AlloyMax: Bringing Maximum Satisfaction to
Relational Specifications

Changjian Zhang Ryan Wagner Pedro Orvalho
Carnegie Mellon University Carnegie Mellon University INESC-ID/IST, Universidade de Lisboa
Pittsburgh, USA Pittsburgh, USA Lisboa, Portugal

changjiz@andrew.cmu.edu

David Garlan
Carnegie Mellon University
Pittsburgh, USA
garlan@cs.cmu.edu

rrwagner@cs.cmu.edu

Vasco Manquinho
INESC-ID/IST, Universidade de Lisboa
Lisboa, Portugal
vasco.manquinho@tecnico.ulisboa.pt

pedro.orvalho@tecnico.ulisboa.pt

Ruben Martins
Carnegie Mellon University
Pittsburgh, USA
rubenm@andrew.cmu.edu

Eunsuk Kang
Carnegie Mellon University
Pittsburgh, USA
eskang@cmu.edu

ABSTRACT

Alloy is a declarative modeling language based on a first-order rela-
tional logic. Its constraint-based analysis has enabled a wide range
of applications in software engineering, including configuration
synthesis, bug finding, test-case generation, and security analysis.
Certain types of analysis tasks in these domains involve finding an
optimal solution. For example, in a network configuration problem,
instead of finding any valid configuration, it may be desirable to
find one that is most permissive (i.e., it permits a maximum number
of packets). Due to its dependence on SAT, however, Alloy cannot
be used to specify and analyze these types of problems.

We propose AlloyM?2*
to express and analyze problems with optimal solutions. Alloy
introduces (1) a small addition of language constructs that can be
used to specify a wide range of problems that involve optimality
and (2) a new analysis engine that leverages a Maximum Satisfiabil-
ity (MaxSAT) solver to generate optimal solutions. To enable this
new type of analysis, we show how a specification in a first-order
relational logic can be translated into an input format of MaxSAT
solvers—namely, a Boolean formula in weighted conjunctive normal

form (WCNF). We demonstrate the applicability and scalability of
Max

, an extension of Alloy with a capability
Max

AlloyM2* on a benchmark of problems. To our knowledge, Alloy
is the first approach to enable analysis with optimality in a rela-
tional modeling language, and we believe that Alloy™2* has the
potential to bring a wide range of new applications to Alloy.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3468587

CCS CONCEPTS

« Software and its engineering — Specification languages;
Software system models; Formal methods.

KEYWORDS
Alloy, SAT, MaxSAT, Relational specifications, Model synthesis

ACM Reference Format:

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Man-
quinho, Ruben Martins, and Eunsuk Kang. 2021. AlloyMax: Bringing Max-
imum Satisfaction to Relational Specifications. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE "21), August 23-28, 2021,
Athens, Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3468264.3468587

1 INTRODUCTION

Alloy[16] is a declarative modeling language based on a first-order
relational logic with transitive closure. Thanks to its expressive
power, along with the analysis capability provided by its back-end
engine, the Alloy Analyzer, it has been applied to a wide range of
problems in software engineering, including protocol verification [4,
47], configuration analysis [27, 34], test-case generation [19], bug
finding [9, 17], and security analysis [1, 18, 43].

The types of analysis that can be performed with a high-level
modeling language like Alloy depend on the capability of its under-
lying engine. The Alloy Analyzer is at its core a finite model finder:
Given a set of first-order logic (FOL) constraints that correspond to
a system specification M and user query S (e.g., S = “find a valid
network configuration”), the analyzer translates formula M A S to
an equisatisfiable Boolean formula F such that a satisfying instance
to F is also a solution to M A S. This analysis is then performed
by an off-the-shelf Boolean Satisfiability (SAT) solver. In general,
there may be multiple satisfying instances F; the Alloy Analyzer
also provides a way to enumerate these solutions by repeatedly
invoking the solver with additional constraints that are intended
to block the previously seen instances.

https://doi.org/10.1145/3468264.3468587
https://doi.org/10.1145/3468264.3468587
https://doi.org/10.1145/3468264.3468587

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

The reliance on the SAT-based analysis means, however, that
the Alloy Analyzer cannot be used to automatically perform the
following types of analysis:

¢ Generation of optimal solutions: It is sometimes desirable to
find not only any solution but one that is minimal or maximal,
depending on the problem being modeled. For instance, in the
context of security exploit generation [43], it may be desirable
to synthesize the smallest possible exploit that can demonstrate
a security violation. In a network firewall configuration prob-
lem [34], a configuration setting that maximizes the number of
allowed packets while satisfying a security policy is typically
considered more desirable than a less permissive solution. How-
ever, since the Alloy Analyzer returns instances in an arbitrary
order, finding such an optimal solution can only be done by
enumerating the (typically very large) space of all instances.

e Analysis with soft constraints: Certain problems are natu-
rally expressed using a combination of both hard and soft con-
straints, where a desirable solution should satisfy as many of
the soft ones as possible. For example, a meeting scheduling
problem may consist of hard constraints (e.g., “all participants
must be present”) as well as soft ones (e.g., “participants’ time
preferences”); if it is not possible to satisfy all of the latter, a
solution that fulfills as many of these optional preferences is still
more desirable than others. Since all of the constraints in Alloy
are treated as hard constraints that must always be satisfied, it
is currently not possible to analyze such types of problems.

e Analysis with priorities: When a problem has multiple, in-
comparable optimal solutions, it may be helpful to rank these
solutions using some notion of priority among constraints. For
instance, in the aforementioned scheduling problem, a partici-
pant may have a higher preference towards meeting times in the
morning rather than in the afternoon. Again, since Alloy treats
all of the constraints equally, it is not possible to solve problems
where such a notion of priority plays an important role.

In this paper, we propose AlloyM®* an extension of Alloy that
overcomes these limitations by enabling an analysis of Alloy speci-
fications with optimal solution generation. In particular, we propose
both (1) a language extension to allow the user to specify soft con-
straints and indicate parts of an Alloy specification that must be
optimized and (2) a new analysis back-end that leverages a max-
imum satisfiability (MaxSAT) solver to perform the analysis. To
enable this analysis, we also provide a new translation mechanism
from a high-level AlloyM2* specification in FOL to an equivalent
MaxSAT problem.

The proposed extension significantly extends the range of anal-
yses that can be performed over Alloy specifications. It is also a
strict generalization of Alloy: It introduces no semantic changes
to existing Alloy specifications and includes only a small number
of syntactic extensions, and thus should be easily adoptable by
existing Alloy users.

We demonstrate the added analysis capability of AlloyM®* on a
variety of case studies, including exploit generation on microproces-
sors [43] (similar to the well-known Spectre [20] and Meltdown [24]
attacks), graceful degradation in security [13], a wedding seating
assignment [32], and a task scheduling problem [22]. We show that
not only can our extension be used to perform analyses that were

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

Table 1: The course timetable of the scheduling problem.

Mon | Tue Wed | Thu Fri
AM | CS101 | ML/Compiler | CS101 | ML/Compiler
PM | SE (ON] SE (ON] CS101

not possible in Alloy before, but the performance of our analysis
engine is competitive to the existing Alloy Analyzer.
The contributions of this paper are as follows:

e An extension to Alloy, called Alloy™?*, and an accompanying
analysis engine that can be used to generate optimal solutions
and solve problems with soft, prioritized constraints (Section 2);
A translation mechanism from a first-order relational logic to a
weighted Boolean formula (Section 4);

e An optimization technique that uses high-level information in
an input Alloy specification to guide a MaxSAT solver more
efficiently towards optimal solutions (Section 5); and

A collection of case studies demonstrating the new types of anal-
yses in AlloyMaX, and a set of benchmark results demonstrating
its performance on problems of varying sizes (Section 6).

2 EXAMPLES

As a motivating example, consider a model of a course scheduling
problem in Alloy (Figure 1). A university offers a set of courses that
students can register for each semester; in this model, we assume
the school is offering five courses named CS101, Compiler, OS, ML,
and SE (lines 6-10). Each lecture can take place during the morning
(AM) or afternoon (PM) between Monday to Friday (lines 1-4). A set
of all available lecture slots (lines 13-14) and their relations to the
day and time are defined on lines 17-18, and the timetable for the
courses (Table 1) is defined on line 20. Each student is associated
with a set of core courses that are required for their major. For
simplicity, we consider the scheduling problem for one particular
student, Alice, who is assigned CS101 as a core course.

