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Abstract

3D-printed medical prototypes, which use synthetic metamaterials to mimic bi-
ological tissue, are becoming increasingly important in urgent surgical applications.
However, the mimicking of tissue mechanical properties via 3D-printed metamaterial
can be difficult and time-consuming, due to the functional nature of both inputs
(metamaterial structure) and outputs (mechanical response curve). To deal with this,
we propose a novel function-on-function kriging model for efficient emulation and
tissue-mimicking optimization. For functional inputs, a key novelty of our model is
the spectral-distance (SpeD) correlation function, which captures important spectral
differences between two functional inputs. Dependencies for functional outputs are
then modeled via a co-kriging framework. We further adopt shrinkage priors on
both the input spectra and the output co-kriging covariance matrix, which allows the
emulator to learn and incorporate important physics (e.g., dominant input frequencies,
output curve properties). Finally, we demonstrate the effectiveness of the proposed
SpeD emulator in a real-world study on mimicking human aortic tissue, and show that
it can provide quicker and more accurate tissue-mimicking performance compared to
existing methods in the medical literature.
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1 Introduction

Three dimensional (3D) printing is an emerging technique of layer-by-layer additive manu-

facturing technology, with growing interest in medical applications (Rengier et al., 2010).

This is because 3D-printed prototypes can provide precise mimicking of organ shape at an

acceptable price and time cost (Ventola, 2014). Such prototypes can be extremely helpful

for doctors to practice and be proficient in surgical procedures (Chen et al., 2018b) as

well as personalized pre-surgical planning (Qian et al., 2017). One limitation is that the

mechanical property (i.e., stress-strain curve) of printed prototypes is completely different

from biological tissues (Raghavan et al., 1996). Currently, the state-of-the-art approach is to

embed metamaterial structure to mimic the desired mechanical property of biological tissue

(Wang et al., 2016a,b; see Figure 1). However, the optimization for this mimicking may take

days or even weeks to perform, due to the functional nature of the metamaterial structure.

This greatly limits the medical applicability of tissue-mimicking prototypes, since surgery

timing is a critical factor for outcome success. In this paper, we propose a novel kriging

model for emulating functional mechanical response over the design space of functional

metamaterial structure, which can be used for efficient tissue-mimicking optimization in

practical turnaround times.

There are two key reasons why state-of-the-art tissue-mimicking methods are impractical

for urgent surgical needs. Firstly, such methods rely solely on both physical experiments

and computer experiments, which are expensive and/or time-intensive to run. In particular,

a single physical experiment (3D-printing and testing a prototype) takes hours to perform,

and a single computer experiment (finite element analysis) requires at least 30 minutes

for a reliable mechanical response simulation. Secondly, to optimize for a good structure

which mimics the mechanical response of biological tissue, such methods require many

experimental runs over the design space of functional metamaterial structures. This makes

current tissue-mimicking methods prohibitively expensive for urgent surgical applications,

where the tissue-mimicking prototype is needed within a day. One strategy (which we
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Figure 1: (a) 3D-printed aortic valve (no metamaterial structure), (b) stress-strain curves
of biological tissue and printable polymer, (c) a numerical (finite element) simulation case with
sinusoidal metamaterial, (d) 3D-printed aortic valve with tissue-mimicking metamaterial.

adopt) is to train a surrogate model (or emulator, see Santner et al., 2013) which, given

data over the design space, can efficiently predict the mechanical response of an untested

metamaterial structure. However, due to the expensive nature and functional complexities,

it is necessary to integrate the rich physics of the tissue-mimicking problem within the

emulator model specification, in order to achieve accurate mimicking in a timely fashion.

The proposed emulator utilizes a technique called kriging (Matheron, 1963), which

models the unknown simulation output via a Gaussian process (GP). Kriging is widely used

in computer experiment modeling for its interpolating property, and the fact that both

the predictor and its uncertainty have closed-form expressions (Santner et al., 2013). The

literature on kriging for functional outputs typically involve some form of reduced-basis

modeling, including principal component models (Higdon et al., 2008; Mak et al., 2018)

and wavelet models (Bayarri et al., 2007), where only the weights of the bases need to be

modeled. Other works utilize a co-kriging framework (Stein and Corsten, 1991) for modeling

a discretization of functional output – such an approach typically works well when the

output is highly correlated in the functional domain (Banerjee et al., 2014). For functional

inputs, several modeling techniques have been proposed in the functional data analysis

literature (see, e.g., Ramsay, 2005), including varying-coefficient models (Fan and Zhang,

2008) and historical functional linear models (Malfait and Ramsay, 2003). However, the

literature on kriging with functional inputs is scarce. For the specific case of time-series
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inputs, Morris (2012) proposed a kriging model with a covariance function depending

on time order. Reduced-basis models were also proposed in Muehlenstaedt et al. (2017);

Wang and Xu (2019). Such models, however, do not incorporate prior physical knowledge

of the tissue-mimicking problem, and can therefore yield poor emulation and mimicking

performance given the paucity and functional complexities of the experimental data.

To address this, we introduce in this work a new function-on-function kriging model

which integrates an important source of physics: the spectral information of the functional

metamaterial structure input. Previous studies (Wang et al., 2016a; Chen et al., 2018a)

have shown that spectral differences in metamaterial structures result in variations to their

mechanical properties. To incorporate this spectral information, we propose a new spectral-

distance (or SpeD) correlation function, which uses the spectral-distance – the (weighted)

Euclidean distance between two functional inputs in spectral domain – to model the process

correlation of the GP. This new correlation function captures the appealing property of

translation-invariance, where two input metamaterial structures which are the same except

for a translation shift have the same mechanical properties. We then integrate this within a

co-kriging framework for modeling the functional mechanical response output. A key novelty

of our model is the incorporation of sparsity on the input spectral coefficients and the output

co-kriging matrix. This sparsity serves two purposes for the tissue-mimicking problem. First,

it allows us to extract important physics (e.g., dominant input frequencies, output curve

properties), which furthers understanding of the complex problem. Second, by identifying

key frequencies which most influence the mechanical response (thereby reducing the large

functional input space), we can greatly speed up the tissue-mimicking optimization under

the proposed emulator. This emulator-based mimicking approach allows for efficient and

accurate mimicking of biological tissue, and broadens the applicability of printed prototypes

for urgent surgical procedures.

The paper is structured as follows. Section 2 gives an overview of the tissue-mimicking

problem and the underlying computer experiment. Section 3 presents the proposed SpeD

emulation model and its shrinkage prior specification. Section 4 outlines the algorithm
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for parameter estimation. Section 5 investigates the emulation accuracy, uncertainty

quantification, physics extraction and computation time of the SpeD emulator in a real-

world tissue-mimicking case study. Section 6 concludes the work.

