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Multiple-Scale Analysis of a
Tunable Bi-Stable Piezoelectric
Energy Harvester
This paper presents the theoretical modeling and multiple-scale analysis of a novel piezo-
electric energy harvester composed of a metal cantilever beam, piezoelectric films, and an
axial preload spring at the moveable end. The harvester experiences mono- and bi-stable
regimes as the stiffness of preload spring increases. The governing equations are derived
with two high-order coupling terms induced by the axial motion. The literature shows
that these high-order coupling terms lead to tedious calculations in the stability analysis
of solutions. This work introduces an analytical strategy and the implementation of the mul-
tiple-scale method for the harvester in either the mono- or bi-stable status. Numerical sim-
ulations are performed to verify the analytical solutions. The influence of the electrical
resistance, excitation level, and the spring pre-deformation on the voltage outputs and
dynamics are investigated. The spring pre-deformation has a slight influence on the
energy harvesting performance of the mono-stable system, but a large effect on that of
the bi-stable system. [DOI: 10.1115/1.4046961]
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1 Introduction
Considerable interest in vibration energy harvesting has emerged

in the last decade with the rapid development of wireless sensors
and low-power electrical devices [1–3]. Piezoelectric materials are
extensively studied for mechanical-to-electrical energy conversion
due to the high power densities and easy fabrication [4–6]. One crit-
ical issue of linear piezoelectric vibration energy harvesters (PEHs)
is the limited frequency bandwidth [7,8]. A linear PEH needs to be
deliberately designed to match its natural frequency with the exci-
tation frequency to achieve resonance. A slight shift in the excita-
tion frequency or any defects in the operation could lead to the
frequency mismatch and thus a significant power reduction [9].
Nonlinearities are exploited to improve the operation frequency

bandwidth, because nonlinear PEHs are insensitive to the change
in excitation frequency due to the tilted frequency curves [10]. Non-
linear PEHs include mono-stable [1,4,9,11,12], bi-stable [13,14],
and tri-stable harvesters [15,16]. Among them, bi-stable harvesters
are preferable for their large power output during the larger-
amplitude snap-through vibrations. Bi-stable PEHs have been
shown to achieve a 300% improvement in the open-circuit
root-mean-square voltage [17] and 13.1 times more power output
[18]. Bi-stability can be realized by various mechanisms, such as
repulsive magnets [19] and composite structures [20]. The nonline-
arities usually make the analytical analysis become a daunting task,
especially for systems with high-order coupling terms [21–23]. The
harmonic balance method [11,12] has shown good accuracy for
bi-stable systems. However, research shows the stability analysis
of the harmonic balance solutions can be very complicated, even
analytically impossible for systems with higher-order coupling
terms [24]. On the other hand, the stability of multiple-scale solu-
tions can be easily determined from the Jacobian matrix. Although
the method of multiple scales [4,25,26] has been widely used for
nonlinear systems, very few articles systematically apply this tech-
nique to systems with tunable potential wells and higher-order cou-
pling terms. In particular, specific strategies are needed to handle
the negative stiffness of bi-stable systems.

This letter presents the multiple-scale solutions of a broadband
PEH with a tunable potential function, which consists of a metal
cantilever beam, piezoelectric films, and an axial preload spring.
The spring plays the similar role of repulsive magnets in literature
to achieve the buckling mechanism. Advantages of this strategy
lie in avoiding the magnetic interference with wireless sensor
nodes and reducing the total mass [27]. The main contributions of
this work include the following: (1) systematically introducing
the technical strategies of the method of multiple scales for
mono- and bi-stable systems; (2) obtaining the analytical frequency
responses, phase angle, and phase portraits of the mono-stable and
bi-stable systems; and (3) investigating the effect of the external
resistance, excitation level, and the spring pre-deformation on the
voltage outputs and dynamics of the systems.

2 Theoretical Model
Figure 1(a) shows the proposed PEH, where one end of the har-

vester is clamped and the other end connected to the spring is move-
able along the guide rails. When the spring is compressed, the beam
is exposed to the axial spring force. When the spring has a small
pre-deformation, not enough to buckle the beam, the PEH is mono-
stable; otherwise, the PEH enters into the bi-stable regime with two
stable equilibria and one unstable equilibrium, as shown in
Fig. 1(a). The two piezoelectric films on the beam are connected
in parallel and the generated electricity is delivered to a resistive
load. The PEH can be deemed as a current source and a capacitor
[28], resulting in the simplified electrical circuit in Fig. 1(b).
Assume the PEH experiences a base excitation of ä = A cos(Ωt),
where t is time, A and Ω are the excitation level and frequency.
Let b and L be the width and length, hs and hp the thicknesses, ρs

