf(x) =
ˆ

Ω

k(x, y)(f(y)) dμ(y).

Then, T maps L∞(R1) to BMOc
S(R2) provided the conditions below hold

i) Lc
2-boundedness condition,∥∥∥(ˆ

Ω

|Tf |2 dμ
) 1

2
∥∥∥
M2

�
∥∥∥(ˆ

Ω

|f |2 dμ
) 1

2
∥∥∥
M1

.

ii) Smoothness condition for the kernel,
ˆ

Ω\Σx
j,t

∥∥(k(y1, z) − k(y2, z)
)(
f(z)

)∥∥
M2

dμ(z) � ‖f‖R1

uniformly in j ≥ 1, t > 0, x ∈ Ω and y1, y2 ∈ Ωx
j,t.

Proof. The proof follows from Theorem 2.1. Since the underlying space (Ω, μ) is a 
doubling metric space, the size kernel condition is unnecessary. Thus, it remains to 
check the Lc

2-boundedness condition and the kernel smoothness condition. Consider 
AM = L∞(R1) ∩

(
Lc

2(Ω)⊗̄L∞(M)
)

(see [28] for the definition of Hilbert space val-
ued L∞ spaces), Nπ = L∞(Ω × Ω)⊗̄M1, Nρ = L∞(Ω × Ω)⊗̄M2, ω(ϕ)(x, y) = ϕ(y) for 
ϕ ∈ L∞(Ω) and (π2, ρ2) = (ω⊗ idM1 , ω⊗ idM2). Let T̂ = idΩ ⊗T , Φj,t be the averaging 
map over Ωx

j,t × Ωx
j,t and Δ = δ ⊗ idM2 with δϕ(x, y) = ϕ(x) − ϕ(y). Then condition i) 

yields the Lc
2-boundedness condition. It is also easy to see that condition ii) implies our 

kernel smoothness condition. Thus, the result follows from Theorem 2.1. �
Remark 4.2. We continue with a few comments:

A) When M1 = M2 = M and the kernel k(x, y)(f(y)) = k(x, y) · f(y) acts by 
left multiplication, the boundedness condition i) becomes equivalent to the usual L2
boundedness. Indeed, using that M ⊂ B(L2(M)) we obtain
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∥∥∥( ˆ

Rn

|Tf(y)|2 dy
) 1

2
∥∥∥
M

= sup
‖h‖2≤1

( ˆ

Rn

〈
h, |Tf(y)|2h

〉
dy

) 1
2 = sup

‖h‖≤1

∥∥(Tf) (1Rn ⊗ h)
∥∥
L2(R)

= sup
‖h‖≤1

∥∥T (f (1Rn ⊗ h))
∥∥
L2(R) ≤ ‖T‖B(L2(R))

∥∥∥( ˆ

Rn

|f(y)|2 dy
) 1

2
∥∥∥
M
.

B) We have used so far semigroup type BMO’s. When (Ω, μ) comes equipped with 
a doubling metric, we may replace it by other standard (equivalent) forms of BMO, as 
pointed in Remark 1.9. By well-known arguments [49], our kernel smoothness condition 
reduces to

sup
R>0

ess sup
y1,y2∈BR

∥∥∥ ˆ

(BλR)c

(
k(y1, z) − k(y2, z)

)
(f(z)) dz

∥∥∥
M

� ‖f‖R, (Smλ)

for λ > 1. The classical Hörmander condition

ess sup
y1,y2∈Rn

ˆ

d(y1,z)>λd(y1,y2)

∥∥k(y1, z) − k(y2, z)
∥∥
M dz < ∞, (Hrλ)

satisfies (Hrλ) ⇒ (Sm2λ+1). In fact, an even weaker condition suffices

sup
R>0

∥∥∥ −
ˆ

BR×BR

∣∣∣ ˆ

(BλR)c

(
k(y1, z) − k(y2, z)

)
f(z)dz

∣∣∣2dy1dy2

∥∥∥
M

� ‖f‖2
R.

C) We recall that L∞(R) → BMOS boundedness requires that T †f = T (f∗)∗ satisfies 
the same assumptions as T . If k(x, y) ∈ M is given by left multiplication the only effect 
in T † is that k(x, y) is replaced by k(x, y)∗ and now operates by right multiplication. This 
left/right condition was formulated in [49] in terms of M-bimodular maps. Moreover, a 
counterexample was constructed to show that the bimodularity is indeed essential. It is 
also quite interesting to note that in the ‘noncommutative model’ we have

ˆ

Rn

(idM ⊗ τ)
[
k(x, y) · (1M ⊗ f(y))

]
dy =

ˆ

Rn

(idM ⊗ τ)
[
(1M ⊗ f(y)) · k(x, y)

]
dy

by traciality and this pathology does not occur. Finally, the Lp boundedness is guaranteed 
for 2 < p < ∞ since the classical heat semigroup has a regular Markov metric and 
Jp = idLp(Rn) in this case. As for 1 < p < 2, it suffices to take adjoints which leads to 
Hörmander smoothness in the second variable

ess sup
z1,z2∈Rn

ˆ ∥∥k(y, z1) − k(y, z2)
∥∥
M dy < ∞.
|y−z1|>λ|z1−z2|
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Of course, this is still consistent with the classical CZ theory M = C.

We now study the L∞ → BMO boundedness of twisted CZO’s on homogeneous 
spaces. Given a discrete group G with left regular representation λ : G → B(�2(G))
let L(G) denote its group von Neumann algebra. Let (M, τ) with M ⊂ B(H) be a 
noncommutative probability space and α : G → Aut(M) be a trace preserving action. 
Consider two ∗-representations

ρ : M � f �→
∑
h∈G

αh−1(f) ⊗ eh,h ∈ M⊗̄B(�2(G)),

Λ : G � g �→
∑
h∈G

1M ⊗ egh,h ∈ M⊗̄B(�2(G)),

where eg,h is the matrix unit for B(�2(G)). Now we define the crossed product algebra 
M �αG as the weak operator closure in M ⊗B(�2(G)) of the ∗-algebra generated by ρ(M)
and Λ(G). A generic element of M �α G can be formally written as 

∑
g∈G fg �α λ(g)

with fg ∈ M. With this convention, we may embed the crossed product algebra M �αG
into M⊗̄B(�2(G)) via the map j = ρ � Λ. Indeed, we have

j
( ∑

g∈G
fg �α λ(g)

)
=

∑
g∈G

ρ(fg)Λ(g)

=
∑
g∈G

( ∑
h,h′∈G

(αh−1(fg) ⊗ eh,h)(1M ⊗ egh′,h′)
)

=
∑
g∈G

( ∑
h∈G

αh−1(fg) ⊗ eh,g−1h

)
=

∑
g∈G

( ∑
h∈G

α(gh)−1(fg) ⊗ egh,h

)
.

Since the action α will be fixed, we relax the terminology and write 
∑

g∈G fgλ(g)
instead of 

∑
g∈G fg �α λ(g). We say that a Markov semigroup S = (St)t≥0 in M is 

G-equivariant if

αgSt = Stαg for (t, g) ∈ R+ × G.

If S is a G-equivariant Markov semigroup on M, let S� = (St � idG)t≥0 and S⊗ =
(St ⊗ idB(�2(G)))t≥0 denote the crossed/tensor product amplification of our semigroup 
on M � G and M⊗̄B(�2(G)) respectively. Note that S� is Markovian due to the G-
equivariance of S. In the following result, our CZO’s are of the form

Tf(x) =
ˆ

k(x, y)(f(y)) dμ(y)

Ω
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for all f ∈ (R1, ϕ1), where (Rj , ϕj) = L∞(Ω, μ)⊗̄(Mj , τj) and k(x, y) : M1 → M2. In 
other words, we keep the same terminology as for Theorem 4.1. We shall also use the 
notation

M̂j = Mj⊗̄B(�2(G)) and R̂j = Rj⊗̄B(�2(G)).

Corollary 4.3. Let G � L∞(Ω, μ) be an action α which is implemented by a measure pre-
serving transformation β, so that αgf(x) = f(βg−1x). Let S = (St)t≥0 be a G-equivariant 
Markov semigroup on (Ω, μ) which admits a Markov metric Q = {(Rj,t, σj,t, γj,t) : (j, t) ∈
Z+ ×R+} satisfying the assumptions above. Let us consider a family of CZO’s formally 
given by

Tgf(x) =
ˆ

Ω

kg(x, y)(f(y)) dμ(y) for g ∈ G.

