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ABSTRACT. This paper provides a unified perspective of iterative ensemble
Kalman methods, a family of derivative-free algorithms for parameter recon-
struction and other related tasks. We identify, compare and develop three sub-
families of ensemble methods that differ in the objective they seek to minimize
and the derivative-based optimization scheme they approximate through the
ensemble. Our work emphasizes two principles for the derivation and analysis
of iterative ensemble Kalman methods: statistical linearization and continuum
limits. Following these guiding principles, we introduce new iterative ensem-
ble Kalman methods that show promising numerical performance in Bayesian
inverse problems, data assimilation and machine learning tasks.

1. Introduction. This paper provides an accessible introduction to the derivation
and foundations of iterative ensemble Kalman methods, a family of derivative-free
algorithms for parameter reconstruction and other related tasks. The overarching
theme behind these methods is to iteratively update via Kalman-type formulae
an ensemble of candidate reconstructions, aiming to bring the ensemble closer to
the unknown parameter with each iteration. The ensemble Kalman updates ap-
proximate derivative-based nonlinear least-squares optimization schemes without
requiring gradient evaluations. Our presentation emphasizes that iterative ensemble
Kalman methods can be naturally classified in terms of the nonlinear least-squares
objective they seek to minimize and the derivative-based optimization scheme they
approximate through the ensemble. This perspective allows us to identify three
subfamilies of iterative ensemble Kalman methods, creating unity into the growing
literature on this subject. Our work also emphasizes two principles for the deriva-
tion and analysis of iterative ensemble Kalman methods: statistical linearization
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and continuum limits. Following these principles we introduce new iterative en-
semble Kalman methods that show promising numerical performance in Bayesian
inverse problems, data assimilation and machine learning tasks.

We consider the application of iterative ensemble Kalman methods to the prob-
lem of reconstructing an unknown u € R from corrupt data y € R* related by

y = h(u)+mn, (1.1)

where 7 represents measurement or model error and h is a given map. A wide
range of inverse problems, data assimilation and machine learning tasks can be cast
into the framework (1.1). In these applications the unknown w may represent, for
instance, an input parameter of a differential equation, the current state of a time-
evolving signal and a regressor, respectively. Ensemble Kalman methods were first
introduced as filtering schemes for sequential data assimilation [20, 21, 45, 51, 54]
to reduce the computational cost of the Kalman filter [34]. Their use for state and
parameter estimation and inverse problems was further developed in [4, 43, 47, 59].
The idea of iterating these methods was considered in [15, 18]. Iterative ensemble
Kalman methods are now popular in inverse problems and data assimilation; they
have also shown some potential in machine learning applications [26, 25, 38].

Starting from an initial ensemble {uén) MN_ | iterative ensemble Kalman methods
use various ensemble-based empirical means and covariances to update

{w" 1 = (s (1.2)
until a stopping criteria is satisfied; the unknown parameter u is reconstructed by the
mean of the final ensemble. The idea is analogous to classical Kalman methods and
optimization schemes which, starting with a single initialization ug use evaluations
of derivatives of h to iteratively update u; — u;y1 until a stopping criteria is met.
The initial ensemble is viewed as an input to the algorithm, obtained in a problem-
dependent fashion. In Bayesian inverse problems and machine learning it may be
obtained by sampling a prior, while in data assimilation the initial ensemble may
be a given collection of particles that approximates the prediction distribution. In
either case, it is useful to view the initial ensemble as a sample from a probability
distribution. It is important to note that there is no time variable involved in the
reconstruction task (1.1); however, we will often think of the iteration index ¢ € N
in (1.2) as an artificial time index, since this allows us to interpret the evolution of
iterates as arising from discretization of differential equations, and thereby to gain
theoretical understanding.

There are two main computational benefits in updating an ensemble of candi-
date reconstructions rather than a single estimate. First, the ensemble update can
be performed without evaluating derivatives of h, effectively approximating them
using statistical linearization. This is important in applications where computing
derivatives of h is expensive, or where the map h needs to be treated as a black-box.
Second, the use of empirical rather than model covariances can significantly reduce
the computational cost whenever the ensemble size N is smaller than the dimension
d of the unknown parameter u. A further advantage of the ensemble approach is
that, for problems that are not strongly nonlinear, the spread of the ensemble may
contain meaningful information on the uncertainty in the reconstruction.