and ρp the densities of the beam and the piezoelectric films. The
equivalent mass of per unit length is m= ρsbhs+ 2ρpbhp. The
effect of the electrode layers on the stiffness and mass is ignored
because they are very thin and light. Let w(x, t), u(x, t), and q(t)
be the transverse, axial displacements, and the generated charge
over the surfaces of the electrode layers. For simplicity, the transient
displacement is approximated by the first mode as w(x, t)= η(t)φ(x),
where η(t) is the first modal coordinate in the time domain and
φ(x)= [1− cos(2πx/L)]/2 is the first mode shape function [18].
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The inextensible assumption requires (1+ u′)2+w′2= 1, and thus
u(x, t) = −1/2

�x
0[w

′(x, t)]2dx [4,11,23], where the prime indicates
the first derivative with respect to the coordinate x. The kinetic
energy, potential energy, and work done by generalized forces are

T =
m

2

∫L
0
[η̇2φ2(x)+ 2η̇ȧφ(x)+ ȧ2]dx+

m

2
(ηη̇)2

∫L
0

∫x
0
[φ′(x)]2dx

( )2

dx

(1)

W =−cηη̇
∫L
0
φ2(x)dx+ q(t)v(t) (2)

U = η2
EI

2

∫L
0
[φ′′(x)]2dx−

kdΔ
2

∫L
0
[φ′(x)]2dx

[ ]

+ η4
EA

8

∫L
0
[φ′(x)]4dx−

kd
8

∫L
0
[φ′(x)]2dx

( )2
[ ]

− ηbe31v(t)(hs + hp)
∫Le
0
φ′′(x)dx−

1
2
Cpv

2(t) (3)

where E3=−v(t)/hp has been used and c denotes the damping
coefficient. Es and Ep are Young’s modulus of the beam and
the piezoelectric films, respectively. kd and Δ are the stiffness
and the pre-deformation of the spring. EA=Esbhs+ 2Epbhp and
EI = Esbh3s/12+ Epbhp(4h2p + 6hphs + 3h2s )/6 are the equivalent
axial and bending stiffness. Cp = 2ϵs33bL/hp is the capacitance
of the piezoelectric films. e31 and ϵs33 are the piezoelectric cons-
tant and relative permittivity measured at a constant strain. The
governing equations are then extracted from the Lagrangian
method as follows:

η̈+ 2ξωnη̇+ β(ηη̇2 + η2η̈)+ (k1 − ks)η+ (k2 − k3)η
3 − θv=−μä

(4a)

v̇+ λv+ �θη̇= 0 (4b)

where ωn =




k1

√
, and ξ is the mechanical damping ratio. The

Gauss current law q̇(t)= I(t)=−v(t)/R has been used in the deri-
vation of the electrical equation (4b). All the parameters in the
governing equations are evaluated by

ξ =
c

2mωn
, β =

2 ∫
L
0 ∫

x
0 [φ

′(x)]2dx
( )2

dx

m ∫
L
0 φ

2(x)dx
, k1 =

EI ∫
L
0 [φ

′′(x)]2dx

m ∫
L
0 φ

2(x)dx
, ks =

kdΔ ∫
L
0 [φ

′(x)]2dx

m ∫
L
0 φ

2(x)dx
,

k2 =
3EA ∫

L
0 [φ

′(x)]2dx
( )2

8Lm ∫
L
0 φ

2(x)dx
, k3 =

kd ∫
L
0 [φ

′(x)]2dx
( )2
8m ∫

L
0 φ

2(x)dx
, θ =

e31b(hs + hp) ∫
le
0 φ

′′(x)dx

4m ∫
L
0 φ

2(x)dx
,

μ =
∫
L
0 φ(x)dx

∫
L
0 φ

2(x)dx
, λ =

1
CpR

, �θ =
e31bhp(hs + hp)

4Cp

∫le
0
φ′′(x)dx

Defining the dimensionless frequency and time ω=Ω/ωn and
τ=ωnt, Eqs. (4a) and (4b) can be rearranged as