Then, 
∑

g fgλ(g) �→
∑

g Tg(fg)λ(g) is bounded R1 � G → BMOc
S�

(R2 � G) if

i) Lc
2-boundedness condition,

∥∥∥( ˆ
Ω

∣∣(Tgh−1) • ξ
∣∣2 dμ) 1

2
∥∥∥
M̂2

�
∥∥∥(ˆ

Ω

|ξ|2 dμ
) 1

2
∥∥∥
M̂1

,

where • stands for the generalized Schur product of matrices. In other words, the
CZO Tgh−1 only acts on the (g, h)-th entry of ξ for each g, h ∈ G.

ii) Smoothness condition for the kernel,
ˆ

Ω

∥∥(K(y1, z) −K(y2, z)
)
•
(
ξ(z)(1 − aj,t(x, z))

)∥∥
M̂2

dμ(z) � ‖ξ‖R̂1
,

uniformly on j ≥ 1, t > 0, x ∈ Ω and y1, y2 ∈ Ωx
j,t. Here, the CZ kernel K(y, z) =∑

g,h kgh−1(βgy, βgz) ⊗ eg,h acts once more as a Schur multiplier.

Proof. Letting ξ =
∑

g,h ag,h ⊗ eg,h ∈ R̂1, we define the map

Φ : R̂1 → BMOc
S⊗(R̂2),

Φ(ξ)(x) =
∑
g,h

αg−1

ˆ

Ω

kgh−1(x, y)(ag,h(βg−1(y))) dμ(y) ⊗ eg,h.

By the definition of j, it is easy to check that

j
(∑

Tg(fg)λ(g)
)

= Φ
(
j
(∑

fgλ(g)
))

.

g g
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Since S is G-equivariant, according to [31, Lemma 2.1], we have

‖g‖BMOc
S�

(R2�G) = sup
t≥0

∥∥∥(S⊗,t|j(g)|2 − |S⊗,tj(g)|2
) 1

2
∥∥∥
R̂2

.

Therefore, it suffices to show that Φ is R̂1 → BMOc
S⊗(R̂2) bounded. We find

Φ(ξ)(x) =
ˆ

Ω

K(x, y)(ξ(y)) dμ(y).

Thus, we may regard Φ as a semicommutative CZO and apply Theorem 4.1 where Mj is 
replaced by M̂j . Since Φ(ξ) =

∑
g,h(αg−1) •(Tgh−1) •(αg) •ξ and β is measure preserving, 

we immediately find that the Lc
2-boundedness assumption implies that the map

Φ : Lc
2(Ω)⊗̄M̂1 → Lc

2(Ω)⊗̄M̂2

is bounded. Moreover, the smoothness condition matches that of Theorem 4.1. �
Remark 4.4. Our work so far yields sufficient conditions for the L∞ → BMO boundedness 
of T �idG in more general settings. In particular, if Tg = T and αgT = Tαg for all g ∈ G, 
then we find for any T fulfilling the assumption of Theorem 4.1, T � idG : R1 � G →
BMOc

S�
(R2 �G) is bounded. This gives an example where the hypothesis of Lemma 2.2 

in [31] is satisfied.

4.2. Matrix algebras

In this paragraph, we introduce a Markov metric for the matrix algebra B(�2). The 
triangular truncation plays the noncommutative form of the Hilbert transform on B(�2). 
We shall reprove the Lp-boundedness of the triangular truncation for 1 < p < ∞ and a 
new BMO → BMO estimate by means of this Markov metric and our algebraic approach. 
Consider the ∗-homomorphism u : B(�2) → L∞(R)⊗̄B(�2) determined by

u(emk) = e2πi(m−k) ·emk.

Given A =
∑

m,k amkemk, define the semigroup

St(A) =
∑

m,k
e−t|m−k|2amkemk.

It is not difficult to see that it defines a Markov semigroup of convolution type. In 
fact, u is a corepresentation of L∞(R) (equipped with its natural comultiplication map 
Δf(x, y) = f(x +y)) in B(�2) and it turns out that S = (St)t≥0 is the regular semigroup 
associated to the heat semigroup on R by transference
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u ◦ St = (Ht ⊗ idB(�2)) ◦ u.

Define the cpu map Rj,t on B(�2) by u ◦ Rj,t = (R̃j,t ⊗ idB(�2)) ◦ u, where R̃j,tf(x)
denotes the average of f ∈ L∞(R) over the interval B√

4jt(x). Now, given a matrix 
A =

∑
m,k amkemk we find

u ◦Rj,t(A)(x) = −
ˆ

B√
4jt(x)

u(A)(y)dy

= −
ˆ

B√
4jt(x)

∑
m,k

e2πi(m−k)yamkemkdy

=
∑
m,k

sin(4
√
jtπ(m− k))

4
√
jtπ(m− k)

e2πi(m−k)xamkemk.

Thus, we find the following identity

Rj,t(A) =
∑
m,k

sin(4
√
jtπ(m− k))

4
√
jtπ(m− k)

amkemk.

Taking σ2
j,t = 2e

√
j/πe−j1B(�2) and γ2

j,t =
√
j1B(�2), we obtain a Markov metric in 

B(�2). Indeed, the metric integrability condition holds trivially, as for the Hilbert module 
majorization it reduces to prove that B1 ≤ B2 with

B1 = u
(
〈ξ, ξ〉St

)
=

〈
u⊗ u(ξ), u⊗ u(ξ)

〉
Ht⊗idB(	2)

,

B2 =
∑
j

σ2
j,tu

(
〈ξ, ξ〉Rj,t

)
=

∑
j

σ2
j,t

〈
u⊗ u(ξ), u⊗ u(ξ)

〉
R̃j,t⊗idB(	2)

.

In other words, it suffices to note that the canonical Markov metric in R —which recovers 
the Euclidean metric, as proved in Paragraph 1.6— admits a matrix-valued extension, 
as it was justified in Remark 1.7. Let us now consider the triangular truncation

�(A) =
∑
m>k

amkemk.

Corollary 4.5. We have

‖�(A)‖BMOS � ‖A‖BMOS .

In particular, given 1 < p < ∞ we obtain ‖�(A)‖Sp
� p2

‖A‖Sp
.

p− 1
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Proof. Recall that

u ◦ � = (L⊗ idB(�2)) ◦ u,

for L = 1
2 (id + iH) and Ĥf(ξ) = −isgn(ξ)f̂(ξ), the Hilbert transform in the real line. 

We may also regard u : B(�2) → L∞(T )⊗̄B(�2) as a corepresentation of T instead of R
and the above identity holds replacing H by the Hilbert transform in the torus. In this 
case, u becomes a trace preserving ∗-homomorphism and the well-known Sp inequalities 
for � reduce to the boundedness of the Hilbert transform in Lp(T ; Sp(�2)), which is 
also well-known and follows in passing from the semicommutative theory in the previous 
paragraph. Alternatively, the second assertion follows from the first one by interpolation 
and duality. According to Remark 1.9, to prove the first assertion it suffices to show that 
the map

T = i(idB(�2) − 2�)

is BMO → BMO bounded for the semigroup BMO space which is associated to the 
transferred Poisson semigroup Pt on B(�2) given by

Pt : (aij) �→ (e−t|i−j|aij).

Given A = (ajk)j,k in B(�2) then

|A|2 = A∗A =
(∑

k

akiakj

)
i,j

T (A) = i
(
sgn(k − j)ajk

)
j,k

(TA)∗ = i
(
sgn(k − j)akj

)
j,k

Then 
(
Pt|A|2 − |PtA|2

)
ij

=
∑

k(e−t|i−j| − e−t|k−j|e−t|i−k|)akiakj and

(
Pt|T (A)|2 − |PtT (A)|2

)
ij

=
∑
k

(e−t|i−j| − e−t|k−j| e−t|i−k|) sgn(k − i) sgn(k − j) akiakj .

Since sgn(k − i)sgn(k − j) �= 1 iff e−t|i−k|e−t|k−j| = e−t|i−j|, we get

Pt|A|2 − |PtA|2 = Pt|T (A)|2 − |PtT (A)|2.

The last identity implies that T is an isometry on the Poisson BMO space. �
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4.3. Quantum Euclidean spaces

Given an integer n ≥ 1, fix an anti-symmetric R-valued n × n matrix Θ. We define 
AΘ as the universal C*-algebra generated by a family u1(s), u2(s), · · · , un(s) of one-
parameter unitary groups in s ∈ Rn which are strongly continuous and satisfy the 
following Θ-commutation relations

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

If Θ = 0, by Stone’s theorem we can take uj(s) = exp(2πis〈ej , ·〉) and AΘ is the space 
of bounded continuous functions on Rn. In general, given ξ ∈ Rn, define the unitaries 
λΘ(ξ) = u1(ξ1)u2(ξ2) · · ·un(ξn). Let EΘ be the closure in AΘ of λΘ(L1(Rn)) with

f =
ˆ

Rn

f̌Θ(ξ)λΘ(ξ) dξ.

