Evolving a K-12 Curriculum for Integrating
Computer Science into Mathematics

Kathi Fisler
kfisler@cs.brown.edu
Brown University/Bootstrap
Providence, RI, USA

Annie Fetter
afetter@21pstem.org
21PSTEM
Conshohocken, PA, USA

Joe Gibbs Politz
jpolitz@eng.ucsd.edu
Univ. of California, San Diego
San Diego, CA, USA

Emmanuel Schanzer
schanzer@bootstrapworld.org
Bootstrap/Brown University
Providence, RI, USA

K. Ann Renninger
krenninl@swarthmore.edu
Swarthmore College
Swarthmore, PA, USA

Benjamin Lerner
blerner@ccs.neu.edu
Northeastern University
Boston, MA, USA

Steve Weimar
sweimar@21pstem.org
21PSTEM
Conshohocken, PA, USA

Shriram Krishnamurthi
sk@cs.brown.edu
Brown University/Bootstrap
Providence, RI, USA

Jennifer Poole
jen@bootstrapworld.org
Bootstrap/Brown University
Providence, RI, USA

Christine Koerner
christine koerner@sde.ok.gov
Oklahoma Department of Education
Oklahoma City, OK, USA

ABSTRACT

Integrating computing into other subjects promises to address many
challenges to offering standalone CS courses in K-12 contexts. In-
tegrated curricula must be designed carefully, however, to both
meet learning objectives of the host discipline and to gain traction
with teachers. We describe the multi-year evolution of Bootstrap, a
curriculum for integrating computing into middle- and high-school
mathematics. We discuss the initial design and the various mod-
ifications we have made over the years to better support math
instruction, leading to our goal of using integrated curricula to
cover standards in both math and CS. We provide advice for others
aiming for integration and raise questions for CS educators about
how we might better support learning in other disciplines.

CCS CONCEPTS

« Social and professional topics — K-12 education.

KEYWORDS

Integrating computing and math education; K-12 computing educa-
tion; Professional development; K-12 standards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432546

ACM Reference Format:

Kathi Fisler, Emmanuel Schanzer, Steve Weimar, Annie Fetter, K. Ann Ren-
ninger, Shriram Krishnamurthi, Joe Gibbs Politz, Benjamin Lerner, Jennifer
Poole, and Christine Koerner. 2021. Evolving a K-12 Curriculum for Inte-
grating Computer Science into Mathematics. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education (SIGCSE 21),
March 13-20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3408877.3432546

1 INTRODUCTION

Bootstrap:Algebra [3] (BS:A) is our established project for integrat-
ing introductory computing content into middle- and high-school
mathematics classes. The curriculum and its approach to profes-
sional development (henceforth PD) have evolved significantly over
the years as we have learned from teachers, partners, and evalua-
tors. In particular, our understanding of how math and computing
can reinforce one another has evolved. As other projects try to
integrate math and computing, we believe our observations about
math teachers, math teaching, framing of CS, and key touchpoints
could be useful, even in fields other than math.

Our evolution occurred on many fronts in parallel. We describe
our initial assumptions about how to integrate math and CS, then
describe various observations or ideas that have caused shifts in
our understanding. We summarize our key lessons throughout,
while also raising considerations regarding choices of programming
languages and differences in USA educational standards across
disciplines. The changes and our findings have emerged from a
partnership between the BS:A team (authors Fisler, Schanzer, Kr-
ishnamurthi, Politz, Lerner, and Poole), experts in mathematics
learning and professional development (Weimar, Fetter, and Ren-
ninger), and the Division of Secondary Mathematics Education for
the State of Oklahoma (Koerner).

https://doi.org/10.1145/3408877.3432546
https://doi.org/10.1145/3408877.3432546

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

2 THE INITIAL EFFORT

BS:A was designed to leverage computing to help 7th-10th grade
students learn to solve word problems and understand function
composition in algebra [10]. Three design elements were (and still
are) at the heart of the curriculum:

(1) Circles of Evaluation: A visual representation for (arith-
metic and computational) expressions based on nested circles.
Writing expressions as circles separates parsing them (iden-
tifying their structure) from computing their values. It also
reinforces that expressions, like sentences, have structure.

AR
8

(2) The Design Recipe: A step-by-step approach [9] to getting
from the text of a word problem to a symbolic-form function
that solves the word problem. The recipe has students work
through three steps: (1) identifying the domain and range
of the function described in the word problem, (2) develop-
ing concrete input/output examples of the computation to
be performed for the problem, and (3) abstracting over the
examples to produce a symbolic form solution to the word
problem. Each step (representation) is discussed in its own
right, and as part of a progression. The steps are carried out
on a paper-and-pencil worksheet prior to students entering
the symbolic form as code in a programming environment.

