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Formal methods have been making inroads into the engineering of human-automation interaction (HAI) by
allowing engineers to use mathematical proofs to determine whether normative or unanticipated erroneous
human behavior can ever cause problems. However, these approaches are limited because they do not
give engineers a way to assess the relative likelihood of different outcomes. In this work, we address this
shortcoming by defining a new approach that combines formal approaches with human reliability analysis

and probabilistic and statistical model checking. This approach ultimately allows analysts to compute the
probability of different outcomes occurring in reactive HAI systems. We describe how this method was realized,
assess its scalability, and demonstrate its capabilities with an automated teller machine example. We ultimately
discuss our results and describe directions of future research.

1. Introduction

Human error is regularly cited as a source of failure and perfor-
mance issues in modern systems. It has contributed to more than
1,000,000 injuries and between 44,000 and 98,000 deaths annually
in medicine [1]; roughly 75% of all accidents in general aviation and
50% in commercial aviation [2,3]; one third of unmanned aerial system
(UAS) accidents [4]; 90% of automobile crashes [5]; and high profile
disasters like the accident at Three Mile Island [6]. Humans are often
blamed for failures associated with human error. However, the modern
perspective holds that errors are the result of shortcomings in system
design and thus not solely the fault of human operators, if they are
the fault of the human at all. Unfortunately, the complexity of human-
automation interaction (HAI) systems and the inherent concurrency
that exists in HAI can make it extremely difficult to predict when
and how erroneous human behaviors can cause problems. For this
reason, a growing body of research has been investigating how rigorous
analyses from formal methods can be used to evaluate and design
HAI [7-9]. In particular, techniques have been discovered that enable
an analyst to pair models of human tasks (a normative description of
the behavior humans use to achieve goals when interacting with a
system) with models of system functionality. Verification techniques
are then used to determine if normative or erroneous human behavior
(based on systematic deviations from normative tasks) can result in
safety violations [10-15].
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These techniques are powerful and well-suited to discovering de-
sign flaws in HAIs, especially those involving potentially unanticipated
erroneous human behaviors, and thus suggesting interventions that
improve system reliability. However, they do have limitations. In par-
ticular, they do not account for the relative likelihood of different
erroneous behaviors. This situation can make it difficult for analysts
to prioritize how to address discovered problems. This research seeks
to address this deficiency by extending formal, task-based, verification
methods with concepts from human reliability analysis (HRA) and
probabilistic/statistical model checking (methods for formally verify-
ing stochastic systems). In what follows, we cover the background
necessary for understanding our approach, we describe our method,
we analyze a proof of concept example [an automated teller machine
(ATM)] to check that our method is providing valid results. Finally, we
discuss our developments and discuss directions for future work.

2. Background
2.1. Formal methods

Formal methods is a computer science sub-domain concerned with
mathematically modeling systems with precise languages, specifying
desirable system properties, and verifying (proving) whether the prop-
erties hold with the system. Model checking [16] is computer software
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that performs formal verification automatically, where efficient data
structures and algorithms are used to search through a system model’s
state space to exhaustively determine if specification properties hold.

The majority of formal methods are non-stochastic. Emerging tech-
niques such as probabilistic and statistical model checking enable
analysts to account for probabilities in formal verification [17]. In
these, stochastic models (such as Markov chains) are used to describe
system behavior and the specification properties either describe de-
sirable system properties (which can include probabilities) or request
that a probability be computed. Verification then proves whether the
specification property holds for the entire model or computes the
probability requested in the property. Statistical model checking only
differs from probabilistic checking in that, instead of verifying a prop-
erty against the entire system model, statistical checking checks the
property against a number of samples/traces through the model. This
produces approximate results. For situations where the property is
computing a probability, this means that statistical checking produces
a probability value and an accurate confidence interval (CI) for it.

2.2. Formal and task-analytic methods

Formal methods (and especially model checking) are adept at dis-
covering unexpected interactions that can cause system failures. Be-
cause of this, a growing literature has been investigating how formal
methods can be used to engineer HAI. Comprehensive reviews can
be found in [7-9]. Due to topicality, what follows focuses on formal
methods that have used task analytic methods and as well as those that
have attempted to model human error stochastically.

Task analysis is a systematic process human factors engineers use
to describe how humans normatively achieve goals with a system as
a task model [18]. Task models can be interpreted formally and thus
included in larger formal analyses. This means that formal verification
can prove whether human behavior captured in task models can cause
performance and safety issues and be used to investigate solutions to
problems. Task models can be formally modeled manually [19,20].
However, it is more common to automatically translate tasks repre-
sented in their own notations into a formalism where other system
behavior are described [10,11,14,21-23].

Additionally, researchers have discovered a number of approaches
for injecting or generating human error into previously normative task
models so that the impact of both anticipated and potentially unan-
ticipated erroneous behaviors can be accounted for in verifications.
These approaches either use mutation patterns (which are manually
applied to task models by analysts) or different theories or taxonomies
of human error to automatically include deviations from task in formal
representations [13-15,24-30].

Because of its support for including human behavior in formal veri-
fication analyses, especially as it relates to the automated generation of
potentially unanticipated human errors, we use the enhanced operator
function model (EOFM) for task modeling in this research. We discuss
EOFM next.

2.2.1. The enhanced operator function model

EOFM [23] is an XML-based task modeling formalism where human
behavior is captured as an input/output model. Inputs are system
elements external to the human (e.g., interface display information and
observable environment elements). Outputs are human actions. The
operators’ tasks describe how human actions occur based on input and
local variables, where local variables represent the human’s perceptual
or cognitive state.

