
AlloyMax: Bringing Maximum Satisfaction to
Relational Specifications

Changjian Zhang

Carnegie Mellon University

Pittsburgh, USA

changjiz@andrew.cmu.edu

Ryan Wagner

Carnegie Mellon University

Pittsburgh, USA

rrwagner@cs.cmu.edu

Pedro Orvalho

INESC-ID/IST, Universidade de Lisboa

Lisboa, Portugal

pedro.orvalho@tecnico.ulisboa.pt

David Garlan

Carnegie Mellon University

Pittsburgh, USA

garlan@cs.cmu.edu

Vasco Manquinho

INESC-ID/IST, Universidade de Lisboa

Lisboa, Portugal

vasco.manquinho@tecnico.ulisboa.pt

Ruben Martins

Carnegie Mellon University

Pittsburgh, USA

rubenm@andrew.cmu.edu

Eunsuk Kang

Carnegie Mellon University

Pittsburgh, USA

eskang@cmu.edu

ABSTRACT
Alloy is a declarative modeling language based on a first-order rela-

tional logic. Its constraint-based analysis has enabled a wide range

of applications in software engineering, including configuration

synthesis, bug finding, test-case generation, and security analysis.

Certain types of analysis tasks in these domains involve finding an

optimal solution. For example, in a network configuration problem,

instead of finding any valid configuration, it may be desirable to

find one that is most permissive (i.e., it permits a maximum number

of packets). Due to its dependence on SAT, however, Alloy cannot

be used to specify and analyze these types of problems.

We propose Alloy
Max

, an extension of Alloy with a capability

to express and analyze problems with optimal solutions. Alloy
Max

introduces (1) a small addition of language constructs that can be

used to specify a wide range of problems that involve optimality

and (2) a new analysis engine that leverages aMaximum Satisfiabil-
ity (MaxSAT) solver to generate optimal solutions. To enable this

new type of analysis, we show how a specification in a first-order

relational logic can be translated into an input format of MaxSAT

solvers—namely, a Boolean formula in weighted conjunctive normal
form (WCNF). We demonstrate the applicability and scalability of

Alloy
Max

on a benchmark of problems. To our knowledge, Alloy
Max

is the first approach to enable analysis with optimality in a rela-

tional modeling language, and we believe that Alloy
Max

has the

potential to bring a wide range of new applications to Alloy.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3468587

CCS CONCEPTS
• Software and its engineering → Specification languages;
Software system models; Formal methods.

KEYWORDS
Alloy, SAT, MaxSAT, Relational specifications, Model synthesis

ACM Reference Format:
Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Man-

quinho, Ruben Martins, and Eunsuk Kang. 2021. AlloyMax: Bringing Max-

imum Satisfaction to Relational Specifications. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021,
Athens, Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3468264.3468587

1 INTRODUCTION
Alloy[16] is a declarative modeling language based on a first-order

relational logic with transitive closure. Thanks to its expressive

power, along with the analysis capability provided by its back-end

engine, the Alloy Analyzer, it has been applied to a wide range of

problems in software engineering, including protocol verification [4,

47], configuration analysis [27, 34], test-case generation [19], bug

finding [9, 17], and security analysis [1, 18, 43].

The types of analysis that can be performed with a high-level

modeling language like Alloy depend on the capability of its under-

lying engine. The Alloy Analyzer is at its core a finite model finder :
Given a set of first-order logic (FOL) constraints that correspond to

a system specification 𝑀 and user query 𝑆 (e.g., 𝑆 ≡ “find a valid

network configuration”), the analyzer translates formula𝑀 ∧ 𝑆 to

an equisatisfiable Boolean formula 𝐹 such that a satisfying instance

to 𝐹 is also a solution to 𝑀 ∧ 𝑆 . This analysis is then performed

by an off-the-shelf Boolean Satisfiability (SAT) solver. In general,

there may be multiple satisfying instances 𝐹 ; the Alloy Analyzer

also provides a way to enumerate these solutions by repeatedly

invoking the solver with additional constraints that are intended

to block the previously seen instances.

https://doi.org/10.1145/3468264.3468587
https://doi.org/10.1145/3468264.3468587
https://doi.org/10.1145/3468264.3468587

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

The reliance on the SAT-based analysis means, however, that

the Alloy Analyzer cannot be used to automatically perform the

following types of analysis:

• Generation of optimal solutions: It is sometimes desirable to

find not only any solution but one that is minimal or maximal,
depending on the problem being modeled. For instance, in the

context of security exploit generation [43], it may be desirable

to synthesize the smallest possible exploit that can demonstrate

a security violation. In a network firewall configuration prob-

lem [34], a configuration setting that maximizes the number of

allowed packets while satisfying a security policy is typically

considered more desirable than a less permissive solution. How-

ever, since the Alloy Analyzer returns instances in an arbitrary

order, finding such an optimal solution can only be done by

enumerating the (typically very large) space of all instances.

• Analysis with soft constraints: Certain problems are natu-

rally expressed using a combination of both hard and soft con-
straints, where a desirable solution should satisfy as many of

the soft ones as possible. For example, a meeting scheduling

problem may consist of hard constraints (e.g., “all participants

must be present”) as well as soft ones (e.g., “participants’ time

preferences”); if it is not possible to satisfy all of the latter, a

solution that fulfills as many of these optional preferences is still

more desirable than others. Since all of the constraints in Alloy

are treated as hard constraints that must always be satisfied, it

is currently not possible to analyze such types of problems.

• Analysis with priorities: When a problem has multiple, in-
comparable optimal solutions, it may be helpful to rank these

solutions using some notion of priority among constraints. For

instance, in the aforementioned scheduling problem, a partici-

pant may have a higher preference towards meeting times in the

morning rather than in the afternoon. Again, since Alloy treats

all of the constraints equally, it is not possible to solve problems

where such a notion of priority plays an important role.

In this paper, we propose Alloy
Max

, an extension of Alloy that

overcomes these limitations by enabling an analysis of Alloy speci-

fications with optimal solution generation. In particular, we propose

both (1) a language extension to allow the user to specify soft con-

straints and indicate parts of an Alloy specification that must be

optimized and (2) a new analysis back-end that leverages a max-
imum satisfiability (MaxSAT) solver to perform the analysis. To

enable this analysis, we also provide a new translation mechanism

from a high-level Alloy
Max

specification in FOL to an equivalent

MaxSAT problem.

The proposed extension significantly extends the range of anal-

yses that can be performed over Alloy specifications. It is also a

strict generalization of Alloy: It introduces no semantic changes

to existing Alloy specifications and includes only a small number

of syntactic extensions, and thus should be easily adoptable by

existing Alloy users.

We demonstrate the added analysis capability of Alloy
Max

on a

variety of case studies, including exploit generation on microproces-

sors [43] (similar to the well-known Spectre [20] andMeltdown [24]

attacks), graceful degradation in security [13], a wedding seating

assignment [32], and a task scheduling problem [22]. We show that

not only can our extension be used to perform analyses that were

Table 1: The course timetable of the scheduling problem.

Mon Tue Wed Thu Fri
AM CS101 ML/Compiler CS101 ML/Compiler

PM SE OS SE OS CS101

not possible in Alloy before, but the performance of our analysis

engine is competitive to the existing Alloy Analyzer.

The contributions of this paper are as follows:

• An extension to Alloy, called Alloy
Max

, and an accompanying

analysis engine that can be used to generate optimal solutions

and solve problems with soft, prioritized constraints (Section 2);

• A translation mechanism from a first-order relational logic to a

weighted Boolean formula (Section 4);

• An optimization technique that uses high-level information in

an input Alloy specification to guide a MaxSAT solver more

efficiently towards optimal solutions (Section 5); and

• A collection of case studies demonstrating the new types of anal-

yses in Alloy
Max

, and a set of benchmark results demonstrating

its performance on problems of varying sizes (Section 6).

2 EXAMPLES
As a motivating example, consider a model of a course scheduling
problem in Alloy (Figure 1). A university offers a set of courses that

students can register for each semester; in this model, we assume

the school is offering five courses named CS101, Compiler, OS, ML,

and SE (lines 6-10). Each lecture can take place during the morning

(AM) or afternoon (PM) between Monday to Friday (lines 1-4). A set

of all available lecture slots (lines 13-14) and their relations to the

day and time are defined on lines 17-18, and the timetable for the

courses (Table 1) is defined on line 20. Each student is associated

with a set of core courses that are required for their major. For

simplicity, we consider the scheduling problem for one particular

student, Alice, who is assigned CS101 as a core course.

Each student’s registration schedule must satisfy the following

requirements:

• Each student must take at least three courses (line 35);

• Each student must take all of the core courses that they are

assigned, and (line 36);

• A student cannot take courses whose lecture times conflict with

each other (line 37).

Given this model, we can use a run command (line 47) in Alloy

to generate a valid course schedule for Alice that satisfies all of

the requirements. Figure 2a shows the first generated instance,

indicating that Alice could take Compiler, CS101, OS, and SE to

satisfy the requirements.

2.1 Solving Optimization Problems
Suppose that we wish to extend this model to encode students’

interests in subjects (i.e., every student is interested in a set of

courses). The goal is to be able to generate a schedule thatmaximizes
the number of courses that match a student’s interest, in addition to
satisfying the three basic requirements. The following code snippet

shows the new definition for Student and Alice, where Alice is

interested in SE and ML.

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 abstract sig Day {}// The set of days for Mon to Fri.

2 one sig Mon , Tue , Wed , Thu , Fri extends Day {}
3 abstract sig Time {}// The set of times (AM and PM).

4 one sig AM , PM extends Time {}
5

6 abstract sig Course { // The set of courses.

7 // Each course has several lectures in a week.

