
o

p

m

w

2

(

t

w

o

B

Contents lists available at ScienceDirect

Journal of theMechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

Microtwist homogenization of three-dimensional Pyrochlore

lattices on zeromodes andmechanical polarization

Rongyu Xia a,b, Hussein Nassar b, Hui Chen b,∗, Zheng Li a, Guoliang Huang b,∗

a State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking

University, Beijing 100871, PR China
b Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA

A R T I C L E I N F O

Keywords:

Microtwist continuum

Homogenization

Zero modes

Polarized mechanical metamaterials

3D Pyrochlore lattices

A B S T R A C T

The mechanical Pyrochlore lattice was experimentally tested to demonstrate an intrinsically

polar behavior of the material, which is soft on one side and hard on the opposite side

(Bilal et al., 2017). The topological polarization in Pyrochlore lattices begs for developing a

new effective medium theory because conventional Cauchy effective theories cannot predict

the polarization phenomenon. In this study, we develop a 3D microtwist effective theory of

Pyrochlore lattices to capture the P-asymmetric zero modes by which polarization emerges or

fades on a macroscopic scale. By mapping three periodic zero modes to three macroscopic

degrees of freedom, the 3D microtwist theory ends up being a kinematically enriched theory.

The 3D microtwist elasticity is formulated by using two-scale asymptotic approach and its

constitutive and balance equations are derived for a fairly generic isostatic lattice. Performance

of the proposed theory is validated by the exact solution of the discrete model for reproducing

zero modes and dispersion relations and quantitatively predicting asymmetric indentation

responses. The study could shed lights on novel elastic theory of 3D polarized metamaterials

outside the conventional framework of symmetry groups, which is never reported before.

1. Introduction

A mechanical lattice can be loosely defined as a web of beam or spring elements connecting a set of nodes or hinges. In design

f the lattice material, harnessing of infinitesimal zero modes, deformation modes that cost little to no elastic energy, provides new

aradigm to realize the nonstandard elastic behavior of the mechanical lattice (Lubensky et al., 2015). Although catastrophic in

any scenarios, the presence of zero modes could be desired. The most spectacular application is the use of pentamode materials

ith five zero modes in acoustic cloaking (Milton and Cherkaev, 1995; Kadic et al., 2012; Norris and Shuvalov, 2011; Milton,

2013). Recently, polar materials with one intrinsic zero mode have been proposed in elastic cloaking (Nassar et al., 2018a, 2019,

020a; Zhang et al., 2020; Xu et al., 2020). In those applications, zero modes appear and grow in the lattice material with Parity

P)-symmetry, namely the invariance of the set of solutions under the spatial inversion 𝐱 ↦ −𝐱.
On the other hand, there are mechanical lattices or lattice materials with a broken P-symmetry, i.e., P-asymmetric, which refers

o the fact that the space of solution is variant under the action of inversion 𝐱 ↦ −𝐱. Materials with such property are polarized
hose zero modes grow in amplitude in a preferential direction and decay in the opposite direction. Kagome lattices are one of the

utstanding examples on topological polarization in isostatic lattices (Kane and Lubensky, 2014; Rocklin et al., 2017; Rocklin, 2017;

aardink et al., 2018; Ma et al., 2018; Mao and Lubensky, 2018; Zhang and Mao, 2018; Stenull and Lubensky, 2019; Nassar et al.,
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Nomenclature

𝛼𝑗 , 𝛽𝑗 Bond spring constants
𝛁, 𝛁S Gradient and symmetrized gradient operators
𝝆, 𝜼 Effective density tensor and moment of inertia tensor
𝝈, 𝝃, 𝐬 Stress, Couple stress and hyperstress
⋅′ Conjugate transpose, adjoint
𝛿, 𝛿2 Prefixes for first and second order corrections
𝛿2𝐾𝐻 Next-nearest-neighbor spring constant
𝛥𝑙1 ,…,𝑙6
𝐞𝑗 , 𝛥𝑙1 ,…,𝑙6

𝐟𝑗
Bond elongations

𝜖, 𝜖∗ Effective microtwist and Cauchy strain energy densities
𝛾 Similarity ratio
⟨⋅, ⋅⟩ The dot product
(

𝑙1,… , 𝑙6
)

Unit cell index
𝐂,𝐁,𝐃,𝐌,𝐀,𝐐 Effective constitutive tensors
𝐂∗ Effective Cauchy elasticity tensors
𝐞𝑗 , 𝐟𝑗 Unit vectors orienting the bonds
𝐅, 𝝉 Resultant body force and torque
𝐈 Three-order identity tensor
𝐧𝑘 Unit normal vectors to the surfaces of a tetrahedron
𝐪, 𝜔 Wavenumber and angular frequency
𝐫𝑗 , 𝐦𝑗 Dimensional and normalized lattice vectors
𝐭𝑙1 ,…,𝑙6
𝑗 , 𝐥𝑙1 ,…,𝑙6

𝑗 Internal and external nodal forces
𝐔, 𝝓 Macroscopic fields of displacement and twisting
𝐔0, 𝝓0 Translation and twisting amplitudes
𝐮𝑙1 ,…,𝑙6
𝑘 , 𝐮𝑘 Displacement of node 𝑘

𝐱𝑙1 ,…,𝑙6
𝑘 , 𝐱𝑘 Position of node 𝑘
𝛺, 𝜕𝛺, 𝐍 A domain, its boundary and the outward unit normal
𝛷 Column vector of nodal displacements
𝑎𝑗 , 𝑏𝑗 Bond lengths
𝐶0, 𝐶(𝐪) Compatibility matrices
𝐷, 𝑇 Mode shapes of translation and periodic twisting
ℎ𝑘 The height of node 𝑘 in the tetrahedron
𝑗 = 1, 2,… , 6 Index of lattice vectors and bonds
𝐾, 𝑀 , 𝐶 Rigidity, mass and compatibility operators
𝑘 = 1, 2, 3, 4 Index of nodes
𝑘𝑗 Equivalent spring constant
𝐿 External forces column vector
𝑚𝑘 Mass of node 𝑘
𝑃𝑗 , 𝜕𝑗 Unitary complex phase factor and partial derivative in direction 𝐫𝑗
𝑉 Volume of the unit cell
𝑍 Number of zero modes
𝑧𝑗 , 𝐳𝑗 Distortion parameters and unit vectors orienting the distortion

2020b). For example, a regular Kagome lattice exhibits P-symmetry bulk zero modes which maintain uniform amplitude across the
whole truss. However, general geometric distortions of the lattice will make zero modes polarized where the zero modes adopt
exponential profiles that decay towards the bulk and re-localize at free boundaries. Kane and Lubensky (2014) characterized the
conditions under which the re-localization of zero modes towards the free boundaries of a distorted lattice happens unevenly and
favors certain boundaries over their opposites. Note that the resulting P-asymmetric distribution of zero modes are topological in
nature which can be quantified by a topological polarization vector, so that they are immune to continuous perturbations, small and
large, as long as the signs of distortion parameters remain unchanged. This is why such Kagome lattices are qualified as ‘‘topological
polarization’’. The topological polarization leads to the appearance of elastic polarization effects whereby a finite sample appears
hard when indented on one side and soft when indented on the opposite side. Elastic polarization effects are not restricted to
boundaries and emerge in the bulk as well (Rocklin, 2017). Bilal et al. (2017) designed and tested a material made of 3D distorted
yrochlore lattices featuring a polarized elastic behavior. A finite slab of their material appears soft when indented on one side
2
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and hard when indented on the opposite side. To capture such zero modes on the level of the material requires finer measures
of strain and its gradients. It is the purpose of the present paper to propose an enriched 3D effective medium theory capable of
faithfully reproducing microstructural zero modes and related polarization effects on the continuum scale. Theoretical formulations
are conducted for a fairly generic 3D truss: the Pyrochlore lattice.

Mechanical lattices with no zero modes have been successfully investigated using homogenization theory based on the Cauchy
ontinuum mechanics (Deshpande et al., 2001; Hutchinson and Fleck, 2006). However, the polarization behavior due to P-
symmetric zero modes cannot be properly captured from the perspective of conventional continuum mechanics. To address this
hallenge, a Cosserat micropolar continuum (Cosserat and Cosserat, 1909) was suggested to model mechanical behavior of the
olarized Kagome lattices by introducing both the vector displacement of nodes and the rotational degree of freedom (DOF) to
escribe microrotation (Sun et al., 2012). However, the material characteristic parameter of deformation comes into effect only
hen the deformation with non-negligible strain gradients or non-local effects is induced. Furthermore, the polarization effects in
olarized Kagome or Pyrochlore lattices are caused by the accumulation of zero modes and are usually of a stronger dominant
ature. Sun and Mao (2020) and Saremi and Rocklin (2020) proposed theories for polarized effective media of the strain gradient
ype. As a matter of fact, the polarization described by the micropolar elasticity and strain gradient theory is not of a topological
ature and its effects are weak and restricted to boundary layers. By mapping each periodic zero mode to a macroscopic degree of
reedom, we recently formulated a ‘‘bottom-up’’ higher-order theory baptized ‘‘microtwist’’ theory capable of rendering polarization
ffects of the 2D Kagome lattice on a macroscopic scale and quantitatively predicting the polarized indentation response of finite
amples (Nassar et al., 2020b). In the study, the microtwist theory is systematically extended to study the mechanical polarization
nd related topological behavior of 3D pyrochlore lattices. To the best of our knowledge, little to no work has been conducted on
ealizing polarization effects in 3D topological materials.

Microtwist elasticity is the outcome of leading order two-scale asymptotic expansions with the displacement being a fast scale
ariable attached to the unit cell and the position being a slow variable attached to the structure in the long wavelength limit,
→ 𝟎. By progressively perturbing the geometry of regular Pyrochlore lattices so as to transform them into distorted ones, the total
isplacement field is composed of the macroscopic displacement field and of three additional DOFs, namely the twisting angles,
irectly related to microstructural zero modes. The resulting effective 3D Microtwist Continuum is therefore an enriched continuum
llowing for the presence of periodic zero modes in the form of additional DOFs and the additional odd-order tensor elasticity
onstants are responsible for non-standard effects accompanying them such as polarization.

