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Abstract—Autism spectrum disorder (ASD) is associated with deficits in the processing of social information and difficulties in social
interaction, and individuals with ASD exhibit atypical attention and gaze. Traditionally, gaze studies have relied upon precise and
constrained means of monitoring attention using expensive equipment in laboratories. In this work we develop a low-cost off-the-shelf
alternative for measuring attention that can be used in natural settings. The head and iris positions of 104 16-31 months children, an
age range appropriate for ASD screening and diagnosis, 22 of them diagnosed with ASD, were recorded using the front facing camera
in an iPad while they watched on the device screen a movie displaying dynamic stimuli, social stimuli on the left and non-social stimuli
on the right. The head and iris position were then automatically analyzed via computer vision algorithms to detect the direction of
attention. We validate the proposed framework and computational tool showing that children in the ASD group paid less attention to the
movie, showed less attention to the social as compared to the non-social stimuli, and often fixated their attention to one side of the
screen. These results are expected from the ASD literature, here obtained with significantly simpler and less expensive attention
tracking methods. The proposed method provides a low-cost means of monitoring attention to properly designed stimuli, demonstrating
that the integration of stimuli design and automatic response analysis results in the opportunity to use off-the-shelf cameras to assess
behavioral biomarkers.

Index Terms—Autism spectrum disorder, Computer vision, Gaze-tracking, Attention, Off-the-shelf cameras, Stimuli design
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1 INTRODUCTION

AUTISM spectrum disorder (ASD) is a neurodevelop-
mental disorder characterized by qualitative impair-

ments in social interaction and the presence of restricted and
repetitive behavior [1]. Studies of children in the first three
years of life have shown that a failure to orient and lack of
attentional preference for social information distinguishes
children with ASD from those with typical development and
other developmental delays [2], [3]. These atypical patterns
of social attention are manifested early in life [4], [5], [6],
and while not exclusive to ASD, are known to be strong can-
didates for ASD and developmental disorders biomarkers,
even genetically influenced [7]. Thus, the development of
feasible and reliable methods for assessing early-emerging
differences in patterns of attention is of significant interest,
with the goal of eventually developing scalable behavioral
analysis tools for early screening, diagnosis, and treatment
monitoring.

To further our understanding of the differences in social
processing in children with ASD, researchers have utilized
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eye-gaze tracking to measure gaze responses to dynamic
visual stimuli. Such measures have been shown to differ-
entiate ASD from other populations starting at the age of 6
months [8], [9], [10], [11], [12]. It has been demonstrated
that children with ASD show differential gaze patterns
compared to typically developing children, characterized by
a lack of attention preference for socially salient stimuli [13],
[14]. Other studies have shown that children with autism
are less likely to shift their attention throughout the stimuli
and explore scenes containing both social and non-social
components. [15]. These studies have used either expen-
sive eye-tracking devices or advanced methods, such as
dark pupil-corneal reflection video-oculography techniques.
Such sensing and acquisition approaches are not scalable
and are not readily applicable in natural environments.
Furthermore, such studies tend to use a region-of-interest
based approach for analysis in which the feature of interest
is the amount of time fixating at a specific region of interest.
This approach also often fails to capture the dynamic quality
of attention, including important temporal patterns such as
how attention shifts in response to the stimulus dynamics.

In the current work we present a framework that aims
at confirming these previous results but with a significantly
simpler and less expensive attention tracking method (re-
lated approaches are discussed later in the manuscript).
A dynamic movie that contained salient social and non-
social stimuli was used to investigate attention patterns. The
capability of sensing and analysis tools, namely an off-the-
shelf video camera and computer vision, were taken into
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consideration for designing that movie. The movie screen
displayed a social stimulus that was looking toward and
interacting with the viewer on the left side of the screen,
and a non-social but visually interesting moving object on
the right. This required only a right versus left attention
discrimination to evaluate dynamic preference for social or
non-social stimulus. Figure 2 shows screen shots of the de-
signed movie. We presented this movie on an iPad to young
children with ASD and to typically-developing children,
and used the front camera in the iPad to film their responses.
After automatically processing the recorded videos, we used
to position of the pupils and the head angles to determine
which part of the screen they were looking at.

