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Abstract

We present a virtual element method (VEM) for the numerical approximation of the electromagnetics subsystem of the

resistive magnetohydrodynamics (MHD) model in two spatial dimensions. The major advantages of the virtual element method

include great flexibility of polygonal meshes and automatic divergence-free constraint on the magnetic flux field. In this work,

we rigorously prove the well-posedness of the method and the solenoidal nature of the discrete magnetic flux field. We also

derive stability energy estimates. The design of the method includes three choices for the construction of the nodal mass matrix

and criteria to more alternatives. This approach is novel in the VEM literature and allows us to preserve a commuting diagram

property. We present a set of numerical experiments that independently validate theoretical results. The numerical experiments

include the convergence rate study, energy estimates and verification of the divergence-free condition on the magnetic flux

field. All these numerical experiments have been performed on triangular, perturbed quadrilateral and Voronoi meshes. Finally,

we demonstrate the development of the VEM method on a numerical model for Hartmann flows as well as in the case of

magnetic reconnection.

c© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Interest in the behavior of plasmas has skyrocketed in the modern age with applications ranging from fusion-

based nuclear power to low power thrusters for contemporary spacecraft. Since the late 1930s, efforts have been

devoted to the development of models for plasmas and discretizations that are faithful to the physics and dynamics.

An approach that has proven successful and has become standard is to consider plasmas as magnetized fluids, an

area called magnetohydrodynamics (MHD). Therefore, the description of these plasmas follow from a blending

together of electromagnetic theory and fluid flow. The precise details of how these two theories can be coupled can

be found in [1–3]. Research in MHD is driven by applications that are important to several communities including,

astrophysicists that study accretion discs and the dynamics that govern evolution of stars; planetary scientists that

are interested in the generation of magnetic fields at the core of planets; plasma physicists whose interest lies in

the confinement of plasmas by means of external magnetic fields and engineers who have found that with external
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magnetic fields they can control the motion of liquid metals leading to a revolution in metallurgical techniques in

industry.

The development of numerical methods for MHD is an active area of research, being developed over the last

few decades. In [4,5], two finite element methods are presented that use different techniques in order to preserve

the divergence condition on the magnetic field. In [4], the condition is attained automatically, similar to how it is

done in this article, whereas in [5] the scheme includes the magnetic vector potential under the temporal gauge,

and the magnetic field is obtained as its curl. In [6], the convergence of finite volume methods for MHD is studied

and in [7,8] the classic upwind and Godunov methods are adapted to ideal MHD. In [9], the author presents a finite

difference method based on summation by parts (SBP) to mimic the integration by parts formula in the discrete

setting, in order to preserve important energy conservation properties and attain an approximate-divergence free

scheme. Finally, in [10] the authors develop a MAC scheme for the fluid flow sub-system of the incompressible

MHD equations, coupling it to the Yee-scheme for the electromagnetic sub-system.

Although models in MHD come about from a coupling between the equations that govern the fluid flow and

Maxwell’s equations for electromagnetism, in this article we will focus on modeling the evolution of the electric

and magnetic fields in a plasma for a prescribed fluid flow. Thus, we focus on the Maxwell subsystem of MHD,

which combines Faraday’s law, Ampere’s law, Ohm’s law and Gauss’s law for the electromagnetic fields under a

prescribed fluid flow.

The main aim of this article is to present a novel numerical discretization of Maxwell’s equations for resistive

MHD in a two dimensional setting using the virtual element method (VEM). The VEM was originally proposed

in [11] as a variational reformulation of the nodal high-order mimetic finite difference (MFD) method [12–14], for

the numerical treatment of elliptic problems on unstructured polygonal and polyhedral meshes. The word “mimetic”

reflects the nature of the method, which mimics the duality and self-adjointness of differential operators as well

as identities of vector and tensor calculus. Due to such feature, mimetic methods are often dubbed as compatible

methods or compatible discretizations. In particular, satisfying Gauss’s law on the divergence of the magnetic field

in the discrete setting requires careful discretization of the Maxwell curl equations, i.e., Faraday’s law and Maxwell–

Ampère law. This fact is in contrast to the continuous setting in which the divergence-free nature of the magnetic

field is a direct consequence of the Maxwell curl equations when the initial conditions properly satisfy the Gauss’s

law.

The violation of Gauss’s law is a serious source of error in the numerical discretization of Maxwell’s equations,

causing the appearance of fictitious forces or magnetic monopoles, which are non-physical, thus rendering the

numerical simulations unfaithful to the real physics. Over time, mimetic methods were extended from the Support

Operator Method (SOM) [15–17]), which works on regular tensor grids, to the MFD method, which works on fairly

general polygonal and polyhedral meshes. The MFD method is, in practice, a family of schemes depending on a set

of parameters. These parameters can be optimized to satisfy additional properties such as maximum principles and

low dispersion errors. This process goes by the name of mimetic adaptation or M-adaptation and it is outlined in [18].

Previous work in M-adaptation shows that the process can be implemented for problems in wave propagation, see

[19], and in the study of cold plasmas, as shown in [20]. Readers interested in historical perspective on the 50-year

long development of mimetic and compatible methods are referred to [21]. Development of mimetic and compatible

methods are referred to a recent review in [21].

The VEM can also be interpreted as a generalization of the FEM to general polygonal and polyhedral meshes

that inherits the great flexibility of the MFD method with respect to the admissible meshes used in the numerical

formulation. This versatility provides a series of advantages over methods that require a degree of regularity in their

meshes. For example, in order to attain a higher degree of accuracy in a region of the computational domain we tend

to use adaptive mesh refinements (AMR). This approach introduces irregularities in the mesh that can be problematic

for more traditional numerical methods. We explore this issue in the numerical section, Section 7. In the case of free

boundaries or oddly shaped boundary layers it may be imperative to fit the mesh forcing some irregularities. We also

note that the numerical dispersion can be greatly reduced on select polygonal meshes, see [22,23]. In these works,

the Finite Difference Time Domain (FDTD) method by Yee was applied to a grid of hexagonal prisms and yields

much less numerical dispersion and anisotropy than on the grids that are usually considered in the formulation of

Yee’s method, i.e., regular hexahedral cells. We note that another major difference when compared to a regular

FEM is that, in the VEM the shape functions are defined in an implicit manner and never explicitly constructed.

The name “virtual element” stems from the fact that such shape functions and the finite element space generated

by their linear combinations are, in this sense, “virtual”.
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The VEM was originally proposed for solving diffusion problems in [11] as a conforming FEM, and later

extended to the nonconforming formulation in [24] and the mixed BDM-like and RT-like formulations in [25]

and [26], respectively. Generalizations to convection–reaction–diffusion problems with variable coefficients can be

found in [27–30]. In a series of papers [31–34], H (div)- and H (curl)-conforming virtual element spaces on general

polygonal and polyhedral elements have been proposed to generalize the well known Raviart–Thomas and Nédélec

finite elements to unstructured polytopal meshes. These methods, combined with the serendipity strategy that reduces

the total number of degrees of freedom, see [35,36], have successfully been applied to the numerical resolution of

the magnetostatic Kikuchi’s model. In these papers, exact virtual de Rham sequences with commuting-diagram

interpolation operators are built and the solenoidal nature of the discrete magnetic flux field is ensured. Finally,

VEMs have also been designed for hyperbolic problems (see [37,38]).

In our work, we utilize the low-order spaces proposed in [31], which makes it possible to obtain the combined

approximation of the H 1-conforming space (0-forms) by a nodal-type virtual element space, the H (curl)-

conforming space (1-forms) by an edge-type virtual element space, and the H (div)-conforming space (2-forms)

by discontinuous piecewise constant polynomials.

To derive our virtual element approximation, we first reformulate the MHD equations in a variational framework,

and then, approximate all L2-type integrals by using suitably defined inner products for nodal-, edge- and cell-type

virtual functions. The standard way to build such inner products is through the orthogonal projection of the virtual

element functions onto the subspace of linear polynomials. However, as was already noted in [31], the nodal virtual

element space that we consider in this work does not provide enough information to construct such projections. Our

approach in this paper is to substitute the orthogonal projector with the elliptic projector in [27], since in the low-

order case we can always consider these two projection operators as equal by redefining the virtual element space

appropriately. This strategy is usually referred to as the “enhanced VEM” by the VEM developers and practitioners.

A major issue occurs here, because changing the definition of the nodal virtual element space requires also

changing the definition of the edge and cell virtual element spaces in order to maintain the exact de Rham

commuting diagrams. This issue has led to the different virtual element space formulations that were used in

the magnetostatics application mentioned above. Instead, in this work we prefer to adopt a different approach,

which consists of designing a special reconstruction operator that is computable from the degrees of freedom,

stable and bounded as discussed in the following sections. Applying the reconstruction operator makes it possible to

recover an approximation of the nodal virtual element functions inside each mesh element and then directly integrate

these reconstructed functions. The choice of the elemental reconstruction operator is not unique. In this work, we

considered three different options: the elliptic projection; a Least-Squares interpolation of the nodal values; and the

piecewise linear Galerkin interpolation on a triangular sub-partition of each element. Our numerical experiments

show that these three options are all quite effective and the resulting scheme’s implementations have comparable

accuracy.

This article is structured as follows. The rest of this section includes a brief overview of notation and some

basic mathematical definitions relevant to the rest of the paper. In Section 2, we present the set of governing

equations to be discretized in the continuous setting and introduce the semi-discrete and fully discrete variational

formulations in the virtual element framework. Next, in Section 3, we define the virtual element spaces and detail

the construction of the inner products that are used for the numerical approximation of the MHD model equations.

We also discuss the exactness and commutativity properties of the De-Rham complex and prove that the divergence

free condition of the numerical approximation of the magnetic flux field is preserved over time. In Section 4, we

prove that the fully discrete variational formulation is well posed. In Section 5, we derive stability energy estimates

for the continuous and fully discrete models. In Section 6 we discuss generalizations to arbitrary order and to three

dimensions. In Section 7, we present the results of a series of numerical experiments that provide evidence regarding

the convergence rate of the numerical method. Plots demonstrating that the method preserves the divergence free

condition of the magnetic flux field are available as well as a numerical study of the energy estimates that are derived

theoretically in Section 5. This section also includes a simulation of the solution to the Hartmann Flow problem.

We conclude the numerical experiments by presenting a model for the simulation of the magnetic reconnection

phenomenon. To this end, we use a mesh that is locally refined to provide higher resolution at the points were the

phenomenon is taking place. This mesh includes a series of hanging nodes, thus providing an example where using

the VEM facilitates the numerical simulation. Then, finally we summarize our findings in Section 8.
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1.1. Notation, functional spaces and technicalities

We use the standard definition and notation of Sobolev spaces, norms and seminorms, cf. [39]. Let k be a

non-negative integer. Consider an open bounded connected subset ω of R2 with polygonal boundary ∂ω. Subset

ω can be the whole computational domain Ω , or one of the polygonal cells P of the mesh partitioning, Ωh ,

covering Ω .

The Sobolev space H k(ω) consists of all square integrable functions with all square integrable weak derivatives

up to order k that are defined on ω. As usual, if k = 0, we prefer the notation L2(ω). Norm and seminorm in H k(ω)

are denoted by ‖ · ‖k,ω and | · |k,ω, respectively. We denote the inner product in L2(ω) by (·, ·)ω, but we omit the

subscript when ω is the whole computational domain Ω . We denote the norm of an operator Π , which is a norm

in the dual space, by the general notation ‖Π ‖, regardless of the spaces where range and image of Π are defined.

On ω, we consider the functional spaces:

L2(ω) :=

{
v : ω → R :

∫

ω

|v|2dV < ∞

}
, (1a)

H (rot; ω) :=
{
v ∈ L2(ω) : rot v ∈

(
L2(ω)

)2
}

, (1b)

H (div; ω) :=
{
w ∈

(
L2(ω)

)2
: div w ∈ L2(ω)

}
, (1c)

L∞(ω) := {w : ω → R : ∃ C > 0 ; |w| < C almost everywhere}, (1d)

where rot v = (∂v/∂y, −∂v/∂x)T , and rot w = (∂wx/∂y − ∂wy/∂x) for the vector field w = (wx , wy)T . If ω = Ω

denotes the computational domain, we consider the functional spaces:

V :=
{
w ∈ H (div;Ω ) : w ∈

(
L2+s(Ω )

)2
, for some real s > 0

}
, (2a)

H0(rot;Ω ) := {v ∈ H (rot;Ω ) : v = 0 on ∂Ω} . (2b)

Space V is slightly more regular than H (div;Ω ) to ensure that the trace of the normal component vh · n|e on each

mesh edge e exists and is continuous across all the internal edges [40].

For an open bounded connected subset ω ⊂ Rd with d = 1 or 2, we denote the linear space of polynomials of

degree up to ℓ defined on ω by Pℓ(ω), with the useful conventional notation that P−1(ω) = {0}. We denote the

space of two-dimensional vector polynomials of degree up to ℓ on ω by
[
Pℓ(ω)

]2
. Space Pℓ(ω) is the span of the

finite set of scaled monomials of degree up to ℓ, that are given by

Mℓ(ω) =

{ (
x − xω

hω

)α

with |α| ≤ ℓ

}
,

where

– xω denotes the center of gravity of ω and hω its characteristic length, as, for instance, the edge length or the

cell diameter for d = 1, 2;

– α = (α1, α2) is the two-dimensional multi-index of nonnegative integers αi with degree |α| = α1 + α2 ≤ ℓ

and such that xα = x
α1
1 x

α2
2 for any x ∈ R2.