2 Tissue-mimicking and finite element modeling

We first describe the tissue-mimicking problem (or the metamaterial design problem) and

explain the physics of this problem. We then introduce the finite element (FE) analysis as a

simulation tool, and provide a brief discussion on experimental design for the FE simulation.

2.1 Tissue-mimicking problem

As discussed in Section 1, 3D-printing technology can print patient-specific prototypes with

precise geometry (Figure 1 (a)), but the mechanical properties of these printed prototypes

can differ greatly from that for true organs (Figure 1 (b)). The considered mechanical

property is the stress-strain curve (Malvern, 1969), defined as stress (the external load per

area) as a function over strain (the overall deformation percentage)1. The stress-strain curve

of the biological tissue typically possesses the property of strain-stiffening, which means the

curve is concave upward (see solid blue line in Figure 1 (b)), indicating it becomes stiffer as

more load is introduced (Raghavan et al., 1996). However, for 3D-printable material, an

opposite property of strain-softening is exhibited (see dotted red line in Figure 1 (b)) due

to the plastic-slipping effect and energy dissipation (Hill, 1998).

To achieve the strain-stiffening property of the biological tissues, one approach is to

introduce metamaterial structure (i.e., printed enhancement sub-structure) within the

prototypes (Wang et al., 2016a). Figure 1 (c) shows an example of a metamaterial with

sinusoidal structure. Here, the stiffer enhancement fiber is designed to have a sinusoidal

shape, inside the cuboid matrix of a soft material. In this work, we treat the structure

1Note that here, both stress and strain are not local values, rather averaged quantities over a sufficient
volume to yield a continuum description, i.e., representative elementary volume.
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(or shape) of the enhancement fiber (assumed to have uniform diameter) as the functional

input for our SpeD model. Our goal is to mimic the target mechanical property of human

tissues, by carefully choosing the shape of the enhancement fiber. Figure 1 (d) shows a

printed “tissue-mimicking” aortic valve with the optimal metamaterial structure.

2.2 Finite element modeling and experimental design

In this work, FE modeling is used to simulate the output stress-strain curve of a given

metamaterial structure. FE modeling is frequently used for stress analysis in solid mechanics;

it transforms the partial differential equations to their integral form, so that a piece-wise

linear formula can be used to approximate the true deformation profile (Zienkiewicz et al.,

1977). The key advantage of FE simulations, compared to physical experiments, is that

high accuracy can be achieved with no material cost or human error.

Here, FE simulations are performed using COMSOL Multiphysics. The overall size of

the metamaterial cuboid (with one enhancement fiber inside) is 20mm by 4mm by 2mm,

with physics-based quadratic tetrahedral elements for meshing. To calculate the stress-strain

curve of the metamaterial, one end of the cuboid is fixed while a series of load levels (up to

15% uniaxial deformation) is applied to the other end. The total computation time for one

metamaterial design is around 30 minutes on 24 Intel Xeon E5-2650 2.20GHz processing

cores. Figure 2 (a) shows the stress-strain curve obtained by FE simulation.

We use a sinusoidal wave structure for designing the training metamaterial structures,

as such a form exhibits the best strain-stiffening property from a recent study (Wang et al.,

2016b). The design space has four parameters: the diameter of the enhancement fiber d,

and the amplitude A, frequency ω and initial phase φ of the sinusoidal wave:

I(t) = A sin(ωt+ φ). (1)

The experimental design adopted for the sinusoidal coefficients is the maximum projection

(MaxPro) design (Joseph et al., 2015). We note that the parametric sinusoidal form (1)
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Figure 2: (a) The stress-strain output of the FE simulation. (b) The pairwise scatterplot of the
training input (blue circle) and testing input (red cross) in the space of sinusoidal coefficients (1).

is used only to generate data for training the emulator; we will explore a bigger non-

parametric input space for prediction and tissue-mimicking optimization. A total of n = 58

metamaterial structures are simulated over the design space as the training dataset, and

an 18-run Sobol’ sequence (Sobol’, 1967) is used to generate the testing dataset, also on

the same design space. Figure 2 (b) shows the pairwise scatterplots for the training and

testing designs. Despite the relatively small training dataset (n = 58 samples), we show

later that the functional stress-strain predictions from the proposed emulator are quite

accurate, and provides noticeable improvements over a standard kriging model with four

sinusoidal coefficients as inputs.

3 Emulation model

We now present the proposed emulation model in three parts. First, we introduce the

proposed model for functional inputs, using the simplified setting of scalar outputs. We

then extend this for functional outputs using a co-kriging structure, and provide closed-form

expressions for prediction and uncertainty quantification (UQ). Finally, we discuss a prior

specification for model parameters which encourages sparsity. A key theme of this section is
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the incorporation of known physics within the emulation model. As mentioned in Section 1,

this integration of known physical properties allows for improved predictive performance of

the function-on-function kriging model for mechanical responses (see Sections 5.1 and 5.2),

but also greatly reduces the computation time for tissue-mimicking optimization, which is

crucial for urgent surgical scenarios. Table 1 summarizes these known physical properties

and the corresponding emulator assumptions, which we discuss throughout the section.

3.1 Spectral-distance kriging model

We introduce first the proposed kriging model for functional inputs I(·) ∈ I, where I is the

functional input space (to be defined later). For simplicity, assume first the case of scalar

outputs (functional outputs are introduced next). For the map y(·) : I 7→ R from functional

inputs to scalar outputs, we propose the following GP model:

y(·) ∼ GP{µ, σ2ρ(·, ·)}, (2)

where µ is the scalar process mean and σ2 is the process variance. Here, ρ(·, ·) : I × I 7→ R

is the proposed spectral-distance (SpeD) correlation function, defined as:

ρ(I1(·), I2(·)) = Corr{y(I1(·)), y(I2(·))} = exp
(
−D2 (|F [I1(·)]| , |F [I2(·)]| ; θ)

)
. (3)

In (3), D(·, ·; θ) is a distance function (defined later), |ai + b| is the modulus of a complex

number ai + b (where i =
√
−1 is the unit imaginary number), and F [·] : I → Î is the

Fourier transform from the input space of integrable functions, I = {I(·) :
∫
|I(t)|dt <∞},

to its spectral space Î. We will use the following definition of a Fourier transform for an

input function I(·):

Î(ξ) = F [I(t)] =

∫
I(t)e−2πitξdt, ξ ∈ R. (4)

Similar to the scale-parametrized distance function in the Gaussian correlation (which

is widely used for GP emulation of computer experiments, see Santner et al., 2013), we will
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Physical Properties Model Assumptions

Translation-invariance property
(Chen et al., 2018a)

Spectral-distance correlation function
Frequency information is important

(Chen et al., 2018a)
Only a few important frequencies

Sparsity in frequency coefficients
(Chen et al., 2018a)