8 lectures: set Lecture

9 }
10 one sig CS101 , Compiler , OS , ML , SE extends Course {}
11

12 // In total , 5 (days) x 2 (AM/PM) lecture slots.

13 abstract sig Lecture { day: one Day , time: one Time }
14 one sig MonAM , MonPM , TueAM , . . . extends Lecture {}
15 fact {
16 // The full day/time definition is omitted.

17 day = MonAM -> Mon + MonPM -> Mon + . . .

18 time = MonAM -> AM + MonPM -> PM + . . .

19 // The full timetable definition is omitted.

20 lectures = SE -> MonPM + SE -> WedPM + . . .

21 }
22

23 abstract sig Student { // The set of students.

24 // Each student is assigned a set of core courses.

25 core: set Course ,

26 // Each student may register for a set of courses.

27 courses: set Course

28 }
29 one sig Alice extends Student {} {
30 core = CS101 // Alice has to take CS101.

31 }
32 // The predicate for the three requirements.

33 pred validSchedule[courses: Student -> Course] {
34 all stu: Student {
35 #stu.courses > 2

36 stu.core in stu.courses

37 all disj c1 ,c2:stu.courses | not conflict[c1 , c2]
38 }
39 }
40 pred conflict[c1 , c2: Course] {
41 some l1 , l2: Lecture {
42 l1 in c1.lectures and l2 in c2.lectures

43 l1.day = l2.day and l1.time = l2.time

44 }
45 }
46 // Generate a valid schedule.

47 run { validSchedule[courses] }

Figure 1: An Alloy model for the course scheduling system.

(a) (b)

(c) (d)

Figure 2: Instances of the course scheduling problem.

1 abstract sig Student {
2 core: set Course , courses: set Course ,

3 // Courses that this student is interested in.

4 interests: set Course

5 }
6 one sig Alice extends Student {} {
7 core = CS101

8 interests = ML + SE // Interested in ML and SE.

9 }

Even though this maximization problem can be expressed in Alloy

as follows, it contains a higher-order quantification (line 3, over

possible relations from Student to Course), which cannot be solved

by the Alloy Analyzer
1
:

1 run {
2 validSchedule[courses]
3 no courses ': Student -> Course {
4 validSchedule[courses ']
5 some stu:Student | #(stu.interests & stu.courses)

6 < #(stu.interests & stu.courses ')

7 }
8 }

This optimization problem can be solved by our extension, Alloy
Max

.

The following code snippet shows a run command that uses our

new maxsome multiplicity construct:

1 run MaxInterests1 {
2 validSchedule[courses]
3 all stu:Student| maxsome stu.interests & stu.courses

4 }

The meaning of the constraint on line 3 is that for any student,

there exist some elements in the intersection of set 𝑠𝑡𝑢.𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠

and set 𝑠𝑡𝑢.𝑐𝑜𝑢𝑟𝑠𝑒𝑠 that should be maximized, i.e., find an instance

that maximizes the number of elements in this intersection.

An alternative way of specifying the optimization problem is by

using our new maxsome quantifier :
1 run MaxInterests2 {
2 validSchedule[courses]
3 all stu: Student | maxsome comm: set Course |
4 comm in stu.interests and comm in stu.courses

5 }

Figure 2b shows the instance generated by a MaxSAT solver, which

suggests that Alice could take CS101, ML, OS, and SE, where ML

and SE are the courses that Alice is interested in.

2.2 Solving Problems with Soft Constraints
We wish to extend the model further to allow students to indicate

preferences over lecture times for their courses. For example, sup-

pose that Alice does not want to take courses on Thursdaymornings

and Friday afternoons. The following code snippet shows a run

command with a constraint that encodes Alice’s preferences. When

the command is executed, the Alloy Analyzer fails to find any valid

schedule (i.e., the resulting formula is unsatisfiable) because Alice

has to take CS101, which has lectures on Friday afternoons.

1 run WithPrefer {
2 validSchedule[courses]
3 all stu:Student| maxsome stu.interests & stu.courses

4 // No lecture on Thu AM.

1
Another extension of Alloy, called Alloy

∗
[33], can be used to solve higher-order

quantification, but does not support other types of analysis shown in Sections 2.2 and

2.3. We provide a more detailed comparison of Alloy
Max

and Alloy
∗
in Section 7.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

5 ThuAM !in Alice.courses.lectures

6 // No lecture on Fri PM.

7 FriPM !in Alice.courses.lectures

8 }

One way to find a satisfying instance is to relax some of the

constraints; for instance, Alice could be asked to give up on some

of her preferences to satisfy the requirements. However, Alloy does

not provide a way to specify such desirable but optional constraints.
In Alloy

Max
, we introduce a notion of soft constraints, i.e., a set of

constraints that are not required but should be satisfied as much as

possible. The following code shows a new type of construct called

soft fact, which contains a list of soft constraints:

1 soft fact {
2 ThuAM !in Alice.courses.lectures

3 FriPM !in Alice.courses.lectures

4 }
5 run WithSoftPrefer {
6 validSchedule[courses]
7 all stu:Student| maxsome stu.interests & stu.courses

8 }

Given the above run command, Alloy
Max

will attempt to find an

instance that maximizes the number of satisfied soft constraints, in

addition to the other hard constraints that encode the three basic

requirements. Figure 2c shows an instance where Alice could take

CS101, OS, and SE, i.e., Alice gives up her Friday afternoons in order

to register for CS101, but her Thursday mornings are freed up.

2.3 Solving with Priorities
However, Alice is not entirely satisfied with the above schedule.

Although her Thursdays are free, she has to give up the ML course,

which she is interested in. Given a choice between two conflict-

ing goals—keeping Thursday mornings free and studying ML—she

would rather choose the latter; i.e., ML has a higher priority for her.

Currently, in Alloy, there is no way to express and analyze with

such a notion of priorities among constraints.

In Alloy
Max

, priorities can be explicitly assigned to maximal or

soft constraints to indicate the user’s preferences on which of the

possibly conflicting constraints must be satisfied first. For example,

in the following snippet,maxsome[1] indicates that maximizing the

number of interested courses has a higher priority than satisfying

the time preferences (i.e. soft fact is assigned default priority of 0).

1 soft fact {
2 ThuAM !in Alice.courses.lectures

3 FriPM !in Alice.courses.lectures

4 }
5 run WithSoftPreferAndPrior {
6 validSchedule[courses]
7 all stu: Student |
8 maxsome[1] stu.interests & stu.courses

9 }

Figure 2d shows the instance generated by the solver; i.e., Alice

could take CS101, ML, OS, and SE, which maximizes her course

interests over her time preferences.

In summary, our extension expands the range of analyses avail-

able in Alloy, including (1) generating an instance that maximizes

or minimizes a given relation, which can be used for optimization

problems (2) defining soft constraints and finding an instance that

satisfies as many of these optional but desired constraints, and (3)

specifying priorities among different soft or maximal constraints.

3 BACKGROUND ON MAXSAT
A propositional formula in conjunctive normal form (CNF) is defined

as a conjunction of clauses, where each clause is a disjunction of

literals such that a literal is either a propositional variable 𝑣𝑖 or

its negation ¬𝑣𝑖 . A clause is satisfied if at least one of its literals

is satisfied. Finally, a CNF formula is satisfied if all its clauses are

satisfied. Given a CNF formula 𝜙 , the Satisfiability (SAT) problem

corresponds to deciding if there is an assignment such that 𝜙 is

satisfied or proving that no such assignment exists.

The Maximum Satisfiability (MaxSAT) is an optimization version

of the SAT problem. Given a CNF formula 𝜙 , the goal is to find an

assignment that maximizes the number of satisfied clauses in 𝜙 . In

partial MaxSAT, clauses in 𝜙 are split in hard 𝜙ℎ and soft 𝜙𝑠 . Given a

formula 𝜙 = (𝜙ℎ, 𝜙𝑠), the goal is to find an assignment that satisfies

all hard clauses in 𝜙ℎ while minimizing the number of unsatis-

fied soft clauses in 𝜙𝑠 . This problem can be further generalized to

weightedMaxSAT, where each soft clause has a positive weight, and

the goal becomes to minimize the sum of the weights of unsatisfied

soft clauses. MaxSAT algorithms have seen a remarkable improve-

ment in the last decade [3] and can be used to solve problems in

domains such as planning [48], data analysis [28], security [10],

and bioinformatics [11]. In this paper, we leverage existing MaxSAT

technology and extend Alloy to handle optimization problems.

4 SYNTAX AND SEMANTICS
This section describes the syntax and semantics of Alloy

Max
. It also

presents the formal translation rules from an Alloy
Max

specification

to a MaxSAT problem.

4.1 Abstract Syntax
Figure 3 shows the abstract syntax of Alloy

Max
. An Alloy

Max
prob-

lem is a tuple 𝑃 = ⟨A, 𝐷, 𝐹, 𝐹𝑆 ⟩ where A is the set of atoms in the

universe, 𝐷 is a set of relation declarations, 𝐹 is an Alloy formula

that defines the hard constraints that must be satisfied, 𝐹𝑆 is a soft
Alloy formula that defines the soft constraints that may or may not

be satisfied. A (hard) Alloy formula may contain keywords such as

maxsome for generating optimal solutions.

Optimization operators. AlloyMax
extends the existing some mul-

tiplicity operator withmaxsome andminsome for maximization and

minimization, respectively. Informally, some 𝑟 is true when relation

𝑟 is not empty; but with maxsome (minsome), the solver returns a
model with a non-empty 𝑟 that has a maximal (minimal) number

of tuples.