The first hypothesis we want to confirm within this
framework is that children with ASD would exhibit a re-
duced amount of attention to the movie overall, as found in
previous studies. This was tested by comparing the overall
amount of time spent looking at the movie (regardless of
side) by children with ASD vs non-ASD children. The sec-
ond hypothesis used for validation of the proposed frame-
work was that ASD children would exhibit an attentional
preference for the non-social stimulus (dynamic toy) as
compared to the social stimulus (woman singing nursery
rhymes while making eye contact), here tested once again
by automatically computing the attention direction from
the recorded video. The last hypothesis we tested was that
children with ASD are more likely to fixate on one side of the
screen, regardless of stimulus. For this we split the movie in
time segments, with stimuli changing on the left or right
(see Figure 2 in the Methods section), and then analyzed the
attention for each one of these time segments.

Using the carefully designed stimuli with the standard
RGB camera and simple computer vision algorithms to val-
idate these predictions, we demonstrated that scalable tools
can be used to measure the same type of eye gaze biomark-
ers that previously necessitated high-end eye-tracking de-
vices. It is critical to note that contrary with the standard
in the literature, where available video stimuli are used,
here we stress the need to integrate the stimuli design with
the available device (RGB consumer camera on a tablet in
this case), task (distinguish between social an non-social for
example), and algorithm design and robustness capabilities
(region vs pixel accuracy for example). Therefore, while
available databases, e.g., [16], can and should be used for
algorithm validation in some cases (e.g., validating affect
computation), they become less appropriate for new tasks
and the integrated approach here pursued.

2 METHODS

2.1 Participants

Participants in this study were 104 toddlers between 16 and
31 months of age. This is the age range at which gold stan-
dard diagnostic methods have been validated. Twenty-two
children were diagnosed with autism spectrum disorder
(ASD). Diagnosis was based on both expert clinical judg-
ment by a licensed clinical psychologist with expertise in
ASD and the Autism Diagnostic Observation Scale-Toddler
Module [17], which can be used with toddlers as young as 12
months of age (mean age =26.19 months, standard deviation

σ=4.07 months). The remaining 82 toddlers were typically-
developing (non-ASD) or had developmental delay (mean
age of M=21.9; σ=3.78 months). Participants were recruited
either from primary care pediatric clinics at Duke Health,
directly by a research assistant or via referral from their
physician, or by community advertisement. For the clinic’s
recruitment, a research assistant approached participants at
their 18- or 24-month well child visit, when all children in
the clinic are screened for ASD with the Modified Checklist
for Toddlers-Revised with Follow-up Questions (M-CHAT-
R/F) [18]. Toddlers with known vision or hearing deficits
were excluded. Toddlers were also excluded if they did not
hear any English at home or if parents/guardians did not
speak and read English sufficiently for informed consent.
All parents/legal guardians of participants gave written,
informed consent, and the study’s protocol was approved
by the Duke University School of Medicine Institutional
Review Board.

The majority of children recruited into the study had
already received screening with a digital version of the
M-CHAT-R/F as part of a quality improvement study in
the clinic [19]. Participants from community recruitment
received ASD screening with the digital M-CHAT-R/F prior
to the tablet assessment reported in this work [20]. As part
of their participation in the study, children who failed the
M-CHAT-R/F or for whom parents/legal guardians or their
physicians had concerns about possible ASD, underwent
diagnostic and cognitive testing with a licensed psychologist
or trained research-reliable examiner overseen by a licensed
psychologist. Testing consisted of Autism Diagnostic Ob-
servation Schedule Toddler Module (ADOS-T) and Mullen
Scales of Early Learning (MSEL) [21], [22]. Children who
received a diagnosis of ASD based on the ADOS-T and clin-
ician assessment were referred to early intervention services.

