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spaces and group von Neumann algebras, respectively linked
to noncommutative geometry and geometric group theory.
© 2020 Published by Elsevier Inc.

Introduction

The analysis of linear operators associated to singular kernels is a central topic in
harmonic analysis and partial differential equations. A large subfamily of these maps is
under the scope of Calderén-Zygmund theory, which exploits the relation between metric
and measure in the underlying space to provide sufficient conditions for L, boundedness.
The Calderén-Zygmund decomposition [5] or the Hérmander smoothness condition for
the kernel [26] combine the notions of proximity in terms of the metric with that of
smallness in terms of the measure. The doubling and/or polynomial growth conditions
between metric and measure yield more general forms of the theory [13,46,47,61,62]. To
the best of our knowledge, the existence of a metric in the underlying space is always
assumed in the literature.

In this paper, we introduce a new form of Calderén-Zygmund theory for general
measure spaces admitting a Markov semigroup which only satisfies purely algebraic
assumptions. This is especially interesting for measure spaces where the geometric in-
formation is poor. It includes abstract probability spaces or fractals like the Sierpinski
gasket, where a Dirichlet form is defined. It is also worth mentioning that our approach
recovers Calderén-Zygmund theory for classical spaces and provides alternative forms
over them. In spite of these promising directions —very little explored here— our main
motivation has been to develop a noncommutative form of Calderén-Zygmund theory for
noncommutative measure spaces (von Neumann algebras) where the notions of quantum
metric [37,55,56] seem inefficient.

A great effort has been done over the last years to produce partial results towards
a noncommutative Calderén-Zygmund theory [21,25,29,31,45,49]. The model cases con-
sidered so far are all limited to (different) noncommutative forms of Euclidean spaces,
described as follows:

A) Tensor products. Let f = (fjx) : R" — B({3) be a matrix-valued function and
consider the tensor product extension of a standard Calder6n-Zygmund operator acting
on f, formally given by

Tf) = [ oWy = (Tr@)  or o ¢supf,
2

The L,-boundedness of this map in the associated (tensor product) von Neumann al-
gebra M = L(R™)®B({3) trivially follows for p > 1 from the vector-valued theory,
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due to the UMD nature of Schatten p-classes. On the contrary, no endpoint estimate for
p =1 is possible using vector-valued methods. The original argument in [49] —also in a
recent simpler form [3]— combines noncommutative martingales with a pseudolocaliza-
tion principle for classical Calderén-Zygmund operators. More precisely, a quantification
of how much Lo-mass of a singular integral is concentrated around the support of the
function on which it acts. This inequality has been the key tool in the recent solution
of the Nazarov-Peller conjecture [7], a strengthening of the celebrated Krein conjecture
[58] on operator Lipschitz functions.

B) Crossed products. New L,, estimates for Fourier multipliers in group von Neumann
algebras have recently gained considerable momentum for its connections to geometric
group theory. The first Hormander-Mikhlin type theorem in this direction [31] exploited
finite-dimensional cocycles of the given group G to transfer the problem to the cocycle
Hilbert space H = R". To find sufficient regularity for L,-boundedness amounts to
study Calderén-Zygmund operators in the crossed products Lo, (R™) x G induced by
the cocycle action. Nonequivariant extensions of CZOs on these von Neumann algebras
were investigated in [31], after identifying the right BMO space for the length function
determined by the cocycle. These operators have the form

[ a2\ dute) =+ [ T,00) %Mo) dulo).
G G

Here pu, A respectively denote the Haar measure and left regular representation on the
(unimodular) group G, whereas Ty = ayTa,-1 is a twisted form of a classical CZO T
on R™ by the cocycle action a. We refer to [32,50] for further results.

C) Quantum deformations. PDEs in matrix algebras and ‘noncommutative manifolds’
appear naturally in theoretical physics. Pseudodifferential operators were introduced
by Connes in 1980 to study a quantum form of the Atiyah-Singer index theorem over
these algebras. These techniques have been underexploited over the last 30 years, due
to fundamental obstructions to understand singular integral theory in this context. The
core of singular integrals and pseudodifferential operator L,-theory was developed in
[21] over the archetypal algebras of noncommutative geometry. It includes quantum tori,
Heisenberg-Weyl algebras and other quantum deformations of R™ of great interest in
quantum field theory, string theory and quantum probability. This was the first approach
to a ‘fully noncommutative’ Calderén-Zygmund theory for CZOs not acting on copies of
R™ as tensor or crossed product factors, but still related to Euclidean methods.

We introduce in this paper the first form of Calderén-Zygmund theory valid for gen-
eral (semifinite) von Neumann algebras. As we explained above, the main difficulty arises
from the lack of very standard geometric tools, like the existence of a nice underlying
metric or the construction of suitable covering lemmas. We shall circumvent it using a
very different approach based on algebraic properties of a given Markov process. Our
applications cover a wide variety of scenarios which will be discussed, giving especial em-
phasis to noncommutative forms of Euclidean spaces and locally compact abelian groups,
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which are our main classical models. In the first case, we shall weaken/optimize the CZ
conditions on quantum Euclidean spaces [21]. In the second case, LCA groups correspond
to quantum groups which are both commutative and cocommutative [59]. We shall give
CZ conditions for convolution maps over quantum groups. In the cocommutative (non
necessarily commutative) context, this includes group von Neumann algebras.

Calderon-Zygmund extrapolation

Based on the behavior of the Hilbert transform in the real line, the main goal of
Calderén-Zygmund theory is to establish regularity properties on the kernel of a singular
integral operator, so that Lo-boundedness automatically extrapolates to L,, boundedness
for 1 < p < co. A singular integral operator in a Riemannian manifold (X, d, u) admits
the kernel representation

Ty f(x) = / B 9)f(u) du(y) for @ ¢ suppf.

Namely, T}, is only assumed a priori to send test functions into distributions, so that it
admits a distributional kernel in X x X which coincides in turn with a locally integrable
function k away from the diagonal x = y, where the kernel presents certain singularity.
This already justifies the assumption x ¢ suppf in the kernel representation. The work
in [5,26] culminated in the following sufficient conditions on a singular integral operator
in R™ for its Ly-boundedness:

i) La-boundedness
| Tk : La(R™) — La(R™)]| < oo.

iif) Hérmander kernel smoothness

ess sup / \k(z,2) — k(y, 2)| + |k(z, 2) — k(z,y)| dz < oo.
z,ycRn"
|z —2|>2[z—y|

Historically, this was used to prove a weak endpoint inequality in L;. The same holds for
Riemannian manifolds with nonnegative Ricci curvature [1]. Alternatively it is simpler to
use Lo-boundedness and the kernel smoothness condition to prove L., — BMO bound-
edness. The result then follows by well-known duality and interpolation arguments. Our
strategy resembles this approach:

P1. Identify the appropriate BMO spaces.
P2. Prove the expected interpolation results with L, spaces.
P3. Provide conditions on CZO’s which yield L., — BMO boundedness.
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In the classical setting, we typically find H; /BMO spaces associated to a metric or
a martingale filtration. Duong and Yan [17,18] extended this theory replacing some
averages over balls in the metric space by semigroups of positive operators, although
the existence of a metric was still assumed. This assumption was removed in [30,44]
providing a theory of semigroup type BMO spaces with no further assumptions on the
given space. In particular, we could say that Problems 1 and 2 were solved in [30],
but it has been unclear since then how to provide natural CZ conditions which imply
Lo — BMO estimates. In this paper we solve P3 by splitting it into:

P3a. Construct a ‘metric’ governing the Markov process.
P3b. Define ‘metric BMO’ spaces which still interpolate with the L,, scale.
P3c. Provide CZ conditions giving L., — BMO boundedness for metric BMO’s.

P3a. Markov metrics. Given a Markov semigroup S = (S;);>0 on the semifinite von
Neumann algebra (M, 7) —in other words, formed by normal self-adjoint cpu maps
Si— we introduce a Markov metric for it as any family

Q = {(Rj,tagj,t77j,t) : (], t) € Z+ X R+}

composed of normal completely positive unital (cpu) maps R;; : M — M and elements
0j.4,7Yt of M with v;; > 1,4, such that the following estimates (which show how the
Markov metric governs the Markov semigroup in a controlled way) hold:

i) Hilbert module magjorization: <§,§>St < g a;7t<§,§>3j Ot
3>1 ’
%

ii) Metric integrability condition: kg = sup H ZO'; t’yf-toj,t < 0.
>0 = T M

Here (, )¢ is the M-valued inner product on MM for any cpu map P, given by
(a®b,a’ @b')e = b*P(a*a’)b’. Markov metrics are a priori unrelated to Rieffel’s quantum
metric spaces [55,56]. They present on the contrary vague similarities with abstract
formulations of classical CZ theory in the absence of CZ kernels and /or doubling measures
[2,61]. We shall explain what motivates our definition below and we shall also illustrate
how Euclidean and other classical metrics fit in.

P3b. Metric type BMO spaces. Let

Iflssios = sup | (77 - sy’

and || f|[Bmos = max{||fllsmog, | /*|Bmog }. We shall define the semigroup type BMO
space BMOg(M) as the weak-* closure of M in certain direct sum of Hilbert modules
determined by S = (S;);>0. BMOg(M) interpolates with L,(M) under certain notion
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of regularity [30] to be recalled below. Given a Markov metric Q associated to this
semigroup, let us define in addition

a0 = max {1 myog: I/ Imos, }-

FP = 1By f 2+ | Ryuf = Mif )it )"

e =su inf  su H( MR,
||fHBMOQ t>13 M jzfl) Vit [ 3.t
My M—M
Theorem Al. Let (M, T) be a semifinite von Neumann algebra equipped with a Markov
semigroup S = (S¢)i>0. Let us consider a Markov metric Q associated to S = (S¢)i>0.
Then, we find

[ fllemos < ke llfllBMog -

If S = (S¢)t>0 is regular, then BMOg (M) C BMOg(M) interpolates with L,(M).

Theorem A1l solves P3b. Its proof is not hard after having defined the right no-
tion of Markov metric and the right BMO norm. Let us note in passing that the term
R;f — M. f is there to accommodate nondoubling spaces to our definition in the spirit
of Tolsa’s RBMO space [61]. As a consequence of Theorem Al, proving L., — BMO
boundedness for metric BMO’s (Problem 3c) implies the same result for semigroup BMO
spaces (Problem 3). Of course, one could try to prove such a statement directly, but it
seems that the metric/measure relation found with these new notions is crucial for a
noncommutative CZ theory.

P3c. Calder6n-Zygmund operators. The commutative idea behind the notion of Markov
metric (explained in more detail in the body of the paper) is to find pointwise majorants
of the integral kernels of our semigroup & = (S;);>0, so that we can dominate S; by
certain sum of averaging operators over a distinguished family of measurable sets ¥; ;(x).
These sets may be considered as the ‘balls’ in the Markov metric. In the noncommutative
setting, this pointwise estimates must be written in terms of the given Hilbert module
majorization and the cpu maps R; ; must be averages over certain projections g; ;. Making
this precise in full generality is one of the challenges of our algebraic approach and too
technical to be explained at this point of the paper. A simple model case is given by

1
2

(id @ 7)(470(1  az0) ((id @ 7)(g50)) (Ave)

1
2

Rjef = ((id©7)(q0))

for certain family of projections ¢;; € M®&M. The linear map ]3%,5(1 ® f) = Rj.f
trivially amplifies to M®M. We may also consider similar formulas for the cpu maps
M, in the metric BMO norm. (Avg) allows to identify the Markov metric in terms of the
‘balls’ ¢;; instead of the corresponding averaging maps R; ;.

As it happens in classical Calderén-Zygmund theory, we need to impose some addi-
tional properties in the Markov metric to establish a good relation with the underlying
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(noncommutative) measure. We have split these into algebraic and analytic conditions,
further details will be given in the text. Let us just mention that the algebraic ones are
inherent to noncommutativity and hold trivially in commutative cases. The analytic ones
provide forms of Jensen’s inequality and a measure/metric growth condition. Once we
know the Markov metric satisfies these conditions, we may introduce Calderén-Zygmund
operators. Assume that T(Axr) C M for a map T acting on a weak-* dense subalge-
bra Ay C M such that Ax has dense intersection with L,(M) for any 1 < p < oo.
The goal is to establish sufficient Calderon-Zygmund conditions on T for L., — BMO,
boundedness. These are noncommutative forms of standard properties. Again, it is un-
necessary to introduce them here in full generality, we do it in Section 2. In the model
case above, our CZ conditions are:

i) Loo(L§)-boundedness

H (id @ 7) ((z’d ® T)(z)* (id T)(:c)) :

L S e n@ )],

for z € M®&M such that ||(id ® T)(x*x)HM < 0.
ii) Size ‘kernel’ conditions

o« M(|ido T (A Az~ a))*) S 2SI

~ , 2

o Bie(|Gdo D18 (A= a0)]”) S 32

for any f € Apq and certain family of operators A;¢,a;: € MM with A;; > a;+.
iti) Hormander ‘kernel’ conditions

o o (5(id@T)((1@ N —a;0))[*) S I3

. 2
o Uu(5(ae (e N - 4,0))°) < 21
for certain family of normal cpu linear maps ®;,, ¥, : MM — M.

In condition ii), A;; and a;+ play the role of ‘dilated balls’ from ¢;;. In the last
condition, § is the derivation x — x ® 1 — 1 ® = acting on the second leg of the tensor
product. In the Euclidean case, these conditions reduce to Ls-boundedness and the
classical size/smoothness conditions for the kernel. Our general conditions include many
more amplification algebras and derivations, other than M®M and §. Any map T :
Apn — M satisfying the above CZ-conditions will be called a column CZ-operator.

Theorem A2. Let (M, 1) be a semifinite von Neumann algebra equipped with a Markov
semigroup S = (Si)i>0 with associated Markov metric Q fulfilling our algebraic and
analytic assumptions. Then, any column CZ-operator T' defines a bounded operator

T : Ay — BMOG(M).

If S is regular, interpolation and duality give similar conditions for Ly-boundedness.
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A generalized form of Theorem A2 is the main result of this paper. It is easy to
recover Euclidean CZ-extrapolation from it. In the Euclidean and many other doubling
scenarios, the size kernel condition ii) does not play any role. Our next goal is to explore
how the general form of Theorem A2 applies in concrete von Neumann algebras with
specific Markov metrics. It is worth mentioning that our regularity assumption holds for
all the relevant examples in this paper.

Applications

Algebraic Calderén-Zygmund theory applies in classical and noncommutative measure
spaces. In the commutative context, we shall limit ourselves to prove that algebraic and
classical theories match in three important cases: Euclidean spaces with both Lebesgue
or Gaussian measures and Riemannian manifolds with non-negative Ricci curvature. We
shall not explore further implications in new commutative scenarios, like abstract prob-
ability spaces or fractals equipped with specific Dirichlet forms. In the noncommutative
context, we start by analyzing the model case of matrix-valued functions from a very
general viewpoint. We also consider Calderén-Zygmund operators over matrix algebras,
generalizing triangular truncations as the archetype of singular integral operator. Most
importantly, our abstract theory applies to quantum Euclidean spaces and quantum
groups, which constitute our main motivations in this paper.

It will be useful to specify the form that our Calderén-Zygmund operators take when
come associated to a concrete kernel. Our applications below include CZ conditions on
the kernel. In the basic model case above, we set

Tnf = (ido7)(k(1® f)) (Ker 1)

for some kernel k affiliated to M®&M,y,. Recall that the opposite structure (M,p, is the
same algebra M endowed with the reversed product a - b = ba) in the second tensor leg
of the kernel for this (standard) model was already justified in [21]. It is a feature of CZ
theory which can only be witnessed in noncommutative algebras. It will also be useful
to generalize a bit our model case before analyzing any concrete application. Consider
an auxiliary von Neumann algebra A equipped with a n.s.f. trace ¢, a x-homomorphism
o: M — AYM and the representation

Spf = (id@ ) (k flipoo(f)) (Ker 2)

for some kernel k affiliated to M®A,p. Of course, when A = M and o(f) = 1® f
we recover our model case above, with kernel representation (Ker 1). This more general
framework requires to redefine R;; in (Avg) and the CZ conditions, as we shall do in the
body of the paper. The advantage is to take A as an elementary (commutative) algebra,
from which we can transfer metric information. One may think of o as a corepresentation
in the terminology of quantum groups. Theorem A2 still holds in this case. We shall refer
to intrinsic or transferred theories when using the model case A = M or its generalization
respectively.
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Quantum Euclidean spaces. As geometrical spaces with noncommuting spatial coordi-
nates, quantum Euclidean spaces have appeared frequently in the literature of mathe-
matical physics, in the contexts of string theory and noncommutative field theory. These
algebras play the role of a central and testing example in noncommutative geometry as
well. The singular integral operators on quantum Euclidean spaces naturally appear in
the recent study of Connes’ quantized calculus [40,42,57] and noncommutative harmonic
analysis [10,21,22,64]. Let

O € M, (R)

be anti-symmetric. Briefly, the quantum Euclidean space Rg is the von Neumann algebra
generated by certain family of unitaries {u;(s): 1 < j <n,s € R} satisfying

uj(s)u;(t) = uj(s +1),

uj(s)up(t) = €2 Oty (t)uy (s).

Define Ag(€) = u1(&1)ua (&) - - - un (&) and set

£= [ ol@a(€)d = rolfo),
R’n
for f@ € C.(R™). The trace on Rg is determined by

ro(f) = 7o /%@m@% = o (0).

When © =0, L,(Re, Te) reduces to L,(R™) with the Lebesgue measure. Precise defini-
tions and a theory of singular integrals for Rg appear in [21]. The main result relies on
gradient kernel conditions for the intrinsic model (Ker 1). Remarkably, we show in this
paper that the transference model (Ker 2)

0o : Re > /\@(f) — exPg ®/\@(§) c LOO(RR)@)'R@

goes further, since it just requires Hérmander type smoothness for the kernel. Here expy
stands for the &-th character exp(2mi(,-)) in R™. There is a close relation between both
models in this case

To(m ®expe) = mAe(§)" @ Ne(§), Ym € Re and Ty (f) = Si.(f) for k = 7o (k).
Another crucial map is the *-homomorphism

7o : Loo(R™) 3 expe = Mo (§) @ Ao (§)” € RoORY .