We will also use the set of scaled monomials of degree exactly equal to ℓ, denoted by M∗
ℓ(ω) and obtained by

setting |α| = ℓ in the definition above.

Finally, we use the letter C in many inequalities to denote a strictly positive constant whose value can change

at any instance. Constant C may depend on the constants of the model equations or the variational problem, like

the coercivity and continuity constants, or constants that are uniformly defined for the family of meshes of the

approximation while h → 0, such as the mesh regularity constant, the stability constants of the discrete bilinear

forms, etc. However, constant C will never depend on the discretization parameters such as the mesh size h and

the timestep ∆t .

2. The mathematical formulation

Let Ω be an open, bounded, and polygonal subset of R2 with boundary Γ = ∂Ω and T a positive real number.

For a given fluid flow described by the velocity vector field u = (ux , u y)T ∈
[
L∞(Ω )

]2
, we consider the Maxwell
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problem for the electric and magnetic fields, respectively denoted by E and B = (Bx , By)T , that reads as:

∂ B

∂t
= −rot E in Ω × (0, T ], (3a)

E + u × B = ν rot B in Ω × (0, T ], (3b)

B(·, 0) = B0 with div B0 = 0 in Ω , (3c)

E(·, t) = E0(·, t) on ∂Ω × (0, T ], (3d)

where ν is the resistivity of the medium and u × B = ux By − u y Bx . We introduce σ = ν−1 and assume that it

is bounded by two positive constants σ∗ ≤ σ (x) ≤ σ ∗ for almost every x ∈ Ω . The system of partial differential

equations (PDEs) (3) couples Faraday, Ampere and Ohm laws. As discussed in the introduction, an important

property of the MHD system (3), which we will address in the virtual element discretization, is the solenoidal

nature of the magnetic flux field B. By taking the divergence of (3a) we find that the divergence of B does not

change in time, so B is divergence free if the initial field B0 in (3c) is divergence free.

The variational formulation of problem (3) reads as:

Find (B, Ê) ∈ C1 ([0, T ], H (div;Ω )) × C ([0, T ], H0(rot;Ω )), such that:

(∂ B

∂t
, w

)
+

(
rot E, w

)
= 0 ∀w ∈ H (div;Ω ), (4a)

(
σ Ê, v

)
+

(
σ u × B, v

)
−

(
B, rot v

)
= −

(
σ E0, v

)
∀v ∈ H0(rot;Ω ), (4b)

E = Ê + E0, (4c)

B(·, 0) = B0 with div B0 = 0. (4d)

The boundary conditions on E are set through the known function E0, so we seek for the solution Ê with zero trace

on Γ . As is the case of any conforming Galerkin method, we first select subspaces of H (div;Ω ) and H0(rot;Ω )

defined on the mesh partition Ωh of the computational domain Ω . The requirements on the mesh partition Ωh will

be specified in Section 3. We respectively denote them by Eh and Vh , and assume that they are equipped by the

inner products (·, ·)Eh
and (·, ·)Vh

and suitable interpolation operators, e.g., IVh and IEh , or projection operator,

e.g., Π RT . The coefficient σ is incorporated in the definition of Vh . We also use the space Vh,0, the subspace of the

functions in Vh vanishing at the boundary of Ωh . The definition and construction of all these mathematical objects

are left for the next section. The semi-discrete virtual element discretization of Problem (4) reads as:

Find (Bh, Êh) ∈ C1 ([0, T ], Eh) × C
(
[0, T ],Vh,0

)
such that for all (wh, vh) ∈ Eh × Vh,0 it holds:

(
∂ Bh

∂t
, wh

)

Eh

+
(
rot Eh, wh

)
Eh

= 0, (5a)

(
Êh, vh

)
Vh

+
(
I
Vh

(
u × Π

RT Bh

)
, vh

)
Vh

−
(
Bh, rot vh

)
Eh

= −
(
I
Vh (E0), vh

)
Vh

, (5b)

Eh = Êh + I
Vh (E0), (5c)

Bh(·, 0) = B0
h = I

Eh (B0) with div B0
h = 0. (5d)

Let ∆t denote the timestep that splits the time interval [0, T ] into N = T/∆t subintervals. The virtual element

solution pair
(
Bh(·, tn), Êh(·, tn + θ∆t)

)
, with tn = n∆t , is approximated by the pair (Bn

h, Ên+θ
h ), which is the

solution of the discrete time-dependent problem parameterized by the scalar factor θ ∈ [0, 1]:

Find
{

Bn
h

}N

n=0
⊂ Eh and

{
Ên+θ

h

}N−1

n=0
⊂ Vh,0 such that for all (wh, vh) ∈ Eh × Vh,0 it holds:

( Bn+1
h − Bn

h

∆t
, wh

)
Eh

+
(

rot En+θ
h , wh

)
Eh

= 0 (6a)

(
Ên+θ

h , vh

)
Vh

+
(
I
Vh

(
u × Π

RT Bn+θ
h

)
, vh

)
Vh

−
(
Bn+θ

h , rot vh

)
Eh

= −
(
I
Vh

(
En+θ

0

)
, vh

)
Vh

(6b)

En+θ
h = Ên+θ

h + I
Vh

(
En+θ

0

)
, (6c)

Bn+θ
h = θ Bn+1

h + (1 − θ )Bn
h, (6d)

Bh(·, 0) = I
Eh

(
B0

)
. (6e)
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It is worth noting that Bn
h is defined at the time instants tn = n∆t , n = 0, . . . , N , while Ên+θ

h is defined on the

“staggered” grid at time instants tn+θ = (n + θ )∆t . According to the θ parameterization, for θ = 0 we recover the

explicit or forward Euler scheme, for θ = 1 the implicit or backward Euler scheme and for θ = 1/2 the (semi)

implicit leap-frog scheme.

3. The virtual element method

3.1. Assumptions on mesh regularity

Let Ωh = {P} be a mesh decomposition of Ω into polygonal element (or cell) P with boundary ∂P, area |P| and

diameter hP. As usual, h = maxP∈h hP is the mesh size parameter. We denote the edges of ∂P by e and its length

by |e| = he.

We assume that h belongs to H ⊂ (0, +∞), which is a countable set of mesh sizes having 0 as its unique

accumulation point. A family of meshes {Ωh}h is said to be regular if there exists a non-negative real number ρ

independent of h (and, hence, of Ωh), such that

(M1) (star-shapedness): every polygonal cell P of every mesh Ωh is star-shaped with respect to every point of a

disk of radius ρhP;

(M2) (uniform scaling): every edge e ∈ ∂P of cell P ∈ Ωh satisfies he ≥ ρhP.

The regularity assumptions (M1)–(M2) allow us to use meshes with cells having quite general geometric shapes.

For example, nonconvex cells or cells with hanging nodes on their edges are admissible. Nonetheless, these

assumptions have some important implications such as: (i) every polygonal element is simply connected; (ii) the

number of edges of each polygonal cell in the mesh family {Ωh}h is uniformly bounded; (iii) a polygonal element

cannot have arbitrarily small edges with respect to its diameter hP ≤ h for h → 0 and inequality h2
P

≤ C(ρ)|P|h2
P

holds, with the obvious dependence of constant C(ρ) on the mesh regularity factor ρ. It is worth mentioning that

virtual element methods on polygonal or polyhedral meshes possibly containing “small edges” in 2D or “small

faces” in 3D have been considered in [41] for the numerical approximation of the Poisson problem. The work

in [41] extends the results in [42] for the original two-dimensional virtual element method to the version of the

virtual element method in [27] that can also be applied to problems in three dimensions.

Finally, we note that assumptions (M1)–(M2) above also imply that the classical polynomial approximation

theory in Sobolev spaces holds [43].

3.2. Nodal virtual element space

On every element P ∈ Ωh , we consider the local virtual element space:

Vh(P) :=
{

vh ∈ H 1(P) : vh |∂P ∈ C0(∂P), vh |e ∈ P1(e), ∀e ∈ ∂P, ∆vh = 0 in P

}
. (7)

Then, we define the global virtual element space:

Vh :=
{

vh ∈ H 1(Ω ) : vh |P ∈ Vh(P), ∀P ∈ Ωh

}
; (8)

The local and global spaces Vh(P) and Vh were first proposed in [11]. Space Vh is a subspace of H 1(Ω ), so every

virtual element function vh ∈ Vh(P) is continuous over the computational domain Ω . Every function vh ∈ Vh(P)

is uniquely determined by its values at the vertices of P, i.e., by the set {vh(xv)}v∈∂P. Similarly, a virtual element

function in the global space Vh is defined by its values at all the mesh vertices. The unisolvence of such degrees

of freedom is proved in [11].

The virtual element schemes (5) and (6) require an approximation of the L2-inner product in Vh . The usual

approach to build such an approximation would be through the local orthogonal projection onto the space of linear

polynomials, which is a subspace of Vh(P), and by adding a suitable stabilization term. However, the orthogonal

projection is not computable from the degrees of freedom of the virtual element functions, namely, the vertex values,

unless we change the definition of the elemental space according to the construction proposed in [27]. Here, we

prefer not to modify the definition of space Vh(P) since otherwise we would lose the property that Vh is in a

de Rham complex with space Eh (which will be defined in the next subsection). This topic will be discussed in

Section 3.5.
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Therefore, for the construction of the approximate L2-inner product in Vh(P), we proceed in two steps. First,

for each function vh ∈ Vh(P), we introduce the linear polynomial approximation Π
Vh

P
vh , where operator Π

Vh

P
:

H 1(P) → P1(P) has these properties:

(V1) the linear polynomial Π
Vh

P
vh is computable from the degrees of freedom of vh ;

(V2) operator Π
Vh

P
is invariant on linear polynomials, i.e., Π

Vh

P
q = q whenever q belongs to P1(P);

(V3) operator Π
Vh

P
is uniformly bounded independently of the characteristics of the polygonal element P ,

i.e. there exists a real constant C > 0 independent of the number of nodes, edges or diameter of P such that

for every vh ∈ Vh(P) one has ‖Π
Vh

P
vh‖0,P ≤ C ‖vh‖0,P.

Remark 3.1. In Section 3.2.2, the third operator Π
Vh

P
vh is defined as the Galerkin piecewise linear interpolant of

vh on a triangle subpartition of P. Such subpartition, which we denote by Ph , is built by connecting the barycenter

of P with its vertices. Therefore, conditions (V1)–(V3) above are set for Π
Vh

P
: H 1(P) → P1(Ph), where P1(Ph)

is the space of continuous piecewise linear polynomials defined on Ph .

In view of mesh regularity assumptions (M1)–(M2) and according to a Bramble–Hilbert argument [44,45] and

property (V2), the approximation error satisfies the upper bound estimate

‖(1 − Π
Vh

P
)vh‖0,P ≤ ChP|vh |1,P, (9)

for every function vh ∈ Vh(P) ⊂ H 1(P) and

‖(1 − Π
Vh

P
)vh‖0,P + hP|(1 − Π

Vh

P
)vh |1,P

≤ Ch2
P
|vh |2,P (10)

whenever vh ∈ Vh(P) ∩ H 2(P).

Second, we consider the bilinear form on Vh × Vh given by the formula
(
vh, wh

)
Vh

:=
∑

P∈Ωh

(
vh, wh

)
Vh (P)

∀vh, wh ∈ Vh, (11)

where each local term
(
vh, wh

)
Vh (P)

is computed by using the elementwise approximations of vh and wh on P

according to
(
vh, wh

)
Vh (P)

:=
(
σΠ

Vh

P
vh,Π

Vh

P
wh

)
P

+ S
Vh

P

(
(1 − Π

Vh

P
)vh, (1 − Π

Vh

P
)wh

)
. (12)

Here, S
Vh

P
(·, ·) is a symmetric and nonnegative bilinear form for which there exist two positive constants s∗ and s∗

such that

s∗‖vh‖
2
0,P ≤ S

Vh

P
(vh, vh) ≤ s∗‖vh‖

2
0,P ∀vh ∈ Vh(P) ∩ ker

(
Π

Vh

P

)
. (13)

Constants s∗ and s∗ are independent of h, but may depend on the regularity parameter ρ and the bounds on σ ,

namely, the two constant factors σ∗ and σ ∗. Effective choices for S
Vh

P
(·, ·) are available from the virtual element

literature [46,47]

3.2.1. Properties of the inner product (12)

In the rest of this section, we investigate the properties of the inner product defined in (12). First, we note that

the local bilinear form ( ·, · )Vh (P) satisfies the consistency condition with respect to the linear polynomials in the

sense that ( q, p )Vh (P) = (q, p)L2(P) for every pair of linear polynomials q, p. This property is more stringent that

the usual consistency of the typical virtual element constructions, where the exactness property meaning consistency

is true if at least one of the entries is a linear polynomials but not necessarily both simultaneously.

The property that is characterized in the next lemma is the stability of ( ·, · )Vh (P) with respect to the L2 inner

product.

Lemma 3.2. There exist two positive constants α∗ and α∗, which are independent of h (and ∆t), but may depend

on the mesh regularity parameter ρ and the bounds on σ , such that

α∗‖vh‖
2
0,P ≤

(
vh, vh

)
Vh (P)

≤ α∗‖vh‖
2
0,P (14)

for every mesh element P.

