Reliability Engineering and System Safety 213 (2021) 107764

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

RELIABILITY
ENGINEERING
& SYSTEM
SAFETY

ey

journal homepage: www.elsevier.com/locate/ress =

Check for

A formal method for including the probability of erroneous human task |t

behavior in system analyses
Matthew L. Bolton **, Xi Zheng ?, Eunsuk Kang "

a University at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NY, USA
b Institute for Software Research, School of Computer Science, Carnegie Mellon University, NY, USA

ARTICLE INFO ABSTRACT

Keywords:

Human error

Formal methods
Model checking
Probabilistic modeling
Human reliability

Formal methods have been making inroads into the engineering of human-automation interaction (HAI) by
allowing engineers to use mathematical proofs to determine whether normative or unanticipated erroneous
human behavior can ever cause problems. However, these approaches are limited because they do not
give engineers a way to assess the relative likelihood of different outcomes. In this work, we address this
shortcoming by defining a new approach that combines formal approaches with human reliability analysis

and probabilistic and statistical model checking. This approach ultimately allows analysts to compute the
probability of different outcomes occurring in reactive HAI systems. We describe how this method was realized,
assess its scalability, and demonstrate its capabilities with an automated teller machine example. We ultimately
discuss our results and describe directions of future research.

1. Introduction

Human error is regularly cited as a source of failure and perfor-
mance issues in modern systems. It has contributed to more than
1,000,000 injuries and between 44,000 and 98,000 deaths annually
in medicine [1]; roughly 75% of all accidents in general aviation and
50% in commercial aviation [2,3]; one third of unmanned aerial system
(UAS) accidents [4]; 90% of automobile crashes [5]; and high profile
disasters like the accident at Three Mile Island [6]. Humans are often
blamed for failures associated with human error. However, the modern
perspective holds that errors are the result of shortcomings in system
design and thus not solely the fault of human operators, if they are
the fault of the human at all. Unfortunately, the complexity of human-
automation interaction (HAI) systems and the inherent concurrency
that exists in HAI can make it extremely difficult to predict when
and how erroneous human behaviors can cause problems. For this
reason, a growing body of research has been investigating how rigorous
analyses from formal methods can be used to evaluate and design
HAI [7-9]. In particular, techniques have been discovered that enable
an analyst to pair models of human tasks (a normative description of
the behavior humans use to achieve goals when interacting with a
system) with models of system functionality. Verification techniques
are then used to determine if normative or erroneous human behavior
(based on systematic deviations from normative tasks) can result in
safety violations [10-15].

* Corresponding author.
E-mail address: mbolton@buffalo.edu (M.L. Bolton).

https://doi.org/10.1016/j.ress.2021.107764

These techniques are powerful and well-suited to discovering de-
sign flaws in HAIs, especially those involving potentially unanticipated
erroneous human behaviors, and thus suggesting interventions that
improve system reliability. However, they do have limitations. In par-
ticular, they do not account for the relative likelihood of different
erroneous behaviors. This situation can make it difficult for analysts
to prioritize how to address discovered problems. This research seeks
to address this deficiency by extending formal, task-based, verification
methods with concepts from human reliability analysis (HRA) and
probabilistic/statistical model checking (methods for formally verify-
ing stochastic systems). In what follows, we cover the background
necessary for understanding our approach, we describe our method,
we analyze a proof of concept example [an automated teller machine
(ATM)] to check that our method is providing valid results. Finally, we
discuss our developments and discuss directions for future work.

2. Background
2.1. Formal methods

Formal methods is a computer science sub-domain concerned with
mathematically modeling systems with precise languages, specifying
desirable system properties, and verifying (proving) whether the prop-
erties hold with the system. Model checking [16] is computer software

Received 5 November 2020; Received in revised form 11 April 2021; Accepted 4 May 2021

Available online 24 May 2021
0951-8320/© 2021 Published by Elsevier Ltd.

http://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
mailto:mbolton@buffalo.edu
https://doi.org/10.1016/j.ress.2021.107764
https://doi.org/10.1016/j.ress.2021.107764
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2021.107764&domain=pdf

M.L. Bolton et al.

that performs formal verification automatically, where efficient data
structures and algorithms are used to search through a system model’s
state space to exhaustively determine if specification properties hold.

The majority of formal methods are non-stochastic. Emerging tech-
niques such as probabilistic and statistical model checking enable
analysts to account for probabilities in formal verification [17]. In
these, stochastic models (such as Markov chains) are used to describe
system behavior and the specification properties either describe de-
sirable system properties (which can include probabilities) or request
that a probability be computed. Verification then proves whether the
specification property holds for the entire model or computes the
probability requested in the property. Statistical model checking only
differs from probabilistic checking in that, instead of verifying a prop-
erty against the entire system model, statistical checking checks the
property against a number of samples/traces through the model. This
produces approximate results. For situations where the property is
computing a probability, this means that statistical checking produces
a probability value and an accurate confidence interval (CI) for it.

2.2. Formal and task-analytic methods

Formal methods (and especially model checking) are adept at dis-
covering unexpected interactions that can cause system failures. Be-
cause of this, a growing literature has been investigating how formal
methods can be used to engineer HAI. Comprehensive reviews can
be found in [7-9]. Due to topicality, what follows focuses on formal
methods that have used task analytic methods and as well as those that
have attempted to model human error stochastically.

Task analysis is a systematic process human factors engineers use
to describe how humans normatively achieve goals with a system as
a task model [18]. Task models can be interpreted formally and thus
included in larger formal analyses. This means that formal verification
can prove whether human behavior captured in task models can cause
performance and safety issues and be used to investigate solutions to
problems. Task models can be formally modeled manually [19,20].
However, it is more common to automatically translate tasks repre-
sented in their own notations into a formalism where other system
behavior are described [10,11,14,21-23].

Additionally, researchers have discovered a number of approaches
for injecting or generating human error into previously normative task
models so that the impact of both anticipated and potentially unan-
ticipated erroneous behaviors can be accounted for in verifications.
These approaches either use mutation patterns (which are manually
applied to task models by analysts) or different theories or taxonomies
of human error to automatically include deviations from task in formal
representations [13-15,24-30].

Because of its support for including human behavior in formal veri-
fication analyses, especially as it relates to the automated generation of
potentially unanticipated human errors, we use the enhanced operator
function model (EOFM) for task modeling in this research. We discuss
EOFM next.

2.2.1. The enhanced operator function model

EOFM [23] is an XML-based task modeling formalism where human
behavior is captured as an input/output model. Inputs are system
elements external to the human (e.g., interface display information and
observable environment elements). Outputs are human actions. The
operators’ tasks describe how human actions occur based on input and
local variables, where local variables represent the human’s perceptual
or cognitive state.

Tasks are a hierarchy of activities and actions (acts) starting with
a root activity. Any activity (which represents a goal-directed complex
behavior) can decomposes into sub-activities and, ultimately, atomic
actions (concrete cognitive or observable behaviors that are not fur-
ther broken down). Strategic knowledge (Boolean expressions) can be
specified for each activity using input and local variables. An activity

Reliability Engineering and System Safety 213 (2021) 107764

Table 1
Decomposition operators [28].
Operator Description
optor_seq Zero or more of the activities or actions in the decomposition must
execute in any order, one at a time.
optor_par Zero or more of the activities or actions in the decomposition must
execute in any order and can execute in parallel.
or_seq One or more of the activities or actions in the decomposition must
execute in any order one at a time.
or_par One or more of the activities or actions in the decomposition must
execute in any order and can execute in parallel.
and_seq All of the activities or actions in the decomposition must execute in
any order, one at a time.
and_par All of the activities or actions in the decomposition must execute in
any order and can execute in parallel.
xor Exactly one activity or action in the decomposition executes.
ord All activities or actions must execute in the order (left to right)

they appear in the decomposition.

can have three different conditions asserting what must be true for the
activity to start executing (Precondition); repeat (RepeatCondition), or
complete (CompletionCondition).

A decomposition has an operator that constrains how many of the
acts in that decomposition can execute as well as the (ordinal) temporal
relationships between them. EOFM supports ten such operators, those
topical to the paper are shown in Table 1.

Atomic human actions or internal actions (representing cognitive or
perceptual behaviors) occur at the bottom of every task. Human actions
can have one of three behaviors: AutoReset actions occur as a single
event; Toggle actions switch between occurring and not occurring; and
SetValue actions commit some value to the other parts of the sys-
tem. Internal actions allow cognitive behaviors (such as remembering
something) to be modeled by assigning values to local variable.

To enable unambiguous interpretation of EOFM behavior, EOFMs
have formal semantics [23,31]. In this, every act is interpreted as a
state machine (Fig. 1) with three states: Ready, Executing, and Done. All
acts start in Ready. They transition between states based on whether
the Boolean conditions on the labeled transitions (Fig. 1) are true. When
an action is Executing, this corresponds to an output variable associated
with the action being set to the appropriate value. For AutoReset actions
this is a Boolean variable that is set to true. For Toggle, the variable’s
Boolean variable is set to the negation of its current value. For SetValue
behavior, the action’s output variable is set to the value assigned in the
model. The same occurs when the action is a local variable assignment.

Any existent activity strategic knowledge conditions (Preconditions,
RepeatConditions, and CompletionConditions) partially describe when
transitions can occur. However, there are three additional implicit
conditions (based on the activity’s or action’s task position) that also
impact transitions.