10 M. Junge et al. / Advances in Mathematics 376 (2021) 107443

If Br denotes the Euclidean R-ball centered at the origin, define the projections ag =
To(158,) and ai = 1 — ag. Set k, = (06 ® idger)(k) € Loo(R")@Re®RY and define
the derivation d¢(z,y) = () — ¢(y) to set the kernel condition in L (R")Q@Re®@R g

s |o((id@idero) k(10 1@ N1 @ah)]) @ y)| S Ifllra.  (Hor)
|z|<R,|y|<R

As we shall justify in the paper, (Hor) is the right form of Hérmander kernel condition
in this framework. The column BMO-norm admits in Re an equivalent form

[ fllBMO.(Re) = loe(f)llBMO. (R R6)

for the operator-valued BMO space BMO.(R"; Rg) from [43]. These are all the ingredi-
ents to obtain Calderén-Zygmund extrapolation over quantum Euclidean spaces. Namely,
the general form of Theorem A2 then yields the following theorem.

Theorem B1. T}, is bounded from Re to BMO.(Re) provided:

i) Tk is bounded on Ly(Re).
i) The kernel condition (Hor) holds.

Interpolation and duality give similar (symmetrized) conditions for L,-boundedness.

Theorem B1 improves the main CZ extrapolation theorem in [21] by reducing the gra-
dient kernel condition there to the (more flexible) Hérmander integral condition above,
as we shall prove along the paper. In fact, the result which we shall finally prove is
slightly more general than the statement above.

Quantum groups. Let G be a locally compact group with a left invariant Haar measure p.
When G is abelian, the Fourier transform carries the convolution algebra L (G, u) into
the multiplication algebra LOO(CA}7 ) associated to the dual group with its (normalized)
Haar measure. However, when G is not abelian, we can not construct the dual group
and the multiplication algebra above becomes the group von Neumann algebra which
is generated by the left regular representation of G. These algebras are basic models of
(noncommutative, but still cocommutative) quantum groups, over which we shall study
singular integrals.

Let G be a locally compact quantum group of Kac type —precise definitions in the
body of the paper— with comultiplication A and left-invariant and right-invariant Haar
weights 1, . Given a weak-* dense subalgebra A of Lo, (G) and a linear map T satisfying
T(A) C Lo (G), it is is a convolution map when

(T®idg)oA=AoT = (idg ®T) o A.
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To simplify the problem, we shall consider the case where G admits an a-doubling
intrinsic Markov metric. That is, the projections which generate the cpu maps R;;’s
satisty

w(Qa(j),t)
¥(qj.t) = ca

for a strictly increasing function o : N — N with a(j) > j and a constant c,.

Theorem B2. Let G be a locally compact quantum group of Kac type and assume it comes
equipped with a convolution semigroup S = (Sy)i>0 which admits an a-doubling intrinsic
Markov metric. Let T : A — Loo(G) be a convolution map defined on a weakly dense
x-subalgebra A of Loo(G) such that

i) T is bounded on La(G).

1
) i ® 9 (@ 2 60 TG ) ) £ 19

Then, the linear map T extends to a bounded map T : Loo(G) — BMOS(Loo (G)).

As usual, L, estimates follow from symmetrized conditions by interpolation and du-
ality when the Markov semigroup S = (S;);>0 is regular. In fact, we shall prove a more
general statement which incorporates tensor products with an additional algebra (M, 7).
Theorem B2 is proved one more time from Theorem A2. In fact, it is conceivable to re-
move the a-doubling restriction and still make the convolution map bounded under an
additional size kernel condition.

Noncommutative transference. In a different direction, we shall finish this paper with
a section devoted to noncommutative forms of Calderén-Cotlar method of transference
[4,12,14]. The basic idea is to transfer L, estimates of convolution maps on quantum
groups to a much wider class of maps which arise by transference. We refer to [6,8,10,
48,50,54] for other forms of transference in the context of group von Neumann algebras
and quantum tori.

1. Markov metrics

An abstract form of Calderén-Zygmund theory incorporating noncommutative alge-
bras lacks standard geometrical tools. Given a Markov semigroup on a von Neumann
algebra —a semigroup of normal cpu self-adjoint maps on the given algebra— we shall
construct a ‘metric’ governing the Markov process. Our model case in a commutative
measure space (€2, 1) is a Markov semigroup of linear maps of the form

&ﬂwz/&mwﬂmwwy

Q
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The idea is to find pointwise majorants of the form

o0

O ¢\(X 2
siley) <3 ﬁxu (v), (L1)

j=1
so that Sif(z) is dominated by a given combination of averaging operators over certain
measurable sets X ;(x). These sets will determine some sort of metric on (£2, 1) under
additional integrability properties. Naively, we may think of them as balls or coronas
around z in the hidden metric with radii depending on (j,t). In this section we formalize
this idea and construct BMO spaces with respect to the associated ‘Markov metric’ which
satisfy the expected interpolation results.

1.1. Hilbert modules

A noncommutative measure space is a pair (M, 7) formed by a semifinite von Neu-
mann algebra M and a n.s.f. trace 7. We assume in what follows that the reader is
familiar with basic terminology from noncommutative integration theory [36,60]. Non-
expert readers may proceed by fixing a measure space (2, ) with M = Lo(Q) and 7
the integral operator associated to u. Given a cpu map ® : M — M, we may construct
the L,(M)-Hilbert module L,(M®qgM). Namely consider the seminorm on M ® M

€]l MEant = V& Eall L, a

determined by the L (M)-valued inner product

<Z‘jaj®bj,zka§€®b;>®:z‘

i b ®(ajay, )by

Then L,(M®eM),1 < p < oo stands for the norm completion of the algebraic ten-
sor product, and M®gM denotes for the completion in the strong operator topology
determined by &, — ¢ when 7({§ — £4,& — &a)ag) — 0 for all g € L1(M). When @
is normal, M®gM is the dual space of L1(M®eM) (see [34]) and the abstract char-
acterization of Hilbert modules [51] yields a weak-* continuous right M-module map
p i MReM — Loo(M;HE), which takes values in the Hilbert space valued noncom-
mutative Lo, space Loo(M;H) (see e.g. [28]) and satisfies (€, 7)) = p(§)*p(n). Let us
collect a few properties which will be instrumental along this paper.

Lemma 1.1. Given a normal cpu map ® : M — M:

) (G466 +8&)y <2(&1,&1) s +2(62,82)
i) [[f®Im =1 @ f[| g 00 = [|OIF17 = 1RFP[|3,,
i) |0f —g|" < (fOIm— 1y ®g fO Ly — 1 © )y
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iv) Hf@lM—1M®<I>f||M®®MNqienf/l||f®1M—1M®gHM®¢M,
V) Ifq)gcp Zkﬁk\l!kf then 4

6lmzon < (0, Beléhusn, ac) -

Proof. The first inequality follows from hermitianity of the inner product and the iden-
tity (€,m)e = p(&)*p(n) explained above. The second one is straightforward from the
definition of M®gM. The third inequality follows from Kadison-Schwarz inequality af-
ter expanding both sides. The lower estimate in iv) holds trivially with constant 1, while
the upper estimate holds with constant 2 since

fOIM—1u@Of=(fR1IM —1M®g) — (AMm @ (Df —9g))

and the second term on the right hand side is estimated using iii). Finally, for the last
inequality let & = Zk ar ® by, and define the column matrices A* = Zk ay ® er1 and
B =3, b, ®er1. Then we find
(£,6)g = ZM bi®(ajar)by = B*®(A*A)B
<Y BB ATA)B =) B(€.6)y,. O

1.2. Markov semigroups and metrics

Throughout the article we will assume that the underlying noncommutative measure
space (M, 7) comes equipped with a Markov semigroup S = (S;);>0. That is, a weak-x
continuous semigroup of normal cpu (completely positive unital) operators (S¢)¢>o on M
with the additional symmetric assumption

7(S¢(f)g) = 7(fSe(g)) forall f,.ge MnNLi(M).

Note that 7(S¢f) = 7(f) for all f, so S;’s are faithful and are contractive on L;(M).
By interpolation, Sy’s extend to contractions on L,(M) (1 < p < o0) and satisfy
lim¢,0 S, f = f in L,(M) for all f € L,(M).

Also recall that S admits an infinitesimal negative generator
Af =lim ¢~ (f = Si(f))
t—0
defined on dom(A) =, <, <., domy(A), where dom,,(A) is given by
dom,(A) = {f € L,(M): %ii%t*l(st(f) — f) converges in Lp(./\/l)}.

It is easy to see that %f; Si(f)dt € domy(A) for any s > 0, f € L,(M), so dom,(A) is
dense in L, (M) for p < oo, and is weak-* dense in M for p = co. We will denote by A,
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the restriction of A on domy(A).
A Markov metric associated to (M, 7) and § is determined by a family

Q= {(Rj,tvaj,t,%',t) :(Uht) €Zy x R+}

where R;; : M — M are normal completely positive unital maps satisfying R;.f = f
for f € kerA, the fixed-point subspace of the semigroup S, and o;¢,7;+ are elements
of the von Neumann algebra M with 7, ¢ > 14, so that the estimates below hold:

i) Hilbert module majorization: <§,§>St < ZU;J@’OR,;tUj’“ VéEe M@ M,
jz1
%

i) Metric integrability condition: kg = sup H Za* ﬂ?taj,t < 0.
>0 1553 T M

Our notion of Markov metric is easily understood for our (commutative) model case
above. Let § = (S¢)¢>0 be a Markov semigroup on (€2, 1) with associated kernels s;(x, y)
satisfying the pointwise estimate (1.1). Given & :  x © — C essentially bounded, we
have

s 2

(€8s, = [steleal ) < S [ o). (2)
Q2 =1 e Bj.e(@)

This means that R; ¢ f(z) is the average of f € Lo () over the set ¥; ;(x). Reciprocally,
if we take & (z,y) = ¢r(yo —y) to be an approximation of identity around yg, we recover
the pointwise estimates for the kernel s;(x, yo). In other more general contexts, the upper
bounds for the kernel or even the kernel description of the semigroup might not have the
same form. As we shall see, many of these cases can still be handled via Hilbert module
majorization. We shall provide along the paper a wide variety of examples which fall into
these possible classes.

1.8. Semigroup BMOs

Given a noncommutative measure space (M, 7) and a Markov semigroup S = (S;):>0
acting on (M, 7), we may define the semigroup BMOg-norm as

[ fllBMOs = max {Hf”BMOg; ||fHBMOg},
where the row and column BMO norms are given by

1
2

I llssog =sup || (S:(/7) = (S8
t>0

1
2

1 lsos = sup||(Su(s*£) = (S0 (5uh)
t>0
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This definition makes sense since we know from the Kadison-Schwarz inequality that
IS;fI? < S¢|f|?. The null space of this seminorm is kerA.,, the fixed-point subspace
of our semigroup. Indeed, if ||f||smos = 0 we know from [11] that f belongs to the
multiplicative domain of S, so that

7(9f) = 7(St)2(9f)) = 7(St/2(9)St/2(f)) = T(gSe(f))-

This proves that f is fixed by the semigroup. Reciprocally, ker A, is a x-subalgebra of
M by [27,35]. [27] only deals with the state case, but the proof there carries over to the
semifinite trace case since we have the additional symmetric assumption on S;. Thus,
the seminorm vanishes on kerA,. In particular, we obtain a norm after quotienting out
ker Aoo. Letting wy(f) = f ® 1 — 1 ® S; f, this provides us with a map

feM&s (w(f e@/\/t@st

t>0

which becomes isometric when we equip M with the norm in BMOS. Given a net
(fx)x € M with uniform bounded BMOg-norm (i.e. supy || fallBmog < 00), we say (f)x
S-weak-+ converges if (w(fx))x weak-*-converges in @, , M®gs, M. That is to say, for
any t,m > 0, aj,b; € L*(M), and = = 37" a; ® b, ‘€ Li(M®s,M), the following
equivalent inner products

T<<wt(fx)a$>sf,) = T((fA ®1-1© Stfmiaj ® bj)Sf,)

Jj=1

= (£ Zajst ~ 5u(Si(a)b)) (13)

converges. This allows us to define the atomic h{ space. Let Atom,. be the collection of
all &’s of the form

€= Zajst — 8,(S;(a;)bj)

for some t,m > 0,a;,b; € La(M) and

|| Zaj ® bj”Ll(M@StM) =1
j=1
For any g € Span(Atom,), let

lgllns .. = lnf{z CARCES ZCkﬁk, &k € Atome}

k=1
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It is easy to see that for any g € Span(Atom.), ||gllns ., > ll9llL,(m). We define h{ ,,(S)

l,at —

to be the || - ||ne  -closure of Span(Atom,), which is contained in L;(M). Let LS (M) =

1,at

Loo(M)/kerAos. By (1.3), it is clear that

(Lo M), || - lIBmog ) € (A 04(S))"

and a || - [[Bmog-bounded net S-weak- converges iff it weak-* converges in (h{ ,,)*. It is
also clear that (L5, (M), [ - [[Bmog ) separates points in the whole space h ,,(S), so it is
weak-* dense in (h§ ,;(S))*. Recall two convergent nets are equivalent if their differences
converge to 0. Define BMOg as the collection of all the equivalence classes of S-weak-x
convergent nets (fx)x with sup, [|fxllBmog < oo. So BMOg is the weak-* closure of
(L2 (M), |- 3105 i (45 0 (S))*, thus equals (45,(S))".

Similarly, we may define BMOg as the intersection BMOs N BMOg, where the row
BMO follows by taking adjoints above. The natural operator space structure is given by

M,,(BMOg(M)) = BMOg(M,,(M)) with S, = id,, @ Sy
Remark 1.2. Incidentally, we note that BMOg is written as bmo(S) in [30].
1.4. Markov regularity and interpolation

It will be essential for us to provide interpolation results between semigroup type BMO
spaces and the corresponding noncommutative L, spaces [53]. It is a hard problem to
identify the minimal regularity on the semigroup S = (S;)¢>0 which suffices for this
purpose. We will recall in this subsection an interpolation theory from [30].

We say that a semigroup S = (S¢)i>0 admits a reversed Markov dilation if there
exists a larger semifinite von Neumann algebra (N, 7), a decreasing filtration (NV)s>0
with corresponding conditional expectations Ej,, and a family of trace preserving *-
homomorphisms 7g : M — /\f[s such that

E (mi(f)) = ms(Ss—tf), forall t<s,ze M.

This implies that m(f) = (ms(f))s>0 with

ms(f) = 775<sz>7

is a martingale with respect to the reversed filtration (NV,). A Markov semigroup & =
(St)1>0 is called regular if it admits a reversed Markov dilation and for each 2 < p < oo,
there exists a weakly dense subset B, C L,(N) so that, for every f € B, the associated
martingale m(f) = (ms(f))s>0 has almost uniformly continuous path. In other words,
for every T > 0 and ¢ > 0 there exists a projection e such that 7(1 —e) < e and
fe:[0,T] >t — my(f)e € N is continuous.
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Define
LO(M) = L, (M) /ker A, = {f € Ly(M) : lim Sif = o}.

As it was explained in [30], the space Lj(M) is complemented in L,(M),1 < p < oo,
and [L;(M), BMOg] form an interpolation couple. The following result will be crucial
in what follows, we refer the reader to [30] for a detailed proof.

Theorem 1.3. If S = (S;)¢>0 s a reqular Markov semigroup

[BMOs, Lo(M)] =~ LY(M)  forall 1<p<q<oo.

p/q

Note that interpolation against the full space L, (M) is meaningless since BMOg does
not distinguish the fixed-point space of the semigroup. Very roughly, we shall typically
apply the above result to a CZO which is bounded on Ls(M) and sends a weak-*
dense subalgebra A C M to BMOgs, and A has dense intersection with L,(M) for any
1 < p < . Recalling the projection map J, : L,(M) — L;(M) and letting 7" denote
the CZO, we find by interpolation that

BT Ly(M)NAC [A L(M)],, — [BMOs, L3(M)],, = L3(M) C Ly(M).

2/p
Then the density of L,(M)N A give us the boundedness of .J, T from L, (M) to Ly(M).
To obtain L, boundedness of T, it suffices to assume that 7' leaves the fixed-point
space invariant and is bounded on it. It should be noticed though, that in many cases
the L, boundedness of the CZO follows automatically. For instance, in R™ with the
Lebesgue measure and the heat semigroup, it turns out that L, = L;. On the other
hand, the fixed-point space for the Poisson semigroup on the n-torus is just composed of
constant functions and the corresponding projection can be estimated apart regarded as
a conditional expectation. Moreover, the same applies for Fourier multipliers on arbitrary
discrete groups. The L, boundedness for 1 < p < 2 will follow by taking adjoints under
certain symmetry on the hypotheses.

Remark 1.4. On commutative or semicommutative von Neumann algebras, the existence
of a Markov dilation is called the martingale problem and a Markov semigroup is regular
if it is diffusion. Noncommutative diffusion Markov semigroups and their regularity were
recently studied in [33] for the case of finite von Neumann algebras. At the moment,
there is no written argument on the existence of Markov dilations on semifinite von
Neumann algebras. However, we should recall that all the concrete examples in this paper
are regular. Our commutative models are the heat semigroup, the Ornstein-Uhlenbeck
semigroup and the Laplace-Beltrami semigroup and all of them satisfy our regularity
assumption. Regular Markov dilations in our noncommutative examples (matrix algebras
and quantum Euclidean spaces) can be deduced by transference. Indeed, we shall embed
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these algebras into larger semicommutative ones and the Markov process arises from an
amplification of the classical heat semigroup.