Each student’s registration schedule must satisfy the following
requirements:

e Each student must take at least three courses (line 35);

e Each student must take all of the core courses that they are
assigned, and (line 36);

o A student cannot take courses whose lecture times conflict with
each other (line 37).

Given this model, we can use a run command (line 47) in Alloy
to generate a valid course schedule for Alice that satisfies all of
the requirements. Figure 2a shows the first generated instance,
indicating that Alice could take Compiler, CS101, OS, and SE to
satisfy the requirements.

2.1 Solving Optimization Problems

Suppose that we wish to extend this model to encode students’
interests in subjects (i.e., every student is interested in a set of
courses). The goal is to be able to generate a schedule that maximizes
the number of courses that match a student’s interest, in addition to
satisfying the three basic requirements. The following code snippet
shows the new definition for Student and Alice, where Alice is
interested in SE and ML.

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

1 abstract sig Day {}// The set of days for Mon to Fri.
2 one sig Mon, Tue, Wed, Thu, Fri extends Day {}

3 abstract sig Time {3}// The set of times (AM and PM).
4 one sig AM, PM extends Time {}

5

6 abstract sig Course { // The set of courses.

7 // Each course has several lectures in a week.

8 lectures: set Lecture

9 }

10 one sig CS101, Compiler, 0S, ML, SE extends Course {}
11

12 // In total, 5 (days) x 2 (AM/PM) lecture slots.

13 abstract sig Lecture { day: one Day, time: one Time }
14 one sig MonAM, MonPM, TueAM, ... extends Lecture {}

15 fact {

16 // The full day/time definition is omitted.

17 day = MonAM -> Mon + MonPM -> Mon +...

18 time = MonAM -> AM + MonPM -> PM + ...

19 // The full timetable definition is omitted.

20 lectures = SE -> MonPM + SE -> WedPM + ...

21}

22

23 abstract sig Student { // The set of students.

24 // Each student is assigned a set of core courses.
25 core: set Course,

26 // Each student may register for a set of courses.
27 courses: set Course

28 }

29 one sig Alice extends Student {} {

30 core = CS101 // Alice has to take CS101.

31 }

32 // The predicate for the three requirements.

33 pred validSchedule[courses: Student -> Coursel {

34 all stu: Student {

35 #stu.courses > 2

36 stu.core in stu.courses

37 all disj c1,c2:stu.courses | not conflict[cl, c2]
38 }

39 }

40 pred conflict[cl, c2: Coursel] {

41 some 11, 12: Lecture {

42 11 in cl1.lectures and 12 in c2.lectures

43 11.day = 12.day and 11.time = 12.time

44 }

45 }

46 // Generate a valid schedule.

47 run { validSchedule[courses] }

Figure 1: An Alloy model for the course scheduling system.

() (@

Figure 2: Instances of the course scheduling problem.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

abstract sig Student {
core: set Course, courses: set Course,
// Courses that this student is interested in.
interests: set Course
}
one sig Alice extends Student {} {
core = CS101
interests = ML + SE // Interested in ML and SE.

O 0NN U R W N

}

Even though this maximization problem can be expressed in Alloy
as follows, it contains a higher-order quantification (line 3, over
possible relations from Student to Course), which cannot be solved
by the Alloy Analyzer!:
run {
validSchedule[courses]
no courses': Student -> Course {
validSchedule[courses ']

1
2
3
4
5 some stu:Student | #(stu.interests & stu.courses)
6 < #(stu.interests & stu.courses')

7

8

}

This optimization problem can be solved by our extension, Alloy
The following code snippet shows a run command that uses our
new maxsome multiplicity construct:

Max

1 run MaxInterestsl {

2 validSchedule[courses]

3 all stu:Student| maxsome stu.interests & stu.courses
4

}

The meaning of the constraint on line 3 is that for any student,
there exist some elements in the intersection of set stu.interests
and set stu.courses that should be maximized, i.e., find an instance
that maximizes the number of elements in this intersection.

An alternative way of specifying the optimization problem is by
using our new maxsome quantifier:

run MaxInterests2 {
validSchedule[courses]

1

2

3 all stu: Student | maxsome comm: set Course |

4 comm in stu.interests and comm in stu.courses
5

}

Figure 2b shows the instance generated by a MaxSAT solver, which
suggests that Alice could take CS101, ML, OS, and SE, where ML
and SE are the courses that Alice is interested in.

2.2 Solving Problems with Soft Constraints

We wish to extend the model further to allow students to indicate
preferences over lecture times for their courses. For example, sup-
pose that Alice does not want to take courses on Thursday mornings
and Friday afternoons. The following code snippet shows a run
command with a constraint that encodes Alice’s preferences. When
the command is executed, the Alloy Analyzer fails to find any valid
schedule (i.e., the resulting formula is unsatisfiable) because Alice
has to take CS101, which has lectures on Friday afternoons.
run WithPrefer {
validSchedule[courses]

1
2
3 all stu:Student| maxsome stu.interests & stu.courses
4 // No lecture on Thu AM.

! Another extension of Alloy, called Alloy* [33], can be used to solve higher-order
quantification, but does not support other types of analysis shown in Sections 2.2 and
2.3. We provide a more detailed comparison of Alloy™M®* and Alloy* in Section 7.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

5 ThuAM !in Alice.courses.lectures
6 // No lecture on Fri PM.

7 FriPM !in Alice.courses.lectures
8

}

One way to find a satisfying instance is to relax some of the
constraints; for instance, Alice could be asked to give up on some
of her preferences to satisfy the requirements. However, Alloy does
not provide a way to specify such desirable but optional constraints.

In AlloyMa", we introduce a notion of soft constraints, i.e., a set of
constraints that are not required but should be satisfied as much as
possible. The following code shows a new type of construct called
soft fact, which contains a list of soft constraints:

soft fact {
ThuAM !in Alice.courses.lectures
FriPM !in Alice.courses.lectures

1
2
3
4}

5 run WithSoftPrefer {

6 validSchedule[courses]

7 all stu:Student| maxsome stu.interests & stu.courses
8

}

Given the above run command, AlloyM** will attempt to find an

instance that maximizes the number of satisfied soft constraints, in
addition to the other hard constraints that encode the three basic
requirements. Figure 2c shows an instance where Alice could take
CS101, OS, and SE, i.e., Alice gives up her Friday afternoons in order
to register for CS101, but her Thursday mornings are freed up.

2.3 Solving with Priorities

However, Alice is not entirely satisfied with the above schedule.
Although her Thursdays are free, she has to give up the ML course,
which she is interested in. Given a choice between two conflict-
ing goals—keeping Thursday mornings free and studying ML—she
would rather choose the latter; i.e., ML has a higher priority for her.
Currently, in Alloy, there is no way to express and analyze with
such a notion of priorities among constraints.

In AlloyM2* | priorities can be explicitly assigned to maximal or
soft constraints to indicate the user’s preferences on which of the
possibly conflicting constraints must be satisfied first. For example,
in the following snippet, maxsome[1] indicates that maximizing the
number of interested courses has a higher priority than satisfying
the time preferences (i.e. soft fact is assigned default priority of 0).

1 soft fact {

2 ThuAM !in Alice.courses.lectures

3 FriPM !in Alice.courses.lectures

4 3

5 run WithSoftPreferAndPrior {

6 validSchedule[courses]

7 all stu: Student |

8 maxsome[1] stu.interests & stu.courses
9

}

Figure 2d shows the instance generated by the solver; i.e., Alice
could take CS101, ML, OS, and SE, which maximizes her course
interests over her time preferences.

In summary, our extension expands the range of analyses avail-
able in Alloy, including (1) generating an instance that maximizes
or minimizes a given relation, which can be used for optimization
problems (2) defining soft constraints and finding an instance that

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

satisfies as many of these optional but desired constraints, and (3)
specifying priorities among different soft or maximal constraints.

3 BACKGROUND ON MAXSAT

A propositional formula in conjunctive normal form (CNF) is defined
as a conjunction of clauses, where each clause is a disjunction of
literals such that a literal is either a propositional variable v; or
its negation —w;. A clause is satisfied if at least one of its literals
is satisfied. Finally, a CNF formula is satisfied if all its clauses are
satisfied. Given a CNF formula ¢, the Satisfiability (SAT) problem
corresponds to deciding if there is an assignment such that ¢ is
satisfied or proving that no such assignment exists.