Tasks are a hierarchy of activities and actions (acts) starting with
a root activity. Any activity (which represents a goal-directed complex
behavior) can decomposes into sub-activities and, ultimately, atomic
actions (concrete cognitive or observable behaviors that are not fur-
ther broken down). Strategic knowledge (Boolean expressions) can be
specified for each activity using input and local variables. An activity
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Table 1
Decomposition operators [28].
Operator Description
optor_seq Zero or more of the activities or actions in the decomposition must
execute in any order, one at a time.
optor_par Zero or more of the activities or actions in the decomposition must
execute in any order and can execute in parallel.
or_seq One or more of the activities or actions in the decomposition must
execute in any order one at a time.
or_par One or more of the activities or actions in the decomposition must
execute in any order and can execute in parallel.
and_seq All of the activities or actions in the decomposition must execute in
any order, one at a time.
and_par All of the activities or actions in the decomposition must execute in
any order and can execute in parallel.
xor Exactly one activity or action in the decomposition executes.
ord All activities or actions must execute in the order (left to right)

they appear in the decomposition.

can have three different conditions asserting what must be true for the
activity to start executing (Precondition); repeat (RepeatCondition), or
complete (CompletionCondition).

A decomposition has an operator that constrains how many of the
acts in that decomposition can execute as well as the (ordinal) temporal
relationships between them. EOFM supports ten such operators, those
topical to the paper are shown in Table 1.

Atomic human actions or internal actions (representing cognitive or
perceptual behaviors) occur at the bottom of every task. Human actions
can have one of three behaviors: AutoReset actions occur as a single
event; Toggle actions switch between occurring and not occurring; and
SetValue actions commit some value to the other parts of the sys-
tem. Internal actions allow cognitive behaviors (such as remembering
something) to be modeled by assigning values to local variable.

To enable unambiguous interpretation of EOFM behavior, EOFMs
have formal semantics [23,31]. In this, every act is interpreted as a
state machine (Fig. 1) with three states: Ready, Executing, and Done. All
acts start in Ready. They transition between states based on whether
the Boolean conditions on the labeled transitions (Fig. 1) are true. When
an action is Executing, this corresponds to an output variable associated
with the action being set to the appropriate value. For AutoReset actions
this is a Boolean variable that is set to true. For Toggle, the variable’s
Boolean variable is set to the negation of its current value. For SetValue
behavior, the action’s output variable is set to the value assigned in the
model. The same occurs when the action is a local variable assignment.

Any existent activity strategic knowledge conditions (Preconditions,
RepeatConditions, and CompletionConditions) partially describe when
transitions can occur. However, there are three additional implicit
conditions (based on the activity’s or action’s task position) that also
impact transitions.

The StartCondition indicates if an act can start executing based on
the states of its parent and siblings (acts in the same decomposition)
as well as the parent’s decomposition operator. Mathematically, a
StartCondition has the generic form:

StartCondition : parent.state = Executing

A /\ (s.state # Executing). (€]
Vsiblings s

If the parent’s decomposition allows for parallelism (the operator ends
with _par), the second conjunct is eliminated. If the parent has an
ord decomposition, to enforce order, the second conjunct requires that
the previous sibling in the decomposition be done: (prev_sibling.state =
Done). If the parent has an xor decomposition, the second conjunct is
modified so that no other sibling can execute after one has finished:
Nvsiblings s (5-State = Ready). An activity without a parent (a top-level
activity) will eliminate the first conjunct. Top-level activities treat each
other as siblings in an and_seq formulation for the second conjunct.
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Fig. 1. EOFM transition semantics. (a) Transition semantics for an EOFM activity. (b)
Transition semantics for an EOFM action.

The EndCondition indicates if an act can stop executing based on the
execution state of its children':

EndCondition : @ (c.state = Done)
Vsubacts ¢ (2)
A /\ (c.state # Executing).
Vsubacts ¢

The first conjunct requires that the execution states of the activity’s chil-
dren satisfy the activity’s decomposition operator. Here, (©) is generic
and substituted with A\ if the activity has an and_seq, and_par, or
ord decomposition. It is substituted with \/ for activities with or_seq,
or_par, or xor decompositions. Because optor_seq and optor_par do
not impose restrictions on the number of children that can execute,
the first conjunct is eliminated for either decomposition. The second
conjunct always specifies that no children are Executing.

The Reset describes when an activity can return to Ready. It oc-
curs in two situations. First, when an activity repeats (a normative
Executing-to-Executing transition), every descendant act Resets. Second,
any root activity automatically Resets from Done. When this occurs, all
descendants Reset.

The formal semantics of EOFM were used to create automated
translation software that converted EOFM XML into the input language
of the Symbolic Analysis Laboratory (SAL), a suite of non-probabilistic
model checkers [12,23,31]. This enables EOFM behavior to be used
as part of larger formal system analyses. As a result, EOFM analyses
have been used to assess the impact of normative human behavior on
a number of automotive, aerospace, and medical systems [22,32-34].
EOFM has also been used to model and predict the impact of erroneous
human behavior.

2.2.2. EOFM and erroneous human behavior

EOFM has been used to automatically generate human errors using
multiple theories [12,24-26,28,35]. This culminated in EOFM serv-
ing as the basis for the task-based taxonomy of erroneous human

1 Because actions have no children, action EndConditions default to true.
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Fig. 2. Task-based taxonomy of human error transition-based error modes.

behavior [36] and the associated error generation approach [29].
The task-based taxonomy unifies the phenomenological (what) and
genotypical (why) perspectives by classifying human error based on
where they deviate from tasks. By knowing where a deviation occurs
in a task model (how the task’s formal semantics were violated),
one understands how the error will observably manifest (the pheno-
type; [37]) and why the error occurred (the strategic knowledge or
inherent condition the human improperly attended to; the genotype of
the slip; [38]). In fact, the task-based taxonomy has been shown to be
complete with respect to both the leading phenomenological [37] and
genomenological [38] taxonomies [36].

The task-based taxonomy has a hierarchical classification that goes
beyond what is relevant to this discussion [36]. What is topical is
that it distinguishes between semantic violations that are transition-
based (transitions that violate what is in Fig. 1) and assignment-based
(incorrect behavior assignment to an action variable during action
execution for SetValue or local variable actions). Transition-based error
modes describe erroneous transitions between act execution states (see
Fig. 2). An intrusion happens when an act executes (transitions to
Executing) when it should not. An omission manifests when an activity
finishes (transitions to Done) when it should not. A restart occurs when
an activity (but not an action) incorrectly restarts: the activity resets
and starts executing anew. Finally, a delay happens when an act does
not transition out of a state when it should. In the execution-based er-
roneous behaviors, there can be both value and target substitutions (for
SetValue actions) and misremembrances (for local variable assignments)
(Table 2). In a value substitution or misremembrance, an incorrect
value is assigned to the correct target variable (the action’s output or
local variable). In a target error, the correct value is assigned to the
wrong target (the wrong output or local variable).