Remark 1.5. Let us comment on the case of general semifinite von Neumann algebras,
where the results of [33] do not formally apply. Given a Markov semigroup S = (S¢)i>0 =
(e’tA)tZO, we may first fix a finite projection e, a small s > 0 and consider the new
generator

idepe — SE

As,e = s

with S¢(f) = eSs(efe)e being selfadjoint. Then A, . genecrates a regular Markov semi-
group on eMe. So the interpolation between the semigroup BMOs and L, and the
corresponding semigroup Hp-L,, equivalence which apprear in [30] hold for e~ tse . We
expect that an approximation argument is enough to prove the same equivalence for the
original semigroup S; for 2 < p < oo, and that a BMO interpolation theory would hold
for general Markov semigroups on semifinite von Neumann algebras.

1.5. Markov metric BMOg

Let us now introduce a Markov metric type BMO space for von Neumann algebras and
relate it with the semigroup type BMO spaces defined above. Given a Markov semigroup
S = (St)>0 acting on (M, 7), consider a Markov metric @ = {(Rj+, 0,4+, 7,¢) : (j,1) €
Zy x Ry} as defined above and define || f|[pmoo = max{| f[lsmog,. [|/*[[Bmog }, Where
the column BMO-norm is given by

sup inf sup | (v Ryl £ = [Rief 2+ | Ryuf = Mif2)2;0)” |

t>0 M, cpuj>1 M

and the infimum runs over normal cpu maps M; : M — M satisfying M(f) = f for
f € kerA. The row norm is estimated in the same way. Define, for g € Ly(M),

19llns o = sup{|T(f"9)| : f € L, (M), [|fllB7MOg < 1} (1.4)

We will see in the theorem below that, ||-[[mog < [ [lBMog, on L, (M). So || fllng , < o0
for any f € h{ ,,(S) (see its definition in Section 1.3). Let h{ 5 be the |- ||n _-closure of
(hS.at(S), [~ llng o ), which is contained in Ly (M). It is clear that (L3, (M), |- [lBmog,) C
(hf.o)*. Let BMOg be its weak-* closure in (h{ o)*. That is the linear space of all
equivalence classes of || - [[pmog-bounded, weak-* convergent nets (fi)x € L (M) in
(h{.o)*. For such a net (fx)x, define the norm of its equivalence class as

AN lBMOg = sup lim[7(f3g)].
Hthngl
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We have BMOj is equal to the whole space (hiQ)*’ since it separates points in h{ .
Similarly, we may define BMOg as the intersection BMOg N BMOYg, where the row
BMO follows by taking adjoints above. Since ;; > 14, the inverses exist and Lo, (M)
embeds in BMOyg. Indeed, using that R;; and M; are cpu, the square bracket above is
bounded by 2||f]|2, 1 and 'yj_f < 1.

Now, recalling the value of the constant kg in our definition of Markov metric, we
prove that BMOg embeds in BMOgs.

Theorem 1.6. Let (M, 7) be a noncommutative measure space equipped with a Markov
semigroup S = (S¢)i>0. Let us consider a Markov metric Q associated to S = (S¢)e>0.
Then, we find

[ fllemos < ke llfllBMog -
In particular, we see that Loo(M) C BMOg C BMOgs and

[BMOg, Ly(M)] =~ Ly(M) forall 1<p<gq<oo

p/q
for any Markov metric Q associated to a reqular Markov semigroup S = (S¢)i>0.

Proof. Let us set

G=f@1Ipm— 1 @M f
= (f®1Inm — 1M @ Ryef) + (I ® (Rjuf — Muf)) = €, + €2,

The assertion follows from Lemma 1.1 and our definition of Markov metric

IfllBMog = 31;10) H (St‘f|2 _ |S’tf|2)% .

= sup £ & Lyt = 10 @ Suf ||y, 1

A

1
su ®1 -1 ®M = = Su , 2 2
up [[f © Lot = 1at ® Mef | oy a = $UP 11 Ee)s.

2

< SUPH Z(’;t[@,t’ ]17t>RJlt + <£§,t,£§,t)3j)t]aj,t
t>0 i1 M

< ko fllsmos,-

The identities are clear. The first inequality follow from Lemma 1.1 iv), the second one
from the Hilbert module majorization associated to the Markov metric and Lemma 1.1 1).
To justify the last inequality, note that the square bracket inside the term on the left
equals R | f|*—|R;¢f|*+|R;+f — My f|. Hence, left multiplication by v, ;" and right
multiplication by ’yj_’tlfyjyt yields the given inequality with ko the metric integrability
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constant. From the above inequalities, we see that the null space of the seminorm || -
[BMOg on M is again ker Ao Combining this with (1.3), we see that h{ o contains hf ,,
as a dense subset. So BMOg C BMOs. The interpolation result follows from Theorem 1.3
and the embeddings L., (M) C BMOg C BMOg. The proof is complete. O

Remark 1.7. Let £ = Zj A; ® Bj, with
Aj = (afﬁ) and B; = (bﬁx )
elements of M,,(M). If §t = idpg,, ® St, it turns out that

(&:€)g = <Z<Zafxﬁ®bngafw®bgw>St> € M,,(M).
a=l - J.p 9.8 v,

N,y Ne,vo

This can be used to provide an operator space structure on BMOg. Namely, the canonical
choice for the matrix norms is M,,(BMOg(M)) = BMO (M, (M)) where the Markov
metric on M, (M)

0= {(ide ® Ryt 1w, ® 04t 1m, @ %',t)}

is associated to the extended semigroup (§t)t20. Then, we trivially obtain that kg =
ko < oo. However, according to the identity above for (&) g, the Hilbert module
majorization takes the form

m m
( Z <7]a,'yl s 77a,'y2>st> < Z <0;,t Z <"7a,"/1 s Mo, ya >Rj,taj’t> .
V1,72 V1,72

a=1 j>1 a=1

This gives a matrix-valued generalization of our Hilbert module majorization for S =
(St)t>0 on M, to be checked when we use this o.s.s. Theorem 1.6 yields a cb-embedding
of BMOg into BMOg under this assumption. According to the characterization (1.2), it
holds for Markov metrics on commutative spaces (€, u).

1.6. The Euclidean metric

Before using Markov metrics in our approach to Calder6on-Zygmund theory, it is
illustrative to recover the Euclidean metric from a suitable Markov semigroup. Let
S = (H¢)i>0 denote the (regular) heat semigroup on R™, with kernels

L (—Iw - yIQ)
n €X .
dnt)s P\ g

ht(xvy) =
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Take Q@ = {(Rj,0j1.7j.) : (J, 1) € Z4 x Ry} determined by

. U?’t = %jze J and ’Yit =42 >1,
,ﬁl /
o ; €T d
.77tf< ) |B 4jt($)‘ f(y) Y

Note that o;; and «;,; are allowed to be essentially bounded functions in R™, but in
this case it suffices to take constant functions. In the definition of R;;, we write B, (z)
to denote the Euclidean ball in R™ centered at x with radius r. It is clear that R;,
defines a cpu map on Loo(R™) and R;.f = f for any f € kerA., since kerA, is the
space of constant functions in this case. To show that Q defines a Markov metric, we
need to check that it provides a Hilbert module majorization of the heat semigroup and
the metric integrability condition holds. The latter is straightforward, while the Hilbert
module majorization reduces to check that

2e jze I
helr,y) € T2 D7 X ) (0):
t V7 2 TB )] P

This can be justified by determining the unique corona centered at x with radii
\/4(5 — 1)t and /45t where y lives, details are left to the reader. Note that we could
have taken v;,; = 1 and still obtain a Markov metric. Our choice will be justified below
and also in the next section, where we shall need v;; = j2 to compare BMOg with
other BMO spaces which interpolate. Before that, our only evidences that this is the
right Markov metric in the Euclidean case are the fact that the R;,’s are averages over
Euclidean balls and the isomorphism

BMOg = BMOgn,

where the latter space is the usual BMO space in R™
1 2 3
|flssosn = suwp (= [ |£@) = ful”dz) .
BCR" |B| 2

Here, the supremum is taken over all Euclidean balls B in R™ and fg stands for the
average of f over B. Let us justify this isomorphism. If we pick M, f(x) = Ri.f(z) it
follows from a standard calculation that

|Rj.of (x) — My f ()| (L.5)
1 2
= ‘7 (f(y)_me(x))dy‘
IBm@)IBm/(x)
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j* 20— 3R fI2 g2
Sm / |f(W) = B @) Ay = 32 (Rl fI? = R f1?)(2).

B /aze(z)

This automatically yields the following inequality

1 2 2
17 1Br0. < supesssup = / F@) — fo o dy < 17 1Bson,
o S SUpeSSIUD | i@ "
B i (x)

The converse is even simpler, since taking j = 1 we obtain

/ |fly) - me($)|2 dy

B (2)

= sup |33} [Bul 17 = 1R 7]t
>

||fH2 = supesssup ————
BMOg» ™ 700 zeR» |Byg(7)]

< I flBmog-

Lo (R™)

Remark 1.8. The term |R;,f — M, f| did not play a significant role at this point. More
generally, the above argument also works for any doubling metric space 2 equipped
with a Borel measure p: u(B(z,2r)) < Cu(B(z,r)) for every z € Q and r > 0, with
B(z,r) = {y € Q: dist(x,y) < r}. As we shall see later, the additional term |R; ; f — M, f|
in the BMO g-norm appears to include Tolsa’s RBMO spaces [61] in those measure spaces
(Q, 1) for which we can find an appropriate Dirichlet form which provides us with a
Markov semigroup acting on (€2, u).

Remark 1.9. A related semigroup BMO norm is

|flBrmog = sup | (el = 11s \2])%\‘00

All the norms consider so far are equivalent for the heat semigroup S = (H;)¢>0 on R,
generated by the Laplacian A = Z;’:l 6%7,. In fact, we may also consider by subordina-
tion the Poisson semigroup P = (P;)¢>0 on R™ generated by the square root v—A, or

even other subordinations [20]. Then, elementary calculations give the following norm
equivalences up to dimensional constants

[ fllBMogn ~ [ fllBMOr ~ [ fllBMOR ~ [ flIBMOS ~ | fllBMOS ~ || flIBMOG -

Moreover, let R = Loo(R™)@M denote the von Neumann algebra tensor product of
Lo (R™) with a noncommutative measure space (M, 7). Define the norm in BMOg as

[ fllBMoR = max{|| fl[Bmos,, [[f*[lBMOs, }, where

(3 [ 176 = saf'as)
B

| fllBMOs, = sup
B balls
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Then, the same norm equivalences hold in the semicommutative case

[fllBmor ~ I flIBMOs, ~ [[flIBMOS, ~ [IfllBMOS, ~ [IfllBMOS, »

where Sg; = St ®idp and Py = P, ® idpq. Moreover, by Remark 1.7, all these norms
are in turn equivalent to the norm in BMOg,,, with the Markov metric which arises
tensorizing the canonical one with the identity/unit of M.

2. Algebraic CZ theory

In classical Calderén-Zygmund theory, L, boundedness of CZOs follows from Lo
boundedness under a smoothness condition on the kernel. Our next goal is to iden-
tify which are the analogues of these conditions for semifinite von Neumann algebras
equipped with a Markov metric, and to show L, boundedness of CZOs fulfilling them.
Our new conditions are certainly surprising. The boundedness for p = 2 must be replaced
by a certain mixed-norm estimate (which reduces in the classical theory to Lo bounded-
ness), while Hérmander kernel smoothness will be formulated intrinsically without any
reference to the kernel. These abstract assumptions will adopt a more familiar form in
the specific cases that we shall consider in the forthcoming sections.

In order to give a Calderén-Zygmund framework for von Neumann algebras we start
with some initial considerations, which determine the general form of Markov metrics
that we shall work with. Consider a Markov metric Q associated to a Markov semigroup
S = (5¢)¢>0 acting on (M, 7). Then, we shall assume that the cpu maps R; ; from Q are
of the following form

M L5 N, B2 oy (M) ~ M,

. ) (2.1)
Rj.f = Ey(q;:)" 2E, (Qj,tpz(f)fb,t) Eo(gj,c)" 2,

where p1,p2 : M — N, are injective *-homomorphisms into certain von Neumann
algebra N,, the map E, : N, — p1(M) is an operator-valued weight which will be
defined later and the ¢, ;’s are projections in N,. In particular, we shall assume that our
formula for R;,f makes sense so that ¢;; and ¢; +p2(f)g; ¢ belong to the domain of E,, see
Section 2.1 for further details. Our model provides a quite general form of Markov metric
which includes the Markov metric for the heat semigroup considered before. Indeed, take
N, = Lo (R™ x R™) with py f(z,y) = f(x) and paf(x,y) = f(y). Let E, be the integral
in R™ with respect to the variable y and set

3,t(,Y) = XB () (¥) = XB (1) (T) = Xjamy|<ya7T-

Then, it is straightforward to check that we recover from (2.1) the R;,’s for the heat
semigroup. Note that the ¢, (x,-)’s reproduce in this case all the Euclidean balls in R”™.
Morally, this is why we call Q a Markov metric, since it codifies some sort of underlying
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metric in (M, 7). According to our definition of BMOg, we shall also consider projections
¢: in NV, and cpu maps

[NIE

My f = Ep(qr) " 2E, (qup2(f)a) Eplar) 2. (2.2)

In this case, to show that BMOg is equivalent to BMOg~, we have seen in Paragraph 1.6,
the non trivial part is to prove || f||Bmooy S ||f|lBMOg. - Note that in the definition of
BMOg-norm, the infimum is taken for all cpu maps M;. So it is enough to show the
inequality for some particular M;.

2.1. Operator-valued weights

In this subsection we briefly review the definition and basic properties of operator-
valued weights from [23,24]. A unital, weakly closed *-subalgebra is called a von Neumann
subalgebra. A conditional expectation Exq : N'— M onto a von Neumann subalgebra M
is a positive unital projection satisfying the bimodular property Eaq(a1 faz) = a1Em(f)az
for all aj,a2 € M. It is called normal if sup, Eam(fa) = Em(sup, fo) for bounded
increasing nets (f,) in My. A normal conditional expectation such that 70 &y = 7
exists if and only if the restriction of 7 to the von Neumann subalgebra M remains
semifinite [60].

The extended positive part M\+ of the von Neumann algebra M is the set of lower
semicontinuous maps m : M, 4 — [0, co] which are linear on the positive cone, m(A¢1+
Aog2) = Aim(¢p1) + Aam(¢2) for A; > 0 and ¢; € M, ;. The extended positive part
is closed under addition, increasing limits and is fixed by the map =z — a*za for any
a € M. It is clear that M sits in the extended positive part. When M is abelian,
we find M ~ L. (€, u) for some measure space (€2, ) and the extended positive part
corresponds in this case to the set of p-measurable functions on €2 (module sets of zero
measure) with values in [0, 00]. A harder characterization of the extended positive part
for arbitrary von Neumann algebras was found by Haagerup in [23]. Assume that M
acts on H and consider a positive operator A affiliated with M with spectral resolution
A= fR+ Adey. Then, we may construct an associated element in ./DL

ma@) = [ Moter).
Ry
In general, any m € /T/L has a unique spectral resolution
m(o) = [ Molen)) + co(p)
Ry

where the ey’s form an increasing family of projections in M and p is the projection
1 — lim)y ey. Moreover, the map A — e, is strongly continuous from the right and we
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find that eg = 0 iff m does not vanish on M\ {0}, while p = 0 iff the family of ¢ € M
with m(¢) < oo is dense in M.

Operator-valued weights appear as “unbounded conditional expectations” and the
simplest nontrivial model is perhaps a partial trace Exq = try ® idy with N' = AQM
and A a semifinite non-finite von Neumann algebra. In general, an operator-valued weight
from N to M is just a linear map

Ep: Ny — M, satisfying Em(a*fa) = a*Epm(f)a

for all @ € M. As usual, Exq is called normal when sup, Ex((fo) = Em(sup, fo) for
bounded increasing nets (f,) in Ay. Since a*fb = %22:0 i~*(a + i*b)* f(a + i*b)
by polarization, we see that bimodularity of conditional expectations is equivalent to
Emla*fa) = a*Epm(f)a for a € M. In particular, the fundamental properties which
operator-valued weights loose with respect to conditional expectations are unitality and
the fact that unboundedness is allowed for the image. Additionally, when M = C the
map Exq becomes an ordinary weight on A. In analogy with ordinary weights, we take

L (NSEM) = {fEN: [EMm(F* )| 0y <°°}'

Note that when Epq = trg ® idpyg with N = AQM, LS (N;Ep) are the Hilbert space
valued noncommutative Ly, spaces defined in [28], which we denote by L§(A)QM. Let
Ne,, be the linear span of ff fo with f1, fo € LS (N;Eaq). Then we find

i) Ney, =span{f € Ny : [Epmfl < oo},
ii) LS (N;Enm) and Ng,, are two-sided modules over M,
ili) Exq has a unique linear extension Exq : Ng,, — M satisfying

Em(arfaz) = aiEm(f)az with  f € Ng,, and a1,a2 € M.

In particular, if Exq(1) = 1 we recover a conditional expectation onto M. An operator-
valued weight Eaq is called faithful if Exq(f*f) = 0 implies f = 0 and semifinite when
LS, (N5 En) is o-weakly dense in V. It is of interest to determine for which pairs (N, M)
we may construct n.s.f. operator-valued weights. Among other results, Haagerup proved
in [24] that this is the case when both von Neumann algebras are semifinite and there ex-
ists a unique trace preserving one. Note that conditional expectations do not always exist
in this case. He also proved that given Ep; n.s.f. operator-valued weights in (N, M;)
for j = 1,2, there exists a unique n.s.f. operator-valued weight Exq, o, associated to
(M1@N2, M1@Ms) such that (¢1 @ ¢2) 0 Ep,om, = (01 0 Eaqy) @ (¢2 0 Epg,) for any
pair (¢1, ¢2) of normal semifinite faithful weights on (Mj, Ms).
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2.2. Algebraic/analytic conditions

The identity

Tf(z) = / k() () du(y)

Q

is just a vague expression to consider classical Calderén-Zygmund operators. It is well-
known that particular realizations as above are only meaningful outside the support of f
and understanding k as a distribution which coincides with a locally integrable function
on R™ x R™\ A. Instead of that, we shall not specify any kernel representation of our
CZOs since our conditions below will be formulated in a more intrinsic way. These kernel
representations will appear later on in this paper with the concrete examples that we
shall consider.