1.1. Overview: Three subfamilies. This paper identifies, compares and further
develops three subfamilies of iterative ensemble Kalman methods to implement the
ensemble update (1.2). Each subfamily employs a different Kalman-type formulae,
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Objective | Optimization | Derivative Method | Ensemble Method | New Variant
Jrp GN IExKF (2.1) IEKF (3.1) IEKF-SL (4.1)
Jpum LM LM-DM (2.2) EKI (3.2) EKI-SL (4.2)
Jrp LM LM-TP (2.3) TEKI (3.3) TEKI-SL (4.3)

TABLE 1. Roadmap to the algorithms considered in this paper.
We use the abbreviations GN and LM for Gauss-Newton and
Levenberg-Marquardt. The numbers in parenthesis represent the
subsection in which each algorithm is introduced.

determined by a choice of objective to minimize and a derivative-based optimization
scheme to approximate with the ensemble. All three approaches impose some form
of regularization, either explicitly through the choice of the objective, or implic-
itly through the choice of the optimization scheme. Incorporating regularization is
essential in parameter reconstruction problems encountered in applications, which
are typically under-determined or ill-posed [44, 54].

The first subfamily considers a Tikhonov-Phillips objective associated with the
parameter reconstruction problem (1.2), given by

1 1
Jrp(u) == §\y—h(u)\%+§|u—m|?y, (1.3)

where R and P are symmetric positive definite matrices that model, respectively, the
data measurement precision and the level of regularization —incorporated explicitly
through the choice of objective— and m represents a background estimate of u. Here
and throughout this paper we use the notation |v|% := |A=Y?v|? = T A~ v for
symmetric positive definite A and vector v. The ensemble is used to approximate a
Gauss-Newton method applied to the Tikhonov-Phillips objective Jtp. Algorithms
in this subfamily were first introduced in geophysical data assimilation [1, 15, 18, 24,
41, 52] and were inspired by iterative, derivative-based, extended Kalman filters [5,
6, 33]. Extensions to more challenging problems with strongly nonlinear dynamics
are considered in [53, 63]. In this paper we will use a new Iterative Ensemble Kalman
Filter (IEKF) method as a prototypical example of an algorithm that belongs to
this subfamily.
The second subfamily considers the data-misfit objective

Sone(w) 1= gy~ bl (1.9)

When the parameter reconstruction problem is ill-posed, minimizing Jpy leads to
unstable reconstructions. For this reason, iterative ensemble Kalman methods in
this subfamily are complemented with a Levenberg-Marquardt optimization scheme
that implicitly incorporates regularization. The ensemble is used to approximate
a regularizing Levenberg-Marquardt optimization algorithm to minimize Jpy. Al-
gorithms in this subfamily were introduced in the applied mathematics literature
[29, 30] building on ideas from classical inverse problems [27]. Recent theoretical
work has focused on developing continuous-time and mean-field limits, as well as
various convergence results [9, 8, 14, 28, 38, 55]. Methodological extensions based
on Bayesian hierarchical techniques were introduced in [10, 11] and the incorpora-
tion of constraints has been investigated in [2, 12]. In this paper we will use the
Ensemble Kalman Inversion (EKI) method [30] as a prototypical example of an
algorithm that belongs to this subfamily.
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The third subfamily, which has emerged more recently, combines explicit reg-
ularization through the Tikhonov-Phillips objective and an implicitly regularizing
optimization scheme [14, 13]. Precisely, a Levenberg-Marquardt scheme is approx-
imated through the ensemble in order to minimize the Tikhonov-Phillips objective
Jrp. In this paper we will use the Tikhonov ensemble Kalman inversion method
(TEKI) [13] as a prototypical example.

To conclude this overview we note that while in this paper we will only consider
least-squares objectives, iterative ensemble Kalman methods that use other regu-
larizers have been recently proposed [38, 40, 57]. As well as this, we will restrict our
attention to ensemble methods and their similarities with derivative-based methods.
Iterative variants of other data assimilation methods such as 3DVAR and 4DVAR
may be of interest [42, 46, 54], but are outside the scope of this paper.