7
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Proof. Stability is strictly interconnected with the fact that ( ·, · )Vh (P) is an inner product in Vh(P). First, we note

that S
Vh

P
(·, ·) is a symmetric bilinear form; hence, the bilinear form ( ·, · )Vh (P) in (12) is also symmetric. The lower

bound in (13) implies that ( ·, · )Vh (P) is bounded from below by the L2(P)-norm. Indeed, note that

∥∥vh

∥∥2

0,P
≤

(∥∥Π Vh

P
vh

∥∥
0,P

+
∥∥(1 − Π

Vh

P
)vh

∥∥
0,P

)2

≤ 2
(∥∥Π Vh

P
vh

∥∥2

0,P
+

∥∥(1 − Π
Vh

P
)vh

∥∥2

0,P

)
.

Then, a straightforward calculation yields the chain of inequalities:
(
vh, vh

)
Vh (P)

≥ σ∗

∥∥Π Vh

P
vh

∥∥2

0,P
+ s∗

∥∥(1 − Π
Vh

P
)vh

∥∥2

0,P

≥ min(σ∗, s∗)
(∥∥Π Vh

P
vh

∥∥2

0,P
+

∥∥(1 − Π
Vh

P
)vh

∥∥2

0,P

)
≥ α∗

∥∥vh

∥∥2

0,P
,

where we set α∗ = min(σ∗, s∗)/2.

The inequality from above is proved in a similar way:
(
vh, vh

)
Vh (P)

=
(
σΠ

Vh

P
vh,Π

Vh

P
vh

)
+ S

Vh

P
((1 − Π

Vh

P
)vh, (1 − Π

Vh

P
)vh)

≤ (σ ∗ + s∗)
(
‖Π

Vh

P
vh‖

2
0,P + ‖(1 − Π

Vh

P
)vh‖

2
0,P

)
≤ α∗‖vh‖

2
0,P,

where we set α∗ = (σ ∗ + s∗)
(
1 + ‖Π

Vh

P
‖
)2

in the final step. �

Remark 3.3. A suitable choice of S
Vh

P
and its scaling factor may allow us to have s∗ = σ ∗. Also, we can define

Π
Vh

P
so that ‖Π

Vh

P
‖ ≤ 1. This implies that α∗ ≤ 2σ ∗ and we can use this bound in the inequalities of the next

sections to have an explicit dependence on σ ∗.

The two properties of symmetry and non-negativity imply that ( ·, · )Vh (P) is an inner product in Vh(P) for any

element P ∈ Ωh , so that the quantity

|||vh |||
2

Vh (P)
:=

(
vh, vh

)
Vh (P)

is the induced local norm and the Cauchy–Schwarz inequality must hold
(
vh, wh

)
Vh (P)

≤ |||vh |||
Vh (P)

|||wh |||
Vh (P)

∀vh, wh ∈ Vh(P). (15)

By summing over all the mesh elements, we find that the symmetric bilinear form defined in (11) is bounded from

below by the L2(Ω )-norm. Therefore, Eq. (11) defines an inner product on the global virtual element space Vh ,

with induced norm given by

|||vh |||
2

Vh
:=

∑

P∈Ωh

(
vh, vh

)
Vh (P)

.

We readily see that such inner product is continuous with respect to its induced norm
(
vh, wh

)
Vh

≤ |||vh |||
Vh

|||wh |||
Vh

∀vh, wh ∈ Vh, (16)

and such norm is bounded from below by the L2 norm

|||vh |||
2

Vh
=

(
vh, vh

)
Vh

≥ α∗

∥∥vh

∥∥2

0,Ω
. (17)

Likewise, in view of Lemma 3.2, the global inner product is also continuous with respect to the L2(P)-inner product.

In fact, on starting from (16) and using the upper bound in (14), we find that
(
vh, wh

)
Vh (P)

≤ |||vh |||
Vh (P)

|||wh |||
Vh (P)

≤ α∗‖vh‖0,P ‖wh‖0,P, (18)

where we recall that α∗ = (σ ∗ + s∗)
(
1 + ‖Π Vh ‖

)2
. By summing all the local terms and noting that h ≥ hP for

every P yields:
(
vh, wh

)
Vh

≤ α∗
∥∥vh

∥∥
0,Ω

‖wh‖0,Ω . (19)

Therefore, the local inner product is continuous with respect to the L2(P)-norm for every P ∈ Ωh and the global

inner product in Vh is continuous with respect to the L2(Ω )-norm.

8
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3.2.2. Construction of operator Π
Vh

P

We discuss three different choices for the approximation operator Π
Vh

P
.

(I). Elliptic projection operator(E). The most obvious example of such a computable approximation operator is

the elliptic projection of a virtual element function vh ∈ Vh(P), which is the linear polynomial Π ∇
P

vh solving the

variational problem:
∫

P

∇Π
∇
P

vh · ∇qhdV =

∫

P

∇vh · ∇qhdV ∀qh ∈ P1(P), (20)

1

Nv

∑

v∈P

Π
∇
P

vh =
1

Nv

∑

v∈P

vh . (21)

The elliptic projection Π
∇
P

vh clearly provides a linear polynomial approximation of vh , which is computable from

the degrees of freedom, (V1), and invariant on linear polynomials, (V2), cf. Ref. [27]. Property (V3) is proved in

the appendix, see Appendix A.

(II). Least Squares reconstruction operator(LS). An alternative to the elliptic projection operator is provided by

the linear interpolant

Π
L S

P
vh(x, y) = a + b

x − xP

hP

+ c
y − yP

hP

, (22)

where the three real coefficients a, b, c are determined by imposing that

Π
L S

P
vh(xv, yv) = a + b

xv − xP

hP

+ c
yv − yP

hP

= vh(xv, yv) ∀v ∈ ∂P, (23)

where xv = (xv, yv)T is the coordinate position vector of vertex v. We solve the resulting system using the Least

Squares method. Indeed, this system has NV

P
equations where NV

P
is the number of vertices of the polygonal

element and only three unknowns, and is overdetermined unless P is a triangular cell. The linear polynomial Π L S
P

vh

only depends on the vertex values of vh and is clearly computable (property (V1)) and is invariant on the linear

polynomials (property (V2)). Property (V3) is proved in the appendix, see Appendix B.

(III). Galerkin interpolation operator(GI). The third alternative that we consider in this paper is given by a finite

element-like piecewise linear interpolant on the polygonal cell P. Assumptions (M1)–(M2) imply the existence of

an internal point v∗ with respect to which P must be star-shaped (e.g., the center of the disk in (M1)). We assume

that this point is described by the coordinate vector

x∗
P

=
∑

v∈∂P

ωP,vxv, with 0 < ωP,v < 1 and
∑

v∈∂P

ωP,v = 1,

where the weights ωP,v are known. For example, if P is convex, we can choose the arithmetic average of the vertex

positions, so ωP,v = 1/NV

P
, or the baricenter of P. Then, we approximate vh(x∗

P
) by the average of the vertex values

using the same weights ωP,v:

vh(x∗
P

) ≈ v∗
P

=
∑

v∈∂P

ωPvvh(xv). (24)

We note that vh(x∗
P

) = v∗
P

if vh is a linear polynomial, which is crucial to ensure that property (V2) is satisfied.

We connect the internal point v∗ to all the vertices v ∈ Ωh , thus splitting P in NV

P
subtriangles T that form a

patch around v∗. The patch nodes are the vertices of the polygonal boundary of P and vertex v∗. Let φv(xv) be the

continuous piecewise linear function defined on the patch that is one at a given patch node (including vertex v∗)

and zero at the other nodes. Finally, we define the operator Π
Vh

P
: H 1(P) → P1(Ph) (see Remark 3.1) by

Π
pw

P
vh(x) =

∑

v∈∂P

vh(xv)φv(x) + v∗
P
φv∗ (x), (25)

which is the continuous piecewise linear interpolant of vh on the set of values {(xv, vh(xv))}v∈Ωh
∪{(xv∗ , v∗

P
)}. From

this construction it is obvious that Π
pw

P
vh is computable from the vertex values of vh (property (V1)); Π

pw

P
q = q if

q is a linear polynomial (property (V2)); Π
pw

P
vh is bounded (property (V3)) since 0 ≤ φv(x) ≤ 1 for all the patch

functions φv at every patch node xv and φv∗ at x∗.

9
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3.3. Edge virtual element space

On every element P ∈ Ωh , we consider the following finite-dimensional space:

Eh(P) :=
{
vh ∈ H (div; P) ∩ H (rot; P) : vh · n|e ∈ P0(e) ∀e ∈ ∂P, div vh ∈ P0(P) and rot vh = 0 in P

}
. (26)

The local virtual element space Eh(P) was introduced in the VEM literature in Ref. [26]. It is worth noting that on

a triangular cell, space Eh(P) coincides with the space of vector-valued polynomials RT0(P) = (P0(P))2 +P0(P)x,

i.e., those vector-valued fields that are of the form w(x) = a+bx for some vector and scalar coefficients a ∈ R2 and

b ∈ R, respectively; see [40]. In the case of a general polygonal cell,
(
P0(P)

)2
and RT0(P) are clearly subspaces

of Eh(P). In view of this elemental definition, we have the corresponding global virtual element space:

Eh :=
{

vh ∈ V : vh |P ∈ Eh(P), ∀P ∈ Ωh

}
. (27)

By definition, space Eh is a subspace of V . Each virtual element function vh ∈ Eh(P) is uniquely defined by the

values of its normal components at the edges of P, {vh · n|e}e∈∂P. Similarly, a virtual function in the global space

Eh is defined by the values of its normal components at the mesh edges. The unisolvence of this set of degrees of

freedom for Eh is proved in [26].

In Eh we can compute the two different orthogonal projection operators denoted by Π
Eh

P
and Π

RT
P

, which

respectively project from H (div; P) onto
[
P0(P)

]2
and RT0(P). The orthogonal projection Π

Eh

P
v is the constant

vector field solving the variational problem
∫

P

Π
Eh

P
vh · qhdV =

∫

P

vh · qhdV, ∀qh ∈
[
P0(P)

]2
.

This operator is computable from the degrees of freedom, cf. [26].

Also, Π RT
P

vh is the (unique) solution of the following variational problem:
∫

P

Π
RT

P
vh · whdV =

∫

P

vh · whdV, ∀wh ∈ RT0(P).

We show here that Π RT
P

vh is computable from the degrees of freedom vh ∈ Eh . Since wh(x) = a + bx, we write it

as the gradient of a second-degree polynomial, i.e., wh = ∇q where q(x) = a · x + (b/2)xT x. Then, we substitute

this expression for wh in the right-hand side, integrate by parts and obtain:
∫

P

vh · whdV =

∫

P

vh · ∇q dV = −

∫

P

(div vh)q dV +
∑

e∈∂P

∫

e

n · vh q d S.

All the integrals on the right-hand side are computable. In fact, the values n · vh |e for all edges e ∈ ∂P are known

as they are the degrees of freedom of vh . Moreover, the divergence of vh is also known as it is constant over P and

a straightforward application of the Gauss Divergence theorem yields:

div vh =
1

|P|

∑

e∈∂P

|e|n · vh |e.

A similar argument can be used to prove that Π
Eh

P
vh is computable from the degrees of freedom of vh (take

qh = a · x), see Ref. [26].

We use the orthogonal projector onto the constant vector fields to define the inner product in Eh . As usual in the

VEM, we split it into the sum of local contributions:
(
vh, wh

)
Eh

=
∑

P∈Ωh

(
vh, wh

)
Eh (P)

, (28)

where each local term is the inner product in Eh(P) and takes the form
(
vh, wh

)
Eh (P)

= (Π
Eh

P
vh,Π

Eh

P
wh)P + S

Eh

P

(
(1 − Π

Eh

P
)vh, (1 − Π

Eh

P
)wh

)
(29)

and again we assume that S
Eh

P
(·, ·) is a symmetric and nonnegative bilinear form for which there exist two positive

constant s̄∗ and s̄∗ such that

s̄∗‖vh‖
2
0,P ≤ S

Eh

P
(vh, vh) ≤ s̄∗‖vh‖

2
0,P ∀vh ∈ Eh(P) ∩ ker

(
Π

Eh

P

)
.

10
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Since Π
Eh

P
is the orthogonal projection onto the constant vector-valued fields defined on P, it is now easy to prove

that this inner product is consistent and stable in the usual VEM sense; namely,

– consistency:

(
vh, qh

)
Eh (P)

=

∫

P

vh · qhdV qh ∈
(
P0(P)

)2
; (30)

– stability: there exist two positive constants, ᾱ∗ and ᾱ∗, such that

ᾱ∗‖vh‖
2
0,P ≤

(
vh, vh

)
Eh (P)

≤ ᾱ∗‖vh‖
2
0,P ∀vh ∈ Eh(P). (31)

3.4. Cell space

On every element P ∈ Ωh , we consider the finite-dimensional space Ph(P) := P0(P), which is the space of

constant functions defined on P. The corresponding global space is

Ph :=
{

qh ∈ L2(Ω ) : qh |P ∈ Ph(P), ∀P ∈ Ωh

}
; (32)

Space Ph is the space of piecewise constant functions qh ∈ L2(P) defined on mesh Ωh . So, the degrees of freedom

of qh are the values that qh takes in each mesh cell, namely, qh |P.

3.5. Interpolation operators and approximation of
(
σ u × B, v

)

We define the local interpolation operators

I
Vh

P
: H 1(P) → Vh(P), I

Eh

P
: V → Eh(P) and I

Ph

P
: L2(P) → Ph(P), (33)

by requiring that

– for any scalar function v ∈ H 1(P) ∩ C0(P), it holds I
Vh

P
v(v) = v(v), for every vertex v ∈ ∂P;

– for any vector-valued function w ∈ H (div; P) ∩ H (rot; P), it holds

ne · I
Eh

P
(w) =

1

|e|

∫

e

ne · I
Eh

P
(w) d S =

1

|e|

∫

e

ne · w d S,

for every edge e ∈ ∂P;

– for any scalar function q ∈ L2(P),
∫

P

I
Ph

P
qdV =

∫

P

qdV .