Alloy
Max

also extends the no multiplicity operator with softno.
Informally, no 𝑟 is true when 𝑟 is empty. For softno, the solver tries
to find a model with an empty 𝑟 , but if no such satisfying instance

exists, the solver instead returns a model where 𝑟 has the minimal

number of tuples. The difference between minsome and softno is
that minsome requires the relation 𝑟 to have at least one tuple.

In addition, the existential quantifier (i.e., some) is also extended

with maxsome and minsome. In Alloy, some 𝑒 : 𝑟 | 𝐹 is true when

there exists a tuple in relation 𝑟 that makes formula 𝐹 true. In

Alloy
Max

, when maxsome (minsome) is used in place of some, the

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

problem := univDecl relDecl* formula softFormula expr := rel | var | unary | binary | comprehension

softFormula := soft formula | soft[0..] formula | compositeSoft unary := unop expr

compositeSoft := softFormula and softFormula unop := ~ | ^

binary := expr binop expr

univDecl := {atom[,atom]*} binop := + | & | - | . | ->

relDecl := rel :arity comprehension := {varDecl | formula}

varDecl := var : expr

constant := {tuple*} formula := elementary | composite | quantified

tuple := ⟨atom[,atom]*⟩ elementary := expr in expr | mult expr

mult := some | maxsome | maxsome[0..] | minsome
| minsome[0..] | no | softno | softno[0..] | one

arity := 1 | 2 | 3 | ... composite := not formula | formula logop formula

atom := identifier logop := and | or
rel := identifier quantified := quantifier varDecl | formula

var := identifier

quantifier := all | some |maxsome | maxsome[0..]
| minsome |minsome[0..]

Figure 3: Abstract syntax of AlloyMax. Bolded text are existing keywords in Alloy; text in blue are new keywords in Alloy
Max.

solver finds a model where 𝑟 contains at least one tuple and tries to

maximize (minimize) the number of tuples in 𝑟 that make 𝐹 true.

Soft constraints. AlloyMax
introduces the soft fact keyword to

specify a soft constraint, i.e., soft fact 𝐹 where 𝐹 is an Alloy formula

but becomes soft. When multiple soft fact are present in a given

specification, the overall soft constraint 𝐹𝑆 is the conjunction of

those soft Alloy formulas.

Priority. A priority 𝑝 ∈ N0 may be specified along with every

one of the new operators in Alloy
Max

. When it is left unspecified, a

default lowest priority 0 is assigned to the associated Alloy formula.

4.2 Translation
Overview. Figure 4 formally defines the translation rules for

Alloy
Max

as an extension to the existing translation process in

Alloy [15, 42]. Due to limited space, we focus on the parts of the

translation process that are most relevant for Alloy
Max

.

A relation in Alloy is translated into a matrix of Boolean vari-

ables (each of which is true if and only if the tuple represented by

this particular variable is in the relation), and a relational expres-

sion (e.g., dot join) is represented by operations over one or more

matrices. In Alloy, a FOL problem with bounds is translated into a

Boolean formula, which is eventually converted into conjunctive

normal form (CNF). In Alloy
Max

, the idea is to instead convert it

into weighted conjunctive normal form (WCNF), where (1) hard

Boolean formulas are assigned the special weight of +∞, to ensure

that they are satisfied in every instance and (2) soft formulas are

assigned different weights (depending on the user-specified priori-

ties), to guide the solver towards an instance that maximizes the

total sum of weights.

Translation Steps. First, an Alloy
Max

problem is translated into

a Boolean formula with priorities, denoted by bool
𝑝
. A prioritized

Boolean formula 𝐹𝑘 is the Boolean formula 𝐹 with an optional

priority, 𝑘 , which is used in a later part of the translation to assign

weights to the corresponding WCNF clauses. When 𝑘 is omitted, it

represents a hard formula that must be satisfied.

In Figure 4, function𝑀𝑆 is used to translate soft constraints, i.e.,

constraints that are defined as part of soft fact in Alloy
Max

. Given

a soft constraint soft fact 𝐹 with priority 𝑘 , if 𝐹 is a conjunction of

Alloy formulas,𝑀𝑆 translates each conjuncts into a soft constraint

also with priority 𝑘 (line 17); otherwise,𝑀𝑆 translates the contained

Alloy formula 𝐹 by calling𝑀 and assigns 𝑘 as its priority (line 18).

Function 𝑀 is used to translate Alloy formulas. Keywords in

vanilla Alloy follow the existing translation rules. For each of the

new keywords in Alloy
Max

(e.g., maxsome, minsome), the trans-

lation rule is similar to the existing rule, except additional prior-

itized Boolean formulas are introduced to instruct the solver to

search for a maximal or minimal solution. For instance, on line 21,

𝑚𝑎𝑥𝑠𝑜𝑚𝑒 [𝑘] 𝑝 is translated by (1) stating that 𝑝 must not be empty,

as it is done for 𝑠𝑜𝑚𝑒 in vanilla Alloy (line 20), and (2) including

a prioritized Boolean formula for the presence of each tuple in 𝑝;

given the corresponding WCNF, a MaxSAT solver attempts to find

a solution that maximizes the number of tuples in 𝑝 .

Each prioritized Boolean formula is transformed into a CNF

formula with a priority for each clause by using the Tseitin trans-

formation [44]. Finally, a CNF formula with priority is translated

into a WCNF formula, to be solved by a MaxSAT solver. To guaran-

tee that a soft clause with a higher priority is always satisfied first

before the clauses with lower priorities, its weight is assigned to

be greater than the sum of weights of all the clauses with smaller

priorities. Formally, let 𝐶𝑖 represent all the clauses with priority 𝑖 .

Then, their weight𝑊𝑖 is assigned as:

𝑊𝑖 = 1 +
𝑖−1∑
𝑗=0

𝑊𝑗 ∗ |𝐶 𝑗 | (4.1)

where |𝐶 𝑗 | is the number of clauses of 𝐶 𝑗 and𝑊0 = 1. This kind

of optimization is called lexicographic optimization and using this

weight distribution is a known way of converting it to MaxSAT [29].

Example. We use an example to illustrate one of the translation

rules (in particular, rule for maxsome on line 21 in Figure 4). Con-

sider two relations 𝑝 : 𝐴 × 𝐵 and 𝑞 : 𝐵 × 𝐶 , where 𝐴 = {𝐴1, 𝐴2},
𝐵 = {𝐵1}, and𝐶 = {𝐶1}. Suppose that we wish to find a model that

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

𝑃 : problem → bool
𝑝

(1) 𝑀 [𝑝 in 𝑞]𝑒 = ∧(¬𝑋 [𝑝]𝑒 ∨ 𝑋 [𝑞]𝑒) (19)

𝑅 : relDecl → univDecl → matrix (2) 𝑀 [some 𝑝]𝑒 = ∨(𝑋 [𝑝]𝑒) (20)

𝑀 : formula → env → bool
𝑝

(3) 𝑀 [maxsome[k] 𝑝]𝑒 = 𝑀 [some 𝑝]𝑒 ∧∧(𝑋 [𝑝]𝑒)𝑘 (21)

𝑀𝑆 : softFormula → env → bool
𝑝

(4) 𝑀 [minsome[k] 𝑝]𝑒 = 𝑀 [some 𝑝]𝑒 ∧∧(¬𝑋 [𝑝]𝑒)𝑘 (22)

𝑋 : expr → env → matrix (5) 𝑀 [one 𝑝]𝑒 = 𝐸𝑥𝑎𝑐𝑡𝑙𝑦𝑂𝑛𝑒 (𝑋 [𝑝]𝑒) (23)

env: (quantVar ∪ relVar) → matrix (6) 𝑀 [no 𝑝]𝑒 = ∧(¬𝑋 [𝑝]𝑒) (24)

𝑀 [softno[k] 𝑝]𝑒 = ∧(¬𝑋 [𝑝]𝑒)𝑘 (25)

−→𝑥 , ⟨𝑖1, . . . , 𝑖𝑘 ⟩: vectors (7) 𝑀 [not 𝐹]𝑒 = ¬𝑀 [𝐹]𝑒 (26)

[𝑚] : matrix → {⟨𝑖𝑛𝑡⟩}, set of indices of matrix𝑚 (8) 𝑀 [𝐹 and 𝐺]𝑒 = 𝑀 [𝐹]𝑒 ∧𝑀 [𝐺]𝑒 (27)

|𝑚 | : matrix → dim, dimension of matrix𝑚 (9) 𝑀 [𝐹 or 𝐺]𝑒 = 𝑀 [𝐹]𝑒 ∨𝑀 [𝐺]𝑒 (28)

M : dim → (⟨int⟩ → bool
𝑝) → matrix, constructor (10)

𝑀 [all 𝑣 : 𝑝 | 𝐹]𝑒 = let (𝑚 = 𝑋 [𝑝]𝑒) in∧
−→
𝑥 ∈[𝑚] (¬𝑚[−→𝑥] ∨𝑀 [𝐹] (𝑒 : 𝑣 ↦→ M(|𝑚 |,−→𝑥))) (29)

M(𝑠𝑑 , 𝑓) = {𝑚 | |𝑚 | = 𝑠𝑑∧
∀−→𝑥 ∈ {0, . . . , 𝑠 − 1}𝑑 ,𝑚[−→𝑥] = 𝑓 (−→𝑥)} (11)

𝑀 [some 𝑣 : 𝑝 | 𝐹]𝑒 = let (𝑚 = 𝑋 [𝑝]𝑒) in∨
−→𝑥 ∈[𝑚] (𝑚[−→𝑥] ∧𝑀 [𝐹] (𝑒 : 𝑣 ↦→ M(|𝑚 |,−→𝑥))) (30)

M : dim → ⟨int⟩ → matrix, constructor (12) 𝑀 [maxsome[k] 𝑣 : 𝑝 | 𝐹]𝑒 = 𝑀 [some 𝑣 : 𝑝 | 𝐹]𝑒 ∧∧(𝑋 [𝑝]𝑒)𝑘 (31)