Known structure of mechanical response
Sparsity in co-kriging covariance matrix

(Callister and Rethwisch, 2011)
Monotonicity of mechanical response

Basis representation of output mean
(Malvern, 1969)

Table 1: Known physical properties and corresponding assumptions for the emulation model.

use the following scale-parametrized l2 distance function in the spectral domain:

D(|F [I1(·)]| , |F [I2(·)]| ; θ) =

[∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣Î2(ξ)∣∣∣)2 dξ]1/2 . (5)

Here, θ(·) is a weight function in spectral space, with a larger value of θ(ξ) indicating greater

importance of frequency ξ in the SpeD correlation function. In contrast to the standard

Gaussian correlation, we assign importance to each frequency component of a functional

input, rather than to each input variable. Plugging (5) into (3), the SpeD correlation

function becomes:

ρ(I1(·), I2(·)) = exp

(
−
∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣Î2(ξ)∣∣∣)2 dξ) . (6)

We will show later in Theorem 1 that ρ(·, ·) is indeed a positive semi-definite kernel.

One advantage of the SpeD correlation function is that it can capture known properties

of the tissue-mimicking problem. First, recall that the translation-shifting property of

Fourier transform (Bracewell and Bracewell, 1986): for any t0 > 0, if I2(t) = I1(t− t0), then

Î2(ξ) = e−2πit0ξ Î1(ξ). (7)
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Figure 3: An illustration of the translation-invariance property: for the two input structures
which are equivalent up to a translation shift of t0, their mechanical responses are the same.

For two metamaterial structures with a shift, i.e., I1(t) = I(t) and I2(t) = I(t− t0), we can

then show that their outputs are perfectly correlated, i.e.:

ρ(I1(·), I2(·)) = exp

(
−
∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣e−2πit0ξ Î1(ξ)
∣∣∣)2 dξ) = 1. (8)

We call this the translation-invariance property of the SpeD correlation. As illustrated

in Figure 3, this is a desirable property, since we know from physical knowledge that any

translation of the metamaterial structure does not affect the output mechanical response. To

contrast, the existing functional input models in Section 1 do not enjoy this property. Second,

it is known that the stress-strain curve depends largely on frequency ω and amplitude A,

but not on initial phase φ in the sinusoidal parametrization (1) (Wang et al., 2016a,b; Chen

et al., 2018a). One can therefore expect that (i) the Fourier frequencies ξ are significant, and

(ii) variations in mechanical response are largely due to differences in frequency intensities

|Î(ξ)|. The proposed correlation function (6) nicely captures both of these properties.

For our tissue-mimicking problem, the specific choice of the Fourier transform with l2

distance of the modulus gives an intuitive parametrization of known physical properties. For

other applications, the SpeD correlation (6) can also be used with other spectral transforms

(e.g., wavelet transforms) and other distance metrics (e.g., l1 distance). The choice of

spectral transform and distance should be made on a case-by-case basis, motivated by prior
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information from the problem at hand.

The following theorem ensures that the SpeD correlation function ρ(·, ·) (6) is a valid

positive semi-definite kernel.

Theorem 1. The SpeD correlation function ρ(·, ·) : I × I 7→ R in (6), is a positive

semi-definite kernel, i.e.:
n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) ≥ 0, (9)

holds for any n ∈ N, c1, · · · , cn ∈ R and any distinct functions I1(·), · · · , In(·) ∈ I.

The proof of Theorem 1 is provided in Appendix A. This positive semi-definite property

guarantees the validity of ρ(·, ·) as a proper correlation function to use for GP modeling.

Note that ρ(·, ·) is not (strictly) positive-definite, in that an equality in (9) does not imply

ci = 0 for all i = 1, · · · , n. This can be seen by setting all input functions (Ii(·))ni=1 to be

the same modulo a translation shift; the resulting correlation matrix [ρ(Ii(·), Ij(·))]ni=1
n
j=1

then becomes a matrix of ones, which is clearly not positive definite. The fact that ρ(·, ·)

is not positive-definite is not an issue, since for most space-filling designs (including the

adopted MaxPro design, see Joseph et al. 2015), all training input functions are distinct

even after translation shifts.

3.2 Spectral-distance co-kriging model

For the tissue-mimicking problem, the output – the stress-strain curve – is of functional

form as well. Below, we generalize the scalar model in Section 3.1 to account for functional

outputs. Denote the functional input as I(·) ∈ I and functional output as O(·), where

O(s) is the output stress at strain level s. For our training dataset of n = 58 simulated

structures, the functional outputs Oi(·), i = 1, · · · , n are discretized into m levels, yielding

output vectors yi ∈ Rm, i = 1, · · · , n. We assume the following SpeD co-kriging model on

y(·) : I 7→ Rm:

y(·) ∼ GP{µ,C(·, ·)}, (10)
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where µ ∈ Rm is the process mean vector and C(·, ·) : I × I 7→ Rm×m is the corresponding

covariance matrix function.

Consider first the specification of the covariance matrix function C(·, ·). Let

C(I1(·), I2(·)) = Cov(y(I1(·)),y(I2(·))) = ρ(I1(·), I2(·))Σ. (11)

Here, ρ(·, ·) is the SpeD correlation kernel in (6), and Σ ∈ Rm×m, Σ � 0 is a symmetric,

positive definite co-kriging covariance matrix quantifying correlations between different

output levels.

Equation (11) implicitly assumes separability in the co-kriging covariance structure. Here,

separability means the covariance between output levels observed at different functional

inputs can be decomposed as the product of the covariance between output levels and the

covariance between functional inputs. This separability assumption is used extensively in

the literature for reducing computational complexity (Banerjee et al., 2014). However, such

an assumption can be justified by the physics of the tissue-mimicking problem as well. Here,

the stress-strain curve output O(·) is an inherent property pertaining to the metamaterial

structure itself, and the stress value at any specific strain level is not directly related to the

metamaterial structure I(·) (Diest, 2013). Thus, the covariance between two strain levels s1

and s2 in the stress-strain curve should be similar between different metamaterial structures.

Separability allows us to efficiently train our SpeD emulator for timely tissue-mimicking in

real-world surgical problems.

Consider next the specification of the mean vector µ. We assume µ follows the basis

representation:

µ = Pβ, (12)

where each column of P ∈ Rn×q represents a pre-specified basis function and β ∈ Rq denotes

its corresponding coefficients. The choice of basis functions in P should be guided by

prior knowledge on the form of the output stress-strain curve. We will describe in Section

5.1 a specific parametrization of µ which incorporates monotonicity information on the
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stress-strain curve.