(3) The Videogame Project: To help students contextualize
the algebraic content, students solve a series of word prob-
lems that build-up to implementing a videogame with a
user-controlled player, a moving target (intersect with to
earn points), and a danger (avoid to keep the game going).
Game features are aligned to standard topics in (pre-)algebra,
such as linear functions (to move characters), piecewise func-
tions (to control the player via keystrokes), inequalities in
the plane (to support side-scrolling), and the Pythagorean
theorem (to detect collisions between the player and either
the target or the danger).

Professional Development: The initial BS:A PD workshop was a
three-day, hands-on, in-person event in which teachers with no
prior programming experience did the curriculum as students: they
designed and implemented their own videogame, working through
the Circles of Evaluation and the Design Recipe. The design was
intended to (a) show teachers that the game project was achievable
for students new to programming, (b) help teachers gain knowledge
and confidence to implement the curriculum, and (c) illustrate ways
in which math and CS could align conceptually. We believed that
having the teachers implement the entire game project during the
three-day workshop was essential to achieving (a) and (b), while
strengthening teachers’ perception of (c).

The in-person PD did not spend much time discussing how to
actually integrate the materials into a classroom. Facilitators (who
often included experienced BS:A teachers) would discuss different
high-level models (such as doing it as a standalone unit at the end
of the year or doing the lessons piecemeal as they came up during
the algebra course). No time, however, was allocated within the

Fisler, Schanzer, Weimar, Fetter, Renninger, Krishnamurthi, Politz, Lerner, Poole, Koerner

PD itself for teachers to plan their own implementations. Rather,
teachers were encouraged to reach out to the PD facilitators and
other teachers on the program’s email list for help with planning
their use of the materials.

Choice of Programming Language: The initial BS:A design used (a
pure subset of) the programming language Racket [11]. In pure func-
tional programming, functions can only take inputs and compute
outputs; they cannot produce side effects (e.g., print statements) or
change the values of variables (there are no assignment statements).
They thus share a core semantics with algebra, enabling the align-
ment of math and computing in ways that conventional imperative
programming does not. The team envisioned that concepts could
flow freely between math and computing, without interference
from the programming language.

We chose Racket in particular partly because its parenthetical
syntax and placement of functions in prefix notation align par-
ticularly well with Circles of Evaluation. The Racket code for the
sample circle shown in the left column is

(x8(+42)

Circles can be translated to Racket by using parentheses to mimic the
circles and placing the function at the front. We use a metaphor of
an ant crawling through the expression from outside-in: when the
ant “eats” into a circle, we write parentheses (to capture that circle),
write the function (what appears above the line), then continue
to translate the arguments (nested circles) left-to-right. This rule
has proven easy for teachers and students to follow (those used to
writing programs with infix operators had a harder time than did
those new to programming). The uniform syntax for arithmetic op-
erators and other (including user-defined) functions also reinforces
the semantic point that students are already familiar with several
functions (addition, multiplication, etc.): programming expands
that known set with functions on other datatypes.

Observations

The initial design and PD model yielded several positive results.
End-of-workshop evaluations (from hundreds of teachers) rated
the program highly: teachers with no prior computing background
created games (and were excited about it), saw connections be-
tween algebra and computing, and were eager to try it out with
students. Research across multiple courses showed students making
statistically-significant gains in solving word problems, both with
and without the structure of the design recipe [22, 23].

However, two main concerns stood out from our internal and
external assessments. During the workshop, many math teachers
struggled to make deeper sense of some of the connections that
we had expected and designed around. In addition, strong teacher
enthusiasm after the workshop was not leading to desired adoption
rates. We thus set out to understand and address these issues.

3 UNDERSTANDING FUNCTIONS

BS:A was based on an assumption that our target audience of math
teachers would have a robust understanding of functions as objects
(the general notion, not the programming construct) with properties
(e.g., linear, injective) that captured relationships between inputs
and outputs and supported re-use of computations.

Evolving a K-12 Curriculum for Integrating
Computer Science into Mathematics

In practice, we found that many math teachers had internalized
an understanding of functions as equations of the form y = mx + b,
a view reinforced by math curricula and textbooks. A teacher might
thus be comfortable with the notation y = x + 5, but not with the
notation f(x) = x + 5. The former was embedded in frequent (and
heavily tested) exercises that contrasted 2-dimensional line graphs
with symbolic forms that viewed axis names as variables. For many
teachers, variable names beyond x, y, and z were initially jarring,
as were descriptive function names such as wages, or functions that
had more than one input.!