M(𝑠𝑑 ,−→𝑥) = M(𝑠𝑑 , 𝜆−→𝑦 . if −→𝑦 =
−→𝑥 then 𝑡𝑟𝑢𝑒 else 𝑓 𝑎𝑙𝑠𝑒) (13) 𝑀 [minsome[k] 𝑣 : 𝑝 | 𝐹]𝑒 = 𝑀 [some 𝑣 : 𝑝 | 𝐹]𝑒 ∧∧(¬𝑋 [𝑝]𝑒)𝑘 (32)

𝑋 [𝑝 + 𝑞]𝑒 = 𝑋 [𝑝]𝑒 ∨ 𝑋 [𝑞]𝑒 (33)

𝑃 [A 𝑑1, . . . , 𝑑𝑛 𝐹 𝐹𝑆] = let 𝑒 =
⋃𝑛

𝑖=1 (𝑟𝑖 ↦→ 𝑅 [𝑑𝑖]A) in
𝑀 [𝐹]𝑒 ∧𝑀𝑆 [𝐹𝑆]𝑒

(14) 𝑋 [𝑝 & 𝑞]𝑒 = 𝑋 [𝑝]𝑒 ∧ 𝑋 [𝑞]𝑒 (34)

𝑅 [𝑟 :𝑘]A = M(|A|𝑘 , 𝜆−→𝑥 . freshVar()) (15) 𝑋 [𝑝 − 𝑞]𝑒 = 𝑋 [𝑝]𝑒 ∧ ¬𝑋 [𝑞]𝑒 (35)

𝑋 [𝑝 · 𝑞]𝑒 = 𝑋 [𝑝]𝑒 · 𝑋 [𝑞]𝑒 (36)

𝑀𝑆 [𝐹𝑆 and 𝐺𝑆]𝑒 = 𝑀𝑆 [𝐹𝑆]𝑒 ∧𝑀𝑆 [𝐺𝑆]𝑒 (16) 𝑋 [𝑝 -> 𝑞]𝑒 = 𝑋 [𝑝]𝑒 × 𝑋 [𝑞]𝑒 (37)

𝑀𝑆 [soft[k] 𝐹 and 𝐺]𝑒 = 𝑀𝑆 [soft[k] 𝐹]𝑒 ∧𝑀𝑆 [soft[k] 𝐺]𝑒 (17) 𝑋 [~𝑝]𝑒 = (𝑋 [𝑝]𝑒)𝑇 (38)

𝑀𝑆 [soft[k] 𝐹]𝑒 = (𝑀 [𝐹]𝑒)𝑘 , where 𝐹 is not a conjunction (18) 𝑋 [^𝑝]𝑒 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑆𝑞𝑢𝑎𝑟𝑒 (𝑋 [𝑝]𝑒) (39)

𝑋 [{𝑣 : 𝑝 | 𝐹 }]𝑒 = let (𝑚 = 𝑋 [𝑝]𝑒) in
M(|𝑚 |, 𝜆−→𝑥 . 𝑚[𝑥] ∧𝑀 [𝐹] (𝑒 : 𝑣 ↦→ M(|𝑚 |,−→𝑥))) (40)

Figure 4: Translation rules. bool𝑝 is a Boolean formula with priority where 𝑝 ∈ N0. When 𝑝 is omitted, the formula represents
a hard formula that must be satisfied. In other words, it has an infinite priority, i.e. 𝐹 = 𝐹+∞.

satisfies the following formula:

𝑚𝑎𝑥𝑠𝑜𝑚𝑒 𝑝.𝑞

Relation 𝑝 is represented by a set of Boolean variables {𝑝00, 𝑝10}
(where, for example, 𝑝00 is true if and only if (𝐴1, 𝐵1) is a tuple in 𝑝);
similarly, 𝑞 is represented by {𝑞00}. Then, the formula is translated

into a prioritized Boolean formula as follows:

((𝑝00 ∧ 𝑞00) ∨ (𝑝10 ∧ 𝑞00)) ∧ (𝑝00 ∧ 𝑞00)0 ∧ (𝑝10 ∧ 𝑞00)0

where the first top-level conjunct says that 𝑝.𝑞 must contain at

least one tuple (equivalent to 𝑠𝑜𝑚𝑒 𝑝.𝑞); the next two conjuncts

are formulas with the lowest priority of 0 stating that 𝑝.𝑞 should

contain as many of the two possible tuples as possible.

To translate the above formula into CNF, the Tseitin transforma-

tion introduces fresh variables that represent sub-formulas:

𝑎 ↔ 𝑝00 ∧ 𝑞00 , 𝑏 ↔ 𝑝10 ∧ 𝑞00
where {𝑎, 𝑏} can also be seen as the variables representing the

tuples in relation 𝑝.𝑞. Then, after the transformation, the following

prioritized CNF is produced:

(𝑎 ∨ 𝑏) ∧ 𝑎0 ∧ 𝑏0 ∧
(¬𝑎 ∨ 𝑝00) ∧ (¬𝑎 ∨ 𝑞00) ∧ (𝑎 ∨ ¬𝑝00 ∨ ¬𝑞00) ∧
(¬𝑏 ∨ 𝑝10) ∧ (¬𝑏 ∨ 𝑞00) ∧ (𝑏 ∨ ¬𝑝10 ∨ ¬𝑞00)

Finally, we translate this formula into WCNF to be solved by a

MaxSAT solver. Specifically, priorities are replaced with weights by

Equation 4.1. Since 𝑎0 and 𝑏0 have priority 0, thus they are assigned

weight 1 in the final WCNF formula.

4.3 Correctness of Translation
A model or an instance of an Alloy formula is an assignment of

tuples to relations that makes the formula true. An Alloy problem

may have multiple models. We call the set of all models the solution
space of a problem. When two problems have the same solution

space, we say that they are semantically equivalent.

Theorem 4.1. An Alloy
Max

problem 𝑃 = ⟨A, 𝐷, 𝐹, 𝐹𝑆 ⟩ is seman-

tically equivalent to the problem 𝑃 ′ = ⟨A, 𝐷, 𝐹 ′, 𝑡𝑟𝑢𝑒⟩ where 𝐹𝑆 ,
the soft constraints, is replaced by 𝑡𝑟𝑢𝑒 , and 𝐹 ′ is the formula that

results from replacing𝑚𝑎𝑥𝑠𝑜𝑚𝑒 and𝑚𝑖𝑛𝑠𝑜𝑚𝑒 in 𝐹 by 𝑠𝑜𝑚𝑒 , and

𝑠𝑜 𝑓 𝑡𝑛𝑜 by 𝑡𝑟𝑢𝑒 .

Proof. To prove this theorem,we first state the following lemma:

Lemma 4.1. A prioritized Boolean formula 𝐹𝑘 with a priority of a

finite integer (i.e., a soft formula that can be satisfied or not) is se-

mantically equivalent to 𝑡𝑟𝑢𝑒 in the corresponding non-prioritized

Boolean formula.

According to this lemma, by replacing the soft formulas in the

translation rules with 𝑡𝑟𝑢𝑒 , we have:

• 𝑠𝑜 𝑓 𝑡 [𝑘] 𝐹 (Figure 4, line 18) is semantically equivalent to 𝑡𝑟𝑢𝑒;

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

• 𝑚𝑎𝑥𝑠𝑜𝑚𝑒 [𝑘] 𝑝 (line 21) and𝑚𝑖𝑛𝑠𝑜𝑚𝑒 [𝑘] 𝑝 (line 22) are semanti-

cally equivalent to 𝑠𝑜𝑚𝑒 𝑝 (line 20);

• 𝑠𝑜 𝑓 𝑡𝑛𝑜 [𝑘] 𝑟 (line 25) is semantically equivalent to 𝑡𝑟𝑢𝑒;

• 𝑚𝑎𝑥𝑠𝑜𝑚𝑒 [𝑘] 𝑣 : 𝑝 | 𝐹 (line 31) and𝑚𝑖𝑛𝑠𝑜𝑚𝑒 [𝑘] 𝑣 : 𝑝 | 𝐹 (line 32)

are semantically equivalent to 𝑠𝑜𝑚𝑒 𝑣 : 𝑝 | 𝐹 (line 30).

Then, given an Alloy
Max

problem 𝑃 , let 𝑃 ′ be the problem that

results from replacing all the soft facts with 𝑡𝑟𝑢𝑒 , 𝑚𝑎𝑥𝑠𝑜𝑚𝑒 and

𝑚𝑖𝑛𝑠𝑜𝑚𝑒 with 𝑠𝑜𝑚𝑒 , and 𝑠𝑜 𝑓 𝑡𝑛𝑜 formulas with 𝑡𝑟𝑢𝑒 . Based on the

above list of statements about semantic equivalence, it follows that

a model is a solution to 𝑃 if and only if it is also a solution to 𝑃 ′. □

Theorem 4.2. Given a MaxSAT solver that maximizes the total

weight of a given WCNF formula, Alloy
Max

generates the optimal

solution to the corresponding FOL problem.

Proof. This theorem can be proved by showing the correct-

ness of each optimization operator. We show the correctness for

𝑚𝑎𝑥𝑠𝑜𝑚𝑒 only; other operators can be proved similarly.

Given𝑚𝑎𝑥𝑠𝑜𝑚𝑒 [𝑘] 𝑝 , where 𝑝 is a relation, let {𝑝0, 𝑝1, . . . , 𝑝𝑛}
be the Boolean literals that represent the presence of tuples in 𝑝 .