η′′ + 2ξη′ + β[η(η′)2 + η2η′′] + χη + ϑη3 − αv = −Λ cos(ωτ) (5a)

v′ + �λv + �θη′ = 0 (5b)

where the prime denotes the derivative with respect to τ,
χ = (1 − ks/ω2

n), ϑ = (k2 − k3)/ω2
n, α = θ/ω2

n, �λ = λ/ωn, and
Λ = μA/ω2

n. The governing equations have two higher-order cou-
pling terms, the product of the displacement and squared velocity,
and the product of the squared displacement and acceleration.
Those terms significantly complicate the derivation of analytical
solutions. Setting η′ ′ = η′ = 0 and ignoring the effect of electrical
term, the equilibria can be obtained as

η∗1 = 0, η∗2,3 = ±







−χ/ϑ

√
= ±
























−(k1 − ks)/(k2 − k3)

√
(6)

The parameter ϑ is always positive because the scaled axial
stiffness k2 is much larger than the equivalent spring stiffness
k3. Thus, the existence of the equilibria η∗2,3 depends on the effec-
tive spring stiffness ks. The system has one equilibrium η1= 0
when Δ is small (ks< k1), and the PEH is mono-stable. As Δ
increases to a certain level (ks= k1), the axial compressive force
equals the critical buckling load of the beam. Then, the PEH
begins to enter into the buckling regime.
The potential function is �V(η) = χη2/2 + ϑη4/4, implying the

parameter χ determines if the PEH is unbuckled or buckled.
When χ> 0 (ks/k1 < 1), the harvester is unbuckled, otherwise, it is
buckled bi-stable. Figure 2 plots the potential for the varying Δ
with a constant spring stiffness of kd= 1000 N/m. The geometric
and material properties of the PEH are listed in Table 1. The poten-
tial function has a flattened parabolic shape initially and turns to a
double-well shape as Δ increases. This indicates the PEH turns
from the mono-stable to the bi-stable state.

Fig. 1 (a) The nonlinear PEH and (b) equivalent electrical circuit
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3 Mono-Stable Piezoelectric Energy Harvester
To approximate the analytical solutions using the method of mul-

tiple scales, the damping term, nonlinear higher-order terms, cubic
term, and the excitation are assumed to be small. Therefore, the
mechanical equation (5a) can be written as

η′′ + 2εξη′ + εβ[η(η′)2 + η2η′′] + χη + εϑη3 − εαv = −εΛ cos(ωτ)

(7)

where ɛ is an small number. Introducing the fast and slow time var-
iables T0= τ and T1= ɛτ, the solutions are expanded and retained to
the first order of ɛ by the asymptotic series

η(τ) = η0(T0, T1) + εη1(T0, T1)
v(τ) = v0(T0, T1) + εv1(T0, T1)

{
(8)

Substituting the multiple-scale solutions into Eqs. (7) and (5b),
and equating the terms with the same order of ɛ yields

ε0:D2
0η0 + χη0 = 0

ε1:D2
0η1 + χη1 = −Λ cos(ωt) − 2D0D1η0 − 2ξD0η0−

β[η0(D0η0)
2 + η20D

2
0η0] − ϑη30 + αv0

⎧⎨
⎩ (9)

ε0:D0v0 + �λv0 = −�θD0η0
ε1:D0v1 + �λv1 + �θD0η1 = −D1v0 − �θD1η0

{
(10)

The solutions to the zeroth-order equations are assumed to be

η0 = A(T1)eiω̂T0 + �A(T1)e−iω̂T0

v0 = B(T1)eiω̂T0 + �B(T1)e−iω̂T0

{
(11)

where ω̂ =



χ

√
, i =






−1

√
, A and B are the complex amplitudes and

are functions of T1. �A and �B are the complex conjugates of A and B.
Substituting the solutions into the first equation in Eq. (10), the

voltage amplitude can be expressed as

B = �θω̂A/(−ω̂ + i�λ) and �B = −�θω̂�A/(ω̂ + i�λ) (12)

Assume ω = ω̂ + εσ, where σ is a detuning parameter. Substitut-
ing the resultant solutions into the second equation in Eq. (9) and
setting the coefficients of the secular terms associated with eiω̂T0

and e−iω̂T0 to zeros, one has

−
Λ
2
eiσT1 + 2iω̂A′ + 2ξiω̂A − (2βω̂2 − 3ϑ)A2�A − α

�θω̂A

−ω̂ + i�λ
= 0

−
Λ
2
e−iσT1 + 2iω̂�A

′ + 2ξiω̂�A + (2βω̂2 − 3ϑ)A�A
2 − α

�θω̂�A

ω̂ + i�λ
= 0

⎧⎪⎪⎨
⎪⎪⎩

(13)

where cos[(ω̂ + εσ)τ] = 1/2[ei(ω̂T0+σT1) + e−i(ω̂T0+σT1)] has been
used. The prime denotes the derivative with respect to T1.
Solving any of the two equations in Eq. (13) gives the solutions

of the amplitude and phase angle. We assume the complex ampli-
tudes have the following polar forms