Children were enrolled consecutively and screened for
ASD, resulting as expected in a greater number of typi-
cal children compared to those with ASD (there is a 1:59
prevalence of ASD in the US). For the goal of the work
here presented, namely introducing a computational inte-
grated stimulus-device-algorithm design for scalable atten-
tion analysis (here illustrated for ASD), this unbalance is
not a concern. The size of each class is sufficient to illustrate
the virtue of the proposed approach and to provide initial
findings, to be fully statistically validated in subsequent
studies (e.g., [23]).

2.2 Stimulus and measures

During a regular clinic visit (no special setup, just a standard
pediatric clinic room), we asked the participants to sit on a
caregiver’s lap while watching a movie on a tablet (iPad
4th generation) [20]. Since we monitor the movement and
position of the head as detailed below, seating on a lap,
as it is common for protocols at this age (e.g., [24]), was
not found to be a problem but can be considered a factor
to be improved in the future. The tablet was placed on a
stand approximately 3 feet away from the child to prevent
her/him from touching the screen; see Figure 1. The brief
movie displayed in landscape mode and split in two re-
gions: on the left side a woman is singing to the child, and
on the right side a moving toy making some noise to also
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try to draw the participant’s attention. The woman as well
as the toy changed throughout the movie; see Figure 2. The
entire movie was one minute. Parents were asked to attempt
to keep the child seated on their lap, but to allow the child to
get off their lap if they became too distressed to stay seated.
The iPad’s front facing camera recorded the child’s face, at
1280× 720 and 30 frames per second resolution, while they
were watching the movie. This comprised all of the sensed
data used by the automatic computer vision algorithm to
measure attention.

The stimuli here used, Figure 2, are common in the ASD
literature to represent social and non-social stimuli, e.g.,
[9], [24], [25], [26]. The social and non-social halves differ
also in color and dynamics, and one may argue that this
might influence the child’s attention as well (and not just
the social or non-social aspects of the halves). This influence,
even if it exists, is not affecting the computational approach
here introduced, since the goal is to detect the direction the
participant is looking at, regardless (at this stage) of the
reason they are looking at it, and this is accomplished by the
proposed algorithm described next. Moreover, regardless of
the exact reason for the left-right attention preference, there
is still a fundamental difference between ASD and non-ASD
groups, as we will show in subsequent sections, providing
potential value as a behavioral biomarker, for example for
screening.

Fig. 2. Screen shots of the designed stimulus. The movie showed a
social stimulus on the left (singing women) and a non-social on the right
(toys), top figure. Both halves changed during the 60 seconds, as further
detailed in the bottom figure, defining a total of 9 temporal blocks. The
movie was carefully designed in an integrated fashion, considering not
only the type of stimulus but also the used sensing device (a regular
camera) and capabilities of the automatic analysis algorithm.

2.3 Head position tracking

The children’s responses were recorded by the frontal cam-
era of the tablet at 1280 by 720 resolution and 30 frames per
second; see Figure 1. We used the computer vision algorithm
(CVA) detailed in [20] to automatically detect and track 51

facial landmarks on every child’s face, allowing for detec-
tion of head, mouth, and eye position [27]. These landmarks
are used here and for subsequent steps of the proposed
computational algorithm, and follow extensive work and
validation, see [20], [27], [28]. Algorithms based on region
and not pixel accuracy, as here proposed when integrated
with properly designed stimuli, provide further robustness
(accuracy needs to be region based on not pixel based). Any
further improvement in the landmarks detection (see for
example [29], [30]) can immediately be incorporated into
the proposed framework since these are the inputs to our
algorithms.

We estimated the head positions relative to the camera
by computing the optimal rotation parameters between the
detected landmarks and a 3D canonical face model [31].

2.4 Direction of attention tracking

We implemented an automatic method to track frame-by-
frame the direction of the child’s attention from the data
mentioned above. We also took into account the fact that
the child might not be attending to the movie at all (see also
[29], [30], [32], [33], [34] for alternative approaches to detect
if the participant is attending the stimulus).