If Θ = 0, EΘ = C0(Rn). Define

τΘ(f) = τΘ

⎛⎝ˆ

Rn

f̌Θ(ξ)λΘ(ξ) dξ

⎞⎠ = f̌Θ(0)

for f̌Θ : Rn → C integrable and smooth. τΘ extends to a n.s.f. trace on EΘ. Let RΘ =
A′′

Θ =E′′
Θ be the von Neumann algebra generated by EΘ in the GNS representation of 

τΘ. Note that if Θ = 0, RΘ = L∞(Rn). In general we call RΘ a quantum Euclidean 
space. There are two maps which play important roles while doing analysis over quantum 
Euclidean spaces. The first one is the corepresentation map σΘ : RΘ → L∞(Rn)⊗̄RΘ, 
given by λΘ(ξ) �→ expξ ⊗λΘ(ξ) where expξ stands for the Fourier character exp(2πi〈ξ, ·〉). 
Note that σΘ is a normal injective ∗-homomorphism. The second map is πΘ : expξ �→
λΘ(ξ) ⊗λΘ(ξ)∗, which extends to a normal ∗-homomorphism from L∞(Rn) to RΘ⊗̄Rop

Θ , 
where Rop

Θ is the apposite algebra of RΘ, which is obtained by preserving the linear 
and adjoint structures but reversing the product. We refer the readers to [21] for more 
detailed information of quantum Euclidean spaces and these two maps.

BMO and Markov metric. Our first goal is to construct a natural Markov metric for 
quantum Euclidean spaces. Let us recall the heat semigroup on Rn acting on ϕ : Rn → C

admits the following form

Htϕ(x) =
ˆ

Rn

ϕ̂(ξ)e−t|ξ|2 expξ(x) dξ.

This induces a regular semigroup on RΘ determined by

σΘ ◦ SΘ,t = (Ht ⊗ idRΘ) ◦ σΘ.
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SΘ,t gives a Markov semigroup on RΘ which formally acts as

SΘ,t(f) =
ˆ

Rn

f̌Θ(ξ)e−t|ξ|2λΘ(ξ) dξ. (4.2)

The corresponding semigroup column BMO norm is given by

‖f‖BMOc(RΘ) = sup
t>0

∥∥∥(SΘ,t(|f |2) − |SΘ,t(f)|2
) 1

2
∥∥∥
RΘ

≈ sup
B ball inRn

∥∥∥( −
ˆ

B

|σΘ(f) − σΘ(f)B|2dμ
) 1

2
∥∥∥
RΘ

= ‖σΘ(f)‖BMOc(Rn;RΘ).

The null space of the above seminorm is the preimage of the space of constant operator-
valued functions under σΘ. According to Remark 1.7, the semicommutative extension 
Ht ⊗ idRΘ of the heat semigroup, together with the extension of the corresponding 
Markov metric from Paragraph 2.4 still satisfies the Hilbert module majorization

〈ξ, ξ〉Ht⊗idRΘ
≤

∑
j≥1

σ∗
j,t〈ξ, ξ〉Rj,t⊗idRΘ

σj,t (4.3)

as well as the integrability condition, where σ2
j,t ≡ 2e

√
jn/πe−j , γ2

j,t ≡ j
n
2 and Rj,tf(x)

is the average of f over B√
4jt(x). Then we can easily produce a Markov metric on RΘ. 

Let Bj,t be the Euclidean ball in Rn centered at the origin with radius 
√

4jt and consider 
the projections qj,t = χBj,t

⊗ 1RΘ . Define the cpu maps

RΘ,j,t(f) = 1
|Bj,t|

ˆ

Bj,t

σΘ(f)(x) dx = 1
|Bj,t|

ˆ

Rn

χ̂Bj,t
(ξ)f̌Θ(ξ)λΘ(ξ) dξ.

It is easy to check that

σΘ ◦RΘ,j,t = (Rj,t ⊗ idRΘ) ◦ σΘ, (4.4)

and RΘ,j,tf = f for any f in the null space of BMOc(RΘ)-seminorm. The Hilbert module 
majorization

〈ξ, ξ〉SΘ,t
≤

∑
j≥1

σ∗
j,t〈ξ, ξ〉RΘ,j,t

σj,t

for ξ ∈ RΘ⊗̄SΘ,t
RΘ is equivalent to the same inequality after composing with the ∗-

homomorphism σΘ, which follows in turn by the intertwining identities (4.2) and (4.4), 
together with the majorization (4.3). Therefore, we obtain a Markov metric on RΘ
associated to SΘ
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Table 1
Algebraic skeleton for RΘ.

Generic algebraic objects Quantum Euclidean spaces
M RΘ

Nρ

L∞(Rn)⊗̄RΘ
ρ1 = 1 ⊗ ·, ρ2 = σΘ
Eρ = Lebesgue integral

Nπ

RΘ⊗̄Rop
Θ

π1 = 1 ⊗ ·, π2 = · ⊗ 1
Eπ = τΘ ⊗ idRop

Θ

Nσ

L∞(Rn)⊗̄L∞(Rn)⊗̄RΘ
Nσ = (δ ⊗ idRΘ )(Nρ)
δϕ(x, y) = ϕ(x) − ϕ(y)

QΘ =
{
(RΘ,j,t, σj,t, γj,t) | (j, t) ∈ Z+ ×R+

}
.

The algebraic structure. We start with the kernel representation of our CZOs over 
the (fully noncommutative) von Neumann algebra RΘ. Given a kernel k affiliated to 
RΘ⊗̄Rop

Θ , the linear map associated to it is formally given by

Tkf = (idRΘ ⊗ τΘ)
(
k(1RΘ ⊗ f)

)
= (idRΘ ⊗ τΘ)

(
(1RΘ ⊗ f)k

)
.

The reader is referred to [21] for more details. Our goal is to provide sufficient con-
ditions for the L∞ → BMO boundedness of Tk. Consider the ∗-homomorphism σΘ:
RΘ → L∞(Rn)⊗̄RΘ. In the case of quantum Euclidean spaces, we need the full alge-
braic skeleton introduced in Section 2. In Table 1 there is a little dictionary to identify 
the main objects. Next, note that

σΘ ◦ Tk(f) = (idRn ⊗ idRΘ ⊗ τΘ)
(
kσ(1Rn ⊗ 1RΘ ⊗ f)

)
,

where kσ = (σΘ ⊗ idRop
Θ

)(k). Denote σΘ ◦ Tk by Tkσ
. Define

T̂k : RΘ⊗̄RΘ � f ⊗ a �→ Tkσ
(f)(1Rn ⊗ a) ∈ L∞(Rn)⊗̄RΘ.

Then it is clear that the compatibility condition (2.3) holds since T̂k ◦ π2 = σΘ ◦ Tk.

Lemma 4.6. If Tk is bounded on L2(RΘ), then∥∥T̂k : Lc
2(RΘ)⊗̄RΘ → Lc

2(Rn)⊗̄RΘ
∥∥ ≤

∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥,

the rigorous definition of Lc
2(RΘ)⊗̄RΘ can be found in [28].

Proof. We need to introduce two maps:

jΘ : L2(Rn) �
ˆ

ϕ(ξ) expξ dξ �→
ˆ

ϕ(ξ)λΘ(ξ) dξ ∈ L2(RΘ),

Rn Rn
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W : Lc
2(Rn)⊗̄RΘ �

ˆ

Rn

expξ ⊗a(ξ) dξ �→
ˆ

Rn

expξ ⊗λΘ(ξ)a(ξ) dξ ∈ Lc
2(Rn)⊗̄RΘ.

It is straightforward to show that W extends to an isometry. Moreover, jΘ is also an 
L2-isometry, we refer the reader to [21, Section 1.3.2] for the proof. Observe that

σΘ(f)(1Rn ⊗ a) =
ˆ

Rn

f̌Θ(ξ) expξ ⊗λΘ(ξ)a dξ

= W (
ˆ

Rn

f̌Θ(ξ) expξ ⊗ a dξ) = W ◦ (j∗Θ ⊗ idRΘ)(f ⊗ a).