The Maximum Satisfiability (MaxSAT) is an optimization version
of the SAT problem. Given a CNF formula ¢, the goal is to find an
assignment that maximizes the number of satisfied clauses in ¢. In
partial MaxSAT, clauses in ¢ are split in hard ¢y, and soft ¢s. Given a
formula ¢ = (P, ¢s), the goal is to find an assignment that satisfies
all hard clauses in ¢, while minimizing the number of unsatis-
fied soft clauses in ¢5. This problem can be further generalized to
weighted MaxSAT, where each soft clause has a positive weight, and
the goal becomes to minimize the sum of the weights of unsatisfied
soft clauses. MaxSAT algorithms have seen a remarkable improve-
ment in the last decade [3] and can be used to solve problems in
domains such as planning [48], data analysis [28], security [10],
and bioinformatics [11]. In this paper, we leverage existing MaxSAT
technology and extend Alloy to handle optimization problems.

4 SYNTAX AND SEMANTICS

This section describes the syntax and semantics of AlloyM2*_ It also
presents the formal translation rules from an AlloyM®* specification
to a MaxSAT problem.

4.1 Abstract Syntax

Figure 3 shows the abstract syntax of AlloyM®*. An AlloyM2* prob-
lem is a tuple P = (A, D, F, Fs) where A is the set of atoms in the
universe, D is a set of relation declarations, F is an Alloy formula
that defines the hard constraints that must be satisfied, Fs is a soft
Alloy formula that defines the soft constraints that may or may not
be satisfied. A (hard) Alloy formula may contain keywords such as
maxsome for generating optimal solutions.

Optimization operators. AlloyM®* extends the existing some mul-
tiplicity operator with maxsome and minsome for maximization and
minimization, respectively. Informally, some r is true when relation
r is not empty; but with maxsome (minsome), the solver returns a
model with a non-empty r that has a maximal (minimal) number
of tuples.

AlloyMa* also extends the no multiplicity operator with softno.
Informally, no r is true when r is empty. For softno, the solver tries
to find a model with an empty r, but if no such satisfying instance
exists, the solver instead returns a model where r has the minimal
number of tuples. The difference between minsome and softno is
that minsome requires the relation r to have at least one tuple.

In addition, the existential quantifier (i.e., some) is also extended
with maxsome and minsome. In Alloy, somee : r | F is true when
there exists a tuple in relation r that makes formula F true. In
AlloyM2* when maxsome (minsome) is used in place of some, the

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

problem := univDecl relDecl* formula softFormula

softFormula := soft formula | soft[0..] formula | compositeSoft

compositeSoft := softFormula and softFormula

univDecl := {atom[,atom]*}
relDecl := rel :aity

varDecl := var : expr
constant := {tuple”}

tuple := (atom[,atom]*)

arity:=1]2]3] ...
atom := identifier
rel := identifier

var := identifier

Figure 3: Abstract syntax of AlloyM®*, Bolded text are existing keywords in Alloy; text in blue are new keywords in Alloy

solver finds a model where r contains at least one tuple and tries to
maximize (minimize) the number of tuples in r that make F true.

Soft constraints. AlloyM®* introduces the soft fact keyword to
specify a soft constraint, i.e., soft fact F where F is an Alloy formula
but becomes soft. When multiple soft fact are present in a given
specification, the overall soft constraint Fs is the conjunction of
those soft Alloy formulas.

Priority. A priority p € Ny may be specified along with every
one of the new operators in AlloyM®*, When it is left unspecified, a
default lowest priority 0 is assigned to the associated Alloy formula.

4.2 Translation

Overview. Figure 4 formally defines the translation rules for
AlloyM2* a5 an extension to the existing translation process in
Alloy [15, 42]. Due to limited space, we focus on the parts of the
translation process that are most relevant for AlloyM2X,

A relation in Alloy is translated into a matrix of Boolean vari-
ables (each of which is true if and only if the tuple represented by
this particular variable is in the relation), and a relational expres-
sion (e.g., dot join) is represented by operations over one or more
matrices. In Alloy, a FOL problem with bounds is translated into a
Boolean formula, which is eventually converted into conjunctive
normal form (CNF). In AlloyMaX, the idea is to instead convert it
into weighted conjunctive normal form (WCNF), where (1) hard
Boolean formulas are assigned the special weight of +co, to ensure
that they are satisfied in every instance and (2) soft formulas are
assigned different weights (depending on the user-specified priori-
ties), to guide the solver towards an instance that maximizes the
total sum of weights.

Translation Steps. First, an AlloyM®* problem is translated into
a Boolean formula with priorities, denoted by bool?. A prioritized
Boolean formula F¥ is the Boolean formula F with an optional
priority, k, which is used in a later part of the translation to assign
weights to the corresponding WCNF clauses. When k is omitted, it
represents a hard formula that must be satisfied.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

expr := rel | var | unary | binary | comprehension
unary := unop expr

unop :=~ | *
binary := expr binop expr
binop :=+ | &|-]|.|->

comprehension := {varDecl | formula}

formula := elementary | composite | quantified
elementary := expr in expr | mult expr
mult := some | maxsome | maxsome[0..] | minsome

| minsome[0..] | no | softno | softno[0..] | one
composite := not formula | formula logop formula
logop := and | or
quantified := quantifier varDecl | formula
quantifier := all | some | maxsome | maxsome|O0..]

| minsome | minsome/O0..]

Max

In Figure 4, function Mg is used to translate soft constraints, i.e.,
constraints that are defined as part of soft fact in AlloyM2*. Given
a soft constraint soft fact F with priority k, if F is a conjunction of
Alloy formulas, Mg translates each conjuncts into a soft constraint
also with priority k (line 17); otherwise, Mg translates the contained
Alloy formula F by calling M and assigns k as its priority (line 18).

Function M is used to translate Alloy formulas. Keywords in
vanilla Alloy follow the existing translation rules. For each of the
new keywords in AlloyM?* (e.g., maxsome, minsome), the trans-
lation rule is similar to the existing rule, except additional prior-
itized Boolean formulas are introduced to instruct the solver to
search for a maximal or minimal solution. For instance, on line 21,
maxsome|k] p is translated by (1) stating that p must not be empty,
as it is done for some in vanilla Alloy (line 20), and (2) including
a prioritized Boolean formula for the presence of each tuple in p;
given the corresponding WCNF, a MaxSAT solver attempts to find
a solution that maximizes the number of tuples in p.

Each prioritized Boolean formula is transformed into a CNF
formula with a priority for each clause by using the Tseitin trans-
formation [44]. Finally, a CNF formula with priority is translated
into a WCNF formula, to be solved by a MaxSAT solver. To guaran-
tee that a soft clause with a higher priority is always satisfied first
before the clauses with lower priorities, its weight is assigned to
be greater than the sum of weights of all the clauses with smaller
priorities. Formally, let C; represent all the clauses with priority i.
Then, their weight W; is assigned as:

i-1

wl-=1+zwj*|cj| (4.1)
=0

where |C;| is the number of clauses of C; and Wy = 1. This kind
of optimization is called lexicographic optimization and using this
weight distribution is a known way of converting it to MaxSAT [29].

Example. We use an example to illustrate one of the translation
rules (in particular, rule for maxsome on line 21 in Figure 4). Con-
sider two relations p : AX Band q : B X C, where A = {A1, A2},
B = {B1}, and C = {C1}. Suppose that we wish to find a model that

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

P : problem — bool? 1)
R : relDecl — univDecl — matrix (2)
M : formula — env — bool? 3)
Mg : softFormula — env — bool”? (4)
X : expr — env — matrix (5)
env: (quantVar U relVar) — matrix 6)
R, i1, .. ., i): vectors 7)
[m] : matrix — {(int)}, set of indices of matrix m (8)
|m| : matrix — dim, dimension of matrix m 9)
M : dim — ({int) — bool”) — matrix, constructor (10)
M,) = (m | Im] = 9)
VX €{0,....,s— 1} m[R] = f(X)}
M : dim — (int) — matrix, constructor (12)
M4 R) = M(s4, X7 . if J = then true else false) (13)
P[Ady,...,dn F Fs] = lete= UL, (r; = R[d;]A) in (14)
M[Fle A Ms[Fs]e
R[r %]A = M(|A|%, X% . freshVar()) (15)
Mg[Fs and Gsle = Mg[Fs]e A Ms[Gs]e (16)
Mg [soft[k] F and Gle = Ms[soft[k] Fle A Ms[soft[k] G]le (17)
Mg [soft[k] Fle = (M[F]e)k, where F is not a conjunction (18)