From this, we can derive the equations for prediction and UQ. Let y1:n =
[
yT1 ,y

T
2 , ...,y

T
n

]T
denote the vector of functional outputs of the whole training set. Using the conditional

distribution formula of the multivariate normal distribution, the discretized functional

response ynew at a new functional input Inew(·) ∈ I follows the multivariate normal

distribution:

ynew|y1:n ∼ N
(
Pβ + (rθ ⊗Σ)T

(
R−1θ ⊗Σ−1

)
(y1:n − 1n ⊗Pβ) ,

Σ− (rθ ⊗Σ)T
(
R−1θ ⊗Σ−1

)
(rθ ⊗Σ)

)
,

(13)

where ⊗ is the Kronecker product, 1n denotes 1-vector of n elements, β and Σ are regression

coefficients and co-kriging covariance matrix, rθ =
[
ρ(Inew(·), I1(·)), · · · , ρ(Inew(·), In(·))

]T
and Rθ = [ρ(Ii(·), Ij(·))]ni=1

n
j=1. After algebraic manipulations, the posterior mean ŷnew =

E{ynew|y1:n} and posterior variance Var{ynew|y1:n} can be written in a more concise form:

ŷnew = E{ynew|y1:n} =Pβ +
(
rTθ R−1θ ⊗ Im

)
(y1:n − 1n ⊗Pβ) , (14)

Var{ynew|y1:n} =
(
1− rTθ R−1θ rθ

)
Σ, (15)

where Im denotes an m × m identity matrix. Equation (14) can be used to predict (or

emulate) the stress-strain curve for a new metamaterial structure, while Equation (15) can

be used to construct a confidence band for quantifying the uncertainty of this prediction.

3.3 Prior specification

Finally, we provide a prior specification for the model parameters (θ(·),Σ,β). Consider

independent priors on each parameter in (θ(·),Σ,β). For the weight function θ(·), we assign

independent exponential priors at each frequency ξ, i.e.:

θ(ξ)
i.i.d.∼ Exp(λI), (16)
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where λI is a rate parameter for the exponential priors. Similar to the Bayesian LASSO

(Park and Casella, 2008), the intuition behind the shrinkage prior (16) is to encourage

sparsity in θ(·), by assigning large prior mass to regions where θ(ξ) = 0. This sparsity is

desired for two reasons. First, this allows us to identify dominant frequencies in metamaterial

structure which influence mechanical response. Second, sparsity in θ(·) greatly speeds up

the tissue-mimicking procedure using the proposed emulator: it screens out inert frequencies

from the optimization model, which then reduces the number of evaluations from the

emulator. This speed-up is paramount for efficient tissue-mimicking in urgent surgical

applications (see Section 5.4).

For the covariance matrix Σ, we assign the following prior:

π (Σ) ∝ exp(−λo‖Σ−1‖1). (17)

Here, λo is a rate parameter, and ‖ · ‖1 is the element-wise l1 norm. The prior (17) on

Σ can be viewed as a shrinkage prior which encourages sparsity on the elements of the

inverse covariance matrix Σ−1 (Wang, 2012). This corresponds to the widely-used graphical

LASSO (Friedman et al., 2008) method for sparse covariance estimation. For our problem,

this sparsity can be used to identify important and interpretable physical couplings in the

stress-strain relationship (see Section 5.3.1).

For the regression coefficients β, we assign a non-informative flat prior π(β) ∝ 1, since

little information is known on β prior to data in our problem. A more informative prior

can be used on β, if additional domain knowledge is available on the mean trend of the

stress-strain curve.

4 Parameter estimation

In implementation, the functional inputs I(·) are also discretized to p levels. Let x1 = (xk1)p−1k=0

and x2 = (xk2)p−1k=0 denote the discretized input vectors for both I1(·) and I2(·), respectively.
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The proposed SpeD kernel ρ(I1(·), I2(·)) in (6) can be approximated as:

ρ(x1,x2) = exp

− (p−1)/2∑
k=0

θk
(∣∣x̂k1∣∣− ∣∣x̂k2∣∣)2

 , (18)

where θ = (θk)
(p−1)/2
k=0 is the discretized weight vector, and x̂k =

∑p−1
l=0 x

le−
2πi
p
lk is the k-th

entry of the discrete Fourier transform x̂ for the discretized input x. Note that x̂ is

symmetric because x is real-valued (Sorensen et al., 1987); hence, only the first half of x̂ is

used in (18).

With this input discretization, we adopt a maximum a posteriori (MAP) approach for

estimating the parameters (β,θ,Σ). The main reason we prefer MAP over a fully Bayesian

approach is computational efficiency, for both parameter estimation and tissue-mimicking

optimization. For parameter estimation, a fully Bayesian approach typically requires Markov

chain Monte Carlo sampling (MCMC; Gelman et al., 1995). Given the complexities of

functional inputs and outputs, MCMC sampling can take several days, which is more time-

consuming than a single computer experiment run! Furthermore, the primary application of

the proposed emulator is for tissue-mimicking optimization, which typically requires many

evaluations of the emulation predictor. Therefore, it can be very time-consuming in a fully

Bayesian implementation, since each evaluation involves an average over all MCMC samples.

Given the urgent nature of surgical planning, the MAP approach (described next) offers a

quicker way to survey the metamaterial design space, which enables timely tissue-mimicking

optimization.

From the GP model in (10) and (13), the MAP estimation of (β,θ,Σ) boils down to

minimizing the following penalized negative log-posterior (Santner et al., 2013):

min
β,θ≥0,Σ�0

lλ(β,θ,Σ) = min
β,θ≥0,Σ�0

[
n log det Σ +m log det Rθ + λI‖θ‖1 + λo‖Σ−1‖1

+ (y1:n − 1n ⊗Pβ)T
(
R−1θ ⊗Σ−1

)
(y1:n − 1n ⊗Pβ)

]
.

(19)
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Algorithm 1 BCD algorithm for minimizing the penalized negative log-likelihood (19)

1: • Set initial values β ← 0q, Σ← Im and θ ← 1p, and set Y ← [y1,y2, ...,yn]T

2: repeat
3: Optimizing Σ:

4: • Set Rθ =

[
exp

(
−
∑(p−1)/2

k=0 θq

(∣∣x̂ki ∣∣− ∣∣∣x̂kj ∣∣∣)2)]n
i=1

n

j=1

with x̂k =
∑p−1

l=0 x
le
− 2πi

p
lk

5: • Set µ = Pβ
6: • Set W0 ← 1

n(Y − 1n ⊗ µT )TR−1θ (Y − 1n ⊗ µT ) + λo · Im
7: • Estimate W by Graphical LASSO using W0 as initialization
8: • Update Σ←W−1

9: Optimizing β:

10: • Set S = (P⊗ 1n)T
(
R−1θ ⊗W

)
(P⊗ 1n)

11: • Update β ← S−1(P⊗ 1n)T
(
R−1θ ⊗W

)
y1:n

12: Optimizing θ:
13: • Update θ ← argminθ lλ(β,Σ,θ) with L-BFGS
14: until β, Σ and θ converge

15: • return β, Σ and θ

Here, Rθ is the correlation matrix in (13) with scale parameters θ, and λI and λo are the

rate parameters for the shrinkage priors in Section 3.3.

