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Abstract— Motivated by applications such as discovering
strong ties in social networks and assembling genome subse-
quences in biology, we study the problem of recovering a hidden
2k-nearest neighbor (NN) graph in an n-vertex complete graph,
whose edge weights are independent and distributed according to
Pn for edges in the hidden 2k-NN graph and Qn otherwise. The
special case of Bernoulli distributions corresponds to a variant of
the Watts-Strogatz small-world graph. We focus on two types of
asymptotic recovery guarantees as n → ∞: (1) exact recovery:
all edges are classified correctly with probability tending to one;
(2) almost exact recovery: the expected number of misclassi-
fied edges is o(nk). We show that the maximum likelihood

estimator achieves (1) exact recovery for 2 ≤ k ≤ no(1) if
lim inf 2αn

log n
> 1; (2) almost exact recovery for 1 ≤

k ≤ o
�

log n

log log n

�
if lim inf kD(Pn||Qn)

log n
> 1, where αn �

−2 log
� √

dPndQn is the Rényi divergence of order 1
2

and
D(Pn ||Qn) is the Kullback-Leibler divergence. Under mild
distributional assumptions, these conditions are shown to be
information-theoretically necessary for any algorithm to succeed.
A key challenge in the analysis is the enumeration of 2k-NN
graphs that differ from the hidden one by a given number
of edges. We also analyze several computationally efficient
algorithms and provide sufficient conditions under which they
achieve exact/almost exact recovery. In particular, we develop a
polynomial-time algorithm that attains the threshold for exact
recovery under the small-world model.

Index Terms— Nearest neighbor (NN) graphs, small-world
graphs, information-theoretic lower bounds.

I. INTRODUCTION

THE strong and weak ties are essential for information

diffusion, social cohesion, and community organization

in social networks [1]. The strong ties between close friends
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are responsible for forming tightly-knit groups, while the weak

ties between acquaintances are crucial for binding groups of

strong ties together [2]. The celebrated Watts-Strogatz small-

world graph [3] is a simple network model that exhibits both

strong and weak ties. It posits that n nodes are located on a

ring and starts with a 2k-nearest neighbor (NN) graph of strong

ties, where each node is connected to its 2k nearest neighbors

(k on the left and k on the right) on the ring. Then to generate

weak ties, for every node, each of its strong ties is rewired with

probability � to a node chosen uniformly at random. As � varies

from 0 to 1, the graph interpolates between a ring lattice and

an Erdős-Rényi random graph; for intermediate values of �, the

graph is a small-world network: highly clustered with many

triangles, yet with a small diameter.

The Watts-Strogatz small-world graph and its variants, albeit

simple, have been extensively studied and widely used in

various disciplines to model real networks beyond social net-

works, such as academic collaboration network [4], metabolic

networks [5], brain networks [6], and word co-occurrence

networks in language modeling [7], [8]. Most of the previ-

ous work focuses on studying the structures of small-world

graphs [9] and their algorithmic consequences [10]–[12]. How-

ever, in many practical applications, it is also of interest to

distinguish strong ties from weak ones [13]–[16]. For example,

in Facebook [17] or Twitter network [18], identifying the

close ties among a user’s potentially hundreds of friends pro-

vides valuable information for marketing and ad placements.

Even when additional link attribute information (such as the

communication time in who-talks-to-whom networks [19]) are

available to be used to measure the strength of the tie, the task

of discovering strong ties could still be challenging, as the

link attributes are potentially noisy or only partially observed,

obscuring the inherent tie strength. Therefore, it is of funda-

mental importance, in both theory and practice, to understand

when and how we can infer strong ties from the noisy and

partially observed network data. In this paper, we address this

question in the following statistical model:

Definition 1 (Hidden 2k-NN Graph Recovery):

Given: n ≥ 1, and two distributions Pn and Qn, parame-

trized by n.

Observation: A randomly weighted, undirected complete

graph w with a hidden 2k-NN graph x∗ on n vertices, such

that the edge weights are independent, and for each edge e,

the edge weight we is distributed as Pn if e is an edge in x∗

and as Qn otherwise.

Inference Problem: Recover the hidden 2k-NN graph x∗

from the observed random graph.
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Fig. 1. Examples of 2k-NN graphs for n = 8 and k = 2. The edge
weight we is distributed Pn = N (6, 1) if e is an edge in the 2k-NN graph.
Otherwise we ∼ Qn = N (0, 1).

Fig. 2. Left: An observed graph generated by the hidden 2k-NN graph model
with n = 30 vertices, k = 4, Pn = Bern(0.8), and Qn = Bern(0.09);
Right: the observed graph with vertices rearranged according to the latent
2k-NN graph.

See Figs. 1 and 2 for graphical illustrations of the model and

the reconstruction problem. Note that every 2k-NN graph x
can be described by a permutation σ on [n] as follows: first,

construct a Hamiltonian cycle (σ(1), σ(2), . . . , σ(n), σ(1)),
then connect pairs of vertices that are at distance at most k
on the cycle (cf. Figs. 1a and 1c).

The 2k-NN model encompasses partially observed networks

as a special case. This can be accomplished by considering

Pn = �δ∗ + (1 − �)P 0
n and Qn = �δ∗ + (1 − �)Qn0 where

∗ is a special symbol outside of the support of P 0
n and Q0

n

indicating those edge weights that are unobserved. When

Pn and Qn are Bernoulli distributions with corresponding

success probabilities pn > qn, we arrive at a variant of the

Watts-Strogatz small-world graph.

The problem of recovering a hidden NN graph is also

motivated by de novo genome assembly, the reconstruction

of an organism’s long sequence of A, G, C, T nucleotides

from fragmented sequencing data, which is one of the most

pressing challenges in genomics [20], [21]. A key obstacle of

the current high-throughput genome assembly technology is

genome scaffolding, that is, extending genome subsequences

(so-called contigs) to the whole genome by ordering them

according to their positions on the genome. Thanks to recent

advances in sequencing technology [22], [23], this process is

aided by long-range linking information between contigs in the

form of randomly sampled Hi-C reads, where a much larger

concentration of Hi-C reads exist between nearby contigs on

the genome than those that are far apart. By representing

each contig as a node, the underlying true ordering of contigs

on the genome as the hidden Hamiltonian cycle, and the

counts of the Hi-C reads linking the contigs as edge weights,

the previous work [24] casts genome scaffolding as a hidden

Hamiltonian cycle recovery problem with Pn = Pois(λn) and

Qn = Pois(µn) with λn ≥ µn, where λn and µn are the

average number of Hi-C reads between adjacent and non-

adjacent contigs respectively; this is a special case of our

model for k = 1. However, this hidden Hamiltonian cycle

model only takes into account of the signal – an elevated

mean number of Hi-C reads – in the immediately adjacent

contigs on the genome; in reality, nearby contigs (e.g. two-

hop neighbors) also demonstrate stronger signal than those that

are far apart. By considering k > 1, our general 2k-NN graph

model is a closer approximation to the real data, capturing

the large Hi-C counts observed between near contigs which

can be used to better assemble the genome. Indeed, as our

theory later suggests, the information provided by multi-hop

neighbors strictly improves the recovery threshold.

Note that in the aforementioned applications we often have

k � n; thus in this paper we focus on the regime of k = no(1)

and study the following two types of recovery guarantees. Let

x∗ ∈ {0, 1}(n

2) denote the adjacency vector of the hidden

2k-NN graph, where x∗
e = 1 for every edge e in the hidden

2k-NN graph and x∗
e = 0 otherwise. Let X denote the

collection of adjacency vectors of all 2k-NN graphs with

vertex set [n].
Definition 2 (Exact Recovery): An estimator bx = bx(w) ∈

{0, 1}(n

2) achieves exact recovery if, as n → ∞,

sup
x∗∈X

P {bx 6= x∗} = o(1),

where w is distributed according to the hidden 2k-NN graph

model in Definition 1 with hidden 2k-NN graph x∗.

Depending on the applications, we may not be able to

reconstruct the hidden 2k-NN graph x∗ perfectly; instead,

we may consider correctly estimating all but a small number

of edges, which is required to be o(nk), since a 2k-NN graph

contains kn edges. In particular, let d(x∗, bx) be the Hamming

distance d(x∗, bx) =
P

e 1{x∗

e 6=�xe}.

Definition 3 (Almost Exact Recovery): An estimator bx =

bx(w) ∈ {0, 1}(n

2) achieves almost exact recovery if,

as n → ∞,

sup
x∗∈X

E [d(x∗, bx)] = o(nk).

Instead of using a permutation-based metric such as the

Kendall tau distance, we choose the edge Hamming distance d
for defining almost exact recovery because for the practical

application of discovering strong ties in social networks,

there is more value in recovering the edges rather than
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the permutation. Moreover, the edge sets arise naturally in

the analysis of bxML: the distribution of the log-likelihood ratio

between a 2k-NN graph x and the truth x∗ only depends on

the number of edges in x that differ from x∗. It is also worth

noting that many computationally efficient algorithms, some

of which to be discussed in Section V-A, output an edge set

instead of a permutation. One can further project the edge set

to a 2k-NN graph to recover the permutation, but it is not

clear whether this can be done in polynomial time.

Intuitively, for a fixed network size n and a fixed number k
of nearest neighbors, as the distributions Pn and Qn get

closer, the recovery problem becomes harder. This leads to

an immediate question: From an information-theoretic per-

spective, computational considerations aside, what are the

fundamental limits of recovering the hidden 2k-NN graph?

To answer this question, we derive necessary and sufficient

conditions in terms of the model parameters (n, k, Pn, Qn)
under which the hidden 2k-NN graph can be exactly or

almost exactly recovered. These results serve as benchmarks

for evaluating practical algorithms and aid us in understanding

the performance limits of polynomial-time algorithms.

Specifically, we discover that the following two information

measures characterize the sharp thresholds for exact and

almost exact recovery, respectively. Define the Rényi diver-

gence of order 1/21:

αn = −2 log

Z p
dPndQn; (1)

and the Kullback-Leibler divergence:

D(PnkQn) =

Z
dPn log

dPn

dQn
.

Under some mild assumptions on Pn and Qn, we show that

the necessary and sufficient conditions are as follows:

• Exact recovery (2 ≤ k ≤ no(1)):

lim inf
n→∞

2αn

log n
> 1; (2)

• Almost exact recovery
�
1 ≤ k ≤ o

�
log n

log log n

��
:

lim inf
n→∞

kD(Pn||Qn)

log n
> 1. (3)

The conditions for exact recovery and almost exact recov-

ery are characterized by two different distance measures,

namely αn and D(PnkQn). This arises from the large devia-

tion analysis for the loss function d(x∗, bx) in different regimes.

In particular, for almost exact recovery, it turns out to be

beneficial to obtain a tighter upper bound on the fluctuations

of edge weights for those edges not in x∗ than those in x∗,

because there are many more edges of the former type, thus

many more possible ways to arrange them into a different

2k-NN graph x with d(x∗, x) = Ω(kn). See Remark 3

for a detailed explanation. For the special case of k = 1
(Hamiltonian cycle), the exact recovery condition was shown

to be lim infn→∞
αn

log n > 1 [24]. Comparing this with (2)

for k ≥ 2, we find that, somewhat surprisingly, the exact

1It is also related to the so-called Battacharyya distance B(Pn, Qn) via
αn = 2 B(Pn, Qn).

recovery threshold is halved when k increases from 1 to 2,

and then stays unchanged as long as k remains no(1). In con-

trast, the almost exact recovery threshold decreases inversely

proportional to k over the range of [1, o(log n/ log log n)]. The

sharp thresholds of exact recovery for k ≥ nΩ(1) and almost

exact recovery for k = Ω(log n/ log log n) remain open.

For the Bernoulli distribution (in other words, unweighted

graphs) with Pn = Bern(pn) and Qn = Bern(qn), we have

the explicit expressions of

αn = −2 log
�√

pnqn +
p

(1 − pn)(1 − qn)
�

, and

D(PnkQn) = pn log
pn

qn
+ (1 − pn) log

1 − pn

1 − qn
.