What is wrong with the equational framing? One major limi-
tation of this form becomes evident when one needs to compose
functions. Imagine two functions: p(x) = 25 * x computes the total
price of items at 25 apiece and #(y) = y * 1.05 augments an amount
to include 5% tax. It would seem natural to compose these functions
to obtain the cost of x items with tax: e.g., t(p(10)) computes the
net price for 10 items.

Now consider the equation form. First, we might have written
p =25+xandt =y * 1.05, which as written cannot be composed:
all the formulas have to match up their variable names (just as in
BASIC programs!). So let’s say we instead write p = 25 % x and
t = p = 1.05. Asked to compute the price for 10 items, the student
would write

p=25%10
p =250
Substituting for p in the equation for t includes the tax:

t =250 % 1.05
p =296.5

In the context of middle-school mathematics, this approach may
suffice. But as computations get more complex, this variable-based
approach can become error-prone (for example, if someone has to
do the same computation for multiple inputs, care must be taken
to not use the intermediate values from a different computation):
this is one reason why computing has functions, not only variables.
The equation form also obscures the idea of dependency, and how
dependencies can cascade (as in the nested composition to compute
prices with tax).

More broadly, the idea that functions are just forms of equations
that one calculates with is a limited, and over-generalized, student
conception that can begin to form in middle school math [13, 20].
For example, as they learn to graph functions, students are taught
to distinguish functions from other mathematical relations using
the “vertical line test”, but this does not extend to polar coordinates
or to certain cases where functions on cartesian coordinates are
inverted by swapping domain and range [20]. In general, functions
get more sophisticated as students proceed through high-school
and collegiate mathematics (consider regression models or calculus,
for example). They are already more sophisticated in early com-
puting, as functions have domains other than numbers. A limited
procedural conception of functions therefore has implications for
both mathematics and computing education. Computing offers a
grade-appropriate and compelling context for learning a richer
concept of functions for the long-term benefit of both disciplines.

I These comments are in no way meant to be derogatory of teachers. Their perspectives
are cultural, embedded throughout the materials, texts, and conversations that many
are accustomed to around teaching mathematics.

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

INTEGRATION LESSON 1. Check your assumptions about how teach-
ers understand aspects of the host discipline that you depend on in
your approach to teaching CS.

3.1 Focusing on Concepts of Functions in PD

As we looked at what backgrounds teachers were bringing to PD,
we refined what we felt teachers needed to know about functions
prior to the workshop. In particular, they needed a robust concept
of function that included (a) seeing functions as objects with prop-
erties, rather than just an alternative notation for equations, (b)
realizing that functions were not limited to single or numeric in-
puts and single numeric outputs, and (c) being comfortable with
functions as capturing computations and models.

Knowing that these concepts may take some time to develop
(and that PD time was limited), we extended the PD to include an
online preparatory module on functions that would activate and,
where needed, perturb existing conceptions (while also serving as
an initial community-building exercise). The expected time com-
mitment was one hour per week for each of the 5 weeks preceding
the in-person workshop. All work was done in the Discourse plat-
form [7]. We assigned teachers a series of exercises and written
reflections about the nature of functions, and had them comment
on each others’ answers. The specific exercises were designed to
introduce experiences with mathematical functions that were a
little different from their textbook exercises. The exercises would
support a continuous reflection on the concept of function and the
way participants teach it. We hoped this would extend participants’
understandings of functions, thus enabling the programming com-
ponent to strengthen this concept even further. Samples of these
exercises include:

(1) Asking teachers to define the concept of “function” and why
it is an important concept. (We revisit this question in later
instruments to see how teachers’ definitions evolve.)

(2) The Dynagraphs activity [8] uses dynamic math software
to explore a novel interactive representation of functions
as single-valued mappings and connect those to algebraic
expressions.

(3) Having teachers read and discuss a chapter from NCTM’s
“Putting Essential Understanding of Functions into Practice
in Grades 9-12” [20] that raises common issues that arise in
student conceptions of functions.

(4) The FluData activity gives participants two tables, one about
the number of students infected each day with the flu and
another table about the number of tissue boxes sold depend-
ing on the number of students infected with flu. Participants
are encouraged to think about relationships across a set as
well as the need for function composition.