From a regularization perspective, the two prior terms λI‖θ‖1 and λo‖Σ−1‖1 in the

negative log-posterior (19) can equivalently be viewed as penalty terms on θ and Σ−1, with

the rate parameters λI and λo corresponding to penalization parameters. In this sense, the

parameters λI and λo control the degree of sparsity imposed on θ and Σ−1, with a larger

λI (or λo) resulting in a sparser estimate of θ (or Σ−1), and vice versa. In practice, these

penalization parameters can be estimated from the data itself, or specified from the problem

at hand. For example, if predictive accuracy of the emulator is the end goal, then λI and

λo can be estimated based on cross-validation techniques (Friedman et al., 2001). However,

if the extraction of important physics is desired, then λI and λo can be set so that a desired

number of physical features can be learned. We will return to this in Section 5.3.

Consider now the MAP optimization in (19) for fixed λI > 0 and λo > 0. We will use

the following blockwise coordinate descent (BCD) optimization algorithm, described below.

First, assign initial values for β, θ and Σ. Next, iterate the following three steps until
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the convergence is achieved: (i) for fixed GP parameters θ and regression coefficients β,

compute the correlation matrix Rθ and then optimize for covariance matrix Σ using the

graphical LASSO algorithm (Friedman et al., 2008); (ii) for fixed θ and Σ, compute β using

closed-form expressions (see Santner et al., 2013 for details); and (iii) for fixed β and Σ,

optimize for θ using the L-BFGS algorithm (Liu and Nocedal, 1989). The full optimization

procedure is provided in Algorithm 1. Since (19) is a non-convex optimization problem, the

proposed BCD algorithm only converges to a stationary solution (Tseng, 2001). Because of

this, we suggest performing multiple runs of Algorithm 1 with random initializations for each

run, then taking the converged estimates for the run with smallest negative log-likelihood.

These runs should be performed in parallel if possible, to take advantage of the parallel

computing capabilities in many computing systems. ‘

5 Emulation results

In this section, we present the numerical performance of the proposed model for tissue-

mimicking. This is presented in four parts. First, we compare the predictive performance

of the proposed SpeD emulation model with two baseline emulation models. Second, we

provide a comparison of the uncertainty quantification from these three emulation models.

Third, we analyze the physical properties learned via shrinkage priors on θ and Σ. Finally,

we demonstrate the usefulness of the fitted model for mimicking human aortic tissue.

5.1 Prediction accuracy

As mentioned in Section 2.2, the proposed SpeD model is fitted using the training data of

n = 58 FE simulations. The input function I(·) ∈ I is discretized to p = 81 parts, which

we denote as a vector x ∈ R81. In this specific tissue-mimicking problem, the diameter of

the metamaterial enhancement d ∈ R (assumed to be uniform over the whole functional

curve I(·)) is also important. To account for this extra design variable, we use the following
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separable correlation function ρs(·, ·) : R82 × R82 7→ R:

ρs([d1,x1], [d2,x2]) = ρ(x1,x2) exp
(
−θd (d1 − d2)2

)
, (20)

where ρ(·, ·) is the discretized SpeD kernel in (18) and θd is the scale parameter for diameter

d. Let s ∈ Rm=41 denote the vector of strain levels equally spaced from s = 0 to s = 15%,

and let y = O(s) ∈ R41 be the discretized stress function O(·). Note that the discretization

levels for input and output are selected due to heuristic observation – the output functions

are quite smooth, and the input functions are slightly more rugged.

From the underlying physics of the stress-strain relationship, it is known that (i) the

stress O(s) is always positive, (ii) the stress is zero when the strain is zero (this is known

as the free-standing state, see Malvern, 1969), and (iii) stress-strain curves are typically

monotone and non-decreasing, since a larger force is needed to stretch further. To account

for (i), a standard log-transformation of stress O(s) is performed prior to modeling and

parameter estimation, and the final results are transformed back to ensure the predicted

stress is always positive. To account for (ii) and (iii), we choose the basis functions in (12)

to be P = [1m, log(s)], along with an additional constraint of β2 > 0 to ensure the mean

function is monotone and non-decreasing. This is equivalent to assuming the following form

for the mean stress-strain curve O(s) = asb, a, b > 0, which is a typical parametrization in

biomedical literature (Rengier et al., 2010; Chen et al., 2018a). Another option is to adapt

a monotone GP (Wang and Berger, 2016), but we choose not to use it here for the sake of

simplicity.

For comparison, we also fit two different emulators as baseline methods, using the same

dataset. The inputs of the first emulator are the parameters from the sinusoidal wave

design xp = [d,A, ω, φ]T ∈ R4, which represents the diameter of the metamaterial fiber,

amplitude, period and initial phase of the sinusoidal wave (see Figure 1 and Equation (1)).
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Figure 4: Predicted stress-strain curves for the l2-distance emulator (l2), feature-based emulator
(feature), and the proposed SpeD emulator (SpeD) on two test metamaterial structures. The
corresponding MAREs are included in the legends.

This emulator uses a GP model with correlation function:

ρp(x1,x2) = exp

(
−

4∑
k=1

θk
(
xk1 − xk2

)2)
. (21)

The same correlation function (with scalar output) is used in Chen et al. (2018a). We refer

this as the feature-based method. The second emulator also assumes a GP model with

correlation function:

ρf (I1(·), I2(·)) = exp

(
−
∫
θ(t) (I1(t)− I2(t))2 dt

)
. (22)

This correlation (22) is essentially the Gaussian correlation function, with distance taken to

be the l2-distance between input functions. A similar correlation function is used in Morris

(2012) for time-series inputs, with additional dependencies on time order. We refer this

as the functional l2-distance method. Both baseline methods assume the same separable

co-kriging structure for discretized outputs y1:n, along with MAP parameter estimation.

5.1.1 Predicting stress-strain curve

To test the performance of the proposed emulator, we compare the predictions of stress-strain

curves (using Equation (14)) for the metamaterial designs from the test set (see Section 2.2).
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Figure 5: Boxplots of the MARE ratio between the baseline
emulators and SpeD emulator on the 18-run test set. The
red line marks the MARE ratio of 1.0, indicating the same
MARE of the baseline emulator and the SpeD emulator.

Ave. MARE

SpeD 0.20
Feature-based 0.28
l2-distance 0.27

Table 2: The averaged MARE of
the SpeD emulator and two base-
line emulators over the 18-run test
set.