Then, the formula will be translated into:

(𝑝0 ∨ 𝑝1 ∨ . . . ∨ 𝑝𝑛) ∧ (𝑝0)𝑘 ∧ (𝑝1)𝑘 ∧ . . . ∧ (𝑝𝑛)𝑘

Bymaximizing the total weights of this formula, the number of satis-

fied clauses of form 𝑝𝑖 (for 𝑖 ≤ 𝑛) is also maximized. Thus, Alloy
Max

returns a model where the size of the relation 𝑝 is maximized.

□

5 OPTIMIZATION
By encoding problems in MaxSAT, Alloy

Max
can potentially take

advantage of advances in MaxSAT technology to more efficiently

solve the underlying optimization problem. However, when en-

coding the problem to a low-level WCNF, the high-level structure

of the problem may be lost and become unavailable for MaxSAT

algorithms to take advantage of. Prior approaches try to recover

this information by clustering soft clauses into partitions and us-

ing them during solving [30, 37]. However, these approaches are

heuristic-based and sometimes fail to capture meaningful relation-

ships between soft clauses. In this paper, we propose to extract the

partition information directly from the Alloy
Max

syntax and give

this information to existing partition-based MaxSAT algorithms.

5.1 Partition-based MaxSAT solving
We briefly present an overview of unsatisfiability-based MaxSAT al-

gorithms that use partition strategies [30, 37]. Unsatisfiability-based

algorithms work by finding a sequence of unsatisfiable subformu-

las that correspond to increasing a lower bound on the number

of falsified soft clauses until the formula becomes satisfiable and

an optimal solution is found. These algorithms can be extended

with partition strategies by taking as input the MaxSAT formula 𝜙

and partitioning this formula into formulas 𝜙1, . . . , 𝜙𝑛 with disjoint

set of soft clauses. Different approaches have been proposed to

partition a MaxSAT formula, but they are mostly based on hav-

ing a graph representation of the formula and then using graph

partitioning algorithms to create the partitions [30, 37].

The MaxSAT solver then takes as input these partitions and

starts by solving 𝜙1. If the formula is unsatisfiable, then the lower

bound on the number of falsified soft clauses is increased, and the

formula is refined to allow one additional soft clause to be falsified.

This loop is repeated until the formula becomes satisfiable. In this

case, the algorithm found a solution to the formula that may or

may not be optimal. If no more partitions are left, then this solution

is guaranteed to be optimal. Otherwise, the next partition is added

to the solver and this process is repeated until an optimal solution

is found. Partitioning has the benefit of potentially finding smaller

unsatisfiable subformulas at each iteration of the algorithm, which

often leads to a sequence of unsatisfiable formulas that is easier

to solve than without partitions. For further details on MaxSAT

algorithms, we refer the interested reader to the literature [3].

5.2 Extracting Partitions from AlloyMax
Our approach, which we call spec-based partitioning, changes this
existing process by using partitions that can be extracted directly

from Alloy
Max

as the translation to MaxSAT is performed, rather

than trying to guess “good” partitions at the WCNF level. In partic-

ular, partitions can be generated as follows.

• When adding a hard clause to the WCNF, it is assigned group 1.

All the hard clauses in the WCNF belong to the same group.

• When translating an Alloy formula with optimization operators,

i.e.,maxsome,minsome, and softno, AlloyMax
creates a new group

𝑔. Then, all the soft clauses associated with this optimization

operator are assigned group 𝑔.

• When translating a soft constraint, i.e., soft fact 𝐹 , AlloyMax

creates a new group 𝑔′ for it. Thus, each soft constraint is in its

own group.

A common pattern that we leverage for creating partitions in

Alloy
Max

is to use the all keyword. For example, consider set 𝑃

and𝑄 , and a relation 𝑟 : 𝑃 ×𝑄 . For formula all 𝑝 : 𝑃 | maxsome 𝑝.𝑟 ,
the all (∀) operator will be expanded to generate a maxsome 𝑝.𝑟
formula for each 𝑝 ∈ 𝑃 . Eachmaxsome formula will be in a separate

group, and we can easily partition the soft clauses by the tuples in

set 𝑃 . For example, recall the course scheduling problem in Section

2.2. The soft fact formula

1 soft fact {
2 ThuAM !in Alice.courses.lectures

3 FriPM !in Alice.courses.lectures

4 }

is first translated into two soft facts (Figure 4, line 17), and a group

is created for each of these soft facts. In addition, the formula

1 all stu:Student| maxsome stu.interests & stu.courses

generates a group for each student. Then, the solver will first try to

optimize each group individually and merge the results to find the

global optimal solution.

In Section 6.3, we compare the graph-based partitioning strategy

used in MaxSAT algorithms with Alloy
Max

partitioning and show

the benefit of extracting partitions from a high-level model.

6 EVALUATION
We evaluate Alloy

Max
based on the following research questions:

RQ1: How useful is AlloyMax for modeling different types of prob-
lems? For usefulness, we focus on applicability and scalability.

RQ2: Is spec-based partitioning more efficient than no-partitioning
and graph-based auto-partitioning?

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

RQ3: Is AlloyMax more efficient than Alloy* for generating optimal
solutions? Alloy* [33] is an extension that enables an analysis with

higher-order quantifiers, so it could, in principle, be used to solve

problems that generate an optimal solution as the one in Section 2.1.

This question aims at comparing which approach is more efficient

in this particular type of problem.

To answer these research questions, we apply Alloy
Max

to five

case studies from different domains. Section 6.2 gives brief intro-

ductions to each case study and presents the optimization goals.

6.1 Implementation
We implemented Alloy

Max
based on Alloy 5.1.0, which, in turn, re-

lies on Kodkod, a general-purpose relational model finder [42]. We

extended Alloy to support the new syntax, and also modified Kod-

kod to support the new translation process. We use Open-WBO [31]

as our backend MaxSAT with the same algorithm for both partition-

ing and non-partitioning. For spec-based partitioning, we extended

the WCNF format to allow specifying group index at the beginning

of each clause. We modified Open-WBO to read this new file format

and changed the partition strategy to use the one specified in the

file. All the experiments were run on a Linux machine with a 4

core 3.6GHZ CPU and 20 GB memory. Every problem was run 5

times (each with a 30 minutes timeout), from which the average

was computed and reported in Table 2. The benchmark and tool

are available for reproduction
2
.

6.2 Case Studies
6.2.1 Course Scheduling. Recall the course scheduling model de-

scribed in Section 2. In this benchmark, we randomly generate

problems with 𝐶 courses and 𝑆 students; a course should have ei-

ther two or three lectures among a week; each student should take

at most 𝑅 core courses and is interested in at most 𝐼 courses.

The optimization goal is to maximize the number of interested

courses that a student is registered for. The problem names in

Table 2 follow the pattern 𝑐𝑜𝑢𝑟𝑠𝑒_{𝐶}_{𝑆}_{𝑅}_{𝐼 }. The size of

the Alloy
Max

specifications ranges from 252 to 552 LOC.

6.2.2 CheckMate. CheckMate [43] is an automated tool based on

Alloy for synthesizing proof-of-concept exploit code for hardware

security attacks similar to Meltdown [24] and Spectre [20]. It uses a

“micro- architecturally happens-before” graph [25], denoted as 𝜇hb,

to model and analyze the execution process of micro-operations.

In a CPU, an instruction goes through a sequence of stages to

be executed (e.g., Fetch, Exec., and Commit). Then, a 𝜇hb graph

represents the execution process of a series of program instructions.

An attack pattern (e.g., Meltdown or Spectre) is represented as a

sub-graph pattern in 𝜇hb. CheckMatemodels themicro-architecture

of a CPU, the events of instructions, and the attack pattern in Alloy,

and uses the Alloy Analyzer to generate a 𝜇hb graph that contains

the attack pattern. Moreover, CheckMate aims to synthesize secu-

rity litmus tests, i.e., most compact programs that can demonstrate

a security attack. However, since this optimization goal cannot be

solved by Alloy, the authors of CheckMate developed an additional

Python program to enumerate all the possible instances and find

the litmus tests.

2
https://github.com/SteveZhangBit/alloy-maxsat-benchmark

With Alloy
Max

, this optimization task can be formulated as min-

imizing the relation that represents the 𝜇hb graph. In particular,

this goal is modeled by using softno, all is used for leveraging parti-

tioning (as shown below), and the returned instance contains the

smallest 𝜇hb graph, which represents a security litmus test.

1 run {
2 . . . // CheckMate constraints

3 all n: Node | softno n.uhb

4 }

The original CheckMate model is around 1,100 LOC in Alloy; to

specify the optimization goal, it only involved adding the above

softno formula to the specification.

6.2.3 Graceful Degradation. In network security, a simple way of

mitigating an on-going attack is to shut down the entire system.

In practice, however, this is unacceptable because the system will

lose all of its functions. Graceful degradation [13, 46] is an approach

for dynamically re-configuring parts of a system under an attack

to maximize the remaining uncompromised functions. Typically,

this is achieved by (1) shutting down only those components that

have been compromised, and (2) replacing these components with

backups (if available) to maintain the affected functions. This recon-

figuration process also involves removing network connections to

the compromised components and adding new ones to the backups.

Alloy can be used tomodel and analyze the problem of generating

a valid network reconfiguration that maintains all system functions.

However, depending on the extent of an attack, it may be impossible

to restore some of those functions. To determine which of them can

be restored, the Alloy user could manually comment out a selection

of constraints that correspond to the functions, but the process to

find an optimal solution (i.e., one that restores as many functions

as possible) would be tedious.

