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The use of Artificial Intelligence and machine learning in basic research and clinical
neuroscience is increasing. Al methods enable the interpretation of large multimodal
datasets that can provide unbiased insights into the fundamental principles of brain
function, potentially paving the way for earlier and more accurate detection of brain
disorders and better informed intervention protocols. Despite Al’'s ability to create
accurate predictions and classifications, in most cases it lacks the ability to provide a
mechanistic understanding of how inputs and outputs relate to each other. Explainable
Artificial Intelligence (XAl) is a new set of techniques that attempts to provide such an
understanding, here we report on some of these practical approaches. We discuss the
potential value of XAl to the field of neurostimulation for both basic scientific inquiry and
therapeutic purposes, as well as, outstanding questions and obstacles to the success
of the XAl approach.

Keywords: explain Al, closed-loop neurostimulation, computational psychiatry, behavioral paradigms, machine
learning, neuro-behavioral decisions systems, data-driven discoveries of brain circuit theories

INTRODUCTION

One of the greatest challenges to effective brain-based therapies is our inability to monitor
and modulate neural activity in real time. Moving beyond the relatively simple open-loop
neurostimulation devices that are currently the standard in clinical practice (e.g., epilepsy) requires
a closed-loop approach in which the therapeutic application of neurostimulation is determined
by characterizing the moment-to-moment state of the brain (Herron et al., 2017). However, there
remain major obstacles to progress for such a closed-loop approach. For one, we do not know
how to objectively characterize mental states or even detect pathological activity associated with
most psychiatric disorders. Second, we do not know the most effective way to improve maladaptive

Abbreviations: Al, Artificial Intelligence; ADHD, Attention Deficit and Hyperactivity Disorder; ANN, artificial neural
networks; BMI, brain machine interface; CNN, convolutional neural networks; DBS, deep brain stimulation; ECoG, electro
corticogram; EEG, electro encephalogram; FDA, Food and Drug Administration; fMRI, functional magnetic resonance
imaging; MDD, major depression disorder; ML, machine learning; MVPA, multi variate pattern analysis; OCD, obsessive
compulsive disorder; PD, Parkinson’s disease; RDoC, Research Domain Criteria; SR, slow release; SVM, support vector
machine; t-SNE, t-Stochastic Neighbor Embedding; UMAP, Uniform Manifold Approximation and Projection; XAI,
Explainable Artificial Intelligence.
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behaviors by means of neurostimulation. The solutions to these
problems require innovative experimental frameworks leveraging
intelligent computational approaches able to sense, interpret,
and modulate large amount of data from behaviorally relevant
neural circuits at the speed of thoughts. New approaches
such as computational psychiatry (Redish and Gordon, 2016;
Ferrante et al., 2019) or ML are emerging. However, current
ML approaches that are applied to neural data typically do not
provide an understanding of the underlying neural processes
or how they contributed to the outcome (i.e., prediction or
classifier). For example, significant progress has been made using
ML to effectively classify EEG patterns, but the understanding of
brain function and mechanisms derived from such approaches
still remain relatively limited (Craik et al, 2019). Such an
understanding, be it correlational or causal, is key to improving
ML methods and to suggesting new therapeutic targets or
protocols using different techniques. Explainable Artificial
Intelligence (XAI) is a relatively new set of techniques that
combines sophisticated AI and ML algorithms with effective
explanatory techniques to develop explainable solutions that have
proven useful in many domain areas (Core et al., 2006; Samek
et al., 2017; Yang and Shafto, 2017; Adadi and Berrada, 2018;
Choo and Liu, 2018; Dosilovic et al., 2018; Holzinger et al., 2018;
Fernandez et al., 2019; Miller, 2019). Recent work has suggested
that XAI may be a promising avenue to guide basic neural circuit
manipulations and clinical interventions (Holzinger et al., 2017b;
Vu et al,, 2018; Langlotz et al,, 2019). We will develop this
idea further here.

Explainable Artificial Intelligence for neurostimulation in
mental health can be seen as an extension in the design of
BMI. BMI are generally understood as combinations of hardware
and software systems designed to rapidly transfer information
between one or more brain area and an external device (Wolpaw
et al, 2002; Hatsopoulos and Donoghue, 2009; Nicolelis and
Lebedev, 2009; Andersen et al.,, 2010; Mirabella and Lebedev,
2017). While there is a long history of research in the decoding,
analyses and production of neural signal in non-human primates
and rodents, a lot of progress has recently been made to
develop these techniques for the human brain both invasively
and non-invasively, unidirectionally or bi-directionally (Craik
et al., 2019; Martini et al., 2019; Rao, 2019). Motor decision
making for example, has been shown to involve a network of brain
areas, before and during movement execution (Mirabella, 2014;
Hampshire and Sharp, 2015), so that BMI intervention can inhibit
movement up to 200 ms after its initiation (Schultze-Kraft et al.,
2016; Mirabella and Lebedev, 2017). The advantage of this type of
motor-decision BMI is that it is not bound to elementary motor
commands (e.g., turn the wheel of a car), but rather to the high-
level decision to initiate and complete a movement. That decision
can potentially be affected by environmental factors (e.g., Al
vision system detecting cars on the neighboring lane) and internal
state (e.g., Al system assessing the state of fatigue of the driver).
The current consensus is that response inhibition is an emergent
property of a network of discrete brain areas that include
the right inferior frontal gyrus and that leverage basic wide-
spread elementary neural circuits such a local-lateral-inhibition
(Hampshire and Sharp, 2015; Mirabella and Lebedev, 2017).