Fig. 3. Illustration of the first component of the attention tracking method.
We use the extreme yaw angles values (in blue) to determine the
midrange yaw angle value (in red). Then, we define two thresholds
(in green) by adding or subtracting 10% of the difference between the
midrange value and the extreme values to the midrange value. With
those thresholds, we determine wheter the partcipant is looking at the
left part of the stimuli (’L’), at the right part of the stimuli (’R’), or if the yaw
angle value was not large enough to conclude (’?’). In this last case, we
used the landmarks to make a decision (see Figure 4 and text for more
details).

For detecting the direction of attention, we first used the
value of the yaw angle obtained from the head position as
described in the previous section (see Figure 3). For a given
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Fig. 4. Zoom on the eye’s landmarks (see Figure 1 for more details)
to illustrate the second component of the attention tracking method.
We use the landmarks at the edges of the eye (bold landmarks) to
estimate the position of the middle of the eye and the distance between
this middle and both edges (D). Then, we check wheter or not the
pupil’s landmark (pink landmark) is close enough to one of the edges
to conclude the attention direction. We considered it ’close enough’ if
the distance between the pupil’s landmark and the center of the eye
is greater than D/3. If not, we assume that the participant is looking
somewhere in the middle of the stimuli (’C’), as is the case in this
example. We use this method on both eyes.

subject, we considered the midrange value of the yaw angle
among all the frames in order to take into account the initial
position of the head. Then we compared the difference
between the yaw angle of each frame and the midrange
value to the difference between the most extreme value for
the same frame and the midrange value. If the difference
between the yaw angle and the midrange value was at
least 10% larger than the difference between the midrange
value and the extreme value, then this was considered large
enough for detection of attention direction (provided that
it is not too large to indicate no-attention, see [20]), and
we could easily conclude whether the child was looking at
the left or the right side of the screen. If not, we exploited
the landmarks (see Figure 1 and Figure 4). In this case,
we compared the position of the iris to the edges of the
eyes. We looked in particular at whether or not the distance
between the iris and the center of the eye was larger than
1/3 of the distance between the middle and either edge of
the same eye. If both irises were close enough, according
to this criterion, to the same edge of their respective eyes,
then we once again assessed the direction of the attention
(gaze). The results were found to be robust to the selection
of 10% and 1/3, and these values can be modified if more
or less robust measurements are desired. Note that these
measurements are relative and per-child, adding robustness
across participants and to the distance to the screen.

Using this method we were able to label most of the
frames either as ’L’ (for attending to the left) or ’R’ (for
attending to the right). In some frames the computer vision
algorithm failed to properly track the landmarks due to
the child not facing the camera. The algorithm would then
output non-numerical data and we labeled those frames
with the standard ’NaN’ (for ’Not a Number’). In addition,
in some cases, neither the value of the yaw angle nor the

positions of the irises within the eyes were sufficient to
conclude the direction of attention. We then simply assumed
that the child was looking somewhere in the middle of the
screen and labeled those frames ’C’ (for ’Center’). We could
have also ignored these frames, since overall at 30 frames
per second and one minute of recording, we had ample
data to work for analyses. Indeed, within the frames where
a participant was paying attention (frames labelled either
’L’, ’R,’ or ’C’), only about 0.5% of them are labelled ’C.’
Overall, 90.8% of the study frames were labeled ’L’ or ’R.’ It
is important once again to stress that with the joint-design of
stimulus, sensing, and analysis, the fact that we were going
to have inconclusive frame labeling was taken into account.

2.5 Temporal block analysis
In addition to measuring attention and direction of atten-
tion, we also studied fixation and the attention responses
to changes in the stimuli. As mentioned before, both the
woman (social stimulus) and the toy (non-social stimulus)
are changing multiple times throughout the video, Figure 2.
In other words, there are several women each with a dif-
ferent rhyme and several toys each with different charac-
teristics. As a proxy to fixation, we tracked the participant’s
attention shifts to those changes in stimulus. Hence, we split
our data into temporal blocks such that we distinguish when
there was a change in either the social or the non-social
stimulus (both do not always change simultaneously). In
other words, the boundaries of each temporal block were
given by a dynamic change of the toy (non-social), the
woman (social), or both. With this approach, we created nine
time blocks of different lengths (see captions in Figure 2),
over which we integrated the previously described per-
frame results (based on a simple majority). We therefore
obtained for each participant nine labels, one per temporal
block, categorized as ’L’, ’R’, ’C,’ and ’NaN’. We used this to
examine whether the child’s attention shifted when to the
novel stimulus when there was a change.