As an interesting special case, consider the parametrization

pn = 1 − �n +
2�nk

n − 1
and qn =

2�nk

n − 1
, (4)

so that the mean number of edges in the observed graph

stays at nk for all �n ∈ [0, 1]. This can be viewed as an

approximate version of the Watts-Strogatz small-world graph,

in which we start with a 2k-NN graph, then rewire each edge

with probability �n independently at random. In this case, our

main results (combined with earlier results in [24] for the

case k = 1) specialize to:

• The sharp threshold for exact recovery is at

lim inf
n→∞

log 1
�n

n
= 1 for k = 1;

lim inf
n→∞

2 log 1
�n

n
= 1 for 2 ≤ k ≤ no(1). (5)

• The sharp threshold for almost exact recovery is at

lim inf
n→∞

k(1 − �n) = 1 (6)

for 1 ≤ k ≤ o(log n/ log log n).

In the related work [25], a similar case of Bernoulli distrib-

utions has been studied.2 It is shown in [25] that exact recov-

ery is impossible if 1 − �n = o

�q
log n

n ∨ log n
k

1

log n log n

k2



.

In particular, this impossibility result requires �n → 1, which

is highly suboptimal compared to the sharp exact recovery con-

dition (5). It is also shown in [25] that almost exact recovery

can be achieved efficiently via thresholding on the number of

common neighbors when 1−�n = ω
�
( log n

n )1/4 ∨ ( log n
k )1/2

�

and via spectral ordering when 1 − �n = ω
�

n3.5

k4

�
; these

sufficient conditions, however, are very far from being optimal.

The sufficient conditions for both exact and almost exact

recovery are established by analyzing the maximum likelihood

estimator (MLE). While it is a priori clear that the MLE is

optimal for exact recovery,3 that it also achieves the sharp

2To be precise, the previous work [25] considers Bernoulli distributions

under a slightly different parameterization: pn = 1 − �n +
2�2n k

n−1
and

qn = 2�nk
n−1

. In addition to exact recovery and approximate recovery, a

hypothesis testing problem between the small-world graph and Erdős-Rényi
random graph is studied.

3Indeed, the MLE minimizes the probability of error under the uniform
prior, which is least favorable due to the permutation invariance of the model.
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threshold for almost exact recovery is not. The proof of cor-

rectness for the MLE relies on tight combinatorial arguments

that count the number of 2k-NN graphs at a given distance

to the ground truth. Conversely, we also show that below the

sharp thresholds, no estimator can achieve recovery. For exact

recovery, this is done by constructing a set of modified 2k-NN

graphs that are hard to distinguish from the truth; for almost

exact recovery, we use the mutual information method that

compares the information between the observed graph and the

ground truth with its rate distortion function.

Finally, we remark that although the MLE achieves the

sharp thresholds for both exact and almost exact recovery, it is

computationally intractable in the worst case. For the special

case of k = 1 (Hamiltonian cycle), a linear programming (LP)

relaxation of the MLE (namely, the fractional 2-factor LP)

is shown to achieve the sharp exact recovery condition [24].

For k ≥ 2, however, it remains open whether the exact

recovery threshold or the almost exact recovery threshold

can be achieved efficiently in polynomial time. In Section V

we analyze several efficient algorithms and obtain sufficient

conditions for them to achieve exact/almost exact recovery;

these conditions do not meet with the sharp threshold in

general. In the special case of the small-world model, we give

a polynomial-time greedy algorithm that attains the threshold

for exact recovery.

The paper is organized as follows. In Section II we state

and discuss our main results on the sharp recovery thresholds.

In Section III and Section IV we prove the results for exact

recovery and almost exact recovery. In Section V we analyze

the computationally efficient recovery algorithms.

II. MAIN RESULTS

This section contains our main results on the sharp thresh-

olds for exact and almost exact recovery.

A. Exact Recovery

Recall that an estimator bx is said to achieve exact recovery if

supx∗∈X P{bx 6= x∗} = o(1), where we recall that X denotes

the collection of adjacency vectors of all 2k-NN graphs

on [n]. Under a uniform prior over X , the maximum likelihood

estimator bxML minimizes the Bayes risk P{bx 6= x∗}. Since the

uniform prior is the least favorable in permutation invariant

models, we have that bxML is the optimal estimator for exact

recovery. Maximizing the likelihood for the hidden 2k-NN

graph problem is equivalent to finding the max-weighted

2k-NN subgraph with weights given by the log likelihood

ratios. Specifically, assuming that dPn/dQn is well-defined,

for each edge e, let Le = log dPn

dQn
(we). Then the MLE is the

solution to the following combinatorial optimization problem:

bxML = arg max
x∈X

hL, xi . (7)

When k = 1, (7) reduces to the max-weighted Hamiltonian

cycle problem. Note that in the Poisson, Gaussian or Bernoulli

model where the log likelihood ratio is an affine function of

the edge weight, we can simply replace L in (7) by the edge

weights w.

Recall that αn = −2 log
R √

dPndQn. We show that if 2 ≤
k ≤ no(1), then the condition lim infn→∞(2αn/ logn) > 1 is

sufficient for bxML to achieve exact recovery. This condition is

also necessary, with the following additional assumption:

Assumption 1 ( [24], Assumption 1): Let X = log dPn

dQn

(ωx) for some ωx ∼ Pn and Y = log dPn

dQn
(ωy) for some

ωy ∼ Qn. Assume that

sup
τ∈R

(log P {Y ≥ τ} + log P {X ≤ τ})

≥− (1 + o(1))αn + o(log n).

Remark 1 (Generality of Assumption 1): Via Chernoff’s

inequality, it can be shown that (see [24, page 67] for a

derivation)

sup
τ∈R

(log P {Y ≥ τ} + log P {X ≤ τ}) ≤ −αn.

We rely on this inequality in the large deviation analysis

to establish the sufficient condition for bxML to achieve exact

recovery. Assumption 1 essentially ensures that the Chernoff’s

inequality is asymptotically tight, so we can invert the large

deviation analysis to show that the sufficient condition is

also almost necessary. It was shown in [24, Lemma 6] that

Assumption 1 is fulfilled by a wide class of weight distribu-

tions including Poisson, Gaussian and Bernoulli distributions.

The following is our main result regarding exact recovery.

Theorem 1 (Exact Recovery): Let k ≥ 2.

• Suppose

αn − 1

2
(log n + 17 log k) → +∞. (8)

Then the MLE (7) achieves exact recovery: P{bxML 6=
x∗} → 0. In particular, this holds if k = no(1) and

lim inf
n→∞

2αn

log n
> 1.

• Conversely, assume that k < n/12 and Assumption 1

holds. If exact recovery is possible, then

lim inf
n→∞

2αn

log n
≥ 1.

When k = 1, as shown in [24] the sharp threshold for exact

recovery is lim infn→∞
αn

log n > 1, which is stronger than the

condition in Theorem 1 by a factor of 2. In other words, from

k = 1 to k ≥ 2 there is a strict decrease in the required

level of signal. A simple explanation is that the hidden 2k-NN

graph x∗ contains more edges when k ≥ 2, and the elevated

weights on these edges provide extra signal for determining the

latent permutation σ∗. However, this extra information ceases

to help as k increases from 2 to no(1), which can be attributed

to the following fact: when we swap any pair of adjacent

vertices on σ∗, we always get a 2k-NN graph x which differ

from x∗ by 4 edges, regardless of how large k is. In fact for all

2 ≤ k ≤ no(1), the bottleneck for exact recovery is formed by

such swaps, resulting in the k-independent necessary condition

lim infn→∞
2αn

log n ≥ 1 (see Section III-C for details).

Theorem 1 can be applied to a wide range of continuous

and discrete edge weight distributions. See the corollary below
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for the implication of Theorem 1 when the edge weights are

distributed as Gaussian, Poisson, or Bernoulli (unweighted).

Corollary 1: For 2 ≤ k ≤ no(1), we have

• If Pn = N (µn, 1) and Qn = N (νn, 1), then exact

recovery is possible (resp. impossible) if

lim inf
n→∞

(µn − νn)2

2 logn
> 1 (resp. < 1).

• If Pn = Pois(µn) and Qn = Pois(νn), then exact

recovery is possible (resp. impossible) if

lim inf
n→∞

2
(√

µn −√
νn

)2

log n
> 1 (resp. < 1).

• If Pn = Bern(pn) and Qn = Bern(qn), then exact

recovery is possible (resp. impossible) if

lim inf
n→∞

−4 log
�√

pnqn +
p

(1 − pn)(1 − qn)
�

log n

>1 (resp. < 1).

In particular, under the small-world model, for pn, qn

parametrized as in (4), exact recovery is possible

(resp. impossible) if4

lim inf
n→∞

2 log 1
�n

log n
> 1 (resp. < 1).

B. Almost Exact Recovery

Before presenting our main results for almost exact recov-

ery, we need to introduce some notations. Let ψP (λ) and

ψQ(λ) be the log moment generating functions of the log

likelihood ratio log dPn

dQn
under Pn and Qn respectively. That

is,

ψQ(λ) � log EQn

�
exp

�
λ log

dPn

dQn


�

= log

Z
dPλ

n dQ1−λ
n , (9)

ψP (λ) � log EPn

�
exp

�
λ log

dPn

dQn


�

= log

Z
dP 1+λ

n dQ−λ
n = ψQ(λ + 1). (10)

Denote the Legendre transforms of ψP and ψQ as

EQ(τ) � sup
λ∈R

λτ − ψQ(λ),

EP (τ) � sup
λ∈R

λτ − ψP (λ)

= sup
λ∈R

λτ − ψQ(1 + λ) = EQ(τ) − τ. (11)

4If k stays bounded as n grows, it can be shown that exact recovery is
possible if and only if �n = o(1/

√
n). The sufficient direction follows from

condition (8). The necessary direction is proven by slightly modifying the
proof of Theorem 1: consider an alternative solution that reverses the roles of
two adjacent vertices i and i + 1. The likelihood at the alternative beats (or
equals) the likelihood at the truth if both edges (i−k, i) and (i+1, i+k+1)
are absent from the observed graph, which occurs with probability Θ(�2n).
Unless �n = o(1/

√
n), the alternative beats (or is on par with) the truth

for some i ∈ [n] with non-vanishing probability, deeming exact recovery
impossible.

Then EP and EQ are convex and monotone functions,

such that as τ increases from −D(QnkPn) to D(PnkQn),
EQ(τ) increases from 0 to D(PnkQn) and EP (τ) decreases

from D(QnkPn) to 0. The following assumption postulates a

quadratic lower bound of EP at the boundary:

Assumption 2: There exists an absolute constant c > 0,

such that for all η ∈ [0, 1],

EP ((1 − η)D(PnkQn)) ≥ cη2D(PnkQn). (12)

Remark 2 (Generality of Assumption 2): Note that EP (τ)
is convex with minimum 0 and curvature (second-order

derivative) 1/VarP (log(dPn/dQn)) at τ = D(PnkQn).
In view of Taylor expansion of EP (τ) at τ = D(PnkQn),
Assumption 2 essentially ensures that EP (τ) satisfies a quadr-

atic lower bound with curvature at least Ω(1/D(PnkQn)),
giving us the desired stability in the large-deviation behavior

of the log-likelihood ratios when τ is near D(PnkQn).
When the weight distributions are Gaussian, EP (τ) is

exactly a quadratic function with curvature 1/(2D(PnkQn))
at τ = D(PnkQn) and thus Assumption 2 holds. It can

also be shown that Assumption 2 is satisfied whenever the

distribution of log(dPn/dQn) under Pn is sub-Gaussian with

proxy variance O(D(PnkQn)) (see [26], Section 3).