A = Γ(T1)/2eiφ(T1) and �A = Γ(T1)/2e−iφ(T1) (14)

where Γ and φ are the amplitude and phase and are real functions of
time T1. Substituting Eq. (14) into the first equation in Eq. (13) and
separating the real and imaginary parts yields

Γ′ = −
Λ
2ω̂

sin(σT1 − φ) − ξΓ − a0�λΓ

Φ′
0 = −

Λ
2ω̂Γ

cos(σT1 − φ) + σ + a1Γ2 − a0ω̂

⎧⎪⎨
⎪⎩ (15)

where Φ0=σT1−φ, a0 = α�θ/[2(ω̂2 + �λ2)], a1 = (2βω̂2 − 3ϑ)/(8ω̂).
By setting Γ′ =Φ′ = 0, the frequency response function can be
derived by

(ξ + a0�λ)
2 + (σ + a1Γ2 − a0ω̂)

2 = [Λ/(2ω̂Γ)]2 (16)

The corresponding phase angle is

Φ0 = tan−1[−(ξ + a0�λ)/(σ + a1Γ2 − a0ω̂)] (17)

The amplitude Γ can be solved for different values of the detun-
ing parameter σ from Eq. (16). The voltage amplitude can be
attained from the second equation in Eq. (11), which is

V = �θω̂Γ/










ω̂2 + �λ

2
√

(18)

Multiple solutions of the amplitude Γ can be obtained from Eq.
(16) for a given detuning parameter σ. These solutions include
stable solutions in both high and low branches and unstable
trivial solutions. The stability analysis of the solutions can be
achieved by analyzing the real part of the eigenvalues of the Jaco-
bian matrix. If the real parts of all the eigenvalues are negative, the
solution is stable. Otherwise, it is unstable. The Jacobian matrix can
be derived from Eq. (15) as

J =
−(ξ + a0�λ) −Γ(σ + a1Γ2 − a0ω̂)

1
Γ
(σ + 3a1Γ2 − a0ω̂) −(ξ + a0�λ)

⎡
⎣

⎤
⎦ (19)

Eliminating the secular terms, the first-order solution can be
obtained as

η1 = (2βω̂2 − ϑ)/(8ω̂2)(A3e3iω̂T0 + �A
3
e−3iω̂T0 ) (20)

Plugging Eq. (14) into Eqs. (11) and (20), then substituting the
results into Eq. (8), the approximate analytical solution of multiple

Fig. 2 Potential of the system with different spring
pre-deformations

Table 1 The geometric and material properties of the PEH

Beam (steel) and spring Piezoelectric layer

Parameters Value Parameters Value

Length, L 300 mm Length, Lp 300 mm
Width, b 10 mm Width, b 10 mm
Thickness, hs 0.1 mm Thickness, hp 0.08 mm
Density, ρs 7850 kg m−3 Density, ρp 4000 kg m−3

Modulus, Es 203 GPa Modulus, Ep 40 GPa
Damping, ξ 0.042 d31 −10 pC N−1

Stiffness, kd 2500 N m−1 ɛ33 8.854 × 10−10 F m−1
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scales in the time domain can be written as

η(τ) = Γcos(ωτ −Φ) + ε
(2βω̂2 − ϑ)Γ3

32ω̂2 cos 3(ωτ −Φ) (21)

where the relationship Φ= σT1−φ has been used.

4 Case Study of the Mono-Stable Piezoelectric Energy
Harvester
The voltage frequency responses are derived under three excita-

tion levels of Y= 0.005 g, 0.01 g, and 0.02 g. To verify the analyt-
ical solutions, numerical simulations are conducted at discrete
frequency points. The initial displacement, velocity, and voltage
are assumed to be zeros. The preload spring is soft, limited to ks<
k1 so that the PEH is mono-stable. Figure 3(a) presents the
voltage frequency responses under the open-circuit condition,
which has the typical characteristics of a mono-stable nonlinear
system, consisting of high and low branches and tilting to the
right hand. When the frequency is low (ω< 0.8), the system has a
single stable solution at the high branch, while two stable solutions
concurrently appear at the low and high branches at the high fre-
quency. The numerical simulations only get the low branch solu-
tions in the frequency range of multiple stable solutions due to
the zero initial conditions. The phase portraits at ω= 0.57 are
plotted in Fig. 3(b), which demonstrates the approximate solutions
match well with the numerical simulations. Figure 4(a) shows the
voltage frequency responses under different resistive loads at the
excitation level of 0.005 g. Both the high and low branch VFRs
decrease as the external resistance becomes smaller.
The effects of the excitation level and the spring pre-deformation