The Graphing Stories activity focuses on representing action

in stories through graphs of functions. This exercise runs

within Desmos [6], a graphing calculator (and more) that is
popular among math teachers.

—
wl
=

3.2 Observations

In post-workshop evaluations, many teachers reported that the pre-
workshop changed their thinking about functions in mathematics.
They found useful activities to bring to their own classrooms from

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

both the math and the CS perspectives. However, they still hadn’t
yet made deeper conceptual links between the Discourse activities
and computing. In particular, it appeared the teachers mostly saw
the videogame project as a cool application of topics that their
courses covered, but not as a mechanism for learning something
new about functions. At the end of the in-person PD, teachers were
asking us to help them better understand what CS actually is, how
it connects to mathematics, and what its standards ask of students.
While we had made progress on relaxing teachers’ assumptions
about functions, we had not yet made the changes needed to enable
the teachers to transfer [5, 25] concepts about functions between
math and CS.

INTEGRATION LESSON 2. Making sure that participants have the
foundations to connect two disciplines is necessary but not sufficient
when designing PD. Integration efforts must also include explicit oppor-
tunities for teachers to articulate connections between the disciplines.
Both parts are needed to achieve significant transfer.

4 INCLUDING MATH TEACHING PRACTICES

The original BS:A design made extensive use of paper-and-pencil
worksheets for both Circles of Evaluation and the Design Recipe
(as well as other intermediate exercises). In an initial evaluation
of the materials [24] with a mix of math teachers and CS teachers,
all of the math teachers commented positively on the familiar use
of worksheets, while the CS teachers found the structure unusual,
if not outright foreign. Over the years, many math teachers have
commented on BS:A’s familiar pedagogic tools being part of what
made them comfortable with the program.

The Discourse activities, which were designed by experts in on-
line math learning (co-authors Weimar and Fetter from the former
Math Forum), introduced another well-regarded practice called
“Notice and Wonder” [16]. In this practice, students are initially
given a description of a scenario or an artifact (such as a graph or
diagram), but not a specific question to answer about it. Students
instead respond to two prompts: “What do you notice?” and “What
do you wonder?”. Without the pressure to provide a correct answer,
students’ observations center around making sense of the scenario
or artifact, attending to interesting features or patterns, subparts
and their relationships, the context, and so on. The protocol in-
vites participation (since there is minimal risk of saying something
“wrong” and all observations are deemed worthy of expression). It
centers students’ thinking while also helping them attend to the key
structural features of the scenario (one of the practices highlighted
in many K-12 math standards). This protocol is not limited to stu-
dents: for example, it is the center of a weekly New York Times
series called “What’s Going on in This Graph?” [14], also developed
with the support of co-author Fetter. The BS:A staff revised the
curricular materials to introduce Notice-and-Wonder activities into
the computing portions of the curriculum, hoping to draw teachers’
attention to such concepts as re-use, syntax, and the structure of
expressions in programming.

We have also begun to adapt a lesson structure from the math
education community known as Math Workshop [12]. Each lesson
now has three segments called Launch, Investigate, and Synthesize.
The first engages students in sensemaking and exploration of the

Fisler, Schanzer, Weimar, Fetter, Renninger, Krishnamurthi, Politz, Lerner, Poole, Koerner

mathematical setting for a problem, the second covers specific tech-
niques for working on a problem, and the last engages in reflective
activities that can consolidate learning and generalizations. Exer-
cise structures like these are common in math teaching, but less so
in computer science.

Computing education as a discipline may have a lot to learn from
these methods. Our point here, however, is that independent of their
standalone impact on CS learning, embracing task structures that
are established in math education can help math teachers accept
and frame CS content.

INTEGRATION LEsSON 3. Understand teaching practices in the host
classes and adapt your content to them (when feasible), rather than
expect teachers to adopt CS teaching practices while also learning new
CS content.

5 UNDERSTANDING TEACHERS

Until this point in the development of BS:A, our feedback on the
PD and the curricular materials came through two main sources: (1)
end of workshop surveys and (2) two rounds of external evaluation
focused on teachers’ experiences with both PD and using the mate-
rials. Soon after we added the Discourse-based preparatory module,
co-author Ann Renninger, an educational psychologist, began to
conduct a deeper exploration of how participants’ understanding
of math, CS, and their potential integration was evolving through
the various PD activities.