Theorem 2 (AlmostExactRecovery): Suppose Assumption 2

holds. If k log k = o(log n) and

lim inf
n→∞

kD(PnkQn)

log n
> 1, (13)

then the MLE (7) achieves almost exact recovery. Conversely,

assume that k = O(log n). If almost exact recovery is possible,

then

lim inf
n→∞

kD(PnkQn)

log n
≥ 1. (14)

Theorem 2 should be compared with the exact recovery

threshold lim inf(2αn/ log n) > 1 for 2 ≤ k ≤ no(1); the

latter is always stronger, since

αn = −2 log

Z p
dPndQn

= −2 log EPn

r
dQn

dPn

≤ −2EPn
log

r
dQn

dPn
= D(PnkQn),

by Jensen’s inequality. Unlike exact recovery, the almost exact

recovery threshold is inversely proportional to k. Intuitively,

this is because almost exact recovery only requires one to

distinguish the latent 2k-NN graph x∗ from those 2k-NN

graphs that differ from x∗ by Ω(kn) edges; in contrast, as we

will show in Section III-C, the condition for exact recovery

arises from eliminating those solutions differing from x∗ by

only four edges.

Similar to Theorem 1, Theorem 2 is applicable to a wide

class of weight distributions. Some examples are discussed in

the following corollary.

Corollary 2: For 1 ≤ k ≤ o(log n/ log log n), we have
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• if Pn = N (µn, 1) and Qn = N (νn, 1), then almost exact

recovery is possible (resp. impossible) if

lim inf
n→∞

k(µn − νn)2

2 logn
> 1 (resp. < 1).

• if Pn = Pois(µn) and Qn = Pois(νn), then almost exact

recovery is possible (resp. impossible) if

lim inf
n→∞

k (µn log(µn/νn) + νn − µn)

log n

>1 (resp. < 1).

• if Pn = Bern(pn) and Qn = Bern(qn), then almost exact

recovery is possible (resp. impossible) if

lim inf
n→∞

k
�
pn log pn

qn
+ (1 − pn) log 1−pn

1−qn

�

log n

>1 (resp. < 1).

In particular, under the small-world model, for pn, qn

parametrized as in (4), almost exact recovery is possible

(resp. impossible) if

lim inf
n→∞

k(1 − �n) > 1 (resp. < 1).

III. ANALYSIS FOR EXACT RECOVERY

In this section we prove Theorem 1. The proof of the upper

bound (sufficient condition for exact recovery) is contained

in Section III-A. The upper bound proof involves analyzing

the maximum likelihood estimator. The most crucial step of

the proof is to obtain a tight upper bound on the number

of 2k-NN graphs that differ from the true one by a given

number of edges. The combinatorial arguments leading to

this upper bound is the main contribution of this paper, and

they are given in Section III-B. In Section III-C we prove

the information-theoretic lower bound. The lower bound is

proved by constructing a set of alternative 2k-NN graphs that

are difficult to distinguish from the truth x∗ unless Pn and

Qn are far enough apart. The analysis closely follows that

in [24, Section 6.1] where they consider the case k = 1, except

that we construct a difference set of alternative solutions

when k ≥ 2.

A. Proof of Correctness of MLE for Exact Recovery

To analyze the MLE, we first introduce the notion of

difference graph,5 which encodes the difference between a

proposed 2k-NN graph and the ground truth. Given x, x∗ ∈
{0, 1}(n

2), let G = G(x) be a bi-colored simple graph on

[n] whose adjacency vector is x − x∗ ∈ {0,±1}(n

2), in the

sense that each pair (i, j) is connected by a blue (resp. red)

edge if xij − x∗
ij = 1 (resp. −1). See Fig. 3 for an example.

By definition, red edges in G(x) are true edges in x∗ that are

missed by the proposed solution x, and blue edges correspond

to spurious edges that are absent in the ground truth.

5Here the notion of difference graph originates from simply subtracting one
adjacency matrix from another and using colors (blue or red) to encode the
plus or minus. This is not to be confused with the definition in [27] for a
different context.

Fig. 3. An example for a difference graph G. Here G is obtained by
letting x∗ (resp. x) be the 2k-NN graph in Fig. 1a (resp. 1c), and then taking
the difference x − x∗. The red (thick) edges stand for edges that in x∗ but
not x, while the blue (thin) edges are in x but not x∗.

A key property of difference graphs is the following: Since

2k-NN graphs are 2k-regular, the difference graph G is

balanced, in the sense that for each vertex, its red degree

(the number of incident red edges) coincides with its blue

degree. Consequently, G has equal number of red edges and

blue edges, and the number of red (or blue) edges measures

the closeness of x to the truth x∗. Denote

X∆ = {x ∈ X : d(x, x∗) = 2∆}
= {x ∈ X : G(x) contains exactly ∆ red edges} . (15)

In particular, {X∆ : ∆ ≥ 0} partitions the feasible set X .

The analysis of the MLE relies crucially on bounding the size

of X∆. Once we have a tight bound on |X∆|, the proof of the

correctness of bxML follows from the Chernoff bound and the

union bound.

Proof of Sufficiency Part of Theorem 1: First partition X
according to the value of ∆:

P {∃x ∈ X : hL, x − x∗i ≥ 0}
≤
X

∆≥1

P {∃x ∈ X∆ : hL, x − x∗i ≥ 0} . (16)

Recall that Le = log dPn

dQn
(we). Hence for each x ∈ X∆,

the law of hL, x − x∗i only depends on ∆, which can be

represented as follows:

hL, x − x∗i d
=
X

i≤∆

Yi −
X

i≤∆

Xi,

where X1, . . . , X∆ are i.i.d. copies of log dPn

dQn
under Pn,

Y1, . . . , Y∆ are i.i.d. copies of log dPn

dQn
under Qn, and

d
= denotes equality in distribution. Applying the Chernoff

bound yields

P




X

i≤∆

Yi −
X

i≤∆

Xi ≥ 0





≤ inf
λ>0

{exp (∆ (ψQ(λ) + ψP (−λ)))} , (17)

where ψP and ψQ are the log MGFs of log dPn

dQn
under Pn

and Qn, as defined in (9), (10). In particular, the Rényi

divergence in (3) is given by

αn = −2ψQ

�
1

2



= −2ψP

�
−1

2



. (18)
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Choosing λ = 1/2 in (17) yields

P {hL, x − x∗i ≥ 0}

=P




X

i≤∆

Yi −
X

i≤∆

Xi ≥ 0





≤ exp

�
2∆ψQ

�
1

2




= exp (−αn∆) . (19)

A union bound yields

P {∃x ∈ X∆ : hL, x − x∗i ≥ 0}
≤
X

x∈X∆

P {hL, x − x∗i ≥ 0}

≤ |X∆| exp (−αn∆) . (20)

The most critical component of our analysis is to derive a

tight upper bound on |X∆|. We will use the bound (21) stated

in Lemma 1 below and proved in Section III-B. Assuming

Lemma 1, we arrive at

P {∃x ∈ X∆ : hL, x − x∗i ≥ 0} ≤ 2 exp (−∆κn) ,

where κn � αn − log(Ck17n)
2 → ∞ by assumption. Finally,

from (16),

P {∃x ∈ X : hL, x − x∗i ≥ 0}
≤
X

∆≥1

2 exp (−∆κn)

=
2 exp(−2κn)

1 − exp(−κn)

n→∞−−−−→ 0.

In other words, P{bxML = x∗} → 1 as n → ∞.

Lemma 1: There exists an absolute constant C such that for

any ∆ ≥ 0 and any 2 ≤ k ≤ n

|X∆| ≤ 2
(
Ck17n

)∆/2
. (21)

The proof of Lemma 1 is contained in Section III-B. It is

the most involved component of our analysis, and the main

contribution of this paper. To provide some intuition on the

bound (21), let us first prove a simple bound

|X∆| ≤ (4kn)∆. (22)

This simple bound was proved in [24, Sec. 4.2] for k = 1
(Hamiltonian cycles), but it holds for general k ≥ 1 via similar

arguments. Substituting (22) into (26) immediately yields that

P {bxML 6= x∗} → 0, provided that αn − log(nk) → +∞,

which falls short of the desired sufficient condition (8) by

roughly a factor of 2 when k ≥ 2.

The simple bound (22) is proved as follows. For each

x ∈ X∆, suppose its difference graph G consists of

m connected components G1, . . . , Gm. Then each connected

component is also a balanced bi-colored graph. Let ∆i ≥ 1
denote the number of red edges in Gi. There are at most

2∆ configurations for the sequence (∆1, . . . ,∆m) sinceP
i≤m ∆i = ∆. From [24, Lemma 1], every connected

balanced bi-colored graph has an alternating Eulerian circuit,

i.e. a circuit with colors alternating between red and blue

that passes through every edge exactly once. To bound the

total number of configurations for a connected component Gi

with ∆i red edges, it suffices to count the number of such

alternating Eulerian circuits, which is upper bounded by the

number of length-2∆i path (v0, v1, . . . , v2∆i−1), such that

(vi, vi+1) is a red edge if i is even, and a blue edge if

i is odd. To complete the circuit, (v2∆i−1, v0) must be a blue

edge.

We now sequentially enumerate v0 to v2∆i−1: given v0,

which takes n values, there are only 2k possibilities for v1,

because (v0, v1) is a red edge so that v1 must belong to

the neighborhood of v0 in the true 2k-regular graph x∗.

Overall, we conclude that the path (v0, . . . , v2∆i−1) can take

at most (2kn)∆i possible values. Summing over the connected

components, we have

|X∆| ≤
X

(∆1,...,∆m):
�

∆i=∆



Y

i≤m

(2kn)∆i




≤2∆(2kn)∆ = (4kn)∆.

It turns out this bound is only tight for k = 1. For k ≥ 2,

Lemma 1 gives a much better bound on the cardinality of X∆.

In comparison with the simple bound (22), Lemma 1 improves

the dependency on n from n∆ to n∆/2. We have already seen

that the red edges play an important role in the proof of (22),

as the number of red edges is much lower than that of blue

edges. The tight bound (21) is obtained by further exploiting

the structural properties of red edges in the difference graph G.

In particular, we find that for each red edge in G, there is at

least another red edge “close” to it, which allows us to count

red edges in groups and further reduce the number of ways

they can appear in a difference graph. The precise notion of

closeness will be given in Section III-B, but let us illustrate

with a simple example.

Example 1: Recall that each 2k-NN graph x can be identi-

fied with a permutation (σ(1), σ(2), . . . , σ(n)). By connect-

ing adjacent nodes on σ and connecting σ(n) with σ(1),
σ determines a Hamiltonian cycle, from which one can connect

pairs of vertices whose distance is at most k to construct a

2k-NN graph. Suppose the true 2k-NN graph x∗ is identified

with the identity permutation σ∗ = (1, 2, . . . , n). Consider

the alternative graph x identified with a permutation that

traverses part of the vertices in the opposite direction, i.e.

σ = (1, 2, . . . , i, j, j − 1, . . . , i + 1, j + 1, j + 2, . . . , n) for

some i, j that are far apart (see Fig. 4a). The corresponding

difference graphs in the k = 1 and k = 2 cases are illustrated

in Fig. 4b, 4c respectively.

The crucial observation is that when k ≥ 2, there is more

structure in the set of red edges in the sense that red edges do

not appear in isolation. For example in Fig. 4c, the indices of

the three red edges (i, i+1), (i−1, i+1) and (i, i+2) are all

close to each other; in particular, this triple can only take n
values in total. We find that when k ≥ 2, this observation holds

in greater generality. As a result, each red edge can help deter-

mine at least one other red edge, allowing us to enumerate the

red edges in bundles. This is the main reason why when upper

bounding |X∆|, we can reduce the exponent on n from ∆
to ∆/2. This structural property, however, is specific to k ≥ 2:
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Fig. 4. From left to right, (a): Hamiltonian cycle associated with the
permutation σ = (. . . , i, j, j − 1, . . . , i + 1, j + 1, j + 2, . . .); (b): the
difference graph G(x) when k = 1, where x is the 2k-NN graph identified
by σ; (c): the difference graph G(x) when k = 2.

as shown by Fig. 4b (∆ = 2), the simple bound (22) is tight

for k = 1.

Let us also point out that the exponent ∆/2 in (21) is tight

for k ≥ 2. It is easy to see that when the nodes i, i + 1
in the permutation σ∗ are swapped, a difference graph G(x)
is formed with ∆ = 2 red edges (see Section III-C and

Fig. 9 for a more extensive discussion of this example). Taking

i = 1, . . . , n yields n distinct difference graphs that are all

members of X2, meaning the size of X∆ is no smaller than

n∆/2, at least when ∆ = 2.