This gyrus, as with many other cortical structures, is dynamically
recruited so that individual neurons may code for drastically
different aspects of the behavior, depending of the task at hand.
Consequently, designing a BMI targeting such an area requires
the ability for the system to rapidly switch its decoding and
stimulation paradigms as a function of environmental or internal
state information. Such online adaptability needs of course to be
learned and personalized to each individual patient, a task that
is ideally suited for AI/ML approaches. In the sensory domain,
some have shown that BMI can be used to generate actionable
entirely artificial tactile sensations to trigger complex motor
decisions (O’Doherty et al., 2012; Klaes et al., 2014; Flesher et al.,
2017). Most of the BMI research work has, however, focused on
the sensory motor system because of the relatively focused and
well-defined nature of the neural circuits. Consequently, most of
the clinical applications are focused on neurological disorders.
Interestingly, new generations of BMIs are emerging that are
focused on more cognitive functions such as detecting and
manipulating reward expectations using reinforcement learning
paradigms (Mahmoudi and Sanchez, 2011; Marsh et al., 2015;
Ramkumar et al., 2016), memory enhancement (Deadwyler et al.,
2017) or collective problem solving using multi-brain interfacing
in rats (Pais-Vieira et al., 2015) or humans (Jiang et al., 2019).
All these applications can potentially benefit from the adaptive
properties of AI/ML algorithms and, as mentioned, explainable
AT approaches have the promise of yielding basic mechanistic
insights about the neural systems being targeted. However,
the use of these approaches in the context of psychiatric or
neurodevelopmental disorders has not been realized though their
potential is clear.

In computational neuroscience and computational psychiatry
there is a contrast between theory-driven (e.g., reinforcement
learning, biophysically inspired network models) and data-driven
models (e.g., deep-learning or ensemble methods). While the
former models are highly explainable in terms of biological
mechanisms, the latter are high performing in terms of predictive
accuracy. In general, high performing methods tend to be
the least explainable, while explainable methods tend to be
the least accurate. Mathematically, the relationship between
the two is still not fully formalized or understood. These are
the type of issues that occupy the ML community beyond
neuroscience and neurostimulation. XAI models in neuroscience
might be created by combining theory- and data-driven models.
This combination could be achieved by associating explanatory
semantic information with features of the model; by using
simpler models that are easier to explain; by using richer
models that contain more explanatory content; or by building
approximate models, solely for the purpose of explanation.

Current efforts in this area include: (1) identify how
explainable learning solutions can be applied to neuroscience
and neuropsychiatric datasets for neurostimulation, (2) foster
the development of a community of scholars working in the
field of explainable learning applied to basic neuroscience and
clinical neuropsychiatry, and (3) stimulate an open exchange of
data and theories between investigators in this nascent field. To
frame the scope of this article, we lay out some of the major
key open questions in fundamental and clinical neuroscience
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research that can potentially be addressed by a combination
of XAI and neurostimulation approaches. To stimulate the
development of XAT approaches the National Institute of Mental
Health (NIMH) has released a funding opportunity to apply XAI
approaches for decoding and modulating neural circuit activity
linked to behavior'.

INTELLIGENT DECODING AND
MODULATION OF BEHAVIORALLY
ACTIVATED BRAIN CIRCUITS

A variety of perspectives for how ML and, more generally
AT could contribute to closed-loop brain circuit interventions
are worth investigating (Rao, 2019). From a purely signal
processing stand point, an XAI system can be an active
stimulation artifact rejection component (Zhou et al,, 2018).
In parallel, the XAI system should have the ability to
discover - in a data-driven manner - neuro-behavioral
markers of the computational process or condition under
consideration. Remarkable efforts are currently underway to
derive biomarkers for mental health, as is the case for
example for depression (Waters and Mayberg, 2017). Once
these biomarkers are detected, and the artifacts rejected,
the XAI system can generate complex feedback stimulation
patterns designed and monitored (human in-the loop) to
improve behavioral or cognitive performance (Figure 1). XAI
approaches have also the potential to address outstanding
biological and theoretical questions in neuroscience, as well
as to address clinical applications. They seem well-suited for
extracting actionable information from highly complex neural
systems, moving away from traditional correlational analyses
and toward a causal understanding of network activity (Yang
et al.,, 2018). However, even with XAI approaches, one should
not assume that understanding the statistical causality of
neural interactions is equivalent to understanding behavior; a
highly sophisticated knowledge of neural activity and neural
connectivity is not generally synonymous with understanding
their role in causing behavior.

Fundamental neuroscientific that XAI

could address

questions

e What are the biological mechanisms of memory storage and
retrieval?

e Whatis the neural code and how is information transmitted
between brain areas?

e What is the relationship between patterns of activity and
behavior?

e Are there emergent properties of networks which are
necessary for behavior?

e What are the relevant temporal and spatial scales necessary
for decoding and modulating a given behavior?

e How should models account for the relationship between
neurostimulation and physiological response, especially
when that transfer function changes over time?

Uhttps://grants.nih.gov/grants/guide/pa-files/PAR- 19-344.html

Potential applications of XAI in computational psychiatry

e Real time, closed-loop stimulation for DBS: ML algorithms
could be trained to identify electrophysiological patterns
that correspond to pathological states and apply patterned
DBS to achieve a normative state.

e Development of inexpensive computerized assessments
for diagnosing or characterizing prodromal risk for
neuropsychiatric conditions such as psychosis, depression,
PTSD, ADHD or autism.

e Personalized medicine approach: XAI could provide
automated identification of sub-clusters of patients through
analysis of multimodal data (e.g., imaging, behavioral) to
enable individualized interventions and forecasting.

o Identifying clinical diagnostic groups; discovering
individualized biomarkers for treatment selection; tracking
and quantifying treatment response over time.

Requirements to neural

circuit modulation

to apply XAI approaches

e Analytic modeling of behavior to define precision targets

for ML.
e Statistically robust brain metrics to dimensionally
differentiate along the normative-to-aberrant

continuum of activity.

e Methods for discovering potential causal relationships
between neurons and between neural activity and behavior
using large data sets.

e The inclusion of both central and peripheral nervous
system dynamics (e.g., Vagal nerve stimulation or closed
loop control of visceral organ systems).

e Linking of analytical models: For  example,
classification/brain-decoding ~ models  (SVM/MVPA)
to theoretically-driven, encoding models or biological
multiscale modeling.

e Technology required to determine the level of resolution
(e.g., number of neurons) associated with a specific
behavior. Technology required to monitor populations
of cells across several brain regions chronically and
simultaneously, while decoding the relevant biomarkers
and delivering a modifying signal in real time.

