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Consistent Recovery Threshold of
Hidden Nearest Neighbor Graphs

Jian Ding, Yihong Wu

Abstract— Motivated by applications such as discovering
strong ties in social networks and assembling genome subse-
quences in biology, we study the problem of recovering a hidden
2k-nearest neighbor (NN) graph in an n-vertex complete graph,
whose edge weights are independent and distributed according to
P,, for edges in the hidden 2k-NN graph and @, otherwise. The
special case of Bernoulli distributions corresponds to a variant of
the Watts-Strogatz small-world graph. We focus on two types of
asymptotic recovery guarantees as n — oo: (1) exact recovery:
all edges are classified correctly with probability tending to one;
(2) almost exact recovery: the expected number of misclassi-
fied edges is o(nk). We show that the maximum likelihood
estimator achieves (1) exact recovery for 2 < k < n°® jf

lim inf 1?)(;71 > 1; (2) almost exact recovery for 1 <
k < o(&%) if liminf% > 1, where a, 2

—2log [ /dP.dQ., is the Rényi divergence of order % and
D(P.||Qxr) is the Kullback-Leibler divergence. Under mild
distributional assumptions, these conditions are shown to be
information-theoretically necessary for any algorithm to succeed.
A Kkey challenge in the analysis is the enumeration of 2k-NN
graphs that differ from the hidden one by a given number
of edges. We also analyze several computationally -efficient
algorithms and provide sufficient conditions under which they
achieve exact/almost exact recovery. In particular, we develop a
polynomial-time algorithm that attains the threshold for exact
recovery under the small-world model.

Index Terms—Nearest neighbor (NN) graphs, small-world
graphs, information-theoretic lower bounds.

I. INTRODUCTION
HE strong and weak ties are essential for information
diffusion, social cohesion, and community organization
in social networks [1]. The strong ties between close friends
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are responsible for forming tightly-knit groups, while the weak
ties between acquaintances are crucial for binding groups of
strong ties together [2]. The celebrated Watts-Strogatz small-
world graph [3] is a simple network model that exhibits both
strong and weak ties. It posits that n nodes are located on a
ring and starts with a 2k-nearest neighbor (NN) graph of strong
ties, where each node is connected to its 2k nearest neighbors
(k on the left and k on the right) on the ring. Then to generate
weak ties, for every node, each of its strong ties is rewired with
probability € to a node chosen uniformly at random. As € varies
from 0 to 1, the graph interpolates between a ring lattice and
an Erd6s-Rényi random graph; for intermediate values of e, the
graph is a small-world network: highly clustered with many
triangles, yet with a small diameter.

The Watts-Strogatz small-world graph and its variants, albeit
simple, have been extensively studied and widely used in
various disciplines to model real networks beyond social net-
works, such as academic collaboration network [4], metabolic
networks [5], brain networks [6], and word co-occurrence
networks in language modeling [7], [8]. Most of the previ-
ous work focuses on studying the structures of small-world
graphs [9] and their algorithmic consequences [10]-[12]. How-
ever, in many practical applications, it is also of interest to
distinguish strong ties from weak ones [13]-[16]. For example,
in Facebook [17] or Twitter network [18], identifying the
close ties among a user’s potentially hundreds of friends pro-
vides valuable information for marketing and ad placements.
Even when additional link attribute information (such as the
communication time in who-talks-to-whom networks [19]) are
available to be used to measure the strength of the tie, the task
of discovering strong ties could still be challenging, as the
link attributes are potentially noisy or only partially observed,
obscuring the inherent tie strength. Therefore, it is of funda-
mental importance, in both theory and practice, to understand
when and how we can infer strong ties from the noisy and
partially observed network data. In this paper, we address this
question in the following statistical model:

Definition 1 (Hidden 2k-NN Graph Recovery):

Given: n > 1, and two distributions P,, and @,,, parame-
trized by n.

Observation: A randomly weighted, undirected complete
graph w with a hidden 2k-NN graph z* on n vertices, such
that the edge weights are independent, and for each edge e,
the edge weight w, is distributed as P, if e is an edge in x*
and as (),, otherwise.

Inference Problem: Recover the hidden 2k-NN graph z*
from the observed random graph.
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(a) The 2k-NN graph
corresponding to the
Hamiltonian cycle

(1,2,3,4,5,6,7,8,1).

(c) The 2k-NN graph
corresponding to the
Hamiltonian  cycle

(1,4,3,5,6,8,7,2,1).
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(b) Heatmap of one
realization of w with
the hidden 2k-NN
graph in (a).
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(d) Heatmap of one
realization of w with
the hidden 2k-NN
graph in (c).
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Fig. 1. Examples of 2k-NN graphs for n = 8 and k = 2. The edge
weight we is distributed P, = N'(6, 1) if e is an edge in the 2k-NN graph.
Otherwise we ~ Qn = N (0, 1).

Fig. 2. Left: An observed graph generated by the hidden 2k-NN graph model
with n = 30 vertices, k = 4, P, = Bern(0.8), and Q,, = Bern(0.09);
Right: the observed graph with vertices rearranged according to the latent
2k-NN graph.

See Figs. 1 and 2 for graphical illustrations of the model and
the reconstruction problem. Note that every 2k-NN graph z
can be described by a permutation o on [n] as follows: first,
construct a Hamiltonian cycle (o(1),0(2),...,0(n),o(1)),
then connect pairs of vertices that are at distance at most k
on the cycle (cf. Figs. 1a and lc).

The 2k-NN model encompasses partially observed networks
as a special case. This can be accomplished by considering
P, =€+ (1—¢P, and Q,, = €d. + (1 — €)Q, where
* is a special symbol outside of the support of P, and @/,
indicating those edge weights that are unobserved. When
P, and @, are Bernoulli distributions with corresponding
success probabilities p,, > ¢,, we arrive at a variant of the
Watts-Strogatz small-world graph.

The problem of recovering a hidden NN graph is also
motivated by de novo genome assembly, the reconstruction
of an organism’s long sequence of A,G,C,T nucleotides
from fragmented sequencing data, which is one of the most
pressing challenges in genomics [20], [21]. A key obstacle of
the current high-throughput genome assembly technology is
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genome scaffolding, that is, extending genome subsequences
(so-called contigs) to the whole genome by ordering them
according to their positions on the genome. Thanks to recent
advances in sequencing technology [22], [23], this process is
aided by long-range linking information between contigs in the
form of randomly sampled Hi-C reads, where a much larger
concentration of Hi-C reads exist between nearby contigs on
the genome than those that are far apart. By representing
each contig as a node, the underlying true ordering of contigs
on the genome as the hidden Hamiltonian cycle, and the
counts of the Hi-C reads linking the contigs as edge weights,
the previous work [24] casts genome scaffolding as a hidden
Hamiltonian cycle recovery problem with P,, = Pois(\,,) and
@, = Pois(u,) with A, > u,, where A\, and pu,, are the
average number of Hi-C reads between adjacent and non-
adjacent contigs respectively; this is a special case of our
model for £ = 1. However, this hidden Hamiltonian cycle
model only takes into account of the signal — an elevated
mean number of Hi-C reads — in the immediately adjacent
contigs on the genome; in reality, nearby contigs (e.g. two-
hop neighbors) also demonstrate stronger signal than those that
are far apart. By considering & > 1, our general 2k-NN graph
model is a closer approximation to the real data, capturing
the large Hi-C counts observed between near contigs which
can be used to better assemble the genome. Indeed, as our
theory later suggests, the information provided by multi-hop
neighbors strictly improves the recovery threshold.

Note that in the aforementioned applications we often have
k < n; thus in this paper we focus on the regime of k& = n°(1)
and study the following two types of recovery guarantees. Let
z* e {0, 1}(2) denote the adjacency vector of the hidden
2k-NN graph, where 7 = 1 for every edge e in the hidden
2k-NN graph and 2; = 0 otherwise. Let X denote the
collection of adjacency vectors of all 2k-NN graphs with
vertex set [n].

Definition 2 (Exact Recovery): An estimator ¥ = T(w) €
{0, 1}(2) achieves exact recovery if, as n — oo,

sup P{3 # 2"} = o(1),

rreX
where w is distributed according to the hidden 2k-NN graph
model in Definition 1 with hidden 2k-NN graph z*.

Depending on the applications, we may not be able to
reconstruct the hidden 2k-NN graph z* perfectly; instead,
we may consider correctly estimating all but a small number
of edges, which is required to be o(nk), since a 2k-NN graph
contains kn edges. In particular, let d(z*, ) be the Hamming
distance d(z*,7) = >, L(y-25.}-

Definition 3 (Almost Exact Recovery): An estimator T =
T(w) € {0, 1}(2) achieves almost exact recovery if,
as n — oo,

sup E[d(z*,T)] = o(nk).
TreX

Instead of using a permutation-based metric such as the
Kendall tau distance, we choose the edge Hamming distance d
for defining almost exact recovery because for the practical
application of discovering strong ties in social networks,
there is more value in recovering the edges rather than
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the permutation. Moreover, the edge sets arise naturally in
the analysis of Zyy: the distribution of the log-likelihood ratio
between a 2k-NN graph x and the truth z* only depends on
the number of edges in x that differ from z*. It is also worth
noting that many computationally efficient algorithms, some
of which to be discussed in Section V-A, output an edge set
instead of a permutation. One can further project the edge set
to a 2k-NN graph to recover the permutation, but it is not
clear whether this can be done in polynomial time.

Intuitively, for a fixed network size n and a fixed number &
of nearest neighbors, as the distributions P, and @, get
closer, the recovery problem becomes harder. This leads to
an immediate question: From an information-theoretic per-
spective, computational considerations aside, what are the
fundamental limits of recovering the hidden 2k-NN graph?
To answer this question, we derive necessary and sufficient
conditions in terms of the model parameters (n,k, P,, Q)
under which the hidden 2k-NN graph can be exactly or
almost exactly recovered. These results serve as benchmarks
for evaluating practical algorithms and aid us in understanding
the performance limits of polynomial-time algorithms.

Specifically, we discover that the following two information
measures characterize the sharp thresholds for exact and
almost exact recovery, respectively. Define the Rényi diver-
gence of order 1/2!:

Qp = _210g/ V dP,dQy; (1)

and the Kullback-Leibler divergence:
dP,
D(P,||Qn :/dPnlo —.
(PallQu) 550

Under some mild assumptions on P,, and @,,, we show that
the necessary and sufficient conditions are as follows:

o Exact recovery (2 < k < n°(M):

2
liminf = > 1 )
n—oo logn
o Almost exact recovery (1 <k<o (logjlgorgln)):
kD(P,||Q,,
Jim inf PP l1@n) 3)
n—o0 1ogn

The conditions for exact recovery and almost exact recov-
ery are characterized by two different distance measures,
namely «,, and D(P,|Q,). This arises from the large devia-
tion analysis for the loss function d(z*, ¥) in different regimes.
In particular, for almost exact recovery, it turns out to be
beneficial to obtain a tighter upper bound on the fluctuations
of edge weights for those edges not in x* than those in z*,
because there are many more edges of the former type, thus
many more possible ways to arrange them into a different
2k-NN graph z with d(z*,2) = Q(kn). See Remark 3
for a detailed explanation. For the special case of £k = 1
(Hamiltonian cycle), the exact recovery condition was shown
to be liminf, 1<?g"n > 1 [24]. Comparing this with (2)
for £ > 2, we find that, somewhat surprisingly, the exact

'Tt is also related to the so-called Battacharyya distance B(Py,Qy) via
an =2 B(Pn,Qn).
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recovery threshold is halved when k increases from 1 to 2,
and then stays unchanged as long as k remains n°()). In con-
trast, the almost exact recovery threshold decreases inversely
proportional to k over the range of [1, o(log n/ loglogn)]. The
sharp thresholds of exact recovery for k& > n(1) and almost
exact recovery for k = Q(logn/loglogn) remain open.