Letting f = Tkg, we get

T̂k(g ⊗ a) = W (j∗ΘTk ⊗ idRΘ)(g ⊗ a).

The properties of the maps jΘ and W readily imply the assertion. �
Now let us introduce a weak-∗ dense subalgebra of RΘ, which is the analogue of the 

classical Schwartz class. Let S(Rn) denote the classical Schwartz class in the Euclidean 
space Rn and define

SΘ =
{
f ∈ RΘ : f̌Θ ∈ S(Rn)

}
.

Using the unitary map

jΘ : S(Rn) → SΘ

as defined in the proof of Lemma 4.6, SΘ carries a natural locally convex topology. Its 
topological dual S ′

Θ is the quantum space of tempered distributions on RΘ. Consider a 
continuous linear operator T ∈ L(SΘ, S ′

Θ), we have j∗ΘTjΘ ∈ L(S(Rn), S(Rn)′). By a 
result of Schwartz, there exists a unique kernel K ∈ S ′(R2n) = (S(Rn) ⊗π S(Rn))′ such 
that T admits the kernel k = (jΘ ⊗ jΘ)(K) ∈ (SΘ ⊗π SΘ)′. Actually, the kernel repre-
sentations Tk satisfying the Calderón-Zygmund type conditions in the following theorem 
belong to L(SΘ, S ′

Θ). It provides sufficient conditions for the L∞(RΘ) → BMOc(RΘ)
boundedness of CZO operators associated to kernels in (SΘ ⊗π SΘ)′. We shall use the 
quantum analogue of the bands around the diagonal

aB = πΘ(χ5B) =
ˆ

R

χ̂5B(ξ)λΘ(ξ) ⊗ λΘ(ξ)∗ dξ.

Theorem 4.7. Let Tk ∈ L(SΘ, S ′
Θ) and assume



M. Junge et al. / Advances in Mathematics 376 (2021) 107443 55
i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ < ∞.

ii) For any f ∈ RΘ and any Euclidean ball B centered at the origin

−
ˆ

B×B

∣∣ΣΘ,k,f,B(y1) − ΣΘ,k,f,B(y2)
∣∣2dy1dy2 � ‖f‖2

RΘ
,

where ΣΘ,k,f,B = (idRn ⊗ idRΘ ⊗ τΘ)
[
kσ(1Rn ⊗ 1RΘ ⊗ f)(1Rn ⊗ a⊥B)

]
.

Then, the Calderón-Zygmund operator Tk is bounded from L∞(RΘ) to BMOc(RΘ).

Proof. By Theorem 1.6, it suffices to prove

Tk : L∞(RΘ) → BMOc
QΘ

.

Arguing as in Paragraph 1.6, the Markov metric BMO norm takes the simpler form

‖f‖BMOc
QΘ

= sup
t>0

sup
j≥1

∥∥∥(γ−1
j,t

[
RΘ,j,t(|f |2) − |RΘ,j,t(f)|2

]
γ−1
j,t

) 1
2
∥∥∥
RΘ

.

In other words, the extra term in the definition of BMO is dominated by the above 
expression as in (1.5). As noticed in Remark 2.5, the size kernel condition is then super-
fluous. This also reduces the analytic conditions and the smooth kernel conditions to be 
checked. In summary, according to the proof of Theorem 2.1, the assertion will follow if 
we can justify:

C0) Initial condition

Tk : AΘ → RΘ for AΘ ⊂ RΘ weak-∗ dense.

Al1) QΘ-monotonicity of Eρ

Eρ(qj,t|ξ|2qj,t) ≤ Eρ(|ξ|2).

Al2) Right modularity of T̂k

T̂k(ηπ1(b)) = T̂k(η)ρ1(b).

An1) Mean differences

R̂Θ,j,t(ξ∗ξ) − R̂Θ,j,t(ξ)∗R̂Θ,j,t(ξ) ≤ Φj,t

(
δ(ξ)∗δ(ξ))

)
for some cpu Φj,t.
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An2) Metric/measure growth

1 ≤ π1ρ
−1
1 Eρ(qj,t)−

1
2 Eπ(a∗j,taj,t)π1ρ

−1
1 Eρ(qj,t)−

1
2 � π1ρ

−1
1 (γ2

j,t).

CZ1) Lc
2-boundedness condition

T̂k : Lc
∞(Nπ; Eπ) → Lc

∞(Nρ; Eρ).

CZ2) Kernel smoothness condition

Φj,t

(∣∣δ(T̂k(π2(f)(1− aj,t))
)∣∣2) � γ2

j,t‖f‖2
∞.

The initial conditions trivially hold for good kernels k ∈ SΘ ⊗alg SΘ for AΘ = SΘ. 
In [21] it was required to extend the main result from this class of kernels to general 
ones in S ′

Θ⊕Θ, by reproving certain auxiliary results in the context of distributions. 
In our case, this is much simpler. Indeed, when dealing with general kernels, we just 
note that Tk(f) ∈ L2(RΘ) for all f ∈ SΘ by assumption. Given the form of RΘ,j,t, it 
trivially follows that RΘ,j,t(|Tkf |2) and RΘ,j,tTkf are well-defined operators in L1(RΘ)
and L2(RΘ) respectively. In particular, the proof of Theorem 2.1 follows exactly as it 
was written there under this more flexible assumption. Therefore, the initial condition 
can be relaxed to the condition

Tk : SΘ → L2(RΘ).

In fact, according to [21, Proposition 2.17], every algebraic column CZO is normal. Thus, 
it suffices —as we did in Theorem 2.1— to justify that Tk : SΘ → BMOc

QΘ
is bounded, 

as we shall do by justifying the remaining conditions.
Al1 holds trivially since qj,t = χBj,t

⊗ 1RΘ lives in the center of Nρ. On the other 
hand, according to the definition of ρ1, π1 from Table 1, the algebraic condition Al2 can 
be rewritten as follows

T̂k

(
η(1RΘ ⊗ b)

)
= T̂k(η)(1Rn ⊗ b).

This is clear from the definition of T̂k. Next, condition An1 reads as

−
ˆ

Bj,t

|ξ|2dμ−
∣∣∣ −
ˆ

Bj,t

ξdμ
∣∣∣2 ≤ −

ˆ

Bj,t×Bj,t

∣∣ξ(x) − ξ(y)
∣∣2dμ(x)dμ(y)

for RΘ-valued functions, when Φj,t is chosen to be the average over Bj,t × Bj,t. As in 
(2.4), this is a consequence of the operator-valued Jensen’s inequality. Next recalling that 
aj,t = πΘ(χ5Bj,t

), condition An2 takes the form

|Bj,t|1RΘ ≤ (τΘ ⊗ idRop)(πΘ(χ5Bj,t
)) � j

n
2 |Bj,t|1RΘ .
Θ
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To verify it we note that

(τΘ ⊗ idRop
Θ

)(πΘ(ϕ)) = (τΘ ⊗ idRop
Θ

)
( ˆ

Rn

ϕ̂(ξ)λΘ(ξ) ⊗ λΘ(ξ)∗dξ
)

= ϕ̂(0)1RΘ .

Then we get (τΘ ⊗ idRop
Θ

)(πΘ(χ5Bj,t
)) = 5|Bj,t|1RΘ . Condition CZ1 reduces to our L2-

boundedness assumption by Lemma 4.6. Finally, the smoothness condition ii) in the 
statement readily implies condition CZ2 for all values of j, t. �

The smoothness condition in Theorem 4.7 is of Hörmander type, while the one in the 
main result of [21] is a gradient condition. As expected, we shall show that our condition 
in this paper is more flexible than that of [21, Theorem 2.6]. We use • for the product 
in M⊗̄Mop, so that

(a⊗ b) • (a′ ⊗ b′) = (aa′) ⊗ (b′b).

The quantum analogue of the metric is defined by

dΘ = πΘ(| · |)

for the Euclidean norm | · |. Moreover, we also introduce the Θ-deformation of the free 
gradient. Let L(Fn) denote the group von Neumann algebra associated to the free group 
with n generators Fn. It is well-known from (say) [63] that L(Fn) is generated by n
semicircular random variables s1, s2, . . . , sn. Note that there exist derivations ∂j

Θ in SΘ
which are determined by

∂j
Θ(λΘ(ξ)) = 2πiξjλΘ(ξ)

for 1 ≤ j ≤ n. Define the Θ-deformed free gradient as

∇Θ =
n∑

j=1
sj ⊗ ∂j

Θ : SΘ → L(Fn)⊗̄RΘ.