The structure of the paper is as follows. In Section 2, the compatibility and equilibrium relations of general Pyrochlore lattices are
ntroduced. The classification in terms of regular and distorted Pyrochlore lattices is then recalled based on the number of periodic
ero modes they support. In Section 3, the detailed derivation of the 3D microtwist continuum for the weakly-distorted Pyrochlore
attice is presented. In Section 4, dispersion relations and static phenomena taking place in regular and weakly-distorted Pyrochlore
attices are investigated. Results are derived from the discrete model of the Pyrochlore lattice, from the microtwist model and from
auchy’s model and then compared. The last section contains a brief conclusion.

. Discrete modeling of Pyrochlore lattices and zero modes

General Pyrochlore lattices are introduced and classified into two phases, regular and distorted, based on the number and type
f zero modes they support. The analysis here is based on the discrete lattice model. A continuum model, suitable for regular and
eakly-distorted lattices, will be derived in the next section.

.1. Compatibility and equilibrium equations

The Pyrochlore lattice shown in Fig. 1a is a 3D isostatic lattice made of a set of massless spring-like bonds connecting massive
inge-like nodes. A reference unit cell has hour nodes in the basis 𝐱𝑘, 𝑘 ∈ {1, 2, 3, 4}, which constitute a tetrahedron composed of
ix bonds along the unit vectors 𝐞𝑗 and of lengths 𝑎𝑗 (𝑗 ∈ {1, 2, 3, 4, 5, 6}); see Fig. 1b. The unit cell further has six other bonds along
he unit vectors 𝐟𝑗 and of lengths 𝑏𝑗 . As such, lattice vectors 𝐫𝑗 and unit vectors of bonds are related through

𝐫1 = 𝑎1𝐞1 − 𝑏1𝐟1, 𝐫2 = 𝑎2𝐞2 − 𝑏2𝐟2, 𝐫3 = 𝑎3𝐞3 − 𝑏3𝐟3,
𝐫4 = 𝑎4𝐞4 − 𝑏4𝐟4, 𝐫5 = 𝑎5𝐞5 − 𝑏2𝐟5, 𝐫6 = 𝑎6𝐞6 − 𝑏6𝐟6.

(1)

ote that the bonds here are not arbitrarily prescribed. Indeed, one have 𝐫1+𝐫4−𝐫2 = 𝟎, 𝐫2+𝐫5−𝐫3 = 𝟎, 𝐫3+𝐫6−𝐫1 = 𝟎, 𝐫4+𝐫5−𝐫6 = 𝟎.
xterior to the unit cell, there are six other nodes with unnumbered solid green circles whose initial positions are given by 𝐱1 + 𝐫1,
1 + 𝐫2, 𝐱1 + 𝐫3, 𝐱2 + 𝐫4, 𝐱3 + 𝐫5, 𝐱4 + 𝐫6. Then the initial positions of all nodes can be deduced by translating along integer linear
ombination of the lattice vector 𝐫𝑗 . Thus the initial position of node 𝑘 in unit cell (𝑙1,… , 𝑙6) reads

𝐱𝑙1 ,…,𝑙6
𝑘 = 𝐱𝑘 + 𝐱𝑙1 ,…,𝑙6 = 𝑙1𝐫1 +⋯ + 𝑙6𝐫6, (𝑙1,… , 𝑙6) ∈ Z6. (2)

Pyrochlore lattices are isostatic lattices because the number of DOFs (4×3 = 12 possible displacements per unit cell) is equal to the
3

umber of bonds (12 springs oriented along the unit vectors 𝐞𝑗 and 𝐟𝑗). Thus, the compatibility relations between the displacement
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Fig. 1. A 3D Pyrochlore lattice: (a) a periodic reference configuration with six lattice vectors, 𝐫𝑗 , 𝑗 ∈ {1, 2, 3, 4, 5, 6}, and its animated version is shown in

upplementary Material, Video S1; (b) an annotated unit cell. The numbered and unnumbered solid green circles represent the interior and exterior masses of

he unit cell respectively. Red bonds with unit vectors 𝐞𝑗 and blue bonds with unit vectors 𝐟𝑗 have respective lengths (𝑎𝑗 and 𝑏𝑗 ) and respective spring constants
(𝛼𝑗 and 𝛽𝑗 ).

of mass 𝑘, 𝐮𝑙1 ,…,𝑙6
𝑘

, and the elongation of spring 𝛥
𝑙1 ,…,𝑙6
𝐞𝑗 (resp. 𝛥

𝑙1 ,…,𝑙6
𝐟𝑗

) along 𝐞𝑗 (resp. 𝐟𝑗) are

𝛥
𝑙1 ,…,𝑙6
𝐞1 =

⟨
𝐞1,𝐮

𝑙1 ,…,𝑙6
2 − 𝐮𝑙1 ,…,𝑙6

1

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟1

=
⟨
𝐟1,𝐮

𝑙1 ,…,𝑙6
2 − 𝐮𝑙1+1,𝑙2 ,…,𝑙5 ,𝑙6

1

⟩
,

𝛥
𝑙1 ,…,𝑙6
𝐞2 =

⟨
𝐞2,𝐮

𝑙1 ,…,𝑙6
3 − 𝐮𝑙1 ,…,𝑙6

1

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟2

=
⟨
𝐟2,𝐮

𝑙1 ,…,𝑙6
3 − 𝐮𝑙1 ,𝑙2+1,𝑙3 ,…,𝑙6

1

⟩
,

𝛥
𝑙1 ,…,𝑙6
𝐞3 =

⟨
𝐞3,𝐮

𝑙1 ,…,𝑙6
4 − 𝐮𝑙1 ,…,𝑙6

1

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟3

=
⟨
𝐟3,𝐮

𝑙1 ,…,𝑙6
4 − 𝐮𝑙1 ,𝑙2 ,𝑙3+1,…,𝑙6

1

⟩
,

𝛥
𝑙1 ,…,𝑙6
𝐞4 =

⟨
𝐞4,𝐮

𝑙1 ,…,𝑙6
3 − 𝐮𝑙1 ,…,𝑙6

2

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟4

=
⟨
𝐟4,𝐮

𝑙1 ,…,𝑙6
3 − 𝐮𝑙1 ,…,𝑙4+1,𝑙5 ,𝑙6

2

⟩
,

𝛥
𝑙1 ,…,𝑙6
𝐞5 =

⟨
𝐞5,𝐮

𝑙1 ,…,𝑙6
4 − 𝐮𝑙1 ,…,𝑙6

3

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟5

=
⟨
𝐟5,𝐮

𝑙1 ,…,𝑙6
4 − 𝐮𝑙1 ,𝑙2 ,…,𝑙5+1,𝑙6

3

⟩
,

𝛥
𝑙1 ,…,𝑙6
𝐞6 =

⟨
𝐞6,𝐮

𝑙1 ,…,𝑙6
2 − 𝐮𝑙1 ,…,𝑙6

4

⟩
, 𝛥

𝑙1 ,…,𝑙6
𝐟6

=
⟨
𝐟6,𝐮

𝑙1 ,…,𝑙6
2 − 𝐮𝑙1 ,𝑙2 ,…,𝑙5 ,𝑙6+1

4

⟩
.

(3)

For central forces, the tension in a spring is parallel to the spring orientation so that it is given by 𝛼𝑗𝛥
𝑙1 ,…,𝑙6
𝐞𝑗 𝐞𝑗 (resp. 𝛽𝑗𝛥

𝑙1 ,…,𝑙6
𝐟𝑗

𝐟𝑗),

where 𝛼𝑗 (resp. 𝛽𝑗) is the spring constant along 𝐞𝑗 (resp. 𝐟𝑗). Thus, the equilibrium relations between the force on mass 𝑘, 𝐭𝑙1 ,…,𝑙6
𝑘

,

nd the spring tension are

𝐭𝑙1 ,…,𝑙6
1 =𝛼1𝛥

𝑙1 ,…,𝑙6
𝐞1 𝐞1 + 𝛼2𝛥

𝑙1 ,…,𝑙6
𝐞2 𝐞2 + 𝛼3𝛥

𝑙1 ,…,𝑙6
𝐞3 𝐞3

+ 𝛽1𝛥
𝑙1−1,…,𝑙6
𝐟1

𝐟1 + 𝛽2𝛥
𝑙1 ,𝑙2−1⋯,𝑙6
𝐟2

𝐟2 + 𝛽3𝛥
𝑙1 ,𝑙2 ,𝑙3−1⋯,𝑙6
𝐟3

𝐟3,

𝐭𝑙1 ,…,𝑙6
2 = − 𝛼1𝛥

𝑙1 ,…,𝑙6
𝐞1 𝐞1 + 𝛼4𝛥

𝑙1 ,…,𝑙6
𝐞4 𝐞4 − 𝛼6𝛥

𝑙1 ,…,𝑙6
𝐞6 𝐞6

− 𝛽1𝛥
𝑙1 ,…,𝑙6
𝐟1

𝐟1 + 𝛽4𝛥
𝑙1 ,…,𝑙4−1,𝑙5 ,𝑙6
𝐟4

𝐟4 − 𝛽6𝛥
𝑙1 ,…,𝑙6
𝐟6

𝐟6,

𝐭𝑙1 ,…,𝑙6
3 = − 𝛼2𝛥

𝑙1 ,…,𝑙6
𝐞2 𝐞2 − 𝛼4𝛥

𝑙1 ,…,𝑙6
𝐞4 𝐞4 + 𝛼5𝛥

𝑙1 ,…,𝑙6
𝐞5 𝐞5

− 𝛽2𝛥
𝑙1 ,…,𝑙6
𝐟2

𝐟2 − 𝛽4𝛥
𝑙1 ,…,𝑙6
𝐟4

𝐟4 + 𝛽5𝛥
𝑙1 ,…,𝑙5−1,𝑙6
𝐟5

𝐟5,

𝐭𝑙1 ,…,𝑙6
4 = − 𝛼3𝛥

𝑙1 ,…,𝑙6
𝐞3 𝐞3 − 𝛼5𝛥

𝑙1 ,…,𝑙6
𝐞5 𝐞5 + 𝛼6𝛥

𝑙1 ,…,𝑙6
𝐞6 𝐞6

− 𝛽3𝛥
𝑙1 ,…,𝑙6
𝐟3

𝐟3 − 𝛽5𝛥
𝑙1 ,…,𝑙6
𝐟5

𝐟5 + 𝛽6𝛥
𝑙1 ,…,𝑙6−1
𝐟6

𝐟6.