B. Proof of Lemma 1: Counting Difference Graphs

To prove Lemma 1, we begin with some notations. For a

2k-NN graph x, let Ered(x) (resp. Eblue(x)) be the set of red

(resp. blue) edges in G(x). The proof strategy is as follows:

First, in Lemma 3 we count

Ered(∆) = {Ered(x) : x ∈ X∆} .

Then for each Ered ∈ Ered(∆), Lemma 4 enumerates

X (Ered) = {x ∈ X∆ : Ered(x) = Ered} .

which contains all sets of blue edges that are compatible

with Ered. This completely specifies the difference

graph G(x), and hence the 2k-NN graph x.

For a given 2k-NN graph x associated with the permuta-

tion σ, let Nx(i) denote the set of neighbors of i in x. Let

dx(i, j) = min{|σ−1(i) − σ−1(j)|, n − |σ−1(i) − σ−1(j)|},

which is the distance between i and j on the Hamiltonian

cycle defined by σ. It is easy to check that dx is a well-defined

metric on [n]. For the hidden 2k-NN graph x∗, define Nx∗(·)
and dx∗(·, ·) accordingly.

Definition 4: In the 2k-NN graph x∗, define the distance

between two edges e = (i,ei) and f = (j,ej) as

d(e, f) = min{dx∗(i, j), dx∗(i,ej), dx∗(ei, j), dx∗(ei,ej)}.

We say e and f are nearby if d(e, f) ≤ 2k.

Since a 2k-NN graph has a total of kn edges, the cardinality

of Ered(∆) is at most
(
kn
∆

)
. The following lemma provides

additional structural information for elements of Ered(∆) that

allows us to improve this trivial bound.

Lemma 2: Suppose k ≥ 2. For each red edge e in the

difference graph G, there exists a nearby red edge f in G
that is distinct from e.

Fig. 5. Three cases considered in the proof of Lemma 2.

Lemma 2 allows us to enumerate the red edges in groups,

leading to the following Lemma 3 which gives an upper bound

for the size of Ered(∆).
Lemma 3: Suppose k ≥ 2. Then

|Ered(∆)| ≤ (96k2)∆
�

kn

b∆/2c



.

With the enumeration of the red edge sets complete, the fol-

lowing lemma controls the number of 2k-NN graphs that are

compatible with a fixed set of red edges. A key observation

is that the bound does not depend on n.

Lemma 4: Suppose k ≥ 2. For each Ered ∈ Ered(∆),

|X (Ered)| ≤ 2(32k3)2∆∆∆/k. (23)

The desired bound in Lemma 1 immediately follows from

combining Lemma 3 and Lemma 4:

|X∆| =

������

[

Ered∈Ered(∆)

X (Ered)

������

≤(96k2)∆
�

kn

b∆/2c



· 2(32k3)2∆∆∆/k

≤2
(
Ck17n

)∆/2
(24)

for a universal constant C > 0, where the last inequality

follows from
(
a
b

)
≤ (ea/b)b and k ≥ 2.

Next we prove Lemmas 2, 3, 4.

Proof of Lemma 2: We divide the proof into two cases

according to the degree of one of the endpoints of e = (i,ei),
say i, in the difference graph.

1) The degree of i is strictly larger than 2. Then by

balancedness the number of red edges attached to i is

at least 2. Other than (i,ei), there must exist at least one

other red edge (i, i0). By definition

d((i,ei), (i, i0)) ≤ dx∗(i, i) = 0 < 2k.

That is, (i, i0) and (i,ei) are nearby. See Fig. 5a.

2) The degree of i is equal to 2. Then i is only attached

to one red edge and one blue edge in G. Denote the

blue edge as (i, j). Since the only red edge attached

to i is (i,ei), we have that in the proposed solution x,

the vertex i is connected to all its old neighbors in x∗

except ei. Thus we get that Nx(i) = Nx∗(i) ∪ {j}\{ei}.

As a result, when k ≥ 2, out of the two vertices j1,

j2 that are right next to j in the x cycle (dx(j, j1) =
dx(j, j2) = 1), at least one of them is an old neighbor

of i. WLOG say j1 ∈ Nx∗(i). Consider these cases:
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a) dx∗(j, j1) ≤ k. By triangle inequality dx∗(j, i) ≤
dx∗(j, j1) + dx∗(i, j1) ≤ 2k. Because G is a

balanced graph, there is at least one red edge (j,ej)
attached to j, and

d((i,ei), (j,ej)) ≤ dx∗(j, i) ≤ 2k.

In other words, (j,ej) and (i,ei) are nearby. See

Fig. 5b.

b) dx∗(j, j1) > k. In this case (j, j1) appears in the

difference graph as a blue edge. Therefore j1 is one

of the vertices in G and attached to at least one red

edge (j1,ej1). Recall that j1 ∈ Nx∗(i). Therefore

d((i,ei), (j1,ej1)) ≤ dx∗(i, j1) ≤ k.

In other words, (j1,ej1) and (i,ei) are nearby. See

Fig. 5c.

Proof of Lemma 3: To each member Ered of Ered(∆),
we associate an undirected graph eG(Ered) that takes the

red edge set Ered as its vertex set. Two vertices in
eG(Ered), or equivalently, two members e, f of Ered are

connected in eG(Ered) if and only if e and f are nearby

per Definition 4. It suffices to enumerate all Ered for which
eG(Ered) is compliant with the structural property enforced by

Lemma 2. Our enumeration scheme is as follows:

1) Fix m ∈ [∆] to be the number of connected components

of eG(Ered). Select {e1, . . . , em} from the edge set of x∗.

Since x∗ is a 2k-NN graph with kn edges, there are
(
kn
m

)

ways to select this set.

2) Let ∆1, . . . ,∆m be the sizes of the connected com-

ponents C1, . . . , Cm of eG(Ered). Since ∆i ≥ 1 andP
∆i = ∆, the total number of such (∆i) sequences

is
(
∆−1
m−1

)
, as each sequence can be viewed as the result

of replacing m − 1 of the “+” symbols with “,” in the

expression ∆ = 1 + 1 + . . . + 1 + 1.

3) For each Ci, there is at least one spanning tree Ti.

Since Ci and Ti share the same vertex set, it suffices

to enumerate Ti. First enumerate the isomorphism class

of Ti, that is, count the total number of unlabeled rooted

trees with ∆i vertices. From [28], there are at most 3∆i

such unlabeled trees.

4) For i = 1, . . . , m, let ei be the root of Ti. Enumerate

the ways to label the rest of tree Ti. To start, label the

vertices on the first layer of Ti, that is, the children

of ei. A red edge f being a child of ei on Ti means f
and ei are nearby, limiting the number of labels to at

most 16k2. To see why, note that at least one endpoint

of f is at most 2k away from one of the endpoints of ei,

measured in terms of the distance dx∗ . No more than 8k
vertices fit this description. The other endpoint of f can

then only choose from 2k vertices because f is in the

edge set of x∗.

The remaining layers of Ti can be labeled similarly, with

at most 16k2 possibilities to label each vertex. In total

there are at most (16k2)∆i−1 to label Ti.

This enumeration scheme accounts for all members

of Ered(∆). By Lemma 2, eG does not contain singletons,

i.e. ∆i ≥ 2 for all i. Thus m ≤ b∆/2c, and

|Ered(∆)|

≤
X

m≤b∆/2c

�
kn

m


�
∆ − 1

m − 1


 Y

i≤m

3∆i(16k2)∆i−1

≤
�

kn

b∆/2c



2∆−13∆(16k2)∆ ≤ (96k2)∆

�
kn

b∆/2c



.

Before proving Lemma 4, notice the factor ∆∆/k in (23).

This factor turns out to be crucial. To appreciate this subtlety,

let us first derive a simple bound |X (Ered)| ≤ 4∆∆!. Note

that there is a one-to-one correspondence between 2k-NN

graph x and the difference graph G(x). Hence, it is equivalent

to enumerating all possible difference graphs with the given

set of red edges. Following the similar alternating Eulerian-

circuit based argument for proving (22), we can get that

|X (Ered)| ≤
X

(∆1,...,∆m):
�

∆i=∆

(
2∆∆!

)
≤ 4∆∆!,

where 2∆∆! counts all the possible orderings of oriented red

edges.6 However, this simple bound falls short of proving the

desired (24), as
(

kn
b∆/2c

)
∆! ≥ (ckn)∆/2∆∆/2 for a universal

constant c > 0.

Lemma 4 improves over this simple bound by further

exploiting the structure in the difference graph. In particular,

Lemma 4 counts |X∆| by enumerating all Hamiltonian cycles

(σ(1), σ(2), . . . , σ(n), σ(1)) such that Ered(x(σ)) = Ered.

A key idea is to sequentially determine each neighborhood

Nx (σ(i)) starting from i = 1. Suppose Nx (σ(j)) has been

determined for all 1 ≤ j ≤ i and we are about to specify

Nx (σ(i + 1)), which reduces to enumerating σ(i + k + 1).
Roughly, there are three cases to consider:

1) σ(i+1) is not in the difference graph G(x). In this case,

Nx(σ(i + 1)) = Nx∗(σ(i + 1)) and thus σ(i + k + 1)
has already been fixed.

2) σ(i+1) is in the difference graph G(x) and σ(i+k+1)
has fewer than k blue edges connecting to {σ(j) : i+1 ≤
j ≤ i + k}. In this case, at least one of {σ(j) : i + 1 ≤
j ≤ i+k} must be a true neighbor of σ(i+k+1), which

implies that σ(i + k + 1) has at most 2k2 possibilities.

3) σ(i+1) is in the difference graph G(x) and σ(i+k+1)
has k blue edges connecting to {σ(j) : i + 1 ≤ j ≤ i +
k}. In this case, σ(i+k+1) has at most 2∆ possibilities,

because the difference graph has at most 2∆ different

vertices.

Note that whenever the last case occurs, it gives rise to k new

blue edges. Since the total number of blue edges is ∆, the last

6To be more precise, to count the difference graphs with the given set
of ∆ red edges, it suffices to enumerate all possible edge-disjoint unions
of alternating Eulerian circuits with the given set of ∆ red edges. To this
end, for a fixed m and sequence (∆1, . . . , ∆m) such that

�
∆i = ∆,

we enumerate all possible edge-disjoint unions of m alternating Eulerian
circuits consisting of (∆1, . . . , ∆m) red edges, respectively. First, determine
an ordering of oriented red edges, which has 2∆∆! possibilities. Then we
connect the first ∆1 oriented red edges by blue edges to form the first
alternating Eulerian circuit, the next ∆2 oriented red edges by blue edges
to form the second alternating Eulerian circuit, and proceed similarly to form
the rest of alternating Eulerian circuits.
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case can occur at most ∆/k times, which immediately yields

the desired factor ∆∆/k in (23).

Next, building upon this intuition, we present the rigorous

proof of Lemma 4.

Proof of Lemma 4: For a given permutation σ, let x(σ)
denote the corresponding 2k-NN graph. Hereafter the depen-

dence on σ is suppressed whenever it is clear from the context.

These are some useful facts about the difference graph G:

1) Let V denote the collection of the endpoints of edges in

Ered. Then the difference graph G = (V (G), E(G)) is

given by V (G) = V . Since |Ered| = ∆, |V (G)| ≤ 2∆.

2) For each 2k-NN graph, σ is determined up to cyclic

shifts and a reversals.

3) For two vertices j 6= j0, |Nx(j)∩Nx(j0)| is completely

determined by dx(j, j0) via the formula below.

|Nx (j) ∩Nx (j0)|

=





2k − 1 − dx(j, j0) if dx(j, j0) ≤ k;

2k + 1 − dx(j, j0) if k < dx(j, j0) ≤ 2k;

0 if dx(j, j0) > 2k.

By fact 2, it suffices to enumerate all σ such that

Ered(x(σ)) = Ered and σ(1) = 1. WLOG assume that the

ground truth x∗, σ∗(i) = i. The following is the outline of

our enumeration scheme:

1) Enumerate all possibilities for the set Nx(1) = {σ(n −
k + 1), . . . , σ(n), σ(2), . . . , σ(k + 1)}.