Beyond closed-loop neuro-behavioral ~modulation,
unanswered questions relevant to the theoretical and practical
applications of XAI:

e How much data is needed to build/train an accurate and
generalizable model?

e Can we build robust models to predict cognition for every
possible describable cognitive function? For each cognitive
function, can we build an effective neurostimulation
strategy? If such models behave as predicted, how do we test
their combinatorial properties? How to include the known
multidimensional aspects of complex neuropsychiatric
disorders into these emerging models. Will combinatorial
models follow single behavior models? Will such models
predict behaviors reliably trans-diagnostically?
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Brain Signals
+ Stim Artifact

FIGURE 1 | An XAl-enabled closed-loop neurostimulation process can be described in four phases: (1) System-level recording of brain signals (e.g., spikes, LFPs,
ECoG, EEG, neuromodulators, optical voltage/calcium indicators), (2) Multimodal fusion of neural data and dense behavioral/cognitive assessment measures. (3) XAl
algorithm using unbiasedly discovered biomarkers to provide mechanistic explanations on how to improve behavioral/cognitive performance and reject stimulation
artifacts. (4) Complex XAl-derived spatio-temporal brain stimulation patterns (e.g., TMS, ECT, DBS, ECoG, VNS, TDCS, ultrasound, optogenetics) that will validate
the model and affect subsequent recordings. ADC, Analog to Digital Converter; AMP, Amplifier; CTRL, Control; DAC, Digital to Analog Converter; DNN, Deep Neural
Network. XRay picture courtesy Ned T. Sahin. Diagram modified from Zhou et al. (2018).

DNN Multimodal Data Fusion

Input layer

Hidden layers

|
|
l Output layer

XAl Neuro-Behavioral
Marker Detection

XAl-derived XAl
Spatio-temporal Stim CTRL

Stimulation Patterns
Active
Learning

e How do downstream neurons (ie., reader/decoding
mechanisms) interpret patterns of activity?

e Is it even possible to stimulate the brain exogenously in a
manner that mimics endogenous activity?

e How best to move away from neo-phrenology and how to
incorporate in our computational models the notion that
the brain is a dynamical system, with all the significant
computational challenges that this notion implies?

e What are the ethical considerations related to Al-assisted
closed-loop stimulation?

e What are the legal considerations (e.g., FDA approval,
liability) related to considering a continuously evolving
Al-assisted closed-loop system a ‘medical device'?

CAN Al SOLUTIONS BE
EXPLAINABLE/INTERPRETABLE?

The field is split about the potential and need for AI to
be explainable and/or interpretable (Holzinger et al, 2017a;
Jones, 2018). Some view Al as a tool for solving a technical
problem but not necessarily useful for answering a scientific
question. Others think it may indeed be possible for Al
actions to be interpreted and/or understood by humans,
but it depends on the level of understanding being sought.
Decoding techniques are typically used to test whether sampled
neural data contains information that allow prediction of a
dependent variable. For example, if a decoder is reducible

to a set of independent contributions from the signals of
individual cells, then it may be entirely possible to map
the population signal back to descriptive statistics of the
individual neurons (e.g., firing rate). In this case, the decoder
is interpretable within our understanding of neurophysiology.
On the other hand, a solution derived from a decoder may
be abstract and not map onto our understanding of the
neural system. For this more likely scenario, an iterative
process for interpretability may be required to force ML
methods to fit models with specific interpretations. This could
conceivably be achieved by incorporating data visualization
techniques and statistical tools that would allow neuroscientists
to assess the validity of data characteristics that were used to
solve the problem.

A related question is whether AI solutions can be explainable
to the point of providing mechanistic insights into how
the brain is accomplishing a particular function or a set
of complex behaviors. Presently, there is a significant gap
between the performance of explainable biophysical models
for prediction and that of more opaque ANN:S. Is it reasonable
to expect that the synthetic algorithms and architecture that
Al systems use be informative of the underlying biological
process? Can we assume the decoder is using the same
information as the biological network (downstream brain
areas)? Perhaps the parsimonious AI process is not the
same as the brain process. It may be that AI solutions are
explainable (in abstraction) but inherently uninterpretable
in the context of the underlying biology. Irrespective,
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explanations can at a minimum give insights and help improve
the AT performance.

WHAT ARE THE NEXT STEPS TOWARD
A BREAKTHROUGH? WHAT ARE THE
MAJOR CHALLENGES?

Three major areas in need of advancement can be identified: the
need for richer datasets, more sophisticated models and methods,
and cultural changes to further encourage collaborative efforts
across scientific disciplines.

One of the challenges to building a durable theory of neural
computation is that the foundational empirical data are limited
or incomplete and, in the case of neural data, often sub-
sampled (spatially and temporally). There is a general need
for large, high-dimensional data sets to create models with
a high degree of predictability. For example, such datasets
could include quantitative data from specific multimodal
signals (e.g., neural activity, neurotransmitter release, receptor
activation, immune, endocrine or behavioral responses) for
long periods of time. Data acquisition should be expanded
to capture the developmental trajectory of an organism and
contextually relevant environmental factors (e.g., naturalistic
settings). Technological advances in acquisition systems will
be necessary for monitoring and modulating brain function
continuously, over long timescales. In addition, an important
next step is to achieve more accurate and higher resolution
measures of behavioral states (e.g., perceptual, social, affective,
motor). Improvements in data accessibility and ease of sharing
will be critical for these efforts to succeed.