Correspondingly, we define the global interpolation operators by pasting together the elementwise operators

(IVh v)|P = I
Vh

P

(
v|P

)
, (IEh v)|P = I

Eh

P

(
v|P

)
, and (IPh q)|P = I

Ph

P

(
q|P

)
. (34)

It is easy to see that these interpolation operators are continuous

|||IVh v|||
Vh

≤ C‖v‖0,Ω ∀v ∈ H 1(Ω ), (35)

|||IEh w|||
Eh

≤ C‖w‖0,Ω ∀w ∈ V , (36)

|||IPh v|||
Ph

≤ C‖v‖0,Ω ∀v ∈ L2(Ω ). (37)

Finally, we use the interpolation operator IVh and the orthogonal projection operator Π
RT to approximate the

term involving u × B as follows:
(
σ u × B, v

)
≈

(
I
Vh (u × Π

RT Bh), vh

)
Vh

, (38)

where all the terms on the right have been defined except the RT -orthogonal projection of Bh ∈ Eh , which must

be such that
(
Π

RT Bh

)
|P

= Π
RT

P

(
Bh |P

)
for every mesh cell P ∈ Ωh . Note that the coefficient σ is incorporated

into the definition of the inner product in accordance with definition (12). We conclude this section with a technical

lemma that provides a useful estimate for the term in (38).

11
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Lemma 3.4. There exists a real positive constant C̃ independent of h (and ∆t) that may depend on α∗ and the

continuity constants of IVh and Π
RT , such that

(
I
Vh

(
u × Π

RT wh

)
, vh

)
Vh

≤ C̃‖u‖∞‖wh‖0,Ω ‖vh‖0,Ω (39)

for every wh ∈ Eh , vh ∈ Vh , and any assigned velocity u ∈ L∞(Ω ).

Proof.
(
IVh

(
u × Π

RT wh

)
, vh

)
Vh

≤ |||IVh
(
u × Π

RT wh

)
|||

Vh
|||vh |||

Vh
[use (17)]

≤ (α∗)
1
2 ‖IVh

(
u × Π

RT wh

)
‖0,Ω ‖vh‖0,Ω [use (35)]

≤ (α∗)
1
2 ‖IVh ‖‖u × Π

RT wh‖0,Ω ‖vh‖0,Ω [note that ‖u‖∞ < ∞]

≤ (α∗)
1
2 ‖IVh ‖‖u‖∞‖Π RT wh‖0,Ω ‖vh‖0,Ω [note that ‖Π RT ‖ ≤ 1]

≤ (α∗)
1
2 ‖IVh ‖‖u‖∞‖wh‖0,Ω ‖vh‖0,Ω ,

which is the assertion of the lemma after setting C̃ = (α∗)
1
2 ‖IVh ‖. �

3.6. Commuting properties and the virtual De-Rham complex

The elementwise interpolation operators I
Vh

P
, I

Eh

P
and I

Ph

P
for every mesh element P ∈ Ωh commute with the

differential operators rot and div . We state this property in the next lemma.

Lemma 3.5 (Commutation Properties).

(i) rot ◦ I
Vh

P
= I

Eh

P
◦ rot in Eh(P), ∀P ∈ Ωh,

(ii) div ◦ I
Eh

P
= I

Ph

P
◦ div in Ph(P), ∀P ∈ Ωh .

Proof. In view of the unisolvence of the degrees of freedom in Eh(P) [26], to prove (i) we only need to show that

the degrees of freedom of rot
(
I
Vh

P
v
)

are equal to the degrees of freedom of I
Eh

P

(
rot v

)
. Consider v ∈ H 1(P) and

its interpolant vh = I
Vh

P
v ∈ Vh(P), whose degrees of freedom are the vertex values vh(v) = v(v), v ∈ ∂P, and

recall, for every edge e ∈ ∂P, that

ne =

(
ne

x

ne
y

)
=

(
te
y

−te
x

)
=

(
0 1

−1 0

)
te.

A straightforward calculation shows that

ne · rot vh = ne

x

∂vh

∂y
− ne

y

∂vh

∂x
= te

x

∂vh

∂x
+ te

y

∂vh

∂y
= te · ∇vh,

which by the fundamental theorem of line integrals yields that

1

|e|

∫

e

ne · rot v d S =
1

|e|

∫

e

te · ∇v d S =
vh(v2) − vh(v1)

|e|
.

Similarly, to prove (ii), we only need to show that for any w ∈ H (div; P), the degrees of freedom of div (I
Eh

P
w) in

Ph(P) are equal to the degrees of freedom of I
Ph

P
(div w). This fact is evident from the following chain of identities:

div (I
Eh

P
w)

|P
=

1

|P|

∫

P

div (I
Eh

P
w) dV =

1

|P|

∫

∂P

n · I
Eh

P
w d S =

1

|P|

∑

e∈∂P

∫

e

ne · I
Eh

P
w d S

=
1

|P|

∑

e∈∂P

∫

e

ne · w d S =
1

|P|

∫

∂P

n · w d S =
1

|P|

∫

P

div w dV = I
Ph

P
(div w)

|P
. �

12
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Theorem 3.6. The de Rham diagram

H (rot;Ω )
rot

−−−−→ H (div;Ω )
div

−−−−→ L2(Ω )
yI

Vh

yI
Eh

yI
Ph

Vh
rot

−−−−→ Eh
div

−−−−→ Ph

is commutative and the chain

Vh
rot

−−−−→ Eh
div

−−−−→ Ph

is short and exact.

Proof. Consider a virtual element function wh ∈ Eh whose restriction to every element P ∈ Ωh has zero divergence,

i.e., div (wh |P) = 0. Since from Assumption (M1)–(M2), element P is simply connected, there exists a function v in

H 1(P) such that wh = rot v. Let vh = I
Vh

P
v. Lemma 3.5–(i), and the fact that wh |P = I

Eh

P
(wh) and vh |P = I

Vh

P
(vh),

imply that

wh |P = I
Eh

P
(wh) = I

Eh

P

(
rot v

)
= rot

(
I
Vh

P
v
)

= rot (vh),

for every P ∈ Ωh . The left-most part of the de Rham complex follows by considering together all the elemental

commuting relations.

Similarly, consider a piecewise constant function qh ∈ Ph , and let w ∈ H (div;Ω ) be the vector-valued field whose

divergence reproduces the elemental values of qh when restricted to the mesh elements, i.e., qh |P = div (w|P). Let

wh = IEh (w). Lemma 3.5–(ii), and the fact that wh |P = I
Eh

P
(wh) and qh |P = I

Ph

P
(qh) imply that

qh |P = I
Ph

P
(qh) = I

Ph

P

(
div w

)
= div

(
I
Eh

P
w

)
= div (wh |P),

for every P ∈ Ωh . The right-most part of the de Rham complex follows by considering together all the elemental

commuting relations. �

4. Wellposedness of the virtual element method

Inspired by [4], in this section, we investigate the wellposedness of the virtual element method that we presented

in the previous section. The major result of this section is stated by the following theorem.

Theorem 4.1. If θ > 0, then solution to Problem 4.2 exists and is unique. Moreover, the map (F, g) →

(Bn+1
h , Ên+θ

h ) is uniformly continuous independently of h and ∆t in the norm defined in Xh .

The definition of the space Xh and its norm will be presented in the next section whereas the proof of this

theorem will be postponed at the end of the section since it requires some further investigation about the properties

of the VEM. In particular, we will follow this roadmap. First, we prove that the approximation of the magnetic

flux field is divergence free provided that such condition is satisfied at the initial time. Second, we reformulate

the (n + 1)-step of scheme (6) in a suitable way, cf. Problem 4.2, and introduce two additional problems, namely,

Problems 4.3 and 4.4. Third, we prove that these three problems are equivalent, cf. Theorem 4.7, and, finally, that

Problem 4.4 is wellposed as a consequence of Babuska–Lax–Milgram Theorem [48], These facts eventually imply

the wellposedness of Problem 4.2.

To prove the equivalence of Problems 4.2 4.3 and 4.4 we need two additional theorems stating that div Bn+1
h = 0

whenever div IEh B0 = 0. These intermediate results confirm that the virtual element approximation Bh to the

magnetic flux field satisfies the divergence free condition.

We start by reformulating the (n + 1)th step of scheme (6) as follows.

Problem 4.2. Suppose that Bn
h and Ên−1+θ

h are known. Then, the (n + 1)th step of scheme (6) can be written as:

Find (Bn+1
h , Ên+θ

h ) ∈ Eh × Vh,0 such that for all (wh, vh) ∈ Eh × Vh,0 it holds:

∆t−1
(
Bn+1

h , wh

)
Eh

+
(
rot Ên+θ

h , wh

)
Eh

=
(
F, wh

)
Eh

, (40)
(
Ên+θ

h , vh

)
Vh

+ θ
(
I
Vh

(
u × Π

RT Bn+1
h

)
, vh

)
Vh

− θ
(
Bn+1

h , rot vh

)
Eh

=
〈
g, vh

〉
, (41)

13
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where we define

F = ∆t−1 Bn
h + rot

(
I
Vh En+θ

0

)
, (42)

〈
g, vh

〉
= (1 − θ )

((
Bn

h, rot vh

)
Eh

−
(
I
Vh

(
u × Π

RT Bn
h

)
, vh

)
Vh

)
−

(
I
Vh En+θ

0 , vh

)
Vh

. (43)

Next we show some results regarding the stability of scheme (6).

4.1. Abstract setting and equivalent problems

To have a setting to analyze Problem 4.2, we introduce the space Xh := Eh × Vh,0. We set (Bh, Eh) = ξ ∈ Xh

and equip Xh with the norm

|||ξ |||2
Xh

:= |||Eh |||
2

∆t,rot
+ |||Bh |||

2

∆t,div
, (44)

where

|||Eh |||
2

∆t,rot
:= |||Eh |||

2

Vh
+ ∆t |||rot Eh |||

2

Eh
, (45)

|||Bh |||
2

∆t,div
:= ∆t−1|||Bh |||

2

Eh
+ ‖div Bh‖

2
0. (46)

The space Xh is complete in the topology induced by norm ||| · |||
Xh

.

Next, we introduce two additional variational problems. To formulate such problems, we define the two bilinear

forms ah : Xh × Xh → R and ah,0 : Xh × Xh → R. Let ξ = (Bh, Eh) and η = (wh, vh). The first bilinear form is

given by

ah(ξ, η) =
(
∆t−1 Bh + rot Eh, wh

)
Eh

+
(
Eh + θIVh

(
u × Π

RT Bh

)
, vh

)
Vh

− θ
(
Bh, rot vh

)
Eh

. (47)

The second bilinear form is given by

ah,0(ξ, η) = ah(ξ, η) +
(
div Bh, div wh

)
. (48)

The first auxiliary variational problem reads as follows.

Problem 4.3. Find (Bn+1
h , Ên+θ

h ) = ξ ∈ Xh such that for any (wh, vh) = η ∈ Xh it holds:

ah(ξ, η) =
(
F, wh

)
Eh

+
〈
g, vh

〉
, (49)

where F and
〈
g, vh

〉
are given by (42) and (43) assuming that Bn

h (such that div Bn
h = 0) and Ên−1+θ

h are known.

The second auxiliary variational problem reads as follows.

Problem 4.4. Find (Bn+1
h , Ên+θ

h ) = ξ ∈ Xh such that for any (wh, vh) = η ∈ Xh:

ah,0(ξ, η) =
(
F, wh

)
Eh

+
〈
g, vh

〉
. (50)

where F and
〈
g, vh

〉
are given by (42) and (43) assuming that Bn

h (such that div Bn
h = 0) and Ên−1+θ

h are known.

Theorem 4.5 (Zero-divergence Magnetic Flux From System (6)). Let {Bn
h}

N
n=0 ⊂ Eh and {En+θ

h }N
n=0 ⊂ Vh,0 be

the solution of the virtual element scheme (6), with B0
h = IEh B0 and div B0 = 0. Then, div Bn = 0 for every

0 ≤ n ≤ N.

Proof. First, Lemma 3.5–(ii) implies that div B0
h = div

(
IEh B0

)
= I

Ph

P
(div B0) = 0 since we assume that

B0
h = IEh B0 with div B0 = 0. Then, we observe that rot En+θ

h ∈ Eh for every En+θ
h ∈ Vh . Therefore, Eq. (6a)

states that

Bn+1
h − Bn

h = ∆t rot En+θ
h in Eh (51)

for every n ≥ 0. Taking the divergence of both sides of (51), we find that div Bn+1
h = div Bn

h . We apply this relation

recursively back to n = 0 and find that div Bn
h = · · · = div B0

h = 0, which is the assertion of the theorem. �

14



S.N. Alvarez, V. Bokil, V. Gyrya et al. Computer Methods in Applied Mechanics and Engineering 381 (2021) 113815

Theorem 4.6 (Zero-divergence Magnetic Flux From Problem 4.4). If ξ = (Bn+1
h , Ên+θ

h ) solves Problem 4.4, then

div Bn+1
h = 0.