The StartCondition indicates if an act can start executing based on
the states of its parent and siblings (acts in the same decomposition)
as well as the parent’s decomposition operator. Mathematically, a
StartCondition has the generic form:

StartCondition : parent.state = Executing

A /\ (s.state # Executing). (€]
Vsiblings s

If the parent’s decomposition allows for parallelism (the operator ends
with _par), the second conjunct is eliminated. If the parent has an
ord decomposition, to enforce order, the second conjunct requires that
the previous sibling in the decomposition be done: (prev_sibling.state =
Done). If the parent has an xor decomposition, the second conjunct is
modified so that no other sibling can execute after one has finished:
Nvsiblings s (5-State = Ready). An activity without a parent (a top-level
activity) will eliminate the first conjunct. Top-level activities treat each
other as siblings in an and_seq formulation for the second conjunct.

M.L. Bolton et al.

StartCondition A Precondition
A = CompletionCondition

StartCondition
A CompletionCondition

EndCondition
A CompletionCondition

EndCondition A RepeatCondition A~ CompletionCondition with Reset

Legend (b)

(O State

«—» |nitial State
—* Transition

StartCondition

EndCondition

Fig. 1. EOFM transition semantics. (a) Transition semantics for an EOFM activity. (b)
Transition semantics for an EOFM action.

The EndCondition indicates if an act can stop executing based on the
execution state of its children':

EndCondition : @ (c.state = Done)
Vsubacts ¢ (2)
A /\ (c.state # Executing).
Vsubacts ¢

The first conjunct requires that the execution states of the activity’s chil-
dren satisfy the activity’s decomposition operator. Here, (©) is generic
and substituted with A\ if the activity has an and_seq, and_par, or
ord decomposition. It is substituted with \/ for activities with or_seq,
or_par, or xor decompositions. Because optor_seq and optor_par do
not impose restrictions on the number of children that can execute,
the first conjunct is eliminated for either decomposition. The second
conjunct always specifies that no children are Executing.

The Reset describes when an activity can return to Ready. It oc-
curs in two situations. First, when an activity repeats (a normative
Executing-to-Executing transition), every descendant act Resets. Second,
any root activity automatically Resets from Done. When this occurs, all
descendants Reset.

The formal semantics of EOFM were used to create automated
translation software that converted EOFM XML into the input language
of the Symbolic Analysis Laboratory (SAL), a suite of non-probabilistic
model checkers [12,23,31]. This enables EOFM behavior to be used
as part of larger formal system analyses. As a result, EOFM analyses
have been used to assess the impact of normative human behavior on
a number of automotive, aerospace, and medical systems [22,32-34].
EOFM has also been used to model and predict the impact of erroneous
human behavior.

2.2.2. EOFM and erroneous human behavior

EOFM has been used to automatically generate human errors using
multiple theories [12,24-26,28,35]. This culminated in EOFM serv-
ing as the basis for the task-based taxonomy of erroneous human

1 Because actions have no children, action EndConditions default to true.

Reliability Engineering and System Safety 213 (2021) 107764

(a) StartCondition A Precondition
Ready A = CompletionCondition
StartCondition
A 1 CompletionCondition . "\ 71 StartCondition v = Precondition
/ . v CompletionCondition
N\
. EndCondtion
N A (CompletionCondition
) \\\ Vv RepeatCondition
¥ Tree -] \ A = CompletionCondition)
Done) With Reset Executing
= EndCondition

Vv = CompletionCondition i

2 EndCondition v = RepeatCondition v CompletionCondition With Reset

Legend
-———-» |Intrusion

(b) StartCondition
Ready

- -~ - » Restart

-

,,,,,,,, » Omission

StartCondition N
Delay :

N\
~_ 7 StartCondition
\\
N\

N
N\

T T Trie -
Done) Executing
7 EndCondition
EndCondition

Fig. 2. Task-based taxonomy of human error transition-based error modes.

behavior [36] and the associated error generation approach [29].
The task-based taxonomy unifies the phenomenological (what) and
genotypical (why) perspectives by classifying human error based on
where they deviate from tasks. By knowing where a deviation occurs
in a task model (how the task’s formal semantics were violated),
one understands how the error will observably manifest (the pheno-
type; [37]) and why the error occurred (the strategic knowledge or
inherent condition the human improperly attended to; the genotype of
the slip; [38]). In fact, the task-based taxonomy has been shown to be
complete with respect to both the leading phenomenological [37] and
genomenological [38] taxonomies [36].

The task-based taxonomy has a hierarchical classification that goes
beyond what is relevant to this discussion [36]. What is topical is
that it distinguishes between semantic violations that are transition-
based (transitions that violate what is in Fig. 1) and assignment-based
(incorrect behavior assignment to an action variable during action
execution for SetValue or local variable actions). Transition-based error
modes describe erroneous transitions between act execution states (see
Fig. 2). An intrusion happens when an act executes (transitions to
Executing) when it should not. An omission manifests when an activity
finishes (transitions to Done) when it should not. A restart occurs when
an activity (but not an action) incorrectly restarts: the activity resets
and starts executing anew. Finally, a delay happens when an act does
not transition out of a state when it should. In the execution-based er-
roneous behaviors, there can be both value and target substitutions (for
SetValue actions) and misremembrances (for local variable assignments)
(Table 2). In a value substitution or misremembrance, an incorrect
value is assigned to the correct target variable (the action’s output or
local variable). In a target error, the correct value is assigned to the
wrong target (the wrong output or local variable).

This taxonomy was the basis for a method [29] to automatically
generate erroneous behavior in model checking analyses to poten-
tially discover (and fix) human errors that could cause system failures.
Specifically, this method would modify the EOFM-to-SAL translator
so that all erroneous transitions (Fig. 2) and assignments (Table 2)

M.L. Bolton et al.

Table 2
Action-level erroneous behavior types.

Assignment Erroneous behavior type
CorrectAction := IncorrectValue Action Value Substitution
IncorrectAction = CorrectValue Action Target Substitution
CorrectVariable = IncorrectValue Value Misremembrance
IncorrectVariable = CorrectValue Target Misremembrance

could exist alongside their normative counterparts (Fig. 1). A maximum
(Max) on the total number of errors included was used to keep models
from becoming completely unbounded. The net effect of this was that
analyses accounted for all of the different ways that Max errors could
occur when evaluating system safety.

This approach is powerful and particularly good at discovering HAI
design flaws that could interact with unanticipated erroneous human
behaviors. However, it does have limits. In particular, it does not ac-
count for the relative likelihood of different erroneous behaviors. This
means that analyses may discover errors that are extremely unlikely
to occur. Thus, with no means of ranking the relative probability of
different errors, it can be difficult for analysts to prioritize how to
address discovered problems. In fact, none of the formal verification
work that has used task analytic or cognitive human behavior has
accounted for the probabilities of different errors. To address this
shortcoming, we plan to use concepts from HRA.

2.3. HRA and CREAM

HRAs are used to predict human error rates. There are many dif-
ferent HRAs [39]. These generally fall into two categories: those based
on probabilistic risk assessment (the first generation) and those based
on cognition (the second generation) [40]. Third generation tech-
niques (which are discussed subsequently) exist, but use the theoretical
foundation of first- and second-generation methods.

First-generation methods like the Technique for Human Error Rate
Prediction (THERP) [41] and the Human Error Assessment and Re-
duction Technique (HEART) [42] (among others) are useful. However,
they generally treat human errors the same as equipment failures.
This limits their applicability because they do not account for the
effect of context and organizational factors [40,43]. Second-generation
HRAs build off and improve on these by considering the interactions
inherent in complex systems (between humans, processes, organization,
and the environment) based on how they affect human cognition [43—
45]. CREAM is largely the preferred HRA by human factors engineers
because it is rooted in a well-established cognitive model and can
thus explain why errors occur [40,46-49]. Beyond this, CREAM has
been well validated over the years through its successful use in nu-
clear power plants [50], manufacturing [51], radiation therapy [52],
hospitals [53], and many other critical domains [43,54-60].

In CREAM [43], analysts identify the major tasks for working with
a given system. The analysts then performs subjective assessments
with subject matter experts. First, common performance conditions
(or CPCs) are assessed for each task to understand how the work
environment impacts the performance of that task. This means deter-
mining if each of the nine CPCs (quality of the organization, work
conditions, human-machine support, procedures, simultaneous goals,
time availability, time of day, work experience, and team collabo-
ration) improves, reduces, or does not impact human performance.
By synthesizing these ratings (counting the number that improve and
reduce performance, and adjusting for dependencies), an analyst de-
termines if the person is operating at one of the four Contextual
Control Model (COCOM) modes (strategic, tactical, opportunistic, and
scrambled; listed in decreasing levels of human reliability). In the basic
version of CREAM, these control modes map to a range of probabilities
of error occurring.

Reliability Engineering and System Safety 213 (2021) 107764

Table 3
CREAM’s Cognitive function failures [43].

Cognitive function Cognitive function failure

Observation Wrong object observed
Wrong identification

Observation not made

Interpretation Faulty diagnosis
Decision error

Delayed interpretation

Planning Priority error

Inadequate plan

Execution Action of wrong type
Action of wrong time
Action on wrong object
Action out of sequence

Missed action

Table 4
Parameter values used for calculating probabilities of human error in the revised version
of CREAM [61].