1.2. Statistical linearization, continuum limits and new variants. Each
subfamily of iterative ensemble Kalman methods stems from a derivative-based
optimization scheme. However, there is substantial freedom as to how to use the
ensemble to approximate a derivative-based method. We will focus on randomized-
maximum likelihood implementations [24, 37, 54], rather than square-root or en-
semble adjustment approaches [4, 62, 23]. Two principles will guide our derivation
and analysis of ensemble methods: the use of statistical linearization [63] and their
connection with gradient descent methods through the study of continuum limits
[55].

The idea behind statistical linearization is to approximate the gradient of i using
pairs { (u!™, h(u{™)) }521 in such a way that if h is linear and the ensemble size N
is sufficiently large, the approximation is exact. As we shall see, this idea tacitly
underlies the derivation of all the ensemble methods considered in this paper, and
will be explicitly employed in our derivation of new variants. Statistical linearization
has also been used within Unscented Kalman filters, see e.g. [63].

Differential equations have long been important in developing and understand-
ing optimization schemes [48], and investigating the connections between differential
equations and optimization is still an active area of research [58, 60, 64]. In the con-
text of iterative ensemble methods, continuum limit analyses arise from considering
small length-steps and have been developed primarily in the context of EKI-type
algorithms [9, 56]. While the derivative-based algorithms that motivate the ensem-
ble methods result in an ODE continuum limit, the ensemble versions lead to a
system of SDEs. Continuum limit analyses are useful in at least three ways. First,
they unveil the gradient structure of the optimization schemes. Second, viewing
optimization schemes as arising from discretizations of SDEs lends itself to design
of algorithms that are easy to tune: the length-step is chosen to be small and the al-
gorithms are run until statistical equilibrium is reached. Third, a simple linear-case
analysis of the SDEs may be used to develop new algorithms that satisfy certain
desirable properties. Our new iterative ensemble Kalman methods will be designed
following these observations.

While our work advocates the study of continuum limits as a useful tool to
design ensemble methods, continuum limits cannot fully capture the full richness
and flexibility of discrete-based implementable algorithms, since different algorithms
may result in the same SDE continuum limit. This insight suggests that it is not
only the study of differential equations, but also their discretizations, that may
contribute to the design of iterative ensemble Kalman algorithms.
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1.3. Main contributions and outline. In addition to providing a unified per-
spective of the existing literature, this paper contains several original contributions.
We highlight some of them in the following outline and refer to Table 1 for a sum-
mary of the algorithms considered in this paper.

e In Section 2 we review three iterative derivative-based methods for nonlinear
least-squares optimization. The ensemble-based algorithms studied in subse-
quent sections can be interpreted as ensemble-based approximations of the
derivative-based methods described in this section. We also derive informally
ODE continuum limits for each method, which unveils their gradient flow
structure.

e In Section 3 we describe the idea of statistical linearization. We review three
subfamilies of iterative ensemble methods, each of which has an update for-
mula analogous to one of the derivate-based methods in Section 2. We analyze
the methods when h(u) = Hu is linear by formally deriving SDE continuum
limits that unveil their gradient structure. A novelty in this section is the
introduction of the IEKF method, which is similar to, but different from, the
iterative ensemble method introduced in [63].

e The material in Section 4 is novel to the best of our knowledge. We introduce
new variants of the iterative ensemble Kalman methods discussed in Section
3 and formally derive their SDE continuum limit. We analyze the resulting
SDEs when h(u) = Hu is linear. The proposed methods are designed to ensure
that (i) no parameter tuning or careful stopping criteria are needed; and (ii)
the ensemble covariance contains meaningful information of the uncertainty in
the reconstruction in the linear case, avoiding the ensemble collapse of some
existing methods.

e In Section 5 we include an in-depth empirical comparison of the performance
of the iterative ensemble Kalman methods discussed in Sections 3 and 4. We
consider four problem settings motivated by applications in Bayesian inverse
problems, data assimilation and machine learning. Our results illustrate the
different behavior of some methods in small noise regimes and the benefits of
avoiding ensemble collapse.

e Section 6 concludes and suggests some open directions for further research.

2. Derivative-based optimization for nonlinear least-squares. In this sec-
tion we review the Gauss-Newton and Levenberg-Marquardt methods, two deriva-
tive-based approaches for optimization of nonlinear least-squares objectives of the
form

Jow) = 5 Ir(w)P”. (2.1)

We derive closed formulae for the Gauss-Newton method applied to the Tikhonov-
Phillips objective Jtp, as well as for the Levenberg-Marquardt method applied
to the data-misfit objective Jpy and the Tikhonov-Phillips objective Jtp. These
formulae are the basis for the ensemble, derivative-free methods considered in the
next section.