How teachers’ thinking evolves has design implications for PD.
Other studies of mathematics PD have observed a correlation be-
tween participants’ reasons for attending PD and the kinds of PD
activities that motivate them to go deeper into material [18]. At
some level, this is intuitive: a teacher who has been instructed to
attend PD but doesn’t really see how the content is relevant to them
will engage with PD differently than a participant who already has
the background and interest to teach the content addressed in the
workshop. The prior research is, however, more nuanced. Studies
have shown that it is possible to support learners to develop their
interest, and that this is positively impacted when the assistance
or instruction that is provided is responsive to their present under-
standing [17, 19]. For some teachers, that means engaging them in
supporting fellow participants. Others need help making connec-
tions between new content and their existing teaching practices. If
the prior findings held in our integrated setting as well, we could
draw on past literature to further adapt the design of our PD.

For the past two and a half years, we have been conducting a
mixed methods study with participants in our workshops in Ok-
lahoma (starting with the first group that worked with the online
activities described in section 3.1). Our data thus far suggest that
prior exposure to CS is not a strong factor in whether teachers go
on to use our materials. Having CS background affects teachers’
initial comfort with writing code, but their interest in mathematics
and understanding integration is what’s critical. In particular, teach-
ers who adopt materials are driven by their interest in math, rather
than an independent interest in CS. The success of PD at reaching
teachers ultimately depends on how the teachers view mathemat-
ics, and whether the PD provides time and space for them both
to understand the mechanisms of integration and to develop core
skills in CS.

Evolving a K-12 Curriculum for Integrating
Computer Science into Mathematics

INTEGRATION LESSON 4. Teachers who are interested in learning
to teach CS start with their understanding of their home discipline,
but aren’t necessarily aware of what CS means in that discipline.
Continuing to engage teachers in thinking about learning of their
home discipline may be critical for motivating them to include CS
content, even when they believe CS content is valuable for students.

From the perspective of workshop design, the key takeaway is
that teachers need to be exposed to more than the content that
they will eventually teach to students. They need to be exposed to
content that will promote their own (sometimes professional, some-
times personal) interest in integrating computing into their home
discipline. The workshop design needs to stretch the possibilities
they see for their teaching of their home discipline.

6 GO WIDE BEFORE GOING DEEP

Early in the development of BS:A, the team would hear from teach-
ers that they had “adopted” the material, when in fact they were
using only the earliest lessons (on Circles of Evaluation and perhaps
creating images). Before we started to study teachers’ development
via PD (section 5), we viewed such “adoptions” largely as failures.
While such adoption still falls short of what we hope to achieve
in the long term, we now see this form as a critical stepping stone.
Our current challenge is to design PD that encourages teachers to
keep taking these small steps as they build up their understanding
of computing and how it integrates with math.

Our original PD design (section 2) focused on getting participants
to implement the videogame project within the 3-day in-person
workshop. We felt the game was important for two reasons: cov-
ering multiple math topics and engaging students. In open-ended
evaluation questions post-PD, teachers often mentioned that they
were proud for having created a game themselves, and that they
thought their students would enjoy the game project. But our study
data from the Oklahoma teachers suggests that at least for some
teachers, the game project goes too deep too fast. It is too big of a
bite for easy integration, and was intimidating teachers more than
inspiring them. Instead, it appeared we would be better off exposing
teachers to multiple initial points of contact between math and CS,
and introducing the game project over a longer period of time.

In our Oklahoma workshops, we have stopped getting to the
game project in the 3-day PD. Instead we introduce three forms of
early content: (day 1) Circles of Evaluation and composing images;
(day 2) writing linear functions and using them in simulations; and
(day 3) manipulating data tables to create data subsets and plots
from Bootstrap:Data Science [4]. Some teachers first integrate the
content from day 1, while others start with the content from day
3 (based on what makes the most sense for their classes). The end
of day 2 looks ahead to where the materials might go for creating
games and simulations, but without conveying the expectation that
teachers are ready to implement this for themselves.

Since making this change, we find that roughly half of each
starting cohort (roughly 24 teachers each time) has asked to re-
turn for more PD. Many seek to redo the first PD to solidify their
knowledge, while others have gained confidence and are ready for
more advanced material. In the coming academic year, we will be
introducing a second-level workshop for those who have already
used the early content with students: this workshop will introduce

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

more of modeling and simulation that could be used to reach the
videogame project or to work more deeply with applications to
data science (the participants will decide).

INTEGRATION LESSON 5. A PD model designed around a culmi-
nating activity that will be engaging to students may be harder for
teachers to adopt than one that helps teachers make incremental
steps towards incorporating CS into their classes. Teachers may need
or want to repeat the content of their first PD before moving on to
learning additional material.