Parameter Cognitive function

Observation Interpretation Planning Execution
C -2.0775 —-1.3495 —2.0000 —2.4120
a 0.0055 0.0041 0.0052 0.0065
b —-0.2458 —-0.2046 —-0.2828 —-0.2860
c 0.2840 0.2244 0.4019 0.4079

Point estimates can be achieved with two versions of extended
CREAM. In these, an analyst identifies each task’s cognitive function:
observation — observing information in the environment; interpre-
tation — understanding observed information; planning — setting a
course of action; and execution — performing the planned actions.
Next, the analyst identifies the function’s most likely cognitive function
failure (Table 3). Each failure has an associated nominal probability,
originally identified by analyzing a large database of human perfor-
mance information [43]. In the first approach to extended CREAM,
the nominal probability is scaled to account for the impact of CPCs by
multiplying it by a scaling factor associated with the assessed control
mode. In the second variant, the nominal probability is scaled based on
the impact specific CPC levels have on the different cognitive functions.

CREAM has been used successfully in a number of safety critical
environments. However, it does have some problems. Bedford et al.
[61] noted large error ranges and inconsistencies between predictions
made with the three versions of CREAM. To address this, they created
an improved version that reconciled the basic and extended methods
(itself a refinement of previous attempts to improve CREAM predic-
tions; [44,62]). First, the method accounts for the impact of each CPC
on overall performance in a single integer, thus avoiding the collapse
of ratings into course control mode designations. This is computed as
the total number of CPCs that improve human performance and the
number that reduce it:

1, if cpc improves

CPCSum = ZcchCPCS .
0, otherwise

3

1, if ¢pc reduces

- ZcchCPCS .
0, otherwise

Second, using the same data that was the basis for CREAM’s predic-
tions [43], Bedford et al. [61] fitted a regression model for predicting
the probability of human error

(C+a»CPC§um+b-CPC Sum +c)

4

where C is the log, of the nominal probability of error for the cognitive
function and q, b, and ¢ are the regression coefficients for that function.

PhumanError = 10

M.L. Bolton et al.

Reliability Engineering and System Safety 213 (2021) 107764

y

1 2

Task Model
(EOFM) ’

I

Manual
Modeling

A

Task-to-Formal-Model
Translation

Stochastic Model of
—» Human-Automation
Interaction

T

R

Task Analysis, HRA, Probabilistic Temporal CREAM HRA and Probabilistic / Statistical procification Report.
and System Logic Specification Taxonomy of Model Checking " nterval (y)bnﬁrm ation

Documentation

Properties

Human Error

(PRISM)

and/ or Counterexample

(

f

Fig. 3. Flow diagram of our formal method for including probabilistic erroneous behavior in formal verification. Numbers in processes show order of operation.

See Table 4 for the computed values. Thus, by computing the CPCyg,,,
with (3) and using the result in (4) with the parameters from Table 4,
accurate predictions of human error probabilities for a given task can
be computed.

While CREAM (and its variants) provides a foundation for predicting
error probabilities, it is a manual process that provides no mechanism
for analyzing whether task errors will actually be allowed to occur and
whether they will impact system safety and performance. Combining
CREAM with formal methods or simulation allows these issues to be
addressed in what are called third generation approaches.

2.4. Third generation HRA

Third generation HRAs implement first and second generation meth-
ods in simulation or formal analyses to account for dynamic system
behavior in predictions. For example, SHERPA (a simulator for human
error probability analysis; [63]), like most third generation HRAs [40],
is based in first generation methods and uses simulation. By being first-
generation-based, methods like SHERPA are limited by not including
a cognitive model. Their simulation basis also means that it can miss
critical interactions that would be considered with formal methods. To
address these problems, the Systems Analysis for Formal Pharmaceuti-
cal Human Reliability (SAFPHR) [57,59,60] showed that basic [57,59]
and extended [60] CREAM could be implemented in the PRISM prob-
abilistic model checker [64]. When this includes a dynamic model of
the system, SAFPHR was able to accurately predict the probability of
undesirable outcomes in community pharmacies. These developments
are powerful and made several specific recommendations that could
improve community pharmacy [60]. However, they are limited in two
important ways. First, SAFPHR uses a very simple version of task
analysis that is based on flow diagrams and thus does not allow for the
specificity of behavior supported by EOFM. Second, SAFPHR requires
analysts to manually identify the cognitive function failure for each task
and thus does not dynamically determine how errors could occur.

3. Objectives

In this work, we hypothesized that the expressive power of the task-
based taxonomy of human error [36] would give us enough information
to associate every one of the possible errors with a cognitive function
from CREAM (Table 3). This would enable us to automatically generate
erroneous human behavior as part of a formal model (as was done
in [29]) but with an associated probability of error for each possible
task deviation. In accomplishing this, we would be able to use prob-
abilistic and/or statistical model checking to compute the probability
of system safety and performance specifications being violated and for
understanding the likelihood of different errors contributing to failures.
In what follows, we describe how a method based on these capabilities
was realized. This is followed by a demonstration/validation of our
approach by applying it to a simple but realistic example, an ATM. In
doing this, we were able to obtain preliminary results of the methods

scalability and compare probabilistic and statistical model checking
approaches. After this, we discuss the import of our findings and how
they could influence future research.

4. Method

Our method for stochastically modeling erroneous human behavior
in formal verifications is shown in Fig. 3. In this, an analyst has access
to system information, a completed task analysis, and HRA (CPCyg,,s
for each task). The analysts uses this to create a task model using
PEOFM (which incorporates HRA information). He or she also creates
part of a formal system model that describes the behavior of the system
the human interacts with and specification properties that he or she
wishes to check. Next, the analyst uses a systematic translation process
that employs theory from CREAM and the task-based taxonomy of
human error to incorporate the task model into the formal system
model. This accounts for erroneous human behaviors and their prob-
abilities. Then, the analysts run either probabilistic or statistical model
checking (using PRISM) to verify specification properties against the
formal model. This produces a verification report that, depending on
the property checked and checking method, will produce a probability,
CI around a probability, confirmation, or counterexample.

The three major contributions of this method relate to the exten-
sions to EOFM required for this method, the novel translation process,
and the specification properties that can be checked. We describe each
of these below.

4.1. EOFM extensions

To support the new method, changes were made to the EOFM
language [23], now Probabilistic EOFM (PEOFM). First, PEOFM only
supports eight of the EOFM decompositions (those from Table 1). The
sync (where decomposed actions are all performed synchronously) and
com (for communicating information between humans) operators were
removed because it was not clear how they would work with the prob-
abilistic features. This issue is further explored in Section 6. Second,
an optional cpcsum attribute was added to the base element (eofm)
of each task (Fig. 4(a)). This was designed to set the CPC,,,, from (3).
Third, because nondeterminism in PRISM model initial values limits
analyses, an initial value was added to SetValue actions (Fig. 4(b)).

4.2. Translation

The translator, like EOFM’s non-probabilistic translators [23,29], in-
terprets EOFM tasks as state machines using EOFM’s normative (Fig. 1)
and erroneous semantics Fig. 2 and Table 2. Older versions trans-
lated into the language of SAL [23,29] and human errors were non-
probabilistic and limited by an analyst-specified maximum. The new

M.L. Bolton et al.

(a) ---@ cpcsum }(D integerﬂ Pattern = -[1-9]|[0-7] ‘

E @ name }(D ID) [=] autoreset ‘
~{ ¢ » humanaction

(b)

@ behavior)—{ [m] setvalue ‘

@ userdefinedtype}(D IDREF)
@ basictype }(D String)

<> initialvalue D String

Fig. 4. A visualization [65] of additions made to EOFM to create PEOFM. (a) A
cpcsum attribute for each task. (b) An initial value for SetValue actions. A ... indicates
when the remainder of the language is the same as reported in [23].

Table 5
Mapping of CREAM cognitive functions to errors from EOFM’s task-based taxonomy.

Cognitive Task-based human errors

function

Observation Any action-level error related to local variable assignment,
including target and value misremembrances

Interpretation Any activity-level error (intrusion, omission, restart, or delay)
caused by a violation of strategic knowledge conditions

Planning Any activity-level error (intrusion, omission, restart, or delay)

Execution Any action-level error that is not a local variable assignment

translator converts task models into the language of PRISM? and ac-
counts for human error probabilities.

The key to including probabilities in translation is a mapping (Ta-
ble 5) between CREAM’s cognitive functions (Table 5) and the devia-
tions from normative EOFM semantics from the task-based taxonomy
of human error Fig. 2 and Table 2. Because local variable assignments
are the mechanism EOFM uses for representing humans noticing and
remembering things from the environment, errors associated with this
represent observation errors. CREAM suggests that interpretation re-
lates to how humans contextualize observed information. This maps to
activity-level errors caused by the incorrect interpretation of strategic
knowledge (activity Preconditions, RepeatConditions, and CompletionCon-
ditions; Fig. 2(a)). Planning errors in CREAM occur because people
improperly form or understand a plan or task. Thus, map to any vi-
olation of the logic that people need to understand to properly execute
the task: any activity-level transition error (Fig. 2(a)) that can be caused
by violations of inherent or strategic knowledge conditions. According
to CREAM, execution errors occur when the person is attempting
to physically execute task actions. In our mapping, execution errors
all occur at the action level, either through the transition of action
execution states (Fig. 2(b)) or in the assignment of an output value (the
first two rows of Table 2).