2) With Nx(1) determined, enumerate all possi-

bilities for the (ordered) sequence (σ(n − k +
1), . . . , σ(n), σ(2), . . . , σ(k + 1)).

3) For i from 1 to n − 2k − 1, enumerate σ(i + k + 1)
sequentially, assuming at step i that σ were determined

from σ(n − k + 1) up to σ(i + k).

Now we give the details on how cardinality bounds are

obtained for each step of the enumeration scheme.

Step 1: Decompose Nx(1) according to the set of true

neighbors and false neighbors. The set of true neighbors

Nx(1) ∩ Nx∗(1) is determined by the set of red edges in G.

Indeed, this set consists of all members i ∈ Nx∗(1) for which

(1, i) /∈ Ered.

The set Nx(1)\Nx∗(1) cannot be read directly from the set

of red edges. However we know all members of this set must

be connected to 1 via a blue edge. Hence Nx(1)\Nx∗(1) is a

subset of V (G), the vertex set of G. Since V (G) is determined

by Ered and |V (G)| ≤ 2∆, the number of possibilities

for Nx(1)\Nx∗(1) does not exceed the number of subsets

of V (G), which is at most 22∆.

Step 2: With the set Nx(1) determined, we next enumerate

all ways to place the elements in Nx(1) on the Hamiltonian

cycle specified by σ. That is, we specify the sequence (σ(n−
k +1), . . . , σ(n), σ(2), . . . , σ(k +1)), or equivalently, specify

σ−1(j) for all j ∈ Nx(1).
We start with Nx(1) ∩ V (G)c. A vertex in V (G)c is one

whose neighborhood is preserved, i.e., V (G)c = {j ∈ [n] :
Nx(j) = Nx∗(j)}. For each j ∈ Nx(1)∩ V (G)c, we have by

fact 3,

dx(1, j) = 2k − 1 − |Nx(1) ∩ Nx(j)| .

Since dx(1, j) is completely determined by Nx(1), there are

only two possibilities for σ−1(j).
Furthermore, for every pair j, j0 ∈ Nx(1) ∩ V (G)c, again

by fact 3,

dx(j, j0)

=

!
2k − 1 − |Nx (j) ∩ Nx (j0)| if j0 ∈ Nx (j) ;

2k + 1 − |Nx (j) ∩ Nx (j0)| otherwise.

So dx(j, j0) is also determined by Nx(j) and Nx(j0).
Therefore the entire sequence (σ−1(j) : j ∈ Nx(1) ∩ V (G)c)
is determined up to a global reflection around 1.

Next we handle all j ∈ Nx(1)∩V (G). Note that σ−1(j) ∈
{n − k + 1, . . . , n, 2, . . . , k + 1} because j ∈ Nx(1). Among

those 2k possible values, some are already taken by {σ−1(j) :
j ∈ Nx(1)∩V (G)c}, leaving |Nx(1) ∩ V (G)| values to which

all j ∈ Nx(1) ∩ V (G) are to be assigned. The number of

possible assignments is bounded by |Nx(1) ∩ V (G)|!. Since

|Nx(1) ∩ V (G)| ≤ min{2k, 2∆},
��Nx(1)∩V (G)

��! ≤ (2k)2∆.

Overall, the number of possible choices of the ordered tuple

(σ(n − k + 1), . . . , σ(n), σ(2), . . . , σ(k + 1)) is at most

2 · 22∆ · (2k)2∆ = 2(4k)2∆.

Step 3: In the previous two steps the values of (σ(n− k +
1), . . . , σ(k + 1)) have been determined, and so are the blue

edges between members of {σ(n − k + 1), . . . , σ(k + 1)}.

That is because (σ(j), σ(j0)) is a blue edge if and only if

dx∗(j, j0) ≤ k and dx∗(σ(j), σ(j0)) > k. Denote this set

of blue edges as E
(1)
blue, which can be empty. Recall that,

by balancedness, the total number of blue edges in G is ∆.

If |E(1)
blue| is already ∆, then the enumeration scheme is com-

plete because x is completely specified by the difference graph.

Otherwise we determine the value of σ(i+k+1) sequentially,

starting from i = 1. At the i’th iteration, we first assign

the value of σ(i + k + 1), the only remaining undetermined

neighbor of σ(i+1) in x. Then we update the set of blue edges

based on the value of σ(i+k+1): let E
(i+1)
blue = E

(i)
blue∪E

(i)
update,

where

E
(i)
update � {(σ(j), σ(i + k + 1)) :

dx∗(σ(j), σ(i + k + 1)) > k, j = i + 1, . . . , i + k}.

In other words, E
(i)
blue stands for the set of blue edges

that have been determined after the i − 1’th iteration.

We repeat this process until all ∆ blue edges are determined,

i.e., |E(i)
blue| = ∆.

At the start of the i’th iteration, all of σ(n − k + 1), . . . ,

σ(i + k) have been determined. Unless |E(i)
blue| = ∆, specify

σ(i + k + 1) as follows.

Consider three cases according to the red degree of σ(i+1),
i.e., the number of red edges incident to σ(i+1) in Ered. Note

that after the value of σ(i + k + 1) is assigned, Nx(σ(i + 1))
would be completely specified and all blue edges in G that are

incident to σ(i + 1) would be determined. Therefore exactly

one of the following three cases must occur (for otherwise

there would be more red edges than blue edges incident to

σ(i + 1) in G, contradicting the balancedness of G):
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Fig. 6. Vertices arranged by their order on the Hamiltonian cycle corre-
sponding to σ. At the ith iteration, the values of σ(n − k + 1) to σ(i + k)
are determined. The figure shows an example of case 1: the vertex σ(i + 1)
is not attached to any red edges.

Fig. 7. Case 2: σ(i + 1) is attached to some red edge(s) and is already
balanced at step i. In the figure the red degree and blue degree of σ(i + 1)
are both 1, thus (σ(i + 1), σ(i + k + 1)) cannot be a blue edge in G.

1) (Fig. 6) The red degree of σ(i + 1) is zero, meaning

that Nx(σ(i + 1)) = Nx∗(σ(i + 1)). We claim that

the value of σ(i + k + 1) has already been uniquely

determined. Indeed, at the ith iteration, all but one

members of Nx(σ(i+1)) are determined, and σ(i+k+1)
has to be the true neighbor of σ(i + 1) that is not in

{σ(i − k + 1), . . . , σ(i), σ(i + 2), . . . , σ(i + k)}.

2) (Fig. 7) The red degree of σ(i + 1) is nonzero and

equals the number of blue edges in E
(i)
blue incident to

σ(i+1). We claim that the number of possible values of

σ(i+k+1) is at most 2k. In this case by balancedness all

blue edges incident to σ(i+1) are contained in E
(i)
blue and

therefore the edge (σ(i+1), σ(i+k+1)) does not appear

in the difference graph G. That implies σ(i + k + 1) is

connected to σ(i + 1) in x∗, limiting the number of

choices for σ(i + k + 1) to at most 2k.

3) (Fig. 8) The red degree of σ(i+1) is nonzero and equals

one plus the number of blue edges in E
(i)
blue incident to

σ(i + 1). By balancedness, (σ(i + 1), σ(i + k + 1)) is a

blue edge in G. In this case, either 1 ≤ |E(i)
update| < k

or |E(i)
update| = k. Suppose this is the t’th time case

3 happens. Let ξt encode which of the two possibilities

occurs and specify the value σ(i + k + 1) as follows:

a) Let ξt = 0 and specify σ(i + k + 1) such that

1 ≤ |E(i)
update| < k. That is, at least one of

{(σ(j), σ(i + k + 1)) : i + 2 ≤ j ≤ i + k} is not a

blue edge in G. In this case σ(i + k + 1) is a true

neighbor of at least one of {σ(i+2), . . . , σ(i+k)};

in other words, σ(i+k+1) ∈ ∪i+2≤j≤i+kNx∗(j).
Thus, the number of possibilities of σ(i + k + 1)
is at most 2k(k − 1).

b) Let ξt = 1 and specify σ(i + k + 1)

such that |E(i)
update| = k. That is, each one

of {(σ(j), σ(i + k + 1)) : i + 2 ≤ j ≤ i + k} is a

blue edge in G. Here σ(i+k+1) can choose from

at most |V (G)| ≤ 2∆ vertices.

The above process terminates when |E(i)
blue| = ∆, at which

point the sequence (σ(k + 2), . . . , σ(n − k)) are determined.

Note that each iteration, which one of the cases 1, 2 or 3 occurs

is automatically determined. Therefore it suffices to enumerate

(i) the value of σ(i+ k +1) at the ith iteration; (ii) the binary

Fig. 8. Case 3: σ(i + 1) is attached to some red edge(s) and is not already
balanced at step i. In the figure σ(i + 1) has red degree 2 and blue degree
1. Therefore (σ(i + 1), σ(i + k + 1)) must appear G as a blue edge.

Fig. 9. The difference graph G(x(i)).

sequence ξ which determines case 3a or case 3b whenever

case 3 occurs. Note that

• In total, case 3b) can occur at most b∆/kc times because

|E(i)
blue| increases by k each time.

• Also, case 2) and case 3) combined can occur at most 2∆
times, because they only occur when σ(i + 1) ∈ V (G).

• From the previous fact, the length of the ξ sequence is

at most 2∆.

Overall, the total number of possibilities is at most
X

ξ∈{0,1}2∆

(2k(k − 1))2∆(2∆)∆/k ≤
(
8k2
)2∆

∆∆/k.

Combined with the cardinality bounds from step 1 and

step 2, we have

|X (Ered)| ≤ 2(4k)2∆ · (8k2)2∆∆∆/k = 2(32k3)2∆∆∆/k.

C. Information-Theoretic Lower Bound for Exact Recovery

Consider the Bayesian setting where x∗ is drawn uniformly

at random from the set X of all 2k-NN graphs. Then MLE

maximizes the probability of success, which, by definition, can

be written as follows:

P {bxML = x∗} = P {hL, x − x∗i < 0, ∀x 6= x∗} . (25)

Due to the symmetry of X , the probabilities in (25) are

equal to the corresponding conditional probabilities, condi-

tional on each x∗ ∈ X . WLOG, assume that x∗ is the 2k-NN

graph associated with the identity permutation σ∗(i) = i. It

is difficult to work with the intersection of dependent events

in (25). The proof strategy is to select a subset of feasible

solutions for which the events hL, x − x∗i < 0 are mutually

independent.

To this end, define x(i) to be the 2k-NN graph correspond-

ing to the permutation σ that swaps i and i + 1, i.e., σ(i) =
i + 1, σ(i + 1) = i, and σ = σ∗ everywhere else. It is easy

to see that the difference graph G(x(i)) contains four edges:

(see Fig. 9)

red edges: (i − k, i), (i + 1, i + k + 1);

blue edges: (i − k, i + 1), (i, i + k + 1).

Furthermore, for two such graphs x(i) and x(j) with k+1 ≤
i < j ≤ n − k, the edges sets E

(
G(x(i))

)
and E

(
G(x(j))

)

intersect if and only if j− i ∈ {k, k+1}. To avoid such pairs,
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we divide the x∗ cycle into blocks of 3k, each further divided

into three sections of length k, and only consider those i which

lies in the middle section of a block. Formally, define

D = {k + 1, k + 2, . . . , 2k, 4k + 1, . . . , 5k, . . . ,

3k(bn/3kc − 1) + k + 1, . . . , 3k(bn/3kc − 1) + 2k}.

Then for distinct i and j in D, the difference graph of x(i)

and x(j) have disjoint edge sets. This means all elements of"
hL, x(i) − x∗i : i ∈ D

#
are mutually independent.

For each i ∈ D, we have

P{hL, x(i) − x∗i < 0}
=P{L(i − k, i + 1) + L(i, i + k + 1)

− L(i − k, i) − L(i + 1, i + k + 1) < 0}
=P {Y1 + Y2 − X1 − X2 < 0} ,

where X1, X2 are independent copies of log dPn

dQn
under Pn,

and Y1, Y2 are independent copies of log dPn

dQn
under Qn.