Let T be a densely defined operator on M, which means that T'f € M for all f
in a weak-* dense subalgebra Ay of M. Our assumption does not necessarily hold
for classical Calderén-Zygmund operators defined in abelian von Neumann algebras
(M, T) = Loo(£2, 1), but it is true for the truncated singular integral operators satis-
fying the standard size condition for the kernel, take for instance Apq = M N Li(M).
In particular, this is not a crucial restriction since we shall be able to take L,-limits as
far as our estimates below are independent of 7. Our aim is to settle conditions on 7" of
CZ type assuring that T : Lo (M) — BMOY, provided (M, 7) comes equipped with a
Markov metric Q. In this paragraph, we establish some preliminary algebraic and ana-
lytic conditions on the Markov metric and the CZO. Consider injective x-homomorphisms
71, e : M — N and an operator-valued weight E, : N, — 71 (M) which may or may
not coincide with pi, p2 and E, from (2.1). Assume there exists a map defined on a
weak-+ dense subalgebra Ay, of N

f:ANW CN: =N,

2.3
satisfying T omg =pgyoT on Aun. (2:3)

Algebraic conditions:
i) Q-monotonicity of E,

Ep(Qj,t|§|QQj,t> < Ep(|§|2)

for all £ € N, and every projection ¢;; determined by Q via the identity in (2.1).
Similarly, we assume the same inequality holds when we replace the g;;’s by the ¢;’s
appearing in (2.2).

ii) Right B-modularity of T

T(nmpr' (b)) = T(n)b
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for all n € Apr, and all b lying in some von Neumann subalgebra B of p; (M) which
includes E,(g:), Ey(g;+) and p1(7;+) for every projection ¢; and ¢;, determined by
Q via the identities in (2.1) and (2.2).

As we shall see both conditions trivially hold in the classical theory, where the first
condition essentially says that integrating a positive function over a “Markov metric ball”
is always smaller than integrating it over the whole space, while the second condition
allows to take out z-dependent functions from the y-dependent integral defining T'. Our
conditions remain true in many other situations, which will be explored below in this
paper. Nevertheless, condition i) suggests that certain amount of commutativity might
be necessary to work with Markov metrics.

To state our analytic conditions we introduce an additional von Neumann algebra
N, containing N, as a von Neumann subalgebra. Then, we consider derivations ¢ :
N, — N given by the difference § = 01 — 03 of two *-homomorphisms, so that §(ab) =
o1(a)o1(b)—oa(a)oe(b) = d(a)o1(b)+02(a)d(b) as expected. We also consider the natural
amplification maps which are normal cpu maps defined on N,

Ryt Ny 3 €0 Ep(@j) 2 Ep(54605.0)Ep(@,0) % € p1(M),

M;: N, 3 €= Eplgr) 2Ep(ai60)E, (4:) "% € pr(M).
Analytic conditions:

i) Mean differences conditions
o Ryul€9) ~ Ryul©) Bu(€) < 9,,(5(6)°0(6)),
o [R;1(&) — My(&)] [Ry(&) — Mu(§)] < W (5(6)70(6)),
for some derivation 6 : N, = N, and cpu maps ®,;, Y, : N, — p1(M).
ii) Metric/measure growth conditions
_ _1 « _ _1 _
o 1 < wlpllEp(qt) zEﬂ—(atat)ﬂ'lpl 1Ep(qt> 2 § 771/011(732,15)’
- 1 X _ 1 z
o1 < mp IEP(QJ}t) 2E7r(aj,taj,t)7rlp1 lEp(Qj,t) 2 S mp 1(%2',07
for some family of operators a¢,a;j; € N to be determined later on.

A complete determination of the operators a; and a;; is only possible after imposing
additional size and smoothness conditions in our definition of Calderén-Zygmund oper-
ator below. Nevertheless, we shall see that these operators will play the role of “dilated
Markov balls” as it is the case in classical CZ theory. In fact, in the classical case our last
condition trivially holds for doubling measures, and also for measures of polynomial or
even exponential growth provided we find a Markov metric with large enough +;;’s. Our
assertions will be illustrated below. The first condition takes the form in the classical
case of a couple of easy consequences of Jensen’s inequality, namely



28 M. Junge et al. / Advances in Mathematics 376 (2021) 107443

Fistan=| fraf < f 1) - s autianto)
B

B1 9 B1 xB; (24)
| fian = franl < f 100 - s )
B1 B> B1 xBa

2.8. CZ extrapolation

Now we introduce CZOs in this context. As we already mentioned, we consider a
priori densely defined (unbounded) maps T : Apq — M whose amplified maps are right
B-modules according to our algebraic assumptions above. In addition, we impose three
conditions generalizing Lo boundedness, the size and the smoothness conditions for the
kernel.

Calderon-Zygmund type conditions:

i) Boundedness condition
T : LS (Ny; Ex) = LS (N, E,).
ii) Size “kernel” condition
= (15 2
o M(|T(r2(F)(Asa = a)|”) S A2l f I,

5 (15 2
o B[ T(ma(N (A = a;0)[) < 22l F I
for for any f € Ay and a family of operators A;; € N with A;, > a;,a; to be
determined.

iii) Smoothness “kernel” condition
o 2 (TN = a))*) S A2F I
o« U (|0 - 4,0)[7) S I

Let T : Apy — M be a densely defined map which admits an amplification T satisfy-
ing (2.3). Any such T will be called an algebraic column CZO whenever the amplification
map is right B-modular and satisfies the CZ conditions we have given above. At first
sight, our boundedness assumption might appear to be unrelated to the classical con-
dition. The reader could have expected the L, boundedness of T', but our assumption
is formally equivalent to it in the classical case and gives the right condition for more
general algebras. On the other hand, our size and smoothness conditions are intrinsic
in the sense that the kernel is not specified under this degree of generality. We shall
recover classical kernel type estimates from our conditions in our examples below. As
explained above, the operators a;, a;; and A;,; play the role of dilated Markov balls and
our conditions were somehow modeled by Tolsa’s arguments in [61]. Perhaps a signifi-
cant difference —in contrast to Tolsa’s approach— is that our smoothness condition is
analog to a Hormander type condition, more than the (stronger) Lipschitz regularity
assumption.
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Theorem 2.1. Let (M, 1) be a noncommutative measure space equipped with a Markov
semigroup S = (St)¢>0 with associated Markov metric Q which fulfills our algebraic and
analytic assumptions. Then, any algebraic column CZO T defines a bounded operator

T : Ap — BMOG.
Proof. The first goal is to estimate the norm of
A = o (RialTA = 1Ry T A1) 75

The map IL;; : M®gr, M3 a®b—1® R;;(a)b € 1® M extends to a right (1 ® M)-
module projection, which is well-defined in the sense that (¢, &) g, , = 0 implies I ;(§) =
0. Now, since

A= 7;t1<Tf ®1-1QR;,Tf, Tfel-1® Rj,tTf>R‘ il
we may use 1I;; to deduce the following identity

A = ((id =L (Tf ©77)), (id =) (TF © ;)

Jst

Consider the amplification maps }A%j7t defined on N, and ﬁj’t defined by N, @ M >
n®b—1®R;i(n)bel® M.t is easy to see that

~

Rj: = ﬁj,t opy and Ilj; =1L 0 (p2 ®id).

By (2.3), it turns out that A = <a,a)§j , Where

a = (id —IL;,)(p2Tf © ;)
= (id — T1;,0) Tmaf © 770
= (id — ;) (T(ma(f)ae) ® 750
+ (id — T ) (T(ma())(1 = aj4)) @ 7;0) = a1 +

According to Lemma 1.1 i), we may estimate A as follows
A< <a1,a1>ﬁj7t + <a2,ag>ﬁj)t = A+ As.
Since ﬁjﬁt(n R =11 ﬁj,t(n)b, the Kadison-Schwarz inequality yields

(unev), M ney) S (hebneb), .

Rjﬁt
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In conjunction with Lemma 1.1 i) again, we deduce the following estimate for A,
214 _ 2\ _
A1 5 (Tma(fas) © 75 T (as) ©750) - =7 B (|T e Pagl )

In order to bound the term in the right hand side, we apply (2.1) and the properties
of the operator-valued weight E, together with our algebraic conditions. Indeed, we
first use the Q-monotonicity of E,; then the fact that it commutes with the left/right
multiplication by elements affiliated to M (like -, L or E,(gj+)~Y/?); finally we use the
right B-modularity of the amplification of T"

2 —
’y] 1R]t(|T 71'2 )aj,t)| )’Yj)tl

)t

1

_ 1 2 _1 _
< ’yj,t E (q]t 2k (’T 7T2 )ajft)| )Ep(qj,t) Q’Yj,tl

=E, (Wj_,tl E/)(Qj,t)7% ’f(ﬂz(f)aj,t) ’2EP(Qj,t)7%’Yj_,t1)

~

1 2 ~
=E, ‘T(M(f)agyt Wlpfl(Ep(Qj7t)_§’Yj,tl))‘ = E,[T(&)]*.
&1

Now, our first CZ condition i) gives the boundedness we need since

IAdm < ITED e ey S N6

2
LS, (NniEx)

Ew(‘WQ(f)a'j,t 7T1p1_1 (Ep(%t 'Vgt )H

- — L1y x — —1 _
< |mer! (5 E@i)2) Entafsasmer (Eplas) 507 | 171

The last term on the right is dominated by ||f||% according to our second analytic
condition on metric/measure growth. The estimate for Ay is simpler. Indeed, if we set

& = f(7T2(f)(1 —aj)) then

Ay = <(id — T (& ®95,), (id—T1,) (& ® 7;t1)>§

3,t

-1(pn 2 D 2\, -1 -1 2\ ,.,—1 2
=t (Rj,t ? — |Rj(&2)| )Vj,t < Y@ (16&l®) vy S IIfIIE
where the first inequality holds for some derivation 6 : N, — A, and some normal cpu
map ®,; : N, — p1(M) by our first analytic condition on mean differences. Then our
CZ condition iii) on kernel smoothness justifies our last estimate. Our estimates so far
prove the desired estimate

1
—1 2 2 —1 2
supsupH( LR, |TFI? — |R;TfI?]7; ) <
50 j> ’YJ,t[ Jt| f] | Jit fl ]'Y” M

[1flloo-
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Therefore, it remains to estimate the norm of
B = 70 (1RsTf = MTf") 7
To do so, we decompose the middle term using (2.3) as follows

R; /Tf — M,Tf

Rj4(p2Tf) = My(poTF)

= Bya(T(ra(faye) ) = M (T(malf)ar) )

+ Ry (T(r2(£)(1 = 050)) ) = M (T(m2(£) (1 = a0) )] = b1 —ba+bs,

Letting B; = 7, b, |2% ; we get B < B; + By + Bs. By Kadison-Schwarz we get

B < 55t Ry (IT(ma(Dasn)F) it < 11

where the last inequality was justified in our estimate of A; above. Replacing ¢;; by ¢,
the same argument serves to control the term Bo. To estimate Bs we decompose bg as
follows

~

by = [Ry (T(m2()(1 = 45)) ) = M (T(mal £)1 - 43)) )]
+ Ry, (f(WQ(f)(Aj,t - aj,t))) - ]\/It(f(@(f)(/lj,t - at))) = b31 + b3z — bss.
Taking &3 = f(m( I )(lfAM)) and applying our analytic condition i) on mean differences
together with our CZ condition iii) on kernel smoothness, we obtain that

-1 -1 2\,—1 2
Vi a1y S v (166s1P) ) S I
It remains to estimate the terms B3o and Bss. Applying the Kadison-Schwarz inequality,
it is easily checked that these terms are also dominated by || f||%, by means of our CZ
size kernel condition ii). Altogether, we have justified that

1
. _ _ 2
aup i s (5 [y — Vs i)
t>0 Mcpu j>1

S 1 fllee-

Combining our estimates for A and B, we deduce that T : Ayy — BMOg,. O

The Ay — BMOYg boundedness of the map T is equivalent to the Ay — BMOYg
boundedness of the map TT(f) = T(f*)*. According to this, an algebraic CZO is any
column CZO T for which 7T remains a column CZO. By Theorem 2.1, we know that
any algebraic CZO T associated to (M, 7, Q) as above is automatically Ay — BMOg
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bounded. Assuming L, boundedness and regularity of the Markov semigroup, we may
interpolate via Theorem 1.6. Under the same assumptions for T, we may also dualize
and obtain the following extrapolation result.

Corollary 2.2. Let (M, 1) be a noncommautative measure space equipped with a Markov
regular semigroup S = (S¢)i>0 and a Markov metric Q = (Rj,054,7,+) fulfilling our
algebraic and analytic assumptions. Then, every Lo-bounded algebraic CZO T satisfies
that J,T': Lpy(M) — Ly(M) for p > 2. Applying duality, similar conditions for T* yield
L,-boundedness of T'J,, for every 1 <p < 2.

Remark 2.3. Theorem 2.1 admits a completely bounded version in the category of oper-
ator spaces. Since the operator space structure [19,52] of BMO is determined by

M,,(BMOg(M)) = BMO ¢(M,,(M))

for S = (idp,, ® St)i>0, we just need to replace M by M,, (M) everywhere, amplify all
the involved maps by tensorizing with ¢dys,, and require that the hypotheses hold with
constants independent of m. Then, we obtain the cb-boundedness of T'.

Remark 2.4. As noticed in the Introduction, a common scenario is given by the choice
N, = MM with p1(f) = f®1 and p2(f) = 1 ® f, together with E, = id ® 7 and
m; = pj for j =1,2. In this case, it is clear that the amplification map is given by

T = idp @ T so that fﬂ'g = poT.

In particular, it turns out that the Lo boundedness of T' in Corollary 2.2 follows auto-
matically from our CZ boundedness condition i). This is the case in classical Calderén-
Zygmund theory. It is also true when N, = M®A for an auxiliary algebra A and
p2 = flipoo, where 0 : M — A®M is a *-homomorphism satisfying E,op2(f) = 7(f)1m.
This leads to another significant family of examples. It is however surprising that in gen-
eral, the Lo boundedness and the CZ boundedness assumptions are a priori unrelated.
Thus, CZ extrapolation requires in this context to verify two boundedness conditions.
It would be quite interesting to explore the corresponding “T'(1) problems” that arise
naturally.

2.4. The classical theory revisited

We now illustrate our algebraic approach in the classical context of Euclidean spaces
with the Lebesgue measure. This will help us to understand some of our conditions
and will show how some others are automatic in a commutative framework. Take M =
L (R™) with the Lebesgue measure and S = (Hy);>o the heat semigroup H; = exp(tA).
In Paragraph 1.6 we introduced the Markov metric Q@ given by
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Moreover, as we explained at the beginning of this section

N

Rj+f = Ep(a;1)"%E, (aj,002(f) a5, ) Eplaje)~

satisfies our basic assumption (2.1). Here the amplification von Neumann algebra is NV, =
Lo (R™ x R™), the s-homomorphisms p; f(z1,22) = f(x;), the projections g;+(z,y) =
XB_ 5z (x) (v), and the operator-valued weight E, is the integration map with respect to
the second variable. The cpu map M; which appears in the definition of BMOg is still
taken by M; = R ; as in Paragraph 1.6.

Taking Nx = N,, Ay = La(R™) N Loo(R™) and T a standard CZO in R™, the
algebraic conditions trivially hold in this case. Let EY, , = B g7 (x) x B /g (2). Taking
®;+ and U;; to be the averaging maps over E7; , and E7, , respectively and the family
of dilated balls (4;(z,y), aj.+(%,9)) = (XaB_g:(2) (¥), X5B gz (2) (¥)) With a > 5, we may
recover the conditions as we explained right after stating them. Let us now show how our
algebraic CZ conditions hold from the classical ones. The boundedness condition reduces
to the classical one, see Remark 4.2 A). Our size conditions can be rewritten as follows:

2 n
cesso | [ keafea] s itk
zeR™

2 n
cessp [ hwaredE] itk
zeR™

B@(z) aBm(r)\5Bm(m)

The above conditions follow from the usual size condition

1
k(y,2)| S ——.
)| S =

Next, taking EY, , as above, our smoothness conditions are:

» esssup ][ < / (k(ym)—k(yz,Z))f(Z)dZ)zdmdyz VAL il

Ef 1 (5B ay(x))e

2 n
- esssup ][ ( / (ky1,2) = kly2,2)) [(2)dz) dyrdys S 52 1)1
rEeER™
E7 ;¢ (aBgg(z))°
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The above conditions easily follow from the usual Hérmander condition

ess sup / |k(y1, 2) — k(y2, 2)| dz < 0.
y1,y2€R™
ly1—21>2ly1—y2|
Note that our algebraic CZ conditions are slightly weaker than the classical CZ condi-
tions, but still sufficient for Lo, — BMO and L,-boundedness of the CZ map.

Remark 2.5. Our size condition is only used to estimate B in the proof of Theorem 2.1.
We saw in Paragraph 1.6 that B < A for the Euclidean metric. Thus, our size condition
is not necessary here, as it also happens in the classical formulation.

3. Applications I — Commutative spaces

In this section we give specific constructions of Markov metrics on two basic com-
mutative spaces: Riemannian manifolds with nonnegative Ricci curvature and Gaussian
measure spaces. Beyond the Euclidean-Lebesguean setting considered above, these are
the most relevant settings over which Calderén-Zygmund theory has been studied. As
a good illustration of our algebraic method, we shall recover the extrapolation results.
Noncommutative spaces will be explored later on.