We should note that we also experimented merging the
short intervals with the consecutive longer ones, obtaining
a total of 6 temporal blocks of approximately equal length.
Since the same qualitative results were obtained, we kept
the original 9 temporal blocks to incorporate the short
transitions as well in the analysis.

3 RESULTS

The overall difference of attention between the ASD and the
control groups is considered first, shown in Figure 5. We
defined attention frames as the frames labeled either ’L,’ ’R,’
or ’C.’

For the ASD group, the mean value was M=1,406 frames,
and the standard deviation σ=460.3 frames. In comparison,
M=1,717 frames and σ=228.3 frames for the control group.
The number of participants who were paying attention to
fewer than 1,000 frames is 18.2% for the ASD group, whereas
it was only 1% for the control group. About 74.4% of the
control participants were paying attention to the whole
movie, while about 68.2% of the participants with ASD were
not attending at some point of the movie.

Next, we studied the attentional preferences of each par-
ticipant by dividing the screen into two halves (social versus
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Fig. 5. Proportion (vertical axis) of ASD (in blue) and control (in red) par-
ticipants paying attention to the total number of movie frames indicated
in the horizontal axes.

non-social). As illustrated in Figure 6, we examined the
proportion (%) of frames during which the participant was
looking right (non-social), as a function of the proportion
(%) of frames during which the participant was looking
left (social stimulus). Those proportions were calculated by
dividing the number of frames during which the participant
was looking at the given stimulus by the total amount of
frames during which the child was paying attention.

Fig. 6. We plot the ratio between social and non-social attention, each
participant being a circle, with ASD group in blue and control group in
red.

The pattern shown in Figure 6 suggests that children
with ASD and non-ASD children were attending to the
movie in very similar ways. The means and standard devia-
tions for attention to social stimulus were M=52%, σ=35%
for the ASD group and M=55%, σ=29% for the control
group. For the non-social stimulus, results were M =48%,
σ=35% for the ASD group and M=44%, σ=29% for the
control group. However, when we examined the extreme
values, an interesting pattern emerged, revealing a feature

that distinguished ASD from non-ASD children. First, the
proportion of participants who paid attention to the social
stimulus for greater than 95% of frames was similar across
groups, 18% for the ASD group and 15% for the control
group. In contrast, the proportion of participants who paid
attention to the non-social stimulus for greater than 90% of
frames was 18% for the ASD group compared to only 2% for
the control group, indicating that it is very rare for non-ASD
participants to spend most of their attention time on the
non-social stimulus. Some points in Figure 6 are not on the
diagonal, indicating that those participants are looking at
the center of the stimuli for a significant number of frames.
Almost 95% of the children devoted less than 1% of their
attention to the center of the stimuli. Out of the 5% that did
not, all were within the control group.

Next, we studied the temporal pattern of attention di-
rection taking into account the temporal block data, i.e.,
changes in the stimuli. We computed two 3D-histograms
(one for each group, ASD and control) reflecting the pro-
portion of the attention toward either side of the screen
(Figure 7). Each value in the histogram position (i,j) (i,j=1..9)
represents the percent of participants in the group that spent
i temporal blocks attending to the left and j blocks attending
to the right.