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

M([p in gle = A(~X[ple v X[g]e) (19)
M([some ple = V(X[p]e) (20)
M[maxsome[k] p]e = M[some ple A /\(X[p]e)]C (21)
M[minsome[k] p]e = M[some ple A /\(—-X[p]e)k (22)
M[one ple = ExactlyOne(X[p]e) (23)
M[no ple = A(=X[ple) (24)
M(softno[k] ple = A(=X[p]e)* (25)
M{[not Fle = ~M[F]e (26)
M|[F and Gle = M[F]e A M[G]e (27)
M|[F or G]le = M[Fle vV M[G]e (28)
MJallo: p | Fle =let (m = X[p]e) in
A% el (mIRTV MIF) (e 0 7 M(m| 7)))
Mlsome v : p | Fle =let (m = X[p]e) in 30)
V2 cm) (M1 A MIF] (e 0 > M(Im| 2))) (
M[maxsome[k] v : p | Fle = M[somev : p | Fle A /\(X[p]e)k (31)
M[minsome[k] o : p | Fle = M[some v : p | Fle A A(=X[ple)* (32)
X[p +qle=X[pleVv X[qle (33)
X[p &qle=X[ple A X[q]e (34)
X[p —qle=X[ple A =X[qle (35)
X[p-qle=X[ple-X[qle (36)
X[p -> qle = X[ple x X[q]e (37)
X[~ple = (X[ple)” (38)
X["ple = IterativeSquare(X[p]e) (39)
X[{v: p|F}]e—let (m=X[ple) in (40)

M(Iml, 2% . m[x] A M[F](e : 0 = M(Im] %))

Figure 4: Translation rules. bool? is a Boolean formula with priority where p € No. When p is omitted, the formula represents

a hard formula that must be satisfied. In other words, it has an infinite priority, i.e. F

satisfies the following formula:
maxsome p.q

Relation p is represented by a set of Boolean variables {poo, p10}
(where, for example, pgo is true if and only if (A1, B1) is a tuple in p);
similarly, q is represented by {qoo}. Then, the formula is translated
into a prioritized Boolean formula as follows:

((Poo A g00) V (P10 A q00)) A (Poo A qoo)° A (P10 A goo)°

where the first top-level conjunct says that p.q must contain at
least one tuple (equivalent to some p.q); the next two conjuncts
are formulas with the lowest priority of 0 stating that p.q should
contain as many of the two possible tuples as possible.

To translate the above formula into CNF, the Tseitin transforma-
tion introduces fresh variables that represent sub-formulas:

a < poo Aqoo, b < p1o A qoo

where {a, b} can also be seen as the variables representing the
tuples in relation p.q. Then, after the transformation, the following
prioritized CNF is produced:

(avb)na® ALY A
(—|a Vp()o) A (—|a Vv qoo) A (a V =poo V —|q00) A
(=b Vv p10) A (=b V qoo) A (b V =p1o V —qoo)

Finally, we translate this formula into WCNF to be solved by a
MaxSAT solver. Specifically, priorities are replaced with weights by

- F+oo.

Equation 4.1. Since a° and b° have priority 0, thus they are assigned
weight 1 in the final WCNF formula.

4.3 Correctness of Translation

A model or an instance of an Alloy formula is an assignment of
tuples to relations that makes the formula true. An Alloy problem
may have multiple models. We call the set of all models the solution
space of a problem. When two problems have the same solution
space, we say that they are semantically equivalent.

Theorem 4.1. An AlloyMaX problem P = (A, D, F, Fs) is seman-
tically equivalent to the problem P’ = (A, D, F’, true) where Fs,
the soft constraints, is replaced by true, and F’ is the formula that
results from replacing maxsome and minsome in F by some, and
softno by true.

Proor. To prove this theorem, we first state the following lemma:

Lemma 4.1. A prioritized Boolean formula F k with a priority of a
finite integer (i.e., a soft formula that can be satisfied or not) is se-
mantically equivalent to true in the corresponding non-prioritized
Boolean formula.

According to this lemma, by replacing the soft formulas in the
translation rules with true, we have:

e soft|k] F (Figure 4, line 18) is semantically equivalent to true;

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

o maxsome[k] p (line 21) and minsome[k] p (line 22) are semanti-
cally equivalent to some p (line 20);

e softno[k] r (line 25) is semantically equivalent to true;

o maxsomelk] v : p | F (line 31) and minsome[k] v : p | F (line 32)
are semantically equivalent to some v : p | F (line 30).

Then, given an AlloyM®* problem P, let P’ be the problem that

results from replacing all the soft facts with true, maxsome and

minsome with some, and so ftno formulas with true. Based on the

above list of statements about semantic equivalence, it follows that

amodel is a solution to P if and only if it is also a solution to P’. O

Theorem 4.2. Given a MaxSAT solver that maximizes the total
weight of a given WCNF formula, AlloyM2* generates the optimal
solution to the corresponding FOL problem.

Proor. This theorem can be proved by showing the correct-
ness of each optimization operator. We show the correctness for
maxsome only; other operators can be proved similarly.

Given maxsome[k] p, where p is a relation, let {po, p1,...,pn}
be the Boolean literals that represent the presence of tuples in p.
Then, the formula will be translated into:

(PoV 1V ...V pn) A (p0)* A (PR A A (pr)F

By maximizing the total weights of this formula, the number of satis-
fied clauses of form p; (for i < n) is also maximized. Thus, AlloyMax
returns a model where the size of the relation p is maximized.

]

5 OPTIMIZATION

By encoding problems in MaxSAT, Alloy™®* can potentially take
advantage of advances in MaxSAT technology to more efficiently
solve the underlying optimization problem. However, when en-
coding the problem to a low-level WCNF, the high-level structure
of the problem may be lost and become unavailable for MaxSAT
algorithms to take advantage of. Prior approaches try to recover
this information by clustering soft clauses into partitions and us-
ing them during solving [30, 37]. However, these approaches are
heuristic-based and sometimes fail to capture meaningful relation-
ships between soft clauses. In this paper, we propose to extract the

Max

partition information directly from the AlloyM®* syntax and give
this information to existing partition-based MaxSAT algorithms.

5.1 Partition-based MaxSAT solving

We briefly present an overview of unsatisfiability-based MaxSAT al-
gorithms that use partition strategies [30, 37]. Unsatisfiability-based
algorithms work by finding a sequence of unsatisfiable subformu-
las that correspond to increasing a lower bound on the number
of falsified soft clauses until the formula becomes satisfiable and
an optimal solution is found. These algorithms can be extended
with partition strategies by taking as input the MaxSAT formula ¢
and partitioning this formula into formulas ¢, . . ., ¢, with disjoint
set of soft clauses. Different approaches have been proposed to
partition a MaxSAT formula, but they are mostly based on hav-
ing a graph representation of the formula and then using graph
partitioning algorithms to create the partitions [30, 37].

The MaxSAT solver then takes as input these partitions and
starts by solving ¢1. If the formula is unsatisfiable, then the lower

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

bound on the number of falsified soft clauses is increased, and the
formula is refined to allow one additional soft clause to be falsified.
This loop is repeated until the formula becomes satisfiable. In this
case, the algorithm found a solution to the formula that may or
may not be optimal. If no more partitions are left, then this solution
is guaranteed to be optimal. Otherwise, the next partition is added
to the solver and this process is repeated until an optimal solution
is found. Partitioning has the benefit of potentially finding smaller
unsatisfiable subformulas at each iteration of the algorithm, which
often leads to a sequence of unsatisfiable formulas that is easier
to solve than without partitions. For further details on MaxSAT
algorithms, we refer the interested reader to the literature [3].

5.2 Extracting Partitions from AlloyMax

Our approach, which we call spec-based partitioning, changes this

existing process by using partitions that can be extracted directly

from AlloyMax as the translation to MaxSAT is performed, rather

than trying to guess “good” partitions at the WCNF level. In partic-

ular, partitions can be generated as follows.

e When adding a hard clause to the WCNEF, it is assigned group 1.
All the hard clauses in the WCNF belong to the same group.

e When translating an Alloy formula with optimization operators,
i.e., maxsome, minsome, and softno, AlloyMax creates a new group
g. Then, all the soft clauses associated with this optimization
operator are assigned group g.

e When translating a soft constraint, i.e., soft fact F, Alloy
creates a new group g’ for it. Thus, each soft constraint is in its
own group.