3.1. Riemannian manifolds

Let (2, 1) be a measure space equipped with a Markov semigroup, so that we may
construct the corresponding semigroup type BMO space. In order to study the L., —
BMO boundedness of CZOs in (2, i) it is essential to identify a Markov metric to work
with. Now we provide sufficient conditions for a semigroup on a Riemannian manifold to
yield a Markov metric satisfying our algebraic/analytic conditions, so that Theorem 2.1
is applicable. Let us consider an n-dimensional complete Riemannian manifold (M, g)
equipped with the geodesic distance d determined by the Riemannian metric g. Denote
the volume of a geodesic ball centered at = with radius r by voly(B,(z)). Let Sy be a
Markov semigroup on M given by

Siaf(z) = / se(e9) f () dy.
M

Proposition 3.1. Assume that

i) M has Ricci curvature > 0.

il) The kernel admits an upper bound

¢(t)"*e
volg By (2))(d(z, y) + ¢(£))" <

si(z,y) S
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for some strictly positive function ¢ and some parameter € > 0.

Then Sy admits a Markov metric satisfying the algebraic/analytic conditions.

Proof. If ¥; ;(z) = Bajg) (), by estimating the upper bound on the corona centered at
x with radii 2771¢(t) and 27¢(t), our assumption gives

> 9—j(n+te)

se(z,y) S ;mX&,t(z)@) (3.1)

According to Davies [15, Theorem 5.5.1], non-negative Ricci curvature implies

voly (B, (x)) < ¢,r",

voly (B, (z)) < ~4"voly(B,(z))

for all z € M, r > 0 and v > 1. In particular, voly (3, (x)) < 29"voly (g +()). By (3.1),
this implies that (04,7j+) = (2775/2,1) forms a Markov metric for Sjs in conjunction
with the averaging maps

Riaf@) = f)dy for (i) e 2o xRy
Zj,¢(z)

By assumption ii), ker A, the fixed-point subspace of Sy is the space of constant func-
tions on M, so R;;f = f for any f € kerA.

Our construction for M = Lo (M) and Ay = Loo(M) N La(M) follows the basic
model in the Introduction and the one used above in the Euclidean setting: N, = N =
MEM with p; the canonical inclusion maps and g;¢(z,y) = X5, ,(2)(¥) = X5,y (2)-
Then, the algebraic conditions for the Markov metric are obviously satisfied. Let us now
check the analytic conditions. Taking N, = MRM®M, the derivation ¢ : N, - N,
given by 6(a ®b) =a® (1 ®b—b® 1) and the maps M; = Ry, it turns out that the
mean difference conditions follow from Jensen’s inequality on normalized balls of (M, g)
as it follows from our comments after the definition of the analytic conditions. It remains
to consider the metric/measure growth conditions. By taking a;:(z,y) = x=,., ., (2)(¥)
and (q¢, a) = (q1,4,a1,1), these conditions reduce to show that

VOlg (B2j+1¢(t) (x)) ~ VOlg (ng ¢(t)(l‘)).
This follows in turn from the fact that M has a non-negative Ricci curvature. 0O
Let (M,g) be a complete Riemannian manifold with non-negative Ricci curvature

and let A be the Laplace-Beltrami operator. The heat semigroup Sa generated by A is
regular and admits a kernel on (M, g) satisfying the upper bound estimate mentioned in
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the above proposition. We know from Davies [15, Theorem 5.5.11] that the heat kernel
satisfies

as d(mvy)Q
Ml 9) < LB ) O (- i+ 5)t) (3:2)

for any d > 0 and certain constant ag. This implies that

n+e

as (4(1+8)t)"2
voly (B (%)) (d(z,y)2 + 4(1 + 6)t) "3
_ (VA(1 + o)t)mte
™ voly(B sy (2))(d(, y) + /AL + d)t)te’

hi(z,y) <

which gives the expected upper bound with ¢(t) = \/4(1 4 ).

Remark 3.2. Once we have confirmed that algebraic and analytic conditions hold for the
Markov process generated by the Laplace-Beltrami operator A, it should be noticed that
our CZ conditions are again implied by the classical ones. Arguing as in Remarks 1.8
and 2.5, we see that the Ricci curvature assumption allows us to ignore our size kernel
conditions. Next, it is straightforward to check that the boundedness condition reduces in
this case to standard Ls-boundedness. Finally, our discussion in section 2.4 shows that
our smoothness kernel condition is guaranteed under the classical Hormander kernel
condition. Note in addition that our conditions also hold in the row case. In particular,
classical CZOs in (M, g) become algebraic CZOs. Moreover, the gaussian upper estimate
(3.2) indicates that in (M, g) with the heat semigroup Sa we have Ly (M) = L,(M,g)
for 1 < p < o0.

By the discussion above, we have all the ingredients to apply Theorem 2.1 and Corol-
lary 2.2. Let us illustrate it for the Riesz transforms on (M, g). Consider the Riemannian
gradient V = (01,0s,...,0,) on (M, g). The Riesz transform on (M, g) is formally de-
fined by

[N

R=(R;)=V(-A)"% with R;=0,(—A)%.

Then we may recover Bakry’s theorem [1] using our algebraic approach. Indeed integra-
tion by parts gives |||V f|||2 = || A2 f||2 which implies Ly-boundedness of Riesz transforms.
Moreover, the Hérmander condition follows from [9,41].

Corollary 3.3. Let (M, g) be a complete n-dimensional Riemannian manifold with non-

negative Ricci curvature. Then for all 1 < p < oo, there ewists a constant Cp, > 0 such
that

IR fllz,ang) < Collflln,argy forall 1<j<n.
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3.2. The Gaussian measure

Now we study the Ornstein-Uhlenbeck semigroup on the Euclidean space equipped
with its Gaussian measure, which satisfies as well our regularity assumption. We shall
first construct a Markov metric for it. Then we shall prove that our algebraic/analytic and
Calderén-Zygmund conditions hold for the standard CZOs in this setting. The generator
of the Ornstein-Uhlenbeck semigroup O = (Oy);>¢ is the operator

A

on (R™, u) with du(y) = exp(—|y|?)dy. We have
1 etr —yl?
Ocf(2) = ———~= /exp ( - %)f(y)dy

1 ton _ |2
= m /exp (|9U|2 - %)ﬂy) dp(y)-
R~

First, we establish a useful lemma showing that the local behavior —i.e. for small
values of t— of the semigroup type BMO norm for the Ornstein-Uhlenbeck semigroup
determines it completely.

Lemma 3.4. Given § > 0, there exists C5 > 0 such that
sup || 04| f12 = |04 f 2| . < Csup |0l F2 = 0117 .-
>0 t<s§

Proof. It is easy to check that

Ouf(x) = Hywy f(e "), (3.3)

for v(t) = 1(1 — e7?') and the heat semigroup H; = exp(tA). Given t > 0 and f €
Loo(R™), let F(s) = Hy|H;_of|? for 0 < s < t. According to the definition of H;, we
obtain the following identity

OsF = (0.Ho) | Hy— o f | + Hs[(0s Hy— o f ) (Hy— o f)] + H[(Hi— f)* (05 Hy— f)]
= AH,|Hy o f1* = Hs[(AH, s )" (Hy—s f)] = Hs[(Hi—s /) (AH; )]
= Hy[A[H—o [P = (AH s ) (Hi—s f) = (He—s f)* (AH, s f)]
= 2H,|VH;f|*.

Kadison-Schwarz inequality gives for 0 < u < s
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Hy|VHy_of|? = Hy|Hs— Vo Hy o f|* < Hy| V. Hy s f)?

which implies that 0, F is increasing and F is convex. Rearranging the inequality F(s) <
L(F(0) + F(2s)), we get Hoy|f|? — [Ho f|? < 2Hy(H,|f|* — |H, f|?) for any t > 0. Then,
the L., contractivity of H; gives

([ Howo|f* = [Horo f1?|| o, < 25 HelF 1P = [Hef P .- (3.4)
On the other hand, choosing ks such that 2¥v(§) > % and applying (3.3) and (3.4)
sup [|O¢|f* = [Oef ||, = sup || Hel f* = [Hef1?|
t>0 t<%

< swp [[HIfP - [HSP

t<2ksv(5)

< 2% sup |0, £2 — O] .
t<d

By the lemma above, it suffices to construct a Markov metric for (O;);>o with 0 <
2t < %8. Let v = ve?* — 1 and consider the following family of balls and coronas in the
gaussian space for (j,¢) € Z+ x Ry

Yi(x) = Bletz,\/ju) and Qj4(x) = Xj.(2) \ Xj_1.4(2).
Let jo = jo(z,t) be the smallest possible integer j satisfying that 0 € X, ;(x).
The case n = 1. If 1 < j < jg, let
Dj(2) = {y € Qule) s e'fal = Vv < |yl < e'fo] = Vi — Tv},
Df(2) = {y € Qulw) s e'fal + VG — v < Iyl < e'fal + v}

Then, D, (z) U Djrt(:n) = Q,+(x) and we get

ot Sy ( Y el -0 [ fdut Y ewlaf-i) [ sdn) @)

e==+ j >J
1<5<jo D5 () =70 Sj.e(x)

for any positive f € Lo (R, ). The above estimate indicates the natural candidates for
the cpu maps R;; and 0+ € Loo(R, ). When 1 < j < jo and € = +, we define

1 1
Byaef(0) = popa oy [ fdn and oh @) = L espllaf? — D5 )
' D]E‘,t(x)
Note here we need an extra index for R;;’s when j < jo. This is consistent with the

assumptions (i) and (ii) in our definition of Markov metric, since we only need the index-
set of R;;’s to be countable. On the other hand, if j > jo, we set
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[ rdn and 3@ = exp(lal — (S50(a).

;¢ ()

Rjif(z) =

Since kerA,, the fixed-point subspace of O is the space of constant functions, so R;¢ .
and R; ; fix all the functions in kerAo;. In order to find v; ; . and v, + satisfying the metric
integrability condition, we need to estimate p(D5 ,(x)) and p(¥;(z)) respectively. Since
the density function x is monotone on D5 ,(x) we get

mw(Dj4(x)) = / e V'dy < exp (= |ef]=] — \/Ev|2)%, (3.6)
D;t(l’)

mesz@ﬁm(HMﬂF%m% (3.7)
D;-tt T

When j > jo we use the trivial estimate
e ()

Combining the estimates obtained above, we deduce for 1 < j < jo

05— < 7 exp (- |U|$|—€t\/’ ) and of, . < \/— exp (= [vle] + €'/ ‘ )-

When j > jo, we have ef|z| < \/jv and |z|? < jv?e™2! < j/4. Therefore

3
2, <27 explll? — ) < 2 o - 55).

Now we are ready to choose the optimal +’s for the metric integrability condition in the
definition of Markov metric. We respectively define for 1 < j < jo and j > jp

7]2',t,s(x) = exXp

(|U|£U| +€t2\/jT1|2) and »Yit(x) = %exp (i)

Then it turns out that

v|z| — ety/7)?
sup Z ng,t,—(ﬂf)’yjz,t,—(x) < sup Z \/_ (_W)

R R
0<It€< ks 1s5<do 0<th< L 1<j5<do

6 _ oth,]2
< sup 2/exp(—M)du < 0.

zeR 4
0<t<gz R
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1 v|z| + et /G — 1|2
Sup Z Jg}t,+(x)')’]2,t,+($) < sup —_exp(f| || | )

2
0<ﬂct€<]Rl 1<j<jo 0<xtE<Rl 1<j<jo
t, 12
vix|+eu
<1+ sup 2/exp(—M>du < oo.
zeR 2
0<t<gz R

On the other hand, it is clear that

sup Za ’th ZQexp —=

O<t< L JZjo jzjo

We have constructed a Markov metric for the Ornstein-Uhlenbeck semigroup.

Let us now verify the analytic conditions, since the algebraic conditions are trivial
by commutativity. As we mentioned in Subsection 2.2, the first condition is an easy
consequence of Jensen’s inequality for the Gaussian measure. By the definition of R; ;.
and Rj;, we get qj1.e(2,y) = Xps, (2)(y) and ¢;,¢(x,y) = X5, ,(2)(y). Thus, it remains to
find proper a;; . and a;; to make sure that

p(D5 () < / a3y (2, y) dp(y) S Vs e(@)p(D5,(2))

R

and similarly for the pairs (Ej_,t(a:)),ait(x,y)). When j < jo we consider the functions
ajt,e(2,y) = X2ps , (2)(y), s0 the lower estimates are trivial. Denote by ¢; () the center

of D5, (z). Let 8 =v(v/Jj —+/j —1). Arguing as in (3.6), we get

DE

exp ( - ||Cj,t’€(x)‘ + §|2) < w < exp ( — “Cj,t,e(l'” . §|2>7
2D¢%

exp ( = |lejee()] +5\2> < M(%ﬁt(m)) < exp ( —lejte(@)] — 5]2).

Since ¢; ¢4 () = €'|z| + Jv(y/j + /7 — 1), this implies that

(205 ()

3
W < 2exp (3|Cj,t,s($)‘5 - 152) < 2’7]2',t,g($)~

The estimate for j > jo is easier. Take a;(z,y) = X25, ,(2)(y). Note

2v/jv exp ( — |2\/jv|2)
4/jv exp ( — |3\/3v|2)

< 2v/jv,
1(2Z5¢(x)) < 4v/jv.

INIA

Then, since 0 < 2t < we get

18’
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(255 (2))
p(%.4(x))

Our choice for ¢; and a; correspond to the balls ¥ ;(z) and 2%, ;(z).

. J
< 2 exp(4jv?) < 2€XP(Z) = 27]2,t($)-

The case n > 1. The argument is similar, so we just point out the necessary modifications.
Since v(v/j—+/7 —1) < vj~2, we may pick ¢, balls Dz (z) for 1 <s < cnj™ ! with

radius 2%/5., centered on the sphere

{y: |y—etx| — U(\/j_’_z\/jj)}

such that

Qe(z) € |J Djulx)

s>1
and each D7 (x) overlaps with at most ¢;, other balls D3 ,(z). Then, if f >0

of@ s (X el -0 [ fdut Y eplleP <5) [ fdu).

v
= >

1<sJ<cj[;'"71 Djt(ac) =10 3.t (x)
—=2=tn

Then, we may consider the following Markov metric

(U?,t,s(x), 'Yg2',t,s(x)> Rj,t,sf(x))

(el =)

vlz] + e Vi — 1|2> ][
2 )

D;f(z)

u(D; (). 57 exp ( in

for j < joand 1 < s < ¢,j""'. When j > jg, we set
2 . .
exp(|r|® — 7 _n J
(2e) o) B @) = (s, g2 ey, £ sa).
.t (x)
The analytic conditions hold under the same choices we made for n = 1.

Corollary 3.5. Let O = (Oy)>0 be the Ornstein-Uhlenbeck semigroup and T be a singular
integral operator defined on Lo (R™, dp) with kernel k. More precisely, we have the kernel
representation

Tf(z) = / k(e 9)f(y) duly) for = ¢ suppf.

Rn”

Suppose T is bounded on Lo(R™, 1) and it satisfies
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sup sup / |k(z,y)|du(y) < oo, (3.8)
B ball 2€B
j>1 2i+1B\27B
sup sup [ [Ga1,y) ~ ke )ldty) < o, (39)
B ball z1,22€B (5B)¢

Then T is a bounded map from Loo(R™, u) to the semigroup BMOg space.

Proof. It suffices to prove that our CZ conditions hold. The row and column boundedness
conditions reduce to La-boundedness. Let M; be the averaging map in Lo, (R™, u) over
the ball £; 4(x). Given 1 < j < jo, define A;; s(x,-) as the characteristic function over
the ball ¥;41,¢(x). Then Aj; s < Xorps, (2)nsy,,(x) With 7 = [2logy(j + 1)] + 3, where [ ]
stands for the integer part. Therefore, épplying (3.8), we have

sw [ kGl S S ),
z€X1 ¢ (x)
S, (2)\221 ¢ ()
sup / k(20| du(y) ST S 2e,(@):
z€D3 ()

Ej+1,f,(1’)\2DjS'.t(x)

For j > jo, let Aj(x,") = Xuy,.(0) < Xovs,, () With u = [logy(2V/7)] 4+ 1. Applying
(3.8) as above, we see that T satisfies our size conditions. Moreover, (3.9) implies our
smoothness conditions as in the Euclidean-Lebesguean setting, Section 2.4. O

Remark 3.6. Since the Gaussian measure is non-doubling, the term R;,f — M, f in the
Markov metric BMO space BMOg is essential to characterise the changes of the mean
values of the function f. This explains the relevance of the size kernel condition in the
Calderén-Zygmund theory for the gaussian measure.

4. Applications IT — Noncommutative spaces

In this section we apply our algebraic approach to study Calderén-Zygmund operators
in flag von Neumann algebras which originally motivated us and include matrix algebras,
quantum Euclidean spaces and quantum groups. We start by reconstructing and refining
the semicommutative theory, which deals with tensor and crossed products with metric
measure spaces.

4.1. Operator-valued theory
Let (€2, 1) be a doubling metric space —as in Remark 1.8— and consider a Markov

semigroup St : Loo(2) = Loo(€2). Let M be a semifinite von Neumann algebra with a
n.s.f. trace 7. Then we call the semigroup S = (S, ®ida)i>0 a semicommutative Markov
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semigroup. Consider the algebra of essentially bounded functions f : Q — M equipped
with the trace

ﬂﬁz/FU@»wwy

Q

Its weak- closure R = Lo (2)®M is a von Neumann algebra. Assume that there exists a
Markov metric @ = {(Rj ¢+, 05+, 7;¢) : (J,t) € Z1 xR} associated to the original Markov
semigroup on Lo (). Let ¢ +(x,y) = Xoz, (y) stand for the projections determined by Q
via (2.1). We assume in addition that Q satisfies the metric/measure growth condition

/LL(Z]:I;,t)
S <) (4.1)

by choosing a;+(x,y) = xsz,(y). The remaining algebraic and analytic conditions triv-
ially hold in this case. Indeed, the algebraic conditions follow by commutativity and
analytic conditions just require to pick the right averaging maps according to Jensen’s
inequality, as explained in (2.4). Note that Q satisfies an operator-valued generalization
of the Hilbert module majorization in the line of Remark 1.7. Thus Q extends to a
Markov metric in R by tensorizing with idxq and 1,4 respectively.