Therefore

P {hL, x − x∗i < 0, ∀x 6= x∗}
≤P

n
hL, x(i) − x∗i < 0, ∀i ∈ D

o

= (P {Y1 + Y2 − X1 − X2 < 0})|D|

≤ exp (−|D|P {Y1 + Y2 − X1 − X2 ≥ 0}) . (26)

From the mutual independence of X1, X2, Y1, Y2, for any

τ ∈ R, we have

P {Y1 ≥ τ}P {Y2 ≥ τ}P {X1 ≤ τ} P {X2 ≤ τ}
≤P {Y1 + Y2 − X1 − X2 ≥ 0}

and hence

log P {Y1 + Y2 − X1 − X2 ≥ 0}
≥2 sup

τ∈R

(log P {Y1 ≥ τ} + log P {X1 ≤ τ}) .

Since (26) is an upper bound for P{bxML = x∗}, the success

of the MLE must require that

log |D| + 2 sup
τ∈R

(log P {Y1 ≥ τ} + log P {X1 ≤ τ})

→−∞.

On one hand, by Assumption 1,

sup
τ∈R

(log P {Y1 ≥ τ} + log P {X1 ≤ τ})

≥− (1 + o(1))αn + o(log n).

On the other hand, by construction we have |D| ≥ n/3 −
k ≥ n/4 under the assumption k < n/12, from which we

conclude the necessity of 2αn ≥ (1+o(1)) logn for P{bxML =
x∗} → 1.

IV. ALMOST EXACT RECOVERY

In this section we give the proof of Theorem 2. The

proof follows the same strategy as that in [26], which studies

recovering a hidden community (densely-connected subgraph)

in a large weighted graph; specifically, the sufficient condition

for almost exact recovery is established by analyzing the

(suboptimal) MLE7 and the necessary condition follows from a

mutual information and rate-distortion argument. Nevertheless,

as our model differs significantly from the hidden commu-

nity model, the proof here requires much more sophisticated

techniques, involving a delicate union bound to separate the

contributions of the red edges from blue edges and crucially

relying on the counting lemmas for 2k-NN graphs shown

in Section III-B.

A. Proof of Correctness of MLE for Almost Exact Recovery

We abbreviate the MLE bxML as bx in the proof below.

For any 2k-NN graph x ∈ X , recall from Section III-A

the difference graph G(x) defined by x − x∗. Let Ered(x)
and Eblue(x) denote the set of red and blue edges in G(x),
respectively. Let ∆ = |Ered(bx))| = d(bx, x∗)/2. Then 0 ≤
∆ ≤ nk. To prove the sufficiency, it suffices to show that

P {∆ ≥ �nnk} = o(1) for some �n = o(1) to be chosen.

Recall that X` is the set of all x ∈ X such that G(x)
contains exactly ` red edges, i.e., d(x, x∗) = 2`. For any

1 ≤ ∆ ≤ nk and any τ ∈ R, we have that

{∆ = `} ⊂ {∃x ∈ X` : hL, x − x∗i > 0}

⊂




∃x ∈ X` :
X

e∈Ered(x)

Le <
X

e∈Eblue(x)

Le






⊂



∃x ∈ X` :

X

e∈Ered(x)

Le ≤ `τ



∪



∃x ∈ X` :

X

e∈Eblue(x)

Le ≥ `τ



 .

For each x ∈ X`, we have that

X

e∈Ered(x)

Le
d
=
X̀

i=1

Xi,
X

e∈Eblue(x)

Le
d
=
X̀

i=1

Yi,

where Xi’s and Yi’s denote i.i.d. copies of the log-likelihood

ratio log dPn

dQn
under distribution Pn and Qn respectively. Cher-

noff bound gives that for all τ ∈ [−D(QnkPn), D(PnkQn)]
and ` ≥ 1,

P

!
X̀

i=1

Xi ≤ `τ

)
≤ e−`EP (τ),

P

!
X̀

i=1

Yi ≥ `τ

)
≤ e−`EQ(τ). (27)

7For almost exact recovery, the optimal estimator that minimizes the
objective E [d(�x, x∗)] is the bit-wise maximum a posterior (MAP) estimator:
�xe(w) = 1 if P {x∗

e = 1|w} ≥ P {x∗

e = 0|w}; and �xe(w) = 0 otherwise.

Authorized licensed use limited to: Northeastern University. Downloaded on August 01,2021 at 15:55:42 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: CONSISTENT RECOVERY THRESHOLD OF HIDDEN NN GRAPHS 5223

Recall that Ered(`) = {Ered(x) : x ∈ X`} stands for the

set of all possible Ered(x) where x ranges over all possible

2k-NN graphs in X with d(x, x∗) = 2`. Note that



∃x ∈ X` :
X

e∈Ered(x)

Le ≤ `τ






=

!
∃E ∈ Ered(`) :

X

e∈E

Le ≤ `τ

)
.

By the union bound and Chernoff’s bound (27), we get that

P {∆ = `}

≤ |Ered(`)|P
!
X̀

i=1

Xi ≤ `τ

)
+ |X`|P

!
X̀

i=1

Yi ≥ `τ

)

≤ |Ered(`)| e−`EP (τ) + |X`| e−`EQ(τ). (28)

We first focus on the case k ≥ 2. Note that for ` ≥ �nnk,

it follows from Lemma 3 that

|Ered(`)| ≤ (96k2)`

�
kn

b`/2c



≤(96k2)`

�
2enk

`


`/2

≤(96k2)`

�
2e

�n


`/2

,

where we used
(

n
m

)
≤ (en/m)m and ` ≤ �nnk. Sim-

ilarly, combining Lemma 3 and Lemma 4, we have for

�nnk ≤ ` ≤ nk,

|X`| ≤(96k2)`

�
kn

b`/2c



· 2(32k3)2```/k

≤(96k2)`

�
2ekn

`


`/2

2(32k3)2```/k

≤(96k2)`

�
2e

�n


`/2

2(32k3)2`(nk)`/k,

where the last inequality comes from the range of `. Thus for

any �nnk ≤ ` ≤ nk,

P {∆ = `} ≤ e−`E1 + e−`E2

with

E1 �EP (τ) − 1

2
log

1

�n
− 2 log k − O(1),

E2 �EQ(τ) − 1

k
log n − 1

2
log

1

�n
− 8 log k − O(1).

By (13), we have kD(PnkQn)(1 − η) ≥ log n for some

η ∈ (0, 1). Choose τ = (1 − η)D(PnkQn). By the

assumption (12), we have

E1 ≥ cη2 D(PnkQn) − 1

2
log

1

�n
− 2 log k − O(1).

Using the fact that EP (τ) = EQ(τ) − τ , we have

E2 ≥ cη2D(PnkQn) − 1

2
log

1

�n
+

D(PnkQn)(1 − η) − 1

k
log n − 8 log k − O(1)

≥ cη2D(PnkQn) − 1

2
log

1

�n
− 8 log k − O(1).

Since k log k = o(log n) and kD(PnkQn) ≥ log n,

it follows that D(PnkQn) = ω(log k). Therefore, setting

�n = 1/ (kD(PnkQn)), it follows that E � min{E1, E2} =
Ω(D(PnkQn)). Hence,

P {∆ ≥ �nnk} =

nkX

`≥�nnk

P {∆ = `}

≤
∞X

`=�nnk

(
e−`E1 + e−`E2

)

≤ 2 exp(−�nnkE)

1 − exp(−E)
= exp (−Ω(n)) .

In other words, the MLE achieves almost exact recovery.

The conclusion for k = 1 is shown similarly using the

combinatorial upper bounds |Ered(`)| ≤
(
nk
`

)
and |X`| ≤ (4n)`

from (22).

Remark 3: This is a good place to explain why the con-

ditions for exact and almost exact recovery involve two

different distance measures between Pn and Qn. The two

types of recovery demand control of P{∆ = `} for dif-

ferent ranges of `. For almost exact recovery, we need to

control P{∆ = `} for ` ≥ �nk. In this range, there is

a large difference between |Ered(`)| and |X`|. Indeed from

Lemma 4, there may be up to (ck)2```/k members of X`

with the same set of red edges. Hence for large `, it pays

to separately account for the contributions of the red edges

and blue edges, as done in (28). To balance out the two terms

in (28), the exponential tilting parameter τ is chosen so that

EQ(τ) is large. Given that EQ(τ) is an increasing function on

[−D(QnkPn), D(PnkQn)], we choose τ close to D(PnkQn)
with EQ(τ) ≈ D(PnkQn). As a result, the condition for

almost exact recovery emerges from the tension between

D(PnkQn) and |X`|.
Exact recovery, on the other hand, requires upper bounding

P{∆ = `} for all ` ≥ 2. In fact as seen from the lower bound

proof of Theorem 1, the bottleneck for exact recovery happens

at ` = 2, where |Ered(`)| and |X`| are around the same order.

In this regime, there is no more gains in separating the red

and blue edge weights, and it is more favorable to directly

applying the Chernoff bound to their differences:

P{∆ = `} ≤ |X`|P




X

i≤`

Xi ≤
X

i≤`

Yi





≤ |X`|P
n
−` inf

τ
(EP (τ) + EQ(τ))

o

= |X`| e−`αn .

See [24, page 67] for a derivation of the equality

infτ (EP (τ) + EQ(τ)) = αn. As a result, the condition for

exact recovery is governed by the distance αn.

B. Information-Theoretic Lower Bound for Almost Exact

Recovery

Suppose that almost exact recovery of x∗ is achieved

by some estimator bx, such that E [d(bx, x∗)] = 2nk�n, for

some �n → 0. We show that (14) must hold. First, we can
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assume, WLOG, bx takes value in X , the set of all 2k-NN

graphs. Indeed, if we set

bx0 = argminx∈Xd(x, bx), (29)

then d(bx0, x∗) ≤ d(bx0, bx) + d(bx, x∗) ≤ 2 d(bx, x∗) and hence

E [d(bx0, x∗)] ≤ 4nk�n; in other words, bx0 also achieves almost

exact recovery.

Since x∗ → w → bx form a Markov chain, by the data

processing inequality of mutual information, we have

I(w; x∗)

≥I(bx, x∗)

≥ inf{I(ex, x∗) : ex ∈ X , E [d(ex, x∗)] ≤ 2nk�n} (30)

=H(x∗) − sup{H(x∗|ex) : ex ∈ X ,

E [d(ex, x∗)] ≤ 2nk�n} (31)

where the infimum in (30), known as the rate-distortion

function, is taken over all conditional distributions P�x|x∗

satisfying the constraints. Note that H(x∗) = log(n!) =
(1 + o(1))n log n. Moreover from Lemma 3 and Lemma 4,

for any fixed ex ∈ X , the number of possible x∗ ∈ X such

that d(ex, x∗) = 2` is at most

(96k2)`

�
kn

b`/2c



· 2(32k3)2```/k ≤ 2(ckn/`)`/2(nk)`/k,

where ck = 2e962220k17 and we used the fact that ` ≤ nk.

Therefore,

H(x∗|ex, d(ex, x∗) = 2`)

≤ `

2
log(ckn) − `

2
log ` +

`

k
log(nk) + log 2.

By the convexity of x 7→ x log x and Jensen’s inequality,

it follows that

H(x∗|ex, d(ex, x∗))

≤E [d(ex, x∗)]

4

'
log(ckn) − log

E [d(ex, x∗)]

2
+

2

k
log(nk)

(
+ log 2.

Furthermore, d(x, x∗) takes values in {0, . . . , 2nk}. Thus

from the chain rule,

H(x∗|ex) =H(d(ex, x∗)|ex) + H(x∗|ex, d(ex, x∗))

≤ log(1 + 2nk) + H(x∗|ex, d(ex, x∗)),

and hence

sup{H(x∗|ex) : ex ∈ X , E [d(ex, x∗)] ≤ 2nk�n}

≤1

2
�nnk [log(ckn) − log (�nnk)] +

�nn log(nk) + log 2 + log(1 + 2nk)

=o(n log n),

where the last equality holds due to the assumption that

k log k = o(log n). Therefore, we get from (31) that

I(w; x∗) ≥ (1 + o(1))n log n. On the other hand,

I(w; x∗) = min
Qw

Ex∗ [D(Pw|x∗kQw)]

≤Ex∗ [D(Pw|x∗kQ⊗(n

2)
n )]

=nkD(PnkQn),

where the minimum is taken over all distribution Qw, achieved

at Qw = Pw. This yields the desired kD(PnkQn) ≥ (1 +
o(1)) log n.