If ∇ denotes the free gradient for Θ = 0, it is easy to check that

(idL(Fn) ⊗ σΘ) ◦ ∇Θ =
n∑

j=1
sj ⊗ (σΘ ◦ ∂j

Θ) (4.5)

=
n∑

j=1
sj ⊗ (∂j ◦ σΘ) = (∇⊗ idRΘ) ◦ σΘ.

For the convenience of the reader, we cite Theorem 2.6 from [21] below.
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Theorem 4.8. Let Tk ∈ L(SΘ, S ′
Θ) and assume:

i) Cancellation

‖Tk : L2(RΘ) → L2(RΘ)‖ ≤ A1.

ii) Gradient condition. There exists

α <
n

2 < β <
n

2 + 1

satisfying the gradient conditions below for ρ = α, β∣∣∣dρ
Θ • (∇Θ ⊗ idRop

Θ
)(k) • dn+1−ρ

Θ

∣∣∣ ≤ A2.

Then, we find the following L∞ → BMOc estimate∥∥Tk : L∞(RΘ) → BMOc(RΘ)
∥∥ ≤ Cn(α, β)(A1 + A2).

To simplify notation, we shall write in what follows Σ for ΣΘ,k,f,B. According to the 
semicommutative Poincaré type inequality introduced in [21, Proposition 1.6] we obtain

∥∥∥ −
ˆ

B×B

∣∣δ(Σ)
∣∣2dμ× μ

∥∥∥
RΘ

≤ 16R2
∥∥∥(1 ⊗ χB ⊗ 1)(∇⊗ idRΘ)(Σ)

∥∥∥2

L(Fn)⊗̄L∞(Rn)⊗̄RΘ

for R = radius of B. By (4.5), we may rewrite

(1 ⊗ χB ⊗ 1)(∇⊗ idRΘ)(Σ)

= (id⊗3 ⊗ τΘ)
(
(1 ⊗ χB ⊗ 1⊗2)(∇⊗ id⊗2)(kσ)(1⊗3 ⊗ f)(1⊗2 ⊗ a⊥j,t)

)
= (id⊗3 ⊗ τΘ)

(
(1 ⊗ χB ⊗ 1⊗2)(id⊗ σΘ ⊗ id)(∇Θ ⊗ id)(k)(1⊗3 ⊗ f)(1⊗2 ⊗ a⊥j,t)

)
= (id⊗3 ⊗ τΘ)

(
K • (1⊗3 ⊗ f)

)
with

K = (1 ⊗ χB ⊗ 1⊗2)(id⊗ σΘ ⊗ id)(∇Θ ⊗ id)(k) • (1⊗2 ⊗ a⊥j,t)

in L(Fn)⊗̄(S(Rn) ⊗π SΘ ⊗π SΘ)′. Thus, (1 ⊗ χB ⊗ 1)(∇ ⊗ idRΘ)(Σ) = TK(f). We turn 
to the proofs of Theorem 2.6, Proposition 2.15 and Remark 2.16 (as the generalizations 
of Theorem 2.6) in [21], they show that the condition ii) in Theorem 4.8 implies

∥∥TK(f)
∥∥

¯ n ¯ ≤ Cn(α, β)A2 ‖f‖RΘ ,
L(Fn)⊗L∞(R )⊗RΘ R
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which is inequality (2.2) in [21]. Combining the calculations above, we deduce that con-
dition ii) in Theorem 4.8 is stronger than condition ii) in Theorem 4.7. In conclusion, 
the Calderón-Zygmund extrapolation on RΘ that we obtain by applying Theorem 2.1
improves the corresponding result in [21].

Remark 4.9. By regularity of SΘ, Lp-estimates follows as in Corollary 2.2.

4.4. Quantum Fourier multipliers

We now refine our abstract result for locally compact quantum groups. We shall 
need some basic notions from the theory of quantum groups, details can be found in 
Kustermans/Vaes’ papers [38,39]. Let us consider a von Neumann algebra N equipped 
with a comultiplication map, a normal injective unital ∗-morphism Δ : N → N⊗̄N
satisfying the coassociativity law

(idN ⊗ Δ)Δ = (Δ ⊗ idN )Δ.

Assume also the existence of two n.s.f weights ψ and ϕ on N such that

(idN ⊗ ψ)Δ(a) = ψ(a)1N and (ϕ⊗ idN )Δ(a) = ϕ(a)1N for a ∈ N+.

We call ψ and ϕ the left-invariant Haar weight and the right-invariant Haar weight
on N respectively. Then the quadruple G = (N , Δ, ψ, ϕ) is called a (von Neumann 
algebraic) locally compact quantum group and we write L∞(G) for the quantum group 
von Neumann algebra N . Using the Haar weights, one can construct an antipode S on 
N which is a densely defined anti-automorphism on N satisfying the identity

(idN ⊗ ψ)
(
(1N ⊗ a∗)Δ(b)

)
= S

(
(idN ⊗ ψ)

(
Δ(a∗)(1N ⊗ b)

))
.

The comultiplication map Δ determines a multiplication on the predual L1(G) given 
by convolution ϕ1 � ϕ2(a) = (ϕ1 ⊗ ϕ2)Δ(a). The pair (L1(G), �) forms a Banach alge-
bra. In what follows, if not specified otherwise, the quantum groups G we shall work 
with admit a tracial left-invariant Haar weight ψ. The simplest model of noncommu-
tative quantum groups are group von Neumann algebras L(G) associated to discrete 
groups. If λ is the left regular representation of G, the comultiplication is determined by 
Δ(λ(g)) = λ(g) ⊗ λ(g). Its isometric nature follows from Fell’s absorption principle and 
the convolution is abelian. The standard trace on L(G) is a left and right-invariant Haar 
weight. Moreover, in this case, the antipode is bounded and S(λ(g)) = λ(g−1).

A convolution semigroup of states is a family (φt)t≥0 of normal states on L∞(G) such 
that φt1 � φt2 = φt1+t2 . The corresponding semigroup of completely positive maps is 
given by

SΔ,t(a) = (φt ⊗ idG) ◦ Δ(a).
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When SΔ = (SΔ,t)t≥0 is a Markov semigroup such that ψ ◦ SΔ,t = ψ for all t ≥ 0, we 
call it a convolution semigroup.

Lemma 4.10. Let G be a locally compact quantum group equipped with a convolution 
semigroup of states (φt)t≥0. Then, SΔ = ((φt ⊗ idG) ◦ Δ)t≥0 is a Markov semigroup on 
L∞(G) whenever

i) φt ◦ S = φt for all t ≥ 0,
ii) SΔ,t(a) → a as t → 0+ in the weak-∗ topology of L∞(G).

Proof. Let us begin with the self-adjointness

ψ
(
a∗SΔ,t(b)

)
= ψ

(
a∗(φt ⊗ idG)Δ(b)

)
= φt ⊗ ψ

(
(1G ⊗ a∗)Δ(b)

)
= φt

(
(idG ⊗ ψ)

(
(1G ⊗ a∗)Δ(b)

)
= φt

(
S (idG ⊗ ψ)

(
Δ(a∗)(1G ⊗ b)

)︸ ︷︷ ︸
ρ

)
.

This means that ψ
(
a∗SΔ,t(b)

)
= φt(S(ρ)) = φt(ρ) and we get

ψ
(
a∗SΔ,t(b)

)
= φt ⊗ ψ

(
Δ(a∗)(1G ⊗ b)

)
= ψ

(
(φt ⊗ idG) ◦ Δ(a∗)b

)
= ψ

(
SΔ,t(a)∗b

)
.

The remainder properties are straightforward. Indeed, identity SΔ,t(1G) = 1G is obvious. 
The weak-∗ convergence of the SΔ,t(a)’s as t → 0+ is assumed and the complete positivity 
is clear. The normality follows from the weak-∗ continuity of φt and Δ. Finally, the 
semigroup law easily follows from coassociativity. �

In what follows, we shall assume that the hypotheses of Lemma 4.10 hold. Let us fix 
a quantum group G = (N , Δ, ψ, ϕ) and consider a convolution semigroup SΔ associated 
to it. A Markov metric

Q =
{
(Rj,t, σj,t, γj,t) : j, t ∈ Z+ ×R+

}
in L∞(G) = N associated to SΔ will be called an intrinsic Markov metric when there 
exists an increasing family of projections pj,t in L∞(G) such that the cpu maps take the 
form

Rj,tf = 1 (ψ ⊗ idG)
(
(pj,t ⊗ 1G)Δ(f)

)
. (4.6)
ψ(pj,t)



M. Junge et al. / Advances in Mathematics 376 (2021) 107443 61
In other words, we use the algebraic skeleton

(
Nρ = Nπ, ρ1, ρ2,Eρ, qj,t

)
=

(
L∞(G)⊗̄L∞(G),1 ⊗ ·,Δ, ψ ⊗ idG, pj,t ⊗ 1G

)
.