Our goal is to study CZO’s formally given by

Tﬂm:/%mwwﬂmmmw with

{f:Q—>M1 and z ¢ suppgq f,
Q

k(z,y) € L(Lo(M1), Lo(Ma2)).

That is, k(x,y) is linear from 7i-measurable to m-measurable operators. If we set R; =
Lo (2)®M;, we should emphasize that L,(R;) = L,(; L,(M;)). In particular, this
framework does not fall in the vector-valued theory because we take values in different
Banach spaces for different values of p, see [49] for further explanations. This class of
operators is inspired by two distinguished examples with M; = M = Maj:

e Operator-valued case

7f(a) = [ konli.9) - £(0) duy).
Q
¢ Noncommutative model

/Z¢M® ene(2,9) - (L ® ()] du(y).

Q

In the first case, the kernel takes values in M or even in the complex field and acts
on f(y) by left multiplication k(z,y)(f(y)) = kow(x,y) - f(y). It is the canonical map
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when L,(R) is regarded as the Bochner space L,(€; L,(M)). On the contrary if we
simply think of L,(R) as a noncommutative L, space, a natural CZO should be an
integral map with respect to the full trace ¢ = fQ ®7 and the kernel should be a ¢ ® -
measurable operator k : 2 x Q@ - M®&M. The noncommutative model provides the
resulting integral formula. Note that this model also falls in our general framework by

taking k(z,y)(f () = (idp @ 7)[kne(2,y) - (A © f(y))]-

Theorem 4.1. Let S = (S;)i>0 be a Markov semigroup on (Q, i) which admits o Markov
metric @ = {(Rj+,0j.4,7,¢t) : (4,t) € Z4 x Ry} satisfying the above assumptions. Let
aj+(x,y) = Xsz,(y) be the projections determined by Q via (4.1). Consider the CZO
formally given by

Tf(z) = / ke 0)(F ) du(y).

Q

Then, T maps Loo(R1) to BMOS(Rs2) provided the conditions below hold

i) L§-boundedness condition,

(i)

ii) Smoothness condition for the kernel,

1

w21,
Q

[ 1061, K2 2) (1)) |, 062) & 51,

oSz,

uniformly inj > 1,1 >0, x € Q and y1,y2 € Q7 ;.

Proof. The proof follows from Theorem 2.1. Since the underlying space (2, p) is a
doubling metric space, the size kernel condition is unnecessary. Thus, it remains to
check the L§-boundedness condition and the kernel smoothness condition. Consider
Apm = Loo(R1) N (L5(2)®Loc(M)) (see [28] for the definition of Hilbert space val-
ued Lo spaces), Nx = Lo (2 x Q)QM1, N, = Lo (2 X Q)@Ma2, w(p)(z,y) = ¢(y) for
¢ € Loo() and (w2, p2) = (w @ idpg,,w @idpg, ). Let T = idq @ T, ®; ; be the averaging
map over 7, x QF, and A =0 ® idnm, with dp(z,y) = p(z) — ¢(y). Then condition i)
yields the L§-boundedness condition. It is also easy to see that condition ii) implies our
kernel smoothness condition. Thus, the result follows from Theorem 2.1. 0O

Remark 4.2. We continue with a few comments:

A) When M; = My = M and the kernel k(z,y)(f(y)) = k(x,y) - f(y) acts by
left multiplication, the boundedness condition i) becomes equivalent to the usual Lo
boundedness. Indeed, using that M C B(L2(M)) we obtain
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[([rswea)],

R»
_ 2 P

= (R/ (h,|Tf(y)] h>dy) = ”21H121||(Tf) (Ar+ @ h)[|,, )
= s [7(f (e @ W)y < I7lscacr | [1rwra)’],,

R~

B) We have used so far semigroup type BMO’s. When (Q, 1) comes equipped with
a doubling metric, we may replace it by other standard (equivalent) forms of BMO, as
pointed in Remark 1.9. By well-known arguments [49], our kernel smoothness condition
reduces to

sSup esssup
R>0y1,y2€BRr

[ ko) = k)N, S e, (S

(Bar)©

for A > 1. The classical Hormander condition

ess sup / ||k(y1,z) - k(yg,z)HM dz < 00, (Hry)

y1,y2€ER™
d(yl ,z)>)\d(y1 )y2)

satisfies (Hry) = (Smay11). In fact, an even weaker condition suffices

s | f | [ (k2 k) £ | S 11
fiz0 BrxBr (Bar)©

C) We recall that L., (R) — BMOgs boundedness requires that 71 f = T(f*)* satisfies
the same assumptions as T'. If k(z,y) € M is given by left multiplication the only effect
in T is that k(z,y) is replaced by k(z, y)* and now operates by right multiplication. This
left /right condition was formulated in [49] in terms of M-bimodular maps. Moreover, a
counterexample was constructed to show that the bimodularity is indeed essential. It is
also quite interesting to note that in the ‘noncommutative model’ we have

/(idM ®7) [k(@,y) - (I @ f(y))] dy = /(idM ®7) [(Lm @ f(y)) - k(w,y)] dy

Rn Rn

by traciality and this pathology does not occur. Finally, the L,, boundedness is guaranteed
for 2 < p < oo since the classical heat semigroup has a regular Markov metric and
Jp =idp (rny in this case. As for 1 < p < 2, it suffices to take adjoints which leads to
Hormander smoothness in the second variable

ess sup / Hk(y, z1) — k(y, ZQ)HM dy < 0.
z1,22€R"™
ly—z1|>A|z1— 22|
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Of course, this is still consistent with the classical CZ theory M = C.

We now study the Lo, — BMO boundedness of twisted CZO’s on homogeneous
spaces. Given a discrete group G with left regular representation A : G — B({2(QG))
let £(G) denote its group von Neumann algebra. Let (M,7) with M C B(H) be a
noncommutative probability space and a : G — Aut(M) be a trace preserving action.
Consider two *-representations

prMSf > apa(f) @enn € MBB(L2(G)),

heG

A:Gogm Y 1y ®@egnn € MBB(L(G)),
heG

where e, is the matrix unit for B(¢2(G)). Now we define the crossed product algebra
MG as the weak operator closure in M®B(¢3(G)) of the x-algebra generated by p(M)
and A(G). A generic element of M x4 G can be formally written as }° . fg Xa A(9)
with f, € M. With this convention, we may embed the crossed product algebra M x, G
into M®B(¢2(G)) via the map j = p x A. Indeed, we have

(D2 1o 2 M9) = 3 plf)A ()

geG geG
=3 (X () @ enn) Laa @ equrnr))
geG h,h'eCG
= Z ( Z ah—l(fg) X ehﬁg—lh)
geG  heG
Z (Z Q(gh)—t f9)®eghh)
geG heG

Since the action o will be fixed, we relax the terminology and write > o fgA(g)
instead of 37 . fg Xa A(g). We say that a Markov semigroup & = (St)¢>0 in M is
G-equivariant if

agS; = Siay for (t,g9) € Ry x G.

If S is a G-equivariant Markov semigroup on M, let Sy = (S; X idg)i>0 and Sg =
(St ® idp(e,(a)))t=0 denote the crossed/tensor product amplification of our semigroup
on M x G and M®B({2(G)) respectively. Note that Sy is Markovian due to the G-
equivariance of S. In the following result, our CZQO’s are of the form

Tf(z) = / k(. 0)(f(4)) dy(y)

Q
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for all f € (R1,¢1), where (Rj,¢;) = Loo(Q, p)@(M;, ;) and k(z,y) : M; — My. In
other words, we keep the same terminology as for Theorem 4.1. We shall also use the
notation

M; = M;®B(6:(G)) and R; = R;@B(£:(G)).

Corollary 4.3. Let G ™~ Loo (2, 1) be an action o which is implemented by a measure pre-
serving transformation 3, so that ag f(x) = f(By-1x). Let S = (S¢)i>0 be a G-equivariant
Markov semigroup on (2, ) which admits a Markov metric Q = {(Rj+,0j+,7;.¢) : (4,1) €
Z xR} satisfying the assumptions above. Let us consider a family of CZO’s formally
given by

1,0(0) = [ kywn)(f0) duly) Sor g€G.

Q

Then, 3, foA(g) = 22, To(fg)A\(g) is bounded R1 x G — BMOg (R2 x G) if

i) L§-boundedness condition,

[ [ 1 oea) | /I&\Qdu )
Q

where o stands for the generalized Schur product of matrices. In other words, the
CZO Typ,-1 only acts on the (g, h)-th entry of & for each g,h € G.
ii) Smoothness condition for the kernel,

/ (K (g1, 2) — K(y2.2)) » (€()(1 = a0, 2)) | g, (=) S Nl -

uniformly on j > 1,t >0, z € Q and y1,y2 € QF,. Here, the CZ kernel K(y,z) =
Zg}h kgn-1(Bgy, Bgz) ® egn acts once more as a Schur multiplier.

Proof. Letting { =3} agn ®@egpn € R1, we define the map
®: Ry — BMOS, (R2),

2= ay / g1 (2,9) (ag. (By—1 (1)) dja(y)  eq.n.
h

Q

By the definition of j, it is easy to check that

I TUING) = o(i(X faM9)-
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Since § is G-equivariant, according to [31, Lemma 2.1], we have

1
2

2

loleaos,, (axc = sup | (S (@) = 195.43(0)1?)

Therefore, it suffices to show that ® is Ry — BMOg, (R2) bounded. We find
B(O)) = [ K(w.0)(€w) dulw).
Q

Thus, we may regard ® as a semicommutative CZO and apply Theorem 4.1 where M; is
replaced by M;. Since ®(§) = >, (ag-1) @ (Ty,-1) e () @€ and 3 is measure preserving,
we immediately find that the L§-boundedness assumption implies that the map

O LS(N) @M, — LE(Q)E@Ma
is bounded. Moreover, the smoothness condition matches that of Theorem 4.1. O

Remark 4.4. Our work so far yields sufficient conditions for the Lo, — BMO boundedness
of T'xidg in more general settings. In particular, if T, = T and a1 = T'a for all g € G,
then we find for any T fulfilling the assumption of Theorem 4.1, T' X idg : R1 ¥ G —
BMOg (R2 x G) is bounded. This gives an example where the hypothesis of Lemma 2.2
in [31] is satisfied.

4.2. Matriz algebras

In this paragraph, we introduce a Markov metric for the matrix algebra B(¢s). The
triangular truncation plays the noncommutative form of the Hilbert transform on B(¢z).
We shall reprove the L,-boundedness of the triangular truncation for 1 < p < co and a
new BMO — BMO estimate by means of this Markov metric and our algebraic approach.
Consider the *-homomorphism u : B(f3) = Lo (R)®B(¢2) determined by

eQﬂ'i(mfkr) .

u(emr) = Cmk-

Given A=Y | Gmkemk, define the semigroup

—tlm—Fk|?
St(A) = Zm k e m—k| AmEkCmk -

It is not difficult to see that it defines a Markov semigroup of convolution type. In
fact, u is a corepresentation of L., (R) (equipped with its natural comultiplication map
Af(z,y) = f(r+y)) in B(¢2) and it turns out that S = (S¢)¢>0 is the regular semigroup
associated to the heat semigroup on R by transference
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uwo Sy = (H; ®idp,)) ou

Define the cpu map R;; on B({2) by uo R;; = (Ej,t ® idp(s,)) © u, where Ej,tf(x)
denotes the average of f € Loo(R) over the interval B gz (z). Now, given a matrix
A= Zm’k Amiemi We find

uwo R (A)(x) = ][ u(A)(y)dy
B a7 ()

= > PTG, emidy

k
B aye(x) ™

B Z Sin(4\/jt7T(m - k)) 2mi(m—k)z
= - e Amkemk-
4y/Gtm(m — k)

m,k

Thus, we find the following identity

Ry (4) = Z sin(4+/jtm(m — k))

Ak Cmk -
4 Jjtm(m — k) Fomk

Taking o7, = 2e+/j/me I 1p(s,) and 75, = /jlp(,), we obtain a Markov metric in
B(¢3). Indeed, the metric integrability condition holds trivially, as for the Hilbert module
majorization it reduces to prove that B; < By with

Bi =u((&€)s,) = (u@u(€),u®u(€)) y giag,,

ZUJ tu 5 f Jt Zajt 'U,®'U, u®u(£)>ﬁj,t®id5(22)'

In other words, it suffices to note that the canonical Markov metric in R —which recovers
the Euclidean metric, as proved in Paragraph 1.6— admits a matrix-valued extension,
as it was justified in Remark 1.7. Let us now consider the triangular truncation

= E AmkCmk-

m>k

Corollary 4.5. We have

[A(A)[BMos S lAllBMOS -

2
In particular, given 1 < p < oo we obtain ||A(A)||s, S %HAHSP.

~
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Proof. Recall that
uo A = (L®idp,))ou,

for L = $(id 4+ iH) and ﬁ?(é“) = —isgn(¢) f(€), the Hilbert transform in the real line.
We may also regard u : B(¢3) — Loo(T)RB({3) as a corepresentation of T instead of R
and the above identity holds replacing H by the Hilbert transform in the torus. In this
case, u becomes a trace preserving *-homomorphism and the well-known S}, inequalities
for A reduce to the boundedness of the Hilbert transform in L,(T;S,(¢2)), which is
also well-known and follows in passing from the semicommutative theory in the previous
paragraph. Alternatively, the second assertion follows from the first one by interpolation
and duality. According to Remark 1.9, to prove the first assertion it suffices to show that
the map

T = i(idpe,) — 20)

is BMO — BMO bounded for the semigroup BMO space which is associated to the
transferred Poisson semigroup P; on B({3) given by

Pt : (aij) — (eft“*j‘aij).

Given A = (ajk);,x in B(l2) then

AR = a4 = (Y )
g ,

J

T(4) = i(senlk —ap) (T4 =i(seulk - i)aw)

gk

Then (Pt|A|2 — |PtA|2) Zk(@ft‘if.j‘ — e*t‘k*ﬂe*t‘ifk:\)a—kiakj and

ij
= Z(e‘t‘i_j‘ — ekl =ikl son(k — i) sgn(k — j) Grian;.
&
Since sgn(k — i)sgn(k — j) # 1 iff e Hi=Fle=th=il = =ti=il we get

PJAP — |RA]? = B|T(A)P — |RT(A)*.

The last identity implies that T is an isometry on the Poisson BMO space. O
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4.3. Quantum Euclidean spaces

Given an integer n > 1, fix an anti-symmetric R-valued n x n matrix ©. We define
Ao as the universal C*-algebra generated by a family wq(s),ua(s), - ,un(s) of one-
parameter unitary groups in s € R™ which are strongly continuous and satisfy the
following ©-commutation relations

wj(s)ur(t) = €2y (tu; (s).

If © = 0, by Stone’s theorem we can take u;(s) = exp(2mis(ej,-)) and Ag is the space
of bounded continuous functions on R™. In general, given £ € R", define the unitaries
Ao (&) = ur(&)ua(€2) -+ - un(&n)- Let Eg be the closure in Ag of Ao (L1 (R™)) with

;= / Fo©)Na (€) de.
Rn

If © =0, Eg = Cop(R"). Define
ro(f) = 7o / Jo(© o) de | = fol0)

for f@ : R™ — C integrable and smooth. 7¢ extends to a n.s.f. trace on Eg. Let Rg =
AY =E{ be the von Neumann algebra generated by Eg in the GNS representation of
To. Note that if © = 0, Re = Loo(R™). In general we call Rg a quantum Euclidean
space. There are two maps which play important roles while doing analysis over quantum
Euclidean spaces. The first one is the corepresentation map cg : Re — Loo(R")®Re,
given by g () — exp, ®Ae(§) where exp, stands for the Fourier character exp(2mi(¢, -)).
Note that og is a normal injective *-homomorphism. The second map is 7g : exp; —
Ao (§) @ Ao (§)*, which extends to a normal *-homomorphism from L (R™) to Re®@Rg,
where R%p is the apposite algebra of Rg, which is obtained by preserving the linear
and adjoint structures but reversing the product. We refer the readers to [21] for more
detailed information of quantum Euclidean spaces and these two maps.

BMO and Markov metric. Our first goal is to construct a natural Markov metric for
quantum Euclidean spaces. Let us recall the heat semigroup on R™ acting on ¢ : R — C
admits the following form

Hyp(r) = / B(€)e 1 expe () de.