As we shall see, the search directions of Gauss-Newton and Levenberg-Marquardt
methods are found by minimizing a linearization of the least-squares objective. It is
thus instructive to consider first linear least-squares optimization before delving into
the nonlinear setting. The following well-known result, that we will use extensively,
characterizes the minimizer p of the Tikhonov-Phillips objective Jrp in the case of
linear h(u) = Hu.
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Lemma 2.1. It holds that

Sl — Hull+ 3 Ju—mlp = Sl — l? + 6, (22)
where 8 does not depend on u, and
Cl'=H'R'H+P, (2.3)
Clu=HT"R 'y + P 'm. (2.4)
Equivalently,
p=m+ K(y — Hm), (2.5)
C=(I-KH)P,
where K is the Kalman gain matriz given by
K =PH"(HPH" + R)™' = CcH"R™. (2.7)

Proof. The formulae (2.3) and (2.4) follows by matching linear and quadratic coef-
ficients in u between

1 ) 1 , 1 )

Jlu—ple and  Slu—mlp+ Sy — h(u)[k. (2.8)

The formulae (2.5) and (2.6) as well as the equivalent expressions for the Kalman
gain K in Equation (2.7) can be obtained using the matrix inversion lemma [54]. [

Bayesian Interpretation. Lemma 2.1 has a natural statistical interpretation.
Consider a statistical model defined by likelihood ylu ~ N (Hu,R) and prior
u ~ N (m, P). Then Equation (2.2) shows that the posterior distribution is Gauss-
ian, uly ~ N (u, C), and Equations (2.3)-(2.4) characterize the posterior mean and
precision (inverse covariance). We interpret Equation (2.5) as providing a closed
formula for the posterior mode, known as the mazimum a posteriori (MAP) esti-
mator.
More generally, the generative model

u~ N(m, P),

ylu ~ N (h(u). R), 2.9)

gives rise to a posterior distribution on wu|y with density proportional to exp(fJTp
(u)). Thus, minimization of Jpp(u) corresponds to maximizing the posterior density

under the model (2.9).

2.1. Gauss-Newton optimization of Tikhonov-Phillips objective. In this
subsection we introduce two ways of writing the Gauss-Newton update applied to
the Tikhonov-Phillips objective Jtp. We recall that the Gauss-Newton method
applied to a general least-squares objective J(u) = %|r(u)|? is a line-search method

2
which, starting from an initialization ug, sets
Ui+1 = U; + O;0;, 1 =0,1,...

where v; is a search direction defined by

1
v; = arg min J{(v), J(w) = 5\7“/(1@)1) +7(ug) %, (2.10)
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where a; > 0 is a length-step parameter whose choice will be discussed later. In
order to apply the Gauss-Newton method to the Tikhonov-Phillips objective, we
write Jpp in the standard nonlinear least-squares form (2.1). Note that

1 1
Jrp(u) = 5\” —m[p+ §|y — h(u)|%

= e~ g,
B ) R ) R
Therefore we have
Jro() = Slree @) () = Q7Y2(z ~ g(w). (2.12)

The following result is a direct consequence of Lemma 2.1.

Lemma 2.2 ([6]). The Gauss-Newton method applied to the Tikhonov-Phillips ob-
jective Jtp admits the characterizations:

Uip1 = u; + aiCi{HiTRfl (y — h(w)) + P~ (m — uz)}, (2.13)
and
Uit = Ug + ai{Ki (y — h(uz)) + (I - K;H;)(m— uz)}, (2.14)
where H; = h/(u;) and
K; = PH'(H;PHT + R)™",
C; = (I — K;H;)P.