7 MAKING MATERIALS MORE FLEXIBLE

When BS:A started (over a decade ago), it was designed as an after-
school program [21] taught by volunteers with programming ex-
perience but no classroom-management experience. The initial
curricular materials scripted content and classroom-management
techniques into neat 90-minute segments that culminated in fin-
ishing the videogame project. Once our focus shifted to working
with in-school math teachers, we reworked the materials to take
out classroom-management and to include instructions on teach-
ing computing (for teachers who lacked programming experience).
We also rebranded the 90-minute segments as units focused on a
specific content topic. The focus on the videogame remained. (This
rewrite occurred years before the modifications to PD described in
sections 3.1 through 5.)

The videogame-based materials supported teachers who wanted
to use them as a whole unit at the end of the school year (using
the game project to keep students engaged as summer neared), but
required a heavy lift from those who wanted to cover the material
integrated in pieces across a longer span. Those teachers had to
subdivide the materials for themselves. For teachers who wanted to
integrate computing but not do the game project, the task was even
more challenging. These teachers needed curricular materials that
separated the underlying math-aligned computing concepts from
the videogame project. In addition, while some teachers needed
scripted materials (as they were getting started), others needed
lesson outlines that they could readily tailor to their own classes.

The BS:A curriculum has since been rewritten once more, this
time as a series of individual lessons that can be remixed in diverse
contexts. We present the curriculum as different “pathways” that
build upon shared lessons while leading to different end goals. The
lessons are no longer minutely scripted, but instead provide tasks
structured into the Launch, Investigate, and Synthesize segments
described in section 4. Lessons are now downloadable as Google
Docs, to make it easier for teachers to create their own lesson plans
around our notes. Both of these steps acknowledge that teachers
need to find their own ways to integrate content, and those paths
may differ considerably, even (as we have found) for teachers in
the same district or demographic community.

8 REVISITING PROGRAMMING LANGUAGES

Over the years, we have had many internal discussions about which
programming language to use. Even within functional program-
ming, we have debated the tradeoffs between parenthetical syntax
with prefix notation and a more traditional syntax (in both math
and CS) that uses infix for operators and prefix for functions. At
a high-level, the tradeoff has been between the ease of translating

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

from Circles of Evaluation to parenthetical code on one side and
the familiarity of infix syntax for arithmetic and alignment with
mainstream programming syntax on the other.

When we started BS:A, there were no K-12 CS standards and
few large-scale efforts to teach CS in USA secondary schools. That
landscape has changed dramatically. Many districts now consider
using BS:A within a multi-year progression leading to standalone
CS courses in later school years. Some teachers want to use BS:A as
part of CS courses that combine material from multiple providers.
Even our own integrated content has expanded considerably, as we
have introduced content on data science and modeling into our core
program (section 6). Responding to this context, we have shifted our
materials to use Pyret [15], a different functional-programming lan-
guage with Python-like syntax (designed by authors Krishnamurthi,
Lerner, and Politz). This has opened up considerable possibilities
for connecting our materials to other efforts.

From a K-12 CS perspective, a natural question is whether shift-
ing to blocks (rather than textual programming) would have been
better. Our data do not suggest that blocks would make a signifi-
cant difference in the context of integrating into math classes. First,
our Circles of Evaluation are already a diagrammatic syntax (that
matches the expression structure of functional programming). Sec-
ond, our syntactic needs are lighter-weight than in many early
programming projects due to our use of functional programming:
our students need only expressions, function calls, function defini-
tions, and conditionals. In terms of syntax errors (which blocks can
help avoid), the main issues we observe in practice are in getting the
correct order of arguments and in remembering to close parentheses
after function calls. Finally, blocks would miss a key opportunity
from integrating computing into math, where students need to
be comfortable working in textual symbolic form. Many teachers
actually appreciate that error messages encourage precision!

9 THINKING ABOUT STANDARDS

When BS:A started, we were thinking about how to leverage com-
puting to help students contextualize mathematics. We wanted
the videogame project to help students see why math is useful, in
hopes of encouraging them to stay engaged with math through
middle- and early high-school (when many students turn away
from math due to the challenges of algebra). Over the years, as we
have worked with more math teachers, as well as talked to more
school districts (where impact on state testing scores in math is
a primary concern), we have had to align our materials to math
standards. With the growing adoption of CS standards for K-12,
some of our partners (including Oklahoma) are asking how to use
our approach to integration to satisfy some of their CS standards as
well. We are thus now at a point of asking how to simultaneously
satisfy math and CS K-12 standards using our materials.