Rn

This induces a regular semigroup on Reg determined by

o@ © S@,t = (Ht (9 idRe) 00@.
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Se .+ gives a Markov semigroup on Re which formally acts as
Se($) = [ J(@e " rale) de (42)
Rn
The corresponding semigroup column BMO norm is given by

£ lsnio. ey = sup || (S (171%) = 1Se.(1)2)
t>0

Re

A~  sup
BballinR”

(f1o0r) - co(nsPdn) || =lloe(lssio,erimar
B

The null space of the above seminorm is the preimage of the space of constant operator-
valued functions under og. According to Remark 1.7, the semicommutative extension
H; ® idry of the heat semigroup, together with the extension of the corresponding
Markov metric from Paragraph 2.4 still satisfies the Hilbert module majorization

(& meideg <Y 031(&E) Ry @idry Tit (4.3)

j>1

as well as the integrability condition, where crjz’t = 2e\/j"/me ™, ’Y?;t =j% and R f(z)
is the average of f over B /g77(7). Then we can easily produce a Markov metric on Re.
Let B, + be the Euclidean ball in R™ centered at the origin with radius \/4j¢ and consider

the projections ¢;; = xB,;, ® 1r. Define the cpu maps

Rosul$) =5 [ oolN@ir =5 [ o, (oMol d
, d)

Jst

It is easy to check that
0@ © R@,j7t = (Rj,t & idR(_)> cog, (4.4)

and Re ;+f = f for any f in the null space of BMO.(Reg)-seminorm. The Hilbert module
majorization

<§7 £>S€—),t < Z U;,t <€’ §>R(—),j,t0-j»t

Jj=1

for £ € Re®s, ,Re is equivalent to the same inequality after composing with the *-
homomorphism og, which follows in turn by the intertwining identities (4.2) and (4.4),
together with the majorization (4.3). Therefore, we obtain a Markov metric on Rg
associated to Sg
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Table 1
Algebraic skeleton for Re.
Generic algebraic objects Quantum Euclidean spaces
M Re
Loo(R™M)®Re
N, p1=1Q®:,p2 =00
E, = Lebesgue integral
Ro@RP
Nx m =18 m=-Q®1

Er =m0 ® ’LdRZ)P

LoR™)®Lo(R™")@Re
Na Na:(‘S@idRe)(Np)

do(z,y) = ¢(=) — ¢(y)

Qo = {(Rej.t:05.t,7i1) | (4;1) € Zy x Ry }.

The algebraic structure. We start with the kernel representation of our CZOs over
the (fully noncommutative) von Neumann algebra Reg. Given a kernel k affiliated to
Re®R{ , the linear map associated to it is formally given by

Tif = (idre ®@70) (k(1re ® f)) = (idre ® 7o) ((1re © f)k).

The reader is referred to [21] for more details. Our goal is to provide sufficient con-
ditions for the L., — BMO boundedness of Tj. Consider the x-homomorphism ocg:
Ro — Loo(R™)@Re. In the case of quantum Euclidean spaces, we need the full alge-
braic skeleton introduced in Section 2. In Table 1 there is a little dictionary to identify
the main objects. Next, note that

oo o Ti(f) = (idg» @ idry @ 7o) (ke(lrn ® 1z ® f)),
where ky = (0o ® idrep)(k). Denote o o Ty, by T}, . Define
Ty : Re®@Re 3 f®@a s Ty, (f)(1rs ® a) € Loo(R")@Re.
Then it is clear that the compatibility condition (2.3) holds since fk omy =0 0 Tk.
Lemma 4.6. If Ty, is bounded on L2(Rg), then
Tk : LS(Re)®@Re — LS(R™)@Re || < ||Tk : L2(Re) — La(Ro)|,
the rigorous definition of L5(Re)®@Re can be found in [28].

Proof. We need to introduce two maps:

jo: Ly(R™) / () expe dE v / P(ONo(€) de € Lo(Ro),

Rn R~
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W L5(R")®@Re > /expg ®a(§) d§ — /expf RNe(§)a(€) d¢ € L(R™)Q@Re.
Rn R‘n,

It is straightforward to show that W extends to an isometry. Moreover, jg is also an
Lo-isometry, we refer the reader to [21, Section 1.3.2] for the proof. Observe that

co(f)(1rn ® a) = / foo(€) expe @ho (€)a dé
R»

- W(/fe@) expe®adt) = Wo(js ®idry)(f ®a).
Rn

Letting f = Tyg, we get

~

Ti(g @ a) = W(joTk ®idre)(g ® a).
The properties of the maps jo and W readily imply the assertion. O

Now let us introduce a weak-* dense subalgebra of Rg, which is the analogue of the
classical Schwartz class. Let S(R™) denote the classical Schwartz class in the Euclidean
space R™ and define

Se = {f cReo: f@ c S(Rn)}.
Using the unitary map
jo : S(R™) = Se

as defined in the proof of Lemma 4.6, Sg carries a natural locally convex topology. Its
topological dual Sg is the quantum space of tempered distributions on Rg. Consider a
continuous linear operator T' € L(Se,Sg), we have j§Tje € L(S(R™),S(R™)"). By a
result of Schwartz, there exists a unique kernel K € §'(R?*") = (S(R") ®, S(R™))’ such
that T admits the kernel k& = (jo ® jo)(K) € (So ®x So)’. Actually, the kernel repre-
sentations T} satisfying the Calderén-Zygmund type conditions in the following theorem
belong to £(Se,Sg). It provides sufficient conditions for the Lo(Re) — BMO.(Reo)
boundedness of CZO operators associated to kernels in (So ®- Sg)’. We shall use the
quantum analogue of the bands around the diagonal

a5 = mo(xsn) = / o566 (€) ® Ao (€)" de.

R

Theorem 4.7. Let T}, € L(Se,Sg) and assume
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i) Cancellation
HTk : Ly(Re) — Lz(R@)H < 00.

i) For any f € Re and any Euclidean ball B centered at the origin

2
][ |S0.k,r.8W1) — Lok W) dyrdys S || fll%e
BxB

where Xg 5B = (1drn @ idry ® TE) [ka(an ®1re ® f)(1re ® aJB-)].
Then, the Calderén-Zygmund operator Ty, is bounded from Lo(Re) to BMO.(Re).
Proof. By Theorem 1.6, it suffices to prove
Ty : Loo(Re) — BMOG,.

Arguing as in Paragraph 1.6, the Markov metric BMO norm takes the simpler form

1
— a 3 -1 . 2 — . 2 -1 ?
Ilwog, = supsup | (372 [Re.sa(11F) = Resu (DRI )

In other words, the extra term in the definition of BMO is dominated by the above
expression as in (1.5). As noticed in Remark 2.5, the size kernel condition is then super-
fluous. This also reduces the analytic conditions and the smooth kernel conditions to be
checked. In summary, according to the proof of Theorem 2.1, the assertion will follow if
we can justify:

CO0) Initial condition
T, : Ao - Re for Ao C Re weak-* dense.
All) Qe-monotonicity of E,

Ep(qjt1€%a5,) < E,(1€]%).

Al2) Right modularity of Ty

~ ~

Ty (nm1 (b)) = Tk (1) p1(b).

Anl) Mean differences

Re j1(6°€) — Ro j1(€)" Re j.1(§) < ®;4(6(£)"3(€))) for some cpu .
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An2) Metric/measure growth

=

_ _1 N _ _ _
1 < mpy 'Ep(gie) 2Ex(a} a50)mipy 'Ep(gi) ™2 S mipy ' (70)-

CZ1) L§-boundedness condition
Tp : LS (N Ex) = LS (N Ep).

CZ2) Kernel smoothness condition

@5 ([0(Tulma(N = a))|*) S A2l FIE:

The initial conditions trivially hold for good kernels k € Sg ®aig So for Ag = Se.
In [21] it was required to extend the main result from this class of kernels to general
ones in 8’9@@, by reproving certain auxiliary results in the context of distributions.
In our case, this is much simpler. Indeed, when dealing with general kernels, we just
note that T;(f) € L2(Re) for all f € Se by assumption. Given the form of Re ¢, it
trivially follows that Re j+(|T)f|?) and Re ; T} f are well-defined operators in L;(Re)
and Ly(Re) respectively. In particular, the proof of Theorem 2.1 follows exactly as it
was written there under this more flexible assumption. Therefore, the initial condition
can be relaxed to the condition

Tk : S@ — LQ(R@).

In fact, according to [21, Proposition 2.17], every algebraic column CZO is normal. Thus,
it suffices —as we did in Theorem 2.1— to justify that T} : So — BMOg_ is bounded,
as we shall do by justifying the remaining conditions.

All holds trivially since ¢;; = xB,, ® 1re lives in the center of NV,. On the other
hand, according to the definition of p;,m; from Table 1, the algebraic condition Al2 can
be rewritten as follows

T (n(1re ®b)) = Ti(n)(1r» @ b).
This is clear from the definition of fk. Next, condition Anl reads as
2 2
frepan=| feaf < lew -l dnin
Bj,t Bj,t B]'_’t XBjyt

for Re-valued functions, when @;; is chosen to be the average over B;; x B;;. As in
(2.4), this is a consequence of the operator-valued Jensen’s inequality. Next recalling that
aj+ = Te(XxsB,,), condition An2 takes the form

Bjillre < (o ®idgor)(To(XsB,,)) S J2 Bjtllre.
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To verify it we note that
(70 ® idrg)(ro(e) = (ro © idngy) ([ PEA(O) ® No(6)"dE) = FO)1R.
R’n

Then we get (7o ® idger)(To(XsB,,)) = 5|Bjt/1re. Condition CZ1 reduces to our Lo-
boundedness assumption by Lemma 4.6. Finally, the smoothness condition ii) in the
statement readily implies condition CZ2 for all values of j,t. O

The smoothness condition in Theorem 4.7 is of Hérmander type, while the one in the
main result of [21] is a gradient condition. As expected, we shall show that our condition
in this paper is more flexible than that of [21, Theorem 2.6]. We use e for the product
in M@MP°P, so that

(a®b)e(a @b) = (ad') @ (b'b).
The quantum analogue of the metric is defined by

de =me(| - [)

for the Euclidean norm | - |. Moreover, we also introduce the ©-deformation of the free
gradient. Let £(F,) denote the group von Neumann algebra associated to the free group
with n generators F,,. It is well-known from (say) [63] that L(IF,) is generated by n
semicircular random variables sq, ss, ..., s,. Note that there exist derivations ag;) in Sg
which are determined by

95 (Ne(€)) = 2mig e (€)

for 1 < j < n. Define the ©-deformed free gradient as

Ve = ZSj ® 8% : S — E(Fn)®R@

j=1

If V denotes the free gradient for © = 0, it is easy to check that

(ideqr,) @ 00) 0 Vo = Y s;® (00 0 0h) (4.5)

j=1

= ZSj & (8] OO'(—)) = (V®Zd73@) C0p.
j=1

For the convenience of the reader, we cite Theorem 2.6 from [21] below.
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Theorem 4.8. Let Tj, € L(Se,Sg) and assume:
i) Cancellation
Ik : La(Re) = La(Ro)| < Ar.
ii) Gradient condition. There exists
a<g<ﬁ<g+1
satisfying the gradient conditions below for p = a, 8
‘dg o (Vo @ idger)(k) » d%“‘”‘ < A,
Then, we find the following Lo, — BMO, estimate
|7k : Loo(Re) — BMO.(Re)|| < Crn(a, B)(Ar + A2).

To simplify notation, we shall write in what follows ¥ for ¥g i 5. According to the
semicommutative Poincaré type inequality introduced in [21, Proposition 1.6] we obtain

H ][ 6(2) *dp x S16R2H(1®XB®1)(V®idne)(E)H2
BxB e

L(Fn)®Loo(R™)@Re

for R = radius of B. By (4.5), we may rewrite

(1@ x @ 1)(V®idry)(X)
= (id%* @ 70) (1 x5 © 19%)(V @ id®?) (k,) 1% @ /)17 @ o))

= (id™* @ 70) (18 x5 © 19%)(id © 06 ® id)(Vo @ id)(K)(1%* & f)(1°2 @ afy) )
= (id®* @ 76) (K o (1% ® f))
with
K = (18 x5 ©1%2)(id ® 06 ® id)(Ve @ id)(k) » (19% @ at,)
in L(F,)@(S(R") @x S @x So)’. Thus, (1® xp ® 1)(V @ idr,)(E) = Tk (f). We turn

to the proofs of Theorem 2.6, Proposition 2.15 and Remark 2.16 (as the generalizations
of Theorem 2.6) in [21], they show that the condition ii) in Theorem 4.8 implies

A
1Tl gy mmrome < Ol AT NfIRo,
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which is inequality (2.2) in [21]. Combining the calculations above, we deduce that con-
dition ii) in Theorem 4.8 is stronger than condition ii) in Theorem 4.7. In conclusion,
the Calderén-Zygmund extrapolation on Rg that we obtain by applying Theorem 2.1
improves the corresponding result in [21].

Remark 4.9. By regularity of Sg, L,-estimates follows as in Corollary 2.2.
4.4. Quantum Fourier multipliers

We now refine our abstract result for locally compact quantum groups. We shall
need some basic notions from the theory of quantum groups, details can be found in
Kustermans/Vaes’ papers [38,39]. Let us consider a von Neumann algebra A equipped
with a comultiplication map, a normal injective unital *-morphism A : N' = NN
satisfying the coassociativity law

(idy @ A)A = (A @ idy)A.
Assume also the existence of two n.s.f weights 1 and ¢ on N such that
(idy @ ¥)Aa) = Y(a)ly and (p @ idy)Aa) = p(a)ly for a € N

We call ¢ and ¢ the left-invariant Haar weight and the right-invariant Haar weight
on N respectively. Then the quadruple G = (N, A1), ¢) is called a (von Neumann
algebraic) locally compact quantum group and we write Lo (G) for the quantum group
von Neumann algebra A. Using the Haar weights, one can construct an antipode S on
N which is a densely defined anti-automorphism on N satisfying the identity

(idy @ ¥)((Ly @ a*)A(b)) = S((idy @) (A(a™)(1n ®D))).

The comultiplication map A determines a multiplication on the predual L;(G) given
by convolution @1 x @2(a) = (p1 ® w2)A(a). The pair (L1(G),*) forms a Banach alge-
bra. In what follows, if not specified otherwise, the quantum groups G we shall work
with admit a tracial left-invariant Haar weight ¢. The simplest model of noncommu-
tative quantum groups are group von Neumann algebras £(G) associated to discrete
groups. If X is the left regular representation of G, the comultiplication is determined by
A(M(g)) = Mg) ® A(g). Its isometric nature follows from Fell’s absorption principle and
the convolution is abelian. The standard trace on £(G) is a left and right-invariant Haar
weight. Moreover, in this case, the antipode is bounded and S(A(g)) = A(g™1).

A convolution semigroup of states is a family (¢:):>¢ of normal states on L (G) such
that ¢y, * ¢r, = ¢4, 4+1,. The corresponding semigroup of completely positive maps is
given by

Sa(a) = (¢ @ idg) o A(a).
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When Sa = (Sa,+)i>0 is a Markov semigroup such that 1) o Say = ¢ for all t > 0, we
call it a convolution semigroup.

Lemma 4.10. Let G be a locally compact quantum group equipped with a convolution
semigroup of states (¢¢)i>0. Then, Sa = ((¢r ® idg) 0 A)i>o is a Markov semigroup on
Lo (G) whenever

i) ¢roS=¢¢ forallt >0,
ii) Sat(a) = a ast — 0T in the weak-+ topology of L (G).

Proof. Let us begin with the self-adjointness
¢<G*SA,t(b)) = ¢(a*(¢t ® idG)A(b))
= ¢ @Y ((1g ® a*)A(D))
= &1 (ide © ) (16 ® a")A®))
= 61(8 (idg © ¥) (Aa") (16 @ 1)) ).

p

This means that 1/(a*Sa,.(b)) = ¢:(S(p)) = ¢:(p) and we get

Y(a*Sa,u (b)) = ¢ @ Y(A(a*)(1g ® b))
= 1/)(((1),5 ®idg) o A(a*)b) = w(SA,t(a)*b)-

The remainder properties are straightforward. Indeed, identity Sa ¢(1g) = 1g is obvious.
The weak- convergence of the Sa ;(a)’s ast — 07 is assumed and the complete positivity
is clear. The normality follows from the weak-* continuity of ¢; and A. Finally, the
semigroup law easily follows from coassociativity. O

In what follows, we shall assume that the hypotheses of Lemma 4.10 hold. Let us fix
a quantum group G = (N, A1), p) and consider a convolution semigroup Sa associated
to it. A Markov metric

Q={(Rj4,050,7t): Jrt€Zi xR}

in Loo(G) = N associated to Sa will be called an intrinsic Markov metric when there
exists an increasing family of projections p; ¢+ in Lo (G) such that the cpu maps take the
form

Rjif = (v ®idg)((pje ® 1g)A(S)). (4.6)

1
V(pje)
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In other words, we use the algebraic skeleton

(Np = Nﬂ'vplapZa Epv qj.,t) = (Lm(G)®Lm(G)7 1®-, Avfl/} ® idG,pj,t & 1G)
Remark 4.11. Assume that

Y(pjt)
Y(p1,e)

Vit €Ry and A7, >

Then, the term |R;;f — M f| in the metric BMO norm satisfies for M; = Ry, that

[Ref = Mf = | s 9de) (A = 18 Rye )i 0 1)
1 ) 2
< Sog @ @ ide)[(A() - 18 Riuf) e @ DI

= Zg;ift; (Rialf1? = |Rjef1?) < it Ryl I = [Rjt f1?) Vit

According to Theorem 1.6, this yields

1

2

I7lss05, S I17llsnio, < supsup | (Ryel7P” — ;. f1?) (1.7)
J=Z

Lo(G)

Additionally, we may consider transferred Markov metrics in other von Neumann al-
gebras. Consider a convolution semigroup of states (¢;):>o on a locally compact quantum
group Lo (G) and a von Neumann algebra equipped with a n.s.f. trace (M, 7). A corep-
resentation 7 : M — Lo (G)®M is a normal injective *-representation satisfying the
identity

(idg @ m)om = (A®idpg) o.
Every such 7 yields a transferred convolution semigroup Sy = (Sx t)i>0 with

S‘n’,t : M — Ma
Srif = (¢t @ idp) o ().

Lemma 4.12. Assume that

o 7(Sxi(f1)"f2) = T(f1 571 (f2)),
o Spif — [ ast— 0" in the weak-x topology of M.

Then Sy defines a Markov semigroup on M such that mo Sy = (Sa,; @ ida) o 7.
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Proof. It is easy to check that Sy is cpu and the normality follows from the weak-x
continuity of ¢ and 7. Hence, it remains to show the identity m o S;; = (S; ® idg) o7
and the semigroup law. We first observe that 7(¢; ® ida) = (¢ ® idg ® ida)(idg @ )
as maps on Lo, (G)®M. Indeed, by weak-* continuity, it suffices to test the identity on
elementary tensors n ® m, for which the identity is trivial. Therefore, we have

(Sat @idap)m = (¢ @ idg ® tdp) (A @ idpg)T

(
= (¢ ® idg ® idpm)(idg @ ™)™
= 7(pr ® idpg)m = TSr 1.