Proof. The search direction v; of Gauss-Newton for the objective Jrp is given by

v; = argmin Jip; (v) (2.15)
1
= argmin _ [y (ui)v + ree(u;)| (2.16)
1
= arg min 5‘,2 —g(u;) — g’(ui)v‘Q (2.17)
1 , 2 1 2
= arg min §|y—h(ui)—h(ui)v|R—|—§|v—(m—ui)|P . (2.18)

Applying Lemma 2.1, using formulae (2.4) and (2.6), we deduce that
v; = Ci{HiTR_l(y — h(u;)) + P~ Y(m— ul)},

which establishes the characterization (2.13). The equivalence between (2.13) and
(2.14) follows from the identity (2.7), which implies that C;HI R™! = K, and
CiP_l =1-K;H;. ]

We refer to the Gauss-Newton method with constant length-step «; = « applied
to Jrp as the Iterative Extended Kalman Filter (IExKF) algorithm. IExKF was de-
veloped in the control theory literature [33] without reference to the Gauss-Newton
optimization method; the agreement between both methods was established in [6].
In order to compare IExKF with an ensemble-based method in Section 3, we sum-
marize it here.
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Algorithm 1 Tterative Extended Kalman Filter (IExKF)

1: Input: Initialization ug = m, length-step «.
2: Fort=0,1,... do:

Set K; = PHZT(HIPH,LT —|—R)_1, H, = h'(ul)
Set Cl = (I — KZHz)P

Set

Uj4+1 = Uj + Oé{Ki (y — h(uz)) + (I — KZHz)(m — ul)}, (2.19)
or, equivalently,

w1 =i+ aCi{ HY Ry — h(us) + P~ (m — wi) }, (2.20)

3: Output: uq,us,...

The next proposition shows that in the linear case, if « is set to 1, IExKF finds
the minimizer of the objective (1.3) in one iteration, and further iterations still
agree with the minimizer.

Proposition 1. Suppose that h(u) = Hu is linear and o = 1. Then the output of
Algorithm 1 satisfies

U; = W, 1=1,2,...
where p is the minimizer of the Tikhonov-Phillips objective (1.3).
Proof. In the linear case we have
H;, = H, Ki=K=PH"(HPH" + R)™*, i=0,1,...
Therefore, update (2.19) simplifies as
uir1 =m+ K(y—Hm), i=0,1,...

This implies that, for all ¢ > 1, it holds that w; = p with p defined in Equation
(2.5). O

Choice of Length-Step. When implementing Gauss-Newton methods, it is stan-
dard practice to perform a line search in the direction of v; to adaptively choose
the length-step «;. For instance, a common strategy is to guarantee that the Wolfe
conditions are satisfied [16, 49]. In this paper we will instead simply set o; = « for
some fixed value of «, and we will follow a similar approach for all the derivative-
based and ensemble-based algorithms we consider. There are two main motivations
for doing so. First, it is appealing from a practical viewpoint to avoid performing a
line search for ensemble-based algorithms. Second, when « is small each derivative-
based algorithms we consider can be interpreted as a discretization of an ODE
system, while the ensemble-based methods arise as discretizations of SDE systems.
These ODEs and SDEs allow us to compare and gain transparent understanding
of the gradient structure of the algorithms. They will also allow us to propose
some new variants of existing ensemble Kalman methods. We next describe the
continuum limit structure of TExKF.



ITERATIVE ENSEMBLE KALMAN METHODS: A UNIFIED PERSPECTIVE 9

Continuum Limit. It is not hard to check that the term in brackets in the update
(2.20)

HI'R™ ' (y — h(w)) + P~ (m — w;)
is the negative gradient of Jp (1), which reveals the following gradient flow structure
in the limit of small length-step « :

i =C{n ()"’ (y = h(u®)) + P~ (m - u(t) |

= —C(t) e (u(t)),
with preconditioner

(2.21)

- —1
C(t) = (h’(u(t)) R—lh’(u(t))+P—1> :

We remark that in the linear case, C(t) = C, where C' is the posterior covariance
given by (2.6), which agrees with the inverse of the Hessian of the Tikhonov Phillips
objective.

2.2. Levenberg-Marquardt optimization of data-misfit objective. In this
subsection we introduce the Levenberg-Marquardt algorithm and describe its appli-
cation to the data misfit objective Jpy. We recall that the Levenberg-Marquardt
method applied to a general least-squares objective J(u) = 1|r(u)|? is a trust region

method which, starting from an initialization wug, sets
Uit1 = U; + vy, 1 =0,1,...
where
v; = argrrgn Sw), st |v]b <6, J(w) == %|r'(ui)v + r(ui)|?.