A second critical step to move the field forward is the
advancement of models and methods. Currently, most models
operate at a single level of analysis (e.g., cell biophysics). Multi-
level modeling has been a notoriously hard task to achieve using
classical methods (e.g., analytically linking biophysical models to
neural mass models). To accurately represent the complexity of
neural systems, there is a need for XAI models to bridge from
cellular level mechanisms to behavior. To reach this goal, we
need heuristics and methods for quantifying the performance of
these models and tools that will help us understand the nature
of input-output transformations between interacting brain
networks. These could include new methods for unsupervised
learning from multiple modalities of data, and both statistical
and analytical methods for understanding the relationships
discovered in these data at multiple levels of description. The
potential of these models for both basic neuroscience and clinical
applications will rely on the development of tools to improve
their construct validity and interpretability.

Finally, there needs to be a cultural change in the scientific
enterprise itself. There is a need for more opportunities that
enable meaningful and enduring collaborations between
neuroscientists, clinicians, theorist, and ML experts.
Interdisciplinary collaborative efforts need to be recognized
and supported by academic institutions and funding agencies
(Vu et al, 2018). In addition, open sharing of data and code
will be important for moving this field forward. Modelers,

theoreticians, and data scientists need unfettered access to
well-annotated datasets. It may also be useful to adopt industry
approaches like crowdsourcing, “use case” proof-of-concept
studies, and grand challenges to attract interest to this area of
science and technology development.

LEARNING FROM FAILURES AND
SETTING EXPECTATIONS

It is interesting that we often publish and report our successes,
but very seldom our no-less valuable failures, a phenomenon
sometimes referred to as the ‘file drawer problem’ (Rosenthal,
1979; Song et al.,, 2009). These failures often become known if
they are either catastrophic or if they became failures after a
period of being considered a success. Interesting examples of past
failures and lessons learned come to mind. For instance, the 2008
financial crisis taught us that domain knowledge is important
when applying sophisticated data-driven algorithms to complex
systems. Other examples can be found in robotics (Sheh and
Monteath, 2017). Closer to home, the mental health translational
pipeline is hindered by our inability as a field to produce animal
models of polygenic diseases that accurately reflect any human
psychopathological condition (Monteggia et al., 2018; Arguello
etal,,2019; Bale et al.,, 2019). Or vice versa, by our inability to back
translate human pathophysiological findings into animal models
to gain more mechanistic insights. Significant obstacles need to
be overcome to understand the role of the brain in behavior, to
understand disease mechanisms and to obtain sets of biomarkers
capable of characterizing a mental disease state and monitor the
progress of its treatment.

On the computational front, early attempts using ANNs were
successfully used to provide a data-driven way to map symptoms
to diagnoses of depression (Nair et al., 1999), and in a second
example to predict the effect of adinazolam SR in panic disorder
with agoraphobia (Reid et al., 1996). While both studies produced
interesting results, neither provided any mechanistic insights
into depression or panic disorder (Cohen and Servan-Schreiber,
1992). Toward this goal, we might next look to combinations
of biophysically informed models with traditional deep learning
methods such as CNNs. For a variety of reasons, however, for-
profit companies (the most important designers and users of
ML) might not want or need to create interpretable models,
so the bulk of the effort may need to come from academia or
public-private partnerships.

XAI might be easier to deploy in applications such as
computer vision where sensory constructive hierarchies are more
clearly defined and key features for classification can be found.
In radiology (medical imaging), explainability is gaining interest,
including in systems that learn from expert’s notes (Laserson
et al., 2018). Perhaps, our desire to achieve a comprehensive
theory of how brain and behavior relate to each other in more
naturalistic settings might be unnecessarily ambitious, whereas
well-defined and controlled experimental conditions may be as
instructive of general principles.

As an initial step, new XAI projects should provide proof
of concepts for new technology relevant to mental health with
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very narrow focus rather than immediately aiming at longer-term
goals such as curing schizophrenia or major depressive disorder.
They will likely focus on key behavioral components which can be
improved relatively quickly. The advent of new neurotechnology
(computational or not) will allow us to answer new and
more interesting questions. Even with current technologies, and
limited data, we can still do a lot to generate new levels of
understanding by shifting current ML paradigms. Technology
development is important, but alone, it will not solve the problem
of intelligent and explainable neurobehavioral modulation. We
also need guiding theoretical/hypothesis-driven approaches that
interact with the development and implementation of data-
driven technologies. There is a need for more partnership
opportunities between scientific domain experts in new or
established theories and ML experts. Specifically, engaging users
(e.g., clinical providers, patients, researchers) is a challenging
problem that highlights that cultural normalization of these
approaches is at least as important as statistical normalization
(e.g., collecting reference ranges for various novel metrics).
Actual “Big Data” in neuropsychiatry (as in an astounding
number of individuals representative of natural heterogeneity)
might not be the only path forward for AI to address behavioral
health issues; but, “Deep-Data” (multimodal signals collected
over time within single individuals) might be more feasible now
(Vu et al., 2018). One concern is that current and very successful
ML tools, such as deep learning, might seem precise in classifying
and predicting within a specific learned dataset, but their results
are often not robust and may not generalize to other datasets.
These models can indeed be easily fooled (so-called ‘adversarial
attacks’) when a new source of noise is added in the system or
applied to data-sets that are out of sample (Finlayson et al., 2019).

HOW DO WE OPERATIONALLY DEFINE
THE “EXPLAINABLE” PART OF XAI?
WHAT ARE THE BEST STRATEGIES FOR
USING SUCCESSFUL Al MODEL
CONSTRUCTS TO IDENTIFY CONCRETE
CAUSES (IN CONTRAST TO
CORRELATIONS) AND (ACTIONABLE)
VARIABLES?