For the Bernoulli distribution (in other words, unweighted
graphs) with P, = Bern(p,,) and Q,, = Bern(q,,), we have
the explicit expressions of

= —210g (Vi + V(T = pa)(1 — 4a) ), and

p I —pn
D(P,|Qn) :pnlog_n + (1 —pn) log =
qn 1- an
As an interesting special case, consider the parametrization
2enk 2e,k
Pn = 1-— €n =+ ~ and qn = —n7 (4)
n—1 n—1

so that the mean number of edges in the observed graph
stays at nk for all ¢, € [0,1]. This can be viewed as an
approximate version of the Watts-Strogatz small-world graph,
in which we start with a 2k-NN graph, then rewire each edge
with probability €,, independently at random. In this case, our
main results (combined with earlier results in [24] for the
case k = 1) specialize to:
o The sharp threshold for exact recovery is at
1

lim inf e =1 fork=1;
n—oo n
21og L
liminf ——2 e — 1 for 2 <k<n® (5
n—oo n

e The sharp threshold for almost exact recovery is at

liminf k(1 —€,) =1 (6)

for 1 < k < o(logn/loglogn).
In the related work [25], a similar case of Bernoulli distrib-
utions has been studied.? It is shown in [25] that exact recov-

ery is impossible if 1 — ¢, = o <\/l°%" % 10%71 nlmgn)
/ og "5

In particular, this impossibility result requires ¢,, — 1, which
is highly suboptimal compared to the sharp exact recovery con-
dition (5). It is also shown in [25] that almost exact recovery
can be achieved efficiently via thresholding on the number of

common neighbors when 1 —¢, = w ((10%)1/4 % (l(’%)lp)

. . 3.5
and via spectral ordering when 1 — ¢, = w (“k ); these

sufficient conditions, however, are very far from being optimal.

The sufficient conditions for both exact and almost exact
recovery are established by analyzing the maximum likelihood
estimator (MLE). While it is a priori clear that the MLE is
optimal for exact recovery,® that it also achieves the sharp

2To be precise, the previous work [25] considers Bernoulli distgibutions
2¢e, k

under a slightly different parameterization: pn, = 1 — en + =24 and
qn = 2;2{“ In addition to exact recovery and approximate recovery, a

hypothesis testing problem between the small-world graph and Erdds-Rényi
random graph is studied.

3Indeed, the MLE minimizes the probability of error under the uniform
prior, which is least favorable due to the permutation invariance of the model.
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threshold for almost exact recovery is not. The proof of cor-
rectness for the MLE relies on tight combinatorial arguments
that count the number of 2k-NN graphs at a given distance
to the ground truth. Conversely, we also show that below the
sharp thresholds, no estimator can achieve recovery. For exact
recovery, this is done by constructing a set of modified 2k-NN
graphs that are hard to distinguish from the truth; for almost
exact recovery, we use the mutual information method that
compares the information between the observed graph and the
ground truth with its rate distortion function.

Finally, we remark that although the MLE achieves the
sharp thresholds for both exact and almost exact recovery, it is
computationally intractable in the worst case. For the special
case of k£ = 1 (Hamiltonian cycle), a linear programming (LP)
relaxation of the MLE (namely, the fractional 2-factor LP)
is shown to achieve the sharp exact recovery condition [24].
For £ > 2, however, it remains open whether the exact
recovery threshold or the almost exact recovery threshold
can be achieved efficiently in polynomial time. In Section V
we analyze several efficient algorithms and obtain sufficient
conditions for them to achieve exact/almost exact recovery;
these conditions do not meet with the sharp threshold in
general. In the special case of the small-world model, we give
a polynomial-time greedy algorithm that attains the threshold
for exact recovery.

The paper is organized as follows. In Section II we state
and discuss our main results on the sharp recovery thresholds.
In Section III and Section IV we prove the results for exact
recovery and almost exact recovery. In Section V we analyze
the computationally efficient recovery algorithms.

II. MAIN RESULTS

This section contains our main results on the sharp thresh-
olds for exact and almost exact recovery.

A. Exact Recovery

Recall that an estimator 7 is said to achieve exact recovery if
sup,-cx P{Z # 2*} = o(1), where we recall that X’ denotes
the collection of adjacency vectors of all 2k-NN graphs
on [n]. Under a uniform prior over X, the maximum likelihood
estimator Zp;, minimizes the Bayes risk P{Z # x*}. Since the
uniform prior is the least favorable in permutation invariant
models, we have that Zyy, is the optimal estimator for exact
recovery. Maximizing the likelihood for the hidden 2k-NN
graph problem is equivalent to finding the max-weighted
2k-NN subgraph with weights given by the log likelihood
ratios. Specifically, assuming that dP, /dQ,, is well-defined,
for each edge e, let L, = log 4= (w,). Then the MLE is the

dQn
solution to the following combinatorial optimization problem:

R e L . 7
ML argrmrlea)?( ,T) @)

When k = 1, (7) reduces to the max-weighted Hamiltonian
cycle problem. Note that in the Poisson, Gaussian or Bernoulli
model where the log likelihood ratio is an affine function of
the edge weight, we can simply replace L in (7) by the edge
weights w.
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Recall that o, = —21log [ /dP,dQ,,. We show that if 2 <
k < n°M), then the condition liminf, .. (2a,/logn) > 1 is
sufficient for Zyy to achieve exact recovery. This condition is
also necessary, with the following additional assumption:

Assumption 1 ( [24], Assumption 1): Let X = log 35
dP,

(wg) for some wy ~ P, and Y = log §5*(wy) for some
wy ~ Qn. Assume that /

sup (logP{Y > 7} +logP{X < 7})
T7€R

> — (14 o(1))a, + o(logn).

Remark 1 (Generality of Assumption 1): Via  Chernoff’s
inequality, it can be shown that (see [24, page 67] for a
derivation)

sup (logP{Y > 7} +1logP{X < 7}) < —au,.
TR
We rely on this inequality in the large deviation analysis
to establish the sufficient condition for Ty to achieve exact
recovery. Assumption 1 essentially ensures that the Chernoff’s
inequality is asymptotically tight, so we can invert the large
deviation analysis to show that the sufficient condition is
also almost necessary. It was shown in [24, Lemma 6] that
Assumption 1 is fulfilled by a wide class of weight distribu-
tions including Poisson, Gaussian and Bernoulli distributions.
The following is our main result regarding exact recovery.
Theorem 1 (Exact Recovery): Let k > 2.

o Suppose
1
oy — E(logn + 17logk) — +o0. ®)

Then the MLE (7) achieves exact recovery: P{Zyr, #
x*} — 0. In particular, this holds if k¥ = n°(1) and

On

lim inf > 1.

n—oo logn

o Conversely, assume that k& < n/12 and Assumption 1
holds. If exact recovery is possible, then

20,

> 1.

lim inf
n—oo logn
When k£ = 1, as shown in [24] the sharp threshold for exact
recovery is liminf,, . ;5% > 1, which is stronger than the
condition in Theorem 1 by a factor of 2. In other words, from
k = 1to k > 2 there is a strict decrease in the required
level of signal. A simple explanation is that the hidden 2k-NN
graph x* contains more edges when k£ > 2, and the elevated
weights on these edges provide extra signal for determining the
latent permutation o*. However, this extra information ceases
to help as k increases from 2 to n°), which can be attributed
to the following fact: when we swap any pair of adjacent
vertices on o*, we always get a 2k-NN graph x which differ
from x* by 4 edges, regardless of how large £ is. In fact for all
2 < k < n°W, the bottleneck for exact recovery is formed by
such swaps, resulting in the k-independent necessary condition
liminf,, s % > 1 (see Section III-C for details).
Theorem 1 can be applied to a wide range of continuous
and discrete edge weight distributions. See the corollary below
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for the implication of Theorem 1 when the edge weights are
distributed as Gaussian, Poisson, or Bernoulli (unweighted).
Corollary 1: For 2 <k < n°M) we have

o If P, = N(pn,1) and Q,, = N(vp,1), then exact
recovery is possible (resp. impossible) if
)2
h,{iio%f% > 1 (resp. <1).

o If P, = Pois(u,) and @, = Pois(vy,), then exact
recovery is possible (resp. impossible) if

2
2 vV —VYn

lim inf M > 1 (resp. < 1).

n—0o0 logn

o If P, = Bern(p,) and Q,, = Bern(g,), then exact
recovery is possible (resp. impossible) if

—4log (\/]an—l- (1 - pn)(l - Qn))

lim inf
logn

n—oo

>1 (resp. < 1).

In particular, under the small-world model, for p,, g,
parametrized as in (4), exact recovery is possible
(resp. impossible) if*

2log L

o> 1 (resp. < 1).
ogn

lim inf
n—oo

B. Almost Exact Recovery

Before presenting our main results for almost exact recov-
ery, we need to introduce some notations. Let ¢ p()\) and
1o(A) be the log moment generating functions of the log
likelihood ratio log :115 under P, and @,, respectively. That
is,

Yo (\) £ logEq, [exp (Alog 4P )]

dQn
= log / dPdQy ™, O
P,
Yp(A) =logEp, [exp (Alog an>]
= log/dPﬁJ”\dQ;’\ =YoA+1).  (10)
Denote the Legendre transforms of 1p and ¢ as
Eq(T) £ sup AT — 1g(N),
AER
Ep(1) £ sup A\t — ¥p(\)
AER
=sup AT —Po(1+ ) = Eqg(r) — . (11)
AER

f k stays bounded as n grows, it can be shown that exact recovery is
possible if and only if €, = o(1/y/n). The sufficient direction follows from
condition (8). The necessary direction is proven by slightly modifying the
proof of Theorem 1: consider an alternative solution that reverses the roles of
two adjacent vertices ¢ and 7 4 1. The likelihood at the alternative beats (or
equals) the likelihood at the truth if both edges (i —k,¢) and (i+1,i+k+1)
are absent from the observed graph, which occurs with probability ©(e2).
Unless €, = o(1/y/n), the alternative beats (or is on par with) the truth
for some ¢ € [n] with non-vanishing probability, deeming exact recovery
impossible.
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Then Ep and Eg are convex and monotone functions,
such that as 7 increases from —D(Q,||P,) to D(P,[|@n),
Eq(7) increases from 0 to D(P,||Q,) and Ep(7) decreases
from D(Q,||P,) to 0. The following assumption postulates a
quadratic lower bound of Ep at the boundary:

Assumption 2: There exists an absolute constant ¢ > 0,
such that for all 7 € [0, 1],

Ep((1 = n)D(PallQn)) = ci” D(Po|Qu).