Max

A common pattern that we leverage for creating partitions in
AlloyM2% s to use the all keyword. For example, consider set P
and Q, and a relation r : P X Q. For formula all p : P | maxsome p.r,
the all (V) operator will be expanded to generate a maxsome p.r
formula for each p € P. Each maxsome formula will be in a separate
group, and we can easily partition the soft clauses by the tuples in
set P. For example, recall the course scheduling problem in Section
2.2. The soft fact formula

1 soft fact {

2 ThuAM !in Alice.courses.lectures
3 FriPM !in Alice.courses.lectures
4}

is first translated into two soft facts (Figure 4, line 17), and a group
is created for each of these soft facts. In addition, the formula

1 all stu:Student| maxsome stu.interests & stu.courses

generates a group for each student. Then, the solver will first try to
optimize each group individually and merge the results to find the
global optimal solution.

In Section 6.3, we compare the graph-based partitioning strategy
used in MaxSAT algorithms with AlloyM* partitioning and show
the benefit of extracting partitions from a high-level model.

6 EVALUATION

We evaluate AlloyM?* based on the following research questions:
RQ1: How useful is AlloyM®* for modeling different types of prob-
lems? For usefulness, we focus on applicability and scalability.
RQ2: Is spec-based partitioning more efficient than no-partitioning
and graph-based auto-partitioning?

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

RQ3: Is AlloyM®* more efficient than Alloy* for generating optimal
solutions? Alloy™ [33] is an extension that enables an analysis with
higher-order quantifiers, so it could, in principle, be used to solve
problems that generate an optimal solution as the one in Section 2.1.
This question aims at comparing which approach is more efficient
in this particular type of problem.

To answer these research questions, we apply Alloy™?* to five
case studies from different domains. Section 6.2 gives brief intro-
ductions to each case study and presents the optimization goals.

6.1 Implementation

We implemented AlloyMax based on Alloy 5.1.0, which, in turn, re-

lies on Kodkod, a general-purpose relational model finder [42]. We
extended Alloy to support the new syntax, and also modified Kod-
kod to support the new translation process. We use Open-WBO [31]
as our backend MaxSAT with the same algorithm for both partition-
ing and non-partitioning. For spec-based partitioning, we extended
the WCNF format to allow specifying group index at the beginning
of each clause. We modified Open-WBO to read this new file format
and changed the partition strategy to use the one specified in the
file. All the experiments were run on a Linux machine with a 4
core 3.6GHZ CPU and 20 GB memory. Every problem was run 5
times (each with a 30 minutes timeout), from which the average
was computed and reported in Table 2. The benchmark and tool
are available for reproduction?.

6.2 Case Studies

6.2.1 Course Scheduling. Recall the course scheduling model de-
scribed in Section 2. In this benchmark, we randomly generate
problems with C courses and S students; a course should have ei-
ther two or three lectures among a week; each student should take
at most R core courses and is interested in at most I courses.

The optimization goal is to maximize the number of interested
courses that a student is registered for. The problem names in
Table 2 follow the pattern course_{C}_{S}_{R}_{I}. The size of
the AlloyM2* specifications ranges from 252 to 552 LOC.

6.2.2 CheckMate. CheckMate [43] is an automated tool based on
Alloy for synthesizing proof-of-concept exploit code for hardware
security attacks similar to Meltdown [24] and Spectre [20]. It uses a
“micro- architecturally happens-before” graph [25], denoted as phb,
to model and analyze the execution process of micro-operations.
In a CPU, an instruction goes through a sequence of stages to
be executed (e.g., Fetch, Exec., and Commit). Then, a phb graph
represents the execution process of a series of program instructions.

An attack pattern (e.g., Meltdown or Spectre) is represented as a
sub-graph pattern in ghb. CheckMate models the micro-architecture
of a CPU, the events of instructions, and the attack pattern in Alloy,
and uses the Alloy Analyzer to generate a phb graph that contains
the attack pattern. Moreover, CheckMate aims to synthesize secu-
rity litmus tests, i.e., most compact programs that can demonstrate
a security attack. However, since this optimization goal cannot be
solved by Alloy, the authors of CheckMate developed an additional
Python program to enumerate all the possible instances and find
the litmus tests.

Zhttps://github.com/SteveZhangBit/alloy-maxsat-benchmark

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

With AlloyM2X| this optimization task can be formulated as min-
imizing the relation that represents the phb graph. In particular,
this goal is modeled by using softno, all is used for leveraging parti-
tioning (as shown below), and the returned instance contains the
smallest phb graph, which represents a security litmus test.

1 run {

2 ...// CheckMate constraints
3 all n: Node | softno n.uhb
4 3

The original CheckMate model is around 1,100 LOC in Alloy; to
specify the optimization goal, it only involved adding the above
softno formula to the specification.

6.2.3 Graceful Degradation. In network security, a simple way of
mitigating an on-going attack is to shut down the entire system.
In practice, however, this is unacceptable because the system will
lose all of its functions. Graceful degradation [13, 46] is an approach
for dynamically re-configuring parts of a system under an attack
to maximize the remaining uncompromised functions. Typically,
this is achieved by (1) shutting down only those components that
have been compromised, and (2) replacing these components with
backups (if available) to maintain the affected functions. This recon-
figuration process also involves removing network connections to
the compromised components and adding new ones to the backups.

Alloy can be used to model and analyze the problem of generating
a valid network reconfiguration that maintains all system functions.
However, depending on the extent of an attack, it may be impossible
to restore some of those functions. To determine which of them can
be restored, the Alloy user could manually comment out a selection
of constraints that correspond to the functions, but the process to
find an optimal solution (i.e., one that restores as many functions
as possible) would be tedious.

With AlloyM2%, we use soft fact to model the functions as soft
constraints (line 4-6). Given these, the solver will try to maximize
the functions and give up on ones that are unsatisfiable. Moreover,
in practice, every change to the architecture could have a cost, and
the total cost (the number of architectural modifications) should
also be minimized. Thus, we use maxsome to maximize the over-
lapping connections between the degraded architecture and the
initial one (line 9), and use softno to minimize the new connections
added to the degraded architecture (line 10). Furthermore, system
function is considered more important than cost. Thus, soft con-
straints representing the functions are assigned a higher priority.
The following snippet shows our optimization goals.
sig Component {

init: set Component, degraded: set Component
}
soft[1] fact {
NonCriticalFunction and CriticalFunction
}
run {
validArchitecturel[degraded]
maxsome degraded & init
softno degraded - init

[
= O 0 00NN U R W N

}

In our benchmark, each problem has C components including
backup ones; the attacker’s capability (in terms of the degree that
the system might be compromised) is set to K, and; each problem has
A initially compromised components. The problem names follow

https://github.com/SteveZhangBit/alloy-maxsat-benchmark

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

the pattern degrade_{C}_{K}_{A}. The size of the specifications
ranges from 240 to 326 LOC.

6.2.4 Wedding Table Seating. Consider a wedding table seating
problem [32], where (1) each table seats a minimum and a maximum
number of guests; (2) each person should be assigned to only one
table; (3) each person is associated with a set of tags indicating their
interests. The hard constraint is to generate a seating assignment for
each person, and the optimization goal is to minimize the number
of different tags between all people sitting at the same table.
Alloy can be used to model this problem and generate an arbi-
trary assignment. The following snippet shows relevant constraints.
sig Tag {2}
sig Person { tags: set Tag }
sig Table { seat: set Person } {
#seat =< MAX_NUM_PERSON// Maximum number of guests.
#seat >= MIN_NUM_PERSON// Minimum number of guests.
3/ One seat for one person.
fact { all p: Person | one seat.p }

run {3}

O 0NN U R W N =

However, with this model, we cannot find the optimal solution that
minimizes the number of different tags at a table. With AlloyMX,
this optimization goal can be modeled by using softno. In partic-
ular, to take advantage of the partitioning optimization, the goal
is specified as, for each table, it should have no or minimized tags.

The following expresses this optimization goal.
1 run TableBased { all t: Table | softno t.seat.tags }

For the benchmark, we randomly generated problems with G
tags, T tables, and P people, where each table has minimum L
and maximum H people, and each person has maximum M tags.
The problem names follow the pattern seat_{G}_{P}_{M}_{T}
{L}{H}. The size of the specifications ranges from 50 to 55 LOC.

6.2.5 Single Machine Scheduling (SMS). In many real-time systems,
it is often impossible to schedule tasks to make them meet all their
time requirements. In practice, one must schedule the tasks in such
a way to can maximize the number of on-time tasks [22]. Consider
a real-time system with a set of n tasks {71, ..., 7,} to be executed
on a uni-processor machine, i.e., only one task can be executed at a
time. Each task is a triple (r;, p;, d;) where r; is the release time (i.e.,
the earliest start time), p; the processing time, and d; the deadline.