(4)

Finally, the motion equation of the discrete Pyrochlore lattice reads

𝐭𝑙1 ,…,𝑙6
𝑘

+ 𝐥𝑙1 ,…,𝑙6
𝑘

= 𝑚𝑘𝐮̈
𝑙1 ,…,𝑙6
𝑘

, (5)

where 𝑚𝑘 is the mass 𝑘 and 𝐥𝑙1 ,…,𝑙6
𝑘

is an external force applied to the mass 𝑘 of the unit cell
(
𝑙1,… , 𝑙6

)
.

2.2. Periodic zero modes

Analyzing configurations where the various fields of interest vary slowly with respect to time and to the unit cell index (𝑙1,… , 𝑙6)
is key to building an effective substitution medium for Pyrochlore lattices. By the same logic, it is expected that configurations that

,… , 𝑙 ) at all will play a central role as well. These are referred to as static periodic
do not depend on time and on unit cell index (𝑙1 6
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simplification and are investigated for the purpose of the classification of regular and distorted Pyrochlore lattices presented in this
section.

By dismissing the dependence over unit cell index (𝑙1,… , 𝑙6), elongations are given by the matrix product

𝛥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝐞1
𝛥𝐞2
𝛥𝐞3
𝛥𝐞4
𝛥𝐞5
𝛥𝐞6
𝛥𝐟1
𝛥𝐟2
𝛥𝐟3
𝛥𝐟4
𝛥𝐟5
𝛥𝐟6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐶0

⎡

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝐮3
𝐮4

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐞′1 𝐞′1 𝟎 𝟎
−𝐞′2 𝟎 𝐞′2 𝟎
−𝐞′3 𝟎 𝟎 𝐞′3
𝟎 −𝐞′4 𝐞′4 𝟎
𝟎 𝟎 −𝐞′5 𝐞′5
𝟎 𝐞′6 𝟎 −𝐞′6
−𝐟 ′1 𝐟 ′1 𝟎 𝟎
−𝐟 ′2 𝟎 𝐟 ′2 𝟎
−𝐟 ′3 𝟎 𝟎 𝐟 ′3
𝟎 −𝐟 ′4 𝐟 ′4 𝟎
𝟎 𝟎 −𝐟 ′5 𝐟 ′5
𝟎 𝐟 ′6 𝟎 −𝐟 ′6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (6)

where 𝐶0 is a 12 × 12 compatibility matrix and a prime means conjugate transpose so that 𝐞′𝑘𝐮𝑘 = ⟨𝐞𝑘,𝐮𝑘⟩. Internal forces acting on
four masses of the unit cell read

⎡

⎢

⎢

⎢

⎢

⎣

𝐭1
𝐭2
𝐭3
𝐭4

⎤

⎥

⎥

⎥

⎥

⎦

= −𝐶 ′
0𝐾𝛥, 𝐾 = diag(𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6), (7)

where 𝐾 is a diagonal matrix gathering the spring constants within one unit cell on its diagonal. Accordingly, the motion equation
for periodic configurations can be expressed as

−𝐶 ′
0𝐾𝐶0𝛷 + 𝐿 =𝑀𝛷̈, 𝛷 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝐮3
𝐮4

⎤

⎥

⎥

⎥

⎥

⎦

, (8)

with 𝑀 = diag
(

𝑚1𝐈, 𝑚2𝐈, 𝑚3𝐈, 𝑚4𝐈
)

being the mass matrix, 𝐈 being the 3 × 3 identity matrix, and where 𝐿 is a column
(

𝐥1, 𝐥2, 𝐥3, 𝐥4
)

of external forces periodically applied to the masses of the lattice. Finally, dismissing dependence upon time yields the equilibrium
equation for static periodic configurations

−𝐶 ′
0𝐾𝐶0𝛷 + 𝐿 = 𝟎. (9)

We then refer to 𝛷 as a periodic zero mode when it is a free solution of the above equation, i.e., under 𝐿 = 0. A periodic zero
mode necessarily stores zero elastic energy

∑

𝑗

(

𝛼𝑗𝛥
2
𝐞𝑗
+ 𝛽𝑗𝛥2𝐟𝑗

)

= 𝛷′𝐶 ′
0𝐾𝐶0𝛷 = 0. (10)

Accordingly, assuming all springs have strictly positive constants, a periodic zero mode deforms no springs and this translates into

𝐶0𝛷 = 𝟎. (11)

Hence, periodic zero modes are the null vectors of matrix 𝐶0. Based on the rank-nullity theorem, their number is equal to
𝑍 = 12 − rank 𝐶0 where 12 is the dimension of 𝐶0 and rank 𝐶0 its rank. By inspecting matrix 𝐶0, there are only two possibilities:
(𝑍, rank 𝐶0) = (3, 9) or (6, 6). If there exists a pair of surface planes along the tetrahedral surfaces are not aligned, then 𝑍 = 3 and
𝐶0 is of rank 9. If for all 𝑗, 𝐞𝑗 and 𝐟𝑗 are colinear, then 𝑍 = 6 and 𝐶0 is of rank 6. As a matter of fact, 𝐞𝑗 and 𝐟𝑗 being aligned and
unitary meaning they are equal and opposite. We classify general Pyrochlore lattices based on this alternative. Lattices satisfying
𝑍 = 3 are the one we call distorted. These have no zero modes other than translations. Lattices with 𝑍 = 6 are the ones we call
regular. They are characterized by any of the following equivalent properties:

• they satisfy the equation rank 𝐶0 = 6;
• their springs orientations along the tetrahedral edges are initially aligned in the sense 𝐞𝑗 = 𝐟𝑗 , for all 𝑗;
• they have six periodic zero modes.

The additional three periodic zero modes predicted in regular Pyrochlore lattices are hereafter referred to as ‘‘twisting’’ motions,
which will be described next.

Global translations shown in Fig. 2 are characterized by 𝐮1 = 𝐮2 = 𝐮3 = 𝐮4 = 𝐔𝑜 and take the matrix form

𝛷 =

⎡

⎢

⎢

⎢

⎢

𝐔𝑜
𝐔𝑜
𝐔𝑜

⎤

⎥

⎥

⎥

⎥

= 𝐷𝐔𝑜, 𝐷 =

⎡

⎢

⎢

⎢

⎢

𝐈
𝐈
𝐈

⎤

⎥

⎥

⎥

⎥

, (12)
5

⎣

𝐔𝑜⎦ ⎣

𝐈
⎦
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Fig. 2. Periodic zero modes of a regular Pyrochlore lattice: a linear combination of three global translations 𝐔0 and three global twisting motions, 𝝓0 = [𝜙1 , 𝜙2 , 𝜙3]′,
around three orthogonal global axes 𝑦𝑗 (𝑗 ∈ {1, 2, 3}). The origin of coordinates ‘‘𝑂’’ is localized at the geometric center of the tetrahedron enclosed with red

dges.

where 𝐈 is the 3 × 3 identity matrix. It is easy to check that 𝐶0𝛷 = 0. Translations span three periodic zero modes. For distorted
lattices, they admit no other periodic zero modes besides translations. However, there exists three more periodic zero modes in

regular lattices that can be described by the global twisting motions (𝜙𝑗 , 𝑗 ∈ {1, 2, 3}) around three orthogonal global axes 𝑦1, 𝑦2
and 𝑦3, which take the form

𝛷 =

⎡⎢⎢⎢⎢⎣
𝐓1
𝐓2
𝐓3
𝐓4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
𝜙1
𝜙2
𝜙3

⎤⎥⎥⎦ = 𝑇𝝓𝑜, 𝑇 =

⎡⎢⎢⎢⎢⎣
𝐓1
𝐓2
𝐓3
𝐓4

⎤⎥⎥⎥⎥⎦
, 𝝓𝑜 =

⎡⎢⎢⎣
𝜙1
𝜙2
𝜙3

⎤⎥⎥⎦ , (13)

where

𝐓𝑘 =
[
𝐴1𝐱𝑘 𝐴2𝐱𝑘 𝐴3𝐱𝑘

]
, 𝐴𝑚 =

⎡⎢⎢⎣
0 −𝑤𝑚3 𝑤𝑚2
𝑤𝑚3 0 −𝑤𝑚1
−𝑤𝑚2 𝑤𝑚1 0

⎤⎥⎥⎦ , (14)

with 𝑤𝑚𝑛 (𝑚 ∈ {1, 2, 3}, 𝑛 ∈ {1, 2, 3}) the component of the unit vector 𝐰𝑚 along 𝑦𝑛. Here, the center of tetrahedron is chosen as

the center of the twisting motion whereas 𝝓𝑜 is the angle of rotation with respect to axes 𝑦1, 𝑦2, and 𝑦3. Accordingly, the reference

ositions of the four interior masses, with respect to the origin, are

𝐱1 =
(
−𝑎1𝐞1 − 𝑎2𝐞2 − 𝑎3𝐞3

)
∕4,

𝐱2 =
(
3𝑎1𝐞1 − 𝑎2𝐞2 − 𝑎3𝐞3

)
∕4,

𝐱3 =
(
−𝑎1𝐞1 + 3𝑎2𝐞2 − 𝑎3𝐞3

)
∕4,

𝐱4 =
(
−𝑎1𝐞1 − 𝑎2𝐞2 + 3𝑎3𝐞3

)
∕4.

(15)

𝑇 is indeed periodic zero modes because 𝐶0𝑇 = 0. Therefore, the periodic zero modes of a regular Pyrochlore lattice are given by
he linear combination of translations and twisting motions:

𝛷 = 𝐷𝐔𝑜 + 𝑇𝝓𝑜. (16)

3. Microtwist modeling of Pyrochlore lattices

An appropriate basis for periodic zero modes is introduced in the previous section, which greatly simplify the subsequent

derivation of the macroscopic motion equation in this section. First, the distortion parameters controlling phase transitions
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Fig. 3. Illustration of a phase transition from the regular (light color) to the distorted (deep color) lattice. If the vector of distortion parameter running from the

egular configuration to the distorted one is in the same direction as 𝐳𝑗 , the distortion parameter 𝑧𝑗 is positive and is negative otherwise. The only parameter
elevant for our purpose are the elevations 𝑧𝑗 , which could affect mechanical polarization effects in Pyrochlore lattices.

between regular and weakly-distorted Pyrochlore lattices are introduced. Next, the mechanics of Pyrochlore lattices are investigated

asymptotically in the homogenization limit and in the critical regime corresponding to lattices on the brink of a regular-distorted

phase transition. The effective medium is demonstrated to be a 3D microtwist continuum and closed-form expression of motion

equations and constitutive relations are provided.