With Alloy
Max

, we use soft fact to model the functions as soft

constraints (line 4-6). Given these, the solver will try to maximize

the functions and give up on ones that are unsatisfiable. Moreover,

in practice, every change to the architecture could have a cost, and

the total cost (the number of architectural modifications) should

also be minimized. Thus, we use maxsome to maximize the over-

lapping connections between the degraded architecture and the

initial one (line 9), and use softno to minimize the new connections

added to the degraded architecture (line 10). Furthermore, system

function is considered more important than cost. Thus, soft con-

straints representing the functions are assigned a higher priority.

The following snippet shows our optimization goals.

1 sig Component {
2 init: set Component , degraded: set Component

3 }
4 soft[1] fact {
5 NonCriticalFunction and CriticalFunction

6 }
7 run {
8 validArchitecture[degraded]
9 maxsome degraded & init

10 softno degraded - init

11 }

In our benchmark, each problem has 𝐶 components including

backup ones; the attacker’s capability (in terms of the degree that

the systemmight be compromised) is set to𝐾 , and; each problem has

𝐴 initially compromised components. The problem names follow

https://github.com/SteveZhangBit/alloy-maxsat-benchmark

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the pattern 𝑑𝑒𝑔𝑟𝑎𝑑𝑒_{𝐶}_{𝐾}_{𝐴}. The size of the specifications
ranges from 240 to 326 LOC.

6.2.4 Wedding Table Seating. Consider a wedding table seating

problem [32], where (1) each table seats a minimum and amaximum

number of guests; (2) each person should be assigned to only one

table; (3) each person is associated with a set of tags indicating their

interests. The hard constraint is to generate a seating assignment for

each person, and the optimization goal is to minimize the number

of different tags between all people sitting at the same table.

Alloy can be used to model this problem and generate an arbi-

trary assignment. The following snippet shows relevant constraints.

1 sig Tag {}
2 sig Person { tags: set Tag }
3 sig Table { seat: set Person } {
4 #seat =< MAX_NUM_PERSON // Maximum number of guests.

5 #seat >= MIN_NUM_PERSON // Minimum number of guests.

6 }
7 // One seat for one person.

8 fact { all p: Person | one seat.p }
9 run {}

However, with this model, we cannot find the optimal solution that

minimizes the number of different tags at a table. With Alloy
Max

,

this optimization goal can be modeled by using softno. In partic-

ular, to take advantage of the partitioning optimization, the goal

is specified as, for each table, it should have no or minimized tags.

The following expresses this optimization goal.

1 run TableBased { all t: Table | softno t.seat.tags }

For the benchmark, we randomly generated problems with 𝐺

tags, 𝑇 tables, and 𝑃 people, where each table has minimum 𝐿

and maximum 𝐻 people, and each person has maximum 𝑀 tags.

The problem names follow the pattern 𝑠𝑒𝑎𝑡_{𝐺}_{𝑃}_{𝑀}_{𝑇 }
{𝐿}{𝐻 }. The size of the specifications ranges from 50 to 55 LOC.

6.2.5 Single Machine Scheduling (SMS). In many real-time systems,

it is often impossible to schedule tasks to make them meet all their

time requirements. In practice, one must schedule the tasks in such

a way to can maximize the number of on-time tasks [22]. Consider

a real-time system with a set of 𝑛 tasks {𝜏1, . . . , 𝜏𝑛} to be executed

on a uni-processor machine, i.e., only one task can be executed at a

time. Each task is a triple ⟨𝑟𝑖 , 𝑝𝑖 , 𝑑𝑖 ⟩ where 𝑟𝑖 is the release time (i.e.,

the earliest start time), 𝑝𝑖 the processing time, and 𝑑𝑖 the deadline.

Tasks can be split into fragments so that one task can be inter-

rupted in order to execute fragments of other tasks. However, the

execution order of the fragments of one task should not be changed.

Formally, a task 𝜏𝑖 has 𝑘𝑖 fragments and each fragment 𝑓
𝑗
𝑖
where

𝑗 ∈ {1, . . . , 𝑘𝑖 } has process time 𝑝
𝑗
𝑖
, and we have

∑𝑘𝑖
𝑗=1

𝑝
𝑗
𝑖
= 𝑝𝑖 .

Finally, a task may depend on other tasks. Thus, if a task 𝜏𝑖 depends

on task 𝜏 𝑗 , 𝜏𝑖 must be executed only after 𝜏 𝑗 has been completed.

Alloy can be used to model this problem and find an arbitrary

subset of tasks that can complete within their deadlines. However,

the maximality is not guaranteed. With Alloy
Max

, we use maxsome
to find the optimal schedule which maximizes the number of on-

time tasks. The following snippet shows the optimization goal.

1 sig Task {} sig Completed in Task {}
2 run {
3 CompleteOntime[Completed]
4 maxsome Completed }

In our benchmark, we randomly generate problems with 𝑁 tasks.

The release time of each task is within a time frame𝑅; each task has a

maximum processing time 𝑃 , and a maximum number of fragments

𝐹 . A slack factor 𝑆 is used to compute the deadline for each task

where 𝑑𝑖 = 𝑟𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑆) ∗ 𝑝𝑖 . Finally, a task depends on a

maximumnumber of𝐷 tasks. The problem names follow the pattern

𝑠𝑚𝑠_{𝑁 }_{𝑅}_{𝑃}_{𝐹 }_{𝑆}_{𝐷}. The size of the specifications

ranges from 192 to 259 LOC.

6.3 Results
6.3.1 RQ1: How useful is AlloyMax for modeling different types of
problems? We successfully modeled the aforementioned problems

with Alloy
Max

(or migrate from existing ones). It only requires

appending the optimization formulas to the original run commands

in plain Alloy without any reconstruction.

Table 2, first column shows the problems used in our benchmark.

The problem name reflects the scale of each problem. Specifically,

the size of the Alloy
Max

specifications for these problems ranges

from 50 LOC to 1,109 LOC. The number of variables in the gen-

erated WCNF ranges from 2,236 to 24,583,678, and the number of

clauses ranges from 6,921 to 43,729,378. Although translating from

a high-level language like Alloy
Max

may not produce the most suc-

cinct MaxSAT formulas, it can solve all these problems within a 30

minutes timeout.

6.3.2 RQ2: Is spec-based partitioning more efficient than no- par-
titioning and graph-based auto-partitioning? The results in Table

2 show that spec-based partitioning outperforms both no- and

auto-partitioning in Course, CheckMate, and Seating problems. On

SMS, spec-based partitioning shows little improvement over no-

partitioning because these problems do not have a natural, problem-

specific way of partitioning; as a result, the solver falls back to

no-partitioning. On the other hand, spec-based partitioning has a

negative impact on the first three Degradation problems. Moreover,

we have the following observations and insights:

• When partitioning is applicable, spec-based partitioning outper-

forms auto-partitioning, because (1) the former does not suffer

from the overhead introduced by the heuristic for guessing par-

titions, which can be significant for large problems, and the

heuristic may fail and fall back to no-partitioning (e.g., in Check-

Mate and Degradation), and (2) auto-partitioning might fail to

guess effective partitions (e.g., Seating problems where spec-

based improves the performance but auto does not).

• When partitioning is not applicable (i.e., only one partition ex-

ists), spec-based partitioning falls back to no-partitioning. On

the other hand, forcing auto-partitioning in this situation may

have negative impact on performance (e.g., SMS).

• We hypothesize that partitioning works well if the optimal solu-

tion of a sub-problem (hard clauses plus some partitions) is part

of the global optimal solution. The Course problems have this

property, since there are no registration limits on the number of

students for each course, and the registration for each student is

completely independent of one another.

• We observed in the Degradation problems that if a partition

added to the iterative process does not help refine the solution

towards the optimal one, the overhead of the iteration may ex-

ceed the time of solving the problem at once. In other words,

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

Table 2: Results for comparing MaxSAT non-partitioning vs. MaxSAT partitioning vs. Alloy*. The numbers in the table are
the solving time of the MaxSAT solver or the solver for Alloy* (i.e., excluding the translation time). There is no significant
difference in translation time among these methods. * indicates auto-partition fails because the problem is too large and it
falls back to no-partition. ** indicates only one partition exists in the problem and it falls back to no-partition.

Problem No-Part. Solve (s) Auto-Part. Solve (s) Spec-Part. Solve (s) Alloy* Solve (s)

Course

course_30_40_3_6 0.93 0.19 0.17 112.08

course_40_50_3_6 3.90 0.42 0.31 437.72

course_50_60_3_6 11.84 0.78 0.62 860.49

course_60_70_3_6 31.38 1.14 0.90 1607.65

course_70_80_3_6 74.83 1.89 1.47 T/O

course_80_90_3_6 175.40 2.96 2.09 T/O

course_90_100_3_6 277.93 4.72 3.09 T/O

CheckMate

Flush+Reload 123.01 133.60* 94.68 N/A

Meltdown 353.74 368.13* 272.35 N/A

Spectre 634.55 660.15* 520.91 N/A

Seating

seat_7_28_7_6_3_7 3.06 7.19 1.76 26.47

seat_7_30_7_6_3_7 0.70 1.23 0.65 52.27

seat_8_30_8_7_3_7 133.55 54.78 35.36 239.21

seat_8_32_8_7_3_7 513.73 619.33 349.20 T/O

SMS

sms_34_20_6_3_3_2 20.06 31.00 20.05** 479.84

sms_38_20_6_3_3_2 19.13 35.12 19.47** 863.60

sms_42_20_6_3_3_2 21.71 52.12 20.63** 1464.60

sms_46_20_6_3_3_2 186.98 263.31 184.93** T/O

sms_50_20_6_3_3_2 179.86 173.91 186.74** T/O

sms_52_20_6_3_3_2 81.22 198.73 85.21** T/O

Degradation

degrade_10_2_1 0.26 0.77 0.28 N/A

degrade_26_2_1 25.55 43.08* 27.76 N/A

degrade_20_3_1 659.46 673.30* T/O N/A

degrade_26_2_2 1442.41 1453.32* 898.7 N/A

partitioning works well when every sub-problem contributes

towards the optimal solution.