Tasks can be split into fragments so that one task can be inter-
rupted in order to execute fragments of other tasks. However, the
execution order of the fragments of one task should not be changed.

Formally, a task 7; has k; fragments and each fragment f;j where

Jj € {1,...,ki} has process time p{, and we have 2’;;1 pf = pi.

Finally, a task may depend on other tasks. Thus, if a task 7; depends

on task 7j, 7; must be executed only after r; has been completed.
Alloy can be used to model this problem and find an arbitrary

subset of tasks that can complete within their deadlines. However,

the maximality is not guaranteed. With AlloyM2*, we use maxsome

to find the optimal schedule which maximizes the number of on-

time tasks. The following snippet shows the optimization goal.

1 sig Task {} sig Completed in Task {3}

2 run {

3 CompleteOntime[Completed]

4 maxsome Completed }

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

In our benchmark, we randomly generate problems with N tasks.
The release time of each task is within a time frame R; each task has a
maximum processing time P, and a maximum number of fragments
F. A slack factor S is used to compute the deadline for each task
where d; = r; + random(1,S) * p;. Finally, a task depends on a
maximum number of D tasks. The problem names follow the pattern
sms_{N}_{R}_{P}_{F}_{S}_{D}. The size of the specifications
ranges from 192 to 259 LOC.

6.3 Results

6.3.1 RQI: How useful is AlloyM®* for modeling different types of
problems? We successfully modeled the aforementioned problems
with AlloyM®* (or migrate from existing ones). It only requires
appending the optimization formulas to the original run commands
in plain Alloy without any reconstruction.

Table 2, first column shows the problems used in our benchmark.
The problem name reflects the scale of each problem. Specifically,
the size of the AlloyM#* specifications for these problems ranges
from 50 LOC to 1,109 LOC. The number of variables in the gen-
erated WCNF ranges from 2,236 to 24,583,678, and the number of
clauses ranges from 6,921 to 43,729,378. Although translating from
a high-level language like Alloy™** may not produce the most suc-
cinct MaxSAT formulas, it can solve all these problems within a 30
minutes timeout.

6.3.2 RQ2: Is spec-based partitioning more efficient than no- par-

titioning and graph-based auto-partitioning? The results in Table

2 show that spec-based partitioning outperforms both no- and

auto-partitioning in Course, CheckMate, and Seating problems. On

SMS, spec-based partitioning shows little improvement over no-

partitioning because these problems do not have a natural, problem-

specific way of partitioning; as a result, the solver falls back to

no-partitioning. On the other hand, spec-based partitioning has a

negative impact on the first three Degradation problems. Moreover,

we have the following observations and insights:

e When partitioning is applicable, spec-based partitioning outper-
forms auto-partitioning, because (1) the former does not suffer
from the overhead introduced by the heuristic for guessing par-
titions, which can be significant for large problems, and the
heuristic may fail and fall back to no-partitioning (e.g., in Check-
Mate and Degradation), and (2) auto-partitioning might fail to
guess effective partitions (e.g., Seating problems where spec-
based improves the performance but auto does not).

e When partitioning is not applicable (i.e., only one partition ex-
ists), spec-based partitioning falls back to no-partitioning. On
the other hand, forcing auto-partitioning in this situation may
have negative impact on performance (e.g., SMS).

e We hypothesize that partitioning works well if the optimal solu-
tion of a sub-problem (hard clauses plus some partitions) is part
of the global optimal solution. The Course problems have this
property, since there are no registration limits on the number of
students for each course, and the registration for each student is
completely independent of one another.

e We observed in the Degradation problems that if a partition
added to the iterative process does not help refine the solution
towards the optimal one, the overhead of the iteration may ex-
ceed the time of solving the problem at once. In other words,

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

Table 2: Results for comparing MaxSAT non-partitioning vs. MaxSAT partitioning vs. Alloy”. The numbers in the table are
the solving time of the MaxSAT solver or the solver for Alloy” (i.e., excluding the translation time). There is no significant
difference in translation time among these methods. * indicates auto-partition fails because the problem is too large and it
falls back to no-partition. ** indicates only one partition exists in the problem and it falls back to no-partition.

Problem No-Part. Solve (s) Auto-Part. Solve (s) Spec-Part. Solve (s) Alloy” Solve (s)
course_30_40_3_6 0.93 0.19 0.17 112.08
course_40_50_3_6 3.90 0.42 0.31 437.72
course_50_60_3_6 11.84 0.78 0.62 860.49

Course course_60_70 3 6 31.38 1.14 0.90 1607.65
course_70_80_3 6 74.83 1.89 1.47 T/O
course_80 90 _3_6 175.40 2.96 2.09 T/O
course_90_100_3_6 277.93 4.72 3.09 T/0
Flush+Reload 123.01 133.60" 94.68 N/A

CheckMate Meltdown 353.74 368.13" 272.35 N/A
Spectre 634.55 660.15" 520.91 N/A
seat 7 28 7 6.3 7 3.06 7.19 1.76 26.47

Seating seat_7_30_7_6_3_7 0.70 1.23 0.65 52.27
seat 8 30.8 7 3 7 133.55 54.78 35.36 239.21
seat 8 32 .8 7.3 7 513.73 619.33 349.20 T/O
sms_34_20_6_3_3_2 20.06 31.00 20.05** 479.84
sms_38 20 6.3 3 2 19.13 35.12 19.47** 863.60

SMS sms_42_20_6_3_3_2 21.71 52.12 20.63** 1464.60
sms_46_20_6_3_3_2 186.98 263.31 184.93** T/O
sms_50 20 6 3 3 2 179.86 173.91 186.74* T/O
sms_52_20_6_3_3_2 81.22 198.73 85.21** T/0
degrade_10_2_1 0.26 0.77 0.28 N/A

Degradation degrade_26_2_1 25.55 43.08* 27.76 N/A
degrade_20_3_1 659.46 673.30* T/O N/A
degrade_26_2_2 1442.41 1453.32* 898.7 N/A

partitioning works well when every sub-problem contributes
towards the optimal solution.

6.3.3 RQ3: Is AlloyM®* more efficient than Alloy* for generating
optimal solutions? As shown in Table 2, both with or without par-
titioning, AlloyM2* outperforms Alloy* on optimization problems
that can be specified using higher-order quantifiers. Alloy”* is a
general-purpose higher-order solver (can be used to solve problems
that AlloyM2* is not applicable to), and so its analysis method—
based on counterexample-guided inductive synthesis (CEGIS) [40]—
is not specifically targeted for solving optimization problems. On
the other hand, since MaxSAT is designed for solving optimization,
it is expected that AlloyM2* outperforms Alloy* on such problems.

We did not apply Alloy* to CheckMate because it would re-
quire significantly reconstructing the specification to express a
higher-order formula that quantifies over all relevant relations to
be searched (e.g., relations representing various properties of an at-
tack graph to be minimized). Due to the complexity of this problem,
there are 40 such relations, and so this would result in a formula
with a quantifier depth of 40—not an Alloy expression that a user
can reasonably be expected to write. In contrast, AlloyM®* intro-
duces only one line of an optimization formula without changing

the existing specification; this also shows the benefit of the built-in
constructs in AlloyM®* for specifying optimization tasks.

Alloy™ is not applicable to degradation problems, which contain
soft constraints that cannot be specified in or solved by Alloy™.

6.3.4 Validation of Implementation. We manually checked the cor-
rectness of the results from AlloyM2* for the problems where the
optimal solutions are known, including CheckMate, graceful degra-
dation, and some subset of the course scheduling, seating, and SMS
problems. Also, for those problems in Table 2 that can be solved
by Alloy*, we checked that Alloy™®* and Alloy* produce the same
optimal solutions.

6.3.5 Threats to Validity. Our selected case studies might not be
representative enough to demonstrate the applicability of Alloy™?*
We believe that our benchmark contains a diverse set of exam-
ples from realistic domains (including exploit generation, network
reconfiguration, and task scheduling) and of varying sizes (from
relatively simple models like wedding seating to complex ones like
CheckMate). However, we plan to continually expand our bench-
mark to explore other potential applications of AlloyM®* and further
refine or modify the language as needed for new use cases.

In addition, the size of the problems in our benchmark might
not be large enough to show how well AlloyM?* scales to other

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

Alloy problems in practice. Given that CheckMate is one of the
most complex Alloy specifications available (based on our past
experience with Alloy) and also has been used to generate practi-
cal attacks on real systems [43], we believe that our experiments
show that AlloyM? scales well to realistic problems. In addition,
since its scalability depends on the efficiency of the underlying
MaxSAT solver, AlloyM2* will likely benefit from further advances
in MaxSAT technology, which is an active area of research [2].