V. DISCUSSION ON EFFICIENT RECOVERY ALGORITHMS

As shown in Section III and Section IV, the sharp thresholds

for exact and almost exact recovery can both be attained by the

MLE (7), which, however, entails solving the computationally

intractable max-weight 2k-NN subgraph problem. So far

no polynomial-time algorithm is known to achieve the

sharp thresholds for exact or almost exact recovery except

when k = 1 [24]. In Section V-A, we consider several

computationally efficient algorithms to recover the hidden

2k-NN graph and analyze their statistical properties.

In Section V-C, we focus on the special case of small-world

graphs where the edge weights are distributed Bernoulli and

give a polynomial time algorithm that achieves the sharp

threshold for exact recovery.

A. Efficient Recovery Algorithms Under the General Hidden

2k-NN Graph Model

Recall that the MLE is the solution to

bxML = arg max
x∈X

hL, xi ,

where Le = log dPn

dQn
(we) is the log likelihood ratio. In the

special case of k = 1, this reduces to the max-weighted

Hamiltonian cycle problem. The previous work [24] ana-

lyzes its 2-factor integer linear program (ILP) relaxation

and fractional 2-factor linear program (LP) relaxation, and

show that they achieve the sharp exact recovery threshold

lim infn→∞(αn/ log n) > 1. This motivates us to consider

the ILP and LP relaxation for general k.

1) 2k-Factor ILP Relaxation: By relaxing the 2k-NN graph

constraint in the MLE to a degree constraint, we arrive at the

following 2k-factor ILP:

bx2kF = argmaxx hL, xi
s.t.
X

v∼u

x(u,v) = 2k, ∀u,

xe ∈ {0, 1}, ∀e (32)

where the first constraint enforces that every vertex has

degree 2k. It is known that for constant k, the ILP (32) can

be solvable in O(n4) time [29].

To analyze bx2kF, note that each feasible solution x to the

ILP is a 2k-regular graph. Therefore, the difference graph

x−x∗ is still balanced and the simple bound (22) continues to

hold:

|X∆| ≤ (4kn)∆,

where X∆ is the collection of 2k-regular graphs x such that

the difference graph x − x∗ contains exactly ∆ red edges.
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Then following the same argument as in the upper bound proof

of Theorem 1 in Section III-A, we have

P{bx2kF 6= x∗} ≤
X

∆≥1

(4kn)∆ exp (−αn∆)

=
X

∆≥1

exp [−∆ (αn − log(4kn))] ,

which is order o(1) whenever lim infn→∞(αn/ logn) > 1 and

k = no(1). This is suboptimal by a multiplicative factor of 2
compared to the sharp threshold lim infn→∞

αn

2 log n > 1.

In fact, bx2kF provably fails to attain the sharp exact recovery

threshold when 2 ≤ k ≤ no(1). To see this, assume that

x∗ is associated with the identity permutation and consider

its modifications of the following form: fix two vertices i, j
for which dx∗(i, j) > k, remove the edges (i, i + 1) and

(j, j + 1) in x∗ and add the edges (i, j) and (i + 1, j + 1),
resulting in a 2k-regular graph x(i,j) feasible to (32). There are

O(n2) such modified solutions and the difference in weights

hw, x(i,j) − x∗i are close to being mutually independent.

Each x(i,j) corresponds to a difference graph with ∆ = 2
red edges. By following the similar lower bound proof for

exact recovery in Section III-C, we can conclude that under

Assumption 1, if lim infn→∞(αn/ logn) < 1, then with high

probability there is at least one feasible solution x(i,j) such

that hL, x(i,j) − x∗i > 0, yielding bx2kF 6= x∗.

2) LP Relaxation: By further relaxing the integer constraint

in bx2kF, we arrive at the following LP:

bxLP = argmaxx hL, xi
s.t.
X

v∼u

x(u,v) = 2k, ∀u,

xe ∈ [0, 1], ∀e.

Since bxLP is a relaxation of bx2kF, it follows from the above

negative result of ILP that under Assumption 1, bxLP 6= x∗

when lim infn→∞(αn/ logn) < 1. In the positive direction,

one can show that bxLP also achieves exact recovery for 1 ≤
k ≤ no(1) when lim infn→∞(αn/ logn) > 1. That is because

firstly, the feasible set of the LP is a fractional 2k-factor

polytope, the entries of whose extreme points are all half-

integrals by the determinant analysis in [30, p 280]. That is,

(bxLP)e ∈ {0, 1/2, 1} for all e. Moreover, the difference graph

x−x∗ can be represented by a balanced multigraph with edge

multiplicity at most 2 (we refer the reader to [24] for details).

The rest of the proof follows exactly from the proof of [24,

Theorem 1].

To sum up, when it comes to exact recovery, the statistical

performance for bx2kF and bxLP match in the asymptotics. They

both require lim infn→∞(αn/ logn) > 1, which is suboptimal

by a factor of two. Whether they can achieve almost exact

recovery under weaker conditions remains open.

3) Simple Thresholding: To partially address the problem

of almost exact recovery, we consider a naïve thresholding

estimator bxTH given by

bxTH(e) = 1 {Le > τn} ,

where the sequence τn = (1 − η)D(PnkQn) for

some small fixed constant η that will be later specified.

By definition of bxTH,

E [d(bxTH, x∗)]

=
X

e:x∗

e=1

P {Le ≤ τn} +
X

e:x∗

e=0

P {Le > τn} .

From the Chernoff bound (27), we have for τn ∈
[−D(QnkPn), D(PnkQn)],

P{Le ≤ τn} ≤ e−EP (τn) if x∗
e = 1;

P{Le > τn} ≤ e−EQ(τn) if x∗
e = 0.

Assume that lim inf D(PnkQn)
log(n/k) > 1. Then there exists some

fixed constant η ∈ (0, 1) such that (1 − η)D(PnkQn) ≥
log(n/k) for all sufficiently large n. Under Assumption 2,

we get that for some constant c > 0,
X

e:x∗

e=1

P {Le ≤ τn}

≤kne−EP (τn)

≤kn exp(−cη2 D(PnkQn))

≤kn exp(−cη2 log(n/k)) = o(kn).

From EQ(τn) = EP (τn) + τn, we also have
X

e:x∗

e=0

P {Le > τn}

≤n2 e−EQ(τn)

=n2 exp (−(1 − η)D(PnkQn) − EP (τn))

≤knEP (τn) = o(kn).

Thus we have shown that under Assumption 2, the thresh-

olding estimator bxTH achieves almost exact recovery provided

that lim inf D(PnkQn)
log(n/k) > 1, which is optimal for k = 1, in

view of the necessary condition lim inf kD(PnkQn)
log n ≥ 1.

It is worth pointing out that bxTH may not be a valid

2k-NN graph. One can of course consider the modified

estimator (29) by projecting bx to the set of 2k-NN graphs;

however, it is unclear whether this can be done in polynomial

time. It is an interesting open problem whether a compu-

tationally efficient 2k-NN graph estimator can be obtained

from bxTH and still inherits the almost exact recovery guarantee

lim inf D(PnkQn)
log(n/k) > 1.

4) Spectral Methods: For a variety of problems such as

clustering and community detection, spectral methods have

been successfully used to recover the hidden structures based

on the principal eigenvectors of the observed graph [31], [32].

In our model, with slight abuse of notation, let L denote the

n×n matrix of log likelihood ratios, where Lij = log dPn

dQn
(we)

for edge (i, j) = e and Lii = 0. Note that the principal

eigenvectors of E(L) contain perfect information about the

hidden 2k-NN graph. Indeed, to see this, rewrite L as

L =(D(PnkQn) + D(QnkPn))ΠBΠ>−
D(QnkPn) (J− I) + (L − E(L)),

where Π is the permutation matrix associated with the hid-

den 2k-NN graph; B is the adjacency matrix of the basic

2k-NN graph where Bij = 1 if min{|i − j|, n − |i − j|} ≤ k
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and Bij = 0 otherwise; J is the all-ones matrix and I is the

identity matrix. Since B is a circulant matrix, its eigenvalues

and eigenvectors can be determined by the discrete Fourier

transform of the window function:

λj =

kX

`=−k

exp

�
i2πj`

n



− 1 =

sin (2k+1)jπ
n

sin jπ
n

− 1

for j = 0, . . . , n − 1, where i =
√
−1 is the imaginary

unit, λ0 = 2k (degree) and λn−j = λj which decays

similarly to the sinc function. Furthermore, the eigenvector v1

of ΠBΠ> corresponding to λ1 encodes the permutation

matrix Π perfectly as v1 = Π(ω0, . . . , ωn−1)>, where ω =
exp
(
i
2π
n

)
is the nth root of unity. Thus in the noiseless case

one can exactly recover the underlying permutation Π and

hence the hidden 2k-NN graph from v1. That prompts us

to obtain an estimator bΠ by sorting the entry-wise angles of

the second eigenvector of L, and define bxspectral = bΠBbΠ>.

Unfortunately, it turns out that v1 can be very sensitive to

the noise perturbation (L − EL) due to the small eigengap.

For example in the special case Pn = N (µn, 1) and Qn =
N (0, 1), we have

L = µ2
nΠBΠ> − µ2

n

2
(J− I) + µZ,

where Z is a symmetric Gaussian matrix with zero diagonal

and Zij = Zji independently drawn from N (0, 1) for i < j.

The eigengap of λ1−λ2 ∼ k3/n2, while the spectral norm of

the noise perturbation kZk2 is on the order of
√

n. Thus, by the

Davis-Kahan theorem, the second eigenvector of L is close to

v1 if µnk3/n2 �
√

n, i.e., µn � n5/2/k3.8 When k = no(1),

this is highly suboptimal compared to the sharp thresholds for

exact and almost exact recovery given by (33), (34) in the

succeeding subsection.

B. Numerical Experiments

In this subsection we carry out a numerical experiment

to evaluate the performance of the algorithms discussed in

Section V-A above. We focus on the Gaussian model with

weight distribution Pn = N (µn, 1) and Qn = N (0, 1) for

µn > 0. From Corollaries 1 and 2, under the Gaussian model,

the sharp thresholds for exact recovery (for 2 ≤ k ≤ no(1))

and almost exact recovery (for 1 ≤ k ≤ o(log n/ log log n))
are

lim inf
n→∞

µ2
n

2 logn
> 1 (33)

and

lim inf
n→∞

kµ2
n

2 log n
> 1, (34)

respectively.

The setup of the simulation is as follows. Let n = 500,

k = 5, and choose a sequence of µn so that µ2
n/ log n takes

value on a fine grid between 0 and 10 with step size 0.1.

We run the following experiment for 200 independent trials.

For each grid value of µn, we generate a random weighted

8In fact, following the analysis of spectral ordering in [25], one can show
that the almost exact recovery can be efficiently achieved by �xspectral under a

slightly higher SNR: µn � n7/2/k4.

Fig. 10. Empirical proportion of exact recovery of the true 2k-NN graph
x∗ for the four polynomial-time algorithms discussed in Section V-A applied
to 200 independent instances drawn from the Gaussian weight distributions:
Pn = N (µn, 1) and Qn = N (0, 1), with k = 5 and n = 500.

graph w from the hidden 2k-NN model with Gaussian edge

weights. Given w, the four estimators bx2kF, bxLP, bxTH and

bxspectral discussed in Section V-A are computed. The ILP

bx2kF, and the LP bxLP are solved with the branch-and-cut

algorithm [33] and the simplex method [34], respectively; the

thresholding estimator bxTH selects those edges with weights

at least
p

(4 + 1/
√

log n) log n, which is slightly above the

maximum weight of edges not in x∗ with high probability. The

outcome of the experiment is reported in Figures 10 and 11.

In Fig. 10, the x-axis represents the signal strength µ2
n/ logn;

the y-axis is the empirical proportion of an estimator exactly

recovering the true NN graph x∗ out of the 200 indepen-

dent trials. For estimators that return fractional edge adja-

cency vectors bx, it is viewed as achieving exact recovery

if
P

e |bxe − x∗
e | < 10−5.