6.3.3 RQ3: Is AlloyMax more efficient than Alloy* for generating
optimal solutions? As shown in Table 2, both with or without par-

titioning, Alloy
Max

outperforms Alloy* on optimization problems

that can be specified using higher-order quantifiers. Alloy* is a

general-purpose higher-order solver (can be used to solve problems

that Alloy
Max

is not applicable to), and so its analysis method—

based on counterexample-guided inductive synthesis (CEGIS) [40]—

is not specifically targeted for solving optimization problems. On

the other hand, since MaxSAT is designed for solving optimization,

it is expected that Alloy
Max

outperforms Alloy* on such problems.

We did not apply Alloy* to CheckMate because it would re-

quire significantly reconstructing the specification to express a

higher-order formula that quantifies over all relevant relations to

be searched (e.g., relations representing various properties of an at-

tack graph to be minimized). Due to the complexity of this problem,

there are 40 such relations, and so this would result in a formula

with a quantifier depth of 40—not an Alloy expression that a user

can reasonably be expected to write. In contrast, Alloy
Max

intro-

duces only one line of an optimization formula without changing

the existing specification; this also shows the benefit of the built-in

constructs in Alloy
Max

for specifying optimization tasks.

Alloy* is not applicable to degradation problems, which contain

soft constraints that cannot be specified in or solved by Alloy*.

6.3.4 Validation of Implementation. We manually checked the cor-

rectness of the results from Alloy
Max

for the problems where the

optimal solutions are known, including CheckMate, graceful degra-

dation, and some subset of the course scheduling, seating, and SMS

problems. Also, for those problems in Table 2 that can be solved

by Alloy
∗
, we checked that Alloy

Max
and Alloy

∗
produce the same

optimal solutions.

6.3.5 Threats to Validity. Our selected case studies might not be

representative enough to demonstrate the applicability of Alloy
Max

.

We believe that our benchmark contains a diverse set of exam-

ples from realistic domains (including exploit generation, network

reconfiguration, and task scheduling) and of varying sizes (from

relatively simple models like wedding seating to complex ones like

CheckMate). However, we plan to continually expand our bench-

mark to explore other potential applications of Alloy
Max

and further

refine or modify the language as needed for new use cases.

In addition, the size of the problems in our benchmark might

not be large enough to show how well Alloy
Max

scales to other

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Alloy problems in practice. Given that CheckMate is one of the

most complex Alloy specifications available (based on our past

experience with Alloy) and also has been used to generate practi-

cal attacks on real systems [43], we believe that our experiments

show that Alloy
Max

scales well to realistic problems. In addition,

since its scalability depends on the efficiency of the underlying

MaxSAT solver, Alloy
Max

will likely benefit from further advances

in MaxSAT technology, which is an active area of research [2].

7 RELATEDWORK
Extensions to Alloy. Alloy∗ [33] is an Alloy extension that en-

ables analysis of Alloy specifications with higher-order quantifiers.

Although Alloy
∗
is designed for a different purpose than Alloy

Max
—

mainly, enabling synthesis problems in Alloy—it could be used to

encode certain types of optimization problems by using higher-

order quantifiers, as shown in Section 2.1. However, as shown in

Section 6.3, Alloy
Max

outperforms Alloy
∗
on these problems, in

part because the former leverages MaxSAT solvers, which are de-

signed for finding optimal solutions. In addition, Alloy
Max

provides

additional analyses involving soft constraints and priorities.

Aluminum [35] is an extension of Alloy that supports genera-

tion of minimal instances. Aluminum and Alloy
Max

are designed

for different purposes and differ on the notion of minimality. In

particular, the former works by automatically removing as many

tuples as possible such that the resulting instance remains a valid

instance of the given Alloy specification, and allows the user to

influence the order in which Alloy generates its next instances by

augmenting the current instance with an additional tuple.

Cunha et. al [8] propose an approach called target-oriented model
finding, where the goal is to allow the user to provide a partial speci-

fication of a target instance, and use a solver to generate an instance
that is as close to the target as possible. Their work also leverages

an extension of Kodkod with a MaxSAT solver as the underlying

engine, although its overall goal is different from Alloy
Max

.

Other types of solvers. There is a large body of work on con-
strained optimization problems (COPs)—a generalization of con-

straint satisfaction problems (CSPs) with an additional notion of an

objective function to be optimized [38]. The state-of-the-art tools in

this domain (e.g., Gurobi [12], CPLEX [14]) employ solving tech-

niques that are different from MaxSAT, such as Branch and Cut

algorithms [38]. Since the Alloy Analyzer already relies on SAT, we

found MaxSAT to be a natural choice for bringing optimization to

Alloy. Using a COP solver as an alternative backend to Alloy
Max

is an interesting open problem, although it would involve a sig-

nificantly different translation than the SAT-based one in Kodkod

(which Alloy
Max

builds on).

MiniZinc [36] is a constraint modeling language that is capable of

solving various types of CSPs, including optimization. Built on top

of solvers such Gurobi or CPLEX, MiniZinc is intended to be a high-

level language for specifying CSPs and provides convenient built-in

such as functions, data types, and global constraints. MiniZinc

provides certain features (e.g., floating numbers) that are missing

from Alloy
Max

, while the relational core of Alloy is better suited

for specifying complex structures that arise in software.

Answer set programming (ASP) [23] is a line of work on ex-

tending logic programming with capabilities for expressing and

solving search problems, including those involving optimization [6].

Although both are declarative in nature, ASP and Alloy
Max

sup-

port distinct styles of modeling: The logic programming paradigm

underlying ASP is typically used for data and knowledge represen-

tation [7], while Alloy was designed for modeling software designs.

There are recent works on extending satisfiability modulo the-

ories (SMT) solvers with optimization capabilities, such as Opti-

MathSAT [39], Symba [21], and Z3 [5]. These solvers could serve as

an alternative backend for Alloy
Max

. One benefit of this approach

is that they operate over unbounded domains and for formulas

involving decidable theories (e.g., integers), can provide a stronger

analysis guarantee than a SAT-based backend. On the other hand,

dedicated MaxSAT algorithms have shown to be more efficient than

the SMT-based methods [26]. A more systematic investigation of

these alternative backends for Alloy
Max

remains future work.

8 CONCLUSION AND LIMITATIONS
We have presented Alloy

Max
, an extension of the Alloy modeling

language that leverages MaxSAT to solve optimization problems.

We have demonstrated that despite introducing only a small number

of new language constructs, Alloy
Max

can be used to specify and

solve a diverse set of problems that were previously not possible

in Alloy. By enabling these new types of analyses, we believe that

Alloy
Max

has the potential to bring a wide range of new applications

to Alloy, and its analysis capability will continue to grow as it

benefits from rapid progress in the MaxSAT technology.

The translation rules shown in Section 4 support a richer se-

mantics than the current syntax of Alloy
Max

allows. For example,

the rules support defining soft predicates (e.g., soft pred P[x: S])

and reuse them in other formulas. We plan to explore these richer

semantics through further syntactic extensions (while also consid-

ering the possible risk of complicating the syntax) and investigate

additional classes of problems that Alloy
Max

could be applied to.

The current version of Alloy
Max

supports only priorities among

constraints. However, MaxSAT solvers generally use weights, which

support more fine-grained optimizations. Adding weights to Alloy

requires more subtle investigation on its semantic impact, but it

could support a larger set of problems, such as modeling and maxi-

mizing utility functions (e.g., those used in self-adaptive systems

planners [41] and automated data mismatch repair [45]).

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation

Awards CCF-1918140, CNS-1801546, and CCF-1762363, the Fun-

dação para a Ciência e Tecnologia Awards PTDC/CCI-COM/31198/2-

017, UIDB/50021/2020, and SFRH/BD/07724/2020, and the Office of

Naval Research Award N00014172899. This material is based upon

work supported by the NSA under Award No. H9823018D0008. This

work is also supported by the Carnegie Mellon CyLab Security and

Privacy Institute. Any views, opinions, findings and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the sponsoring

agencies.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

REFERENCES
[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and Dawn Song.

2010. Towards a Formal Foundation of Web Security. In 2010 23rd IEEE Computer
Security Foundations Symposium. 290–304. https://doi.org/10.1109/CSF.2010.27

[2] FahiemBacchus, Jeremias Berg,Matti Järvisalo, and RubenMartins. 2020.MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions. Technical Report. University
of Helsinki, Department of Computer Science.

[3] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. 2021. Maximum Satisfiabil-

ity. In Handbook of Satisfiability, Armin Biere, Marijn Heule, Hans van Maaren,

and Toby Walsh (Eds.). IOS Press, Chapter 24, 929 – 991.

[4] Hamid Bagheri, Eunsuk Kang, SamMalek, and Daniel Jackson. 2015. Detection of

Design Flaws in the Android Permission Protocol Through Bounded Verification.

In FM 2015: Formal Methods, Nikolaj Bjørner and Frank de Boer (Eds.). Springer

International Publishing, Cham, 73–89.

[5] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. 𝜈Z - An Opti-

mizing SMT Solver. In Tools and Algorithms for the Construction and Analysis
of Systems, Christel Baier and Cesare Tinelli (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 194–199.

[6] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. 2003. Answer Set

Optimization. In International Joint Conference on Artificial Intelligence (IJCAI),
Georg Gottlob and Toby Walsh (Eds.).

[7] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Logic Programming and
Databases. Springer. https://www.worldcat.org/oclc/20595273

[8] Alcino Cunha, Nuno Macedo, and Tiago Guimarães. 2014. Target Oriented

Relational Model Finding. In Fundamental Approaches to Software Engineering,
Stefania Gnesi and Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 17–31.