Translation was implemented as a Java desktop application that
converts a PEOFM into PRISM’s language as a Markov decision process
using the architecture shown in Fig. 5. First, the formal EOFM repre-
sentation is contained in a single module. This captures the behavior
(normative and erroneous) associated with each task. This task module
interacts with a module (or modules) that represent other parts of
the system (Sys in Fig. 5). This can include automation behavior, the
environment, or, human mission parameters as in traditional EOFM
verifications [22]. The interface between the human and their parts
of the system is represented by shared variables between modules.
Outputs from the human task are actions and outputs from the other
elements represent display information, environmental conditions, or

2 https://www.prismmodelchecker.org/manual/

Reliability Engineering and System Safety 213 (2021) 107764

(" EOFM: \ HumanActions

Formal PEOFM

- . : Sys:
Otfgservtatlon Observation Display and Other }éystem
unction Environmental Elements

- Information

Interpretation | Interpretation -
Function
Task
Planning Planning
Function

Execution Execution
Function

Fig. 5. Architecture used for representing a PEOFM in PRISM. Modules are rounded

rectangles. Arrows are variables shared between modules with input (destination) and
output (source) relationships.

Perror

1-P Error
Perror
'@ 1 - Peror
1- PError P Error

Fig. 6. Transition logic for the value/state of the output variable of cognitive function
modules (see Fig. 5) at each model step. These transitions are probabilistic, where Py,,,.
is calculated using (5).

mission perogatives. To account for the probabilities for performing
tasks normatively or erroneously, the EOFM module also takes inputs
from modules representing each CREAM cognitive function (Table 3).
There are four such modules for each EOFM task. The probabilistic
behavior of the model is implemented in these cognitive function
modules. Specifically, each such module produces an output that is sent
to its associated task that indicates if that function occurs with an error.
Thus, at each model step, the EOFM’s task model will select from the
set of available behaviors based on the execution state of the task and
its cognitive functions.

A task’s cognitive functions compute the probability of an error
(using (4) with the appropriate parameters from Table 4) as
if CPCg,py > —9

CPC2 4.
min (10(C+a CPC% +b CPCS“m+c)’ 1) ’

(5)

Pgrror =
10€, otherwise.

This differs slightly from (4). Because (4) does not account for situations
where the equation produces probabilities greater than one, the first
case of (5) selects the minimum of (4) and 1. Additionally, PEOFM
markup allows CPCyg,, to go undefined (see Section 4.1). In this
situation, the translator assumes a default of CPCy,,, that is less than
-9. When this occurs, the second case of (5) assumes the cognitive
function’s nominal error probability [43,61].

Cognitive function outputs all behave as shown in Fig. 6. All start in
an Initial state. For any given state, the output will indicate Error with
probability Pp,,,. and NoError with probability 1 — Py,,,,. in the next
state. The Initial value allows cognitive functions to transition to Error
or NoError with the appropriate probabilities before EOFM module
transitions (which all require Error or NoError values) can occur.

While considering the output of the cognitive function modules, the
translator interprets the semantics from Figs. 1 and 2. It does this by
creating a variable in the EOFM module representing the execution
state of each act and explicitly representing the transitions in Fig. 7(a)
and (c) for activities and Fig. 7(b), (d), and (e) for actions. These
implement the original semantics except they only allow transitions to
occur if the behavior is enabled by the task’s cognitive function outputs.

https://www.prismmodelchecker.org/manual/

M.L. Bolton et al.

(@)

Planning = NoError A Interpretation = NoError,
A Reset V (Parent = Ready with Reset)
Planning = NoError
A Interpretation = NoError
A StartCondition
A CompletionCondition

Planning = NoError
A Interpretation = NoError
A EndCondition A CompletionCondition

Planning = NoError A Interpretation = NoError
A EndCondition A RepeatCondition An CompletionCondition with Reset

(Planning = Error V Interpretation = Error)
A StartCondition A Precondition

A 7 CompletionCondition
()
Ready
(Planning = Error V Interpretation = Error) AN
A StartCondition A = CompletionCondition Ve

\

N\
Planning = Error AN
with Resst .

Done Executing

(Planning = Error) A
7 EndCondition v ~ CompletionCondition : :

V (Interpretation = Error) A = CompletionCondition

(Planning = Error) A (~ EndCondition v = RepeatCondition v CompletionCéndition)
V (Interpretation = Error) A (~ RepeatCondition v CompletionCondition) with Reset

(Observation = Error)

(€) A StartCondition
Ready
/ N N
, N
(Observation = Error) - N with wrong local variable or value
A StartCondition NN
- AN AN
AN AN
p (Observation = Error) “~ <
¥ A - StartCondition . >

(Observation = Error)

Planning = NoError A Interpretation = NoError
A StartCondition A Precondition A = CompletionCondition

Planning = NoError A Interpretation = NoError

Reliability Engineering and System Safety 213 (2021) 107764

Legend
O State
e— |nitial State
—— Transition
- ——» Intrusion
- - » Restart
-———» Omission
Delay

Execution = NoError

A StartCondition
A Reset v Parent = Ready

for human actions

for local variables

Done |
l

Execution = NoError A EndCondition

. (Planning = Error) A (~ StartCondition v = Precondition v CompletionCondition)
.V (Interpretation = Error) A (= Precondition v CompletionCondition)

(Planning = Error Vv Interpretation = Error) A EndCondition
A (CompletionCondition v RepeatCondition A = CompletionCondition)

(Execution = Error)

(d A StartCondition
Ready
NERY (Execution = Error)
.\ AStartCondition
. . with wrong action
(Execution = Error) A output
A StartCondition .~ (Execution = Error)\\\ \

A= StartCondition < '\

(Execution = Error)

(Observation = Error)A StartCondition

(Execution = Error) A EndCondition

Fig. 7. Transition diagram showing how the PEOFM to PRISM translator interprets the transition semantics from Figs. 1 and 2. Color is used in transition logic to highlight new
conditions. Note that here Observation, Interpretation, Planning, and Execution represent the output variables from the associated task’s cognitive function modules (Figs. 5 and 6).
(a) How the translator interprets normative transitions for activities from Fig. 1(a). (b) How the translator interprets normative transitions for actions from Fig. 1(b). (c) How it
interprets erroneous transitions for activities from Fig. 2(a). (d) How it interprets erroneous transitions for actions that execute human actions from Fig. 2(b). (e) How it interprets

erroneous transitions for actions that execute a local variable assignment.

So, for example, the transitions in Fig. 7(a) and (b) represent normative
behavior (from Fig. 1) and can thus only occur when there are no
errors in the associated cognitive functions. In the transitions, there is
an additional new condition on Reset that allows it to occur when the
act’s parent is ready (Parent = Ready). This gives an act the option
to reset after its intrusion has completed. Consistent with previous
non-probabilistic translators, actions with local variable assignments
automatically transition from Ready to Done, with the variable assign-
ment occurring in the process. This is done because modules external
to EOFM cannot observe this action and this form of the transition

improves model scalability.

Fig. 7(c)-(e) represent the erroneous behaviors from Fig. 2. Ad-
ditional conditions are added to account for the mappings for obser-
vation, interpretation, planning, and execution errors from Table 5.
Note that (d) and (e) describe the difference ways that errors manifest
for human actions (which rely on the execution cognitive function)
or local variable assignments (which depend on observation) respec-
tively. In both of these, the Executing-to-Done transition is eliminated.
This is because an action’s EndCondition is true by default when the
action is performed and action performance time is not currently
modeled (actions are treated as being instantaneous). This means that
an Executing-to-Done omission is functionally equivalent to a Ready-to-
Done omission. Also note that in (e), Ready-to-Executing and Done-to-
Executing intrusions skip the Executing state for the same reason that

M.L. Bolton et al.

normative local variable assignments do. Finally, CREAM allows for
incorrect actions to be performed (for the execution function) or the
wrong object observed (for the observation one) (Table 3) as a single
error for the respective function. The original erroneous transitions
(Fig. 2) can support this behavior, but require both an intrusion and
omissions. Thus, to represent wrong action and wrong object observed
error types as a single error in our method, both (d) and (e) contain
an extra transition (Ready-to-Executing in (d) and Ready-to-Done with
implied execution in (e)) to allow an incorrect action or incorrect local
variable assignment (respectively) to be performed when the given
action should execute normatively.

As in previous translators [23,29], the new one creates a variable
representing the output or product of each human action. For Autoreset
and Toggle actions, these are Boolean. For SetValue actions and local
variable assignments, the variables have the type specified in the
PEOFM markup. When the normative action transitions from Ready
to Executing (or from Ready to Executing with presumed execution
for local variable assignments; Fig. 7(b)), the corresponding output or
local variable is set to its appropriate value: true for AutoReset, the
negation of its current value for Toggle, and the markup-specified value
for SetValue and local variable assignments.