Remark 4.11. Assume that

γj,t ∈ R+ and γ2
j,t ≥

ψ(pj,t)
ψ(p1,t)

.

Then, the term |Rj,tf −Mtf | in the metric BMO norm satisfies for Mt = R1,t that

∣∣Rj,tf −Mtf
∣∣2 =

∣∣∣ 1
ψ(p1,t)

(ψ ⊗ idG)
(
(Δ(f) − 1 ⊗Rj,tf)(p1,t ⊗ 1)

)∣∣∣2
≤ 1

ψ(p1,t)
(ψ ⊗ idG)

[∣∣(Δ(f) − 1 ⊗Rj,tf)(p1,t ⊗ 1)
∣∣2]

= ψ(pj,t)
ψ(p1,t)

(
Rj,t|f |2 − |Rj,tf |2

)
≤ γj,t

(
Rj,t|f |2 − |Rj,tf |2

)
γj,t.

According to Theorem 1.6, this yields

‖f‖BMOc
SΔ

� ‖f‖BMOc
Q � sup

t>0
sup
j≥1

∥∥∥(Rj,t|f |2 − |Rj,tf |2
) 1

2
∥∥∥
L∞(G)

. (4.7)

Additionally, we may consider transferred Markov metrics in other von Neumann al-
gebras. Consider a convolution semigroup of states (φt)t≥0 on a locally compact quantum 
group L∞(G) and a von Neumann algebra equipped with a n.s.f. trace (M, τ). A corep-
resentation π : M → L∞(G)⊗̄M is a normal injective ∗-representation satisfying the 
identity

(idG ⊗ π) ◦ π = (Δ ⊗ idM) ◦ π.

Every such π yields a transferred convolution semigroup Sπ = (Sπ,t)t≥0 with

Sπ,t : M → M,

Sπ,tf = (φt ⊗ idM) ◦ π(f).

Lemma 4.12. Assume that

• τ(Sπ,t(f1)∗f2) = τ(f∗
1Sπ,t(f2)),

• Sπ,tf → f as t → 0+ in the weak-∗ topology of M.

Then Sπ defines a Markov semigroup on M such that π ◦ Sπ,t = (SΔ,t ⊗ idM) ◦ π.
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Proof. It is easy to check that Sπ,t is cpu and the normality follows from the weak-∗
continuity of φt and π. Hence, it remains to show the identity π ◦ Sπ,t = (St ⊗ idG) ◦ π
and the semigroup law. We first observe that π(φt ⊗ idM) = (φt ⊗ idG ⊗ idM)(idG ⊗ π)
as maps on L∞(G)⊗̄M. Indeed, by weak-∗ continuity, it suffices to test the identity on 
elementary tensors n ⊗m, for which the identity is trivial. Therefore, we have

(SΔ,t ⊗ idM)π = (φt ⊗ idG ⊗ idM)(Δ ⊗ idM)π

= (φt ⊗ idG ⊗ idM)(idG ⊗ π)π

= π(φt ⊗ idM)π = πSπ,t.

For the semigroup law we note that

Sπ,t1Sπ,t2 = (φt1 ⊗ idM)(φt2 ⊗ idG ⊗ idM)(idG ⊗ π)π

= (φt1 ⊗ idM)(φt2 ⊗ idG ⊗ idM)(Δ ⊗ idM)π

= (φt2 ⊗ φt1 ⊗ idM)(Δ ⊗ idM)π = (φt2 � φt1 ⊗ idM)π = Sπ,t1+t2 . �
In the sequel, we shall assume that the assumptions in Lemma 4.12 hold. Intrinsic 

Markov metrics on L∞(G) yield transferred Markov metrics on M associated to the 
transferred convolution semigroup Sπ. Indeed, given any intrinsic Markov metric Q =
{(Rj,t, σj,t, γj,t)} in G with cpu maps Rj,t given by (4.6), the transferred cpu maps Rπ,j,t

are given by

Rπ,j,tf = 1
ψ(pj,t)

(ψ ⊗ idM)
(
(pj,t ⊗ 1)π(f)

)
.

It is easy to check that π ◦Rπ,j,t = (Rj,t ⊗ idM) ◦ π. Assume in addition that σj,t ∈ R+. 
Then, arguing as we did before Corollary 4.5 for the corepresentation u of R in B(�2), 
we get a Markov metric in M

Qπ =
{
(Rπ,j,t, σj,t, γj,t) : j ∈ Z+, t ∈ R+

}
.

Let α : N → N be a strictly increasing function with α(j) > j. This Markov metric is 
called α-doubling if there exists some constant cα such that ψ(qα(j),t) ≤ cαψ(qj,t).

Remark 4.13. In what follows, we impose our Markov metrics to be α-doubling for some 
function α : N → N, to satisfy σj,t ∈ R+ as well as the condition in Remark 4.11. 
Altogether, this allows to eliminate the size CZ condition and reduce the number of 
analytic and smoothness CZ conditions to be checked for both the intrinsic Markov 
metric and the transferred one.

Observe that the transferred formulation above includes the intrinsic formulation by 
taking (M, π) = (G, Δ). Let us now state the corresponding Calderón-Zygmund theory. 
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Given AM a weakly dense ∗-subalgebra of M, let T be a (not necessarily bounded) 
operator T : AM → M. We say T is a transferred map if there exists an amplification 
map

T̂ : D ⊂ L∞(G)⊗̄M → L∞(G)⊗̄M

satisfying the identity

π ◦ T = T̂ ◦ π|AM
. (4.8)

Again, D is a weakly dense ∗-subalgebra for which π(AM) ⊂ D. In the case (M, π) =
(G, Δ), we can always take the amplification T ⊗ idM and condition above just imposes 
that T is a quantum Fourier multiplier. In the following theorem, we provide sufficient 
conditions on the amplification map to make a given transferred CZO T bounded from 
AM to BMOc

Sπ
.

Theorem 4.14. Let

π : M → L∞(G)⊗̄M

be a corepresentation of a locally compact quantum group G in a semifinite von Neu-
mann algebra (M, τ). Assume that L∞(G) comes equipped with an α-doubling intrinsic 
Markov metric Q determined by an increasing family of projections pj,t as above. Then, 
a transferred map T (with amplification for which (4.8) holds) will be bounded from AM
to BMOc

Sπ
provided:

i) T̂ : Lc
2(G)⊗̄M → Lc

2(G)⊗̄M is bounded,

ii) (ψ ⊗ ψ ⊗ idM)
ψ(pj,t)2

(
(pj,t ⊗ pj,t ⊗ 1M)

∣∣δG(
T̂ (π(f)p⊥α(j),t)

)∣∣2) � ‖f‖2
M.

Proof. We use the algebraic skeleton(
M,Nρ = Nπ, ρ1, ρ2,Eρ, qj,t

)
=

(
M, L∞(G)⊗̄M,1⊗ ·, π, ψ ⊗ idG, pj,t ⊗ 1G

)
.

Identity (4.8) is the compatibility condition (2.3). Let us justify the algebraic conditions. 
The second one is trivial since both Eρ(qj,t) and ρ1(γj,t) belong to R+ in this case. For 
the first one, consider the product • in L∞(G)⊗̄Mop. Then, we just observe that

Eρ(qj,t|ξ|2qj,t) = (ψ ⊗ idM)
(
(pj,t ⊗ 1)ξ∗ξ

)
= (ψ ⊗ idM)

(
ξ • (pj,t ⊗ 1) • ξ∗

)
≤ (ψ ⊗ idM)(ξ • ξ∗) = (ψ ⊗ idM)(ξ∗ξ) = Eρ(|ξ|2).

Define the amplifications
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R̂π,j,t : L∞(G)⊗̄M � ξ �→ 1
ψ(pj,t)

(ψ ⊗ idM)
(
(pj,t ⊗ 1M)ξ

)
∈ M.

Consider also the cpu maps

Φj,t : L∞(G)⊗̄L∞(G)⊗̄M → M,

Φj,t(η) = 1
ψ(pj,t)2

(ψ ⊗ ψ ⊗ idM)
(
(pj,t ⊗ pj,t ⊗ 1M)η

)
.