Proof. Test (50) against η = (wh, vh) with vh = 0, while leaving wh ∈ Eh undefined for the moment. Using

definitions (48), (47), (42), and (43), and rearranging the terms, we obtain the identity:

(
Fn − ∆t−1 Bn+1

h − rot En+θ
h , wh

)
Eh

=
(
div Bn+1

h , div wh

)
. (52)

Now, we set

wh = Fn − ∆t−1 Bn+1
h − rot En+θ

h .

Since div Bn
h = 0 by hypothesis and div ◦ rot = 0 we find that

div Fn = ∆t−1div Bn
h + div

(
rot Ên−1+θ

h

)
= 0 and div

(
rot En+θ

h

)
= 0,

so that

div wh = div (Fn − ∆t−1 Bn+1
h − rot Ên+θ

h ) = −∆t−1div Bn+1
h .

Substituting the expressions of w and div w in (52) yields

0 ≤ |||wh |||
2

Eh
= −∆t−1‖div Bn+1

h ‖2
0,Ω ,

which implies that ‖div Bn+1
h ‖0,Ω ≤ 0, and, thus, the proposition. �

Theorem 4.7 (Equivalence of Problems 4.2, 4.3, and 4.4). Problems 4.2–4.4 are equivalent.

Proof. It is immediate to see that Problem 4.2 is equivalent to Problem 4.3. In fact, adding (40) and (41) yields (49),

while testing (49) against η = (wh, 0) yields (40) and against η = (0, vh) yields (41).

To prove that Problem 4.3 is equivalent to Problem 4.4, we use the result of Theorem 4.6. In light of this theorem,

if ξ = (Bn+1
h , Ên+θ

h ) solves Problem 4.4, then div Bn+1
h = 0, and ah,0(ξ, η) = ah(ξ, η) for every η ∈ Xh , so ξ is also

a solution of Problem 4.3. Instead, if ξ = (Bn+1
h , Ên+θ

h ) solves Problem 4.3, then it is also a solution of Problem 4.2,

and div Bn+1
h = 0 in view of Theorem 4.5. Therefore, we can conclude that ah,0(ξ, η) = ah(ξ, η) for every η ∈ Xh

and ξ must be a solution of Problem 4.4. �

To prove that Problem 4.4 is well-posed, we prove that the bilinear form ah,0(·, ·) and the linear functionals(
F, ·

)
Vh

,
〈
g, ·

〉
satisfy the hypothesis of the Babuska–Lax–Milgram theorem [49]. First, we prove that ah,0(·, ·) is

continuous

Lemma 4.8. There exists a constant C > 0, independent of h and ∆t , such that

∀ξ, η ∈ Xh : ah,0(ξ, η) ≤ C |||ξ |||
Xh

|||η|||
Xh

. (53)

Proof. Let ξ = (Bh, Eh) and η = (wh, vh) be arbitrary elements in Xh . A systematic application of the Cauchy

Schwartz inequality yields that

∆t−1
(
Bh, wh

)
Eh

≤ ∆t− 1
2 |||Bh |||

Eh
∆t− 1

2 |||wh |||
Eh

≤ |||Bh |||
∆t,div

|||wh |||
∆t,div

,

(
rot Eh, wh

)
Eh

≤ ∆t
1
2 |||rot Eh |||Eh

∆t− 1
2 |||wh |||Eh

≤ |||Eh |||
∆t,rot

|||wh |||
∆t,div

,
(
Eh, vh

)
Vh

≤ |||Eh |||
Vh

|||vh |||
Vh

≤ |||Eh |||
∆t,rot

|||vh |||
∆t,rot

,
(
div Bh, div wh

)
≤ ‖div Bh‖0,Ω ‖div wh‖0,Ω ≤ |||Bh |||

∆t,div
|||wh |||

∆t,div
.
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We recall that the Friedrichs–Poincaré inequality holds so that ‖vh‖0,Ω ≤ C‖∇vh‖0,Ω for every vh ∈ Vh,0 ⊂ H 1
0 (Ω )

and note that ‖∇vh‖0,Ω = ‖rot vh‖0,Ω . In view of Lemma 3.4, we find that

(
IVh

(
u × Π

RT Bh

)
, vh

)
Vh

≤ C̃‖u‖∞‖Bh‖0,Ω ‖vh‖0,Ω [use Poincaré inequality]

≤ C̃‖u‖∞‖Bh‖0,Ω ‖rot vh‖0,Ω [use stability condition (31)]

≤ C̃‖u‖∞|||Bh |||Eh
|||rot vh |||Eh

[multiply and divide by ∆t
1
2 ]

≤ C̃‖u‖∞∆t− 1
2 |||Bh |||Eh

∆t
1
2 |||rot vh |||Eh

[use definitions (45) and (46)]

≤ C̃‖u‖∞|||Bh |||
∆t,div

|||vh |||
∆t,rot

[use definition (44) ]

≤ C̃‖u‖∞|||ξ |||
Xh

‖η‖Xh
.

The assertion of the lemma follows from the definition of the norm in Xh and the above estimates. �

The next lemma will show that ah,0(·, ·) satisfies the inf–sup condition.

Lemma 4.9. Let θ > 0. Then, for a sufficiently small ∆t , there exists a real positive constant Ĉ, independent of

h and ∆t , such that:

inf
ξ∈Xh

sup
η∈Xh

ah,0(ξ, η)

|||ξ |||
Xh

|||η|||
Xh

≥ Ĉ > 0. (54)

The constant Ĉ depends on parameter θ (and the mesh regularity parameter ρ).

Proof. The assertion of the lemma follows from proving that for every ξ = (Bh, Eh) ∈ Xh there exists a ηξ ∈ Xh

such that |||ηξ |||
Xh

≤ C |||ξ |||
Xh

, and

ah,0(ξ, ηξ ) ≥ Ĉ |||ξ |||
Xh

|||ηξ |||
Xh

, (55)

where both C and Ĉ are real positive constants independent of h and ∆t . To this end, we first split the bilinear

form in (48) as follows

ah,0(ξ, η) = (T1) + (T2), (56)

where

(T1) =
(
∆t−1 Bh + rot Eh, wh

)
Eh

+
(
div Bh, div wh

)
, (57)

(T2) =
(
Eh + θIVh

(
u × Π

RT Bh

)
, vh

)
Vh

− θ
(
Bh, rot vh

)
Eh

. (58)

Then, for an arbitrary pair
(
Bh, Eh

)
= ξ ∈ Xh , we consider the pair

(
wh, vh

)
= ηξ ∈ Xh with wh = (θ/

2)
(
Bh + ∆trot Eh

)
and vh = Eh . Note that div wh = (θ/2)div Bh because div (rot Eh) = 0. Substituting ξ and η

we transform the first term in (56) as follows:

(T1) =
θ

2

((
∆t−1 Bh + rot Eh, Bh + ∆trot Eh

)
Eh

+
(
div Bh, div Bh

))

=
θ

2

(
∆t−1|||Bh |||

2

Eh
+ ∆t |||rot Eh |||

2

Eh
+ 2

(
Bh, rot Eh

)
Eh

+ ‖div Bh‖
2
0,Ω

)

=
θ

2
|||Bh |||

2

∆t,div
+

θ

2
∆t |||rot Eh |||

2

Eh
+ θ

(
Bh, rot Eh

)
Eh

.

Similarly, we transform the second term in (56) as follows:

(T2) =
(
Eh, Eh

)
Vh

+ θ
(
I
Vh

(
u × Π

RT Bh

)
, Eh

)
Vh

− θ
(
Bh, rot Eh

)
Eh

= |||Eh |||
2

Vh
+ θ

(
I
Vh

(
u × Π

RT Bh

)
, Eh

)
Vh

− θ
(
Bh, rot Eh

)
Eh

.
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Adding (T1) and (T2) we find that

ah,0(ξ, η) =
θ

2
|||Bh |||

2

∆t,div
+

θ

2
∆t |||rot Eh |||

2

Eh
+ |||Eh |||

2

Vh
+ θ

(
I
Vh

(
u × Π

RT Bh

)
, Eh

)
Vh

≥ θ

(
1

2
|||Bh |||

2

∆t,div
+

1

2
|||Eh |||

2

∆t,rot
+

(
I
Vh

(
u × Π

RT Bh

)
, Eh

)
Vh

)
. (59)

Now, we prove that the right-hand side of (59) can be bounded from below by |||ξ |||2
Xh

for a suitable choice of ∆t .

Using the results of Lemma 3.4 as an upper bound estimate we have
(
IVh

(
u × Π

RT Bh

)
, Eh

)
Vh

≥ −C̃‖u‖∞‖Bh‖0,Ω ‖Eh‖0,Ω [multiply and divide by ∆t
1
2 ]

≥ −C̃‖u‖∞∆t
1
2 ∆t− 1

2 ‖Bh‖0,Ω ‖Eh‖0,Ω [use Young’s inequality]

≥ −C̃‖u‖∞∆t
1
2

(
1
2
∆t−1‖Bh‖

2
Eh

+ 1
2
‖Eh‖

2
Vh

)
[use definitions (45) and (46)]

≥ −C̃‖u‖∞

(
1
2
|||Bh |||

2

∆t,div
+ 1

2
|||Eh |||

2

∆t,rot

)
,

where we note that C̃ = (α∗)
1
2 ‖IVh ‖ is the constant from Lemma 3.4. We choose ∆t sufficiently small so that

C = 1 − C̃‖u‖∞∆t
1
2 > 0 and we write

ah,0(ξ, η) ≥
θ

2

(
1 − C̃‖u‖∞∆t

1
2

) (
|||Bh |||

2

∆t,div
+ |||Eh |||

2

∆t,rot

)
≥ C

θ

2
|||ξ |||2

Xh
. (60)

Finally, we note that

|||ηξ |||
2

Xh
= |||(θ/2)

(
Bh + ∆t rot Eh

)
|||2

∆t,div
+ |||Eh |||

2

∆t,rot

=
θ2

4

(
∆t−1|||Bh + ∆trot Eh |||

2

Eh
+ ‖div Bh‖

2
0,Ω

)
+ |||Eh |||

2

∆t,rot

=
θ2

4

(
∆t−1|||Bh |||

2

Eh
+ ∆t |||rot Eh |||

2

Eh
+ 2

(
Bh, rot Eh

)
Eh

+ ‖div Bh‖
2
0,Ω

)
+ |||Eh |||

2

∆t,rot

=
θ2

4

(
∆t−1|||Bh |||

2

Eh
+ ‖div Bh‖

2
0,Ω + 2

(
∆t−1/2 Bh,∆t1/2rot Eh

)
Eh

+ ∆t |||rot Eh |||
2

Eh

)

+ |||Eh |||
2

∆t,rot

≤
θ2

4

(
2∆t−1|||Bh |||

2

Eh
+ ‖div Bh‖

2
0,Ω + 2∆t |||rot Eh |||

2

Eh

)
+ |||Eh |||

2

∆t,rot

≤
θ2

2
|||Bh |||

2

∆t,div
+

(
1 +

θ2

2

)
|||Eh |||

2

∆t,rot

≤

(
1 +

θ2

2

)
|||ξ |||2

Xh
.

The last inequality implies that

∀ξ ∈ Xh ∃η ∈ Xh : ah,0(ξ, η) ≥ Ĉ |||ξ |||
Xh

|||η|||
Xh

, Ĉ = C
θ

2

(
1 +

θ2

2

)− 1
2

, (61)

from which the inf–sup condition stated in the lemma follows immediately. Note that for ∆t sufficiently small, we

have 0 < C < 1. Hence, we can just set C = 1. �

Proof of Theorem 4.1. According to Lemmas 4.8 and 4.9, the hypothesis of the Babuska–Lax–Milgram theorem

are satisfied for Problem 4.4. Since Problems 4.2 and 4.4 are equivalent this will also imply the well posedness of

Problem 4.2.

5. Stability energy estimates

In this section we show that (6) satisfies an energy estimates. We begin by finding such an estimate for the

continuous system (3). The techniques used in the proof are, partially, laid out in [50].
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Theorem 5.1. Let B and Ê solve (4) then

d

dt
‖B‖2

0,Ω +
1

2
‖σ 1/2 Ê‖2

0,Ω ≤ ‖E0‖
2
Hσ (rot ;Ω) +

(
2(σ ∗)2‖u‖2

∞ + 1
)
‖B‖2

0,Ω , (62)

where ‖E‖2
Hσ (rot ;Ω) = ‖σ 1/2 E‖2

0,Ω +‖rot E‖2
0,Ω . As a consequence there exists a bounded function β : [0, T ] → R+

such that

β(t)‖B(·, t)‖2
0,Ω +

1

2

∫ t

0

β(τ )‖σ 1/2 Ê(·, τ )‖2
0,Ω dτ ≤

∫ t

0

β(τ )‖E0(·, τ )‖2
Hσ (rot ;Ω) dτ + ‖B0(·, t)‖2

0,Ω . (63)

Proof. Testing Eq. (4a) against w = B, Eq. (4b) against v = Ê(·, t) and adding the resulting expressions we find

that

1

2
‖B‖2

0,Ω + ‖σ 1/2 Ê‖2
0,Ω ≤ −(σ u × B, Ê) − (σ E0, Ê) − (rot E0, B). (64)

We proceed to bound the right-hand side of (64) as follows

−(σ Ê, E0) ≤ ‖σ 1/2 Ê‖0,Ω‖σ 1/2 E0‖0,Ω ≤
1

2
‖σ 1/2 Ê‖2

0,Ω +
1

2
‖σ 1/2 E0‖

2
0,Ω , (65)

−(rot E0, B) ≤ ‖rot E0‖0,Ω‖B‖0,Ω ≤
1

2
‖rot E0‖

2
0,Ω +

1

2
‖B‖2

0,Ω , (66)

−(σ u × B, Ê) ≤ ‖σ 1/2u × B‖0,Ω‖σ 1/2 Ê‖0,Ω ≤ σ ∗‖u‖2
∞‖B‖2

0,Ω +
1

4
‖σ 1/2 Ê‖2

0,Ω , (67)

Estimate (62) follows from (64), (65), (66) and (67). To prove (63) we define

β(t) = exp

(
−

∫ t

0

(
2‖u‖2

∞(σ ∗)2 + 1
)

dτ

)
. (68)

Multiplication by β in (62) yields

d

dt

(
β‖B‖2

0,Ω

)
+

β

2
‖σ 1/2 Ê‖2

0,Ω ≤ β‖E0‖Hσ (rot ;Ω). (69)

Integration in time gives (63). �

Next theorem mimics the continuous Theorem 5.1 in the discrete settings.