This taxonomy was the basis for a method [29] to automatically
generate erroneous behavior in model checking analyses to poten-
tially discover (and fix) human errors that could cause system failures.
Specifically, this method would modify the EOFM-to-SAL translator
so that all erroneous transitions (Fig. 2) and assignments (Table 2)
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Table 2
Action-level erroneous behavior types.

Assignment Erroneous behavior type
CorrectAction :=  IncorrectValue  Action Value Substitution
IncorrectAction = CorrectValue Action Target Substitution
CorrectVariable = IncorrectValue  Value Misremembrance
IncorrectVariable = CorrectValue Target Misremembrance

could exist alongside their normative counterparts (Fig. 1). A maximum
(Max) on the total number of errors included was used to keep models
from becoming completely unbounded. The net effect of this was that
analyses accounted for all of the different ways that Max errors could
occur when evaluating system safety.

This approach is powerful and particularly good at discovering HAI
design flaws that could interact with unanticipated erroneous human
behaviors. However, it does have limits. In particular, it does not ac-
count for the relative likelihood of different erroneous behaviors. This
means that analyses may discover errors that are extremely unlikely
to occur. Thus, with no means of ranking the relative probability of
different errors, it can be difficult for analysts to prioritize how to
address discovered problems. In fact, none of the formal verification
work that has used task analytic or cognitive human behavior has
accounted for the probabilities of different errors. To address this
shortcoming, we plan to use concepts from HRA.

2.3. HRA and CREAM

HRAs are used to predict human error rates. There are many dif-
ferent HRAs [39]. These generally fall into two categories: those based
on probabilistic risk assessment (the first generation) and those based
on cognition (the second generation) [40]. Third generation tech-
niques (which are discussed subsequently) exist, but use the theoretical
foundation of first- and second-generation methods.

First-generation methods like the Technique for Human Error Rate
Prediction (THERP) [41] and the Human Error Assessment and Re-
duction Technique (HEART) [42] (among others) are useful. However,
they generally treat human errors the same as equipment failures.
This limits their applicability because they do not account for the
effect of context and organizational factors [40,43]. Second-generation
HRAs build off and improve on these by considering the interactions
inherent in complex systems (between humans, processes, organization,
and the environment) based on how they affect human cognition [43—
45]. CREAM is largely the preferred HRA by human factors engineers
because it is rooted in a well-established cognitive model and can
thus explain why errors occur [40,46-49]. Beyond this, CREAM has
been well validated over the years through its successful use in nu-
clear power plants [50], manufacturing [51], radiation therapy [52],
hospitals [53], and many other critical domains [43,54-60].

In CREAM [43], analysts identify the major tasks for working with
a given system. The analysts then performs subjective assessments
with subject matter experts. First, common performance conditions
(or CPCs) are assessed for each task to understand how the work
environment impacts the performance of that task. This means deter-
mining if each of the nine CPCs (quality of the organization, work
conditions, human-machine support, procedures, simultaneous goals,
time availability, time of day, work experience, and team collabo-
ration) improves, reduces, or does not impact human performance.
By synthesizing these ratings (counting the number that improve and
reduce performance, and adjusting for dependencies), an analyst de-
termines if the person is operating at one of the four Contextual
Control Model (COCOM) modes (strategic, tactical, opportunistic, and
scrambled; listed in decreasing levels of human reliability). In the basic
version of CREAM, these control modes map to a range of probabilities
of error occurring.
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Table 3
CREAM’s Cognitive function failures [43].

Cognitive function Cognitive function failure

Observation Wrong object observed
Wrong identification

Observation not made

Interpretation Faulty diagnosis
Decision error

Delayed interpretation

Planning Priority error

Inadequate plan

Execution Action of wrong type
Action of wrong time
Action on wrong object
Action out of sequence

Missed action

Table 4
Parameter values used for calculating probabilities of human error in the revised version
of CREAM [61].

Parameter Cognitive function

Observation Interpretation Planning Execution
C -2.0775 —-1.3495 —2.0000 —2.4120
a 0.0055 0.0041 0.0052 0.0065
b —-0.2458 —-0.2046 —-0.2828 —-0.2860
c 0.2840 0.2244 0.4019 0.4079

Point estimates can be achieved with two versions of extended
CREAM. In these, an analyst identifies each task’s cognitive function:
observation — observing information in the environment; interpre-
tation — understanding observed information; planning — setting a
course of action; and execution — performing the planned actions.
Next, the analyst identifies the function’s most likely cognitive function
failure (Table 3). Each failure has an associated nominal probability,
originally identified by analyzing a large database of human perfor-
mance information [43]. In the first approach to extended CREAM,
the nominal probability is scaled to account for the impact of CPCs by
multiplying it by a scaling factor associated with the assessed control
mode. In the second variant, the nominal probability is scaled based on
the impact specific CPC levels have on the different cognitive functions.

CREAM has been used successfully in a number of safety critical
environments. However, it does have some problems. Bedford et al.
[61] noted large error ranges and inconsistencies between predictions
made with the three versions of CREAM. To address this, they created
an improved version that reconciled the basic and extended methods
(itself a refinement of previous attempts to improve CREAM predic-
tions; [44,62]). First, the method accounts for the impact of each CPC
on overall performance in a single integer, thus avoiding the collapse
of ratings into course control mode designations. This is computed as
the total number of CPCs that improve human performance and the
number that reduce it:

1, if cpc improves

CPCSum = ZcchCPCS .
0, otherwise

3

1, if ¢pc reduces

- ZcchCPCS .
0, otherwise

Second, using the same data that was the basis for CREAM’s predic-
tions [43], Bedford et al. [61] fitted a regression model for predicting
the probability of human error

(C+a»CPC§um+b-CPC Sum +c)

4

where C is the log, of the nominal probability of error for the cognitive
function and q, b, and ¢ are the regression coefficients for that function.