Erroneous action intrusions also exhibit this behavior, but vary in
terms of what variable is assigned or what value is assigned to it. For
all actions, the intrusions that transition from Ready with a negated
start condition have the same target variable and value that would be
assigned normatively. This is also true of intrusions that originate from
the Done state. Both transitions represent a situation where an action
is inserted (extraneously) into the executing task. Action intrusions
originating from Ready with a normative (non-negated) StartCondi-
tion represent intrusions where the normative action is replaced with
something else. Since this “something else” could be many different
actions, the translator creates multiple transitions of this type. For a
given human action, this means that the translator creates transitions
where the human sets the output of every other possible human action
instead of the one for the current action (one transition per other
action). Similarly, for local variables, this means that the translator
creates transitions where all of the other local variable assignments
from the markup occur instead of the correct one. Additionally, these
types of transitions are used for representing Action Value Substi-
tutions and action target substitutions (for SetValue human actions)
and value misremembrances and target misremembrances (for local
variable assignments)(Table 2). For both action value substitutions and
misremembrances, the translator creates multiple transitions where
the value assigned to the correct variable is wrong in each possible
way that it could be wrong, one transition for every possible wrong
value. For action target substitutions and target misremembrances, the
translator creates transitions where the incorrect variable is assigned
the correct value for every possible human action output or local
variable (respectively) that has the same type as the correct variable.

Analysts manually complete the sys module (Fig. 5). However, the
translator creates a template for this that defines the output variables
and provides a pattern for module transitions.

4.3. Specification properties

Finally, analysts must create specifications to verify against models.
Currently, these must also be manually created by the analyst. While
many properties are possible, current efforts use probabilistic temporal
logic specifications of the form:

P =?[F(FailureCondition)]. 6)

When this specification is checked, it instructs the model checker to
compute the probability (P =?) that eventually (F) a failure condition
(FailureCondition) occurs.

Reliability Engineering and System Safety 213 (2021) 107764

5. Application

As a proof of concept, we used the method to evaluate an ATM.
This application was chosen because ATMs have well-documented de-
sign variations that can profoundly impact user errors. Specifically,
some ATM designs can cause a postcompletion error (where a hu-
man omits actions related to subsidiary goals once the primary goal
is achieved [66]): a user leaving the card in the machine after re-
ceiving cash. There are also known probabilities for postcompletion
errors [67,68], enabling us to determine if our approach produces
valid predictions. In what follows, we describe the behavior of two
different ATM variants and how they were formally modeled. We also
describe the task behavior the human operator uses when interacting
with the ATM. We then describe how these models were integrated
into complete formal models and used to evaluate the probability errors
with the system.

5.1. The formal model of the ATM

Fig. 8 shows the formal models describing the behavior of the two
variations of the ATM. In the first (Fig. 8(a)), the machine starts on a
welcome screen. If the user enters a card, he or she is brought to the
state for entering the pin. In this state, the user must enter his or her
correct pin to progress, with incorrect pins keeping them in the current
state. If the correct pin is entered, the user reaches the withdraw state.
Here, the user must enter a monetary value that is greater than zero,
then the machines outputs the cash, the user takes it, the machine then
outputs the card. When the user takes the card, the machine returns to
the welcome screen. When in the pin or withdraw states, the user can
press a cancel button to immediately output the card, which can be
retrieved by the user to return the machine to the welcome screen. The
second machine (Fig. 8(b)) works the same as the first except that the
order in which the cash and card are output is reversed. Note that the
machine shown in (a) is the one that encourages postcompletion error
because it allows the human to take the cash (the human’s primary
goal) before taking the card (a subsidiary goal).

5.2. The task model for interacting with the ATM

Fig. 9 visualizes the PEOFM representing the human task behav-
ior for withdrawing cash from both machines in Fig. 8.° In this, a
human who wants to withdraw cash (aGetCash) must execute four sub-
activities in order (as dictated by the ord decomposition). The user first
inserts his or her card (with the EnterCard AutoReset action via the
alnsertCard activity) at the welcome screen and will continue trying
to do so until this screen has cleared (as dictated by the activity’s
strategic knowledge). The user will enter his or her correct pin (via the
EnterPin SetValue action) while on the EnterPin interface state under
the aEnterPin activity. Next, the user enters the desired cash value
while in the Withdraw interface state. Finally, the user will retrieve
machine outputs (aRetrieveOutputs) by performing two activities in
any possible order (an and_par decomposition) based on when the sys-
tem enables them: taking the cash and taking the card. The user knows
that the activity (aRetrieveOutputs) is completed (via a completion
condition) if the user thinks that the cash has been retrieved.

For the purpose of this analysis, we assume a CPCg,, = 4 for
the task. This was done because it represents the minimum value that

3 Task model XML as well as all model code used for this paper can be
found at http://fhsl.eng.buffalo.edu/resources/ProbabilisticEOFM/.

http://fhsl.eng.buffalo.edu/resources/ProbabilisticEOFM/

M.L. Bolton et al.

(a) EnterPIN: IncorrectPIN

EnterCashVal: Value
A Value = NoValue

TakeCard
Cancel

EnterCashVal: Value
A Value >0

Take

OutputCard Cash

Reliability Engineering and System Safety 213 (2021) 107764

EnterPIN: IncorrectPIN

(b)

EnterCashVal: Value
A Value = NoValue

OutputCard
PreCash

Fig. 8. State machine representation of the two variations of the ATM formal model. (a) An ATM that outputs cash before outputting the user’s card. (b) An ATM that outputs the
user’s card before outputting cash. For both figures, each state encompasses the state of the interface (ilnterface; which assumes the value shown in each circle), whether or not
a card is being output (iCardPresent; a Boolean variable that is false ® except in the OutputCard state =»), and the state of cash output (iCashout; which defaults to NoValue

® but will assume the value entered by the user m in the OutputCash state).

aGetCash

ord

v

iinterfaceState = EnterPIN
iinterfaceState != EnterPIN
iinterfaceState ;EnterPIN

iinterfaceState = Welcome
iinterfaceState = Welcome
iinterfaceState = Welcome

alnsertCard aEnterPin

iinterfaceState = Withdraw
iinterfaceState != Withdraw
iinterfaceState ;Withdraw

TakeCash = actDone

aRetreive
Outputs

aEnter
CashValue

035 ord 0;(5 aﬂdfpal
EnterPIN EnterCashVal y
EnterCard c tPIN IDesiredVal iCashOut != NoValue iCardPresent
orrect esiredvalue iCashOut != NoValue iCardPresent

aRetreive

aAquireCash Card

ord ord
TakeCash TakeCard

Fig. 9. Visualization of the PEOFM a human uses to interact with the ATMs from Fig. 8. This uses EOFM’s visual notation [69]. Activities are rounded rectangles and actions
are pointed rectangles. Activity decompositions are presented as rounded rectangles below an activity that are connected by an arrow labeled with a decomposition operator.
SetValue actions are presented with both the actions name at the top and the value being committed below it bolded. Strategic knowledge conditions are labels on lines and arrows
connected to their associated activities. Preconditions are down-pointing yellow arrows connected by on the left of the activity. Completion conditions are up-pointing magenta
triangles connected on the right. Repeat conditions are recursive arrows on the top of the activity.

would normally be associated with the strategic control mode, implying
that the human has a deep understanding of the task he or she is
performing and can behave strategically. Given that most people are
very familiar with ATMs and the way they work, this seemed like a
reasonable assumption.

5.3. Translation and formal system model construction

The XML of the PEOFM from Fig. 9 (which was 76 lines long)
was converted into the input language of the PRISM model checker,
producing a representation that is 834 lines. This Sys module was

M.L. Bolton et al.

then completed in this translated version in two ways: one using the
behavior from Fig. 8(a) and one using the behavior from Fig. 8(b).
Thus we ultimately had two formal system models for comparison: one
where we would expect a higher probability for having a credit card
left in it (the one based on Fig. 8(a)) and one where we would expect
this to be lower (the one based on Fig. 8(b)).

5.4. Specification properties

We evaluate our model with three specifications, all implemented
using the pattern from Eq. (6). The first checked for the presence of the
postcompletion error outcome: the person completing the task having
received cash but leaving the card:

Card Left :
(aGetCash = actDone)

P =2|F <iCardPresent)
A

AiCashOut = NoV alue

This tells the model checker to calculate the probability (P =?) that
eventually (F) the task completes (aGetCash = actDone) with the
cash having been retrieved (no longer being output by the machine;
iCashOut = NoValue) and the card remaining as an output of the
machine (iCard Present).

The second checked for the person completing the task while leav-
ing cash in the machine:

Cash Left :
(aGetCash = actDone)

P =?|F (-iCard Present >
A

AiCashOut > NoV alue
Finally, overall reliability was assessed with a property requesting
the probability of either (or both) errors occurring:

7

®

Reliability :
(aGetCash = actDone)

P =?|F (iCard Present >
A

ViCashOut > NoV alue

If the method accurately predicts probabilities, we would expect the
model containing the ATM from Fig. 8(a) to have a higher probability
for leaving the card (7) than leaving cash (8) because of the machine’s
encouragement of the post-completion error. We would expect the
probability of leaving the card to be lower for the model using Fig. 8(b)
because this should not encourage the postcompletion error. We would
also expect the probability of leaving the card to be similar to that of
leaving the cash. Finally, we would expect the overall chance of error
(9) to be higher for the model using Fig. 8(a) because of its support for
the postcompletion error.

9

5.5. Verification and results

Verifications were performed on a workstation with a 12-core
3.60 GHz Intel Xeon E5-1650 with 128 Gigabytes of RAM. However,
probabilistic model checking resulted in the machine running out of
memory after more than 24 h of analysis. Luckily, we were able to use
statistical model checking.