on the voltage output are studied at two frequencies of ω= 0.4 and
1.5. The spring pre-deformation is Δ= 0.05%L for the case of
varying excitation level. Figure 4(b) shows only the high branch
oscillation happens at the small excitation frequency of ω= 0.4
and the voltage increases along with the excitation level. Both the
stable high and low branch solutions exist at lower excitation
level (Y= 0∼0.3 g) for ω= 1.5. Figure 4(c) shows the voltage has
a very slight increment as the spring pre-deformation increases
for a fixed excitation level. This suggests that the spring pre-
deformation has insignificant influence on the voltage output.
This is because the linear and cubic stiffness of the mono-stable
PEH is dominated by the bending and axial stiffness of the beam,
when the spring pre-deformation is small.

5 Bi-Stable Piezoelectric Energy Harvester
As the effective spring stiffness ks exceeds the scaled linear stiff-

ness k1, the overall linear stiffness χ becomes negative and the system
enters into the bi-stable regime. The bi-stable PEH exhibits both
small-amplitude intra-well oscillation and large-amplitude inter-well

vibration. For the intra-well oscillation, a coordinate transform is per-
formed to estimate the solutions around the local equilibria. For the
inter-well oscillation, a strategy has to be taken to handle the negative
stiffness. This section presents the strategies and solutions of themul-
tiple scales for the approximate analytical analysis.

5.1 Intra-Well Oscillation. To analyze the intra-well dynam-
ics, the original origin at the unstable equilibrium needs to be shifted
to one of the stable equilibria η∗2,3 [29]. Defining a new coordinate
y = η∗2,3−








−χ/ϑ

√
and substituting it into the governing Eq. (5a), one

has

y′′ + 2ε2�ξy′ − 2�χy + ε2�β[(y + κ)(y′)2 + (y2 + 2yκ)y′′]

+ 3ε�ϑκy2 + ε2�ϑy3 − ε2�αv = −ε2 �Λ cos(ωτ)
(22)

where �ξ = ξ/[ε2(1 + βκ2)]; �β = β/[ε2(1 + βκ2)]; �χ = χ/(1 + βκ2);
�ϑ = ϑ/[ε2(1 + βκ2)]; �α = α/[ε2(1 + βκ2)]; �Λ = Λ/[ε2(1 + βκ2)];
κ =








−χ/ϑ

√
. Introducing the multiple time variables T0= τ, T1=

ɛτ, and T2= ɛ2τ, the solutions can be approximated by the following
asymptotic series:

y(τ) = y0(T0, T1, T2) + εy1(T0, T1, T2) + ε2y2(T0, T1, T2)

v(τ) = v0(T0, T1, T2) + εv1(T0, T1, T2) + ε2v2(T0, T1, T2)

{
(23)

Plugging Eqs. (23) into (22), keeping the order to ɛ2 and equat-
ing the like-order terms of ɛ, one has

ε0:D2
0y0 − 2�χy0 = 0

ε1:D2
0y1 − 2�χy1 = −2D0D1y0 − 3�ϑκy20

ε2:2D0D1y1 + 2D0D2y0 + D2
0y2 + D2

1y0 − 2�χy2+
2�ξD0y0 + �β[y0(D0y0)2 + κ(D0y0)2 + y20D

2
0y0+

2κy0D2
0y0] + �ϑy30 + 6�ϑκy0y1 − �αv0 = −�Λ cos(ωτ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(24)

Similarly, substituting the approximate solutions into Eq. (5b)
and collecting the like-order terms of ɛ yield

ε0:D0v0 + �λv0 = −�θD0y0
ε1:D0v1 + �λv1 = −D1v0 − �θD1y0 − �θD0y1
ε2:D0v2 + �λv2 = −D0y2 − D1y1 − D2y0 − D1v1 − D2v0

⎧⎨
⎩ (25)

Assuming the solutions have the following forms:

y0(τ) = A(T1, T2)eiω̂T0 + �A(T1, T2)e−iω̂T0
v0(τ) = B(T1, T2)eiω̂T0 + �B(T1, T2)e−iω̂T0