3.1. Perturbation theory

Starting with a regular Pyrochlore lattice, the initial positions of masses within a unit cell are perturbed: node 𝑗 is displaced by

𝑗 , see Fig. 3. The perturbation is expected to break the alignment of 𝐞𝑗 and 𝐟𝑗 so that the regular lattice becomes distorted in the
sense of the classification of Section 2.2. Letting (𝐦𝑗 , 𝐳𝑗 ) be an orthonormal basis where 𝐦𝑗 is parallel to 𝐫𝑗 , and 𝐳𝑗 is perpendicular
to 𝐦𝑗 that is defined as

𝐳𝑗 =
(
𝐦𝑗 × 𝐰

)
∕ ‖‖‖𝐦𝑗 × 𝐰‖‖‖ , (17)

where 𝐰 is the unit vector parallel to 𝐦1 +𝐦2 +𝐦3. Here, we assume ‖𝑧𝑗‖ ≪ min(𝑎𝑗 , 𝑏𝑗 ) such that vectors 𝐞𝑗 and 𝐟𝑗 are now given

by

𝐞𝑗 = 𝐦𝑗 +
𝑧𝑗

𝑎𝑗
𝐳𝑗 + 𝑂

(
𝑧𝑗

𝑎𝑗

)2
, 𝐟𝑗 = −𝐦𝑗 +

𝑧𝑗

𝑏𝑗
𝐳𝑗 + 𝑂

(
𝑧𝑗

𝑏𝑗

)2
. (18)

Two more explicit assumptions are then made in perturbation theory. One is that the displacements 𝐮𝑙1 ,…,𝑙6
𝑘

are assumed to

derive from slowly varying smooth functions 𝐮𝑘 (𝐱) upon replacing 𝐱 with 𝐱𝑙1 ,…,𝑙6 , where the position variable 𝐱 is identified as
a slow variable attached to the structure, while the displacement 𝐮𝑘 is a fast scale variable attached to the unit cell in the long
avelength limit, 𝐪 → 𝟎. The relevant field variables are approximated by the leading-order Taylor expansions:

𝐮𝑙1+1,…,𝑙6
𝑘

− 𝐮𝑙1 ,…,𝑙6
𝑘

= 𝜕1𝐮𝑘,

𝐮𝑙1 ,𝑙2+1,…,𝑙6
𝑘

− 𝐮𝑙1 ,…,𝑙6
𝑘

= 𝜕2𝐮𝑘,

𝐮𝑙1 ,𝑙2 ,𝑙3+1,…,𝑙6
𝑘

− 𝐮𝑙1 ,…,𝑙6
𝑘

= 𝜕3𝐮𝑘,

𝐮𝑙1 ,…,𝑙4+1,𝑙5 ,𝑙6
𝑘

− 𝐮𝑙1 ,…,𝑙6
𝑘

= 𝜕4𝐮𝑘,

𝐮𝑙1 ,…,𝑙5+1,𝑙6
𝑘

− 𝐮𝑙1 ,…,𝑙6
𝑘

= 𝜕5𝐮𝑘,

𝐮𝑙1 ,…,𝑙6+1 − 𝐮𝑙1 ,…,𝑙6 = 𝜕 𝐮 ,

(19)
𝑘 𝑘 6 𝑘
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where 𝜕𝑗 =
⟨

𝐫𝑗 ,𝛁
⟩

is the differential with respect to 𝐱 in direction 𝐫𝑗 . The other assumption is that the displacements 𝐮𝑙1 ,…,𝑙6
𝑘 are

assumed to change with respect to time at small rates 𝜔 satisfying 𝜔
√

max(𝑚𝑘)≪
√

min(𝛼𝑗 , 𝛽𝑗 ).

Accordingly, in the homogenization limit, all three introduced perturbations are assumed to be infinitesimal and of the same
rder of magnitude. That is

‖

‖

‖

𝜕𝑗
‖

‖

‖

∼

√

max(𝑚𝑘)
min(𝛼𝑗 , 𝛽𝑗 )

𝜔 ∼
|

|

|

𝑧𝑗
|

|

|

min(𝑎𝑗 , 𝑏𝑗 )
≪ 1 (20)

3.2. Asymptotic expansions

The second-order asymptotic expansions of the compatibility matrix are first introduced to rewrite the equations of the previous
section. Injecting Eqs. (18) and (19) back into Eq. (3) yields

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝐞1
𝛥𝐞2
𝛥𝐞3
𝛥𝐞4
𝛥𝐞5
𝛥𝐞6
𝛥𝐟1
𝛥𝐟2
𝛥𝐟3
𝛥𝐟4
𝛥𝐟5
𝛥𝐟6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐶

⎡

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝐮3
𝐮4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐶𝛷, 𝐶 = 𝐶0 + 𝛿𝐶 + 𝛿2𝐶 +⋯ , (21)

The leading order term 𝐶0 remains given by Eq. (6) and is rewritten as

𝐶0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐦′
1 𝐦′

1 𝟎 𝟎
−𝐦′

2 𝟎 𝐦′
2 𝟎

−𝐦′
3 𝟎 𝟎 𝐦′

3
𝟎 −𝐦′

4 𝐦′
4 𝟎

𝟎 𝟎 −𝐦′
5 𝐦′

5
𝟎 𝐦′

6 𝟎 −𝐦′
6

𝐦′
1 −𝐦′

1 𝟎 𝟎
𝐦′

2 𝟎 −𝐦′
2 𝟎

𝐦′
3 𝟎 𝟎 −𝐦′

3
𝟎 𝐦′

4 −𝐦′
4 𝟎

𝟎 𝟎 𝐦′
5 −𝐦′

5
𝟎 −𝐦′

6 𝟎 𝐦′
6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

The first order correction 𝛿𝐶 = 𝛿𝑧𝐶 + 𝛿𝑥𝐶 is composed of two terms. The first term is due to the perturbation that induces the
regular-distorted phase transition:

𝛿𝑧𝐶 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

−𝑧1𝐳′1∕𝑎1 𝑧1𝐳′1∕𝑎1 𝟎 𝟎
−𝑧2𝐳′2∕𝑎2 𝟎 𝑧2𝐳′2∕𝑎2 𝟎
−𝑧3𝐳′3∕𝑎3 𝟎 𝟎 𝑧3𝐳′3∕𝑎3

𝟎 −𝑧4𝐳′4∕𝑎4 𝑧4𝐳′4∕𝑎4 𝟎
𝟎 𝟎 −𝑧5𝐳′5∕𝑎5 𝑧5𝐳′5∕𝑎5
𝟎 𝑧6𝐳′6∕𝑎6 𝟎 −𝑧6𝐳′6∕𝑎6

−𝑧1𝐳′1∕𝑏1 𝑧1𝐳′1∕𝑏1 𝟎 𝟎
−𝑧2𝐳′2∕𝑏2 𝟎 𝑧2𝐳′2∕𝑏2 𝟎
−𝑧3𝐳′3∕𝑏3 𝟎 𝟎 𝑧3𝐳′3∕𝑏3

𝟎 −𝑧4𝐳′4∕𝑏4 𝑧4𝐳′4∕𝑏4 𝟎
𝟎 𝟎 −𝑧5𝐳′5∕𝑏5 𝑧5𝐳′5∕𝑏5

′ ′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

; (23)
8

⎣ 𝟎 𝑧6𝐳6∕𝑏6 𝟎 −𝑧6𝐳6∕𝑏6⎦
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the second term is due to the fields being slowly varying in space:

𝛿𝑥𝐶 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

𝐦′
1𝜕1 𝟎 𝟎 𝟎

𝐦′
2𝜕2 𝟎 𝟎 𝟎

𝐦′
3𝜕3 𝟎 𝟎 𝟎
𝟎 𝐦′

4𝜕4 𝟎 𝟎
𝟎 𝟎 𝐦′

5𝜕5 𝟎
𝟎 𝟎 𝟎 𝐦′

6𝜕6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

As for the second order correction of the compatibility matrix 𝛿2𝐶 = 𝛿2𝑧𝐶 + 𝛿2𝑥𝐶 + 𝛿𝑧𝑥𝐶, it turns out to be of no use for the following
derivation.

The displacements are similarly expanded into

𝛷 = 𝛷0 + 𝛿𝛷 + 𝛿2𝛷 +⋯ , (25)

where 𝛷0 gathers the leading-order displacements, 𝛿𝛷 and 𝛿2𝛷 are their first and second corrections respectively. Substituting the
above expansions into the motion equation

− 𝐶 ′𝐾𝐶𝛷 + 𝐿 = −𝜔2𝑀𝛷 (26)

and keeping terms of the same order leads to a series of equations that can be solved iteratively. This is done next for the leading
and first order equations. It is worth mentioning that 𝐿 in Eq. (26) corresponds to body force and is taken to be slowly varying in
space and of the same order of magnitude as inertial forces.