7 RELATED WORK

Extensions to Alloy. Alloy* [33] is an Alloy extension that en-
ables analysis of Alloy specifications with higher-order quantifiers.
Although Alloy™ is designed for a different purpose than Alloy™2*—
mainly, enabling synthesis problems in Alloy—it could be used to
encode certain types of optimization problems by using higher-
order quantifiers, as shown in Section 2.1. However, as shown in
Section 6.3, AlloyM®* outperforms Alloy* on these problems, in
part because the former leverages MaxSAT solvers, which are de-
signed for finding optimal solutions. In addition, AlloyM2* provides
additional analyses involving soft constraints and priorities.

Aluminum [35] is an extension of Alloy that supports genera-
tion of minimal instances. Aluminum and Alloy™?* are designed
for different purposes and differ on the notion of minimality. In
particular, the former works by automatically removing as many
tuples as possible such that the resulting instance remains a valid
instance of the given Alloy specification, and allows the user to
influence the order in which Alloy generates its next instances by
augmenting the current instance with an additional tuple.

Cunbha et. al [8] propose an approach called target-oriented model
finding, where the goal is to allow the user to provide a partial speci-
fication of a target instance, and use a solver to generate an instance
that is as close to the target as possible. Their work also leverages
an extension of Kodkod with a MaxSAT solver as the underlying
engine, although its overall goal is different from Alloy™*,

Other types of solvers. There is a large body of work on con-
strained optimization problems (COPs)—a generalization of con-
straint satisfaction problems (CSPs) with an additional notion of an
objective function to be optimized [38]. The state-of-the-art tools in
this domain (e.g., Gurobi [12], CPLEX [14]) employ solving tech-
niques that are different from MaxSAT, such as Branch and Cut
algorithms [38]. Since the Alloy Analyzer already relies on SAT, we
found MaxSAT to be a natural choice for bringing optimization to
Alloy. Using a COP solver as an alternative backend to AlloyMax
is an interesting open problem, although it would involve a sig-
nificantly different translation than the SAT-based one in Kodkod
(which AlloyM2* builds on).

MiniZinc [36] is a constraint modeling language that is capable of
solving various types of CSPs, including optimization. Built on top
of solvers such Gurobi or CPLEX, MiniZinc is intended to be a high-
level language for specifying CSPs and provides convenient built-in
such as functions, data types, and global constraints. MiniZinc
provides certain features (e.g., floating numbers) that are missing
from AlloyM?*, while the relational core of Alloy is better suited
for specifying complex structures that arise in software.

Answer set programming (ASP) [23] is a line of work on ex-
tending logic programming with capabilities for expressing and

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

solving search problems, including those involving optimization [6].
Although both are declarative in nature, ASP and AlloyM®* sup-
port distinct styles of modeling: The logic programming paradigm
underlying ASP is typically used for data and knowledge represen-
tation [7], while Alloy was designed for modeling software designs.
There are recent works on extending satisfiability modulo the-
ories (SMT) solvers with optimization capabilities, such as Opti-
MathSAT [39], Symba [21], and Z3 [5]. These solvers could serve as
an alternative backend for AlloyM®*. One benefit of this approach
is that they operate over unbounded domains and for formulas
involving decidable theories (e.g., integers), can provide a stronger
analysis guarantee than a SAT-based backend. On the other hand,
dedicated MaxSAT algorithms have shown to be more efficient than
the SMT-based methods [26]. A more systematic investigation of
these alternative backends for AlloyM2* remains future work.

8 CONCLUSION AND LIMITATIONS

We have presented AlloyM2*, an extension of the Alloy modeling
language that leverages MaxSAT to solve optimization problems.
We have demonstrated that despite introducing only a small number
of new language constructs, AlloyM2* can be used to specify and
solve a diverse set of problems that were previously not possible
in Alloy. By enabling these new types of analyses, we believe that
AlloyM2* has the potential to bring a wide range of new applications
to Alloy, and its analysis capability will continue to grow as it
benefits from rapid progress in the MaxSAT technology.

The translation rules shown in Section 4 support a richer se-
mantics than the current syntax of AlloyM?* allows. For example,
the rules support defining soft predicates (e.g., soft pred P[x: S])
and reuse them in other formulas. We plan to explore these richer
semantics through further syntactic extensions (while also consid-
ering the possible risk of complicating the syntax) and investigate
additional classes of problems that AlloyMa*

The current version of AlloyM®* supports only priorities among
constraints. However, MaxSAT solvers generally use weights, which
support more fine-grained optimizations. Adding weights to Alloy
requires more subtle investigation on its semantic impact, but it
could support a larger set of problems, such as modeling and maxi-
mizing utility functions (e.g., those used in self-adaptive systems
planners [41] and automated data mismatch repair [45]).

could be applied to.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
Awards CCF-1918140, CNS-1801546, and CCF-1762363, the Fun-
dacéo para a Ciéncia e Tecnologia Awards PTDC/CCI-COM/31198/2-
017, UIDB/50021/2020, and SFRH/BD/07724/2020, and the Office of
Naval Research Award N00014172899. This material is based upon
work supported by the NSA under Award No. H9823018D0008. This
work is also supported by the Carnegie Mellon CyLab Security and
Privacy Institute. Any views, opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the sponsoring
agencies.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

REFERENCES

(1]

[2

[

=

[10]

=
—

[16]

[17

(18

[19

[20]

[21]

[22

[23]

Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and Dawn Song.
2010. Towards a Formal Foundation of Web Security. In 2010 23rd IEEE Computer
Security Foundations Symposium. 290-304. https://doi.org/10.1109/CSF.2010.27
Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, and Ruben Martins. 2020. MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions. Technical Report. University
of Helsinki, Department of Computer Science.

Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins. 2021. Maximum Satisfiabil-
ity. In Handbook of Satisfiability, Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh (Eds.). IOS Press, Chapter 24, 929 - 991.

Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. 2015. Detection of
Design Flaws in the Android Permission Protocol Through Bounded Verification.
In FM 2015: Formal Methods, Nikolaj Bjerner and Frank de Boer (Eds.). Springer
International Publishing, Cham, 73-89.

Nikolaj Bjerner, Anh-Dung Phan, and Lars Fleckenstein. 2015. vZ - An Opti-
mizing SMT Solver. In Tools and Algorithms for the Construction and Analysis
of Systems, Christel Baier and Cesare Tinelli (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 194-199.

Gerhard Brewka, Ilkka Niemel4, and Miroslaw Truszczynski. 2003. Answer Set
Optimization. In International Joint Conference on Artificial Intelligence (IJCAI),
Georg Gottlob and Toby Walsh (Eds.).

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Logic Programming and
Databases. Springer. https://www.worldcat.org/ocle/20595273

Alcino Cunha, Nuno Macedo, and Tiago Guimardes. 2014. Target Oriented
Relational Model Finding. In Fundamental Approaches to Software Engineering,
Stefania Gnesi and Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 17-31.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular Ver-
ification of Code with SAT. In Proceedings of the 2006 International Sympo-
sium on Software Testing and Analysis (Portland, Maine, USA) (ISSTA °06). As-
sociation for Computing Machinery, New York, NY, USA, 109-120. https:
//doi.org/10.1145/1146238.1146251

Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. 2017. Au-
tomated Synthesis of Semantic Malware Signatures using Maximum Satisfiability.
In Proceedings of the Annual Network and Distributed System Security Symposium.
The Internet Society.

Ana Graga, Jodo Marques-Silva, and Inés Lynce. 2011. Haplotype Inference Using
Propositional Satisfiability. Springer New York, New York, NY, 127-147. https:
//doi.org/10.1007/978-1-4419-6800-5_7

Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.
gurobi.com

M P Herlihy and J M Wing. 1991. Specifying graceful degradation. IEEE
Transactions on Parallel and Distributed Systems 2, 1 (1991), 93-104. https:
//doi.org/10.1109/71.80192

International Business Machines Corporation (IBM). 2009. V12. 1: User’s Manual
for CPLEX.

Daniel Jackson. 2000. Automating First-Order Relational Logic. In Proceedings of
the 8th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering: Twenty-First Century Applications (San Diego, California, USA) (SIGSOFT
’00/FSE-8). Association for Computing Machinery, New York, NY, USA, 130-139.
https://doi.org/10.1145/355045.355063

Daniel Jackson. 2006. Software Abstractions: Logic, language, and analysis. MIT
Press.