Examining the control group, we can see that about 60%
of the points are on the diagonal (points that add to 9, the
total number of temporal blocks), which means those non-
ASD children have their nine blocks labeled either ’L’ or
’R.’ Alongside the diagonal, the points are uniformly dis-
tributed, if not for two spikes. The one on right corresponds
to the 15.8% participants that have all their blocks labeled
’L.’ The other one in the center corresponds to the 11% of
the participants that have 4 blocks labeled ’L’ and 5 blocks
labeled ’R.’ The mean value for the number of temporal
blocks spent looking at the social stimuli is M=4.7 blocks
and the standard deviation σ=2.8 blocks. For the number of
blocks spent looking at the non-social stimuli, M=3.2 blocks
and σ=2.7 blocks.

For the ASD group, only 28% of the points are located on
the diagonal (meaning only 28% are fully attending). More
than 36.4% of the participants have at least 8 out of their
9 blocks labeled either ’L’ or ’R,’ and 77% of them have
less than two blocks labeled ’R’ or less than two blocks
labeled ’L’. Moreover, 59% of the children with ASD have
less than one block labeled ’R’ or less than one block labeled
’L.’ All these results indicated a very one-sided attention
orientation. The mean number of blocks spent looking at
the social stimulus was M=3.3 blocks and the standard
deviation σ=3.2 blocks. The mean number of blocks spent
looking at the non-social stimulus was M=3.1 blocks and σ
=3.3 blocks.

We now illustrate how the proposed computational
tool opens the door to further granularity, investigating
the actual dynamic pattern of attention when the stimu-
lus changes, see Figure 8. As we see from Figure 2, the
left/social part of the stimulus changes 4 times (intervals
2-3, 4-5, 5-6, 7-8), while the right/non-social changes 5 times
(intervals 1-2, 3-4, 5-6, 6-7, 8-9); these are indicated in the
horizontal axis of each one of the subfigures in Figure 8.
We then compute how the attention switches when such
stimulus changes occur. For illustration of the details in the
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Fig. 7. Histograms of temporal attention direction for the 9 different
temporal blocks resulting from the stimulus changing (see Figure 2).
The 3D histograms indicate how the different participants spent their
attention for each one of the 9 time blocks in the stimulus, meaning each
entry (i,j) represents the proportion of participants spending i blocks
attending to the left and j blocks attending to the right

sub-figures, we will assume as a running example that the
change is happening on the left part of the stimulus. The first
subfigure (a) shows the percent of participants that shifted
their attention toward the side where the change is hap-
pening, normalized by all the participants. Considering the
running example, this is (participants that were looking R
and then looked L)/(all participants). This is repeated in the
next subfigure (b), now normalized by the participants that
were looking in the direction opposite to where the change
happened. In the running example, this is (participant that
were looking R but then looked L)/(participants that were
looking R). The third subfigure (c) shows the percent of
participants that were looking where the change happened
and that shifted their attention away from it, normalized
by the participants that were looking where the change
happened. In the running example, this is (participant that
were looking L but then looked R)/(participants that were
looking L). Finally, the last subfigure (d) shows the percent
of participants that shifted their attention to where the
change happened, but then shifted their attention back away
from it, normalized by the participants that shifted their
attention to the side where the change happened. In the
running example, this is (participant that were looking R
and then looked L and then looked R again)/(participants

that were looking R and then looked L). While the total
number per class/stimulus switch is relatively small (indi-
cated by the numbers in each bar) to perform full statistical
analysis, we start seeing an interesting pattern depending
on what side, left/social or right/non-social changed. More
importantly, this example further illustrates that the tool
here developed can provide information about granular and
dynamic shifts of attention, all with an off-the-shelf camera
and an algorithm tuned to the presented and carefully
designed active sensing.

4 DISCUSSION

As mentioned before, the goal of this work is to derive
a computational framework for attention monitoring and
then validate it confirming previous results, this time with
a significantly simpler and less expensive method, thereby
providing a low-cost scalable tool and paradigm to measure
attention. We now discuss how the results in the previous
section support this and at the same time provide potential
directions to investigate the proposed technique and find-
ings in larger studies.