{
(26)

where ω̂ =






−2χ

√
; the complex amplitudes A and B, and their

complex conjugates �A and �B depend on T1 and T2. Substituting

Fig. 3 (a) Voltage frequency responses of the mono-stable PEH and (b) phase portraits at ω=0.57
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the solutions into the first-order equations, one has

D2
0y1 − 2�χy1 = 2iω̂ −

∂A
∂T1

eiω̂T0 +
∂�A
∂T1

e−iω̂T0
( )

− 3�ϑκ(A2ei2ω̂T0 + 2A�A + �A
2
e−i2ω̂T0 )

(27)

Eliminating the secular terms yields ∂A/∂T1 = ∂�A/∂T1 = 0,
implying A and �A only depend on T2, and solving Eq. (27) gives

y1 =
�ϑκ

ω̂2 (A
2ei2ω̂T0 + �A

2
e−i2ω̂T0 − 6A�A) (28)

Substituting the solutions into the second-order equation in Eq.
(24), defining ω = ω̂ + ε2σ, and setting the coefficients of the
secular terms to zero, one has

2iω̂A′ + 2i�ξω̂ −
�α�θω̂

−ω̂ + i�λ

( )
A − Ψ�AA2 +

�Λ
2
eiσT2 = 0

2iω̂�A
′ + 2i�ξω̂ −

�α�θω̂
ω̂ + i�λ

( )
�A +ΨA�A2 −

�Λ
2
e−iσT2 = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(29)

where Ψ = 2�βω̂2 + 30 (�ϑκ)
2

ω̂2 − 3�ϑ
( )

. Both the above equations will

give the same solution of A. Assuming A = Γ(T2)eiφ(T2)/2 and
�A = Γ(T2)e−iφ(T2)/2, substituting into the first equation in Eq.
(29), and setting the real and imaginary parts to zeros yield

Γ′ = −�ξΓ − a2�λΓ − �Λ sinΦ1/(2ω̂)
Φ′

1 = σ − a2ω̂
2 + a3Γ2 − �Λ cosΦ1/(2ω̂Γ)

{
(30)

where Φ1= σT2−φ, a2 = �α�θ/[2(ω̂2 + �λ2)], and a3 =
[2�βω̂2 + 30(�ϑκ)

2
/ω̂2 − 3�ϑ]/(8ω̂). Let Γ′ =Φ′

1 = 0, one can obtain
the steady-state amplitude and phase angle as

[2σ − a2ω̂
2 + 2a3Γ2]2 + (2�ξ + a2�λ)2 =

�Λ
ω̂Γ

( )2

(31)

Φ1 = tan−1[(−2�ξ − a2�λ)/2σ − a2ω̂
2 + 2a3Γ2] (32)

The voltage amplitude equation is the same as Eq. (18). The Jaco-
bian matrix can be obtained from Eq. (30) as

J = −�ξ − a2�λ Γ(−σ + a2ω̂
2 − a3Γ2)

(σ − a2ω̂
2 + 3a3Γ2)/Γ −�ξ − a2�λ

[ ]
(33)

After eliminating the secular terms, one has

y2 =
−1

(9ω̂2 + 2�χ)
2�βω̂2 − �ϑ −

6(�ϑκ)
2

ω̂2

( )
(A3ei3ω̂T0 + �A

3
e−i3ω̂T0 )

−
3�βκω̂2

2(2ω̂2 + �χ)
(A2ei2ω̂T0 + �A

2
e−i2ω̂T0 ) +

2�βκω̂2

�χ
A�A (34)

Combing Eqs. (23), (26), (28), and (34), the approximate analyt-
ical solution can be obtained in the time domain as

y(τ) = Γ cos(ωτ −Φ1) + ε
�ϑκΓ2

2ω̂2 [cos 2(ωτ −Φ1) − 3]

+ ε2
−Γ3

4(9ω̂2 + 2�χ)
2�βω̂2 − �ϑ −

6(�ϑκ)
2

ω̂2

( )
cos 3(ωτ −Φ1) −

3�βκω̂2Γ2

4(2ω̂2 + �χ)
cos 2(ωτ −Φ1) +

�βκω̂2Γ2

2�χ

[ ]
(35)

Fig. 4 Effects of (a) the electrical resistive load, (b) excitation level, and (c) spring pre-deformation
on the voltage output