There are no standard textbooks on XAI yet, but public
repositories of implemented XAI models’ and papers® are
available. Similarly, attempts have been made to define
explainability (Lipton, 2016; Gilpin et al, 2018; Murdoch
et al,, 2019) and propose practical steps that can be taken to
develop an XAI system (see Figure 2, Khaleghi, 2019) and
evaluate it (Doshi-Velez and Kim, 2017). The first step is to
increase the information about the input datasets (Figure 2,
left column). This can be achieved by preprocessing the data to
extract information about its dimensionality, perhaps leading
to some human-interpretable a priori partition (e.g., principal

*https://github.com/topics/xai
3https://github.com/anguyen8/X Al-papers

component analyses of input EEG channels, separation of
artifacts, t-SNE (van der Maaten, 2014) or UMAP (Mclnnes
et al., 2018) techniques). Various data visualization techniques
can also be used to identify latent structures beyond those
that can be obtained by straightforward statistics (Matejka and
Fitzmaurice, 2017; Sarkar, 2018). Characterization of the input
data can also be done by annotating and standardizing them,
using for example documentation approaches such as datasheets
(Gebruetal., 2018). Input data can also be embedded into a larger
space in which additional dimensions are explainable features
of the data (e.g., add spike burst occurrence dimension, because
they may constitute privileged windows of synaptic plasticity).
Such feature engineering can be done using expert knowledge
in the field, or in a more principled manner using analytical
approaches such as LIME (Locally Interpretable Model-Agnostic
Explanations) or Contextual Explanation Networks (Al-Shedivat
et al., 2018) or more general model-based techniques (Higgins
et al., 2018; Murdoch et al., 2019). Finally, the explainability of
the input data can be enhanced by the identification of subset of
input data that are simultaneously representative of subclasses
of the entire datasets and interpretable (e.g., prototypical spike
waveforms sufficient for differentiating principal cells from
inhibitory interneurons). Such prototypical data may serve
to summarize the input dataset, and the assessment of their
contributions to the model outputs can serve, at least in part,
of an explanation (Bien and Tibshirani, 2011). This concept is
closely related to the important topic of causality in AI (Pearl,
2009; Hernan and Robins, 2020). Equally useful to understand
the data is the identification of input data that are meaningfully
different from the majority of the inputs (what the data is NOT),
sometime referred to as criticisms of the data (Been et al., 2016).

In addition to characterizing the data, explainability can
be provided by the AI algorithm itself. Many AI models are
inherently designed to potentially provide explainability, and
include linear models (Ustun and Rudin, 2016), decision trees
(Podgorelec et al., 2002; Geurts et al., 2009), rule sets (Jung
et al., 2017), decision sets (Lakkaraju et al., 2016), Generalized
additive models (Hastie and Tibshirani, 1987), and case-based
reasoning systems (Lamy et al., 2019). Though potentially more
explainable, these models do not guarantee explainability. High
dimensionality or co-dependence of input data may make
explanations difficult, if not impossible, and additional processing
may be needed (Khaleghi, 2019). At least four classes of systems
have been proposed that address the issue of explainability,
while simultaneously attempting to maintain performance
(Figure 2 middle column and Khaleghi, 2019) including Hybrid
explainable models (e.g., deep weighted averaging classifier, Card
et al., 2018), joint prediction-explanation models (e.g., Teaching
Explanation for Decision, Hind et al., 2018), architectural
explainability models (e.g., explainable convolutional networks,
Zhang et al, 2018; Tang et al, 2019) and models using
regularization (e.g., Tree regularization, Wu et al., 2017).

Finally, explainability can be attributed post hoc, by analyzing
the pattern of outputs of the algorithm. Recently, Khaleghi
(2019) proposed a taxonomy of post-modeling explainability
approaches that we summarize next (Figure 2, right column).
The first class of approaches tailors post hoc explanations to the
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Pre-modeling q Modeling q Post-modeling
§ Characterize the input data | Design explainable model architectures and algorithms = Extract explanations from outputs

1. Exploratory data analysis: = 1. Adopting a more explainable model family: linear 1. Explanation targets: Mechanistic
beyond reporting statistical models, decision trees, rule sets, decision sets, (internal, algorithmic) vs.
properties generalized additive models, and case-based reasoning functional (external,

2. Dataset description & methods. interpretative) explanations at
standardization: thorough | 2. Hybrid explainable models: different levels of complexity.
descriptions of the * The deep k-Nearest Neighbors (DkNN) 2. Input-based explanation drivers:
variables, metadata, *  The Deep Weighted Averaging Classifier (DWAC) How input manipulations can
provenance, statistics, * Self-Explaining Neural Network (SENN) potentially or actually drive the
between variables (pair *  Contextual Explanation Networks (CEN) outputs.

- plots and heatmaps), e Bag-of-feature network (BagNets) 3. Macro-explanations: Importance
3 ground truth correlations , | 3. Joint prediction & explanation: scores, Decision rules, Decision
< and probabilistic models » Teaching Explanations for Decisions (TED) trees, Dependency plots, Verbal
g generating synthetic data ¢ Multimodal explanations explanations, Counterfactual

3. Explainable feature ¢ Visual explanation explanations.
engineering: Explanations * Rationalizing Neural Predictions 4. Explanation estimation methods:
are as good as the features | 4. Explainability through architectural adjustments: ¢ Perturbation-based (LIME)
used to explain the * Explainable Convolutional Neural Network * Backward propagation
predictions. * ‘This Looks Like That’ explainable deep architecture *  Proxy model

4. Dataset summarization: * Attention-based models (NLP, vision, time series) ¢ Activation optimization
Interpretable prototype 5. Explainability through regularization : Tree 5. Care must be taken not to
selections and Regularization, Regularization by local explanations manufacture explanations or over-
identification of constraints. interpret the outputs.
meaningful outliers. 6. Others: Certifiable Optimal RulE ListS (CORELS)

FIGURE 2 | The XAl Pipeline. Explainability can be achieved at various stages of the design of a system by characterizing the input data, developing explainable
architectures and algorithms, or by implementing post hoc algorithms. Adapted from Khaleghi (2019). Similarly, see an up-to-date public repository of implemented
XAl models (https://github.com/topics/xai) and papers (https://github.com/anguyen8/XAl-papers).