Statistical checking uses samples of model traces to compute CIs on
computed probabilities. This means that scalability restrictions can be
avoided at the expense of accuracy. To assess this tradeoff, we con-
ducted a small experiment using the formal system model containing
the machine behavior from Fig. 8(a) and checking the overall reliability
with (9). This assumed a 99% CI computed from a sample size starting
at 1000 and increasing in 1000 increments up to 25,000. Experiment
results are shown in Fig. 10. This showed the verification time increased
linearly with the number of samples Fig. 10(b). It also showed that

10

Reliability Engineering and System Safety 213 (2021) 107764

0.10
0.09
0.08
0.07
0.06
0.05

(a)

£}§E§§§§§§§§§§§§§§§§§§

Probability of Failure

o
o

(b) s

w

o
»
[}
.

N
o

-
-@ >

-
o

Verification Time (s)

?
.’.,.«
e

o

0 5000 10000 15000

Number of Samples

20000 25000

Fig. 10. (a) Verification results (predicted probability and its 99% CI) and (b) times
from statistical model checking for verify (9) against models containing behavior from
Fig. 8(a) for different numbers of samples.

0.08 o Model facilitating postcompletion error 0.07757

0.07 < Model correcting postcompletion error 0.07332 E 0.06848
g 0.06907 $ 0.06448
,"(; : 0.06048
2 0.05 0.04883
% ou 004544 0 004182 o0
g0 004205 3003868 - '= 003407

003 0.03554 oo 2003124

0.02841
0.02
Card Left (7) Cash Left (8) Reliability (9)

Specification Property

Fig. 11. Verification results (prediction and 99% CI) for checking the specifications in
(7)-(9) against the two variations of the model: one with the behavior for enabling
a postcompletion error (Fig. 8(a); black) and one with the behavior for avoiding it
(Fig. 8(a); blue).

the width of the 99% CI narrowed as the sample size increased. At
25,000 samples, the verification took 37.146 s to estimate a probability
of 0.07332 with a 99% CI of [0.069, 0.0776]. This interval is less than
0.01, or one percentage point. Thus, statistical model checking was
able to produce results that we can be 99% confident are within 1
percentage point of the actual value in less than a minute of verification
time. We used a sample size of 25,000 for subsequent verifications.

Fig. 11 shows the results of checking each of the properties against
the two model variants. This produced results that are consistent with
our expectations. The model with the behavior from Fig. 11(a) showed
a probability of 0.04544 of leaving the card in the machine, a value
significantly higher (shown by the CIs) than it was for the machine from
Fig. 11(b). The second value was also comparable to the values seen
for both models for leaving cash in the machine. Finally, the machine
supporting the postcompletion error was significantly more likely to see
any error (0.07332) than the other machine (0.06448).

6. Discussion

In this research, we have introduced a new formal method that
combines task modeling, a taxonomy of erroneous human behavior,
and HRA. This is able to both formally generate HAI errors and account
for the probabilities of these errors. This enables engineers to evalu-
ate reactive HAI designs by using probabilistic and statistical model
checking to determine the relative probability of different outcomes
both between and within designs. This is a major contribution for
formal analyses of human error and reliability as previous approach
could only determine if errors were possible. As such, this paper also
makes significant contributions to reliability engineering and system

M.L. Bolton et al.

safety. Specifically, human behavior and human error play significant
roles in failure of safety and reliability. The method introduced here
give engineers an unprecedented ability to assess the reliability of
safety-critical, human-interactive systems. Thus, this work will enable
designs and interventions that will significantly reduce the probability
of human error causing system failures and disasters, saving lives, and
protecting critical infrastructure.

The ATM application is illustrative because it shows that proba-
bility predictions were able to differentiate between two designs in
ways that match with established performance: the postcompletion
error condition was significantly more likely with the interface that
facilitated it than for the other interface and other errors. It is not
entirely clear from the literature how likely an ATM postcompletion
error is. However, Ratwani and Gregory Trafton [67], Ratwani and
Trafton [68] in studies on postcompletion errors found that when they
are facilitated by the HAI, they occur about 5% of the time. This 5%
average is consistent with the 4.544% observed with our model. Thus,
while limited, the ATM application does suggest that our approach is
capable of producing valid predictions.

It is important to note that the ATM example produces more than
just post-completion errors. This is evidenced by the fact that the
overall error rates were higher than the post completion ones and
that the model that did not allow for the post-completion error still
exhibited errors. Of course, other systems will have different types of
errors that will be critical to system safety and performance. Future
research should seek to validate our method with other applications
and human subject experiments. Additionally, there are extensions and
considerations necessitated by our approach. We discuss these below.

6.1. Probability accuracy

While the presented results are consistent with the literature, the
predictions seem high. This is not necessarily surprising because the
method accounts for all of the possible ways an error can manifest,
including all planning errors (incorrect task knowledge). For a task as
familiar as interacting with an ATM, it is conceivable that planning
errors might be less likely than for other tasks. It is worth noting that
the method can be easily adapted to account for different conditions.
First, researchers can assess the values of the CPCs used in a given
environment and use those in analyses. Additionally, in situations
where an analyst is sure a given cognitive function is not a factor, he
or she can easily set the default probability of error in the associated
function to 0 to mitigate the function’s effect.

Additionally, the method enables analysts to evaluate the impact of
different conditions on performance by manipulating the CPC values.
For example, CREAM has a CPC representing the quality of conditions.
Because any given CPC can assume a value of —1, 0, or 1, it can have
up to a 2 point impact on CPCsum. Any analyst wishing to see how
environmental or design factors impact computed probabilities should
be able to appropriately adjust CPC values and rerun analyses. This
should be explored more thoroughly in subsequent research.

To some extent, the absolute accuracy of the probabilistic predic-
tions is less important than relative accuracy. As long as the method
can determine which condition is more likely, analysts will be able to
take appropriate action. Future research will investigate the method’s
ability to predict probabilities both absolutely and relatively.

6.2. Deeper support for CPC variation

The current version of the method has a single CPCSum and as-
sociated cognitive functions for each task. It is conceivable that CPC
values could vary for different parts of a task. It should be possible for
PEOFM to allow for greater specificity of CPCSum values at the activity
level and have the translator create separate cognitive functions to
accommodate this. Future research should explore these developments.

11

Reliability Engineering and System Safety 213 (2021) 107764
6.3. Scalability

The ATM example showed that scalability is a major restriction of
probabilistic model checking with PEOFM. The translation approach
is derived from the original method that was used for including EOFM
task behavior in nonprobabilistic model checking analyses [23]. In this,
the execution state of every activity and action is represented with its
own variable. In traditional model checking with EOFM, significant
scalability improvement can be achieved by eliminating the explicit
representation of EOFM activity execution state and expressing it as
a formula over the execution state of actions [31]. This improvement
works because it eliminates the need for intermediate task model
transitions. However, this approach is currently incompatible with the
human error generation method employed here because erroneous
deviations occur at the intermediate transitions of the task’s activities. It
is, however, theoretically possible to apply the scalability improvement
method from Bolton et al. [23] to PEOFM, but this would ultimately
require a much more complex formulation. This is because there are
an increased number of intermediary transitions necessitated by error
generation and the need to account for the probabilities of these
transitions. This should be explored more thoroughly in future research.

Fortunately, statistical model checking has fewer restrictions than
probabilistic model checking. In fact, verification times appear to scale
linearly with the number of computed samples. This provides good
evidence that our method, when used with statistical checking, can
scale to industrial applications. This should also be investigated further
in future research.

6.4. Purely reactive system

It is important to note that our method is most appropriate for mod-
eling reactive systems: where system behavior occurs in direct response
to human actions. This is because the cognitive-function-based model
assumes that stochastic behavior only originates with the human. There
are many interactive systems that are purely reactive. However, this
limits the applicability of our approach. To help expand the scope of
applications that could be evaluated with the method, future research
should investigate how to account for stochastic behavior originating
from the environment and machine automated behavior.

6.5. Non-deterministic choice

A byproduct of using Markov decision processes and statistical
model checking in our method is that nondeterministic transitions
(where there are multiple allowable transition at a given step) occur
with equal probability. For example, if there are two activities in an
and_seq decomposition who both have their precondition satisfied,
there will be a 0.5 probability of each executing. While this is normally
the behavior an analyst will want, there are conceivable situations
where humans would be more likely to choose one behavior over
another. Future research should investigate how to account for this in
the method.

6.6. The sync Decomposition and Human-human Interaction

PEOFM and the method currently support all but two of EOFMs
features. First, PEOFM does not allow the sync decomposition, a rare
condition where the human performs multiple actions synchronously.
Second, the method does not support EOFMC capabilities (the variant
supporting human-human coordination and communication; [12,30]).
While CREAM’s CPCs and cognitive functions do give some insight into
how to account for human-human coordination errors, they do not
appear to offer a theory for modeling the probability of communication
errors. Future work should investigate how to incorporate EOFMC
capacities into our method.