PhumanError = 10
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See Table 4 for the computed values. Thus, by computing the CPCyg,,,
with (3) and using the result in (4) with the parameters from Table 4,
accurate predictions of human error probabilities for a given task can
be computed.

While CREAM (and its variants) provides a foundation for predicting
error probabilities, it is a manual process that provides no mechanism
for analyzing whether task errors will actually be allowed to occur and
whether they will impact system safety and performance. Combining
CREAM with formal methods or simulation allows these issues to be
addressed in what are called third generation approaches.

2.4. Third generation HRA

Third generation HRAs implement first and second generation meth-
ods in simulation or formal analyses to account for dynamic system
behavior in predictions. For example, SHERPA (a simulator for human
error probability analysis; [63]), like most third generation HRAs [40],
is based in first generation methods and uses simulation. By being first-
generation-based, methods like SHERPA are limited by not including
a cognitive model. Their simulation basis also means that it can miss
critical interactions that would be considered with formal methods. To
address these problems, the Systems Analysis for Formal Pharmaceuti-
cal Human Reliability (SAFPHR) [57,59,60] showed that basic [57,59]
and extended [60] CREAM could be implemented in the PRISM prob-
abilistic model checker [64]. When this includes a dynamic model of
the system, SAFPHR was able to accurately predict the probability of
undesirable outcomes in community pharmacies. These developments
are powerful and made several specific recommendations that could
improve community pharmacy [60]. However, they are limited in two
important ways. First, SAFPHR uses a very simple version of task
analysis that is based on flow diagrams and thus does not allow for the
specificity of behavior supported by EOFM. Second, SAFPHR requires
analysts to manually identify the cognitive function failure for each task
and thus does not dynamically determine how errors could occur.

3. Objectives

In this work, we hypothesized that the expressive power of the task-
based taxonomy of human error [36] would give us enough information
to associate every one of the possible errors with a cognitive function
from CREAM (Table 3). This would enable us to automatically generate
erroneous human behavior as part of a formal model (as was done
in [29]) but with an associated probability of error for each possible
task deviation. In accomplishing this, we would be able to use prob-
abilistic and/or statistical model checking to compute the probability
of system safety and performance specifications being violated and for
understanding the likelihood of different errors contributing to failures.
In what follows, we describe how a method based on these capabilities
was realized. This is followed by a demonstration/validation of our
approach by applying it to a simple but realistic example, an ATM. In
doing this, we were able to obtain preliminary results of the methods

scalability and compare probabilistic and statistical model checking
approaches. After this, we discuss the import of our findings and how
they could influence future research.

4. Method

Our method for stochastically modeling erroneous human behavior
in formal verifications is shown in Fig. 3. In this, an analyst has access
to system information, a completed task analysis, and HRA (CPCyg,,s
for each task). The analysts uses this to create a task model using
PEOFM (which incorporates HRA information). He or she also creates
part of a formal system model that describes the behavior of the system
the human interacts with and specification properties that he or she
wishes to check. Next, the analyst uses a systematic translation process
that employs theory from CREAM and the task-based taxonomy of
human error to incorporate the task model into the formal system
model. This accounts for erroneous human behaviors and their prob-
abilities. Then, the analysts run either probabilistic or statistical model
checking (using PRISM) to verify specification properties against the
formal model. This produces a verification report that, depending on
the property checked and checking method, will produce a probability,
CI around a probability, confirmation, or counterexample.

The three major contributions of this method relate to the exten-
sions to EOFM required for this method, the novel translation process,
and the specification properties that can be checked. We describe each
of these below.

4.1. EOFM extensions

To support the new method, changes were made to the EOFM
language [23], now Probabilistic EOFM (PEOFM). First, PEOFM only
supports eight of the EOFM decompositions (those from Table 1). The
sync (where decomposed actions are all performed synchronously) and
com (for communicating information between humans) operators were
removed because it was not clear how they would work with the prob-
abilistic features. This issue is further explored in Section 6. Second,
an optional cpcsum attribute was added to the base element (eofm)
of each task (Fig. 4(a)). This was designed to set the CPC,,,, from (3).
Third, because nondeterminism in PRISM model initial values limits
analyses, an initial value was added to SetValue actions (Fig. 4(b)).

4.2. Translation

The translator, like EOFM’s non-probabilistic translators [23,29], in-
terprets EOFM tasks as state machines using EOFM’s normative (Fig. 1)
and erroneous semantics Fig. 2 and Table 2. Older versions trans-
lated into the language of SAL [23,29] and human errors were non-
probabilistic and limited by an analyst-specified maximum. The new
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~{ ¢ » humanaction

(b)
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<> initialvalue D String

Fig. 4. A visualization [65] of additions made to EOFM to create PEOFM. (a) A
cpcsum attribute for each task. (b) An initial value for SetValue actions. A ... indicates
when the remainder of the language is the same as reported in [23].

Table 5
Mapping of CREAM cognitive functions to errors from EOFM’s task-based taxonomy.

Cognitive Task-based human errors

function

Observation Any action-level error related to local variable assignment,
including target and value misremembrances

Interpretation Any activity-level error (intrusion, omission, restart, or delay)
caused by a violation of strategic knowledge conditions

Planning Any activity-level error (intrusion, omission, restart, or delay)

Execution Any action-level error that is not a local variable assignment

translator converts task models into the language of PRISM? and ac-
counts for human error probabilities.