target group to which these explanations are aimed: explanations
that are aimed at understanding the inner workings of the
algorithm (mechanistic explanations) are different from those
used to inform policy makers (functional explanations and
interpretations of the outputs) (Tulio Ribeiro et al., 2016; Gilpin
et al, 2019). A second class of output explanation includes
algorithms that rely on understanding how input manipulations
can potentially or in fact drive the outputs. They include
input feature section (e.g., explainable feature engineering of
the inputs, above), an analysis of how specific inputs affect
outputs (e.g., influence function, Koh and Liang, 2017), or an
analysis of how a specific class of inputs influence the outputs
(e.g., Concept activation vectors, Kim et al., 2017). A third class
of algorithms are holistic in nature and includes explanatory
methods that abstract or summarize the system in terms that are
understandable by the user. This type of Macro-level explanations
includes methods such as saliency maps (Lundberg and Lee,
2017) or Decision rules (Guidotti et al., 2018). Finally, the
fourth class of post hoc explanatory models includes algorithms
that aim at estimating (rather than providing) an explanation.
These methods include generally applicable algorithms such as
LIME (Tulio Ribeiro et al., 2016) or Quantitative Input influence
measures (Datta et al., 2017) which uses controlled and limited
perturbations of the inputs to understand how the output vary.
Overall, as with the methods targeted to input data, these
algorithms address the general notion of causality in AI (Pearl,
2009; Hernan and Robins, 2020).

Importantly, and perhaps similarly to many other fields,
interpretation of the outputs and of the general outcomes of an Al
algorithm must be checked against bias and overall exaggeration
(Lipton and Steinhardt, 2018). An important issue to keep in
mind when designing an XAI system is contrasting explanation,
causation, and correlation. Correlation is not necessarily causal
because it may be mediated by a latent, common, factor. For
example, in the case that A is correlated with B because C causes
A and B with some probability, C would be a partial explanation
for A and B, but A and B would bear no mutual explanatory
link. XAI systems should handle such differentiation, or at the
very least should quantify the extent to which they occur. This
issue is even more relevant in non-linear (e.g., complex recurrent)
systems such as the brain. A second related outcome to such
differentiation stems from the fact that the input dimensions of an
XAI system are likely not independent and feature a large amount
of redundancies and co-dependencies. An XAI system should
be able to pair a specific explanation with a subset of the input
dimensions that caused it, therefore pointing to the important
dimensions to use for further study, targeted experimental
manipulations, or additional focused data collection. Human-
in-the-loop approaches may also be beneficial, especially in
eliminating trivial correlations that may bias the system toward
un-interesting solutions (Zanzotto, 2019). It is likely in fact
that the process of developing explanatory power may rely on
an iterative approach whereby the human would evaluate the
explanation of a previous cycle, inject his/her knowledge into
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the XAI system, and improve the nature or accuracy of the
explanation in the next cycle (Figure 1). There may be value in
querying the field of Psychology of Interpretations. What makes
an explanation a good explanation? Perhaps is it a matter of
length and number of outputs explained? The more concise the
explanation and the more outputs it explains, the better? Of
course, explanations should be human-understandable as well
(‘42> is certainly concise and explains flife, the universe and
everything, but it is hardly understandable, Adams, 1980).

Current Al can be made more explainable by using more
appropriate research designs. For example, one can ask ML
specific questions about brain or behavior while accounting for
underlying (labeled) variables. But even the best and latest input
pattern detectors, trained with multidimensional datasets will
not inform us about the underlying mechanisms if we only ask
how well they do at detecting the overt phenomenon. However,
these detectors, when coupled to dimensionality reduction and
feature extraction techniques could help identify mechanisms of
action and actionable variables. Iterative feature selection and
dimension reduction are methods to identify relevant features
and the role played by their interactions. Another strategy could
be identifying the ‘useful’ weights that contribute to the success of
an Al neural-network-based algorithm and understanding what
they mean in neuroscience terms and what they are doing to
affect the neural circuitry. This method can address the issue of
explainability as well as that of mechanism controllability. But
ultimately, closed loop/perturbation experiments offer the best
hope of moving beyond correlational findings. Eventually, direct
and systematic mechanistic modulation of a given set of variables
may be necessary to understand how the ML model reacts to each
variable and each combination of variables, both in aggregate
and for individual input examples. DBS systems for psychiatric
disorders (e.g., OCD, MDD, Goodman and Alterman, 2012),
which are first built in the clinic, will face additional challenges
in the ambulatory environments. As ML takes place in these
increasingly more complex environment-dependent situations,
analyses of correct actions as well as errors would benefit from
XAL Asan example, visual Case-Based Reasoning (CBR) - a form
of analog reasoning in which the solution for a new query case is
determined using a database of previous known cases with their
solutions could be an effective approximation of an XAI solution
that has not been employed in psychiatry (Lamy et al., 2019).

How can we determine what neural features are important
to modulate behavior? The answer is likely to be different
for each domain of applicability (neurostimulation or others).
In general, before effective explanations can be generated, ML
models should be validated (and cross-validated) on data sets not
used for model-fitting, should be tested for generalizability across
contexts/conditions and should incorporate strategies to avoid
overfitting. The field needs to:

e Provide better analytical and statistical tools for
characterizing dynamical systems within the constraints a
given biological/ethological context;

e Provide models of compensation, adaptation or plasticity
facilitated by exogenous modulatory inputs that might
enhance (or interfere) with intended outputs and outcomes;

e Explore manifolds of parameters in unbiased ways
that allow for the discovery of relevant sub-spaces
where information that is biologically relevant to the
organism’s existence.

WHAT CONCEPTUAL AND TECHNICAL
ADVANCES ARE NECESSARY FOR XAl
TO BE A VIABLE COMPONENT OF
NEUROSTIMULATION STRATEGIES?

Perhaps the first type of advances required to make XAI a viable
tool in understanding the relationships between neural circuits
and behavior is an improvement in the quality and amount of
the input data. The field needs more simultaneous recordings
from multiple cell types within multiple brain regions comprising
all putative neural circuits and a wide range of quantitative
behaviors. If XAI is to find subtle and more interesting ways to
understand the interaction between neural circuits and behavior,
we need to find more and better way to measure them. The
temporal and spatial requirements of recordings depend on
the specific clinical/physiological question being asked and
more, and better, data are needed for optimal explainable AI
results. Temporal precision at the millisecond level and spatial
resolution down to the single-neuron or microcircuit-level are
likely to be necessary. Hundreds more electrodes, covering both
cortical and sub-cortical areas would provide crucial information,
especially in the determination of the timing and intensity
of neurostimulation, in quasi-autonomous systems. Continuous
data collection that enables greater sampling of key behaviors
in different contexts is also likely to be able to improve the
performance of such systems.