M.L. Bolton et al.
6.7. Dependence of error prediction on task modeling

Because our method uses the task-based taxonomy of human error,
it is complete with respect to the phenotypes of erroneous action and
slip genotypes [36]. This means that it should be capable of modeling
nearly any type of human error and its associated probability. However,
it is important to note that the type of errors that can be generated
will depend of the way that the normative task model is formulated.
For example, our method should be capable of generating errors where
someone puts a card into the machine with incorrect orientation,
or even inserts the wrong card. However, accomplishing this would
require analysts to include actions in the task model for picking up
different card options and inserting cards in different orientations.
Doing this ultimately requires modeler insight that may not be obvious
at the time of model creation. Future work should investigate how to
create guidance for modelers that enables them to include model con-
cepts that will enable complete error prediction. Additionally, progress
has been made in using formal models of affordance to identify what
human actions (intended or unintended) are facilitated by the in-
terface and environment [70,71]. Future research should investigate
whether affordance-based action prediction can be incorporated into
our method.

CRediT authorship contribution statement

Matthew L. Bolton: Conceptualization, Methodology, Software,
Formal analysis, Writing - original draft, Visualization. Xi Zheng:
Conceptualization, Writing - review & editing. Eunsuk Kang: Concep-
tualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This material is based upon work supported by the National Science

Foundation, USA under Grant Nos. 1918314 and 1918140.
References

[1] Kohn LT, Corrigan J, Donaldson MS. To err is human: building a safer health
system. Washington: National Academy Press; 2000.
Kenny DJ. 26th Joseph T. Nall report: General aviation accidents in 2014.
Technical report, AOPA Foundation; 2015.
Kebabjian R. Accident statistics. 2018, http://www.planecrashinfo.com/cause.
htm.
Manning SD, Rash CE, LeDuc PA, Noback RK, McKeon J. The role of human
causal factors in US Army unmanned aerial vehicle accidents. Technical report
2004-11, USA Army Research Laboratory; 2004.
NHTSA. National motor vehicle crash causation survey: Report to congress.
Springfield: National Highway Traffic Safety Administration; 2008.
Le Bot P. Human reliability data, human error and accident models—
illustration through the Three Mile Island accident analysis. Reliab Eng Syst Saf
2004;83(2):153-67.
Bolton ML, Bass EJ, Siminiceanu RI. Using formal verification to evaluate human-
automation interaction in safety critical systems, a review. IEEE Trans Syst Man
Cybern Syst 2013;43(3):488-503.
Bolton ML. Novel developments in formal methods for human factors engineer-
ing. In: Proceedings of the human factors and ergonomics society annual meeting.
Los Angeles, CA: SAGE Publications Sage CA; 2017, p. 715-7.
Weyers B, Bowen J, Dix A, Palanque P, editors. The handbook of formal methods
in human-computer interaction. Berlin: Springer; 2017.
Paterno F, Santoro C. Integrating model checking and HCI tools to help designers
verify user interface properties. In: Proceedings of the 7th international workshop
on the design, specification, and verification of interactive systems. Berlin:
Springer; 2001, p. 135-50.
Ait-Ameur Y, Baron M. Formal and experimental validation approaches in HCI
systems design based on a shared event B model. Int J Softw Tools Technol
Transf 2006;8(6):547-63.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

12

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Reliability Engineering and System Safety 213 (2021) 107764

Bolton ML, Bass EJ. Enhanced operator function model (EOFM): A task analytic
modeling formalism for including human behavior in the verification of complex
systems. In: Weyers B, Bowen J, Dix A, Palanque P, editors. The handbook
of formal methods in human-computer interaction. Cham: Springer; 2017, p.
343-77.

Bastide R, Basnyat S. Error patterns: Systematic investigation of deviations in
task models. In: Task models and diagrams for users interface design. Berlin:
Springer; 2007, p. 109-21.

Fields RE. Analysis of erroneous actions in the design of critical systems [Ph.D.
thesis], York: University of York; 2001.

Barbosa A, Paiva AC, Campos JC. Test case generation from mutated task models.
In: Proceedings of the 3rd ACM SIGCHI symposium on engineering interactive
computing systems. ACM; 2011, p. 175-84.

Clarke EM, Grumberg O, Peled DA. Model checking. Cambridge: MIT Press; 1999.
Kwiatkowska M, Norman G, Parker D. Stochastic model checking. In:
Bernardo M, Hillston J, editors. Formal methods for the design of computer,
communication and software systems: performance evaluation. LNCS (tutorial
volume), vol. 4486, Berlin: Springer; 2007, p. 220-70.

Schraagen JM, Chipman SF, Shalin VL. Cognitive task analysis. Philadelphia:
Lawrence Erlbaum Associates, Inc.; 2000.

Basnyat S, Palanque P, Schupp B, Wright
barrier modelling for safety-critical interactive
2007;45(5):545-65.

Gunter EL, Yasmeen A, Gunter CA, Nguyen A. Specifying and analyzing work-
flows for automated identification and data capture. In: Proceedings of the 42nd
hawaii international conference on system sciences. Los Alatimos: IEEE Computer
Society; 2009, p. 1-11.

Palanque PA, Bastide R, Senges V. Validating interactive system design through
the verification of formal task and system models. In: Proceedings of the IFIP
TC2/WG2.7 working conference on engineering for human-computer interaction.
London: Chapman and Hall; 1996, p. 189-212.

Bolton ML, Bass EJ. Formally verifying human-automation interaction as part
of a system model: Limitations and tradeoffs. Innov Syst Softw Eng NASA J
2010;6(3):219-31.

Bolton ML, Siminiceanu RI, Bass EJ. A systematic approach to model checking
human-automation interaction using task-analytic models. IEEE Trans Syst Man
Cybern A 2011;41(5):961-76.

Bolton ML, Bass EJ, Siminiceanu RI. Generating phenotypical erroneous human
behavior to evaluate human-automation interaction using model checking. Int J
Hum-Comput Stud 2012;70(11):888-906.

Bolton ML, Bass EJ. Generating erroneous human behavior from strategic
knowledge in task models and evaluating its impact on system safety with model
checking. IEEE Trans Syst Man Cybern Syst 2013;43(6):1314-27.

Bolton ML, Bass EJ. Evaluating human-human communication protocols with
miscommunication generation and model checking. In: Proceedings of the fifth
NASA formal methods symposium. moffett field: NASA ames research center.
Moffett Field: NASA Ames Research Center; 2013, p. 48-62.

Pan D, Bolton ML. Properties for formally assessing the performance level of
human-human collaborative procedures with miscommunications and erroneous
human behavior. Int J Ind Ergon 2018;63:75-88.

Bolton ML, Bass EJ. Evaluating human-automation interaction using task analytic
behavior models, strategic knowledge-based erroneous human behavior genera-
tion, and model checking. In: Proceedings of the IEEE international conference
on systems man and cybernetics. Piscataway: IEEE; 2011, p. 1788-94.

Bolton ML, Molinaro KA, Houser AM. A formal method for assessing the impact
of task-based erroneous human behavior on system safety. Reliab Eng Syst Saf
2019;188:168-80.

Bolton ML. Model checking human-human communication protocols using task
models and miscommunication generation. J Aerosp Inf Syst 2015;12(7):476-89.
Bolton ML, Zheng X, Molinaro K, Houser A, Li M. Improving the scalability of
formal human-automation interaction verification analyses that use task-analytic
models. Innov Syst Softw Eng 2016;13:1-17.

Bolton ML, Bass EJ. A method for the formal verification of human interactive
systems. In: Proceedings of the 53rd annual meeting of the human factors and
ergonomics society. Santa Monica: HFES; 2009, p. 764-8.

Bolton ML, Bass EJ. Building a formal model of a human-interactive system:
Insights into the integration of formal methods and human factors engineering.
In: Proceedings of the 1st NASA formal methods symposium. Moffett Field: NASA
Ames Research Center; 2009, p. 6-15.

Bolton ML, Bass EJ. Using model checking to explore checklist-guided pilot
behavior. Int J Aviat Psychol 2012;22(4):343-66.

Bolton ML, Bass EJ. Using task analytic models and phenotypes of erroneous
human behavior to discover system failures using model checking. In: Proceed-
ings of the human factors and ergonomics society annual meeting. 54, (13):Los
Angeles, CA: SAGE Publications Sage CA; 2010, p. 992-6.

Bolton ML. A task-based taxonomy of erroneous human behavior. Int J
Hum-Comput Stud 2017;108:105-21.

Hollnagel E. The phenotype of erroneous actions. Int J Man-Mach Stud
1993;39(1):1-32.

Reason J. Human error. New York: Cambridge University Press; 1990.

socio-technical
Saf Sci

P. Formal
systems design.

http://refhub.elsevier.com/S0951-8320(21)00292-1/sb1
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb1
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb1
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb2
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb2
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb2
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb4
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb4
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb4
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb4
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb4
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb5
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb5
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb5
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb6
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb6
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb6
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb6
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb6
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb7
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb7
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb7
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb7
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb7
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb8
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb8
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb8
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb8
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb8
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb9
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb9
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb9
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb10
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb11
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb11
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb11
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb11
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb11
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb12
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb13
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb13
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb13
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb13
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb13
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb14
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb14
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb14
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb15
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb15
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb15
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb15
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb15
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb16
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb17
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb18
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb18
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb18
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb19
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb19
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb19
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb19
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb19
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb20
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb21
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb22
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb22
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb22
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb22
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb22
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb23
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb23
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb23
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb23
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb23
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb24
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb24
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb24
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb24
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb24
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb25
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb25
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb25
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb25
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb25
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb26
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb27
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb27
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb27
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb27
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb27
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb28
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb29
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb29
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb29
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb29
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb29
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb30
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb30
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb30
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb31
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb31
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb31
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb31
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb31
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb32
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb32
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb32
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb32
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb32
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb33
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb34
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb34
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb34
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb35
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb36
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb36
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb36
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb37
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb37
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb37
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb38

M.L. Bolton et al.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Bell J, Holroyd J. Review of human reliability assessment methods. Technical
report RR679, Derbyshire: Health and Safety Executive; 2009.