3.3. Leading and first order displacements

Keeping the leading order terms in the expansion of Eq. (26) yields

−𝐶 ′
0𝐾𝐶0𝛷0 = 0. (27)

We have seen in Section 2.2 that the solution to this equation are periodic zero modes so that there exists translations 𝐔 and twisting
motions 𝝓 such that

𝛷0 = 𝐷𝐔 + 𝑇𝝓. (28)

Keeping first order terms now implies

−𝐶 ′
0𝐾𝐶0𝛿𝛷 + 𝛹 = 0, 𝛹 = −𝐶 ′

0𝐾(𝛿𝑥𝐶 + 𝛿𝑧𝐶)(𝐷𝐔 + 𝑇𝝓). (29)

Thus, 𝛿𝛷 appears as a solution to a forced motion equation. Matrix 𝐶0 being singular, the above equation admits solutions if and
only if 𝛹 is balanced in the sense of being orthogonal to all zero modes:

𝐷′𝛹 = 0, 𝑇 ′𝛹 = 0. (30)

Alternatively, 𝛹 is balanced if and only if it belongs to the range of matrix 𝐶 ′
0, which in turn is identical to the range of matrix

𝐺 =
[

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6
]

(31)

where

𝐺1 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝐦1
𝐦1
𝟎
𝟎

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐺2 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝐦2
𝟎
𝐦2
𝟎

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐺3 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝐦3
𝟎
𝟎
𝐦3

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐺4 =

⎡

⎢

⎢

⎢

⎢

𝟎
−𝐦4
𝐦4

⎤

⎥

⎥

⎥

⎥

, 𝐺5 =

⎡

⎢

⎢

⎢

⎢

𝐦
𝟎

−𝐦5

⎤

⎥

⎥

⎥

⎥

, 𝐺6 =

⎡

⎢

⎢

⎢

⎢

𝟎
𝐦6
𝟎

⎤

⎥

⎥

⎥

⎥

,

(32)
9

⎣

𝟎
⎦ ⎣

𝐦5 ⎦ ⎣

−𝐦6⎦
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given that 𝐶 ′
0 =

[

𝐺 −𝐺
]

. That is, 𝛹 is a balanced loading if and only if it reads

𝛹 = 𝐺𝜓, 𝜓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜓1
𝜓2
𝜓3
𝜓4
𝜓5
𝜓6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

where 𝜓𝑗 are the generalized coordinates of 𝛹 along with 𝐺𝑗 . Here, 𝛹 is indeed balanced and a straightforward calculation shows
that

𝜓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽1 ⟨𝐦1𝜕1,𝐔⟩
𝛽2 ⟨𝐦2𝜕2,𝐔⟩
𝛽3 ⟨𝐦3𝜕3,𝐔⟩
𝛽4 ⟨𝐦4𝜕4,𝐔⟩
𝛽5 ⟨𝐦5𝜕5,𝐔⟩
𝛽6 ⟨𝐦6𝜕6,𝐔⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝛾𝛽1 − 𝛼1) ⟨𝑧1𝐳1,𝐄1𝝓⟩
(𝛾𝛽2 − 𝛼2) ⟨𝑧2𝐳2,𝐄2𝝓⟩
(𝛾𝛽3 − 𝛼3) ⟨𝑧3𝐳3,𝐄3𝝓⟩
(𝛾𝛽4 − 𝛼4) ⟨𝑧4𝐳4,𝐄4𝝓⟩
(𝛾𝛽5 − 𝛼5) ⟨𝑧5𝐳5,𝐄5𝝓⟩
(𝛾𝛽6 − 𝛼6) ⟨𝑧6𝐳6,𝐄6𝝓⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽1 ⟨𝐦1𝜕1,𝐓1𝝓⟩
𝛽2 ⟨𝐦2𝜕2,𝐓1𝝓⟩
𝛽3 ⟨𝐦3𝜕3,𝐓1𝝓⟩
𝛽4 ⟨𝐦4𝜕4,𝐓2𝝓⟩
𝛽5 ⟨𝐦5𝜕5,𝐓3𝝓⟩
𝛽6 ⟨𝐦6𝜕6,𝐓4𝝓⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

where 𝐄𝑗 =
[

𝐴1𝐦𝑗 𝐴2𝐦𝑗 𝐴3𝐦𝑗
]

, and 𝛾 = 𝑎𝑗∕𝑏𝑗 is the 𝑗-independent similarity ratio.
Therefore, a solution 𝛿𝛷 exists and is given by

𝛿𝛷 = 𝛤𝜓, 𝛤 =
[

𝛤1 𝛤2 𝛤3 𝛤4 𝛤5 𝛤6
]

, (35)

where 𝛤𝑗 is a solution to

−𝐶 ′
0𝐾𝐶0𝛤𝑗 + 𝐺𝑗 = 0. (36)

The 𝛤𝑗 are straightforward to determine from the above equation, first by solving for 𝐾𝐶0𝛤𝑗 , then for 𝐶0𝛤𝑗 and finally for 𝛤𝑗 .
Skipping calculations, one finds that 𝛤 is given by

𝛤 = 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1∕ℎ2
𝛼1+𝛽1

𝐧2
𝑎2∕ℎ3
𝛼2+𝛽2

𝐧3
𝑎3∕ℎ4
𝛼3+𝛽3

𝐧4
−𝑎4∕ℎ3
𝛼4+𝛽4

𝐧3
−𝑎5∕ℎ4
𝛼5+𝛽5

𝐧4
−𝑎6∕ℎ2
𝛼6+𝛽6

𝐧2
−𝑎1∕ℎ2
𝛼1+𝛽1

𝐧2
−𝑎2∕ℎ3
𝛼2+𝛽2

𝐧3
−𝑎3∕ℎ4
𝛼3+𝛽3

𝐧4
𝑎4∕ℎ3
𝛼4+𝛽4

𝐧3
−𝑎5∕ℎ4
𝛼5+𝛽5

𝐧4
−𝑎6∕ℎ2
𝛼6+𝛽6

𝐧2
−𝑎1∕ℎ2
𝛼1+𝛽1

𝐧2
−𝑎2∕ℎ3
𝛼2+𝛽2

𝐧3
−𝑎3∕ℎ4
𝛼3+𝛽3

𝐧4
−𝑎4∕ℎ3
𝛼4+𝛽4

𝐧3
𝑎5∕ℎ4
𝛼5+𝛽5

𝐧4
−𝑎6∕ℎ2
𝛼6+𝛽6

𝐧2
−𝑎1∕ℎ2
𝛼1+𝛽1

𝐧2
−𝑎2∕ℎ3
𝛼2+𝛽2

𝐧3
−𝑎3∕ℎ4
𝛼3+𝛽3

𝐧4
−𝑎4∕ℎ3
𝛼4+𝛽4

𝐧3
−𝑎5∕ℎ4
𝛼5+𝛽5

𝐧4
𝑎6∕ℎ2
𝛼6+𝛽6

𝐧2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (37)

here 𝐧𝑘 is the unit normal vector to the surface of the tetrahedron, ℎ𝑘 = − ⟨𝑎𝑘−1𝐦𝑘−1,𝐧𝑘⟩ is the height of node 𝑘 = 2, 3, 4 in the
tetrahedron whose vertices are nodes 1, 2, 3, and 4. As a matter of fact, first order displacements can be modified by an addition of
an arbitrary zero mode 𝐷𝛿𝐔 + 𝑇 𝛿𝝓. However, this term will play no further role and can be set to zero with no loss of generality.

.4. Macroscopic motion equation

Keeping the second order terms in the expansion of Eq. (26) yields

−𝐶 ′
0𝐾𝐶0𝛿

2𝛷 − 𝐶 ′
0𝐾(𝛿𝑥𝐶 + 𝛿𝑧𝐶)𝛿𝛷 − (𝛿𝑥𝐶 + 𝛿𝑧𝐶)′𝐾𝐶0𝛿𝛷

− 𝐶 ′
0𝐾𝛿

2𝐶𝛷0 − (𝛿𝑥𝐶 + 𝛿𝑧𝐶)′𝐾(𝛿𝑥𝐶 + 𝛿𝑧𝐶)𝛷0 + 𝐿 = −𝜔2𝑀𝛷0.
(38)

Again, due to 𝐶0 being singular, the above equation admits a solution if and only if the orthogonality conditions Eq. (30) are
enforced. The first one reads

−𝐷′(𝛿𝑥𝐶)′𝐾𝐶0𝛿𝛷 −𝐷′(𝛿𝑥𝐶)′𝐾(𝛿𝑥𝐶 + 𝛿𝑧𝐶)𝛷0 +𝐷′𝐿 = −𝜔2𝐷′𝑀𝛷0. (39)

The second one is

−𝑇 ′(𝛿𝑥𝐶 + 𝛿𝑧𝐶)′𝐾𝐶0𝛿𝛷 − 𝑇 ′(𝛿𝑥𝐶 + 𝛿𝑧𝐶)′𝐾(𝛿𝑥𝐶 + 𝛿𝑧𝐶)𝛷0 + 𝑇 ′𝐿 = −𝜔2𝑇 ′𝑀𝛷0. (40)

Both equations involve the leading-order displacements spanned by translations 𝐔 and twisting motions 𝝓 and can be interpreted as
a pair of macroscopic motion equations. Next, these equations will be rewritten in a form more suitable for interpretation, extract
appropriate measures of strain and stress, and reveal the constitutive law that relates them.

3.5. Microtwist continuum

The quantities involved in (39) and (40) can be fully evaluated simply by injecting therein the derived expressions (12), (13),
(22), (24), (23), (34), and (37). As a result, the macroscopic motion equations can be recast into the form

−𝜔2 (𝝆 ⋅ 𝐔 + 𝐝 ⋅ 𝝓) = 𝐋 + 𝛁 ⋅
(

𝐂 ∶ 𝛁S𝐔 + 𝐁 ∶ 𝛁𝝓 +𝐌 ⋅ 𝝓
)

,

−𝜔2 (𝐝′ ⋅ 𝐔 + 𝜼 ⋅ 𝝓
)

= 𝝉 + 𝛁 ⋅
(

𝐁′ ∶ 𝛁S𝐔 + 𝐃 ∶ 𝛁𝝓 + 𝐀 ⋅ 𝝓
)

′ S ′

(41)
10

− 𝐌 ∶ 𝛁 𝐔 − 𝐀 ⋅ 𝛁𝝓 −𝐐 ⋅ 𝝓,
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where 𝛁S is the symmetric gradient operator, 𝛁⋅ is the divergence operator, and the dots ⋅ and ∶ symbolize dot and double dot
roducts, respectively. 𝝆, 𝜼, and 𝐝 can be expressed as

𝝆 = 1
𝑉

∑

𝑘=1,2,3,4
𝑚𝑘𝐈, 𝜼 = 1

𝑉
∑

𝑘=1,2,3,4
𝑚𝑘𝐓′

𝑘𝐓𝑘, 𝐝 = 1
𝑉

∑

𝑘=1,2,3,4
𝑚𝑘𝐓𝑘, (42)

where 𝑉 = −𝑏1𝑏2𝑏3
(

1 + 𝛾3
)

𝐦1 ⋅
(

𝐦2 ×𝐦3
)

is the volume of the unit cell.
The vector 𝐋 is the resultant force acting on a unit cell per unit cell volume and 𝝉 is the torque with respect to the geometric

center 𝑂 of the tetrahedron, which read

𝐋 = 1
𝑉

∑

𝑘=1,2,3,4
𝐥𝑘, 𝝉 = 1

𝑉
∑

𝑘=1,2,3,4
𝐓′
𝑘𝐥𝑘. (43)