Theorem 5.2.

(i) Let θ ∈ [0, 1]. The solution of Scheme (6) satisfies

(
θ −

1

2

) |||Bn+1
h − Bn

h |||
2

Eh

∆t
+

|||Bn+1
h |||2

Eh
− |||Bn

h |||
2

Eh

∆t
+

1

2
|||Ên+θ

h |||2
Vh

≤ |||IVh En+θ
0 |||2

H (rot;Ω)
+

1

2

(
1 + 4C̃‖u‖2

∞

) (
θ |||Bn+1

h |||2
Eh

+ (1 − θ )|||Bn
h |||

2

Eh

)
, (70)

where |||IVh En+θ
0 |||2

H (rot;Ω)
= |||IVh En+θ

0 |||2
Vh

+ |||rot IVh En+θ
0 |||2

Eh
, and we recall that C̃ is the constant

introduced in Lemma 3.4.

(ii) If θ ∈
[

1
2
, 1

]
, then we can conclude that

(β)n+1|||Bn+1
h |||2

Eh
+

γ∆t

2

n∑

ℓ=0

βn+1−ℓ|||Ên−ℓ+θ
h |||2

Vh
≤ |||B0

h |||
2

Eh
+ γ∆t

n∑

ℓ=0

βn+1−ℓ|||IVh En−ℓ+θ
0 |||2

H (rot;Ω)
,

(71)

where

β =

(
1 − Qθ

)
(
1 + Q(1 − θ )

) , γ =
1(

1 − Qθ
) and Q = ∆t

(
1 + 4C̃‖u‖2

∞

)
. (72)
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The coefficients in (71) are guaranteed to be positive when

∆t <
1

θ
(
1 + 4C̃‖u‖2

∞

) , (73)

making (71) an energy estimate.

Proof. (i). Testing Eq. (6a) against wh = Bn+θ
h = θ Bn+1

h + (1 − θ )Bn
h and Eq. (6b) against vh = Ên+θ

h and adding

them together we arrive at
(

Bn+1
h − Bn

h

∆t
, Bn+θ

h

)

Eh

+ |||Ên+θ
h |||2

Vh

= −
(
rot IVh En+θ

0 , Bn+θ
h

)
Eh

−
(
I
Vh En+θ

0 , Ên+θ
h

)
Vh

−
(
I
Vh

(
u × Π

RT Bn+θ
h

)
, Ên+θ

h

)
Vh

= (T1) + (T2) + (T3). (74)

We transform the first term of the left-hand side of (74) using the identity

Bn+θ
h = ∆t

(
θ −

1

2

)
Bn+1

h − Bn
h

∆t
+

Bn+1
h + Bn

h

2
. (75)

We obtain:(
Bn+1

h − Bn
h

∆t
, Bn+θ

h

)

Eh

= ∆t

(
θ −

1

2

) (
Bn+1

h − Bn
h

∆t
,

Bn+1
h − Bn

h

∆t

)

Eh

+

(
Bn+1

h − Bn
h

∆t
,

Bn+1
h + Bn

h

2

)

Eh

= ∆t

(
θ −

1

2

) |||Bn+1
h − Bn

h |||
2

Eh

∆t2
+

|||Bn+1
h |||2

Eh
− |||Bn

h |||
2

Eh

2∆t
. (76)

Next, we bound the three terms in the right-hand side of (74) by using the Young inequality with parameters ǫ1,

ǫ2, and ǫ1. For the first two terms we obtain the estimates:

(T1) ≤
ǫ1

2
|||rot IVh En+θ

0 |||2
Eh

+
1

2ǫ1

|||Bn+θ
h |||2

Eh

≤
ǫ1

2
|||rot IVh En+θ

0 |||2
Eh

+
1

2ǫ1

(
θ2|||Bn+1

h |||2
Eh

+ (1 − θ )2|||Bn
h |||

2

Eh

)
,

≤
ǫ1

2
|||rot IVh En+θ

0 |||2
Eh

+
1

ǫ1

(
θ |||Bn+1

h |||2
Eh

+ (1 − θ )|||Bn
h |||

2

Eh

)
, (77)

(T2) ≤
ǫ2

2
|||IVh En+θ

0 |||2
Vh

+
1

2ǫ2

|||Ên+θ
h |||2

Vh
. (78)

The bound for the third term requires a bit more work. Since θ ∈ [0, 1], we note that θ2 ≤ θ and (1−θ )2 ≤ 1−θ .

Therefore we have an estimate

|||IVh (u × Π
RT Bn+θ

h )|||2
Vh

≤ C‖u‖2
∞|||θ Bn+1

h + (1 − θ )Bn
h |||

2

Eh

≤ 2C‖u‖2
∞

(
θ2|||Bn+1

h |||2
Eh

+ (1 − θ )2|||Bn
h |||

2

Eh

)

≤ 2C‖u‖2
∞

(
θ |||Bn+1

h |||2
Eh

+ (1 − θ )|||Bn
h |||

2

Eh

)
.

Next we again use the Young’s inequality

(T3) ≤
ǫ3

2
|||IVh (u × θ Bn+θ

h )|||2
Vh

+
1

2ǫ3

|||Ên+θ
h |||2

Vh
+

≤ Cǫ3‖u‖2
∞

(
θ |||Bn+1

h |||2
Eh

+ (1 − θ )|||Bn
h |||

2

Eh

)
+

1

2ǫ3

|||Ên+θ
h |||2

Vh
. (79)

Setting ǫ1 = ǫ2 = ǫ3 = 2, combining (76) with the estimates of (T1), (T2), and (T3), and finally noting that

|||IVh En+θ
0 |||2

H (rot;Ω)
= |||IVh En+θ

0 |||2
Vh

+ |||rot IVh En+θ
0 |||2

Eh
yield (70), which is the first assertion of the theorem.
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(ii). If θ ∈ [1/2, 1], the coefficient in the first term on the left hand side of (70) is positive and we can write

|||Bn+1
h |||2

Eh
− |||Bn

h |||
2

Eh
≤ ∆t

(
−

1

2
|||Ên+θ

h |||2
Vh

+ |||IVh En+θ
0 |||2

H (rot;Ω)

)

+ ∆t
(
1 + 4C̃‖u‖2

∞

) (
θ |||Bn+1

h |||2
Eh

+ (1 − θ )|||Bn
h |||

2

Eh

)
. (80)

To simplify the notation, let Q = ∆t
(
1 + 4C̃‖u‖2

∞

)
and

F
n+θ (Êh, E0) = ∆t

(
−

1

2
|||Ên+θ

h |||2
Vh

+ |||IVh En+θ
0 |||2

H (rot;Ω)

)

Rearranging the terms and dividing by
(
1 − Qθ

)
we find:

|||Bn+1
h |||2

Eh
−

(
1 + Q(1 − θ )

)
(
1 − Qθ

) |||Bn
h |||

2

Eh
≤

1(
1 − Qθ

)F(Êh, E0)n+θ . (81)

Now, we introduce the quantities

α =

(
1 + Q(1 − θ )

)
(
1 − Qθ

) , γ =
1(

1 − Qθ
) ,

and note that quantity α is well defined and strictly positive since Assumption (73) guarantees that 1 − Qθ > 0,

and Q > 0 implies
(
1 + Q(1 − (1 − θ ))

)
≤ 1 for θ ∈ [0, 1], so that α > 0. We rewrite (81) as

|||Bn+1
h |||2

Eh
− α|||Bn

h |||
2

Eh
≤ γFn+θ (Êh, E0).

Such inequality must be true for any index n ≥ 0. We express this fact by keeping n fixed and introducing the

index ℓ = 0, . . . , n such that

|||Bn+1−ℓ
h |||2

Eh
− α|||Bn−ℓ

h |||2
Eh

≤ γFn−ℓ+θ (Êh, E0).

Then, we multiply by αℓ and adding all the resulting inequalities we find a telescopic sum where all intermediate

terms like Bn−ℓ
h cancel. We illustrate this fact by writing the first four inequalities for ℓ = 0, . . . , 3:

for ℓ = 0: |||Bn+1
h |||2

Eh
−α|||Bn

h |||
2

Eh
≤ γFn+θ (Êh, E0)

[
multiply by 1

]
,

for ℓ = 1: |||Bn
h |||

2

Eh
−α|||Bn−1

h |||2
Eh

≤ γFn−1+θ (Êh, E0)
[
multiply by α

]
,

for ℓ = 2: |||Bn−1
h |||2

Eh
−α|||Bn−2

h |||2
Eh

≤ γFn−2+θ (Êh, E0)
[
multiply by α2

]
,

for ℓ = 3: |||Bn−2
h |||2

Eh
−α|||Bn−3

h |||2
Eh

≤ γFn−3+θ (Êh, E0)
[
multiply by α3

]
,

. . . . . .

The sum of these expressions (with coefficients indicated on the right) gives:

|||Bn+1
h |||2

Eh
− α4|||Bn−3

h |||2
Eh

≤ γ

3∑

ℓ=0

αℓ
F

n−ℓ+θ (Êh, E0).

Adding all inequalities for ℓ = 0, . . . , n yields

|||Bn+1
h |||2

Eh
− αn+1|||B0

h |||
2

Eh
≤ γ

n∑

ℓ=0

αℓ
F

n−ℓ+θ (Êh, E0).

Finally, we substitute back the expression for F and γ , multiply both side of (72) by βn+1 = α−(n+1), rearrange

the terms and obtain the second assertion of the theorem. �

Remark 5.3. Theorem 5.2 gives sufficient conditions for energy stability, but condition (73) is by no means

necessary. Numerical experimentation shows that for θ ∈ [1/2, 1] the method is unconditionally stable.
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6. Extension of the scheme to higher orders and three dimensions

In this section, we outline how to build high order approximations as well as three dimensional approximations

based on results in [31]. We also refer the reader to the papers [32,33] for other applications in magnetostatics in

2D and 3D.

Let Ω represent a polygonal domain in R2 or a polyhedral domain in R3. Furthermore, consider Ωh to be a

mesh of Ω and P a cell in Ωh . In general, for k > 1 we define three local spaces V
d
h,k(P), Ed

h,k−1(P) and P
d
h,k−2(P)

where d = 2, 3 depending on the dimension of Ω . The construction of the VEMs depend on the definition of these

spaces. These details are provided in Sections 6.1 and 6.2 . The global spaces are defined by pasting together local

spaces, formally this is to say that

Vh,k =
{
v ∈ Hd : ∀ P ∈ Ωh, v|P ∈ Vh,k(P)

}
, (82)

Eh,k−1 =
{
w ∈ H (div;Ω ) : ∀ P ∈ Ωh, w|P ∈ Eh,k−1(P)

}
, (83)

Ph,k−2 =
{
q ∈ L2(Ω ) : ∀ P ∈ Ωh, q|P ∈ Ph,k−2(P)

}
. (84)

In the above, Hd represents H (rot;Ω ) or H (curl;Ω ) depending on whether, d = 2, or d = 3, respectively. Useful

global spaces need to satisfy three important criteria. They must be non-empty, the L2 inner product must be

computable and these spaces must satisfy a commuting diagram of the form presented in Theorem 3.6. The first

two criteria allow us to make computations using these virtual spaces. The exact chain will guarantee that the

scheme will preserve the divergence of the magnetic field at the discrete level. The schemes we are proposing have

the following form.

Find
{

Bn
h

}N

n=0
⊂ Eh,k−1 and

{
Ên+θ

h

}N−1

n=0
⊂ Vh,0,k such that for all (wh, vh) ∈ Eh,k−1 × Vh,0,k it holds:

( Bn+1
h − Bn

h

∆t
, wh

)
Eh

+
(

curldh En+θ
h , wh

)
Eh

= 0 (85a)

(
Ên+θ

h , vh

)
Vh

+
(
I
Vh

(
u × Π

0 Bn+θ
h

)
, vh

)
Vh

−
(
Bn+θ

h , curldhvh

)
Eh

= −
(
I
Vh

(
En+θ

0

)
, vh

)
Vh

(85b)

En+θ
h = Ên+θ

h + I
Vh

(
En+θ

0

)
, (85c)

Bn+θ
h = θ Bn+1

h + (1 − θ )Bn
h, (85d)

Bh(·, 0) = I
Eh

(
B0

)
. (85e)

In the above curldh represents the 2D rotational operator when d = 2, whereas if d = 3 then curldh represents the

classic curl operator. The set Vh,0,k is the subspace of Vh,k of functions that vanish along the boundary of Ω . We note

that in (85) we presented a new operator Π 0. This is standard in the VEM literature and, over a cell P, is defined

as the L2-orthogonal projection onto the largest polynomial space that is a subset of Eh,k−1(P). This projector is

computable in Eh,k−1, see [31].