Di Pasquale V, Iannone R, Miranda S, Riemma S. An overview of human
reliability analysis techniques in manufacturing operations. In: Schiraldi M,
editor. Operations management. InTech; 2013, p. 221-40.

Swain A. Accident sequence evaluation program human reliability analysis
procedure. Technical report NUREG/CR-4772, Washington, DC: US Nuclear
Regulatory Commission; 1987.

Williams JC. HEART - A proposed method for achieving high reliability in
process operation by means of human factors engineering technology. In:
Proceedings of a symposium on the achievement of reliability in operating plant,
safety and reliability society. Birmingham: NEC; 1986.

Hollnagel E. Cognitive reliability and error analysis method (CREAM). Oxford:
Elsevier; 1998.

Fujita Y, Hollnagel E. Failures without errors: Quantification of context in HRA.
Reliab Eng Syst Saf 2004;83(2):145-51.

Reer B. Review of advances in human reliability analysis of errors of commission
part 2: EOC quantification. Reliab Eng Syst Saf 2008;93(8):1105-22.

Hollnagel E. Context, cognition and control. In: Waern Y, editor. Co-operative
process management, cognition and information technology. London: Taylor &
Francis; 1998, p. 27-52.

Stanton NA, Ashleigh MJ, Roberts AD, Xu F. Testing Hollnagel’s contextual
control model: Assessing team behaviour in a human supervisory control task. J
Cogn Ergon 2001;5(1):21-33.

Blom HAP, Stroeve S, Daams J, Nijhuis HB. Human cognition performance model
based evaluation of air traffic safety. In: Proceedings of the 4th international
workshop on human error, safety and system development. Link6ping. 2001, p.
11-2.

Worm A. Breaking the barriers: Facilitating efficient command and control in
multi-service emergency management. In: 8th world conference on emergency
management. Oslo. 2001, p. 19-22.

Hollnagel E, Kaarstad M, Lee H-C. Error mode prediction. Ergonomics
1999;42(11):1457-71.

Geng J, Muré S, Baldissone G, Camuncoli G, Demichela M. Human error
probability estimation in ATEX-HMI area classification: From THERP to FUZZY
CREAM. Chem Eng Trans 2015;43:1243-8.

Castiglia F, Giardina M, Caravello FP. Fuzzy Fault Tree analysis in modern y-
ray industrial irradiator: Use of fuzzy version of HEART and CREAM techniques
for human error evaluation. In: International conference on probabilistic safety
assessment and management, 2008.

Rantanen E, Deeter J, Burke S, Wang Y. Human factors evaluation of pharmacy
operations. In: 2012 Symposium on human factors and ergonomics in health
care: bridging the gap. Santa Monica: HFES; 2012.

Yang Z, Bonsall S, Wall A, Wang J, Usman M. A modified CREAM to human
reliability quantification in marine engineering. Ocean Eng 2013;58:293-303.

13

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Reliability Engineering and System Safety 213 (2021) 107764

Rashed SK. The concept of human reliability assessment tool CREAM and its
suitability for shipboard operations safety. J Shipp Ocean Eng 2016;6:313-20.
Chen D, Fan Y, Li W, Wang Y, Zhang S. Human reliability prediction in deep-sea
sampling process of the manned submersible. Saf Sci 2019;112:1-8.

Zheng X, Bolton ML, Daly C, Feng L. A formal human reliability analysis of a
community pharmacy dispensing procedure. In: Proceedings of the human factors
and ergonomics society annual meeting. Los Angeles: SAGE; 2017, p. 728-32.
Zhang S, He W, Chen D, Chu J, Fan H. A dynmaic human reliability assessment
approach for manned submersibles using PMV-CREAM. Int J Naval Archit Ocean
Eng 2019.

Zheng X, Bolton ML, Daly C, Biltekoff E. The development of a next-generation
human reliability analysis: Systems analysis for formal pharmaceutical human
reliability (SAFPHR). Reliab Eng Syst Saf 2020;202:15 pages. http://dx.doi.org/
10.1016/j.ress.2020.106927.

Zheng X, Bolton ML, Daly C. Extended SAFPHR (Systems Analysis for Formal
Pharmaceutical Human Reliability): Two approaches based on extended CREAM
and a comparative analysis. Saf Sci 2020;132. http://dx.doi.org/10.1016/j.ssci.
2020.104944, 18 pages.

Bedford T, Bayley C, Revie M. Screening, sensitivity, and uncertainty for
the CREAM method of human reliability analysis. Reliab Eng Syst Saf
2013;115:100-10.

He X, Wang Y, Shen Z, Huang X. A simplified CREAM prospective quantification
process and its application. Reliab Eng Syst Saf 2008;93(2):298-306.

Di Pasquale V, Miranda S, Iannone R, Riemma S. A simulator for human error
probability analysis (SHERPA). Reliab Eng Syst Saf 2015;139:17-32.
Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of probabilistic
real-time systems. In: International conference on computer aided verification.
Springer; 2011, p. 585-91.

SyncRO Soft SRL. Relax NG schema diagram. 2021, URL: http://www.oxygenxml.
com/doc/ug-oxygen/topics/relax-ng-schema-diagram.html.

Byrne MD, Bovair S. A working memory model of a common procedural error.
Cogn Sci 1997;21(1):31-61.

Ratwani RM, Gregory Trafton J. A generalized model
postcompletion errors. Top Cogn Sci 2010;2(1):154-67.
Ratwani RM, Trafton JG. A real-time eye tracking system for predicting and
preventing postcompletion errors. Hum-Comput Interact 2011;26(3):205-45.
Bolton ML, Bass EJ. Using task analytic models to visualize model checker

for predicting

counterexamples. In: Proceedings of the 2010 IEEE international conference on
systems, man, and cybernetics. Piscataway: IEEE; 2010, p. 2069-74.

Abbate AJ, Bass EJ. Modeling affordance using formal methods. In: Proceedings
of the human factors and ergonomics society annual meeting, vol. 61, no. 1.
SAGE Publications Sage CA: Los Angeles, CA; 2017, p. 723-7.

Kim N, Shin D, Wysk R, Rothrock L. Using finite state automata (FSA) for formal
modelling of affordances in human-machine cooperative manufacturing systems.
Int J Prod Res 2010;48(5):1303-20.

http://refhub.elsevier.com/S0951-8320(21)00292-1/sb39
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb39
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb39
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb40
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb40
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb40
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb40
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb40
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb41
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb41
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb41
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb41
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb41
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb42
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb43
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb43
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb43
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb44
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb44
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb44
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb45
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb45
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb45
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb46
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb46
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb46
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb46
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb46
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb47
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb47
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb47
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb47
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb47
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb50
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb50
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb50
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb51
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb51
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb51
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb51
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb51
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb53
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb53
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb53
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb53
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb53
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb54
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb54
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb54
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb55
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb55
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb55
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb56
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb56
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb56
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb57
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb57
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb57
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb57
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb57
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb58
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb58
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb58
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb58
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb58
http://dx.doi.org/10.1016/j.ress.2020.106927
http://dx.doi.org/10.1016/j.ress.2020.106927
http://dx.doi.org/10.1016/j.ress.2020.106927
http://dx.doi.org/10.1016/j.ssci.2020.104944
http://dx.doi.org/10.1016/j.ssci.2020.104944
http://dx.doi.org/10.1016/j.ssci.2020.104944
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb61
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb61
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb61
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb61
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb61
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb62
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb62
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb62
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb63
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb63
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb63
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb64
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb64
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb64
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb64
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb64
http://www.oxygenxml.com/doc/ug-oxygen/topics/relax-ng-schema-diagram.html
http://www.oxygenxml.com/doc/ug-oxygen/topics/relax-ng-schema-diagram.html
http://www.oxygenxml.com/doc/ug-oxygen/topics/relax-ng-schema-diagram.html
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb66
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb66
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb66
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb67
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb67
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb67
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb68
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb68
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb68
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb69
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb69
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb69
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb69
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb69
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb70
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb70
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb70
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb70
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb70
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb71
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb71
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb71
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb71
http://refhub.elsevier.com/S0951-8320(21)00292-1/sb71

	A formal method for including the probability of erroneous human task behavior in system analyses
	Introduction
	Background
	Formal methods
	Formal and task-analytic methods
	The enhanced operator function model
	EOFM and erroneous human behavior

	HRA and CREAM
	Third generation HRA

	Objectives
	Method
	EOFM extensions
	Translation
	Specification properties

	Application
	The formal model of the ATM
	The task model for interacting with the ATM
	Translation and formal system model construction
	Specification properties
	Verification and results

	Discussion
	Probability accuracy
	Deeper support for CPC variation
	Scalability
	Purely reactive system
	Non-deterministic choice
	The sync Decomposition and Human–human Interaction
	Dependence of error prediction on task modeling

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