Figure 4 shows the emulated stress-strain curves for two test metamaterial structures, along

with the true stress-strain curve (ground truth) from FE simulations. To quantitatively

measure the difference between the predicted and true curves, we use the following mean

absolute relative error (MARE) metric:

MARE =

∫
s
|O(s)− Ô(s)|ds∫

s
|O(s)|ds

, (23)

where s is the strain level, O(s) is the stress at strain s from FE simulation (ground truth),

and Ô(s) is the predicted stress from the emulators. The MARE values for the two test

cases in Figure 4 are included in the legends. Table 2 reports the averaged MARE values

for the three considered emulators, over the whole test set. The proposed SpeD emulator

appears to perform very well, in that it achieves noticeably lower averaged MARE than

the two existing emulators. Figure 5 shows the boxplots of the MARE ratio between the

baseline emulators and the SpeD emulator for the 18 test cases (note that a ratio of 1.0

means the SpeD model yields similar MARE to a baseline model). We see that these ratios

are mostly larger than one, which suggests that the proposed emulator is noticeably better

in predicting the true stress-strain output curve. This is not surprising, since our model

captures known physical properties of the tissue-mimicking problem (see Table 1).
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Figure 6: (a) visualizes the three characteristics of mechanical performance: moduli E1 and E9,
and curvature κ. (b) and (c) show the pairwise absolute relative error for E1 and E9 between the
two baseline emulators and the SpeD emulator. The red line marks a relative error of 1.0.

5.1.2 Predicting physical characteristics

In addition to predicting stress-strain curve O(s) at untested metamaterial structures,

engineers are also interested in predicting key physical characteristics. An accurate prediction

of these physical characteristics can be as important as emulating the stress-strain curve

itself, because it provides interpretability to the black-box emulation model. Two important

physical characteristics to predict here are (i) the elastic modulus of the stress-strain curve,

and (ii) the classification of material type as strain-stiffening or strain-softening. For (i),

the modulus, i.e., the slope of the stress-strain curve at different strain levels, can be

interpreted as the stiffness or hardness of the material (Raghavan et al., 1996). Here, we are

interested in the elastic moduli E1 and E9 at strain levels 1% and 9%, respectively, where

Ek = ∂O(s)/∂s
∣∣
s=k%

; this allows us to evaluate the elastic moduli prediction over a wide

range of strain levels. For (ii), we wish to classify the stress-strain curve as strain-stiffening or

strain-softening ; this is particularly important given the goal of mimicking biological tissues

(see Section 2.1). One way to classify is to use the curvature of the stress-strain curve, which

can be approximated by the slope of the two moduli, κ = ∂2O/∂s2 ≈ (E9−E1)/(9%− 1%).

Assuming no fluctuations in the strain region s ∈ [1, 9]% (Malvern, 1969), a positive

curvature κ suggests a strain-stiffening property is present (due to increasing moduli), while

a negative κ suggests a strain-softening property is present. Figure 6 (a) visualizes these

physical characteristics from a stress-strain curve.
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SpeD Feature-based l2-distance

True positive % 12/12=100% 11/12=91.7% 7/12=58.3%
True negative % 6/6=100% 5/6=83.3% 5/6=83.3%
Classification % 18/18=100% 16/18=88.9% 13/18=72.2%

Table 3: The true positive rate, true negative rate, and classification rate of strain-stiffening and
strain-softening, for the three considered emulators.

We now compare three emulators (SpeD and baselines) for predicting the moduli and

material type. The moduli Ê1 and Ê9, computed from the emulated stress-strain curves, are

compared with the moduli E1 and E9 from FE simulation. Figures 6 (b) and (c) show the

pairwise absolute relative error |Ê − E|/E, between the baselines and the SpeD emulator.

We see that most of these ratios are larger than 1.0 in the test set, which shows that the

proposed SpeD model outperforms both baseline emulators. For classification, the predicted

curvature κ̂, computed from the emulated curves, are compared with the true curvature κ

from FE simulation. Table 3 shows the correct classification rates for the three emulators.

The SpeD model has a perfect 18/18 = 100% classification accuracy: it identified the

correct strain-softening/-stiffening property for all 18 test structures. On the other hand,

the feature-based model and the l2-distance model achieves only a 16/18 = 88.9% and

13/18 = 72.2% classification accuracy rate, respectively. One reason why the proposed SpeD

model can better capture these physical characteristics (compared to existing emulators) is

because it directly incorporates the underlying physics via the SpeD correlation function.

5.2 Uncertainty quantification

Particularly in healthcare applications, the quantification of predictive uncertainty can

be as important as the prediction itself. For the proposed model, Equations (14) and

(15) can be used to construct 90% pointwise highest posterior density predictive intervals

(HPD-PIs) for the emulated stress-strain curves. Figure 7 shows the 90% HPD-PI for the

three emulation models. Note that there is little predictive uncertainty at zero strain, with
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Figure 7: A comparison of the 90% pointwise HPD-PIs for the three emulation models (left:
SpeD, middle: feature-based, right: l2-distance). Different rows are for different test cases.

uncertainty increasing as strain levels increase. This is consistent with the physical intuition

in Section 5.1: the stress always equals to zero when strain equals zero, i.e., no force at

free-standing condition. The increasing uncertainty for higher strain levels may be due to

the log-transformation of the functional output.

Comparing the predictive intervals for the three emulators, we see that the proposed

SpeD model returns narrower HPD-PIs compared to both the l2-distance model and the

feature-based model. This is particular evident for the test case in the top row of Figure 7.

Moreover, the 90% HPD-PIs of the SpeD emulator covers the true stress-strain curves in

16/18 of the test cases, whereas the coverage for the feature-based and l2-distance emulators

are only 12/18 and 14/18, respectively. For example, the bottom row of Figure 7 shows a

test case where feature-based emulator fails to cover the true stress-strain curve. Over the

whole test set, our SpeD emulator appears to give reliable coverage of the true stress-strain

curve, with relatively low predictive uncertainty. The reasons for this may be two-fold: (i)

the SpeD correlation directly captures the physics of the tissue-mimicking problem, which

can be thought of as an additional source of data, (ii) the shrinkage priors on spectral
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Figure 8: (a) The sparsity pattern visualization of the inverse covariance matrix Σ−1 by
graphical LASSO with 40% of non-zero entries. The pattern indicates three different regions of the
stress-strain curve, colored yellow, green and red. (b) The partition of strain-stress curves for soft
materials into toe, elastic, and yield regions up to strain level of 15%.

coefficients screens out inert frequencies, which also helps reduce predictive uncertainty.

5.3 Learning physics via sparsity

In addition to prediction accuracy and uncertainty quantification, the SpeD emulator also

provides a data-driven approach to learn important physics. This is achieved via the

shrinkage priors on both the covariance matrix Σ and frequency coefficients θ.