[9] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular Ver-

ification of Code with SAT. In Proceedings of the 2006 International Sympo-
sium on Software Testing and Analysis (Portland, Maine, USA) (ISSTA ’06). As-
sociation for Computing Machinery, New York, NY, USA, 109–120. https:

//doi.org/10.1145/1146238.1146251

[10] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. 2017. Au-

tomated Synthesis of Semantic Malware Signatures using Maximum Satisfiability.

In Proceedings of the Annual Network and Distributed System Security Symposium.

The Internet Society.

[11] Ana Graça, João Marques-Silva, and Inês Lynce. 2011. Haplotype Inference Using
Propositional Satisfiability. Springer New York, New York, NY, 127–147. https:

//doi.org/10.1007/978-1-4419-6800-5_7

[12] Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.

gurobi.com

[13] M P Herlihy and J M Wing. 1991. Specifying graceful degradation. IEEE
Transactions on Parallel and Distributed Systems 2, 1 (1991), 93–104. https:

//doi.org/10.1109/71.80192

[14] International Business Machines Corporation (IBM). 2009. V12. 1: User’s Manual

for CPLEX.

[15] Daniel Jackson. 2000. Automating First-Order Relational Logic. In Proceedings of
the 8th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering: Twenty-First Century Applications (San Diego, California, USA) (SIGSOFT
’00/FSE-8). Association for Computing Machinery, New York, NY, USA, 130–139.

https://doi.org/10.1145/355045.355063

[16] Daniel Jackson. 2006. Software Abstractions: Logic, language, and analysis. MIT

Press.

[17] Daniel Jackson and Mandana Vaziri. 2000. Finding bugs with a constraint solver.

In International Symposium on Software Testing and Analysis (ISSTA). 14–25.
[18] Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. 2016. Multi-

Representational Security Analysis. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Seattle, WA,

USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA,

181–192. https://doi.org/10.1145/2950290.2950356

[19] Sarfraz Khurshid and Darko Marinov. 2004. TestEra: Specification-Based Testing

of Java Programs Using SAT. Autom. Softw. Eng. 11, 4 (2004), 403–434.
[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/

SP.2019.00002

[21] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.

2014. Symbolic Optimization with SMT Solvers. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,
California, USA) (POPL ’14). Association for Computing Machinery, New York,

NY, USA, 607–618. https://doi.org/10.1145/2535838.2535857

[22] Xiaojuan Liao, Hui Zhang, Miyuki Koshimura, Rong Huang, andWenxin Yu. 2019.

Maximum Satisfiability Formulation for Optimal Scheduling in Overloaded Real-

Time Systems. In PRICAI 2019: Trends in Artificial Intelligence, Abhaya C. Nayak
and Alok Sharma (Eds.). Springer International Publishing, Cham, 618–631.

[23] Vladimir Lifschitz. 2019. Answer Set Programming. Springer. https://doi.org/10.

1007/978-3-030-24658-7

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

[25] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck: Spec-

ifying and Verifying Microarchitectural Enforcement of Memory Consistency

Models. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 635–646. https://doi.org/10.1109/MICRO.2014.38

[26] Inês Lynce, Vasco M. Manquinho, and Ruben Martins. 2018. Parallel Maximum

Satisfiability. In Handbook of Parallel Constraint Reasoning, Youssef Hamadi and

Lakhdar Sais (Eds.). Springer, 61–99. https://doi.org/10.1007/978-3-319-63516-

3_3

[27] Ferney A. Maldonado-Lopez, Jaime Chavarriaga, and Yezid Donoso. 2014. Detect-

ing Network Policy Conflicts Using Alloy. In Abstract State Machines, Alloy, B,
TLA, VDM, and Z, Yamine Ait Ameur and Klaus-Dieter Schewe (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 314–317.

[28] Dmitry Malioutov and Kuldeep S. Meel. 2018. MLIC: A MaxSAT-Based Frame-

work for Learning Interpretable Classification Rules. In Principles and Practice of
Constraint Programming, John Hooker (Ed.). Springer International Publishing,

Cham, 312–327.

[29] Joao Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. 2011. Boolean

lexicographic optimization: algorithms & applications. Annals of Mathematics
and Artificial Intelligence 62, 3-4 (2011), 317–343.

[30] Ruben Martins, Vasco Manquinho, and Inês Lynce. 2013. Community-Based

Partitioning for MaxSAT Solving. In Theory and Applications of Satisfiability
Testing – SAT 2013, Matti Järvisalo and Allen Van Gelder (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 182–191.

[31] Ruben Martins, Vasco Manquinho, and Inês Lynce. 2014. Open-WBO: A Modular

MaxSAT Solver,. In Theory and Applications of Satisfiability Testing – SAT 2014,
Carsten Sinz and Uwe Egly (Eds.). Springer International Publishing, Cham,

438–445.

[32] Ruben Martins and Justine Sherry. 2017. Lisbon Wedding: Seating arrangements

using MaxSAT. MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions
B-2017-2 (2017), 25.

[33] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. 2015.

Alloy*: A General-Purpose Higher-Order Relational Constraint Solver. In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 1
(Florence, Italy) (ICSE ’15). IEEE Press, 609–619.

[34] Sanjai Narain. 2005. Network Configuration Management via Model Finding. In

USENIX Conference on Systems Administration (LISA). 155–168.
[35] Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram Krish-

namurthi. 2013. Aluminum: Principled scenario exploration through minimality.

In 2013 35th International Conference on Software Engineering (ICSE). 232–241.
https://doi.org/10.1109/ICSE.2013.6606569

[36] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.

Duck, and Guido Tack. 2007. MiniZinc: Towards a Standard CP Modelling Lan-

guage. In Principles and Practice of Constraint Programming – CP 2007, Christian
Bessière (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 529–543.

[37] Miguel Neves, Ruben Martins, Mikoláš Janota, Inês Lynce, and Vasco Manquinho.

2015. Exploiting Resolution-Based Representations for MaxSAT Solving. In

Theory and Applications of Satisfiability Testing – SAT 2015, Marijn Heule and

Sean Weaver (Eds.). Springer International Publishing, Cham, 272–286.

[38] Francesca Rossi, Peter van Beek, and Toby Walsh (Eds.). 2006. Handbook of
Constraint Programming. Foundations of Artificial Intelligence, Vol. 2. Elsevier.

[39] Roberto Sebastiani and Patrick Trentin. 2020. OptiMathSAT: A Tool for Op-

timization Modulo Theories. J. Autom. Reason. 64, 3 (2020), 423–460. https:

//doi.org/10.1007/s10817-018-09508-6

[40] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS XII). Association for

Computing Machinery, New York, NY, USA, 404–415. https://doi.org/10.1145/

1168857.1168907

[41] Clay Stevens and Hamid Bagheri. 2020. Reducing Run-Time Adaptation Space

via Analysis of Possible Utility Bounds. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1522–1534.

[42] Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In

Tools and Algorithms for the Construction and Analysis of Systems, Orna Grumberg

andMichael Huth (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 632–647.

[43] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:

Automated synthesis of hardware exploits and security litmus tests. Proceedings
of the Annual International Symposium on Microarchitecture, MICRO 2018-Octob

(2018), 947–960. https://doi.org/10.1109/MICRO.2018.00081

[44] G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483. https://doi.org/10.1007/

978-3-642-81955-1_28

[45] Perla Velasco-Elizondo, Vishal Dwivedi, David Garlan, Bradley Schmerl, and

José Maria Fernandes. 2013. Resolving Data Mismatches in End-User Compo-

sitions. In End-User Development, Yvonne Dittrich, Margaret Burnett, Anders

https://doi.org/10.1109/CSF.2010.27
https://www.worldcat.org/oclc/20595273
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1007/978-1-4419-6800-5_7
https://doi.org/10.1007/978-1-4419-6800-5_7
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/71.80192
https://doi.org/10.1109/71.80192
https://doi.org/10.1145/355045.355063
https://doi.org/10.1145/2950290.2950356
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1007/978-3-319-63516-3_3
https://doi.org/10.1007/978-3-319-63516-3_3
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Mørch, and David Redmiles (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

120–136.

[46] Lingyu Wang, Sushil Jajodia, Anoop Singhal, Pengsu Cheng, and Steven Noel.

2013. k-Zero Day Safety: A Network Security Metric for Measuring the Risk of

Unknown Vulnerabilities. IEEE Transactions on Dependable and Secure Computing
11, 1 (2013), 30–44. https://doi.org/10.1109/tdsc.2013.24

[47] Pamela Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord

Correct. IEEE Trans. Software Eng. 43, 12 (2017), 1144–1156.
[48] Lei Zhang and Fahiem Bacchus. 2012. MAXSAT Heuristics for Cost Optimal

Planning. Proceedings of the AAAI Conference on Artificial Intelligence 26, 1 (Jul.
2012). https://ojs.aaai.org/index.php/AAAI/article/view/8373

https://doi.org/10.1109/tdsc.2013.24
https://ojs.aaai.org/index.php/AAAI/article/view/8373

	Abstract
	1 Introduction
	2 Examples
	2.1 Solving Optimization Problems
	2.2 Solving Problems with Soft Constraints
	2.3 Solving with Priorities

	3 Background on MaxSAT
	4 Syntax and Semantics
	4.1 Abstract Syntax
	4.2 Translation
	4.3 Correctness of Translation

	5 Optimization
	5.1 Partition-based MaxSAT solving
	5.2 Extracting Partitions from AlloyMax

	6 Evaluation
	6.1 Implementation
	6.2 Case Studies
	6.3 Results

	7 Related Work
	8 Conclusion and Limitations
	Acknowledgments
	References