ASME Letters in Dynamic Systems and Control APRIL 2021, Vol. 1 / 021006-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/lettersdynsys/article-pdf/1/2/021006/6553480/aldsc_1_2_021006.pdf by Virginia Polytechnic Institute and State U

niversity, Lei Zuo on 01 August 2021



5.2 Case Study of the Intra-Well Oscillation. The spring
pre-deformation needs to satisfy ks> k1 to achieve the bi-stable con-
figuration. Therefore, Δ= 0.5%L is chosen in the following study
unless otherwise stated. The analytical and numerical VFRs under
the open-circuit condition are plotted in Fig. 5(a). The numerical
results match with the analytical solutions. Different from that of
the mono-stable PEH in Fig. 3(a), the intra-well VFRs of the
bi-stable PEH bend to the left-hand side for the soft stiffness. The
bi-stable PEH shows no advantage in voltage outputs compared
with the mono-stable PEH at Y= 0.01 g.
The phase portraits at ω= 3.46 and different excitation levels are

presented in Fig. 5(b). The analytical solutions agree well with the
numerical results. Figure 5(b) shows that the harvester is confined
in one of the local potential wells. Figure 5(c) plots the phase angle
along with the excitation frequency at Y= 0.05 g. The bifurcation
can be observed from the phase angle as the excitation frequency
varies.
The voltage frequency responses at different resistive loads are

presented in Fig. 6(a) for Y= 0.03 g, which shows the resistive
load has a significant influence on the voltage output. The voltage
decreases as the resistive load dwindles. The voltage output is
shown in Fig. 6(b) for varying excitation levels at ω= 2.9 and
3.3. Unlike the case of the mono-stable PEH, only a single stable
solution appears and augments as the excitation level becomes
large at ω= 3.3. For ω= 2.9, the system has a single stable low
branch solution under small excitation levels, but has two stable
solutions of both high and low branches as the excitation level
increases. There is only one stable high branch solution at high exci-
tation levels.
The open-circuit voltage outputs at varying spring pre-

deformations are plotted in Fig. 6(c) under the three excitation
levels and σ= 0. The reason that the detuning parameter is set to
zero is because the natural frequency of the system varies as the
spring pre-deformation changes. Only one stable solution exists
over the considered range of the spring pre-deformation. The
voltage output decreases as the spring-deformation increases. We
conclude that the spring-deformation has evident influence on the

voltage output of the bi-stable PEH. This is attributed to the fact
that the spring force has a remarkable contribution to the system
stiffness.

5.3 Inter-Well Oscillation. Strategies are needed to handle
the negative stiffness issue to apply the method of multiple
scales. A fictitious positive stiffness term is introduced into Eq.
(5a) to shift the linear negative stiffness to a positive one. By
adding and subtracting the fictitious term ω̂2η to the left-hand
side of Eq. (5a), one has

η′′ + 2εξη′ + ω̂2η + εβ[η(η′)2 + η2η′′] + ε[�χη + ϑη3] − εαv

= −εΛ cos(ωτ)
(36)

where ω̂ = ω − εσ, and �χ = χ − ω̂2. The damping, high-order terms,
electrical coupling terms, excitation, and the stiffness terms �χη +
ϑη3 are assumed to be small. The solutions are assumed to be the
same with those in Eq. (8). Substituting the solutions into Eqs.
(36) and (5b), one has

ε0:D2
0η0 + ω̂2η0 = 0

ε1:D2
0η1 + ω̂2η1 = −Λ cos(ωτ) − 2D0D1η0 − 2ξD0η0

−β[η0(D0η0)
2 + η20D

2
0η0] − �χη0 − ϑη30 + αv0

⎧⎨
⎩ (37)

ε0:D0v0 + �λv0 = −�θD0η0
ε1:D0v1 + �λv1 = −�θD0η1 − D1η0 − D1v0

{
(38)

Substituting the zeroth-order solutions in Eq. (11) into the first
equation in Eq. (38), one can find the relationship between the dis-
placement and the voltage. Plugging the solutions into the second
equation in Eq. (37), and setting the coefficients of the secular
terms to zeros, and substituting the complex conjugate amplitudes

Fig. 5 Intra-well (a) voltage frequency responses, (b) phase portraits at ω=3.46, and (c) phase
angle
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Fig. 6 Effect of the (a) electrical resistive load, (b) excitation level, and (c) spring pre-deformation on
the voltage output

Fig. 7 Inter-well (a) voltage frequency responses, (b) numerical results and analytical solutions, and
(c) phase angle
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A and �A into one of the resultant equation, one has

Γ′ = −Λ sinΦ2/(2ω̂) − (ξ + a0�λ)Γ
Φ′

0 = σ − Λ cosΦ2/(2ω̂Γ) − [�χ/(2ω̂) + a0ω̂] + a1Γ2

{
(39)

where Φ0, a0, and a1 are defined in Sec. 3 and Γ is the real displa-
cement amplitude. Let Γ′ =Φ′