Daniel Jackson and Mandana Vaziri. 2000. Finding bugs with a constraint solver.
In International Symposium on Software Testing and Analysis (ISSTA). 14-25.
Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. 2016. Multi-
Representational Security Analysis. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Seattle, WA,
USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA,
181-192. https://doi.org/10.1145/2950290.2950356

Sarfraz Khurshid and Darko Marinov. 2004. TestEra: Specification-Based Testing
of Java Programs Using SAT. Autom. Softw. Eng. 11, 4 (2004), 403-434.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1-19. https://doi.org/10.1109/
SP.2019.00002

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.
2014. Symbolic Optimization with SMT Solvers. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,
California, USA) (POPL ’14). Association for Computing Machinery, New York,
NY, USA, 607-618. https://doi.org/10.1145/2535838.2535857

Xiaojuan Liao, Hui Zhang, Miyuki Koshimura, Rong Huang, and Wenxin Yu. 2019.
Maximum Satisfiability Formulation for Optimal Scheduling in Overloaded Real-
Time Systems. In PRICAI 2019: Trends in Artificial Intelligence, Abhaya C. Nayak
and Alok Sharma (Eds.). Springer International Publishing, Cham, 618-631.
Vladimir Lifschitz. 2019. Answer Set Programming. Springer. https://doi.org/10.
1007/978-3-030-24658-7

[24

[25

[26

~
=

[28

[29]

[30]

(32]

[33

[36

[37

[38

@
20,

[40

[41

[42

[43

[44]

[45

Changjian Zhang, Ryan Wagner, Pedro Orvalho, David Garlan, Vasco Manquinho, Ruben Martins, and Eunsuk Kang

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck: Spec-
ifying and Verifying Microarchitectural Enforcement of Memory Consistency
Models. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 635-646. https://doi.org/10.1109/MICRO.2014.38

Inés Lynce, Vasco M. Manquinho, and Ruben Martins. 2018. Parallel Maximum
Satisfiability. In Handbook of Parallel Constraint Reasoning, Youssef Hamadi and
Lakhdar Sais (Eds.). Springer, 61-99. https://doi.org/10.1007/978-3-319-63516-
3.3

Ferney A. Maldonado-Lopez, Jaime Chavarriaga, and Yezid Donoso. 2014. Detect-
ing Network Policy Conflicts Using Alloy. In Abstract State Machines, Alloy, B,
TLA, VDM, and Z, Yamine Ait Ameur and Klaus-Dieter Schewe (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 314-317.

Dmitry Malioutov and Kuldeep S. Meel. 2018. MLIC: A MaxSAT-Based Frame-
work for Learning Interpretable Classification Rules. In Principles and Practice of
Constraint Programming, John Hooker (Ed.). Springer International Publishing,
Cham, 312-327.

Joao Marques-Silva, Josep Argelich, Ana Graca, and Inés Lynce. 2011. Boolean
lexicographic optimization: algorithms & applications. Annals of Mathematics
and Artificial Intelligence 62, 3-4 (2011), 317-343.

Ruben Martins, Vasco Manquinho, and Inés Lynce. 2013. Community-Based
Partitioning for MaxSAT Solving. In Theory and Applications of Satisfiability
Testing — SAT 2013, Matti Jarvisalo and Allen Van Gelder (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 182-191.

Ruben Martins, Vasco Manquinho, and Inés Lynce. 2014. Open-WBO: A Modular
MaxSAT Solver,. In Theory and Applications of Satisfiability Testing — SAT 2014,
Carsten Sinz and Uwe Egly (Eds.). Springer International Publishing, Cham,
438-445.

Ruben Martins and Justine Sherry. 2017. Lisbon Wedding: Seating arrangements
using MaxSAT. MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions
B-2017-2 (2017), 25.

Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. 2015.
Alloy*: A General-Purpose Higher-Order Relational Constraint Solver. In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 1
(Florence, Italy) (ICSE ’15). IEEE Press, 609-619.

Sanjai Narain. 2005. Network Configuration Management via Model Finding. In
USENIX Conference on Systems Administration (LISA). 155-168.

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram Krish-
namurthi. 2013. Aluminum: Principled scenario exploration through minimality.
In 2013 35th International Conference on Software Engineering (ICSE). 232-241.
https://doi.org/10.1109/ICSE.2013.6606569

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. 2007. MiniZinc: Towards a Standard CP Modelling Lan-
guage. In Principles and Practice of Constraint Programming — CP 2007, Christian
Bessiére (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 529-543.

Miguel Neves, Ruben Martins, Mikolas Janota, Inés Lynce, and Vasco Manquinho.
2015. Exploiting Resolution-Based Representations for MaxSAT Solving. In
Theory and Applications of Satisfiability Testing — SAT 2015, Marijn Heule and
Sean Weaver (Eds.). Springer International Publishing, Cham, 272-286.
Francesca Rossi, Peter van Beek, and Toby Walsh (Eds.). 2006. Handbook of
Constraint Programming. Foundations of Artificial Intelligence, Vol. 2. Elsevier.
Roberto Sebastiani and Patrick Trentin. 2020. OptiMathSAT: A Tool for Op-
timization Modulo Theories. J. Autom. Reason. 64, 3 (2020), 423-460. https:
//doi.org/10.1007/s10817-018-09508-6

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS XII). Association for
Computing Machinery, New York, NY, USA, 404-415. https://doi.org/10.1145/
1168857.1168907

Clay Stevens and Hamid Bagheri. 2020. Reducing Run-Time Adaptation Space
via Analysis of Possible Utility Bounds. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1522-1534.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
Tools and Algorithms for the Construction and Analysis of Systems, Orna Grumberg
and Michael Huth (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 632-647.
Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated synthesis of hardware exploits and security litmus tests. Proceedings
of the Annual International Symposium on Microarchitecture, MICRO 2018-Octob
(2018), 947-960. https://doi.org/10.1109/MICRO.2018.00081

G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, Berlin, Heidelberg, 466-483. https://doi.org/10.1007/
978-3-642-81955-1_28

Perla Velasco-Elizondo, Vishal Dwivedi, David Garlan, Bradley Schmerl, and
José Maria Fernandes. 2013. Resolving Data Mismatches in End-User Compo-
sitions. In End-User Development, Yvonne Dittrich, Margaret Burnett, Anders

https://doi.org/10.1109/CSF.2010.27
https://www.worldcat.org/oclc/20595273
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1007/978-1-4419-6800-5_7
https://doi.org/10.1007/978-1-4419-6800-5_7
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/71.80192
https://doi.org/10.1109/71.80192
https://doi.org/10.1145/355045.355063
https://doi.org/10.1145/2950290.2950356
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1109/MICRO.2014.38
https://doi.org/10.1007/978-3-319-63516-3_3
https://doi.org/10.1007/978-3-319-63516-3_3
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

AlloyMax: Bringing Maximum Satisfaction to Relational Specifications

[46]

Morch, and David Redmiles (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
120-136.

Lingyu Wang, Sushil Jajodia, Anoop Singhal, Pengsu Cheng, and Steven Noel.
2013. k-Zero Day Safety: A Network Security Metric for Measuring the Risk of
Unknown Vulnerabilities. IEEE Transactions on Dependable and Secure Computing
11, 1 (2013), 30-44. https://doi.org/10.1109/tdsc.2013.24

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

[47] Pamela Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord
Correct. IEEE Trans. Software Eng. 43, 12 (2017), 1144-1156.

[48] Lei Zhang and Fahiem Bacchus. 2012. MAXSAT Heuristics for Cost Optimal
Planning. Proceedings of the AAAI Conference on Artificial Intelligence 26, 1 (Jul.
2012). https://ojs.aaai.org/index.php/AAAl/article/view/8373

https://doi.org/10.1109/tdsc.2013.24
https://ojs.aaai.org/index.php/AAAI/article/view/8373

	Abstract
	1 Introduction
	2 Examples
	2.1 Solving Optimization Problems
	2.2 Solving Problems with Soft Constraints
	2.3 Solving with Priorities

	3 Background on MaxSAT
	4 Syntax and Semantics
	4.1 Abstract Syntax
	4.2 Translation
	4.3 Correctness of Translation

	5 Optimization
	5.1 Partition-based MaxSAT solving
	5.2 Extracting Partitions from AlloyMax

	6 Evaluation
	6.1 Implementation
	6.2 Case Studies
	6.3 Results

	7 Related Work
	8 Conclusion and Limitations
	Acknowledgments
	References