Remark 2 (Generality of Assumption 2): Note that Ep(T)
is convex with minimum O and curvature (second-order
derivative) 1/Varp(log(dP,/dQ,)) at T = D(P,||Qn).
In view of Taylor expansion of Ep(7) at 7 = D(P,||@n),
Assumption 2 essentially ensures that Ep(7) satisfies a quadr-
atic lower bound with curvature at least Q(1/D(P,[|@y)),
giving us the desired stability in the large-deviation behavior
of the log-likelihood ratios when 7 is near D(P,|@y).
When the weight distributions are Gaussian, Ep(7) is
exactly a quadratic function with curvature 1/(2D(P,||Qx))
at 7 = D(P,||@n,) and thus Assumption 2 holds. It can
also be shown that Assumption 2 is satisfied whenever the
distribution of log(dP,,/d@,,) under P, is sub-Gaussian with
proxy variance O(D(P,||Q,)) (see [26], Section 3).

Theorem 2 (Almost ExactRecovery): Suppose Assumption 2
holds. If klogk = o(logn) and

ED(PQn)
logn

12)

lim inf

n—oo

L 13)

then the MLE (7) achieves almost exact recovery. Conversely,
assume that k = O(logn). If almost exact recovery is possible,
then

ED(PaQu)

lim inf > 1. (14)
logn

Theorem 2 should be compared with the exact recovery
threshold liminf(2ay,/logn) > 1 for 2 < k < n°M); the
latter is always stronger, since

oy, = —210g/ v/ dP,dQ,

dQn
dp,

[dQn
—2Ep, log d% = D(P,||Qn),

by Jensen’s inequality. Unlike exact recovery, the almost exact
recovery threshold is inversely proportional to k. Intuitively,
this is because almost exact recovery only requires one to
distinguish the latent 2k-NN graph z* from those 2k-NN
graphs that differ from «* by Q(kn) edges; in contrast, as we
will show in Section III-C, the condition for exact recovery
arises from eliminating those solutions differing from z* by
only four edges.

Similar to Theorem 1, Theorem 2 is applicable to a wide
class of weight distributions. Some examples are discussed in
the following corollary.

Corollary 2: For 1 < k < o(logn/loglogn), we have

= -2 longn

IN
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o if P, =N(up,1)and Q,, = N (vy, 1), then almost exact
recovery is possible (resp. impossible) if

k(/-‘n - ?

Vn)

lim inf
2logn

n—oo

> 1 (resp. < 1).

o if P, = Pois(u,,) and Q,, = Pois(v,,), then almost exact
recovery is possible (resp. impossible) if

k (Mn 10g(ﬂn/”n> + v — Nn)

lim inf
logn

n—oo

>1 (resp. < 1).

o if P, = Bern(p,) and Q,, = Bern(g,,), then almost exact
recovery is possible (resp. impossible) if

Dn _ 1=pn
b (polos 2+ (1= log 122)

lim inf

n—oo

>1 (resp. < 1).

logn

In particular, under the small-world model, for p,, g,
parametrized as in (4), almost exact recovery is possible
(resp. impossible) if

liminf k(1 —¢,) > 1 (resp. < 1).

n—00

III. ANALYSIS FOR EXACT RECOVERY

In this section we prove Theorem 1. The proof of the upper
bound (sufficient condition for exact recovery) is contained
in Section III-A. The upper bound proof involves analyzing
the maximum likelihood estimator. The most crucial step of
the proof is to obtain a tight upper bound on the number
of 2k-NN graphs that differ from the true one by a given
number of edges. The combinatorial arguments leading to
this upper bound is the main contribution of this paper, and
they are given in Section III-B. In Section III-C we prove
the information-theoretic lower bound. The lower bound is
proved by constructing a set of alternative 2k-NN graphs that
are difficult to distinguish from the truth z* unless P, and
@, are far enough apart. The analysis closely follows that
in [24, Section 6.1] where they consider the case k = 1, except
that we construct a difference set of alternative solutions
when k > 2.

A. Proof of Correctness of MLE for Exact Recovery

To analyze the MLE, we first introduce the notion of
difference graph,’ which encodes the difference between a
proposed 2k-NN graph and the ground truth. Given z,z* €
{0, 1}(75), let G = G(x) be a bi-colored simple graph on
[n] whose adjacency vector is x — z* € {0,:&1}(3), in the
sense that each pair (i, 7) is connected by a blue (resp. red)
edge if x;; — xj; = 1 (resp. —1). See Fig. 3 for an example.
By definition, red edges in G(x) are true edges in x* that are
missed by the proposed solution x, and blue edges correspond
to spurious edges that are absent in the ground truth.

SHere the notion of difference graph originates from simply subtracting one
adjacency matrix from another and using colors (blue or red) to encode the
plus or minus. This is not to be confused with the definition in [27] for a
different context.
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Fig. 3. An example for a difference graph G. Here G is obtained by
letting =* (resp. ) be the 2k-NN graph in Fig. la (resp. Ic), and then taking
the difference © — x*. The red (thick) edges stand for edges that in =* but
not x, while the blue (thin) edges are in = but not x*.

A key property of difference graphs is the following: Since
2k-NN graphs are 2k-regular, the difference graph G is
balanced, in the sense that for each vertex, its red degree
(the number of incident red edges) coincides with its blue
degree. Consequently, G has equal number of red edges and
blue edges, and the number of red (or blue) edges measures
the closeness of x to the truth z*. Denote

Xan ={x € X :d(z,2") =2A}
= {x € X : G(z) contains exactly A red edges}. (15)

In particular, {Xa : A > 0} partitions the feasible set X.
The analysis of the MLE relies crucially on bounding the size
of Xa. Once we have a tight bound on |Xa|, the proof of the
correctness of Zpy, follows from the Chernoff bound and the
union bound.

Proof of Sufficiency Part of Theorem 1: First partition X
according to the value of A:

P{3z e X : (L, x—2a") >0}

<> P{3zeXa:(Lx—a")>0}.
A>1

(16)

Recall that L. = log (‘}Qﬁ(we). Hence for each z € Xa,
the law of (L,z — x*) only depends on A, which can be

represented as follows:

(Lz—2)2 Y v -3 X,

i<A i<A
where Xq,..., XA are i.i.d. copies of log jg" under P,
Yi,..., YA are ii.d. copies of log 357,,7; under @,, and

2 denotes equality in distribution. Applying the Chernoff
bound yields

P Z}Q—ZXizo

i<A i<A
< inf {exp (A (boN) +¥p(-N)}, (1)
where ¥p and 1 are the log MGFs of log ddg under P,

and @, as defined in (9), (10). In particular, the Rényi
divergence in (3) is given by

e nff) < (4)

(18)
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Choosing A = 1/2 in (17) yields
P{(L,z —z*) > 0}

=P ZYi—ZXizo

i<A i<A

1
<exp (ZAwQ (§>) =exp (—a,A). (19)
A union bound yields
P{3z € Xa : (L,x —z*) > 0}
<Y P{L,x—=z")>0}
TEXA
<|Xa|exp (—anA). (20)

The most critical component of our analysis is to derive a
tight upper bound on |Xa|. We will use the bound (21) stated
in Lemma 1 below and proved in Section III-B. Assuming
Lemma 1, we arrive at

P{3z € Xa : (L,x —z") > 0} < 2exp (—Aky),

where £, £ o, — w — oo by assumption. Finally,
from (16),
P{Ix e X : (L, x—2a") >0}
< Z 2exp (—Akp)
A>1
_ 2exp(—2Kn) nooo 0
T exp(—rin) |
In other words, P{ZyL = 2*} — 1 as n — oo. O

Lemma 1: There exists an absolute constant C' such that for
any A >0and any 2 <k <n

A/2

|Xa| < 2(CKk'"n) (21)

The proof of Lemma 1 is contained in Section III-B. It is
the most involved component of our analysis, and the main
contribution of this paper. To provide some intuition on the
bound (21), let us first prove a simple bound

| Xa| < (4kn)®. (22)

This simple bound was proved in [24, Sec. 4.2] for k =1
(Hamiltonian cycles), but it holds for general k£ > 1 via similar
arguments. Substituting (22) into (26) immediately yields that
P{ZmL # z*} — 0, provided that «;,, — log(nk) — +o0,
which falls short of the desired sufficient condition (8) by
roughly a factor of 2 when k > 2.

The simple bound (22) is proved as follows. For each
x € Xa, suppose its difference graph G consists of
m connected components G, ..., G,,. Then each connected
component is also a balanced bi-colored graph. Let A; > 1
denote the number of red edges in G;. There are at most
24 configurations for the sequence (Aj,...,A,,) since
Y iemAi = A. From [24, Lemma 1], every connected
balanced bi-colored graph has an alternating Eulerian circuit,
i.e. a circuit with colors alternating between red and blue
that passes through every edge exactly once. To bound the
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total number of configurations for a connected component G;
with A; red edges, it suffices to count the number of such
alternating Eulerian circuits, which is upper bounded by the
number of length-2A; path (vg,v1,...,v2a,-1), such that
(vi,vi+1) is a red edge if ¢ is even, and a blue edge if
i is odd. To complete the circuit, (voa,—1,vp) must be a blue
edge.

We now sequentially enumerate vy to vaa,—1: given v,
which takes n values, there are only 2k possibilities for vy,
because (vg,v1) is a red edge so that v; must belong to
the neighborhood of vy in the true 2k-regular graph z*.
Overall, we conclude that the path (vp,...,v2a,—1) can take
at most (2kn )¢ possible values. Summing over the connected
components, we have

| Xal < >

(A1, A A=A
<2%(2kn)® = (4kn)>.

1] 2kn)*

i<m

It turns out this bound is only tight for £ = 1. For k > 2,
Lemma 1 gives a much better bound on the cardinality of Xa.
In comparison with the simple bound (22), Lemma | improves
the dependency on n from n® to n®/2. We have already seen
that the red edges play an important role in the proof of (22),
as the number of red edges is much lower than that of blue
edges. The tight bound (21) is obtained by further exploiting
the structural properties of red edges in the difference graph G.
In particular, we find that for each red edge in G, there is at
least another red edge “close” to it, which allows us to count
red edges in groups and further reduce the number of ways
they can appear in a difference graph. The precise notion of
closeness will be given in Section III-B, but let us illustrate
with a simple example.

Example 1: Recall that each 2k-NN graph z can be identi-
fied with a permutation (o(1),0(2),...,0(n)). By connect-
ing adjacent nodes on o and connecting o(n) with o(1),
o determines a Hamiltonian cycle, from which one can connect
pairs of vertices whose distance is at most k to construct a
2k-NN graph. Suppose the true 2k-NN graph z* is identified
with the identity permutation ¢* = (1,2,...,n). Consider
the alternative graph x identified with a permutation that
traverses part of the vertices in the opposite direction, i.e.
o= (1,2,....i,5,j—1,....i+1,j+1,j+2,...,n) for
some 7, j that are far apart (see Fig. 4a). The corresponding
difference graphs in the k = 1 and k = 2 cases are illustrated
in Fig. 4b, 4c respectively.