The involved effective tensors are given by

𝐂 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑏2𝑗𝑘𝑗𝐦𝑗 ⊗𝐦𝑗 ⊗𝐦𝑗 ⊗𝐦𝑗 ,

𝐁 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑏2𝑗𝑘𝑗𝐦𝑗 ⊗𝐦𝑗 ⊗𝑗 ⊗𝐦𝑗 ,

𝐌 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧𝑗𝑏𝑗𝑘𝑗𝐦𝑗 ⊗𝐦𝑗 ⊗

(

𝐄′
𝑗𝐳𝑗

)

,

𝐃 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑏2𝑗𝑘𝑗𝑗 ⊗𝐦𝑗 ⊗𝑗 ⊗𝐦𝑗 ,

𝐀 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧𝑗𝑏𝑗𝑘𝑗𝑗 ⊗𝐦𝑗 ⊗

(

𝐄′
𝑗𝐳𝑗

)

,

𝐐 =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧2𝑗𝑘𝑗

(

𝐄′
𝑗𝐳𝑗

)

⊗
(

𝐄′
𝑗𝐳𝑗

)

,

𝐁′ =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑏2𝑗𝑘𝑗𝑗 ⊗𝐦𝑗 ⊗𝐦𝑗 ⊗𝐦𝑗 ,

𝐌′ =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧𝑗𝑏𝑗𝑘𝑗

(

𝐄′
𝑗𝐳𝑗

)

⊗𝐦𝑗 ⊗𝐦𝑗 ,

𝐀′ =
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧𝑗𝑏𝑗𝑘𝑗

(

𝐄′
𝑗𝐳𝑗

)

⊗𝑗 ⊗𝐦𝑗 ,

(44)

where 𝑘𝑗 = 𝛼𝑗𝛽𝑗∕
(

𝛼𝑗 + 𝛽𝑗
)

, 𝑗 = 𝐓′
1𝐦𝑗 for 𝑗 = 1, 2, 3 and 𝑗 = 𝐓′

𝑗−2𝐦𝑗 for 𝑗 = 4, 5, 6. Accordingly, only the fourth-order tensor 𝐂
and the second-order tensor 𝐐 are completely symmetric, and the fourth-order tensor 𝐃 maintains the major symmetry.

The macroscopic motion equations then can be written as the balance equations

−𝜔2(𝝆 ⋅ 𝐔 + 𝐝 ⋅ 𝝓) = 𝐅 + 𝛁 ⋅ 𝝈, −𝜔2 (𝐝′ ⋅ 𝐔 + 𝜼 ⋅ 𝝓
)

= 𝝉 + 𝛁 ⋅ 𝝃 + 𝒔, (45)

where 𝝈, 𝝃 are second-order tensorial stress measures, and 𝒔 is first-order tensorial stress measure, which related to the strain
measures 𝛁S𝐔, 𝛁𝝓 and 𝝓 through the macroscopic constitutive law

⎡

⎢

⎢

⎣

𝝈
𝝃
−𝒔

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐂 𝐁 𝐌
𝐁′ 𝐃 𝐀
𝐌′ 𝐀′ 𝐐

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛁S𝐔
𝛁𝝓
𝝓

⎤

⎥

⎥

⎦

(46)

The boundary conditions suitable for the resolution of the balance equations over a finite domain 𝛺 can be inferred by application
of the divergence theorem. Calling 𝐍 the normal to the boundary of 𝛺, it turns out then that either 𝝈 ⋅ 𝐍 or 𝐔 as well as 𝝃 ⋅ 𝐍 or

must be prescribed on the boundary 𝛺. Finally, a 3D microtwist continuum with extra DOFs and additional measures of strain,
tress, and inertia have already been derived, which can describe the behavior of a general weakly-distorted Pyrochlore lattice in
he homogenization limit.

Here, it is worth stressing that there is a significant difference between the proposed theory and the micropolar theory: the
wisting angle 𝝓 in Eq. (41) describes a relative motion of the unit cells, however, microrotation in the micropolar media is an
bsolute rotation. Therefore, the macroscopic dynamics described in Eq. (41) cannot be precisely captured by the micropolar theory.
s a matter of fact, the microtwist medium can be understood as a particular Cosserat medium where the microrotation DOF 𝝓mr

nd infinitesimal rotation 𝛁 × 𝐔∕2 only appear in the combination 𝝓 = 𝝓mr − 𝛁 × 𝐔∕2. Such a Cosserat medium would be unusual
11

owever as it would involve the second gradient of 𝐔, specifically 𝛁(𝛁 × 𝐔), through 𝛁𝝓.
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3.6. Influence of elasticity in the hinges

In the preceding derivations, nodal masses were assumed to behave like perfect hinges. The consequence is that variations of
ngles between the springs meeting at a given node cost no elastic energy at all. It could be of interest however to inspect the
echanics of Pyrochlore lattices with elastic hinges as they are expected to be better models of real structures.

Adding rotational springs so as to account for elasticity in the hinges is arguably equivalent to adding next-nearest-neighbor
nteractions between nodes. Both have a stabilizing effect on the lattice and will block twisting motions leaving translations as the
nly periodic zero modes. When the next-nearest-neighbor spring constants are comparable to or higher than the effective spring
onstants 𝑘𝑗 , the Pyrochlore lattice will be far from the regular-distorted phase transition regime of interest. Here, the focus will be
n lattices where the next-nearest-neighbor spring constants are much smaller than 𝑘𝑗 , specifically, where they are of second-order
ompared to 𝑘𝑗 since such lattices will be on the brink of a regular-distorted phase transition.

Formally, the expansion of the motion Eq. (38) will change so as to include an additional second-order term 𝐶 ′
𝐻𝛿

2𝐾𝐻𝐶𝐻𝛷0
due to the presence of elasticity in the hinges. Therein, 𝐶𝐻 is the periodic compatibility matrix corresponding to the next-nearest-
neighbor bonds, which is shown in Appendix A, whereas 𝛿2𝐾𝐻 is the corresponding diagonal matrix of elastic constants. This term
is only relevant in the last step of the homogenization theory where the corrections 𝐷′𝐶 ′

𝐻𝛿
2𝐾𝐻𝐶𝐻𝛷0 and 𝑇 ′𝐶 ′

𝐻𝛿
2𝐾𝐻𝐶𝐻𝛷0 need

to be added to the macroscopic motion equations. However, the former of these two corrections is zero, because of 𝐶𝐻𝐷 = 0, the
translations remain periodic zero modes. Accordingly, the effective constitutive law remains the same as without elasticity in the
hinges up to changing the effective parameter 𝐐 into

𝐐 = 𝜿 +
(1 + 𝛾)2

𝑉
∑

𝑗=1,2,3,4,5,6
𝑧2𝑗𝑘𝑗

(

𝐄′
𝑗𝐳𝑗

)

⊗
(

𝐄′
𝑗𝐳𝑗

)

, (47)

with 𝜿 = 𝑇 ′𝐶 ′
𝐻𝛿

2𝐾𝐻𝐶𝐻𝑇 ∕𝑉 .
The quadratic form of strain energy density 𝜖 is

𝜖 =
𝝈 ∶ 𝛁S𝐔 + 𝝃 ∶ 𝛁𝝓 − 𝒔 ⋅ 𝝓

2
, (48)

where stresses are linear combinations of strains following the constitutive law of the microtwist continuum. Skipping calculations,
its expression can be recast

𝜖 =
1 + 𝛾
2

∑

𝑗
𝑘𝑗

[

𝑏𝑗𝐦𝑗 ⊗𝐦𝑗 ∶ 𝛁S𝐔 + 𝑏𝑗𝑗 ⊗𝐦𝑗 ∶ 𝛁𝝓 + 𝑧𝑗⟨𝐄′
𝑗𝐳𝑗 ,𝝓⟩

]2
+ 1

2
𝝓 ⋅ 𝜅 ⋅ 𝝓, (49)

here it is clear that it is non-negative. Definiteness however completely relies on the elastic constants 𝑘𝑗 and 𝜅 being non-null. In
articular, when the hinges are perfect (𝜅 = 0), strain energy is semi-definite and therefore allows for microstructural zero modes
o manifest on the macroscopic scale.

.7. Parity symmetric in the 3D microtwist elasticity

Consider a homogeneous centrosymmetric domain 𝛺, i.e., such that 𝐱 ∈ 𝛺 implies −𝐱 ∈ 𝛺. P-symmetry states that the space of
solutions is invariant under the space inversion 𝐱 ↦ −𝐱, i.e., 𝛷(𝐱) = 𝛷(−𝐱). Formally, P-symmetry is equivalent to the strain energy
density 𝜖 being an even function of the gradient operator 𝛁. That is, the formal substitution 𝛁 ↦ −𝛁 induced by the chain rule
leaves the strain energy density as itself. While this property holds for Cauchy’s strain energy density

𝜖∗ = 1
2
𝛁S𝐔 ∶ 𝐂∗ ∶ 𝛁S𝐔. (50)

However, in general, P-symmetry does not hold for the microtwist strain energy density 𝜖 of Eq. (49). In fact,

𝜖 (𝛁) = 1 + 𝛾
2

∑

𝑗
𝑘𝑗

[

𝑏𝑗𝐦𝑗 ⊗𝐦𝑗 ∶ 𝛁S𝐔 + 𝑏𝑗𝑗 ⊗𝐦𝑗 ∶ 𝛁𝝓 + 𝑧𝑗⟨𝐄′
𝑗𝐳𝑗 ,𝝓⟩

]2

+ 1
2
𝝓 ⋅ 𝜅 ⋅ 𝝓,

𝜖 (−𝛁) = 1 + 𝛾
2

∑

𝑗
𝑘𝑗

[

𝑏𝑗𝐦𝑗 ⊗𝐦𝑗 ∶ 𝛁S𝐔 + 𝑏𝑗𝑗 ⊗𝐦𝑗 ∶ 𝛁𝝓 − 𝑧𝑗⟨𝐄′
𝑗𝐳𝑗 ,𝝓⟩

]2

+ 1
2
𝝓 ⋅ 𝜅 ⋅ 𝝓.

(51)

Therefore, in the microtwist theory, a Pyrochlore lattice is P-symmetric if and only if all 𝑧𝑗 vanish, i.e., if and only if the lattice
is regular. Conversely, all distorted lattices, i.e., with at least one non-zero 𝑧𝑗 , are P-asymmetric. And P-asymmetric lattices are
referred to as polarized.

It is paramount to stress here that P-symmetry is different from and independent of material symmetry and the related notions
of isotropy or anisotropy. For instance, regular equilateral pyrochlore lattices exhibit a non-zero fourth-order effective constitutive
tensor 𝐵 which breaks the material centrosymmetry of the constitutive law. Nonetheless, as pointed out earlier, regular lattices are
P-symmetric.