Recalling that δG(x) = x ⊗ 1 − 1 ⊗ x, the identity

Φj,t(|δG(ξ)|2) = 2R̂π,j,t(|ξ|2) − 2
∣∣R̂π,j,t(ξ)

∣∣2,
is straightforward. This readily implies the first analytic condition. On the other hand, 
since the auxiliary Markov metric is α-doubling, the second analytic condition reduces 
to note that

(ψ ⊗ idM)(qα(j),t ⊗ 1M) ≤ cα(ψ ⊗ idM)(qj,t ⊗ 1M).

Thus, according to inequalitty (4.7), the assertion follows from Theorem 2.1. �
Remark 4.15. As noticed, the main particular case of Theorem 4.14 arises for (M, π) =
(G, Δ) with amplification T ⊗ idG. Condition (4.8) becomes the identity

Δ ◦ T = (T ⊗ idG) ◦ Δ.

In other words, these are translation invariant CZ operators. We also call them quantum 
Fourier multipliers in this paper and it can be checked, as expected, that these maps are 
of convolution type in the sense that there exists a kernel k affiliated to L∞(G) so that

Tf = k � f = (idG ⊗ ψ)
(
Δ(k)(1G ⊗ Sf)

)
.

In this particular case, it is not difficult to prove that our conditions in Theorem 4.14
reduce to those in Theorem B2 from the Introduction. Of course, Theorem 4.14 also ap-
plies as well for nonconvolution CZ operators on quantum groups, or even for transferred 
forms of them to other von Neumann algebras M.

Remark 4.16. One may consider twisted convolution CZO’s on quantum groups applying 
Theorem 4.14. As an illustration, assume that G � L∞(G) by a trace preserving action 
α and that G is a quantum group satisfying (αg ⊗ αg)Δ = Δαg for all g ∈ G. This 
property is quite natural in the commutative case, where quantum groups come from 
locally compact groups and α is typically implemented by a measure preserving map β. 
Note that the underlying Haar measure is translation invariant and the condition above 
just imposes that β is an homomorphism. Let us see what we get for a map
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∑
g
fgλ(g) �→

∑
g
Tg(fg)λ(g),

where the Tg’s are normal convolution maps on L∞(G). Assume L∞(G) comes equipped 
with a convolution G-equivariant semigroup SΔ which admits a η-doubling intrinsic 
Markov metric. Then, we get a bounded map L∞(G) � .G → BMOc

S�
when the following 

conditions hold:

i) We have a bounded map

Lc
2(G)⊗̄B(�2(G)) � ξ �→

(
Tgh−1

)
• ξ ∈ Lc

2(G)⊗̄B(�2(G)),

where • stands once more for the generalized Schur product of matrices.
ii) Letting R = L∞(G)⊗̄B(�2(G)) and Ψ(ξ) =

∑
g,h(αg−1) • (Tgh−1) • (αg) • ξ,

(ψ ⊗ ψ ⊗ idB(�2(G)))
ψ(pj,t)2

(
(pj,t ⊗ pj,t ⊗ 1)

∣∣δG(
Ψ(ξq⊥η(j),t

)∣∣2) � ‖ξ‖2
R.

Remark 4.17. All our results in this paragraph impose the additional assumption that 
our quantum groups admit a tracial Haar weight. We believe however that our results 
can be extended to the general non-tracial case. We leave this generalization open to the 
interested reader.

5. Noncommutative transference

Originally motivated by Cotlar’s paper [14] and the method of rotations, Calderón 
developed a circle of ideas [4] which was called the transference method after the sys-
tematic study of Coifman/Weiss in their monograph [12]. The fundamental work of K. 
de Leeuw [16] also had a big impact in this line of research. Let us consider an amenable 
locally compact group G with left Haar measure μ, a σ-finite measure space (Ω, ν) and a 
uniformly bounded representation β : G → B(Lp(Ω)). Roughly, Calderón’s transference 
is a technique which allows to transfer the Lp boundedness of a convolution operator 
f �→ k � f on Lp(G) to the corresponding transferred operator on Lp(Ω)

V f(w) =
ˆ

G

k(g)βg−1f(w) dμ(g),

for some compactly supported kernel k in L1(G). A case by case limiting procedure also 
allows to consider more general (singular) kernels. In the rest of this section we shall 
develop a noncommutative form of Calderón-Coifman-Weiss technique.

Our first task is to clarify what we mean by ‘representation’ and ‘amenable’ in the 
context of quantum groups. Using the commutative locally compact quantum group 
L∞(G) as above, a representation β : G → Aut(M) induces a ∗-representation πβ :
M → L∞(G; M) by
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πβf(g) = βg−1f.

Note that we have

(idG ⊗ πβ)(πβf)(g, h) = πβ(βg−1f)(h) = βh−1βg−1f

= β(gh)−1f = (ΔG ⊗ idM)(πβf)(g, h).

Given a semifinite von Neumann algebra (M, τ) and a locally compact quantum group G, 
this leads us to consider corepresentations π : M �→ L∞(G)⊗̄M satisfying (idG⊗π) ◦π =
(Δ ⊗ idM) ◦ π. Note that comultiplication is a corepresentation by coassociativity. To 
show what we mean by ‘uniformly bounded’, let us go back to our motivating example 
β : G → Aut(M), where we take M = L∞(Ω) for some σ-finite measure space (Ω, ν). In 
the classical case

‖βgf‖p ∼ ‖f‖p for all g ∈ G

up to an absolute constant independent of f, g. We say that a corepresentation π : M →
L∞(G)⊗̄M is uniformly bounded in Lp(M) if for any f ∈ M ∩ Lp(M) we have

1
cπ

‖f‖pLp(M) ≤ (idG ⊗ τ)
(
|π(f)|p

)
≤ cπ‖f‖pLp(M)

for some absolute constant cπ independent of f . Note that our notion again reduces to 
the classical one on L∞(G). Note also that, since |π(f)|p = π(|f |p), our definition reduces 
to the p-independent condition

1
cπ

‖f‖L1(M) ≤ (idG ⊗ τ)
(
π(f)

)
≤ cπ‖f‖L1(M) for all f ∈ M+ ∩ L1(M).

Now we introduce what we mean by an ‘amenable’ quantum group. We say that G
satisfies Følner’s condition if for every projection q ∈ L1(G) and every ε > 0, there 
exists two non-zero projections q1, q2 ∈ L1(G) such that

Δ(q1)(q ⊗ q2) = q ⊗ q2 and ψ(q1) ≤ (1 + ε)ψ(q2).

In the standard example for a locally compact group G, where (L∞(G), ψ) is L∞(G)
equipped with the left Haar measure μ and Δ is given by ΔG(ξ)(g, h) = ξ(gh) the 
classical comultiplication, it turns out that G is amenable iff G is an amenable group. 
Indeed, our notion can be rephrased in this case by saying that for any compact set K
in G and any ε > 0, there exists a non-empty neighborhood of the identity W of finite 
measure such that

μ(KW) ≤ (1 + ε)μ(W),
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which corresponds to (q, q1, q2) = (χK, χKW, χW) in our formulation. This is exactly the 
classical characterization of amenability, known as Følner’s condition, used by Coifman 
and Weiss in [12]. Given an amenable locally compact group G with left Haar measure 
μ, it is clear that L∞(G, μ) with its natural quantum group structure is amenable. On 
the other hand, as expected, any compact quantum group is amenable just by taking 
q1 = q2 = 1G.

Assume that G admits a corepresentation π : M → L∞(G)⊗̄M. Given AM a weakly 
dense ∗-subalgebra of M, we say that a linear operator V : AM → M is a transferred 
convolution map if there exists Φ : D ⊂ L∞(G)⊗̄M → L∞(G)⊗̄M, an auxiliary convo-
lution map such that π ◦ V = Φ ◦ π|AM

. The classical transferred operator

V =
ˆ

G

k(g)βg−1f(w) dμ(g)

comes from

Φ(ξ)(g, w) =
ˆ

G

k(h) ξ(hg,w) dμ(h) = (ϕ⊗ idG ⊗ idΩ)(ΔG ⊗ idΩ).

If πβf(g) = βg−1f denotes the corresponding corepresentation, we may then apply the 
identities in the proof of Lemma 4.12 again to deduce the following identities

Φ◦πβ = (ϕ⊗ idG⊗ idΩ)(ΔG⊗ idΩ)πβ = (ϕ⊗ idG⊗ idΩ)(idG⊗πβ)πβ = πβ(ϕ⊗ idΩ)◦πβ.