The crucial observation is that when k > 2, there is more
structure in the set of red edges in the sense that red edges do
not appear in isolation. For example in Fig. 4c, the indices of
the three red edges (¢,i+1), (i — 1,7+ 1) and (4,74 2) are all
close to each other; in particular, this triple can only take n
values in total. We find that when k& > 2, this observation holds
in greater generality. As a result, each red edge can help deter-
mine at least one other red edge, allowing us to enumerate the
red edges in bundles. This is the main reason why when upper
bounding |Xa|, we can reduce the exponent on n from A
to A/2. This structural property, however, is specific to k > 2:
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) i—1 i i+l 42
A i+1
i i1
g ! j=1 J  JF1 j+2
(@) (b) (©)

Fig. 4. From left to right, (a): Hamiltonian cycle associated with the
permutation ¢ = (...,%4,5,7 — 1,...,i + 1,7 + 1,5 + 2,...); (b): the
difference graph G(z) when k = 1, where x is the 2k-NN graph identified
by o3 (c): the difference graph G(z) when k = 2.

as shown by Fig. 4b (A = 2), the simple bound (22) is tight
for k = 1.

Let us also point out that the exponent A/2 in (21) is tight
for £ > 2. It is easy to see that when the nodes ¢,7 + 1
in the permutation o* are swapped, a difference graph G(z)
is formed with A = 2 red edges (see Section III-C and
Fig. 9 for a more extensive discussion of this example). Taking
i = 1,...,n yields n distinct difference graphs that are all
members of A5, meaning the size of Ao is no smaller than
n®/2_ at least when A = 2.

B. Proof of Lemma 1: Counting Difference Graphs

To prove Lemma 1, we begin with some notations. For a
2k-NN graph z, let Ereq(x) (resp. Epe(x)) be the set of red
(resp. blue) edges in G(x). The proof strategy is as follows:
First, in Lemma 3 we count

gl"ed(A) = {Ered(l‘) T E XA}.
Then for each Eyeq € Ered(A), Lemma 4 enumerates
X(Ered) = {iC € XA : Ered(x) - Ered} .

which contains all sets of blue edges that are compatible
with  Fl..q. This completely specifies the difference
graph G(z), and hence the 2k-NN graph x.

For a given 2k-NN graph = associated with the permuta-
tion o, let NV, (i) denote the set of neighbors of ¢ in x. Let
dx(i,j) = min{lo~1(i) — o7 (j)l,n — 071 (i) — o7 (j)[}
which is the distance between 7 and j on the Hamiltonian
cycle defined by o. It is easy to check that d, is a well-defined
metric on [n]. For the hidden 2k-NN graph z*, define AV, ()
and d.- (-, ) accordingly.

Definition 4: In the 2k-NN graph z*, define the distance
between two edges e = (i,4) and f = (j,7) as

d(ev f) = mln{da:* (Zv J)v dz* (17;)7 dz* (/;7 J)v dz* (Za 5)}

We say e and f are nearby if d(e, f) < 2k.

Since a 2k-NN graph has a total of kn edges, the cardinality
of &ea(A) is at most (kA”) The following lemma provides
additional structural information for elements of &ycq(A) that
allows us to improve this trivial bound.

Lemma 2: Suppose k > 2. For each red edge e in the
difference graph G, there exists a nearby red edge f in G

that is distinct from e.
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J i 7 J
(b) Case 2(a). (c) Case 2(b).

(a) Case 1.

Fig. 5. Three cases considered in the proof of Lemma 2.

Lemma 2 allows us to enumerate the red edges in groups,
leading to the following Lemma 3 which gives an upper bound
for the size of Eea(A).

Lemma 3: Suppose k > 2. Then

[€rea(A)] < (96K2)2 (mlm/g J)'

With the enumeration of the red edge sets complete, the fol-
lowing lemma controls the number of 2k-NN graphs that are
compatible with a fixed set of red edges. A key observation
is that the bound does not depend on n.

Lemma 4: Suppose k > 2. For each Eyeq € Erea (D),

| X (Frea)| < 2(32%)22AR/F, (23)

The desired bound in Lemma 1 immediately follows from
combining Lemma 3 and Lemma 4:

xal= U

Erea€Erea (A)

<(96+5)7 <L§72J

<2 (Ck'Tn)>?

X(Ered)

(24)

for a universal constant C' > 0, where the last inequality
follows from () < (ea/b)" and k > 2.
Next we prove Lemmas 2, 3, 4.
Proof of Lemma 2: We divide the proof into two cases

according to the degree of one of the endpoints of e = (4,1%),
say i, in the difference graph.

1) The degree of ¢ is strictly larger than 2. Then by
balancedness the number of red edges attached to ¢ is
at least 2. Other than (¢, ), there must exist at least one
other red edge (7,7'). By definition

d((i,7), (i,7)) < dg- (i,7) = 0 < 2k.

That is, (i,4') and (¢,7) are nearby. See Fig. 5a.

2) The degree of i is equal to 2. Then 7 is only attached
to one red edge and one blue edge in G. Denote the
blue edge as (4,7). Since the only red edge attached
to i is (¢,7), we have that in the proposed solution x,
the vertex 4 is connected to all its old neighbors in z*
except i. Thus we get that N, (1) = Ny« (i) U {7 }\{}.
As a result, when k > 2, out of the two vertices ji,
Jjo that are right next to j in the x cycle (d,(j,71) =
dy(j,j2) = 1), at least one of them is an old neighbor
of i. WLOG say j; € N,-(i). Consider these cases:
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a) dg+(j,71) < k. By triangle inequality d-(j,7) <
de=(J,j1) + de=(i,51) < 2k. Because G is a
balanced graph, there is at least one red edge (7, j)
attached to j, and

d((i,9), (4, 7)) < du=(5,7) < 2k.

In other words, (j,j) and (i,7) are nearby. See
Fig. 5b.

b) d.+(j,71) > k. In this case (j,j1) appears in the
difference graph as a blue edge. Therefore j; is one
of the vertices in G and attached to at least one red
edge (j1,J1). Recall that j; € Ny (i). Therefore

d((Z,,ZV), (jh}l)) S d;c* (i7j1) S k.

In other words, (jl,jl) and (z,;) are nearby. See
Fig. 5c.

|
Proof of Lemma 3: To each member Eioq of Ered(A),
we associate an undirected graph G(FEy.q) that takes the
red edge set FEpq as its vertex set. Two vertices in
G(Erea), or equivalently, two members e, f of Fq are
connected in G(FEyeq) if and only if e and f are nearby
per Definition 4. It suffices to enumerate all F..q for which
é(Ered) is compliant with the structural property enforced by

Lemma 2. Our enumeration scheme is as follows:

1) Fix m € [A] to be the number of connected components
of G(Eyeq). Select {eq, ..., e} from the edge set of z*.
Since x* is a 2k-NN graph with kn edges, there are (’;:L’)
ways to select this set.

2) Let Ayq,...,A,, be the sizes of the connected com-
ponents Ci,...,Cp of G(FEyeq). Since A; > 1 and
S>>A; = A, the total number of such (A;) sequences
is (ﬁj), as each sequence can be viewed as the result
of replacing m — 1 of the “4” symbols with “,” in the
expression A=1+14+...+1+1.

3) For each C;, there is at least one spanning tree 7;.
Since C; and T; share the same vertex set, it suffices
to enumerate 7;. First enumerate the isomorphism class
of T3, that is, count the total number of unlabeled rooted
trees with A; vertices. From [28], there are at most 32
such unlabeled trees.

4) Fort =1,...,m, let e; be the root of T;. Enumerate
the ways to label the rest of tree 7;. To start, label the
vertices on the first layer of 7, that is, the children
of e;. A red edge f being a child of e; on T; means f
and e; are nearby, limiting the number of labels to at
most 16k2. To see why, note that at least one endpoint
of f is at most 2k away from one of the endpoints of e;,
measured in terms of the distance d,+. No more than 8k
vertices fit this description. The other endpoint of f can
then only choose from 2k vertices because f is in the
edge set of x*.

The remaining layers of T; can be labeled similarly, with
at most 16k possibilities to label each vertex. In total
there are at most (16k2)2:~! to label T;.

This enumeration scheme accounts for all members
of &ea(A). By Lemma 2, G does not contain singletons,
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i.e. A; > 2 for all i. Thus m < |A/2], and
|Erea(D)]
kn A — 1 A 2INA—1
< 7 i
< > (m) (m_1> ,H3 (16k%)
m<|A/2] i<m
kn)A—lA 2\A QA( k;n)
< 2 32 (16k < (96k .
(1A% (OR7 < 06K o)
O

Before proving Lemma 4, notice the factor A®/* in (23).
This factor turns out to be crucial. To appreciate this subtlety,
let us first derive a simple bound | X (E,eq)| < 42Al. Note
that there is a one-to-one correspondence between 2k-NN
graph z and the difference graph G(z). Hence, it is equivalent
to enumerating all possible difference graphs with the given
set of red edges. Following the similar alternating Eulerian-
circuit based argument for proving (22), we can get that

>

(A1, Ap) Y- A=A

| X (Erea)| < (22A1) < 42A),

where 22 Al counts all the possible orderings of oriented red
edges.® However, this simple bound falls short of proving the
desired (24), as (LK;LQJ)A! > (ckn)®/2A%/2 for a universal
constant ¢ > 0.

Lemma 4 improves over this simple bound by further
exploiting the structure in the difference graph. In particular,
Lemma 4 counts | XA | by enumerating all Hamiltonian cycles
(c(1),0(2),...,0(n),0(1)) such that Eieq(z(o)) =
A key idea is to sequentially determine each neighborhood
N (o(i)) starting from ¢ = 1. Suppose N ((j)) has been
determined for all 1 < 5 < ¢ and we are about to specify
Nz (o(i 4+ 1)), which reduces to enumerating o (i + k + 1).
Roughly, there are three cases to consider:

red-

1) o(i+1) is not in the difference graph G(z). In this case,
Na(o(i+1)) = Ny«(o(i + 1)) and thus o(i + k + 1)
has already been fixed.

2) o(i+1) is in the difference graph G(x) and o(i+k+1)
has fewer than k blue edges connecting to {o(j) : i+1 <
j <i+k}. In this case, at least one of {o(j) :i+1<
j <i+k} must be a true neighbor of o(i+k+1), which
implies that o(i + k + 1) has at most 2k possibilities.

3) o(i+1) is in the difference graph G(x) and o(i+k+1)
has k blue edges connecting to {o(j) : i +1<j <i+
k}. In this case, o(i+k+1) has at most 2A possibilities,
because the difference graph has at most 2A different
vertices.

Note that whenever the last case occurs, it gives rise to k new
blue edges. Since the total number of blue edges is A, the last

%To be more precise, to count the difference graphs with the given set
of A red edges, it suffices to enumerate all possible edge-disjoint unions
of alternating Eulerian circuits with the given set of A red edges. To this
end, for a fixed m and sequence (Aq,...,An) such that > A; = A,
we enumerate all possible edge-disjoint unions of m alternating Eulerian
circuits consisting of (A1, ..., ;) red edges, respectively. First, determine
an ordering of oriented red edges, which has 22 Al possibilities. Then we
connect the first Ay oriented red edges by blue edges to form the first
alternating Eulerian circuit, the next Ay oriented red edges by blue edges
to form the second alternating Eulerian circuit, and proceed similarly to form
the rest of alternating Eulerian circuits.
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case can occur at most A /k times, which immediately yields
the desired factor A2/% in (23).

Next, building upon this intuition, we present the rigorous
proof of Lemma 4.