4.1 Deficit in overall attention
We first evaluated whether children with ASD differ from
non-ASD children in terms of their overall attention to the
presented movie. We automatically computed, frame by
frame, whether or not the participant was looking at the
iPad screen, and then we compared the number of frames
during which the child was looking at the screen across the
two groups (Figure 5). We confirmed the hypothesis that
children with ASD exhibited reduced attention to the movie
overall. This was further supported with the block analysis
(Figure 7), where we can see that the density of points close
to the origin is significantly higher for the ASD group than it
is for the control group. Those points are indicating that the
child had most of their blocks labeled ’NaN,’ which means
that the child was not attending to the screen over multiple
periods of time.

These results demonstrate the usefulness of low cost
ubiquitous devices, consumer cameras available on tables
or mobile phones, to measure attention. This method is in
sharp contrast with the high-end and expensive hardware
that is common in most ASD studies. Secondly, these results
can be informative as one feature that could contribute to
an algorithm/scoring for ASD screening. For example, we
could consider that a participant paying attention to less
than a certain percentage of frames would be one feature
more commonly associated with ASD. For our data, for ex-
ample, considering 1,000 frames, the values of the precision,
recall and F1-score are P=0.8, R=1, and F1=0.89, respectively.
These results are only a first step, and their statistical power
needs to be investigated with larger populations. In addi-
tion, lack of attention is not an ASD exclusive behavior, and
as such it should be considered as one of many scores in
a full evaluation, similarly to the current standard of care
which includes the observation of multiple behaviors.

4.2 Attention to social versus non-social stimuli
Within our scalable framework, we also tested whether the
ASD group attended more to the non-social than the social
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stimulus as compared to the control group. We tracked
attention on a frame-by-frame basis. We then examined the
proportion of frames spent looking at the right, where the
non-social part of the stimulus was displayed, versus the
proportion of frames spent looking at the left, where the
social part of the stimulus was displayed (figures 1 and 4).

Our first analyses simply comparing the average number
of frames looking at the social versus non-social stimuli did
not yield group differences. However, our analyses could
be further improved by splitting the stimulus regions, e.g.,
in 4 sub-regions instead of just 2, and looking within the
social stimulus to test if the ASD participants are less likely
to look at the face of the woman (top part of the left side), as
suggested by earlier studies [35], [36], [8]. Our preliminary
work indicates that we can further obtain such increased
accuracy with the type of sensors and computer vision tools
here considered.

Looking at the extreme values with respect to how
attention was distributed across the social and non-social
stimuli revealed compelling results. We observed that when
a participant with ASD paid the majority of their attention to
only one side of the screen, it was equally likely to be toward
the social or non-social side. On the other hand, if a control
participant exhibited the same behavior of attending mostly
one side of the screen, it was seven times more likely that
the child was looking at the side of the screen displaying the
social stimulus. This feature could also potentially be used
as an additional risk marker for ASD as part of an off-the-
shelf device and a simple test. As discussed in the previous
section, the statistical power of this measurement as a risk
factor for ASD deserves future study in large populations.

Finally, these results and data also showed that a very
high percent of participants with ASD focus almost solely
on a single side of the screen and were less likely to switch
their attentional focus from one side to the other. This aspect
of fixation is further discussed next.

4.3 Attention shifting

We also used this recording and analysis framework to
study fixation behavior, that is, the degree to which the child
shifts their attention from right to left throughout the movie.
We split the data into temporal blocks corresponding to dif-
ferent social or non-social stimuli, Figure 2. We then deter-
mined the most popular label over each temporal block and
computed the corresponding per-block frequencies (Figure
7). We are here looking at the participants that are paying
attention to most of the stimulus, that is, the points that are
close to the diagonal in the 3D histograms.

We can clearly distinguish different patterns between
the ASD and the control groups. The non-ASD children
followed two main patterns: while some of the children
spent most of the time attending the social stimulus, most
distributed their attention between both the social and the
non-social ones. The vast majority of the children with ASD,
on the other hand, attended almost solely at either the left
or the right part of the screen, supporting the previous
conclusions and further demonstrating we can use this
framework to understand attention shifting. Future work
should include also switching the social/non-social stimuli
to be displayed on both sides of the screen to understand

more fully what evokes attention shifts. This is partially
discussed next.