In fact, observe how the rule 𝛁 ↦ −𝛁 acts in the same manner as the rule 𝑧𝑗 ↦ −𝑧𝑗 on the strain energy density 𝜖. This means
that the effective constitutive tensors responsible for P-asymmetry are the ones that are odd functions of the 𝑧𝑗 . It can be concluded
that the tensors 𝐌 and 𝐀, but not 𝐁, are at the origin of macroscopic polarization effects in pyrochlore lattices.
12
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3.8. Model reduction: Cauchy’s continuum

Based on a kinematic hypothesis known as Cauchy–Born hypothesis, the displacements are the sum of one linear and one periodic
ield

𝐮𝑙1 ,…,𝑙6
𝑘 = 𝐄 ⋅ 𝐱𝑙1 ,…,𝑙6

𝑗 + 𝛥𝐮𝑙1 ,…,𝑙6
𝑘 , (52)

the linear part being the result of an imposed uniform macroscopic deformation 𝐄. In doing so, the twisting gradients are precluded
and the coupling trio (𝐁,𝐃,𝐀) is neglected. Our model reduces to Cauchy’s continuum when this approximation is implemented.

As a matter of fact, when the strain and stress fields are uniform, the twisting gradient 𝛁𝝓 is necessarily null and the static
equilibrium simplifies into 𝒔 = 𝟎. Solving for 𝝓 entails 𝝓 = −𝐐−1 ⋅𝐌′ ∶ 𝛁S𝐔 with 𝐐 ≠ 𝟎. Finally, the reduced stress–strain relationship
eads

𝝈 = 𝐂∗ ∶ 𝛁S𝐔, 𝐂∗ = 𝐂 −𝐌 ⋅𝐐−1 ⋅𝐌′. (53)

sing the elasticity tensor 𝐂∗ is appealing as it greatly simplifies the constitutive law. Nonetheless, recall that its use is only justified
or static uniform fields. Otherwise, the trio (𝐁,𝐃,𝐀) cannot be justifiably neglected. Taking this coupling into account will in fact
ignificantly improve the quality of the predictions of the effective medium theory, various quantitative demonstrations are suggested
n the following section.

. Performance of the 3D microtwist medium

Having derived the equations of a microtwist continuum, it is natural to inquire whether that continuum is faithful in its
redictions of the elastic behavior of different Pyrochlore lattices (regular and weakly-distorted). We first compare the dispersion
iagrams from the lattice model of the Pyrochlore lattice, from the microtwist model and from Cauchy’s model. We then investigate
ero modes in finite Pyrochlore lattices so as to demonstrate their localization can also be quantitatively captured by the microtwist
ontinuum. Last, we perform static indentation tests on two opposing faces of finite polarized Pyrochlore lattices to demonstrate
arge difference in their mechanical response and the emergence of mechanical polarization effects.

.1. Prediction of dispersion relations

To study the unique static and dynamic properties of Pyrochlore lattices, we will focus on investigation of the first six fundamental
ave branches based on the assumption of the microtwist theory. Considering in an infinite microtwist continuum under a plane
ave in 𝐱-direction, the translational displacement 𝐔 and the twisting motion 𝝓 are assumed to be the following form

𝐔 (𝐱, 𝑡) = 𝐔0 exp (𝑖⟨𝐪, 𝐱⟩ − 𝑖𝜔𝑡) , 𝝓 (𝐱, 𝑡) = 𝝓0 exp (𝑖⟨𝐪, 𝐱⟩ − 𝑖𝜔𝑡) . (54)

ubstituting the above equation in Eq. (41) and letting the resultant force–torque to be zero yields the dispersion equations. For
omparison, we also obtain the dispersion equations for the Cauchy continuum modeling of Pyrochlore lattices by setting the twisting
radient 𝛁𝝓 to be null and 𝐬 to be zero. The 6-DOF (𝐔 and 𝝓) microtwist continuum is then reduced to the 3-DOF (𝐔) Cauchy
ontinuum.

In the following, numerical solutions based on the microtwist and Cauchy theories for two isostatic lattices (regular and weakly-
istorted Pyrochlore lattices) will be conducted. For comparison, the exact dispersive solutions of the discrete lattice are also
alculated. In the numerical examples, all springs are equal in length and in stiffness and all nodes are equal in mass, which
ere are all taken to the unity. The distortion parameters are zero for the regular lattice in Fig. 4a and (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) =
0.074, 0.051, 0.088, 0.087, 0.062, 0.062) for the distorted lattice in Fig. 4b. The distorted lattice in this case is also mechanical
olarized based on the topological theory (Stenull et al., 2016; Bilal et al., 2017). Figs. 4c and 4d show the dispersion curves
f the regular and distorted lattices, respectively. For the Cauchy continuum, there are only three branches of the dispersion
urves corresponding translational waves. However, the microtwist continuum can produce six branches corresponding the coupled
ranslational and rotational waves. Moreover, it agrees well with those given by the discrete lattice model and a discrepancy between
he microtwist and Cauchy models is found in a relative higher frequency regime. From Fig. 4c, it is worth mentioning that the
icrotwist continuum is able to accurately capture the zero modes. However, the conventional Cauchy theory is totally failure to

apture zero modes. The quantitatively characterization of zero modes will be illustrated in the following section.

.2. Continuum characterization of zero modes

For the microtwist continuum, zero modes can be represented by the condition of zero strain energy over a domain 𝛺,
.e., ∫𝛺 𝜖 = 0, as

𝑏𝑗𝐦𝑗 ⊗𝐦𝑗 ∶ 𝛁S𝐔 + 𝑏𝑗𝑗 ⊗𝐦𝑗 ∶ 𝛁𝝓 + 𝑧𝑗
(

𝐄′
𝑗𝐳𝑗

)

⋅ 𝝓 = 0, 𝑗 = 1,… , 6. (55)

The above system of linear partial differential equations provides a continuum characterization of the zero modes of Pyrochlore
lattices. The system is independent of the elastic moduli 𝑘𝑗 , which represents the configurations that do not stretch any springs.

In the following, we perform modal analyses of the above system to investigate location or distribution of zero modes in terms
13

of the translational displacements in the same regular and weakly-distorted lattices as before. We then quantitatively compare the
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Fig. 4. Example of regular (a) and distorted (b) Pyrochlore lattices, and of their respective dispersion diagrams (c) and (d). Blue solid, red dashed and green

dotted lines correspond to the dispersion relations of the discrete lattices, microtwist and Cauchy models respectively. The inset shows the first Brillouin zone

with symmetry points.

prediction from the discrete lattice model with 13 × 13 × 13 unit cells (Figs. 5a and 5b) and the microtwist continuum model

Figs. 5c and 5d) under free boundary conditions on both top and bottom surfaces but Dirichlet boundary conditions on others

urfaces. In the simulation, it is more convenient to obtain approximate zero modes by minimizing strain energy in the presence

f a small residual elastic energy stored in the hinges (i.e., for 0 < 𝜅 ∼ 0). Three components corresponding to 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧 are
extracted from the eigenmode of lowest energy and are plotted as normalized color maps in Fig. 5. In the two cases, the microtwist

continuum predicts well the mode shape of the approximate zero modes: the regular lattice only has bulk modes (Figs. 5a and 5c);

the polarized lattice has P-asymmetric zero modes where the surface modes are localized on the top surface while deserting the

bottom surface (Figs. 5b and 5d). The emergence of the asymmetric behavior is due to the intrinsic polarization effects in the

olarized lattice. It should be noted that all of the above results agree with the observation made by the topological theory (Stenull

t al., 2016) and the experimental measurements (Bilal et al., 2017) as well.

In fact, the P-asymmetric distribution of zero modes in Pyrochlore lattices is size-dependent. In order to validate this, numerical

imulations are then performed to illustrate the scaling effect. In the simulation, the polarized Pyrochlore lattice with fixed

imensions is composed of a total of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 unit cells. The number of unit cells 𝑁 = 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 are adjusted with

, 13, 17 and 21 to change the unit cell sizes. Here, the angles between tetrahedrons are the same as the polarized lattice in Fig. 4b,

hile the spring stiffness is proportional to the edge length of tetrahedron. We apply the same boundary conditions as in Fig. 5,

nd then conduct modal analyses to calculate the zero modes for both the discrete and continuum models. Fig. 6 illustrates one

component corresponding to 𝑈𝑧 in the normalized color map. It is observed that with the decrease of the unit cell size, the zero modes

are accumulated closer to the top surface and its penetration depth into the bulk lattice is reduced. In this sense, the P-asymmetric

behavior is topologically protected and will not disappear with the change of the unit cell size.
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Fig. 5. Modal analyses of regular (a, c) and polarized (b, d) Pyrochlore lattices and of their respective zero modes by employing the discrete lattice model (a,

) and the microtwist continuum model (c, d).

4.3. Asymmetric indentation responses

We are now ready to perform indentation tests so as to access polarization behavior of polarized Pyrochlore lattices. Consider a

ubic sample (13 × 13 × 13 unit cells) where the bottom surface is fixed and the top surface is applied by a point inward force 𝐅, as
hown in Fig. 7a. Fig. 7(b) presents the displacement profiles of the regular and polarized lattice calculated by microtwist continuum.

he displacement 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧 of the regular lattice are symmetrically distributed. However, in the case of the polarized lattice,

ll the displacement components are no longer symmetrically distributed. Figs. 7c and 7d show the displacement fields of the middle

section of regular and polarized pyrochlore lattices, respectively. It should be interesting to mention that the microtwist continuum

theory can quantitatively capture dominant polarization effects that penetrate deep into the bulk of the lattice or material.

To quantitatively investigate the asymmetric indentation responses, we calculate the displacement 𝑈𝑧 at the same point where

the force is applied and plot the response of each two opposite faces in Fig. 8, which shows the excellent agreement between the

lattice model and the microtwist model. In the case of regular lattice, the elastic responses on the top surface, (0, 0, 1), and the
ottom surface, (0, 0, −1) are the same. In the case of polarized lattice, for the two opposite surfaces, the elastic responses to the
ame compression load are very different and keep diverging with increasing indentation value. This provides an numerical evidence

f the realization of a 3D mechanical polarized lattice with an asymmetric elastic response.