Current CS [2] and math [1] standards have interesting differ-
ences, many of which center around differing notions of variables
and control flow. Elementary school CS standards introduce the idea
of stateful variables; in math standards, variables arise in middle-
school and represent different values over time, but not stateful
ones. CS standards emphasize loops for control flow, whereas func-
tion composition represents control flow in math. Both math and
CS share core ideas of conditional and repeated computation, but

Fisler, Schanzer, Weimar, Fetter, Renninger, Krishnamurthi, Politz, Lerner, Poole, Koerner

CS frames these concepts through an emphasis on imperative pro-
gramming. In contrast, math might introduce these conceptions
through models based on piecewise functions or models that are re-
peatedly applied in the context of simulation. In short, many of the
content topics in the algorithms, programming, or computational
thinking portions of CS standards could align with a math context,
but not necessarily using the specific implementation decisions,
phrasings, or grade-band progressions that have been hard-coded
into CS standards. Taking teachers’ needs seriously (section 5), the
CS side may need to be the ones to bend.?

Comparing the K-12 Practice standards for math and CS is even
more revealing. Math practice standards tend to focus on cognitive
and behavioral aspects of solving mathematical problems, while the
CS practice standards focus more on creating artifacts. While the
contrasts do reflect genuine differences between the disciplines
(CS is not a sub-field of mathematics, after all!), we find the math
practices to be much more useful in thinking about how to align
content in integration. A (math) practice like “look for and make
use of structure”, for example, applies in both disciplines, but is
not articulated within CS standards. “Make sense of problems and
persevere in solving them” (math) is important to both fields as
well, but there is no analog in CS. CS standards emphasize working
collaboratively and producing artifacts; neither of these hint at the
sort of mental or executive-function behaviors that are perhaps a
more useful guide for integrating learning across disciplines.

INTEGRATION LESSON 6. Those developing or using integrated
curricula should not expect that standards across the disciplines will
align as written, even if the underlying spirit of the content and
practices are fundamentally similar. This can pose a challenge when
creating materials that will be accepted by schools and districts.

10 REFLECTION AND CONCLUSION

This paper is a retrospective experience report, looking at the evolv-
ing design decisions and lessons learned over the past 6 years of
trying to create curricular materials for integrating CS into 7th-10th
grade math classes in the USA. We began this project with what
we thought was a clear understanding of where math and CS could
meaningfully align in the context of middle-grades math curricula.
As we have paid more attention to pedagogic content knowledge,
cultures and practices of math teaching, and how to engage teach-
ers over time (as informed by feedback from and interviews with
teachers), we have come to understand integration differently. We
appreciate the fine-grained stages in which such work might take
hold, as well as the preparation and long-term support needed for
teachers to work effectively with integrated materials. The lessons
stated throughout this paper summarize our core insights.

Arguably, the lessons we raise are not new. Instructional-design
practices such as knowing your audience and the need to explicitly
teach for transfer are well established. The challenge, of course,
lies in the practical application of such results. We needed to work
closely with our teachers to understand what we had taken for
granted and what we needed to teach explicitly, even after (thinking
we were) applying these lessons to our initial design. We hope that
highlighting what we have learned will help other programs explore
relevant concrete issues earlier in their design processes.

2This view reflects co-author Fisler’s experience writing CS standards in three states.

Evolving a K-12 Curriculum for Integrating
Computer Science into Mathematics

ACKNOWLEDGEMENTS

We are deeply grateful to the hundreds of teachers and thousands
of students who have used our curricula and provided feedback.
We thank our external evaluators, McClanahan and Associates. We
have been supported by the US National Science Foundation (grants
1535276,1738598,1738606,1829544), Microsoft, Google, Jane Street
Capital, Code.org, and TripAdvisor; and numerous school districts.
We thank them all.

REFERENCES

(1]
(2]

2010. Common Core Standards for Mathematics. http://www.corestandards.org/
Math/; retrieved August 14, 2019.

2017. The CSTA Standards. https://www.csteachers.org/page/standards, last
accessed 2018-05-04.

Bootstrap Algebra [n.d.]. Bootstrap:Algebra Curriculum.
bootstrapworld.org/materials/algebra/.

Bootstrap Data Science [n.d.]. Bootstrap:Data Science Curriculum. https://www.
bootstrapworld.org/materials/data-science/.

https://www.