Proof of Lemma 4: For a given permutation o, let z(o)
denote the corresponding 2k-NN graph. Hereafter the depen-
dence on o is suppressed whenever it is clear from the context.
These are some useful facts about the difference graph G:

1) Let V denote the collection of the endpoints of edges in
Erea. Then the difference graph G = (V(G), E(G)) is
given by V(G) = V. Since |Eeq| = A, |[V(G)| < 2A.

2) For each 2k-NN graph, o is determined up to cyclic
shifts and a reversals.

3) For two vertices j # 7', [Nz (7)) NNz (5')] is completely
determined by d, (3, j') via the formula below.

Nz () NNz (5]

=92k+1—d:(5,5") if k<d.(j,5) < 2k;
0 if dy(j,5') > 2.

By fact 2, it suffices to enumerate all o such that
Erea(z(0)) = Freq and o(1) = 1. WLOG assume that the
ground truth z*, 0*(¢) = i. The following is the outline of
our enumeration scheme:

1) Enumerate all possibilities for the set M (1) = {o(n —
k+1),...,0(n),0(2),...,0(k+1)}.

2) With  MN(1) determined, enumerate all possi-
bilities for the (ordered) sequence (o(n — k +
1),...,0(n),0(2),...,0(k+1)).

3) For i from 1 to n — 2k — 1, enumerate o(i + k + 1)
sequentially, assuming at step ¢ that o were determined
from o(n — k + 1) up to o(i + k).

Now we give the details on how cardinality bounds are

obtained for each step of the enumeration scheme.

Step 1: Decompose N, (1) according to the set of true
neighbors and false neighbors. The set of true neighbors
Nz(1) N N+ (1) is determined by the set of red edges in G.
Indeed, this set consists of all members i € Ny« (1) for which
(1,7) ¢ Erea.

The set AV, (1)\N,+(1) cannot be read directly from the set
of red edges. However we know all members of this set must
be connected to 1 via a blue edge. Hence N (1)\NV,~(1) is a
subset of V' (G), the vertex set of G. Since V(@) is determined
by Erea and |V(G)| < 2A, the number of possibilities
for Mz (1)\Ny+(1) does not exceed the number of subsets
of V(G), which is at most 224,

Step 2: With the set NV, (1) determined, we next enumerate
all ways to place the elements in N, (1) on the Hamiltonian
cycle specified by o. That is, we specify the sequence (o(n —
k+1),...,0(n),0(2),...,0(k+1)), or equivalently, specify
o~ 1(j) for all j € Ny(1).

We start with NV;(1) N V(G)°. A vertex in V(G) is one
whose neighborhood is preserved, i.e., V(G)¢ = {j € [n] :
N () = Nax(j)}. For each j € N.(1) NV (G)¢, we have by
fact 3,

do(1,7) = 2k — 1 — [No(1) NN ()]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 8, AUGUST 2021

Since d,; (1, j) is completely determined by ;. (1), there are
only two possibilities for o=1(5).

Furthermore, for every pair j,j € N,(1) N V(G)¢, again
by fact 3,

da (4, 5")

_J2k -1 NG () NG (51)]
2k + 1 — [N () N NG (7))

if i/ e Nz (9);
otherwise.

So d.(j,j') is also determined by N, (j) and N, (j').
Therefore the entire sequence (o~ 1(j) : j € N(1) NV (G)°)
is determined up to a global reflection around 1.

Next we handle all j € AV, (1) NV (G). Note that 0~ 1(j) €
{n—k+1,...,n,2,...,k+ 1} because j € N,(1). Among
those 2k possible values, some are already taken by {o~*(j) :
j € N (1)NV(G)¢}, leaving [N (1) N V(G)| values to which
all j € N,(1) N V(G) are to be assigned. The number of
possible assignments is bounded by |A;(1) NV (G)|!. Since
Nz (1) NV(G)| < min{2k, 2A}, [N (DNV(G)|! < (2k)2.

Overall, the number of possible choices of the ordered tuple
(cn—k+1),...,0n),0(2),...,0(k+1)) is at most

2228 . (2k)%2 = 2(4k)%A.

Step 3: In the previous two steps the values of (o(n — k +
1),...,0(k 4+ 1)) have been determined, and so are the blue
edges between members of {o(n — k + 1),...,0(k + 1)}.
That is because (o(j),c(j')) is a blue edge if and only if
de+(7,7") < k and dg«(c(j),o(j")) > k. Denote this set
of blue edges as Eﬁae, which can be empty. Recall that,
by balancedness, the total number of blue edges in G is A.
If |Ek()i)le| is already A, then the enumeration scheme is com-
plete because x is completely specified by the difference graph.
Otherwise we determine the value of o(i+k+ 1) sequentially,
starting from ¢ = 1. At the ¢’th iteration, we first assign
the value of o(i + k 4 1), the only remaining undetermined
neighbor of o(i+1) in 2. Then we update the set of blue edges
based on the value of o (i+k+1): let Ek(fliel) = EéﬁleuEﬁgdate,
where

Bypanie 2 {(0(1), 00 + k4 1)) :
dps(0(§)yo(i+k+1)) >k, j=i+1,...,i+k}.

In other words, El()zlle stands for the set of blue edges
that have been determined after the ¢ — 1’th iteration.
We repeat this process until all A blue edges are determined,
ie., Et(ﬁle| =A.

At the start of the i’th iteration, all of o(n —k +1),...,
o(i + k) have been determined. Unless |E&Le| = A, specify
o(i+ k+ 1) as follows.

Consider three cases according to the red degree of o(i+1),
i.e., the number of red edges incident to o (i+1) in F\eq. Note
that after the value of o (i + k + 1) is assigned, NV, (o(i + 1))
would be completely specified and all blue edges in G that are
incident to o (i 4+ 1) would be determined. Therefore exactly
one of the following three cases must occur (for otherwise
there would be more red edges than blue edges incident to
o(i+ 1) in G, contradicting the balancedness of G):
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. ] L ]
o(n—k+1) o(i—1) (i) o(i+1) o(i+k)o(i+k+1)
Fig. 6.  Vertices arranged by their order on the Hamiltonian cycle corre-

sponding to o. At the ith iteration, the values of o(n — k + 1) to (i + k)
are determined. The figure shows an example of case 1: the vertex o (i + 1)
is not attached to any red edges.

e N e .
o(n—k+1) o(i—1) o(i) o(i+1) o(i+k)o(i+k+1)
Fig. 7. Case 2: o(i + 1) is attached to some red edge(s) and is already

balanced at step 4. In the figure the red degree and blue degree of o (i + 1)
are both 1, thus (o(¢ + 1),0(i + k + 1)) cannot be a blue edge in G.

1) (Fig. 6) The red degree of o(i + 1) is zero, meaning
that Ny(o(i + 1)) = Ny-(o(i + 1)). We claim that
the value of o(i + k + 1) has already been uniquely
determined. Indeed, at the <th iteration, all but one
members of MV (o (i+1)) are determined, and o (i+k-+1)
has to be the true neighbor of o(i 4+ 1) that is not in
{o(i—k+1),...,00),0(i+2),...,0(i+k)}.

2) (Fig. 7) The red degree of o(i + 1) is nonzero and
equals the number of blue edges in E}glﬁle incident to
o(i+1). We claim that the number of possible values of
o(i+k+1) is at most 2k. In this case by balancedness all
blue edges incident to o(i+1) are contained in Et(flzle and
therefore the edge (o(i+1),0(i+k+1)) does not appear
in the difference graph G. That implies o(i + k + 1) is
connected to o(i + 1) in «*, limiting the number of
choices for o(i + k + 1) to at most 2k.

3) (Fig. 8) The red degree of o(i+1) is nonzero and equals
one plus the number of blue edges in Et(flzle incident to
o(i+1). By balancedness, (o(i +1),0(i+k+1))is a
blue edge in G. In this case, either 1 < |E(Z) | <k

i update
or |E1(12date| = k. Suppose this is the ¢’th time case
3 happens. Let & encode which of the two possibilities

occurs and specify the value o(i + k + 1) as follows:

a) Let & = 0 and specify o(i + k + 1) such that
1< |E£2date| < k. That is, at least one of
{(c(4),0(t+k+1)):i+2<j<i+k}isnota
blue edge in G. In this case o(i + k + 1) is a true
neighbor of at least one of {c(i+2),...,0(i+k)};
in other words, o(i+k+1) € Ujyo<j<itiNg (7).
Thus, the number of possibilities of o(i + k + 1)
is at most 2k(k — 1).

b) Let & = 1 and specify o(i + k + 1)

such that |E1(12date| = k. That is, each one

of {(¢(j),o(i+k+1):i+2<j<i+k}isa
blue edge in G. Here o(i+k+1) can choose from
at most |V (G)| < 2A vertices.

The above process terminates when |E1(32131e| = A, at which
point the sequence (o(k + 2),...,0(n — k)) are determined.

Note that each iteration, which one of the cases 1, 2 or 3 occurs
is automatically determined. Therefore it suffices to enumerate
(i) the value of o (i + k+ 1) at the ith iteration; (ii) the binary

5221

.
o(n—k+1) o(i—1) (i) o(i+1) o(i+k)o(i+k+1)
Fig. 8. Case 3: o(i + 1) is attached to some red edge(s) and is not already

balanced at step 4. In the figure o (i + 1) has red degree 2 and blue degree
1. Therefore (o (i + 1),0(i + k + 1)) must appear G as a blue edge.

i—ki—-k+1 1—1 @ i+l i42 itk it+k+1

Fig. 9. The difference graph G(z(9)).

sequence ¢ which determines case 3a or case 3b whenever
case 3 occurs. Note that

o In total, case 3b) can occur at most | A/k| times because

|Eéllle| increases by k each time.

o Also, case 2) and case 3) combined can occur at most 2A
times, because they only occur when o(i + 1) € V(G).

o From the previous fact, the length of the & sequence is

at most 2A.
Overall, the total number of possibilities is at most

3 (2h(k - 1) (20)27F < (8k7)*2 AME,
gefo,1}24

Combined with the cardinality bounds from step 1 and
step 2, we have

| X (Frea)| < 2(4k)%2 - (8K%)2AARF = 2(3283)2A AR/E,
O

C. Information-Theoretic Lower Bound for Exact Recovery

Consider the Bayesian setting where x* is drawn uniformly
at random from the set X of all 2k-NN graphs. Then MLE
maximizes the probability of success, which, by definition, can
be written as follows:

P{aymL ="} =P{{(L,x —a™) <0, Vo#z*}.

Due to the symmetry of X, the probabilities in (25) are
equal to the corresponding conditional probabilities, condi-
tional on each z* € X. WLOG, assume that z* is the 2k-NN
graph associated with the identity permutation o* (i) = 4. It
is difficult to work with the intersection of dependent events
in (25). The proof strategy is to select a subset of feasible
solutions for which the events (L,z — z*) < 0 are mutually
independent.

To this end, define z(*) to be the 2k-NN graph correspond-
ing to the permutation o that swaps ¢ and i + 1, i.e., (i) =
i+ 1,00+ 1) =14, and 0 = o* everywhere else. It is easy
to see that the difference graph G(z(¥)) contains four edges:
(see Fig. 9)

(25)

red edges: (i —k,i), (i+1,i4+k+1);

blue edges: (i —k,i+1), (i,i+k+1).
Furthermore, for two such graphs z(*) and ) with k+1 <
i < j < n—k, the edges sets E (G(zV)) and E (G(z7)))
intersect if and only if j —i € {k, k+1}. To avoid such pairs,
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we divide the z* cycle into blocks of 3k, each further divided
into three sections of length %, and only consider those ¢ which
lies in the middle section of a block. Formally, define

D=A{k+1,k+2,...,2k, 4k +1,...,5k,...,
3k(|n/3k] —1)+k+1,...,3k(|n/3k| — 1) + 2k}.