By injectivity of πβ , we must have

V f(w) = (ϕ⊗ idΩ)πβf(w) =
ˆ

G

k(g)βg−1f(w) dμ(g)

as expected. This shows how we recover the classical construction.
Let us now settle the framework for our transference result. Assume that G is amenable 

and consider π : M → L∞(G)⊗̄M a uniformly bounded corepresentation in L2(M). We 
say that T : Lp(G) → Lp(G) is a convolution map with finitely supported L1 kernel when 
the map T has the form T = (φ ⊗ idG) ◦ Δ for some functional φ = ψ(d ·), with d an 
element in L1(G) whose left support q satisfies ψ(q) < ∞. In the commutative case, this 
is the kind of operators which are transferred. Roughly, the goal is to show how a limit 
operator T = limγ Tγ of such maps which is bounded on L2(G) and L∞(G) → BMOS
can be transferred under suitable conditions to a bounded map on Lp(M).

Remark 5.1. Young’s inequality extends to this setting as

‖d � f‖p ‘ = ’ ‖(φ⊗ idG)Δ(f)‖p ≤ 4 ‖d‖1‖f‖p,
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where φ = ψ(d ·) and 1 ≤ p ≤ ∞. Indeed, when d and f are positive the inequality 
holds with constant 1. This can by justified by interpolation. When p = 1 we use Fubini 
and the left-invariance of ψ, while for p = ∞ it follows from the fact that (φ ⊗ idG)Δ
is a positive map with 1G �→ ψ(d). In the general case, we split d, f into their positive 
parts and obtain the constant 4. In fact, the same argument still holds after matrix 
amplification and we deduce that (φ ⊗ idG)Δ is completely bounded on Lp(G) with cb-
norm 4‖d‖1. This is however not enough for transference, since the norms ‖dγ‖1 might 
not be uniformly bounded.

Theorem 5.2. Let G be an amenable quantum group and consider a uniformly bounded 
corepresentation π : M → L∞(G)⊗̄M in L2(M) associated with a semifinite von Neu-
mann algebra (M, τ). Let T : L2(G) → L2(G) be a bounded map and assume that

(T ⊗ idM) = SOT − lim
γ

(Tγ ⊗ idM)

for some net Tγ = (φγ ⊗ idG) ◦Δ of convolution maps with finitely supported L1 kernels 
and such that limγ ‖Tγ‖B(L2(G)) ≤ ‖T‖B(L2(G)). Then, the net of transferred operators 
Vγ = (φγ ⊗ idM) ◦ π satisfies the inequalities

‖Vγ‖B(L2(M)) ≤ cπ‖Tγ‖B(L2(G)).

We thus find a WOT-cluster point V satisfying ‖V ‖B(L2(M)) ≤ cπ‖T‖B(L2(G)).

Proof. Note that we have

πVγ = (φγ ⊗ id)(idG ⊗ π)π = (φγ ⊗ id)(Δ ⊗ idM)π = (Tγ ⊗ idM)π.

Hence, the uniform boundedness of π yields

1
cπ

‖Vγf‖2
2 ≤ (ρ⊗ τ)

(
|πVγ(f)|2

)
= (ρ⊗ τ)

(
|(Tγ ⊗ idM)π(f)|2

)
for any state ρ on L∞(G). On the other hand, if φγ = ψ(dγ ·) and qγ denotes the left 
support of dγ , we know from the amenability assumption that for any ε > 0 we may find 
projections q1γ and q2γ such that

Δ(q1γ)(qγ ⊗ q2γ) = qγ ⊗ q2γ and ψ(q1γ) ≤ (1 + ε)ψ(q2γ).

Taking ρ = ψ(q2γ ·)/ψ(q2γ), we obtain the inequality

1 ‖Vγf‖2
2 ≤ (ψ ⊗ τ)(∣∣∣(φ⊗ id)

(
(Δ ⊗ idM)π(f)(1G ⊗ q2γ ⊗ 1M)

)∣∣∣2)

cπ ψ(q2γ)
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since ρ is supported by q2γ . Moreover, dγ ⊗ q2γ is supported on the left by qγ ⊗ q2γ and 
amenability provides dγ ⊗ q2γ = Δ(q1γ)(dγ ⊗ q2γ). Once we have created Δ(q1γ), we can 
eliminate q2γ . Altogether gives

1
cπ

‖Vγf‖2
2 ≤ 1

ψ(q2γ)

∥∥∥(Tγ ⊗ id)
(
π(f)(q1γ ⊗ 1M)

)∥∥∥2

L2(L∞(G)⊗̄M)
.

Now we use the L2 boundedness of Tγ and uniform boundedness of π to conclude

1
cπ

‖Vγf‖2
2 ≤ 1

ψ(q2γ) ‖Tγ‖2
B(L2(G)) ψ

(
(q1γ ⊗ 1M)(idG ⊗ τ)

(
|π(f)|2

))
≤ cπ

ψ(q2γ) ‖Tγ‖2
B(L2(G)) ψ(q1γ) ‖f‖2

2 ≤ cπ (1 + ε) ‖Tγ‖2
B(L2(G)) ‖f‖2

2.

Letting ε → 0, we prove the inequality

‖Vγ‖B(L2(M)) ≤ cπ ‖Tγ‖B(L2(G)).

Since T is bounded on L2(G) and limγ ‖Tγ‖B(L2(G)) ≤ ‖T‖B(L2(G)), the operators Vγ are 
eventually in a ball of radius cπ(1 + δ)‖T‖B(L2(G)) for any δ > 0. The closure of such 
ball is weak operator compact and thus we find our cluster point. �

We now study L∞ → BMO transference and then interpolate/dualize to obtain Lp-
transference. This approach seems to be new even in the classical theory and where our 
semigroup formulation becomes an essential ingredient.

Corollary 5.3. Let G be a compact (hence amenable) quantum group equipped with a 
L2(M)-uniformly bounded corepresentation π : M → L∞(G)⊗̄M. Let (φt)t≥0 be a 
convolution semigroup of states on L∞(G), giving rise to Markov semigroups SΔ on 
(G, ψ) and Sπ on (M, τ). Let T = SOT−limγ Tγ be as above and take AM = M ∩L2(M). 
Then, if T : L∞(G) → BMOSΔ is completely bounded, we find that

V = WOT − lim
γ

Vγ : AM → BMOSπ

is completely bounded. Moreover, if Tπ is regular, the complete boundedness of JpV :
Lp(M) → Lp(M) follows for every 2 < p < ∞ by interpolation. In addition the complete 
boundedness of V Jp : Lp(M) → Lp(M) for 1 < p < 2 holds under the same assumptions 
for T ∗.

Proof. By uniform boundedness of π we have∥∥∥(idG ⊗ τ)
(
|π(f)|2

) 1
2
∥∥∥ ≤ cπ‖f‖2,

L∞(G)
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which implies that π : L2(M) → L∞(G)⊗̄Lc
2(M) is bounded by cπ. According to the 

finiteness of L∞(G), we deduce that in fact π : L2(M) → L2(L∞(G)⊗̄M) is still 
bounded with the same norm. This proves that

πV = WOT − lim
γ

πVγ = WOT − lim
γ

(Tγ ⊗ idM)π = (T ⊗ idM)π.

In particular, πV = (T ⊗ idM)π over AM and identity πSπ,t = (St ⊗ idM)π yields

‖V f‖BMOc
Sπ

= sup
t≥0

∥∥∥Sπ,t|V f |2 − |Sπ,tV f |2
∥∥∥ 1

2

M

= sup
t≥0

∥∥∥πSπ,t|V f |2 − |πSπ,tV f |2
∥∥∥ 1

2

L∞(G)⊗̄M

=
∥∥(T ⊗ idM)π(f)

∥∥
BMOc

S
≤ ‖T‖cb‖π(f)‖L∞(G)⊗̄M = ‖T‖cb‖f‖M

for f ∈ AM. Since the same inequality holds after matrix amplification, we deduce that 
V : AM → BMOc

Sπ
is completely bounded with cb-norm ≤ ‖T‖cb. The row case is 

similar because

πV † = (πV )† = (Tπ)† = T †π.

The assertions on Lp boundedness follow as usual from Theorem 1.3. �
Remark 5.4. Under the above assumptions, we see that for V = WOT− limγ Vγ we can 
find the concrete form of its amplification map Φ defined on L∞(G)⊗̄M. In this case, 
by applying Theorems 4.14 to Φ = T ⊗ idM, we get Calderón-Zygmund extrapolation 
for the transferred convolution map V on M.
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