The key to including probabilities in translation is a mapping (Ta-
ble 5) between CREAM’s cognitive functions (Table 5) and the devia-
tions from normative EOFM semantics from the task-based taxonomy
of human error Fig. 2 and Table 2. Because local variable assignments
are the mechanism EOFM uses for representing humans noticing and
remembering things from the environment, errors associated with this
represent observation errors. CREAM suggests that interpretation re-
lates to how humans contextualize observed information. This maps to
activity-level errors caused by the incorrect interpretation of strategic
knowledge (activity Preconditions, RepeatConditions, and CompletionCon-
ditions; Fig. 2(a)). Planning errors in CREAM occur because people
improperly form or understand a plan or task. Thus, map to any vi-
olation of the logic that people need to understand to properly execute
the task: any activity-level transition error (Fig. 2(a)) that can be caused
by violations of inherent or strategic knowledge conditions. According
to CREAM, execution errors occur when the person is attempting
to physically execute task actions. In our mapping, execution errors
all occur at the action level, either through the transition of action
execution states (Fig. 2(b)) or in the assignment of an output value (the
first two rows of Table 2).

Translation was implemented as a Java desktop application that
converts a PEOFM into PRISM’s language as a Markov decision process
using the architecture shown in Fig. 5. First, the formal EOFM repre-
sentation is contained in a single module. This captures the behavior
(normative and erroneous) associated with each task. This task module
interacts with a module (or modules) that represent other parts of
the system (Sys in Fig. 5). This can include automation behavior, the
environment, or, human mission parameters as in traditional EOFM
verifications [22]. The interface between the human and their parts
of the system is represented by shared variables between modules.
Outputs from the human task are actions and outputs from the other
elements represent display information, environmental conditions, or

2 https://www.prismmodelchecker.org/manual/
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Fig. 5. Architecture used for representing a PEOFM in PRISM. Modules are rounded

rectangles. Arrows are variables shared between modules with input (destination) and
output (source) relationships.

Perror

1-P Error
Perror
'@ 1 - Peror
1- PError P Error

Fig. 6. Transition logic for the value/state of the output variable of cognitive function
modules (see Fig. 5) at each model step. These transitions are probabilistic, where Py,,,.
is calculated using (5).

mission perogatives. To account for the probabilities for performing
tasks normatively or erroneously, the EOFM module also takes inputs
from modules representing each CREAM cognitive function (Table 3).
There are four such modules for each EOFM task. The probabilistic
behavior of the model is implemented in these cognitive function
modules. Specifically, each such module produces an output that is sent
to its associated task that indicates if that function occurs with an error.
Thus, at each model step, the EOFM’s task model will select from the
set of available behaviors based on the execution state of the task and
its cognitive functions.

A task’s cognitive functions compute the probability of an error
(using (4) with the appropriate parameters from Table 4) as
if CPCg,py > —9

CPC2 4.
min (10(C+a CPC% +b CPCS“m+c)’ 1) ’

(5)

Pgrror =
10€, otherwise.

This differs slightly from (4). Because (4) does not account for situations
where the equation produces probabilities greater than one, the first
case of (5) selects the minimum of (4) and 1. Additionally, PEOFM
markup allows CPCyg,, to go undefined (see Section 4.1). In this
situation, the translator assumes a default of CPCy,,, that is less than
-9. When this occurs, the second case of (5) assumes the cognitive
function’s nominal error probability [43,61].

Cognitive function outputs all behave as shown in Fig. 6. All start in
an Initial state. For any given state, the output will indicate Error with
probability Pp,,,. and NoError with probability 1 — Py,,,,. in the next
state. The Initial value allows cognitive functions to transition to Error
or NoError with the appropriate probabilities before EOFM module
transitions (which all require Error or NoError values) can occur.

While considering the output of the cognitive function modules, the
translator interprets the semantics from Figs. 1 and 2. It does this by
creating a variable in the EOFM module representing the execution
state of each act and explicitly representing the transitions in Fig. 7(a)
and (c) for activities and Fig. 7(b), (d), and (e) for actions. These
implement the original semantics except they only allow transitions to
occur if the behavior is enabled by the task’s cognitive function outputs.
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Fig. 7. Transition diagram showing how the PEOFM to PRISM translator interprets the transition semantics from Figs. 1 and 2. Color is used in transition logic to highlight new
conditions. Note that here Observation, Interpretation, Planning, and Execution represent the output variables from the associated task’s cognitive function modules (Figs. 5 and 6).
(a) How the translator interprets normative transitions for activities from Fig. 1(a). (b) How the translator interprets normative transitions for actions from Fig. 1(b). (c) How it
interprets erroneous transitions for activities from Fig. 2(a). (d) How it interprets erroneous transitions for actions that execute human actions from Fig. 2(b). (e) How it interprets

erroneous transitions for actions that execute a local variable assignment.

So, for example, the transitions in Fig. 7(a) and (b) represent normative
behavior (from Fig. 1) and can thus only occur when there are no
errors in the associated cognitive functions. In the transitions, there is
an additional new condition on Reset that allows it to occur when the
act’s parent is ready (Parent = Ready). This gives an act the option
to reset after its intrusion has completed. Consistent with previous
non-probabilistic translators, actions with local variable assignments
automatically transition from Ready to Done, with the variable assign-
ment occurring in the process. This is done because modules external
to EOFM cannot observe this action and this form of the transition

improves model scalability.

Fig. 7(c)-(e) represent the erroneous behaviors from Fig. 2. Ad-
ditional conditions are added to account for the mappings for obser-
vation, interpretation, planning, and execution errors from Table 5.
Note that (d) and (e) describe the difference ways that errors manifest
for human actions (which rely on the execution cognitive function)
or local variable assignments (which depend on observation) respec-
tively. In both of these, the Executing-to-Done transition is eliminated.
This is because an action’s EndCondition is true by default when the
action is performed and action performance time is not currently
modeled (actions are treated as being instantaneous). This means that
an Executing-to-Done omission is functionally equivalent to a Ready-to-
Done omission. Also note that in (e), Ready-to-Executing and Done-to-
Executing intrusions skip the Executing state for the same reason that
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normative local variable assignments do. Finally, CREAM allows for
incorrect actions to be performed (for the execution function) or the
wrong object observed (for the observation one) (Table 3) as a single
error for the respective function. The original erroneous transitions
(Fig. 2) can support this behavior, but require both an intrusion and
omissions. Thus, to represent wrong action and wrong object observed
error types as a single error in our method, both (d) and (e) contain
an extra transition (Ready-to-Executing in (d) and Ready-to-Done with
implied execution in (e)) to allow an incorrect action or incorrect local
variable assignment (respectively) to be performed when the given
action should execute normatively.