[5] J.D. Bransford and D. Schwartz. 1999. Rethinking transfer: A simple proposal

B
20,0 3

=
A=A

[11

[12]

with multiple implications. In Review of Research in Education. Vol. 24. American
Educational Research Association, 61-100.

Desmos. [n.d.]. https://www.desmos.com/.

Discourse. [n.d.]. http://www.discourse.org/.

Dynagraphs. [n.d.]. http://files.mathematicalthinking.org/wsp/dynagraphs/.
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/
Matthias Felleisen and Shriram Krishnamurthi. 2009. Why Computer Science
Doesn’t Matter. Commun. ACM 52, 7 (July 2009).

Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR2010-1.
PLT Inc. http://racket-lang.org/tr1/.

Wendy Ward Hoffer. 2012. Minds on Mathematics: Using Math Workshop to
Develop Deep Understanding in Grades 4-8. Heineman.

[13]

[14

jpergeny
)

[17

(18]

[19

[21

[22

[23

[24

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

C. Kieran. 2007. Learning and teaching algebra at the middle school through
college levels. In Second handbook of research on mathematics teaching and
learning, F. K. Lester (Ed.). Vol. 2. National Council of Teachers of Mathematics,
Information Age Publishing, Charlotte, NC, 707—-762.

New York Times Learning Network. 2017. Announcing a New Monthly Feature:
What’s Going On in This Graph? https://www.nytimes.com/2017/09/06/learning/
announcing-a-new-monthly-feature-whats-going- on-in-this-graph.html.
Pyret [n.d.]. The Pyret Language and Programming Platform. https://pyret.org/.
Max Ray. 2013. Powerful problem solving: Activities for sense making with the
mathematical practices. Heinemann.

K.A. Renninger and S.E. Hidi. 2020. To Level the Playing Field, Develop Interest.
Policy Insights from the Behavioral and Brain Sciences 1 (2020).

K. A. Renninger, M. Cai, M. Lewis, M. Adams, and K. Ernst. 2011. Motivation
and learning in an online, unmoderated, mathematics workshop for teachers.
Special Issue: Motivation and New Media. Educational Technology, Research and
Development 59, 2 (2011), 229-247.

K. A. Renninger and S. E. Hidi. 2019. Interest development and learning. In The
Cambridge handbook of motivation and learning, K.A. Renninger and S.E. Hidi
(Eds.). Cambridge: Cambridge University Press, 265-296.

Robert Ronau, Dan Meyer, Terry Crites, and Barbara Dougherty. 2014. Putting
Essential Understanding of Functions Into Practice in Grades 9-12. National Council
of Teachers of Mathematics.

Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2013. Bootstrap:
Going Beyond Programming in After-School Computer Science. In SPLASH
Education Symposium.

Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2018. Assessing
Bootstrap:Algebra Students on Scaffolded and Unscaffolded Word Problems. In
ACM Technical Symposium on Computer Science Education.

Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
2015. Transferring Skills at Solving Word Problems from Computing to Algebra
Through Bootstrap. In ACM Technical Symposium on Computer Science Education.
Emmanuel Tanenbaum Schanzer. 2015. Algebraic Functions, Computer Program-
ming, and the Challenge of Transfer. Ph.D. Dissertation. Harvard Graduate School
of Education.

M. K. Singley and J. R. Anderson. 1989. The Transfer of Cognitive Skill. Harvard
University Press.

http://www.corestandards.org/Math/
http://www.corestandards.org/Math/
https://www.csteachers.org/page/standards
https://www.bootstrapworld.org/materials/algebra/
https://www.bootstrapworld.org/materials/algebra/
https://www.bootstrapworld.org/materials/data-science/
https://www.bootstrapworld.org/materials/data-science/
https://www.desmos.com/
http://files.mathematicalthinking.org/wsp/dynagraphs/
http://www.htdp.org/
http://racket-lang.org/tr1/
https://www.nytimes.com/2017/09/06/learning/announcing-a-new-monthly-feature-whats-going-on-in-this-graph.html
https://www.nytimes.com/2017/09/06/learning/announcing-a-new-monthly-feature-whats-going-on-in-this-graph.html
https://pyret.org/

	Abstract
	1 Introduction
	2 The Initial Effort
	3 Understanding Functions
	3.1 Focusing on Concepts of Functions in PD
	3.2 Observations

	4 Including Math Teaching Practices
	5 Understanding Teachers
	6 Go Wide Before Going Deep
	7 Making Materials More Flexible
	8 Revisiting Programming Languages
	9 Thinking About Standards
	10 Reflection and Conclusion
	References