0 = 0, one can obtain the steady-state
amplitude and phase angle as

[2ω̂ + σ − (�χ + 2a0ω̂
2) + 2a1ω̂Γ2]2 + 4(ξ + a0�λ)

2ω̂2 = [�Λ/(ω̂Γ)]2

(40)

Φ0 = tan−1{−2(ξ + a0�λ)ω̂/[2ω̂σ − (�χ + 2a0ω̂
2) + 2a1ω̂Γ2]} (41)

The Jacobian matrix can be derived from Eq. (39) as follows:

J =
−(ξ+ a0�λ) −Γσ +Γ(�χ/2ω̂+ a0ω̂)− a1Γ3

σ

Γ
−
1
Γ
(�χ/2ω̂+ a0ω̂)+ 3a1Γ −(ξ+ a0�λ)

⎡
⎣

⎤
⎦

(42)

The first-order solution η1 is obtained after eliminating the secular
terms. Together with the zeroth-order solution η0, the analytical
solution of the inter-well oscillation is

η=Γ cos(ωτ−Φ0)− ε
(2βω2 − ϑ)

8ω2
Γ3 cos 3(ωτ−Φ0) (43)

5.4 Case Study of the Inter-Well Oscillation. The analytical
voltage frequency responses at Y= 0.03 g, 0.05 g, and 0.15 g are
presented in Fig. 7(a). The excitation levels are higher than those
for the intra-well oscillations to activate the inter-well oscillation.
Comparing the voltage frequency responses under Y= 0.03 g and
0.05 g in Fig. 7(a) with those in Fig. 5(a), it shows the inter-well
oscillation outperforms the intra-well oscillation in voltage output.
The numerical simulation results are not given in Fig. 7(a) as we
did above because the inter-well oscillation cannot be always acti-
vated under the zero initial conditions.

To validate the analytical solution, upward and downward fre-
quency sweeps are numerically performed to the governing equa-
tions within the frequency range of ω∈ [0,7] and the excitation
amplitdue of Y= 0.15 g. The numerical results are presented in
Fig. 7(b) together with the analytical solutions. The amplitude of
the numerical voltage response matches with the analytical solu-
tions. Nevertheless, the analytical method overestimates the solu-
tions at the higher frequency range. The numerical simulations
are confined to the two local equilibria as the excitation frequency
increases. The phase angle at the open circuit and Y= 0.05 g in
Fig. 8(b) shows the bifurcation at ω= 0.32.
The voltage frequency responses of the inter-well oscillation

under Y= 0.05 g and different resistive loads are plotted in
Fig. 8(a). Similarly, the voltage output becomes smaller as the
external resistive load decreases. The voltage outputs over
varying excitation levels are plotted in Fig. 8(b) for two frequencies
of ω= 1.0 and 0.3. The high voltage output from the large ampli-
tude inter-well oscillation happens when the excitation level is
greater than 0.27 g for ω= 1.0. However, it is not available at the
low excitation levels (0g ∼ 0.27 g) because of failing to activate
the inter-well oscillation. For ω= 0.3, the excitation amplitude
has a similar influence on the voltage output with that of the intra-
well oscillation. Figure 8(c) presents the voltage output over
varying spring pre-deformations at the three excitation levels. The
trend of the voltage outputs along with the varying spring pre-
deformation is the same with these in Fig. 7(a). This is because
the system stiffness is dominated by the effective spring stiffness
ks induced by the spring pre-deformation. The increase in the
spring pre-deformation increases the linear stiffness.

6 Conclusion
A novel piezoelectric beam energy harvester with tunable poten-

tial function is developed and analytical modeled. An axial preload
spring is connected to one moveable end of the beam to achieve the
mono-stable or bi-stable systems. The method of multiple scales is
systematically implemented to solve for the analytical frequency

Fig. 8 Effect of the (a) external resistive load, (b) excitation level, and (c) spring pre-deformation on
the voltage output
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responses and phase angles. To handle the negative stiffness, tech-
nical strategies are introduced to analyze the intra-well and inter-
well dynamics. Numerical simulations are performed to confirm
the analytical solutions. The effects of the electrical resistive load,
excitation level, and spring pre-deformation on the dynamics and
voltage output are studied. The voltage output of both the
mono-stable and bi-stable systems increase along with the excita-
tion level. The spring pre-deformation has slight influence on the
energy harvesting performance of mono-stable system, but consid-
erable effect on that of the bi-stable system.
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