As in previous translators [23,29], the new one creates a variable
representing the output or product of each human action. For Autoreset
and Toggle actions, these are Boolean. For SetValue actions and local
variable assignments, the variables have the type specified in the
PEOFM markup. When the normative action transitions from Ready
to Executing (or from Ready to Executing with presumed execution
for local variable assignments; Fig. 7(b)), the corresponding output or
local variable is set to its appropriate value: true for AutoReset, the
negation of its current value for Toggle, and the markup-specified value
for SetValue and local variable assignments.

Erroneous action intrusions also exhibit this behavior, but vary in
terms of what variable is assigned or what value is assigned to it. For
all actions, the intrusions that transition from Ready with a negated
start condition have the same target variable and value that would be
assigned normatively. This is also true of intrusions that originate from
the Done state. Both transitions represent a situation where an action
is inserted (extraneously) into the executing task. Action intrusions
originating from Ready with a normative (non-negated) StartCondi-
tion represent intrusions where the normative action is replaced with
something else. Since this “something else” could be many different
actions, the translator creates multiple transitions of this type. For a
given human action, this means that the translator creates transitions
where the human sets the output of every other possible human action
instead of the one for the current action (one transition per other
action). Similarly, for local variables, this means that the translator
creates transitions where all of the other local variable assignments
from the markup occur instead of the correct one. Additionally, these
types of transitions are used for representing Action Value Substi-
tutions and action target substitutions (for SetValue human actions)
and value misremembrances and target misremembrances (for local
variable assignments)(Table 2). For both action value substitutions and
misremembrances, the translator creates multiple transitions where
the value assigned to the correct variable is wrong in each possible
way that it could be wrong, one transition for every possible wrong
value. For action target substitutions and target misremembrances, the
translator creates transitions where the incorrect variable is assigned
the correct value for every possible human action output or local
variable (respectively) that has the same type as the correct variable.

Analysts manually complete the sys module (Fig. 5). However, the
translator creates a template for this that defines the output variables
and provides a pattern for module transitions.

4.3. Specification properties

Finally, analysts must create specifications to verify against models.
Currently, these must also be manually created by the analyst. While
many properties are possible, current efforts use probabilistic temporal
logic specifications of the form:

P =?[F(FailureCondition)]. 6)

When this specification is checked, it instructs the model checker to
compute the probability (P =?) that eventually (F) a failure condition
(FailureCondition) occurs.
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5. Application

As a proof of concept, we used the method to evaluate an ATM.
This application was chosen because ATMs have well-documented de-
sign variations that can profoundly impact user errors. Specifically,
some ATM designs can cause a postcompletion error (where a hu-
man omits actions related to subsidiary goals once the primary goal
is achieved [66]): a user leaving the card in the machine after re-
ceiving cash. There are also known probabilities for postcompletion
errors [67,68], enabling us to determine if our approach produces
valid predictions. In what follows, we describe the behavior of two
different ATM variants and how they were formally modeled. We also
describe the task behavior the human operator uses when interacting
with the ATM. We then describe how these models were integrated
into complete formal models and used to evaluate the probability errors
with the system.

5.1. The formal model of the ATM

Fig. 8 shows the formal models describing the behavior of the two
variations of the ATM. In the first (Fig. 8(a)), the machine starts on a
welcome screen. If the user enters a card, he or she is brought to the
state for entering the pin. In this state, the user must enter his or her
correct pin to progress, with incorrect pins keeping them in the current
state. If the correct pin is entered, the user reaches the withdraw state.
Here, the user must enter a monetary value that is greater than zero,
then the machines outputs the cash, the user takes it, the machine then
outputs the card. When the user takes the card, the machine returns to
the welcome screen. When in the pin or withdraw states, the user can
press a cancel button to immediately output the card, which can be
retrieved by the user to return the machine to the welcome screen. The
second machine (Fig. 8(b)) works the same as the first except that the
order in which the cash and card are output is reversed. Note that the
machine shown in (a) is the one that encourages postcompletion error
because it allows the human to take the cash (the human’s primary
goal) before taking the card (a subsidiary goal).

5.2. The task model for interacting with the ATM

Fig. 9 visualizes the PEOFM representing the human task behav-
ior for withdrawing cash from both machines in Fig. 8.° In this, a
human who wants to withdraw cash (aGetCash) must execute four sub-
activities in order (as dictated by the ord decomposition). The user first
inserts his or her card (with the EnterCard AutoReset action via the
alnsertCard activity) at the welcome screen and will continue trying
to do so until this screen has cleared (as dictated by the activity’s
strategic knowledge). The user will enter his or her correct pin (via the
EnterPin SetValue action) while on the EnterPin interface state under
the aEnterPin activity. Next, the user enters the desired cash value
while in the Withdraw interface state. Finally, the user will retrieve
machine outputs (aRetrieveOutputs) by performing two activities in
any possible order (an and_par decomposition) based on when the sys-
tem enables them: taking the cash and taking the card. The user knows
that the activity (aRetrieveOutputs) is completed (via a completion
condition) if the user thinks that the cash has been retrieved.

For the purpose of this analysis, we assume a CPCg,, = 4 for
the task. This was done because it represents the minimum value that

3 Task model XML as well as all model code used for this paper can be
found at http://fhsl.eng.buffalo.edu/resources/ProbabilisticEOFM/.
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Fig. 8. State machine representation of the two variations of the ATM formal model. (a) An ATM that outputs cash before outputting the user’s card. (b) An ATM that outputs the
user’s card before outputting cash. For both figures, each state encompasses the state of the interface (ilnterface; which assumes the value shown in each circle), whether or not
a card is being output (iCardPresent; a Boolean variable that is false ® except in the OutputCard state =»), and the state of cash output (iCashout; which defaults to NoValue

® but will assume the value entered by the user m in the OutputCash state).
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Fig. 9. Visualization of the PEOFM a human uses to interact with the ATMs from Fig. 8. This uses EOFM’s visual notation [69]. Activities are rounded rectangles and actions
are pointed rectangles. Activity decompositions are presented as rounded rectangles below an activity that are connected by an arrow labeled with a decomposition operator.
SetValue actions are presented with both the actions name at the top and the value being committed below it bolded. Strategic knowledge conditions are labels on lines and arrows
connected to their associated activities. Preconditions are down-pointing yellow arrows connected by on the left of the activity. Completion conditions are up-pointing magenta
triangles connected on the right. Repeat conditions are recursive arrows on the top of the activity.

would normally be associated with the strategic control mode, implying
that the human has a deep understanding of the task he or she is
performing and can behave strategically. Given that most people are
very familiar with ATMs and the way they work, this seemed like a
reasonable assumption.