Importantly, XAI needs to be able to effectively handle
multi-modal data (e.g., visual, auditory, clinical). It should
provide inherently non-linear computational algorithms that
will be able to combine large datasets such as those provided
by modern calcium imaging techniques [>1000 of neurons
recorded simultaneously (Soltanian-Zadeh et al., 2019; Stringer
et al, 2019)] and voltage sensitive dye techniques (Grinvald
et al, 2016; Chemla et al, 2017) with smaller but highly
meaningful datasets such as those describing behavior. These
improvements would result, in turn, in better ways to ‘close
the loop” and devise effective algorithms for neurostimulation.
Additional advances in real-time encoding of the environment
and real time classification of behavioral states would give
rise to a new generation of neurofeedback systems that could
be used for therapeutic purposes, greatly expanding on the
current trends for adaptive neurostimulation (Provenza et al.,
2019). Another challenge is to quantify behavior and neural
activity at multiple levels of complexity and multiple time
scales and use new statistical and analytical tools to link and
compare the different levels. At each of these levels, effort
should be made to differentiate externally generated influences
and internally generated computations. Finally, efforts need
to be made to understand the organism’s response to more
naturalistic environments and stimuli. This is crucial in cases
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where social interactions are known to play a major role, since
much of the neuroscientific data is usually collected in single
subjects, or in impoverished social or cognitive environments.
Finally, advances in the quality and type of data should
be accompanied with advances in AI/XAI theories and ML
techniques (Greenwald and Oertel, 2017).

An interesting avenue to explore is the mapping between the
XAI system and the neural systems, perhaps even designing such
a system from scratch, with the brain as a starting point. In the
specific context of neurostimulation, better models are needed
to understand how neurostimulation actually affects the neural
tissue (neuron, glial cells, synapse). A challenge will be for XAI
to provide explanations for phenomena known to have none
(consensually at least).

In general, XAI models should be scalable to bridge animal
research and human clinical applications and be sufficiently
computationally efficient to allow for implementations on actual
small-scale devices that can be used clinically. Improvements
in sustainable high-density recording devices for humans,
mirroring those already available in animals, is desirable.

Moving forward, what types of initial steps can be taken to
link XAI to the field of closed-looped neurostimulation? One
can certainly imagine simply applying existing or novel XAI
techniques to a known neurostimulation paradigm to provide
explanatory power to close-loop neurobehavioral modulation
(e.g., counter-factual probes). Other avenues may involve active
modulations of complex neural circuits pertaining to mental
disorders. Such manipulations may involve electrical or magnetic
stimulations, optogenetics, genome editing or pharmacological
compounds and may include dynamic automatic adjustments
of closed-loop parameters as the neural substrate adapts to
the manipulations.

BEYOND MENTAL HEALTH, WHAT
OTHER DISEASES COULD BENEFIT
FROM AN XAl SOLUTION?

There is potentially a variety of medical conditions that
could be informed by XAIL Biomarkers, broadly defined
as biological measurements that give the ability to predict,
detect, and diagnose, can be key targets of XAI approaches.
Specific clinical domains such as epilepsy have already benefited
from relatively simple closed loop paradigms (so called
‘responsive neurostimulation’ techniques). Other domains such
as cardiovascular illness, infectious disease, and epidemiology
could also significantly benefit. Mental health conditions, and
the RDoC are of particular interest, because they focus on
understanding the nature of mental illness in terms of varying
degrees of dysfunctions in general psychological/biological
systems (Kozak and Cuthbert, 2016; Sanislow et al., 2019).
Indeed, in the absence of a very large number of behaviors
and comprehensive cell-type specific measurements, we can
reasonably start with chunks of behavior as conceptualized
and cataloged by RDoC which does allow for a systematic
approach for XAI models and experiments. Research needs to
be both rigorous and pragmatic about whether supervised or

unsupervised XAI models are used but should remain realistic
about the level of spatial and temporal resolution possible with
the current generations of human recording and stimulating
devices. The ability to utilize XAI results in a closed-loop fashion
can make major contributions to epilepsy treatment, for example,
by preventing seizure activity using XAl-based predictions to
activate an implanted neurostimulator in real time. XAI can
improve the efficacy of brain stimulation devices by allowing
an in-depth dissection of the networks and nodes underlying
brain-based disorders, and by providing an avenue of translation
between recording and stimulation architectures.

Another area most amenable to XAI approaches includes
computer vision approaches to radiological imaging
interpretation. This area has already seen important progress,
including FDA approved tools, see for example (Topol, 2019)
for a recent review, which includes important caveats. XAI
can further contribute to the difficult problem of data fusion
of heterogeneous multimodal measurements including, for
example, simultaneously sampled imaging, neurophysiological
and behavioral data.

There is a strong desire to build what is already known
into models and to start from simpler scenarios. Prior data
could be used to design the model, provide initial constraints,
and provide error refinement. Insights from biology, such as
reafference/corollary discharge and statistical models of neural
firing are certainly a source of useful design information. Seeking
insights from development (e.g., differences in learning during
childhood vs. adulthood) can also be used as a means to inform
the XAI system. Whatever the prior information, its origin
should be quantitatively and objectively measured and be based
on continuous behavior and neural data. Moreover, it must be
kept in mind that not all cognitive measures include relevant
information and care should be taken when selecting them
for processing to avoid potential issues affecting interpretability
Also, summary or composite measures such as those related to
emotional state or context could help differentiate normal from
abnormal responses and should be considered as well. Finally, the
ability to handle and benefit from incomplete or uncertain data
may be a major contribution of XAI approaches.