For the semigroup law we note that

Sr.t25n, 1 = (08, ®ida)(dr, ®idg @ ida)(idg @ T)7
= (¢, @ idp) (s, ® idg @ idp)(A Q idpag)T
= (¢t2 & ¢t1 ® ZdM)(A & Zd./\/l)Tr = ((btz * ¢t1 & ZdM)ﬂ- = S7r,t1+t2' o

In the sequel, we shall assume that the assumptions in Lemma 4.12 hold. Intrinsic
Markov metrics on Lo (G) yield transferred Markov metrics on M associated to the
transferred convolution semigroup S;. Indeed, given any intrinsic Markov metric Q =
{(Rj+,05t,7;¢)} in G with cpu maps R, ; given by (4.6), the transferred cpu maps R ;¢
are given by

1
Rrjtf = ——WQidm)((pj: @ 1)m(f)).
J,t w(p]7t)( )(( 75t ) ( ))
It is easy to check that mo Ry ;; = (Rj: ® idp) o m. Assume in addition that o;; € Ry.
Then, arguing as we did before Corollary 4.5 for the corepresentation v of R in B(¢s),
we get a Markov metric in M

Or = {(Rw,j,t70j,ta7j,t) 1J €Lyt E R+}-

Let a : N — N be a strictly increasing function with a(j) > j. This Markov metric is
called a-doubling if there exists some constant c, such that ¥(qa(j),t) < ca®(qje)-

Remark 4.13. In what follows, we impose our Markov metrics to be a-doubling for some
function o : N — N, to satisfy 0;; € Ry as well as the condition in Remark 4.11.
Altogether, this allows to eliminate the size CZ condition and reduce the number of
analytic and smoothness CZ conditions to be checked for both the intrinsic Markov
metric and the transferred one.

Observe that the transferred formulation above includes the intrinsic formulation by
taking (M, m) = (G, A). Let us now state the corresponding Calderén-Zygmund theory.
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Given Apq a weakly dense s-subalgebra of M, let T be a (not necessarily bounded)
operator T : Ay — M. We say T is a transferred map if there exists an amplification
map

T:D C Loo(G)OM — Lo (G)OM
satisfying the identity
nolT=Tom,, . (4.8)

Again, D is a weakly dense *-subalgebra for which m(Apq) C D. In the case (M, ) =
(G, A), we can always take the amplification T'® idq and condition above just imposes
that T is a quantum Fourier multiplier. In the following theorem, we provide sufficient

conditions on the amplification map to make a given transferred CZO T bounded from
A to BMOgﬂ.

Theorem 4.14. Let

be a corepresentation of a locally compact quantum group G in a semifinite von Neu-
mann algebra (M, 1). Assume that Lo (G) comes equipped with an a-doubling intrinsic
Markov metric Q determined by an increasing family of projections p;: as above. Then,
a transferred map T (with amplification for which (4.8) holds) will be bounded from A
to BMOg_ provided:

L5(G)@M — L§(G)Q@M is bounded,

T
2 d
w%—@xm (s @030 @ 1a0) |6 (T (D ) S 171

i)
i)

Proof. We use the algebraic skeleton
(Mva = NT(? P1, P2, Epa qj,t) = (MaLOO(G)®M7 1®-,m, w ® id(Gij,t ® 1@)

Identity (4.8) is the compatibility condition (2.3). Let us justify the algebraic conditions.
The second one is trivial since both E,(g;+) and p1(v;+) belong to R, in this case. For
the first one, consider the product e in Lo (G)®@M,p,. Then, we just observe that

Eo(g5.:1¢1%a5,) = (¥ ® idag) ((pje ® 1))
= (W @idpm)(Eo (pjr @ 1) eE")
< W @idpm)(E0E") = (Y @idm)(E°E) = E (€.

Define the amplifications
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Roju: Loo(G)OM 3 € 5 — (0 @ idpg) (pe ® La)€) € M.
¢(pj,t)

Consider also the cpu maps

B¢ Loo(G)BLoo(G)EM — M,

j4(n) = (VYeyYe idM)((pj,t Pt ® 1M)77)~

P(pjie)?
Recalling that dg(z) =z ® 1 — 1 ® x, the identity

®;4(10G (€)2) = 2R j.1(1€%) — 2| Rr 10 (O],

is straightforward. This readily implies the first analytic condition. On the other hand,
since the auxiliary Markov metric is a-doubling, the second analytic condition reduces
to note that

(¥ @ id ) (Gaye @ Tam) < ca(t) @ idp) (g © L)
Thus, according to inequalitty (4.7), the assertion follows from Theorem 2.1. O

Remark 4.15. As noticed, the main particular case of Theorem 4.14 arises for (M, ) =
(G, A) with amplification T' ® idg. Condition (4.8) becomes the identity

AoT =(T®idg) o A.

In other words, these are translation invariant CZ operators. We also call them quantum
Fourier multipliers in this paper and it can be checked, as expected, that these maps are
of convolution type in the sense that there exists a kernel k affiliated to L (G) so that

Tf=kxf=(ide ®¥)(A(k)(1c ®Sf)).

In this particular case, it is not difficult to prove that our conditions in Theorem 4.14
reduce to those in Theorem B2 from the Introduction. Of course, Theorem 4.14 also ap-
plies as well for nonconvolution CZ operators on quantum groups, or even for transferred
forms of them to other von Neumann algebras M.

Remark 4.16. One may consider twisted convolution CZO’s on quantum groups applying
Theorem 4.14. As an illustration, assume that G ~ L (G) by a trace preserving action
a and that G is a quantum group satisfying (o, ® ay)A = Aqy for all g € G. This
property is quite natural in the commutative case, where quantum groups come from
locally compact groups and « is typically implemented by a measure preserving map (.
Note that the underlying Haar measure is translation invariant and the condition above
just imposes that § is an homomorphism. Let us see what we get for a map
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Zg foM(g) = Zg Ty(fo)A(9),

where the T;’s are normal convolution maps on Lo (G). Assume Lo, (G) comes equipped
with a convolution G-equivariant semigroup Sa which admits a 7-doubling intrinsic
Markov metric. Then, we get a bounded map Lo (G)x.G — BMOg_ when the following
conditions hold:

i) We have a bounded map
LE(G)@B(((G)) 3 § = (Tyn-1) o € € L5(G)2B(62(G)),

where e stands once more for the generalized Schur product of matrices.
ii) Letting R = Loo(G)®B(l2(G)) and W(§) =3°, ;(ag-1) @ (Tgp-1) @ (ag) o &,

(Y @Y @ idp,(a))
Y(pj)?

(3.0 @ w3 @ 1) (€0 ) [) < €l

Remark 4.17. All our results in this paragraph impose the additional assumption that
our quantum groups admit a tracial Haar weight. We believe however that our results
can be extended to the general non-tracial case. We leave this generalization open to the
interested reader.

5. Noncommutative transference

Originally motivated by Cotlar’s paper [14] and the method of rotations, Calderén
developed a circle of ideas [4] which was called the transference method after the sys-
tematic study of Coifman/Weiss in their monograph [12]. The fundamental work of K.
de Leeuw [16] also had a big impact in this line of research. Let us consider an amenable
locally compact group G with left Haar measure u, a o-finite measure space (2, v) and a
uniformly bounded representation 5 : G — B(L,(£2)). Roughly, Calderén’s transference
is a technique which allows to transfer the L, boundedness of a convolution operator
f k% fon Ly,(G) to the corresponding transferred operator on L,(f2)

Vi (w) = / k(g) By f(w) dpu(g),

G

for some compactly supported kernel k in L;(G). A case by case limiting procedure also
allows to consider more general (singular) kernels. In the rest of this section we shall
develop a noncommutative form of Calderén-Coifman-Weiss technique.

Our first task is to clarify what we mean by ‘representation’ and ‘amenable’ in the
context of quantum groups. Using the commutative locally compact quantum group
L. (G) as above, a representation § : G — Aut(M) induces a *-representation 7g :

M = Loo(G; M) by
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m3f(9) = Bg-1f.

Note that we have

(ide @ mg) (7 f)(9,h) = ma(By-1f)(h) = Bp-1Bg-1f
= Bgny-1f = (Ac ®@idm)(msf)(g,h).

Given a semifinite von Neumann algebra (M, 7) and a locally compact quantum group G,
this leads us to consider corepresentations 7 : M — L (G)®@M satisfying (idg @m)om =
(A ® idaq) o w. Note that comultiplication is a corepresentation by coassociativity. To
show what we mean by ‘uniformly bounded’, let us go back to our motivating example
B : G — Aut(M), where we take M = L, () for some o-finite measure space (£2,v). In
the classical case

1Bgfllp ~ I fll, forall geG

up to an absolute constant independent of f, g. We say that a corepresentation m: M —
Lo (G)®M is uniformly bounded in L,(M) if for any f € M N L,(M) we have

1
— A1, a0y < (ide © (AP < eall 71,

for some absolute constant ¢, independent of f. Note that our notion again reduces to
the classical one on L (G). Note also that, since |7 (f)|P = 7 (| f|?), our definition reduces
to the p-independent condition

1 .
C_HfHL1(/\/l) < (idg @ 7) (7 (f)) < callfllLy vy forall  fe MynLi(M).

Now we introduce what we mean by an ‘amenable’ quantum group. We say that G
satisfies Fplner’s condition if for every projection ¢ € L1(G) and every € > 0, there
exists two non-zero projections ¢, g2 € L1(G) such that

Alq1)(@®q2) =q@q2 and Y(q1) < (14€)1p(qo).

In the standard example for a locally compact group G, where (Lo (G),v) is Loo(G)
equipped with the left Haar measure p and A is given by Ag(§)(g,h) = &(gh) the
classical comultiplication, it turns out that G is amenable iff G is an amenable group.
Indeed, our notion can be rephrased in this case by saying that for any compact set K
in G and any € > 0, there exists a non-empty neighborhood of the identity W of finite
measure such that

p(EW) < (1 +¢) p(W),
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which corresponds to (g, ¢1,92) = (XK, Xxw, xw) in our formulation. This is exactly the
classical characterization of amenability, known as Fglner’s condition, used by Coifman
and Weiss in [12]. Given an amenable locally compact group G with left Haar measure
1, it is clear that L., (G, 1) with its natural quantum group structure is amenable. On
the other hand, as expected, any compact quantum group is amenable just by taking
G =q =1g.

Assume that G admits a corepresentation 7 : M — Lo (G)®@M. Given An a weakly
dense x-subalgebra of M, we say that a linear operator V : Ay — M is a transferred
convolution map if there exists ® : D C Loo(G)OM — Loo(G)®RM, an auxiliary convo-
lution map such that moV = ®om e The classical transferred operator

V=/k(g) By f(w) du(g)

G

comes from

B(E)(g,w) = / k(h) €(hg w) du(h) = (¢ ® ide @ ide) (Ag & id).
G

If 75 f(g9) = By-1f denotes the corresponding corepresentation, we may then apply the
identities in the proof of Lemma 4.12 again to deduce the following identities

Domg = (@@id@ ®idQ)(AG ®idQ)7Tﬂ = ((p@idg ®idQ)(idG ®7T,g)7'l'5 = W5(<p®id9)0ﬂ5.

By injectivity of g, we must have

Vf(w) = (¢ @ ide) ma.f(w) = / k(g) By-r f(w) dpu(g)

G

as expected. This shows how we recover the classical construction.

Let us now settle the framework for our transference result. Assume that G is amenable
and consider m : M — Lo (G)®M a uniformly bounded corepresentation in Lo(M). We
say that T': L,(G) — L,(G) is a convolution map with finitely supported L kernel when
the map T has the form T' = (¢ ® idg) o A for some functional ¢ = 9(d-), with d an
element in L1 (G) whose left support ¢ satisfies 1(q) < co. In the commutative case, this
is the kind of operators which are transferred. Roughly, the goal is to show how a limit
operator T' = lim, T’, of such maps which is bounded on Ly(G) and L (G) - BMOgs
can be transferred under suitable conditions to a bounded map on L, (M).

Remark 5.1. Young’s inequality extends to this setting as

ld* fllp* =" lI(¢ @ ide) ANl < 4|l ][ f]]p,
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where ¢ = ¢(d-) and 1 < p < oo. Indeed, when d and f are positive the inequality
holds with constant 1. This can by justified by interpolation. When p = 1 we use Fubini
and the left-invariance of v, while for p = co it follows from the fact that (¢ ® idg)A
is a positive map with 1g — t(d). In the general case, we split d, f into their positive
parts and obtain the constant 4. In fact, the same argument still holds after matrix
amplification and we deduce that (¢ ® idg)A is completely bounded on L,(G) with cb-
norm 4||d||;. This is however not enough for transference, since the norms ||d,||; might
not be uniformly bounded.

Theorem 5.2. Let G be an amenable quantum group and consider a uniformly bounded

corepresentation ™ : M — Lo (G)RM in La(M) associated with a semifinite von Neu-
mann algebra (M, 7). Let T : Lo(G) — L2(G) be a bounded map and assume that

(T ®idp) =SOT — lim(T7 ® idpm)
%t
for some net T, = (¢, @idg) o A of convolution maps with finitely supported Ly kernels
and such that lim., || T, || 5r,c)) < ITNB(LoG)). Then, the net of transferred operators
V, = (¢4 @ idp) o T satisfies the inequalities
IVillszamy) < exllTyllB(ra(6))-

We thus find a WOT-cluster point V' satisfying ||V||g(L,m)) < x| T||B(Ls(G))-
Proof. Note that we have

7wV, = (¢, ®id)(idg @ m)7 = (¢ ® id)(A @ idp)7 = (T @ tdpq)T.

Hence, the uniform boundedness of 7 yields

1 .
C—I\vallg <(pen)(rV,(NHP) = (pen) (T, @ idu)r(f))
for any state p on Lo (G). On the other hand, if ¢, = 9(d, -) and ¢, denotes the left

support of d, we know from the amenability assumption that for any ¢ > 0 we may find
projections g1, and g2, such that

A(giy)(ay ® g2y) = ¢y © g2y and P(q1y) < (1 +€) P(g2y)-
Taking p = ¥(qa+ -)/1(q2), we obtain the inequality

(Y ®7)
'L/}(q2'\/)

V113 < ([0 o i (Ao idum(£)16 @ an o 100)| )
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since p is supported by go2. Moreover, dy ® g2 is supported on the left by ¢, ® g2, and
amenability provides dy ® g2y = A(q1)(dy ® g24). Once we have created A(gi1,), we can
eliminate go,. Altogether gives

2

S IVafI < o 0 @ © 1a0)

La(Loo (G)EM)

77/1((]2»0

Now we use the Ly boundedness of 7', and uniform boundedness of m to conclude

VB < s 1T g ¥((@0 © Lao)ids © ) (1))

Cr

< T 3oy V(@) 1F13 < ex (L4 ) 1T a0 115
¥(q2y)

Letting e — 0, we prove the inequality

”V’Y”B(LQ(M)) < G ”T’y”B(LQ(G))-

Since T is bounded on L2(G) and lim,, [T, 5z, c)) < IT||5(L.(G)), the operators V, are
eventually in a ball of radius c,(1 4 0)||T'||g(L,(G)) for any § > 0. The closure of such
ball is weak operator compact and thus we find our cluster point. O

We now study Lo, — BMO transference and then interpolate/dualize to obtain L,-
transference. This approach seems to be new even in the classical theory and where our
semigroup formulation becomes an essential ingredient.

Corollary 5.3. Let G be a compact (hence amenable) quantum group equipped with a
Ly(M)-uniformly bounded corepresentation m : M — Loo(G)@M. Let (¢1)i>0 be a
convolution semigroup of states on Lo (G), giving rise to Markov semigroups Sa on
(G, ) and Sy on (M, T). Let T = SOT—lim, T, be as above and take Apg = MNLy(M).
Then, if T : Loo(G) — BMOsgs, is completely bounded, we find that

V=WOT -limV, : Apy = BMOgs,
v

is completely bounded. Moreover, if Ty is regular, the complete boundedness of J,V :
L,(M) = L,(M) follows for every 2 < p < oo by interpolation. In addition the complete
boundedness of V. J, : L,(M) — L,(M) for 1 < p < 2 holds under the same assumptions
for T*.

Proof. By uniform boundedness of m we have

< exll fll2,

g @ 7 (1m(5)12)*

Lo (G)
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which implies that 7 : La(M) — Loo(G)RLS(M) is bounded by ¢,. According to the
finiteness of Loo(G), we deduce that in fact m : Lo(M) — La(Loo(G)@M) is still
bounded with the same norm. This proves that

7V = WOT — lim 7V, = WOT — lim(T, ® idp)m = (T @ idpq).
B! B!

In particular, 7V = (T ® idp)7 over A and identity 7Sr; = (S¢ @ idpa)m yields

SV IE =18V IR
AV I =15V B

IV fllmiog, = sup|
T t>0

1
2

= sup HWSﬂ,t|Vf|2 — |7Se VI
>0

Lo (G)@M

= (T @ idp)m (Nl guog < ITlebllm (P @)@t = TNt Fllaa

for f € Axq. Since the same inequality holds after matrix amplification, we deduce that
V : Am — BMOgG  is completely bounded with cb-norm < ||T'[|c,. The row case is
similar because

VT = (aV)t = (Tn)t = TTr.
The assertions on L, boundedness follow as usual from Theorem 1.3. O

Remark 5.4. Under the above assumptions, we see that for V.= WOT — lim, V, we can
find the concrete form of its amplification map ® defined on L., (G)®M. In this case,
by applying Theorems 4.14 to ® = T ® idrq, we get Calderén-Zygmund extrapolation
for the transferred convolution map V on M.
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