Finally, we demonstrated how to use the developed tool
to carefully study the attention dynamics, and studied the
patterns of attention shift as a result of stimulus changes,
Figure 8. While the actual population is relatively small,
differences are starting to appear depending on the stimulus
region that is actually changing (social or non-social).

5 CONCLUSIONS

By replicating the type of attention patterns for children
with ASD previously reported in the literature, we validated
the possibility of using scalable tools to measure this impor-
tant biomarker. Contrary to the common use of high-end
devices to measure attention, this work exploited ordinary
cameras available in tablets and mobile phones, integrating
from the start the stimulus design with the sensing and
analysis. The statistical power of the reported results, ini-
tially as a screening tool, need to be investigated with larger
populations, part of our ongoing activity at the NIH Autism
Center of Excellence [23], where these techniques will be
tested in thousands of participants.

We validated our framework based on three hypotheses
previously derived from studies using state-of-the-art eye-
tracking technology. First, we monitored the attention of
both the ASD and the control group and showed that the
ASD participants were more likely to have reduced attention
to the movie overall. We next examined differences between
social and non-social attention. We found that, whereas it
was very rare for a child without ASD to focus the majority
of their attention on the non-social stimuli, this occurred
much more often among the children with ASD. Thus,
this biomarker has potential strong sensitivity as a risk
marker for ASD. Finally, we took into account the temporal
changes in the stimulus to investigate patterns of fixation
and shifting of attention. We showed that participants with
ASD are more likely to fixate on either part of the movies
(stimulus social/non-social regions) than the non-ASD chil-
dren, providing yet an additional potential biomarker.

While the work here presented concentrated on ASD,
using stimuli and validation paradigms from the ASD re-
search literature, there is extensive literature supporting
the fact that attention as a biomarker is critical in a wide
range of neuropsychiatric conditions beyond ASD, such as
attention deficit hyperactivity disorder (ADHD) and anxiety.
The direction of attention, and not just attention to the
stimulus itself, can also be of use for intervention, e.g.,
[32], [33]. Furthermore, this framework here presented can
be integrated with robots as described in [34]. Note that
contrary with the tool exploited there, namely [29], here we
co-design stimulus and computation. Our initial experience,
e.g., [28], [37], indicates that such active sensing and inte-
grated approach is more robust and engaging, over 85% of
usable frames vs. only about 50% reported in [34] (although
for different environments and protocols).

While attention is a very important behavioral feature
in ASD screening, diagnosis, and symptoms monitoring, it
should be considered together with other measurements,
from body posture and affect to audio. Each different be-
havior will provide information in the complex and diverse
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structure of ASD, and all should be sensed with scalable and
engaging protocols, e.g., [28], [34], [37], [38].

The stimulus and paradigms used in this work relied on
measurements of attention to the right or left side of the
screen. Our initial work [39], [40] indicates that we are able
to further split the screen into more sub-regions, allowing
for greater flexibility in stimuli design and measurement of
behavioral biomarkers. Regardless, as here demonstrated,
in order to achieve true scalability, we must use off-the-shelf
sensors and for that, stimuli design needs to be integrated
with sensing and analysis capabilities from inception.
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Fig. 1. Screenshot of the recorded video from the front facing tablet’s camera (left), and example of automatic facial landmarks used for attention
detection (right). The child (1) is sitting on the caregiver’s (2) lap, while the practitioner (3) is standing behind in this example. The six outlined
automatically detected landmarks (in black) are the ones used for measuring the direction of the attention.

(a) (b)

(c) (d)

Fig. 8. Illustration of use of the proposed computational approach for monitoring the dynamic change in attention, as a response to changing
stimulus. The figures show percent of participants performing certain dynamic pattern of shift of attention between the social and the non-social
halves of the stimulus; see caption above each figure and text for the particular pattern. The total number of subjects per class/stimulus switch is
indicated by the numbers in each bar. These results need to be further studied in large populations for their statistical power. See text for details
and Figure 2 for larger stimulus frames.
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