Then for distinct i and j in D, the difference graph of z("
and 2U) have disjoint edge sets. This means all elements of
{(L,2) —2*) :i € D} are mutually independent.

For each ¢ € D, we have

P{(L,z® —2*) <0}
=P{L(i —k,i+ 1)+ L(i,i +k+1)
—L(i—k,i)— L(i+1,i+k+1) <0}
=P{¥1 +Y:, — X1 — X2 <0},

where X7, X5 are independent copies of log 35’; under P,
and Yj, Y5 are independent copies of log 35 under Q.
Therefore
P{(L,x—z") <0, Vx#z"}
<P {<L,x<i> —2*) <0, Vie D}
=(P{V1+Y: — X; — Xo < 0})!P!
<exp (—|DIP{Y1 +Y>: — X1 — X3 >0}). (26)

From the mutual independence of X, X5, Y7, Y5, for any
7 € R, we have

IP{Yl ET}P{YQ ZT}P{Xl ST}P{XQ ST}
<P{Y; +Y; - X; — X5 >0}

and hence

logP{Y7 +Y> — X1 — X2 >0}
>2sup (logP{Y; > 7} + logP{X; <7}).
TER

Since (26) is an upper bound for P{Zy = x*}, the success
of the MLE must require that

log |D| + 2sup (logP{Y; > 7} + logP{X; < 7})
TER
— — 0.
On one hand, by Assumption 1,

sup (logP{Y; > 7} + logP{X; < 7})
TER

> — (1+0(1))a, + o(logn).

On the other hand, by construction we have |D| > n/3 —
k > n/4 under the assumption k < n/12, from which we
conclude the necessity of 2., > (1+0(1))logn for P{Zm, =
'} — 1.
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IV. ALMOST EXACT RECOVERY

In this section we give the proof of Theorem 2. The
proof follows the same strategy as that in [26], which studies
recovering a hidden community (densely-connected subgraph)
in a large weighted graph; specifically, the sufficient condition
for almost exact recovery is established by analyzing the
(suboptimal) MLE’ and the necessary condition follows from a
mutual information and rate-distortion argument. Nevertheless,
as our model differs significantly from the hidden commu-
nity model, the proof here requires much more sophisticated
techniques, involving a delicate union bound to separate the
contributions of the red edges from blue edges and crucially
relying on the counting lemmas for 2k-NN graphs shown
in Section III-B.

A. Proof of Correctness of MLE for Almost Exact Recovery

We abbreviate the MLE Ty, as T in the proof below.
For any 2k-NN graph x € X, recall from Section III-A
the difference graph G(z) defined by = — x*. Let Fyeq(2)
and Eipjue(z) denote the set of red and blue edges in G(z),
respectively. Let A = |Eyeq(2))| = d(Z,2*)/2. Then 0 <
A < nk. To prove the sufficiency, it suffices to show that
P{A > e,nk} = o(1) for some €, = o(1) to be chosen.

Recall that Xy is the set of all x € X such that G(z)
contains exactly ¢ red edges, i.e., d(z,z*) = 2¢. For any
1 < A <nk and any 7 € R, we have that

{A=t}c {3z e X, (L,x—2") >0}

CQreX: Y Le< Y. Le
e€E ea(x) e€Epue(x)
Cldre Xp: Z Lo </t1 33U
e€Frea ()
dr e Xy : Z Le>tr
e€Eplue(x)

For each x € X, we have that

4
S LEY X
1

€€ Eyea(T) =

14

> LEY W,

€€ Eplue(T) =1

where X;’s and Y;’s denote i.i.d. copies of the log-likelihood
ratio log f@ﬁ under distribution P,, and @, respectively. Cher-
noff bound gives that for all 7 € [—D(Qn||Py), D(Pn||@n)]

and ¢ > 1,

i=1

¢
P {ZY’ > ET} < e~ tBal(r)

i=1

4
P {ZXz < ET} < e PR,
27)

7For almost exact recovery, the optimal estimator that minimizes the
objective E [d(Z, z*)] is the bit-wise maximum a posterior (MAP) estimator:
Ze(w) =1if P{a} = 1lw} > P{z} = 0lw}; and ZTc(w) = O otherwise.
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Recall that Eeq(¢) = {Erea(z) : @ € Xy} stands for the
set of all possible Eycq(x) where x ranges over all possible
2k-NN graphs in X with d(z,z*) = 2¢. Note that

dr e Xy : Z L. <!t
e€FEed(x)
= {aE € Eeall) 1 Y Le < eT} .
eeF

By the union bound and Chernoff’s bound (27), we get that
P{A =/¢}

4 4
< |8red(€)|P{ZXi < er} + |X4|P{ZYi > eT}

i=1 i=1

< |Erea(0)| e FEPT) 4| x| e *E(T), (28)

We first focus on the case £ > 2. Note that for ¢ > ¢, nk,
it follows from Lemma 3 that

|Erea (£)] < (96k2)€(j/zj) <(96k2)" (26;1@)4/2

/2
<(961?)" (§) ,

€n

where we used (") < (en/m)™ and ¢ < e,nk. Sim-
ilarly, combining Lemma 3 and Lemma 4, we have for
exnk <0 < nk,

kn
1¢/2]

<(96k%)" (@

| X g(96k2)4( ) - 2(32k3)26 00/ F

02

% /2
<(96k2)* (—) 2(32k%)% (nk)*/*,

€n

where the last inequality comes from the range of ¢. Thus for
any e,nk < ¢ < nk,

P{A =(} < e Fr 4 ¢t
with
N 1.1
Ey =ZEp(1) — 5 log — —2logk — O(1),
€n
N 1 1.1
E;, =ZEq(T) — z logn — 5 log — — 8logk — O(1).
€n
By (13), we have kD(P,|Qn)(1 —n) > logn for some
n € (0,1). Choose 7 = (1 — n)D(P,| Q). By the
assumption (12), we have
1 1
Ey > cn® D(P,||Qn) — 3 log — — 2logk — O(1).
€n
Using the fact that Ep(7) = Eq(7) — 7, we have
) 1. 1
By > e D(P|Qn) — 5log —+
1
D(P|@u)(1 ~ 1) — 7 logn — 8logk — O(1)
1 1
> CUQD(Pn”Qn) - 5 1Og€_ - 810gk - 0(1)
n

5223

Since klogk = o(logn) and kD(P,||Q,) > logn,
it follows that D(P,||Qn) = w(logk). Therefore, setting
en = 1/ (kD(P,||Q,)), it follows that £ £ min{E;, B>} =
Q(D(P,||@Qn))- Hence,

nk
P{A>emk}= Y P{A={}
L>epnk

Z (e—éEl + e—ZEg)

l=e,nk
2exp(—e,nkE)
1 —exp(—F)

IA

— exp (—2(n)).

In other words, the MLE achieves almost exact recovery.
The conclusion for & = 1 is shown similarly using the
combinatorial upper bounds |E;eq(£)] < (") and |Xy| < (4n)*
from (22).

Remark 3: This is a good place to explain why the con-
ditions for exact and almost exact recovery involve two
different distance measures between P, and @Q,. The two
types of recovery demand control of P{A = ¢} for dif-
ferent ranges of ¢. For almost exact recovery, we need to
control P{A = ¢} for { > enk. In this range, there is
a large difference between |Epeq(¢)| and |A|. Indeed from
Lemma 4, there may be up to (ck)?*/*/F members of X,
with the same set of red edges. Hence for large /, it pays
to separately account for the contributions of the red edges
and blue edges, as done in (28). To balance out the two terms
in (28), the exponential tilting parameter 7 is chosen so that
Eq(7) is large. Given that Eg(7) is an increasing function on
[—D(Qn||Pn), D(P,]|Qx)], we choose T close to D(P,||Q)
with Eg(7) ~ D(P,|Qn). As a result, the condition for
almost exact recovery emerges from the tension between
D(Po|[Qn) and | X,

Exact recovery, on the other hand, requires upper bounding
P{A = ¢} for all £ > 2. In fact as seen from the lower bound
proof of Theorem 1, the bottleneck for exact recovery happens
at £ = 2, where |Eca(¢)| and |Xy| are around the same order.
In this regime, there is no more gains in separating the red
and blue edge weights, and it is more favorable to directly
applying the Chernoff bound to their differences:

P{A =0} <X PSY X, <)Y,
i<e i<t
< || P {~¢inf(Ep(r) + Eq(r)) }
= || e~ton,
See [24, page 67] for a derivation of the equality

inf (Ep(T) + Eg(T)) = . As a result, the condition for
exact recovery is governed by the distance «,.

B. Information-Theoretic Lower Bound for Almost Exact
Recovery

Suppose that almost exact recovery of z* is achieved
by some estimator Z, such that E [d(Z,z*)] = 2nke,, for
some €, — 0. We show that (14) must hold. First, we can
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assume, WLOG, 7 takes value in X, the set of all 2k-NN
graphs. Indeed, if we set

7' = argmin, ¢ yd(z, 7), (29)

then d(2/,2*) < d(z',7) + d(Z,2*) < 2 d(Z,z*) and hence
E [d(Z',2*)] < 4nke,; in other words, T’ also achieves almost
exact recovery.

Since z* — w — Z form a Markov chain, by the data
processing inequality of mutual information, we have

I(w; x*)
>I1(z,z%)
>inf{I(7,2*): 7 € X,E[d(z,2%)] < 2nke,}  (30)
=H(z") —sup{H(z*|7) : T € X,
E[d(Z,2z")] < 2nke,} (31)

where the infimum in (30), known as the rate-distortion
function, is taken over all conditional distributions Px;»
satisfying the constraints. Note that H(z*) = log(n!) =
(1 4+ o(1))nlogn. Moreover from Lemma 3 and Lemma 4,
for any fixed & € X, the number of possible z* € X such
that d(z, z*) = 2¢ is at most

kn
(96k2)€(

1¢/2]
where ¢, = 2¢96222°k!7 and we used the fact that ¢ < nk.
Therefore,

H(z*|7,d(%,2%) = 20)

) - 2(32k3)2605 % < 2(cpm ) 0)* 2 (nk)*®,

gé log(cxn) — glogﬁ + % log(nk) + log 2.

By the convexity of = — xlogz and Jensen’s inequality,
it follows that
H(z"|z,d(Z,2"))
<E [d(i, z”)]

[log(ckn) —log W—i—

2
p log(nk)| + log 2.

Furthermore, d(xz,x*) takes values in {0,...,2nk}. Thus
from the chain rule,

H(z"|z) =H(d(Z,z")|z) + H(z"|Z,d(z,2"))
<log(l + 2nk) + H(z*|z,d(Z, z")),
and hence
sup{H (z"|Z) : 7 € X, E[d(z,2")] < 2nke,}
§%ennk‘ [log(ckn) — log (e,nk)] +
ennlog(nk) +log2 + log(1 + 2nk)
=o(nlogn),

where the last equality holds due to the assumption that
klogk = o(logn). Therefore, we get from (31) that
I(w;x*) > (1 + o(1))nlogn. On the other hand,

I(wia*) = 1minE [D(Poje-|Qu)
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=nkD(P,||Qn),

where the minimum is taken over all distribution ., achieved
at Q, = P,. This yields the desired kD(P,||Q,) > (1 +
o(1)) logn.