One interesting observation from the simulation outcomes

is that the performance of the ILP bx2kF and the LP bxLP

are almost identical. In fact, we found that even though the

LP can potentially return non-integral entries (bxLP(e) = 1/2
since the fractional solutions must be half-integral), those

entries are very rare, and the solutions to the ILP and the

LP often coincide.

In Fig. 10, the vertical line at µ2
n/ logn = 2 represents the

asymptotic sharp threshold for exact recovery given by (33),

while the vertical line at µ2
n/ logn = 4 is threshold for bx2kF

and bxLP to achieve exact recovery as shown in Section V-A.

This asymptotic result agrees well with the empirical result

in Fig. 10 which is run for n = 500. Indeed, for all µ2
n/

log n < 4, both estimators failed to achieve exact recovery for

all 200 trials. As µ2
n/ logn exceeds 4, the fraction of exact

recovery quickly converges to 1.

In comparison, the thresholding estimator bxTH and the spec-

tral estimator bxspectral perform much worse. Perfect recovery

never occurs across the entire parameter regime. To better

compare these four estimators, we also quantify the edge

discrepancy between the estimators and the truth. The results

are shown in Fig. 11.

In Fig. 11, the y-axis is the normalized risk
P

e |bxe −
x∗

e|/(kn) averaged across all trials. Note that an estimator can

make errors by missing the edges in the true 2k-NN graph

x∗ and adding those outside x∗. As a result, when the signal

is very weak (small µn), the normalized risk can be close to
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Fig. 11. Comparison on the normalized risk (fraction of misclassified edges)
of the four polynomial-times algorithms under the same setup as in Fig. 10.

its maximal value 2, which is the case for all of bx2kF, bxLP

and bxspectral; in comparison, for weak signal, the thresholding

estimator has a normalized risk close to 1 simply because very

few edge weights exceed the threshold and bxTH essentially

output an almost empty graph. As µn increases, the risk of

both bx2kF and bxLP decays rapidly and become almost zero near

the threshold µ2
n/ log(n) = 4. In comparison, the normalized

risk for the thresholding estimator bxTH converges to zero at a

slower rate. Furthermore, we argued in Section V-A that the

spectral methods are highly sensitive to the noise perturbation.

This is confirmed by Figure 11, in which bxspectral performs

considerably worse than the other three estimators.

C. Achieving the Exact Recovery Threshold Under the

Small-World Model

Although designing efficient algorithms that achieve the

sharp thresholds appears challenging under the general hidden

2k-NN graph model, the task turns out to be more manageable

for the special case of the Watts-Strogatz small-world graph

model. Recall the special case (4) considered in the introduc-

tion with Pn = Bern(pn) and Qn = Bern(qn), where

pn = 1 − �n +
2�nk

n − 1
and qn =

2�nk

n − 1
. (35)

For succinctness the subscript n will be suppressed for

the remainder of this subsection. The observed graph w ∈
{0, 1}(n

2) can be viewed as a noisy version of the true 2k-NN

graph x∗. By Corollaries 1, for 2 ≤ k ≤ no(1), the sharp

threshold for exact recovery is lim infn→∞(−2 log �/
log n) > 1, i.e., � ≤ n− 1

2
−Ω(1). We show that the greedy

algorithm below succeeds under this condition. Note that the

results in this section only apply to the parametrization under

the small-world model and not the general case where Pn and

Qn are Bernoulli distributions.

As mentioned in Section I, to exactly recover x∗, it suffices

to recover the corresponding Hamiltonian cycle identified by

a permutation σ∗. Similar to the enumeration scheme that

lies at the heart of the proof of Lemma 4, the algorithm first

determines the neighborhood of one vertex and their ordering

on the Hamiltonian cycle, and then sequentially finds the

remaining vertices to complete the cycle.

Since it suffices to recover σ∗ up to cyclic shifts and

reversals, we can assume WLOG that i0 = σ∗(1). In Step 1

Algorithm 1 Greedy Algorithm for Exact Recovery Under

the Small-World Model

Start from an arbitrary vertex i0 and let bσ(1) = i0;

Step 1 (label the neighbors of bσ(1)):
Let N � Nw(bσ(1)) be the set of vertices incident to

bσ(1) in w;

if The subgraph of w induced by N is isomorphic to that

of x∗ induced by Nx∗(1) then
Use the subgraph of w induced by N to determine

(up to a reversal) the ordering

(bσ(n − k + 1), . . . , bσ(n), bσ(2), . . . , bσ(k + 1))
else Report error and terminate;

Step 2 (label the remaining vertices sequentially):

Vlabeled � {bσ(n − k + 1), . . . , bσ(n), bσ(1), . . . , bσ(k + 1)};

for i=1 to n-2k-1 do

U � Nw(bσ(i + 1))\Vlabeled;

switch |U| do

case |U| ≥ 2
if exactly one member u of U is incident to

bσ(i + 2) then
Set bσ(i + k + 1) = u.

else Report error and terminate;

case |U| = 1
Set bσ(i + k + 1) be the vertex in U ;

case |U| = 0
if exactly one member v of

Nw(bσ(i + 2))\Vlabeled is incident to exactly k
members of Vc

labeled then
Set bσ(i + k + 1) = v

else Report error and terminate;

Vlabeled � Vlabeled ∪ {bσ(i + k + 1)};
Output x(bσ), the 2k-NN graph corresponding to bσ.

of Algorithm 1, one needs to order the members of N from

the subgraph of x∗ induced by N . We will show, with high

probability, N = Nw(i0) coincides with the true neighborhood

Nx∗(bσ(1)) and the subgraph of w induced by N is identical

to that of x∗. Therefore, we can infer the ordering of members

of N using the nearest-neighbor structure of x∗. In particular,

σ∗(n−k+1) and σ∗(k+1) are the only two vertices in N that

are incident to exactly k−1 vertices in N ; having determined

σ∗(n − k + 1), σ∗(n− k + 2) is the only vertex in N that is

incident to σ∗(n − k + 1) and exactly k − 1 other vertices in

N ; similarly σ∗(n− k + 3) can be uniquely determined given

σ∗(n − k + 1) and σ∗(n − k + 2), so on and so forth.

Step 1 of Algorithm 1 relies on the fact that with high

probability, w and x∗ completely agree in the neighborhood

near the fixed vertex i0. This does not hold uniformly for all

vertices. However we will show that uniformly for all i ∈ [n],
w and x∗ differ by at most one edge in the neighborhood

near i. This fact is crucial for the success of the second step.

Now we present the exact recovery guarantee of the algorithm.

Theorem 3: Consider the Watts-Strogatz small-world graph

model under the parameterization (35). Assume that k = no(1)

and lim infn→∞(−2 log �/ logn) > 1, then with probability

1−o(1), Algorithm 1 runs successfully and returns x(bσ) = x∗.

In other words, Algorithm 1 achieves exact recovery.
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Proof: Let us start with some notations. Recall that the

set of true neighbors of a vertex j is denoted as Nx∗(j).
Let Ex∗(j) (resp. Ew(j)) denote the set of edges in x∗

(resp. w) whose endpoints contain at least one member of

Nx∗(σ∗(j)) ∪ {σ∗(j)}. We claim that under the assumption

lim infn→∞(−2 log �/ logn) > 1, the following events occur

simultaneously with high probability:

• An = {Ew(1) = Ex∗(1)};

• Bn = {|Ew(j)∆Ex∗(j)| ≤ 1, ∀j};

• Cn = {w(σ∗(j + 1), σ∗(j + k + 2)) = 0, ∀j = 1, . . . ,
n − 2k − 1}.

First we argue that on An ∩ Bn ∩ Cn, Algorithm 1

correctly recovers x∗. Under An, the subgraphs of

w induced by Nx∗(σ∗(1)) coincide with that of x∗.

Hence Algorithm 1 successfully recovers (σ∗(n − k +
1), . . . , σ∗(n), σ∗(2), . . . , σ∗(k + 1)) up to a reversal. WLOG

say bσ(i) = σ∗(i) for all σ∗(i) ∈ Nx∗(σ∗(1)).
Next we show inductively that the algorithm correctly labels

all the remaining vertices. Start from the inductive hypothesis

that bσ(j) = σ∗(j) for all j ≤ i+k. Recall that U = Nw(bσ(i+
1))\Vlabeled and the algorithm considers the following three

cases according to the size of U :

1) |U| ≥ 2. Under Bn, we must have |U| = 2 because

otherwise Ew(i + 1)\Ex∗(i + 1) contains at least

two edges, contradicting Bn. Write U = {u, v}. One

of u, v must be σ∗(i + k + 1), because otherwise

Ew(i + 1)\Ex∗(i + 1) contains at least the two edges

(σ∗(i + 1), u) and (σ∗(i + 1), v), contradicting Bn. Say

u = σ∗(i + k + 1). Then (σ∗(i + 1), u) is the only

member of Ew(i+1)∆Ex∗(i+1). Thus u and σ∗(i+2)
must be neighbors in w. Under Cn, v cannot be σ∗(i +
k + 2). Hence v and σ∗(i + 2) are not neighbors in x∗.

Consequently, they cannot be neighbors in w, because

otherwise both (σ∗(i+2), v) and (σ∗(i+1), v) belong to

Ew(v)∆Ex∗(v), contradicting Bn. Under the induction

hypothesis, bσ(i + 2) = σ∗(i + 2). Hence, u is the only

member of U that is incident to bσ(i + 2) in w and thus

the algorithm successfully identifies u as σ∗(i + k + 1).
2) |U| = 1. In this case the element u in U must be σ∗(i+

k+1) because otherwise both (σ∗(i+1), σ∗(i+k+1))
and (σ∗(i+1), u) are contained in Ew(i+1)∆Ex∗(i+1),
contradicting Bn.

3) |U| = 0. Under Bn, (σ∗(i + 1), σ∗(i + k + 1)) is the

only member of Ew(i + 1)∆Ex∗(i + 1). As a result,

σ∗(i+2) must be incident to all of its 2k true neighbors.

These 2k neighbors contain σ∗(i+k+1), and under Bn,

σ∗(i + k + 1) is the only one that is incident to exactly

k members of Vc
labeled. Thus the algorithm can always

identify σ∗(i + k + 1).

It remains to show that all three events An,Bn, Cn

occur with high probability. Under the assumption

lim infn→∞(−2 log �/ logn) > 1, there exists some positive

constant η such that � < n−1/2−η for large enough n. By (35),

1 − p < n−1/2−η and q < n−3/2−η+o(1) for k ≤ no(1).

• The event An: To show P {Ac
n} = o(1), note that there

are O(k2) edges in Ex∗(1). The probability that one of

them does not appear in w is upper bounded by O(k2) ·

(1−p) ≤ n−1/2−η+o(1) = o(1). Similarly the probability

that an false edge shows up in Ew(1) is at most O(nk) ·
q ≤ n−1/2−η+o(1) = o(1). Thus Ex∗(1) = Ew(1) with

high probability.

• The event Bn: Similar as above, |Ex∗(j)∆Ew(j)| equals

in distribution to X + Y with X ∼ Binom(n1, 1 − p),
Y ∼ Binom(n2, q) with n1 = O(k2), n2 = O(nk) and

X, Y independent. Thus

P {|Ex∗(j)∆Ew(j)| > 1}
=P{X + Y > 1}
≤P{X > 1} + P{Y > 1} + P{X = Y = 1}.

Using the Binomial distributions of X, Y , the above can

be further bounded by
�

n1

2



(1 − p)2 +

�
n2

2



q2 + n1n2(1 − p)q = o(1/n).

By the union bound,

P {Bc
n} ≤

X

j≤n

P {|Ex∗(j)∆Ew(j)| > 1} = o(1).

• The event Cn: The edge (σ∗(j + 1), σ∗(j + k + 2)) is

not in x∗. Therefore P{w(σ∗(j + 1), σ∗(j + k + 2)) =
1} = q = o(n−3/2). Thus P {Cc

n} = o(1) follows from

the union bound.
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