5.3.1 Segmentation of stress-strain curve

We first analyze the important correlations selected by the shrinkage prior on the co-kriging

covariance matrix Σ. Recall from Section 3.3 that the graphical LASSO is used to extract

significant correlations in Σ−1. Setting the penalty parameter λo such that 40% of the

entries are non-zero, Figure 8 (a) visualizes the selected (important) covariances in Σ−1.

Recall that the (i, j)-th entry of Σ−1 represents the covariance between variables i and

j, conditional on all other variables. We see that the stress-strain curve can be roughly

segmented into three regions: small strain (from 0% to 3%) with high conditional correlation,

medium strain (from 3% to 9%) with moderate conditional correlation and large strain
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(from 9% to 15%) with high conditional correlation.

These three regions nicely corroborate known physical properties in material strength

(Malvern, 1969; Martin et al., 1998), where the mechanical response of the soft bio-mimicking

material can also be divided to three regions: the toe region, the elastic region and the

yield region (see Figure 8 (b)). We see from Figure 8 (a) that there are fewer significant

conditional correlations in the elastic region compared to the other two regions. One reason

for this is that, within the elastic region, the stress-strain curve can be better approximated

by the form O(s) = asb (which corresponds to the choice of basis functions in P). Figure

8 (a) also suggests the presence of conditional correlations between the elastic and yield

regions. Physically, this can be explained by the migration of both strain-stiffening and

strain-softening properties from metamaterial straightening.

5.3.2 Learning dominant frequencies

The proposed approach can also learn important frequencies ξ which influence mechanical

response, via the shrinkage priors on the weight function θ(ξ) (see Section 3.3). Figure 9

(c) shows the MAP estimate of θ(·) in the spectral space, where the rate parameter λI is

chosen via cross-validation. We see that θ(·) shrinks to zero at low and high frequencies,

with non-zero estimates only for medium frequencies between 50m−1 to 400m−1. For these

two endpoint frequencies, Figures 9 (a) and (b) show the metamaterial structures with

frequencies ξ ≈ 50m−1 and ξ ≈ 400m−1, respectively.

The selected frequencies in θ(ξ) are also in line with the physical understanding of the

problem. For low frequencies (Figure 9 (a)), the fluctuation in metamaterial design is too

weak to induce any effect on the stress-strain curve, whereas for high frequencies (Figure 9

(b)), the resulting strong fluctuation in metamaterial leads to mechanical properties similar

to a straight fiber (given nonzero diameter d, see Chen et al., 2018a). While it is known

that different frequencies affect mechanical response in different ways, a strict law is difficult

to find for engineers. Here, our SpeD emulator sheds light on the influential frequencies,

i.e., from 50m−1 to 400m−1; those frequencies should be carefully chosen for metamaterial
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Figure 9: Examples of metamaterial structure with very low (a) or very high (b) frequency. (c)
Sparse estimation of spectral parameters θ, where medium frequencies are non-zero.

design. We show next how this identification of important frequencies allows us to greatly

speed up optimization for the target task of mimicking human tissue.

5.4 Mimicking aortic tissue via optimization

We now explore the motivating task of mimicking the mechanical properties of a target

tissue with the proposed emulator. Recall that the key challenge in applying 3D-printing

techniques to medical application is the discrepancy in mechanical properties between

target tissues and printed prototypes. Here, the SpeD model can be used to find a good

metamaterial design (both structure I(·) and diameter d) whose stress-strain curve matches

the desired mechanical property y∗. This is achieved via the following optimization problem:

(d∗, I∗(·)) = argmin
dnew,Inew(·)∈I

E
{
‖y([dnew, Inew(·)])− y∗‖22|y1:n

}
. (24)

Here, I∗(·) is the optimal metamaterial structure, d∗ is the optimal fiber diameter, and

y([dnew, Inew(·)])|y1:n is the conditional (discretized) stress-strain curve in (13) with diameter

dnew and structure Inew(·). In words, equation (24) aims to find the optimal metamaterial

design whose stress-strain curve from the proposed model (conditional on data) is closest to

the target curve y∗ in terms of mean-squared error (MSE).

26



This MSE criterion can be further decomposed as follows:

‖ŷ([dnew, Inew(·)])− y∗‖22 + tr (Var{y([dnew, Inew(·)])|y1:n}) . (25)

Here, ŷ([dnew, Inew(·)]) and Var{y([dnew, Inew(·)])|y1:n} are the conditional mean and variance

of y([dnew, Inew(·)])|y1:n, respectively, and tr(A) =
∑

iAi,i is the trace of the matrix A.

The first term can be interpreted as trying to minimize the l2-norm between the emulated

stress-strain curve and the target curve. The second term can be viewed as trying to

minimize the predictive variance of the emulated curve. Such a decomposition is quite

intuitive, since we wish to find a metamaterial design whose emulated curve matches the

desired curve, but also has low predictive uncertainty from the emulation model.

One difficulty in solving (24) is that the variable I(·) is functional in form, and its

discretization x ∈ Rp, p = 81 can be too high dimensional to optimize numerically. Here is

where the extracted important frequencies from Section 5.3.2 come into play. Let x̂new ∈ R7

denote the seven non-zero Fourier coefficients (see Figure 9). Using these coefficients as

inputs for optimization (and ignoring the other inert coefficients), we get the following

lower-dimensional optimization problem:

(d∗, x̂∗) = argmin
dnew∈R,x̂new∈R7

E
{
‖y([dnew, x̂new])− y∗‖22|y1:n

}
, (26)

where y([dnew, x̂new])|y1:n is the conditional random vector taking the frequencies as input.

While this problem is non-convex, it is much lower-dimensional, and can be effectively

optimized using standard quasi-Newton methods (e.g., L-BFGS) and random initializations.

This framework (using the proposed SpeD model) offers significant speeds up for

tissue-mimicking over the current state-of-the-art methods. To see why, consider first

the optimization of (24) using only numerical FE simulations: this requires hundreds of

evaluations of the optimization objective function, each of which requires around 30 minutes

of computation time. This means tissue-mimicking with only FE simulations can require
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Figure 10: A case study which uses the proposed SpeD model for mimicking human aortic tissue.
(a) shows the stress-strain curves of the target aortic tissue (black), the mimicked curve from an
existing method (blue) and the curve optimized from the SpeD method (red). (b) shows the optimal
metamaterial design from our approach.

many days of computation, which is clearly unsuitable for urgent surgical planning (Chen

et al., 2018a). To contrast, each evaluation of the proposed emulator requires only seconds

of computation, which greatly speeds up the mimicking process. Furthermore, by exploiting

sparsity in spectral coefficients, the dimension of the optimization problem reduces from 82

to 8 variables. This dimension reduction greatly cuts down on the number of predictions

from the emulator, which yields significant reductions in computation time. Such speed-ups

are paramount for performing tissue-mimicking in an accurate and timely manner. Section

5.5 provides a further comparison of timing.