At last, in order to quantitatively illustrate the unit cell size effects on polarized mechanical behavior, indentation tests are

hen performed on the Pyrochlore lattices of different number of unit cells. Fig. 9 shows the normalized displacement at the top

nd bottom surfaces with the change of the unit cell sizes. From the figure, it first can be seen that the top surface, (0, 0, 1), is
lways harder than the bottom one, (0, 0, −1), which means the polarization behavior is robust against the unit cell size. Second,
he top surface becomes softer and the bottom surface becomes harder with the decrease of the unit cell sizes, which is due to the

edistribution of zero modes with the change of the unit size as illustrated in Fig. 6. It is interesting to note that with the decrease

f the unit cell size, the hardness of bottom surface can be reduced to the one described by the Cauchy continuum theory that is

ize-independent.
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m

d

Fig. 6. Zero modes of the polarized Pyrochlore lattice by employing the discrete lattice model and (a–d) the microtwist continuum model (e–h) with the number

of unit cells 𝑁 = 9, 13, 17, 21 along each dimension.

Fig. 7. Simulated elastic fields of Pyrochlore lattices under top-indentation: (a) Schematic representation of the numerical setup for the lattice model and the

icrotwist model; (b) displacement profiles of the regular Pyrochlore lattice and the Polarized Pyrochlore lattice calculated by the microtwist model; (c, d)

isplacement profiles of the middle section of the regular lattice (c) and the distorted lattice (d).
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Fig. 8. Simulated indentation responses of the surface of Pyrochlore lattices along 𝑧 axis: (a) regular lattice; (b) polarized lattice.

Fig. 9. Simulated indentation responses for polarized Pyrochlore lattice of different number of unit cells.

5. Conclusion

In this paper, we develop a 3D microtwist elasticity to capture the zero modes and topological polarization of Pyrochlore

attices on a macroscopic scale. The essence of the approach is based on a two-scale asymptotic homogenization approach by

ntroducing additional DOFs to map non-trivial zero modes of twisting motions. Performance of the proposed theory is validated

gainst the discrete model in a number of problems including determining the P-asymmetric distribution of zero modes, calculating

he dispersion relations and quantitatively predicting the polarized indentation response of finite samples. Thus, by placing P-

symmetric zero modes in the heart of the theory, the study should bring a fresh understanding of the polarized statics and dynamics

f architected materials in particular, and of microstructured media more generally.

The theory extends easily to nearly-isostatic Pyrochlore lattices, i.e., with next-nearest-neighbor interactions or elasticity in the

inges, as long as the elastic constants of the bonds breaking isostaticity are kept small. It also extends to other isostatic lattices

ith multiple periodic zero modes that are on the brink of a regular-distorted, or polarized-unpolarized, phase transition. In the

uture, if we directly adopt the microtwist theory to interpret non-trivial periodic zero modes in other isostatic lattices, we believe

he homogenization based on the strain energy approach is an option to consider. Hopefully, the 3D microtwist continuum theory

ill be implemented to solve materials inverse design problems by optimizing the lattice microstructures to match the effective
onstants that have been found to achieve the desired mechanical polarization functionalities.



Journal of the Mechanics and Physics of Solids 155 (2021) 104564R. Xia et al.

a
W

D

t

A

t
D
P

A

CRediT authorship contribution statement

Rongyu Xia: Formal analysis, Performing simulations, Writing. Hussein Nassar: Formal analysis, Methodology, Funding
cquisition. Hui Chen: Conceptualization, Formal analysis, Methodology, Performing simulations, Writing. Zheng Li: Validation,
riting. Guoliang Huang: Conceptualization, Validation, Supervision, Funding acquisition, Writing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work is supported by the NSF CMMI, USA under Award No. 1930873 with Program Manager Dr. Nakhiah Goulbourne,
he Air Force Office of Scientific Research, USA under Grant No. AF 9550-18-1-0342 and AF 9550-20-0279 with Program Manager
r. Byung-Lip (Les) Lee and the Army Research Office, USA under Grant No. W911NF-18-1-0031 with Program Manager Dr. Daniel
. Cole. Rongyu Xia is grateful for the support from China Scholarship Council.

ppendix A. Influence of elasticity in the hinges

The expression of the compatibility matrix corresponding to the next-nearest-neighbor bonds is

𝐶𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐞′11 𝟎 𝐞′11 𝟎
−𝐞′12 𝟎 𝟎 𝐞′12
−𝐞′13 𝐞′13 𝟎 𝟎
−𝐞′14 𝟎 𝟎 𝐞′14
−𝐞′15 𝐞′15 𝟎 𝟎
−𝐞′16 𝟎 𝐞′16 𝟎
𝐞′21 −𝐞′21 𝟎 𝟎
𝟎 −𝐞′22 𝟎 𝐞′22
𝐞′23 −𝐞′23 𝟎 𝟎
𝟎 −𝐞′24 𝐞′24 𝟎
𝟎 −𝐞′25 𝐞′25 𝟎
𝟎 −𝐞′26 𝟎 𝐞′26
𝐞′31 𝟎 −𝐞′31 𝟎
𝟎 𝐞′32 −𝐞′32 𝟎
𝟎 𝐞′33 −𝐞′33 𝟎
𝟎 𝟎 −𝐞′34 𝐞′34
𝐞′35 𝟎 −𝐞′35 𝟎
𝟎 𝟎 −𝐞′36 𝐞′36
𝟎 𝐞′41 𝟎 −𝐞′41
𝟎 𝟎 𝐞′42 −𝐞′42
𝐞′43 𝟎 𝟎 −𝐞′43
𝟎 𝟎 𝐞′44 −𝐞′44
𝐞′45 𝟎 𝟎 −𝐞′45
𝟎 𝐞′46 𝟎 −𝐞′46

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐞′11 =
(

𝑎1𝐦1 − 𝑏4𝐦4
)

∕ ‖
‖

𝑎1𝐦1 − 𝑏4𝐦4
‖

‖

,
𝐞′12 =

(

𝑎1𝐦1 + 𝑏6𝐦6
)

∕ ‖
‖

𝑎1𝐦1 + 𝑏6𝐦6
‖

‖

,
𝐞′13 =

(

𝑎2𝐦2 + 𝑏4𝐦4
)

∕ ‖
‖

𝑎2𝐦2 + 𝑏4𝐦4
‖

‖

,
𝐞′14 =

(

𝑎2𝐦2 − 𝑏5𝐦5
)

∕ ‖
‖

𝑎2𝐦2 − 𝑏5𝐦5
‖

‖

,
𝐞′15 =

(

𝑎3𝐦3 − 𝑏6𝐦6
)

∕ ‖
‖

𝑎3𝐦3 − 𝑏6𝐦6
‖

‖

,
𝐞′16 =

(

𝑎3𝐦3 + 𝑏5𝐦5
)

∕ ‖
‖

𝑎3𝐦3 + 𝑏5𝐦5
‖

‖

,
𝐞′21 =

(

𝑎4𝐦4 + 𝑏2𝐦2
)

∕ ‖
‖

𝑎4𝐦4 + 𝑏2𝐦2
‖

‖

,
𝐞′22 =

(

𝑎4𝐦4 − 𝑏5𝐦5
)

∕ ‖
‖

𝑎4𝐦4 − 𝑏5𝐦5
‖

‖

,
𝐞′23 =

(

−𝑎6𝐦6 + 𝑏3𝐦3
)

∕ ‖
‖

𝑎6𝐦6 − 𝑏3𝐦3
‖

‖

,
𝐞′24 =

(

−𝑎6𝐦6 + 𝑏5𝐦5
)

∕ ‖
‖

𝑎6𝐦6 − 𝑏5𝐦5
‖

‖

,
𝐞′25 =

(

−𝑎1𝐦1 − 𝑏2𝐦2
)

∕ ‖
‖

𝑎1𝐦1 + 𝑏2𝐦2
‖

‖

,
𝐞′26 =

(

−𝑎1𝐦1 − 𝑏3𝐦3
)

∕ ‖
‖

𝑎1𝐦1 + 𝑏3𝐦3
‖

‖

,
𝐞′31 =

(

𝑎5𝐦5 + 𝑏3𝐦3
)

∕ ‖
‖

𝑎5𝐦5 + 𝑏3𝐦3
‖

‖

,
𝐞′32 =

(

𝑎5𝐦5 − 𝑏6𝐦6
)

∕ ‖
‖

𝑎5𝐦5 − 𝑏6𝐦6
‖

‖

,
𝐞′33 =

(

−𝑎2𝐦2 − 𝑏1𝐦1
)

∕ ‖
‖

𝑎2𝐦2 + 𝑏1𝐦1
‖

‖

,
𝐞′34 =

(

−𝑎2𝐦2 − 𝑏3𝐦3
)

∕ ‖
‖

𝑎2𝐦2 + 𝑏3𝐦3
‖

‖

,
𝐞′35 =

(

−𝑎4𝐦4 + 𝑏1𝐦1
)

∕ ‖
‖

𝑎4𝐦4 − 𝑏1𝐦1
‖

‖

,
𝐞′36 =

(

−𝑎4𝐦4 + 𝑏6𝐦6
)

∕ ‖
‖

𝑎4𝐦4 − 𝑏6𝐦6
‖

‖

,
𝐞′41 =

(

−𝑎3𝐦3 − 𝑏1𝐦1
)

∕ ‖
‖

𝑎3𝐦3 + 𝑏1𝐦1
‖

‖

,
𝐞′42 =

(

−𝑎3𝐦3 − 𝑏2𝐦2
)

∕ ‖
‖

𝑎3𝐦3 + 𝑏2𝐦2
‖

‖

,
𝐞′43 =

(

𝑎6𝐦6 + 𝑏1𝐦1
)

∕ ‖
‖

𝑎6𝐦6 + 𝑏1𝐦1
‖

‖

,
𝐞′44 =

(

𝑎6𝐦6 − 𝑏4𝐦4
)

∕ ‖
‖

𝑎6𝐦6 − 𝑏4𝐦4
‖

‖

,
𝐞′45 =

(

−𝑎5𝐦5 + 𝑏2𝐦2
)

∕ ‖
‖

𝑎5𝐦5 − 𝑏2𝐦2
‖

‖

,
𝐞′46 =

(

−𝑎5𝐦5 + 𝑏4𝐦4
)

∕ ‖
‖

𝑎5𝐦5 − 𝑏4𝐦4
‖

‖

.

(A.1)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2021.104564.
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