Remark 6.1. In our low order scheme we used the projector Π
RT to approximate the term of the form u × B

whereas in this extension we are using Π
0. In the case of resistive MHD, Π 0 and Π

RT are interchangeable. Other

MHD models, like Hall MHD, include terms of the form (rot B) × B. For high order schemes this term can be

approximated using (rotΠ 0 B)×Π
0 B. However, for low order schemes Π 0 will project onto the space of constants

meaning that rotΠ 0 B will vanish. It is in this setting that Π RT will be uniquely useful. For low order schemes Π
0

projects onto the space of constants which still allows us to approximate terms of the form u × B.

6.1. The two dimensional local spaces

We begin by presenting the vertex based space, whose formal definition is

V
2
h,k(P) :=

{
vh ∈

[
H 1(P)

]2
: ∀e ∈ ∂P vh |e ∈ [Pk(e)]2 , △vh ∈ Pk−2(P)

}
(86)

and the set of degrees of freedom for vh ∈ V2
h,k are:

– The nodal evaluations of vh .

– A set of k − 1 evaluations, equally spaced, along each edge of P.

– The moments
∫

P
vhq for q ∈ Pk−2(P).
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The second space of concern is Eh,k(P) which is formally defined as

E
2
h,k(P) :=

{
wh ∈ H (div; P) ∩ H (rot; P) : ∀e ∈ ∂P wh · ne ∈ Pk(e),

∇div wh ∈ G2
k−2(P), and rot w ∈ Pk−1(P)

}
, (87)

in which

∀k ∈ N : G2
k(P) = ∇Pk+1(P), G

⊥,2
k (P) =

{
q ∈ [Pk(P)]2 : ∀ p ∈ Gk(P)

∫

P

q · p dV = 0

}
. (88)

For a function wh ∈ Eh,k the set of degrees of freedom are

– For every edge
∫

e
wh · n q d S, where q ∈ Pk(e).

– The moments
∫

P
wh · qh dV for qh ∈ Gk−2.

– The moments
∫

P
wh · qh dV for qh ∈ G⊥

k .

Finally, the cell space P2
h,k(P) is given as the space of polynomials Pk(P). The set of degrees of freedom for

ph ∈ Ph,k(P) is given by

– The moments
∫

P
phqh dV for qh ∈ Pk(P).

6.2. The three dimensional local spaces

We first present a series of polynomial spaces:

∀k ∈ N : Rk(f) = rotPk+1(f), Ck(P) = curl
[
Pk+1(P)

]3
, G3

k(P) = ∇Pk+1(P). (89)

In the above, and throughout this subsection f represents a face of the polyhedron P. Moreover, the sets

Rk(f)⊥, Ck(P)⊥ and G
⊥,3
k (P) represent the L2-orthogonal complement of Rk(f), Ck(P), and Gk(P), respectively.

Having defined these polynomial spaces we are ready to introduce the space Vh,k(P) which we will use to

approximate the electric field. Its definition is

V
3
h,k(P) =

{
vh ∈ H (curl; P) ∩ H (div; P) : ∀ f ∈ ∂P vh |f ∈ Bk(f)

div vhPk−1(P) and curl curl vh ∈ Ck−2(P)
}
, (90)

where the boundary space Bk(∂P) is given by

Bk(f) =
{
vh ∈ H (div; f) ∩ H (rot; f) : ∀ vh · t ∈ Pk(e),

div vh ∈ Pk−1(f) and rot rot vh ∈ Rk−2(f)
}
. (91)

For a function vh ∈ V
3
h,k(P) the set of degrees of freedom are:

– For every edge e,
∫

e
vh · tq dℓ for q ∈ Pk(e).

– For every face f,
∫

f
vh · r d S for r ∈ R⊥

k (f).

– For every face f,
∫

f
vh · r d S for r ∈ Rk−2(f).

– The moments
∫

P
vh · c dV for c ∈ C⊥

k (P).

– The moments
∫

P
vh · c dV for c ∈ Ck−2(P).

The second space in the chain, Eh,k(P), which will be used to approximate the magnetic field, is

E
3
h,k(P) =

{
wh ∈ H (div; P) ∩ H (curl; P) : ∀f ∈ ∂Pwh · n ∈ Pk(f)

∇div wh ∈ Gk−2(P) and curl wh ∈ Ck−1(P)
}

(92)

For a function wh ∈ Eh,k(P) the degrees of its freedom are:

– For every face f,
∫

f
wh · nq d S, q ∈ Pk(f).

– The moments
∫

P
wh · q dV , q ∈ G3(P).

– The moments
∫

P
wh · q dV , q ∈ G⊥,3(P).
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The final space is Ph,k := Pk(P) along with the degrees of freedom given by the moments
∫

P
phq dV for

ph ∈ P
3
h,k(P) and q ∈ Pk(P).

Remark 6.2. A complete study of the relationship between the spaces presented, both in 2D and 3D, can be

found in [31]. In this article the authors present a proof that these spaces satisfy a commuting diagram like the one

presented in Theorem 3.6. The same article will answer questions about unisolvency of E2
h,k(P),V3

h,k(P), E3
h,k(P) as

well as strategies for computing the inner product and Π
0 projector in the spaces E2

h,k(P), E3
h,k(P). We refer the reader

to [11,26] to answer questions of unisolvency for V2
h,k(P) and V

3
h,k(P). However, when it comes to computing the

inner product in V2
h,k(P) and V

3
h,k(P), the current literature will present an enhancement process. In this enhancement

process, the definition of these spaces is changed. This is a strategy that makes the orthogonal projection onto a space

of polynomials computable but calls into question whether the spaces truly satisfy the aforementioned commuting

diagram. Instead, we propose to construct an oblique projector satisfying (V1)-(V3) in Section 3.2. The elliptic and

least squares projectors presented in Section 3.2.2 can be generalized to any order and also to 3D. The detailed

study of these generalizations are a topic for further research.

Remark 6.3. We note that the schemes presented in (85) are of kth order for the electric field and k − 1th order

for the magnetic field in space. The temporal convergence should be quadratic. We note that higher order schemes

in time can be achieved by using a Runge–Kutta method, for example. However, special care needs to be taken

in order to guarantee that the divergence of the magnetic field remains within the machine epsilon. The precise

conditions for high order schemes in time that also preserve this condition on the magnetic field are a topic of

future research.

Remark 6.4. The results presented in Section 4 generalize to any order and to three dimensions. The stability

energy estimate in Section 5 also generalizes. However, the value of the constant C changes depending on the order

of accuracy and dimension of the computational domain Ω . The dependence comes from the value of C̃ as defined

in Lemma 3.4, since the value of ‖IVh ‖ is dependent upon these quantities.

7. Numerical experiments

In this section we will present the results of a series of numerical experiments that sheds some light on the

performance of the VEM developed and analyzed throughout this article. It is divided in three sections, the first on

explores the rate of convergence and the divergence preserving nature of the numerical method. The second section

studies the energy estimate that was introduced in Theorem 5.2. In the final section we introduce the Hartmann

problem and use this novel discretization to approximate its solution.

7.1. Experimental analysis of the rate of convergence and the divergence free condition

To assess the performance of the VEM we study the numerical approximations of Problem (4) on a square

domain Ω = [−1, 1]2. We consider the velocity field u = (ux , u y)T given by

ux (x, y) = −
(x2 + y2 − 1)(sin(xy) + cos(xy)) − 100ex + 100ey

2(50ex − y sin(xy) + y cos(xy))
, (93)

u y(x, y) =
(x2 + y2 − 1)(sin(xy) + cos(xy)) − 100ex + 100ey

2(50ey + x sin(xy) − x cos(xy))
(94)

and the initial and the boundary conditions are set in accordance with the exact solution of the electric and the

magnetic fields:

B(x, y, t) =

(
50ey + x sin(xy) − x cos(xy)

50ex − y sin(xy) + y cos(xy)

)
e−t , (95)

E(x, y, t) = −
(
50(ex − ey) + cos(xy) + sin(xy)

)
e−t . (96)

To check the robustness of the method we have selected three different mesh families, including triangular meshes,

randomly perturbed square meshes, and meshes based on Voronoi tessellations. An example of each mesh family

is shown in Fig. 1.
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Fig. 1. Illustration of the meshes used for testing the rate of convergence: triangular mesh (left panel), perturbed square mesh (central panel)

and Voronoi tessellation (right panel).

Fig. 2. Plots of the time evolution of the square of the L2 norm of the divergence of the numerical magnetic field on the three mesh

families of Fig. 1. (Left) triangular mesh, (Middle) quadrilateral cells and (Right) Voronoi tessellation.

The time marching scheme uses θ = 1/2. Errors with different values of θ are very similar and we therefore

omit them. The final time is set at T = 0.25 and the time step follows the assignment ∆t = 0.05h2. Fig. 3 shows

the log–log plots of the error curves for the approximation of the electric and magnetic fields. The errors are relative

and measured in the L2 norms, this is to say they are the L2 norm of the difference between numerical and exact

solutions divided by the norm of the exact solution. An important feature of the VEM that we have presented is

that the magnetic field remains divergence free throughout the simulations. Next, we will present the results of

numerical experiments aimed at gathering experimental evidence to support our theoretical findings. In Fig. 2 we

present three simulations, each done in a different type of mesh, the y-axis represents the squared L2 norm of the

magnetic field.

Remark 7.1. We note that in Fig. 3 the performance of the GI shows some irregular behavior. The reason may

be related to the fact that Voronoi tessellations can have very short and very long edges. Further experimentation

is necessary to make any definitive conclusions.

7.2. Experimental analysis of the energy estimates

This section is dedicated to an experimental study of the energy estimate presented in Theorem 5.2. For this

purpose we define a normalized version of the right hand side and the left hand side of (71) and their difference

as:

ER(n) =
|||B0

h |||
2

Eh
+ γ∆t

∑n
ℓ=0 βn+1−ℓ|||IVh En−ℓ+θ

0 |||2
H (rot;Ω)

|||B0
h |||

2

Eh

, (97)
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Fig. 3. Error curves for the virtual element approximation of the electric and magnetic field (respectively, left and right panels) for the three

mesh families of Fig. 1: triangular mesh family (top), quadrilateral mesh family (middle), Voronoi mesh family (bottom). The convergence

rate is reflected by the slope of the curves in the log–log plots; the reference convergence rate is shown by the triangle in each plot. The

symbols E, LS, GI refers to the three alternatives we have for constructing the nodal mass matrix; the elliptic projector (E), least squares

projector (LS) and the Galerkin interpolator (GI), respectively.
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Fig. 4. Plot of Q against the resulting energy estimate at time T = 0.5. The initial data that yields the plot in the left is that associated

with C = 0.1 and time step ∆t = 0.001, whereas the results in the right plot are associated with C = 5 and ∆t = 0.21.

EL (n) =
(β)n+1|||Bn+1

h |||2
Eh

+
γ∆t

2

∑n
ℓ=0 βn+1−ℓ|||Ên−ℓ+θ

h |||2
Vh

|||B0
h |||

2

Eh

, (98)

E(n) = ER(n) − EL (n). (99)

Notice that, by Assumption (73), the value of β as defined in (72) is necessarily smaller than 1, which implies that

most of the coefficients in the terms that appear in E decay exponentially. Therefore, we can expect that E → 1

as n → ∞ unless the growth, in time, of the electric and magnetic fields is fast enough to offset this decay. To

illustrate this, we introduce a parameter C ∈ R and the family of solutions

BC (x, y, t) =

(
50ey − x sin(xy) + x cos(xy)

50ex + y sin(xy) + y cos(xy)

)
eCt , (100)

EC (x, y, t) = C
(
50(ex − ey) − cos(xy) − sin(xy)

)
eCt (101)

and velocity fields uC = (uC
x , uC

y )T with

uC
x (x, y) = −C

(−x2 − y2 − 1)(sin(xy) + cos(xy))

2(50ex + y sin(xy) − y cos(xy))
, (102)

uC
y (x, y) = C

(−x2 − y2 − 1)(sin(xy) + cos(xy))

2(50ey − x sin(xy) + x cos(xy))
(103)

and define conductivity σ ≡ 1/C .

Note that the Assumption (73) yields that any choice of 0 < Q < θ−1, as defined in (72), is admissible. In Fig. 4

we plot the difference between the right and left hand sides of (71) normalized by the squared L2-norm of the initial

condition on the magnetic field against the value of Q at time T = 0.5. The type of mesh or the alternative on the

nodal mass matrix do not yield significant difference to the results in this figure. Thus, we present the results on

Voronoi tessellations of the elliptic projector as a representative with mesh size h = 0.0678.

The results of Fig. 4 indicate that, in the case that the growth of the solution is relatively small only the values

of Q near zero yields β ≈ 1 and the coefficients in E will show some exponential growth, if Q ≈ θ−1 then the

value of γ blows up yielding that E will be large. The rest of the values of Q will show convergence towards the

norm of the initial conditions on the magnetic field. Since we normalized the error by this value we can expect a

flat line of height one. If, however, the solution grows faster than the decay brought about by the coefficients in E

then we will see the energy blow up. Note that the growth in time, at least in our example, of E is mainly ruled

by terms that look like βneCn∆t were t = n∆t , hence a rule of thumb for checking whether the energy will grow

or flatten is to check if ln β + C∆t is positive or negative respectively. This is the reason we picked such a small
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Fig. 5. Energy plots against number of time steps. The initial data that yields the plot in the left is that associated with C = 0.1 and time

step ∆t = 0.001, whereas the results on the right plot are associated with C = 5 and ∆t = 0.21. In both cases, h = 0.0678.

value for ∆t in the right plot of Fig. 4 since large values of C can yield overflow errors. In Fig. 5 we can clearly

see the two different types of behavior that the energy estimates present.