5.3. Translation and formal system model construction

The XML of the PEOFM from Fig. 9 (which was 76 lines long)
was converted into the input language of the PRISM model checker,
producing a representation that is 834 lines. This Sys module was
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then completed in this translated version in two ways: one using the
behavior from Fig. 8(a) and one using the behavior from Fig. 8(b).
Thus we ultimately had two formal system models for comparison: one
where we would expect a higher probability for having a credit card
left in it (the one based on Fig. 8(a)) and one where we would expect
this to be lower (the one based on Fig. 8(b)).

5.4. Specification properties

We evaluate our model with three specifications, all implemented
using the pattern from Eq. (6). The first checked for the presence of the
postcompletion error outcome: the person completing the task having
received cash but leaving the card:

Card Left :
(aGetCash = actDone)

P =2|F <iCardPresent )
A

AiCashOut = NoV alue

This tells the model checker to calculate the probability (P =?) that
eventually (F) the task completes (aGetCash = actDone) with the
cash having been retrieved (no longer being output by the machine;
iCashOut = NoValue) and the card remaining as an output of the
machine (iCard Present).

The second checked for the person completing the task while leav-
ing cash in the machine:

Cash Left :
(aGetCash = actDone)

P =?|F ( -iCard Present >
A

AiCashOut > NoV alue
Finally, overall reliability was assessed with a property requesting
the probability of either (or both) errors occurring:

7

®

Reliability :
(aGetCash = actDone)

P =?|F ( iCard Present >
A

ViCashOut > NoV alue

If the method accurately predicts probabilities, we would expect the
model containing the ATM from Fig. 8(a) to have a higher probability
for leaving the card (7) than leaving cash (8) because of the machine’s
encouragement of the post-completion error. We would expect the
probability of leaving the card to be lower for the model using Fig. 8(b)
because this should not encourage the postcompletion error. We would
also expect the probability of leaving the card to be similar to that of
leaving the cash. Finally, we would expect the overall chance of error
(9) to be higher for the model using Fig. 8(a) because of its support for
the postcompletion error.

9

5.5. Verification and results

Verifications were performed on a workstation with a 12-core
3.60 GHz Intel Xeon E5-1650 with 128 Gigabytes of RAM. However,
probabilistic model checking resulted in the machine running out of
memory after more than 24 h of analysis. Luckily, we were able to use
statistical model checking.

Statistical checking uses samples of model traces to compute CIs on
computed probabilities. This means that scalability restrictions can be
avoided at the expense of accuracy. To assess this tradeoff, we con-
ducted a small experiment using the formal system model containing
the machine behavior from Fig. 8(a) and checking the overall reliability
with (9). This assumed a 99% CI computed from a sample size starting
at 1000 and increasing in 1000 increments up to 25,000. Experiment
results are shown in Fig. 10. This showed the verification time increased
linearly with the number of samples Fig. 10(b). It also showed that

10
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Fig. 10. (a) Verification results (predicted probability and its 99% CI) and (b) times
from statistical model checking for verify (9) against models containing behavior from
Fig. 8(a) for different numbers of samples.
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Fig. 11. Verification results (prediction and 99% CI) for checking the specifications in
(7)-(9) against the two variations of the model: one with the behavior for enabling
a postcompletion error (Fig. 8(a); black) and one with the behavior for avoiding it
(Fig. 8(a); blue).

the width of the 99% CI narrowed as the sample size increased. At
25,000 samples, the verification took 37.146 s to estimate a probability
of 0.07332 with a 99% CI of [0.069, 0.0776]. This interval is less than
0.01, or one percentage point. Thus, statistical model checking was
able to produce results that we can be 99% confident are within 1
percentage point of the actual value in less than a minute of verification
time. We used a sample size of 25,000 for subsequent verifications.

Fig. 11 shows the results of checking each of the properties against
the two model variants. This produced results that are consistent with
our expectations. The model with the behavior from Fig. 11(a) showed
a probability of 0.04544 of leaving the card in the machine, a value
significantly higher (shown by the CIs) than it was for the machine from
Fig. 11(b). The second value was also comparable to the values seen
for both models for leaving cash in the machine. Finally, the machine
supporting the postcompletion error was significantly more likely to see
any error (0.07332) than the other machine (0.06448).

6. Discussion

In this research, we have introduced a new formal method that
combines task modeling, a taxonomy of erroneous human behavior,
and HRA. This is able to both formally generate HAI errors and account
for the probabilities of these errors. This enables engineers to evalu-
ate reactive HAI designs by using probabilistic and statistical model
checking to determine the relative probability of different outcomes
both between and within designs. This is a major contribution for
formal analyses of human error and reliability as previous approach
could only determine if errors were possible. As such, this paper also
makes significant contributions to reliability engineering and system
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safety. Specifically, human behavior and human error play significant
roles in failure of safety and reliability. The method introduced here
give engineers an unprecedented ability to assess the reliability of
safety-critical, human-interactive systems. Thus, this work will enable
designs and interventions that will significantly reduce the probability
of human error causing system failures and disasters, saving lives, and
protecting critical infrastructure.