V. DISCUSSION ON EFFICIENT RECOVERY ALGORITHMS

As shown in Section III and Section IV, the sharp thresholds
for exact and almost exact recovery can both be attained by the
MLE (7), which, however, entails solving the computationally
intractable max-weight 2k-NN subgraph problem. So far
no polynomial-time algorithm is known to achieve the
sharp thresholds for exact or almost exact recovery except
when £ = 1 [24]. In Section V-A, we consider several
computationally efficient algorithms to recover the hidden
2k-NN graph and analyze their statistical properties.
In Section V-C, we focus on the special case of small-world
graphs where the edge weights are distributed Bernoulli and
give a polynomial time algorithm that achieves the sharp
threshold for exact recovery.

A. Efficient Recovery Algorithms Under the General Hidden
2k-NN Graph Model

Recall that the MLE is the solution to

TMr = argmax (L, x),

where L. = log %(we) is the log likelihood ratio. In the
special case of £k = 1, this reduces to the max-weighted
Hamiltonian cycle problem. The previous work [24] ana-
lyzes its 2-factor integer linear program (ILP) relaxation
and fractional 2-factor linear program (LP) relaxation, and
show that they achieve the sharp exact recovery threshold
liminf,_ o (ay/logn) > 1. This motivates us to consider
the ILP and LP relaxation for general k.

1) 2k-Factor ILP Relaxation: By relaxing the 2k-NN graph
constraint in the MLE to a degree constraint, we arrive at the
following 2k-factor ILP:

Topr = argmax,, (L,x)

S.t. Z T(uw) = 2k, Yu,

v~rUu

z. € {0,1}, Ve (32)

where the first constraint enforces that every vertex has
degree 2k. It is known that for constant k, the ILP (32) can
be solvable in O(n*) time [29].

To analyze Zoxp, note that each feasible solution x to the
ILP is a 2k-regular graph. Therefore, the difference graph
x—x* is still balanced and the simple bound (22) continues to
hold:

|Xa| < (4kn)”,

where XA is the collection of 2k-regular graphs = such that
the difference graph x — x* contains exactly A red edges.
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Then following the same argument as in the upper bound proof
of Theorem 1 in Section III-A, we have

P{Zorr # 2"} < Y (4kn)® exp (—anA)
A>1

= Z exp [_A (Oén - 1Og(4kn))] 9
A>1

which is order o(1) whenever lim inf,,_, o (e, /logn) > 1 and
k = n°M)_ This is suboptimal by a multiplicative factor of 2
compared to the sharp threshold lim inf,, 21(2? >1

In fact, Zoyr provably fails to attain the sharp exact recovery
threshold when 2 < k < n°®), To see this, assume that
x* is associated with the identity permutation and consider
its modifications of the following form: fix two vertices ¢, j
for which dy«(i,j) > k, remove the edges (i,7 + 1) and
(j,4 4+ 1) in 2* and add the edges (4,j) and (i + 1,5 + 1),
resulting in a 2k-regular graph x(*7) feasible to (32). There are
O(n?) such modified solutions and the difference in weights
(w,z(»)) — z*) are close to being mutually independent.
Each z("7) corresponds to a difference graph with A = 2
red edges. By following the similar lower bound proof for
exact recovery in Section III-C, we can conclude that under
Assumption 1, if liminf,, (o, /logn) < 1, then with high
probability there is at least one feasible solution z(%7) such
that (L, z(%7) — z*) > 0, yielding Zorr # z*.

2) LP Relaxation: By further relaxing the integer constraint
in Zogxg, we arrive at the following LP:

Zrp = argmax, (L, x)

s.t. Zx(qw) =2k, Yu,

v~u

ze € [0,1], Ve.

Since Zpp is a relaxation of Zop, it follows from the above
negative result of ILP that under Assumption 1, Tpp # x*
when lim inf,, o (o, /logn) < 1. In the positive direction,
one can show that Zpp also achieves exact recovery for 1 <
k < n°® when lim inf,_co(ay,/logn) > 1. That is because
firstly, the feasible set of the LP is a fractional 2k-factor
polytope, the entries of whose extreme points are all half-
integrals by the determinant analysis in [30, p 280]. That is,
(Zrp)e € {0,1/2,1} for all e. Moreover, the difference graph
x—x* can be represented by a balanced multigraph with edge
multiplicity at most 2 (we refer the reader to [24] for details).
The rest of the proof follows exactly from the proof of [24,
Theorem 1].

To sum up, when it comes to exact recovery, the statistical
performance for Zor and Zpp match in the asymptotics. They
both require lim inf,,_, o (v, / logn) > 1, which is suboptimal
by a factor of two. Whether they can achieve almost exact
recovery under weaker conditions remains open.

3) Simple Thresholding: To partially address the problem
of almost exact recovery, we consider a naive thresholding
estimator Zty given by

33\'1‘]-[(6) =1 {Le > Tn},

where the sequence 7, = (1 — 1)D(P,||@.) for
some small fixed constant 7 that will be later specified.
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By definition of Ty,
E [d(i‘\TH, J)*)]
= > P{L.<m}+ Y P{Lc>m}.

U ok —
exr=1 e:xxr=0

From the Chernoff bound (27), we have for 7, €
[=D(Qul|Pn), D(P,||@Qn)],

P(L. < 7} < e BrO0) if op = 1,
P{L. > 7,} <e Falm) if z* =0,

Assume that lim inf D(Pn|@n)

Tog(n/ky~ > 1. Then there exists some
fixed constant n € (0,1) such that (1 — n)D(P,||Qn) >
log(n/k) for all sufficiently large n. Under Assumption 2,

we get that for some constant ¢ > 0,

> P{L. <7}

exxr=1
<kne~Er(m)
<knexp(—ci® D(P,|Qn))
<knexp(—cn*log(n/k)) = o(kn).

From Eq(7,) = Ep(1y,) + T, we also have

> P{Le> 7}

ok —
exxr =0

SnQ e—EQ(Tn)

=n?exp (—(1=n)D(P||Qn) — Ep(1n))
<knEp(t,) = o(kn).

Thus we have shown that under Assumption 2, the thresh-
olding estimator Zy achieves almost exact recovery provided

that lim inf 52022 > 1, which is optimal for k = 1, in

view of the necessary condition lim inf % > 1.

It is worth pointing out that Zty may not be a valid
2k-NN graph. One can of course consider the modified
estimator (29) by projecting T to the set of 2k-NN graphs;
however, it is unclear whether this can be done in polynomial
time. It is an interesting open problem whether a compu-
tationally efficient 2k-NN graph estimator can be obtained
from Zy and still inherits the almost exact recovery guarantee

e D(P|Q4)
lim inf Tog(n/%) > 1.

4) Spectral Methods: For a variety of problems such as
clustering and community detection, spectral methods have
been successfully used to recover the hidden structures based
on the principal eigenvectors of the observed graph [31], [32].
In our model, with slight abuse of notation, let L denote the
nxn matrix of log likelihood ratios, where L;; = log 35 (we)
for edge (i,j) = e and L;; = 0. Note that the principal
eigenvectors of E(L) contain perfect information about the
hidden 2k-NN graph. Indeed, to see this, rewrite L as

L =(D(P,||Qx) + D(Qn||P,)TIBIT —
D(QnHPn) (J — I) + (L — E(L))7

where II is the permutation matrix associated with the hid-
den 2k-NN graph; B is the adjacency matrix of the basic
2k-NN graph where B;; = 1 if min{|i — j|,n — |t — j|} <k
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and B;; = 0 otherwise; J is the all-ones matrix and I is the
identity matrix. Since B is a circulant matrix, its eigenvalues
and eigenvectors can be determined by the discrete Fourier
transform of the window function:

k o . (2k+1)jw
2mjl sin ~=—=—2%
—k n sin <~
for j = 0,...,n — 1, where i = /-1 is the imaginary

unit, Ao = 2k (degree) and A\,_; = A; which decays
similarly to the sinc function. Furthermore, the eigenvector vy
of IIBIIT corresponding to A; encodes the permutation
matrix I perfectly as v; = I(w?,...,w” )T, where w =
exp (i22) is the n'™ root of unity. Thus in the noiseless case
one can exactly recover the underlying permutation IT and
hence the hidden 2k-NN graph from v;. That prompts us
to obtain an estimator II by sorting the entry-wise angles of
the second eigenvector of L, and define Zspeciral = IIBII'.

Unfortunately, it turns out that v; can be very sensitive to
the noise perturbation (L — EL) due to the small eigengap.
For example in the special case P, = N (pn, 1) and Q,, =
N(0,1), we have

2
L= 20BI" — ’“‘—2” (J—1)+pz,

where Z is a symmetric Gaussian matrix with zero diagonal
and Z,;; = Z;; independently drawn from N(0, 1) for ¢ < j.
The eigengap of A\; — Ay ~ k3/n?, while the spectral norm of
the noise perturbation || Z||2 is on the order of v/n. Thus, by the
Davis-Kahan theorem, the second eigenvector of L is close to
vy if pak®/n? 2/, e, pun 2 02 /K33 When k = n°®),
this is highly suboptimal compared to the sharp thresholds for
exact and almost exact recovery given by (33), (34) in the
succeeding subsection.

B. Numerical Experiments

In this subsection we carry out a numerical experiment
to evaluate the performance of the algorithms discussed in
Section V-A above. We focus on the Gaussian model with
weight distribution P, = N (pp,1) and Q, = N(0,1) for
tn > 0. From Corollaries 1 and 2, under the Gaussian model,
the sharp thresholds for exact recovery (for 2 < k < no(l))
and almost exact recovery (for 1 < k < o(logn/loglogn))

are 9

liminf —2n > 1 (33)
n—oo 2logn
and )
e kpg
lim inf > 1, (34)
n—oo 2logn
respectively.

The setup of the simulation is as follows. Let n = 500,
k =5, and choose a sequence of p, so that u2/logn takes
value on a fine grid between 0 and 10 with step size 0.1.
We run the following experiment for 200 independent trials.
For each grid value of u,, we generate a random weighted

81n fact, following the analysis of spectral ordering in [25], one can show
that the almost exact recovery can be efficiently achieved by Zgpecirat under a
slightly higher SNR: f1n, 3> n7/2 /k4.
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Fig. 10. Empirical proportion of exact recovery of the true 2k-NN graph
x* for the four polynomial-time algorithms discussed in Section V-A applied
to 200 independent instances drawn from the Gaussian weight distributions:
P, = N(tin,1) and Q,, = N(0,1), with k& = 5 and n = 500.

graph w from the hidden 2k-NN model with Gaussian edge
weights. Given w, the four estimators Togg, ZTrp, £ty and
Zgpectral discussed in Section V-A are computed. The ILP
Torp, and the LP Zpp are solved with the branch-and-cut
algorithm [33] and the simplex method [34], respectively; the
thresholding estimator Zry selects those edges with weights
at least /(4 + 1/v/logn)logn, which is slightly above the
maximum weight of edges not in x* with high probability. The
outcome of the experiment is reported in Figures 10 and 11.
In Fig. 10, the z-axis represents the signal strength 2 / logn;
the y-axis is the empirical proportion of an estimator exactly
recovering the true NN graph z* out of the 200 indepen-
dent trials. For estimators that return fractional edge adja-
cency vectors 7, it is viewed as achieving exact recovery
if Yo, [T — x| <107°.