7.3. Hartmann flow

Consider a square duct of infinite length containing a conducting fluid. Assume that this fluid is subjected to

a magnetic field that runs along a direction perpendicular to the duct. This is the set up for the Hartmann Flow

problem which is regarded as a benchmark in MHD. The behavior of the fluid will depend on the ratio of the

Laplace force and the viscous forces, a dimensionless quantity that goes by the name of Hartmann number. There

is a set of known formulas that describes the solution to this problem, a proof of which can be found in [3]. It is

for this reason that researchers use the Hartmann flow problem to test the performance of their simulations, see

e.g. [4,51,52].

In this section we consider a square computational domain [−1, 1]2 as cross section of the aforementioned duct

and consider a fluid with conductivity 1 filling this duct. The magnetic field is applied in the direction of the y-axis.

Consider the case where the viscous forces and Laplace forces are of equal strength, so that the Hartmann number

is 1. Then, we can expect the fluid to behave in accordance to the solution B = (Bx , 1, 0), u = (ux , 0, 0) and

E = (0, 0, Ez) with

ux (x, y) =
cosh 1/2 − cosh y

2 sinh 1/2
,

Bx (x, y) =
sinh y − 2y sinh 1/2

2 sinh 1/2
,

Ez(x, y) =
2 sinh 1/2 − cosh 1/2

2 sinh 1/2
≈ −0.0820.

(104)

Note that the y-component of the magnetic field is 1 by assumption. Therefore, our main interest in this section is

in checking if we can recover approximations to the x-component. To do this we feed the analytical solution for

the initial and boundary conditions and evolve the system until T = 10 with step size ∆t = 0.005.

The results, to the naked, eye are satisfactory, Fig. 6 gives evidence of this fact. We further conducted a

convergence test that verifies that every alternative to the mass matrix yields a close approximation and provides

additional evidence that rate of convergence of the magnetic field is linear, these results are in Fig. 7.
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Fig. 6. Plots of the numerical and analytic solutions for the x-component of the magnetic field, computed in a Voronoi tessellation of mesh

size h = 0.017 using the elliptic projector as the alternative to the mass matrix. The plot on the left is of the numerical solution as viewed

from above, whereas the plot on the right shows the numerical solution in a rainbow color bar overlaid with the exact solution in bold

black, both are viewed from the side. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 7. Convergence plots for the approximation of the magnetic field on the three different mesh families. The symbols E, LS, GI refers to

the three alternatives we have for constructing the nodal mass matrix; the elliptic projector (E), least squares projector (LS) and the Galerkin

interpolator (GI) respectively.

7.4. A model for magnetic reconnection

In this section, we present a model for slow magnetic reconnection. If we consider that the fluid is made of a

perfectly conducting material, as is done in ideal MHD, the magnetic field lines follow the fluid flow as if they were

frozen into the flow according to the of Alfvén’s theorem, see [1,3]. However, it is observed that in real plasmas the

magnetic field lines splice into one another changing their topology, a phenomenon known by the name of magnetic

reconnection.

To show this effect, we consider the domain Ω = [−1, 1]2, the velocity field u = (x, −y)T and set B0(x, y) =

(tanh(y), 0)T as the initial condition of the magnetic flux field. The boundary conditions are set in accordance to

∀t > 0 :

∫

∂Ω

B(·, t) · nd S =

∫

∂Ω

B0 · nd S = 0 and E(·, t) ∈ P0(∂Ω ) (105)

The constant value that the electric field takes on the boundary may take different values at different times.

The mesh we are using is refined near the center of the domain Ω . This guarantees higher resolution where the

phenomenon of magnetic reconnection occurs. The downside is that a series of hanging nodes are introduced. This

is an example of a simulation where the versatility of the VEM yields advantages over more classical methods like

FEM or FDM. In Fig. 8 the reader will find a picture of the mesh used along with a summary of the numerical

experiments.
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Fig. 8. Frames displaying the evolution, in time, of the magnetic field. Magnetic reconnection begins almost as soon as the simulation

begins. By T = 0.35 we reach a steady state.

8. Conclusions

In this paper, we have developed the first virtual element method for the time-dependent Maxwell system of

Eqs. (3) that model the evolution of the electric and magnetic fields of a magnetized fluid whose flow is prescribed.

It is well documented that, in order to accurately describe the physics of resistive MHD, it is imperative for the

numerical approximation of the magnetic flux field to remain divergence free. This feature is explicitly addressed
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in this work and Theorem 4.5 rigorously proves that the virtual element scheme in (6) naturally satisfies this

requirement. The numerical tests in Section 7 demonstrate that practical implementations of this VEM will satisfy

the divergence free condition on the magnetic flux field. Moreover, Theorem 4.1 states that the VEM is wellposed,

i.e., that the virtual element approximation exists and is unique. We also proved that the VEM is stable through

suitable energy estimates as stated in Theorems 5.1 and 5.2. These estimates were explored numerically in Section 7.

The performance of the method was investigated experimentally, and a set of tests using a manufactured solution,

summarized in Fig. 3, and the Hartmann flow problem, Section 7.3 provide evidence of a quadratic convergence

rate for the approximation of electric field and a linear convergence rate for the approximation of the magnetic

field. Moreover, the simulations of magnetic reconnection in Sections 7.4 and 7.1 exhibit the versatility of the

discretization showing that the set of admissible meshes is quite general.

It is important to note that the proposed new schemes are high order accurate in space but at most second

order in time. Higher order discretizations of the time derivatives need to be carefully addressed in order not

to jeopardize the divergence-free property of the magnetic field, which is fundamental in electromagnetics. For

example, a second-order or third-order multi-stage Runge–Kutta scheme or a high-order multi-step BDM that can

be written as a sequence of single-stage first-order Euler steps can be adopted. Of even greater interest are high

order temporal schemes that in combination with the high order accurate spatial schemes produce fully discrete

energy stable discretizations that also satisfy the divergence free condition on the magnetic field. The modified

equation approach as proposed in [53] for linear metamaterials is an example of how fully discrete energy stable

schemes can be constructed with high order spatial and temporal accuracy. These constructions are nontrivial and

will be part of future work.
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Appendix A. Proof of (V3) for Π
∇

P

We write the elliptic projection of vh ∈ Vh(P) as the linear polynomial Π ∇
P

v = a + b · (x − x), where

x =
1

|∂P|

∫

∂P

xdV, a =
1

|∂P|

∫

∂P

vhd S, b =
1

|P|

∫

P

∇vhdV,

and |∂P| is the perimeter of P. A straightforward calculation yields

‖Π ∇
P

v‖2
0,P =

∫

P

|a + b · (x − x)|
2
dV ≤ 2|a|2|P| + 2

∫

P

|b|
2
|x − x|2dV

≤ 2|a|2|P| + 2|b|
2

∫

P

|x − x|2dV ≤ 2|a|2|P| + 2C |b|
2
|P|h2

P
,
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where C is a “geometric” constant that may depend on the shape of P but does not scale with hP since

1

|P|

∫

P

|x − x|2dV ≃ h2
P
O(1).

Then, first using Jensen’s inequality, and, then, Agmon’s inequality yields

|P||a|2 =
|P|

|∂P|2

∣∣∣∣
∫

∂P

vhd S

∣∣∣∣
2

≤
|P|

|∂P|2
|∂P|

∫

∂P

|vh |
2d S ≤

|P|

|∂P|

∫

∂P

|vh |
2d S

≤
|P|

|∂P|
C A

(
hP|vh |

2
1,P + h−1

P
‖vh‖

2
0,P

)
≤ CC A

(
h2

P
|vh |

2
1,P + ‖vh‖

2
0,P

)
,

where C A is the constant of Agmon’s inequality. In the above inequality we used the fact |P|hP/|∂P| = O
(
h2

P

)
and

|P|h−1
P

/|∂P| = O(1) since hP/|∂P| and |P|/h2
P

are uniformly bounded quantities in view of Assumption (M2). This

assumption also implies that the real positive constant C may only depend on ρ, and, from Agmon’s inequality, on

the number of polygonal edges, this latter also being uniformly bounded. Using again Jensen’s inequality yields

|P|h2
P
|b|

2
=

|P|h2
P

|P|2

∣∣∣∣
∫

P

∇vhdV

∣∣∣∣
2

=
|P|h2

P

|P|2
|P|

∫

P

|∇vh |
2dV ≤ h2

P

∫

P

|∇vh |
2dV = h2

P
|vh |

2
1,P.

Finally, we collect the estimates for |P||a|2 and |P|h2
P
|b|

2
, and apply the inverse inequality

|vh |1,P ≤ C I h−1
P

‖vh‖0,P, (A.1)

which follows from a scaling argument, see [40, Chapter 2] and the recent work of Ref. [54], and whose constant

C I is independent of hP to obtain:

‖Π ∇
P

v‖2
0,P ≤ C

(
h2

P
|vh |

2
1,P + ‖vh‖

2
0,P

)
≤ C

(
C I h2

P
h−2

P
‖vh‖

2
0,P + ‖vh‖

2
0,P

)
≤ C‖vh‖

2
0,P.

Tracing back the constants introduced in the various inequalities, we find that the final constant C may depend on

C A, C I , ρ, but is independent of hP, and is obviously the same for all vh ∈ Vh(P). This argument provides the

desired upper bound on operator Π ∇
P

.

Appendix B. Proof of (V3) for Π
LS

P

The Least Squares reconstruction operator applied to vh ∈ Vh(P) provides the linear polynomial (22), which we

conveniently rewrite here:

Π
L S

P
vh(x, y) = a + b

x − xP

hP

+ c
y − yP

hP

. (B.1)

The three coefficients a, b and c are determined by imposing the conditions in (23). Let ζ = (a, b, c)T denote the

vector collecting the three unknowns in (B.1). Let xvi
= (xvi

, yvi
)T denote the coordinate vector of the i th vertex

vi for i = 1, 2, . . . , NV , NV being the number of vertices of P, and η =
(
vh(xv1

), vh(xv2
), . . . , vh(xv

NV
)
)T

the

vector collecting the nodal degrees of freedom of vh . Using this notation, we rewrite the linear system (23) in the

more compact form Aζ = η, where the matrix of the system coefficients is given by:

A =




1
(xv1

− xP)T

hP

1
(xv2

− xP)T

hP

...
...

1
(xv

NV
− xP)T

hP




=




1
xv1

− xP

hP

yv1
− yP

hP

1
xv2

− xP

hP

yv2
− yP

hP

...
...

...

1
xv

NV
− xP

hP

yv
NV

− yP

hP




.

The coefficients of the least squares solution are given by solving the normal equations, i.e., ζ = (ATA)−1AT η.

Now, we introduce the discrete norm

|||vh |||
2

P
= |P|

NV∑

i=1

|vh(xvi
)|2 = |P|

∣∣η
∣∣2

(B.2)
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and we observe that

|||Π L S
P

vh |||
2

P
= |P|

NV∑

i=1

∣∣Π L S
P

vh(xvi
)
∣∣2

= |P|

NV∑

i=1

∣∣∣a + b
xvi

− xP

hP

+ c
yvi

− yP

hP

∣∣∣
2

= |P|
∣∣Aζ

∣∣2
. (B.3)

The norm defined in (B.2) is spectrally equivalent to the L2 norm, so that there exist two strictly positive constant

ν∗ and ν∗ such that

ν∗‖vh‖0,P ≤ |||vh |||
P

≤ ν∗‖vh‖0,P ∀vh ∈ Vh(P). (B.4)

The two norms ‖vh‖0,P and |||vh |||
P

, because of the explicit dependence of the latter on |P|, have the same scaling

with respect to hP. Therefore, the two constants ν∗ and ν∗ may depend on the geometric shape of P but must be

independent of hP.

A straightforward calculation starting from the left inequality of (B.4) yields

‖Π L S
P

v‖0,P ≤ (ν∗)−1|||Π L S
P

vh |||
P

[
use (B.3)

]

= (ν∗)−1|P|
1
2

∣∣Aζ
∣∣ [

substitute ζ =
(
ATA

)−1
AT η

]

= (ν∗)−1|P|
1
2

∣∣A
(
ATA

)−1
AT η

∣∣ [
use the continuity of A

(
ATA

)−1
AT

]

≤ (ν∗)−1|P|
1
2

∣∣A
(
ATA

)−1
AT

∣∣|η|
[
note that A

(
ATA

)−1
AT is a projector

]

≤ (ν∗)−1|P|
1
2

∣∣η
∣∣ [

use (B.2)
]

= (ν∗)−1|||vh |||
P

[
use the right inequality of (B.4)

]

≤ ν∗

ν∗
‖vh‖0,P.

In the chain of inequalities above, we used the fact that A
(
ATA

)−1
AT is the orthogonal projection operator with

respect to the Euclidean inner product onto the span of the columns of matrix A. This projection operator scales

like O(1) with respect to hP by definition of matrix A, and its eigenvalues must be 0 and 1. As a consequence, it

is continuous and such that |A
(
ATA

)−1
AT | = 1. Finally, we note that in this case the constant C that appears in

the assertion of proposition (V3) is equal to (ν∗/ν∗), and is independent of h as already pointed out above.
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