In general, XAI has the potential to contribute to the
integration of data-driven and theory driven models (e.g.,
integrating Deep Learning models with biophysically informed
models), to label existing model features with semantic
information that is understandable by users, to allow ML
algorithms to unbiasedly discover the governing principles of a
complex dynamical system by analyzing covarying multimodal
data or to estimate the influence of a given feature on a model
prediction by leveraging causal statistical methods.

CONCLUDING REMARKS

One key proposed approach to stimulate the field is the
establishment of competitions on existing (curated) datasets,
an approach that has been very successful in other disciplines
(e.g., computer vision and ML). Other disciplines have shown
multiple benefits of this type of activity, including the possibility
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to compare and merge results and outcomes from multiple
teams, the opportunity to show and evaluate progress, and
the motivation experienced by atypical contributors that
enjoy such competition and enter a field. Areas such as
closed loop-neurostimulation provide multiple challenges, and
openly sharing data via competitions can bring together
multiple disciplines addressing problems ranging from signal
synchronization to optimal outcome analysis and stimulation
settings. Initial attempts in this direction in neuroscience recently
started, and include a number of EEG competitions* and spike
inference for calcium imaging (Berens et al., 2018).

It is important to note the need to harmonize different
types of data and the necessity of longitudinal multimodal data.
There is a large amount of existing data that can be tapped for
secondary analyses, including the aforementioned competitions
(e.g., the ENIGMA project)’. Aggregation needs to happen across
scales, time (longitudinal), and individuals. The potential value
of explainability in this challenge is clear; it is expected that the
more explainable the data and analyses are, the easier it will be to
combine disparate sources.

Following the trend of using and sharing existing data,
there is a need to study “hybrid models” which use Al
approaches to fit a biologically driven model — does AI converge
on the same solution as expected? A recent example has
been published (Banino et al., 2018; Cueva and Wei, 2018).
Neurostimulation is a good sandbox where ML and biology
are starting to interact (Kim et al.,, 2019; Shamir et al., 2019),
and for which the need of explainability of biomarkers and
interventions is critical.

It is important for researchers to be aware of the pitfalls
inherent to the translation of results and models from animals to
humans and the need to collect data with multiple tools and open
technologies, staying away as much as possible from proprietary
tools. This “closed” practice can lead to fitting to correlated
noise in datasets/variation that is not biologically/clinically
meaningful and to limit reproducibility and validation. The above
mentioned openly shared and combined datasets is an important
contribution to the development of better X AL

Unsurprisingly, explainable AI in neuroscience and
neurostimulation suffer from the ‘curse of dimensionality’
(data of very high dimensions), and partially driven by
this challenge, show the need to consider simpler models,
including variable selection. While this is an example of a
technical/computational problem, clinical failures from the past
need to be addressed as well, in particular the need to avoid
the expectation that neurostimulation must have immediate
effects (as in DBS for PD), but rather has complex and mixed
acute and chronic effects, possibly involving long term synaptic
plasticity. Using a single outcome measure, as was often done
in the past, can lead to incorrect conclusions about models
and interventions; there is a need to incorporate measures at
multiple time scales, to use derivative-based metrics, to measure
rate of change and to build characterization of normative data
so as to measure deviations from it. It is interesting to note

*https://www.kaggle.com
*http://enigma.ini.usc.edu/

that these issues, here mentioned as failures from the past,
connect to the above identified need to integrate data from
multiple sources, time resolutions, and spatial scales, which
is a recurring concern and for which explainability can be of
significant help.

In addition, explainability may be valuable for building trust in
the algorithms, for understanding risk and side effects, for aiding
in the identification of therapeutic targets, for understanding the
evolution or progression of disease and response to treatments,
for understanding and supporting decisions, for closed-loop
control, and for the design of the “safety parameter box” -
FDA’s bound on therapies. Although explainability may lead to
improved trustworthiness, transparency and fairness, these are
distinct but related concepts. The predisposition of scientists and
healthcare professionals to accept the validity and reliability of
ML results, given changes in the input or in the algorithmic
parameters, without necessarily knowing how the results were
derived has to do with trustworthiness. Trust relies on five
key factors: the data, the system, the workflow, the outputs,
and the ability to communicate the results of the algorithm
clearly. Users need to be able to probabilistically determine
when some results might be incorrect and ensure that results
are interpreted correctly without needing to know the inner
workings of the algorithm. Transparency and Fairness relate
to the right to know and to understand the aspects of a
dataset/input that could influence outputs (e.g., clinical decision
support from AI algorithms or neurostimulation protocols).
Transparency and fairness should lead to a reduction of bias
perpetuation that can be produced by humans (e.g., tracking
and education regarding biases in language), by Al algorithms
(e.g., developing AI approaches able to identify bias in results),
by better data collection (e.g., utilize more representative
data sets).

It is of course critical to keep in mind that explainability
can be beneficial but is not mandatory (e.g., detecting amyloid
plaques in Alzheimer’s Disease imaging data). In other words,
non-explainable (or non-explainable yet) predictions can still
have value as biomarkers. Importantly, explainability might be
different for different audiences (Tomsett et al., 2018; Gilpin et al.,
2019). For example, what needs to be explainable for the FDA
might be different than for scientists or even patients (Murdoch
etal,, 2019), and these discrepancies raise regulatory issues related
to the ‘right to explanation’ (Goodman and Flaxman, 2016).
Finally, the incorporation of explainable ML in clinical trials, for
example, to optimize neurostimulation parameters in a patient
specific fashion instead of the common use of fixed protocols, can
be a novel direction of research. This brings us to the important
current area of Al in drug design, a very active topic of research
in the academic and even more in the industrial community
(Simm et al., 2018).

In sum, XAI applied to the domain of closed-loop
neurostimulation may yield important new insights both at the
fundamental research level and at the clinical therapeutic level
and is ideally positioned to generate a new set of translational
approaches capable of using increasingly larger multi-modal
datasets to discover basic principles about normal and abnormal
brain functions.
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