Let us now explore the tissue-mimicking performance of the SpeD emulator in a real-

world case study. Figure 10 (a) shows the stress-strain curve of a target aortic tissue (in

black) from Hockaday et al. (2012), the stress-strain curve from the proposed mimicking

procedure (in red), and the curve from an existing mimicking method (in blue) in Wang et al.

(2016b). The latter method performs mimicking using only the four sinusoidal metamaterial

features (see Section 2.2). Compared to the existing approach, which has an MARE (see

Equation 23) of 0.528, the proposed SpeD approach achieves a much smaller MARE of

0.089. This improved tissue-mimicking performance can be seen in Figure 10 (a): the red

curve (from the proposed method) closely mimics the desired black curve, whereas the blue
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Modeling Step Computation Time (in minutes)

Parameter estimation 21.72
Prediction & UQ at one input setting 0.01
Tissue-mimicking of a target material 2.69

Table 4: Computation time for different modeling steps of the proposed emulator, parallelized
over 24 processing cores.

curve (from Wang et al., 2016b) overestimates stress at all strain levels. In particular, our

method gives much better mimicking in small strain regions – this is important in medical

applications due to the relatively small strain deformations in the human body.

There are two reasons for this improved performance. First, the existing mimicking

approach in Wang et al. (2016b) is too restrictive, in that it uses only four sinusoidal features

and not the full functional form of the input. Second, given a fixed timeframe, the proposed

emulation-based approach permits a larger number of objective evaluations via the proposed

SpeD model. Figure 10 (b) shows the optimal (discretized) metamaterial design x∗ from

our emulation-based approach, which is clearly not a sinusoidal function. By considering

the broader class of functional inputs as well as allowing for more objective evaluations,

the proposed method can identify better metamaterial designs for tissue-mimicking. While

there is some discrepancy between the proposed stress-strain curve and the target curve, this

may be because of the over-simplified optimization scheme and fact that the raw printable

polymers are not strain-stiffening. Improving this will be the focus of future work.

5.5 Computation time

Another appeal of the SpeD emulator is its computational efficiency. Table 4 summarizes the

computation time required for each step of the emulation process, with timing performed on

a parallelized system of 24 Intel Xeon E5-2650 2.20GHz processing cores. The computation

time required for parameter estimation (with cross-validation on λI) is 21.72 minutes, which

is typically performed before the arrival of the patient. Once we fit the model, we can predict
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for multiple settings very quickly (0.01 minutes per setting). To contrast, FE simulations

requires 30 minutes for each structure, and the fully Bayesian counterpart, due to the large

amount (e.g., 2000) of MCMC samples, requires 0.01× 2000 = 20 minutes. Because of this,

our SpeD emulator can effectively perform the tissue-mimicking procedure using only 3

minutes of computation; this greatly improves upon the standard tissue-mimicking approach

with only FE simulations, which may require hours or even days to perform (Wang et al.,

2016b) with much poorer mimicking performance (see Figure 10)!

Given the positive results reported in this section, the SpeD emulator can serve as an

important tool for furthering the use of 3D printed organs in medical applications. Our

model can provide effective and personalized pre-surgical practicing and planning (Qian

et al., 2017; Chen et al., 2019) with dramatically lower costs, which then mitigates risk in

complex surgical procedures.

6 Conclusion

We propose in this paper a novel function-on-function Gaussian process emulation model

for tackling the challenging tissue-mimicking optimization, under urgent surgical demands.

The key challenge is in building an efficient and accurate emulator, which incorporates the

functional complexities of the input metamaterial structures and the functional output

mechanical responses. To address this, the proposed co-kriging model uses a new spectral-

distance (SpeD) correlation function, which integrates spectral information by directly

modeling the effect of metamaterial frequencies on mechanical response. One appealing

feature of this new correlation function is its translation-invariance property, which accounts

for the fact that two metamaterial structures, which are equivalent modulo a translation

shift, have the same mechanical properties. For parameter estimation, we use MAP with

shrinkage priors, which identifies key frequencies and thereby reduces the large functional

input space. This reduction greatly speeds up the tissue-mimicking optimization using

the proposed emulator. Applied to a real-world tissue-mimicking study, the proposed
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SpeD emulator outperforms existing models in (i) emulating and quantifying uncertainty

on mechanical response, (ii) extracting meaningful physical insights, and (iii) providing

efficient and accurate mimicking performance for human aortic tissue. With the development

of multi-material 3D-printing technology, this new emulator can play an important role

in furthering the impact of 3D-printing in important biomedical applications in surgery

planning and healthcare.
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Appendices

A Proof of Theorem 1

For any n ∈ N, c1, · · · , cn ∈ R and function I1(·), · · · , In(·) ∈ I, we have

n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) (27)

=
n∑
i=1

n∑
j=1

cicj exp

(
−
∫
θ(ξ)

(∣∣∣Îi(ξ)∣∣∣− ∣∣∣Îj(ξ)∣∣∣)2 dξ) . (28)

Note that the Fourier transform F : I 7→ I, where I is the space of integrable functions

I(·) : R 7→ C, has a unique inverse F−1 : I 7→ I. Denote the standard Gaussian kernel as

K(·, ·) : |I| × |I| 7→ R,

K (F1(·), F2(·)) = exp

(
−
∫
θ(t)(F1(t)− F2(t))

2dt

)
, (29)

where |I| is the space of integrable functions F (·) : R 7→ R. Since K(·, ·) is a positive definite

kernel, for the selected n and c1, · · · , cn in Equation (27), and any function F1(·), · · · , Fn(·) ∈

I, we have,
n∑
i=1

n∑
j=1

cicjK(Fi(·), Fj(·)) ≥ 0. (30)

Now let Fk(·) =
∣∣∣Îk(·)∣∣∣, where k = 1, 2, · · · , n. This is possible because Îk(·) ∈ I and

therefore
∣∣∣Îk(·)∣∣∣ ∈ I. Thus, we have

n∑
i=1

n∑
j=1

cicjK
(∣∣∣Îi(·)∣∣∣ , ∣∣∣Îj(·)∣∣∣) =

n∑
i=1

n∑
j=1

cicj exp

(
−
∫
θ(ξ)

(∣∣∣Îi(ξ)∣∣∣− ∣∣∣Îj(ξ)∣∣∣)2 dξ) ≥ 0

(31)
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In other words,

n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) =
n∑
i=1

n∑
j=1

cicjK(Fi(·), Fj(·)) ≥ 0, (32)

i.e., the proposed SpeD correlation function is positive semi-definite.
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