The ATM application is illustrative because it shows that proba-
bility predictions were able to differentiate between two designs in
ways that match with established performance: the postcompletion
error condition was significantly more likely with the interface that
facilitated it than for the other interface and other errors. It is not
entirely clear from the literature how likely an ATM postcompletion
error is. However, Ratwani and Gregory Trafton [67], Ratwani and
Trafton [68] in studies on postcompletion errors found that when they
are facilitated by the HAI, they occur about 5% of the time. This 5%
average is consistent with the 4.544% observed with our model. Thus,
while limited, the ATM application does suggest that our approach is
capable of producing valid predictions.

It is important to note that the ATM example produces more than
just post-completion errors. This is evidenced by the fact that the
overall error rates were higher than the post completion ones and
that the model that did not allow for the post-completion error still
exhibited errors. Of course, other systems will have different types of
errors that will be critical to system safety and performance. Future
research should seek to validate our method with other applications
and human subject experiments. Additionally, there are extensions and
considerations necessitated by our approach. We discuss these below.

6.1. Probability accuracy

While the presented results are consistent with the literature, the
predictions seem high. This is not necessarily surprising because the
method accounts for all of the possible ways an error can manifest,
including all planning errors (incorrect task knowledge). For a task as
familiar as interacting with an ATM, it is conceivable that planning
errors might be less likely than for other tasks. It is worth noting that
the method can be easily adapted to account for different conditions.
First, researchers can assess the values of the CPCs used in a given
environment and use those in analyses. Additionally, in situations
where an analyst is sure a given cognitive function is not a factor, he
or she can easily set the default probability of error in the associated
function to 0 to mitigate the function’s effect.

Additionally, the method enables analysts to evaluate the impact of
different conditions on performance by manipulating the CPC values.
For example, CREAM has a CPC representing the quality of conditions.
Because any given CPC can assume a value of —1, 0, or 1, it can have
up to a 2 point impact on CPCsum. Any analyst wishing to see how
environmental or design factors impact computed probabilities should
be able to appropriately adjust CPC values and rerun analyses. This
should be explored more thoroughly in subsequent research.

To some extent, the absolute accuracy of the probabilistic predic-
tions is less important than relative accuracy. As long as the method
can determine which condition is more likely, analysts will be able to
take appropriate action. Future research will investigate the method’s
ability to predict probabilities both absolutely and relatively.

6.2. Deeper support for CPC variation

The current version of the method has a single CPCSum and as-
sociated cognitive functions for each task. It is conceivable that CPC
values could vary for different parts of a task. It should be possible for
PEOFM to allow for greater specificity of CPCSum values at the activity
level and have the translator create separate cognitive functions to
accommodate this. Future research should explore these developments.
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6.3. Scalability

The ATM example showed that scalability is a major restriction of
probabilistic model checking with PEOFM. The translation approach
is derived from the original method that was used for including EOFM
task behavior in nonprobabilistic model checking analyses [23]. In this,
the execution state of every activity and action is represented with its
own variable. In traditional model checking with EOFM, significant
scalability improvement can be achieved by eliminating the explicit
representation of EOFM activity execution state and expressing it as
a formula over the execution state of actions [31]. This improvement
works because it eliminates the need for intermediate task model
transitions. However, this approach is currently incompatible with the
human error generation method employed here because erroneous
deviations occur at the intermediate transitions of the task’s activities. It
is, however, theoretically possible to apply the scalability improvement
method from Bolton et al. [23] to PEOFM, but this would ultimately
require a much more complex formulation. This is because there are
an increased number of intermediary transitions necessitated by error
generation and the need to account for the probabilities of these
transitions. This should be explored more thoroughly in future research.

Fortunately, statistical model checking has fewer restrictions than
probabilistic model checking. In fact, verification times appear to scale
linearly with the number of computed samples. This provides good
evidence that our method, when used with statistical checking, can
scale to industrial applications. This should also be investigated further
in future research.

6.4. Purely reactive system

It is important to note that our method is most appropriate for mod-
eling reactive systems: where system behavior occurs in direct response
to human actions. This is because the cognitive-function-based model
assumes that stochastic behavior only originates with the human. There
are many interactive systems that are purely reactive. However, this
limits the applicability of our approach. To help expand the scope of
applications that could be evaluated with the method, future research
should investigate how to account for stochastic behavior originating
from the environment and machine automated behavior.

6.5. Non-deterministic choice

A byproduct of using Markov decision processes and statistical
model checking in our method is that nondeterministic transitions
(where there are multiple allowable transition at a given step) occur
with equal probability. For example, if there are two activities in an
and_seq decomposition who both have their precondition satisfied,
there will be a 0.5 probability of each executing. While this is normally
the behavior an analyst will want, there are conceivable situations
where humans would be more likely to choose one behavior over
another. Future research should investigate how to account for this in
the method.

6.6. The sync Decomposition and Human-human Interaction

PEOFM and the method currently support all but two of EOFMs
features. First, PEOFM does not allow the sync decomposition, a rare
condition where the human performs multiple actions synchronously.
Second, the method does not support EOFMC capabilities (the variant
supporting human-human coordination and communication; [12,30]).
While CREAM’s CPCs and cognitive functions do give some insight into
how to account for human-human coordination errors, they do not
appear to offer a theory for modeling the probability of communication
errors. Future work should investigate how to incorporate EOFMC
capacities into our method.
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6.7. Dependence of error prediction on task modeling

Because our method uses the task-based taxonomy of human error,
it is complete with respect to the phenotypes of erroneous action and
slip genotypes [36]. This means that it should be capable of modeling
nearly any type of human error and its associated probability. However,
it is important to note that the type of errors that can be generated
will depend of the way that the normative task model is formulated.
For example, our method should be capable of generating errors where
someone puts a card into the machine with incorrect orientation,
or even inserts the wrong card. However, accomplishing this would
require analysts to include actions in the task model for picking up
different card options and inserting cards in different orientations.
Doing this ultimately requires modeler insight that may not be obvious
at the time of model creation. Future work should investigate how to
create guidance for modelers that enables them to include model con-
cepts that will enable complete error prediction. Additionally, progress
has been made in using formal models of affordance to identify what
human actions (intended or unintended) are facilitated by the in-
terface and environment [70,71]. Future research should investigate
whether affordance-based action prediction can be incorporated into
our method.
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