One interesting observation from the simulation outcomes
is that the performance of the ILP Zogr and the LP Zpp
are almost identical. In fact, we found that even though the
LP can potentially return non-integral entries (Zpp(e) = 1/2
since the fractional solutions must be half-integral), those
entries are very rare, and the solutions to the ILP and the
LP often coincide.

In Fig. 10, the vertical line at p2 /logn = 2 represents the
asymptotic sharp threshold for exact recovery given by (33),
while the vertical line at p2/logn = 4 is threshold for Zoxp
and Zpp to achieve exact recovery as shown in Section V-A.
This asymptotic result agrees well with the empirical result
in Fig. 10 which is run for n = 500. Indeed, for all 12/
logn < 4, both estimators failed to achieve exact recovery for
all 200 trials. As /1% /logn exceeds 4, the fraction of exact
recovery quickly converges to 1.

In comparison, the thresholding estimator Zty and the spec-
tral estimator Zspecrat perform much worse. Perfect recovery
never occurs across the entire parameter regime. To better
compare these four estimators, we also quantify the edge
discrepancy between the estimators and the truth. The results
are shown in Fig. 11.

In Fig. 11, the y-axis is the normalized risk >, |Z. —
x|/ (kn) averaged across all trials. Note that an estimator can
make errors by missing the edges in the true 2k-NN graph
2* and adding those outside x*. As a result, when the signal
is very weak (small ), the normalized risk can be close to
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Fig. 11.  Comparison on the normalized risk (fraction of misclassified edges)
of the four polynomial-times algorithms under the same setup as in Fig. 10.

its maximal value 2, which is the case for all of Zoir, Zrp
and Zpeciral; in comparison, for weak signal, the thresholding
estimator has a normalized risk close to 1 simply because very
few edge weights exceed the threshold and Tty essentially
output an almost empty graph. As pu, increases, the risk of
both Zoxr and 71 p decays rapidly and become almost zero near
the threshold 42 /log(n) = 4. In comparison, the normalized
risk for the thresholding estimator Zty converges to zero at a
slower rate. Furthermore, we argued in Section V-A that the
spectral methods are highly sensitive to the noise perturbation.
This is confirmed by Figure 11, in which fspewal performs
considerably worse than the other three estimators.

C. Achieving the Exact Recovery Threshold Under the
Small-World Model

Although designing efficient algorithms that achieve the
sharp thresholds appears challenging under the general hidden
2k-NN graph model, the task turns out to be more manageable
for the special case of the Watts-Strogatz small-world graph
model. Recall the special case (4) considered in the introduc-
tion with P,, = Bern(p,,) and Q,, = Bern(q,,), where

d 264k
n_1 ¢TI T

For succinctness the subscript n will be suppressed for
the remainder of this subsection. The observed graph w €
{0, 1}(2) can be viewed as a noisy version of the true 2k-NN
graph z*. By Corollaries 1, for 2 < k < n°(), the sharp
threshold for exact recovery is liminf, ,..(—2loge/
logn) > 1, ie, ¢ < n~ 221 We show that the greedy
algorithm below succeeds under this condition. Note that the
results in this section only apply to the parametrization under
the small-world model and not the general case where P,, and
@, are Bernoulli distributions.

As mentioned in Section I, to exactly recover x*, it suffices
to recover the corresponding Hamiltonian cycle identified by
a permutation o*. Similar to the enumeration scheme that
lies at the heart of the proof of Lemma 4, the algorithm first
determines the neighborhood of one vertex and their ordering
on the Hamiltonian cycle, and then sequentially finds the
remaining vertices to complete the cycle.

Since it suffices to recover o* up to cyclic shifts and
reversals, we can assume WLOG that i = o*(1). In Step 1
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Algorithm 1 Greedy Algorithm for Exact Recovery Under
the Small-World Model
Start from an arbitrary vertex i and let o (1) = io;
Step 1 (label the neighbors of 7(1)):
Let V' & N, (5(1)) be the set of vertices incident to
o(1) in w;
if The subgraph of w induced by N is isomorphic to that
of x* induced by N~ (1) then
Use the subgraph of w induced by A to determine
(up to a reversal) the ordering
(cn—k+1),...,0(n),0(2),...,0(k+1))
else Report error and terminate;
Step 2 (label the remaining vertices sequentially):
Viabeled = {(n—k+1),...,0(n),a(1),...,a(k+1)};
for i=1 to n-2k-1 do
U 2 Ny(@ (i + 1) \Viabeled:
switch |/| do
case U] > 2
if exactly one member u of U is incident to
o (i +2) then
| Seto(i+k+1)=u.
else Report error and terminate;
case [U| =1
| Set 5(i + k + 1) be the vertex in U;
case [U| =0
if exactly one member v of
Nw(@ (@ + 2))\Viabelea is incident to exactly k
members of Vi, ;.. then
| Seto(i+k+1)=v
else Report error and terminate;
Viabeted = Viavelea U {0(i + k + 1)};
Output x(7), the 2k-NN graph corresponding to &.

of Algorithm 1, one needs to order the members of N from
the subgraph of x* induced by N. We will show, with high
probability, N' = N, (io) coincides with the true neighborhood
N+ (0(1)) and the subgraph of w induced by N is identical
to that of x*. Therefore, we can infer the ordering of members
of N\ using the nearest-neighbor structure of z*. In particular,
o*(n—k+1) and o*(k+1) are the only two vertices in N that
are incident to exactly k — 1 vertices in A/; having determined
o*(n—k+1), c*(n— k+2) is the only vertex in A that is
incident to o*(n — k + 1) and exactly k — 1 other vertices in
N; similarly 0*(n — k + 3) can be uniquely determined given
o*(n—k+1)and o*(n —k+2), so on and so forth.

Step 1 of Algorithm 1 relies on the fact that with high
probability, w and x* completely agree in the neighborhood
near the fixed vertex ip. This does not hold uniformly for all
vertices. However we will show that uniformly for all ¢ € [n],
w and x* differ by at most one edge in the neighborhood
near ¢. This fact is crucial for the success of the second step.
Now we present the exact recovery guarantee of the algorithm.

Theorem 3: Consider the Watts-Strogatz small-world graph
model under the parameterization (35). Assume that & = ne@
and liminf, . (—2loge/logn) > 1, then with probability
1—o0(1), Algorithm 1 runs successfully and returns () = z*.
In other words, Algorithm 1 achieves exact recovery.
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Proof: Let us start with some notations. Recall that the
set of true neighbors of a vertex j is denoted as A (7).
Let E,«(j) (resp. E,(j)) denote the set of edges in x*
(resp. w) whose endpoints contain at least one member of
N+ (0*(5)) U {o*(j)}. We claim that under the assumption
liminf, . (—2loge/logn) > 1, the following events occur
simultaneously with high probability:

e A, ={E,(1)=E,~(1)};

o By ={|Ew(j)AE:(j)] <1,Vj}

o C ={w(e*(j+1),0"(j+k+2) =0Vj=1,...,

n—2k—1}.
First we argue that on A, N B, N C,, Algorithm 1
correctly recovers x*. Under A,, the subgraphs of
w induced by MNg«(c*(1)) coincide with that of z*.
Hence Algorithm 1 successfully recovers (o*(n — k +
1),...,0%(n),0*(2),...,0%(k+1)) up to a reversal. WLOG
say o (i) = o*(i) for all o*(i) € Ny« (c*(1)).

Next we show inductively that the algorithm correctly labels
all the remaining vertices. Start from the inductive hypothesis
that o(j) = o*(j) for all j < i+ k. Recall that i = N, (c(i+
1))\ Viabeiea and the algorithm considers the following three
cases according to the size of U:

1) [U| > 2. Under B, we must have |[/| = 2 because
otherwise F,, (i + 1)\E,~(i + 1) contains at least
two edges, contradicting B,,. Write &/ = {u,v}. One
of w,v must be o*(i + k + 1), because otherwise
E,(i + 1)\E,-(i + 1) contains at least the two edges
(0*(i+1),u) and (c*(i + 1), v), contradicting B,,. Say
u = o*(i + k + 1). Then (¢*(i + 1),u) is the only
member of F,,(i+1)AFE,-(i+1). Thus v and oc*(i+2)
must be neighbors in w. Under C,,, v cannot be o*(i +
k4 2). Hence v and o* (i + 2) are not neighbors in x*.
Consequently, they cannot be neighbors in w, because
otherwise both (0*(i+2),v) and (0*(i+1), v) belong to
E,(v)AEg«(v), contradicting B,,. Under the induction
hypothesis, 7 (i + 2) = o*(i + 2). Hence, u is the only
member of U that is incident to o (i + 2) in w and thus
the algorithm successfully identifies v as o* (i + k + 1).

2) |U| = 1. In this case the element v in &/ must be o* (i +
k+ 1) because otherwise both (o*(i+1),0*(i+k+1))
and (0*(i+1), u) are contained in E,,(i+1)AE,«(i+1),
contradicting B,,.

3) [U| = 0. Under B, (c*(i + 1),0*(i + k + 1)) is the
only member of E, (i + 1)AE,-(i + 1). As a result,
o*(i+2) must be incident to all of its 2k true neighbors.
These 2k neighbors contain 0*(i+k+ 1), and under 5,
o*(i+ k + 1) is the only one that is incident to exactly
k members of V}, ., Thus the algorithm can always
identify o*(i + k + 1).

It remains to show that all three events A,,B,,C,
occur with high probability. Under the assumption
liminf, . (—2loge/logn) > 1, there exists some positive
constant 7 such that e < n~1/2=7 for large enough n. By (35),
1—p<n Y27 and ¢ < n=3/2=1te() for | < no),

o The event A,: To show P {A%} = o(1), note that there

are O(k?) edges in E,~(1). The probability that one of
them does not appear in w is upper bounded by O(k?) -
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(1—p) < n~1/2=1+e(1) = o(1). Similarly the probability
that an false edge shows up in E,, (1) is at most O(nk) -
q < n~ /2=t = (1), Thus E,-(1) = E,(1) with
high probability.

o The event B,,: Similar as above, |E,~(j)AE,(j)| equals
in distribution to X + Y with X ~ Binom(ni,1 — p),
Y ~ Binom(ng,q) with n; = O(k?), na = O(nk) and
X,Y independent. Thus

PA{|Ew (1) AEW(5)] > 1}
=P{X+Y >1}
<P{X > 1}+P{Y > 1} +P{X =Y = 1}.

Using the Binomial distributions of X, Y, the above can
be further bounded by

n n
( 21) (1-p)*+ ( 22) ¢ +mnz (1l —p)g = o(1/n).
By the union bound,

P{B;} <> P{|E-(j)AEL ()| > 1} = o(1).

Jjsn

o The event C,: The edge (6*(j + 1),0*(j + k + 2)) is
not in z*. Therefore P{w(c*(j + 1),0*(j + k + 2)) =
1} = ¢ = o(n™3/2). Thus P{CS} = o(1) follows from
the union bound.

|
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