Similar to Gauss-Newton methods, the increment v; is defined as the minimizer of
a linearized objective, but now the minimization is constrained to a ball {|v|% < §;}
in which we trust that the objective can be replaced by its linearization. The
increment can also be written as

v; = argmin J{°(v),
v

where

1
JO(w) = Ji(0) + 5ol (222)

The parameter a; > 0 plays an analogous role to the length-step in Gauss-Newton
methods. Note that the Levenberg-Marquardt increment is the unconstrained min-
imizer of a regularized objective. It is for this reason that we say that Levenberg-
Marquardt provides an implicit regularization.

We next consider application of the Levenberg-Marquardt method to the data-
misfit objective Jpy, which we write in standard nonlinear least-squares form:

Jpm(u) = %‘TDM(U)|27 rom(u) = R™1/2 (y — h(u)) (2.23)

Lemma 2.3. The Levenberg-Marquardt method applied to the data misfit objective
Jpm admits the following characterization:

Ujr1 = u; + Ki{y - h(uz)}, (2.24)

where
K; = o;PH} (a; H; PH} + R)™!, H; = 1 (u;).
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Proof. Note that the increment v; is defined as the unconstrained minimizer of

1
I8 () = Sl (wa)v + row (u) [ + 5—|v[
2 204 (2.25)
1 1 ’
= 5l = () ~ (ol + 5ol
The result follows from Lemma 2.1. O

Similar to the previous section, we will focus on implementations with constant
length-step a; = «, which leads to the following algorithm.

Algorithm 2 Tterative Levenberg-Marquardt with Data Misfit (ILM-DM)

1: Input: Initialization ug = m, length-step a.
2: Fort=0,1,... do:

Set K; = aPHI (aH;PH} + R)™!, H; = W (u;).
Set
Wir1 = s + Ki{y - h(ui)}. (2.26)

3: Output: uq,uo,...

When a = 1, the following linear-case result shows that ILM-DM, i.e. Algorithm
2, reaches the minimizer of Jpp in one iteration. However, in contrast to IExKF,
further iterations of ILM-DM will typically worsen the optimization of Jrp, and
start moving towards minimizers of Jpy;.

Proposition 2. Suppose that h(u) = Hu is linear and a = 1. Then the output of
Algorithm 2 satisfies

up = argmin Jrp (u),
where Jrp is the Tikhonov-Phillips objective (1.3).

Proof. The proof is identical to that of Proposition 1, noting that in the linear case
U1+1:u1+K(y7HU1) O

Example 2.1 (Convergence of ILM-DM with invertible observation map). Suppose
that H € R%*? is invertible and a = 1. Then, writing

uiy1 = (I = KH)u; + Ky

and noting that p(I — KH) < 1 [3], it follows that w; — u*, where u* is the
unique solution to y = Hu. That is, the iterates of ILM-DM converge to the unique
minimizer of the data misfit objective Jpy;.

Choice of Length-Step. When implementing Levenberg-Marquardt algorithms,
the length-step parameter «; is often chosen adaptively, based on the objective.
However, similar to Section 2.1, we fix o; = « to be a small value which leads to an
ODE continuum limit.
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Continuum Limit. We notice that, in the limit of small length-step «, update
(2.26) can be written as

Ujr1 = U; + ozPHZ-TR_1 {y — h(uz)}

The term HI R~! {y — h(ul)} is the negative gradient of Jpy(u), which reveals the
following gradient flow structure
i =Pi' (u(®) "R {y ~ h(u(t) }
= _PJ;JM(U)v

where the preconditioner P is interpreted as the prior covariance in the Bayesian
framework.

(2.27)

2.3. Levenberg-Marquardt optimization of Tikhonov-Phillips objective.
In this subsection we describe the application of the Levenberg-Marquardt algorithm
to the Tikhonov-Phillips objective Jrp.

Lemma 2.4. The Levenberg-Marquardt method applied to the Tikhonov-Phillips
objective Jtp admits the following characterization:

Uiy = Ui + Ki{z - g(ui)}7
where
K, = OéZPGzT(OzlepGlT + Q)il, G; = g'(ui),
recalling that g is defined in (2.11).

Proof. Note that the increment v; is defined as the unconstrained minimizer of

1
of? (2.28)

Jgg,i (v) = J!}‘P,i(v) + %0

1
0], (2.29)

1
= §|2 —g(u;) — g/(ui>U|2Q + %,

which has the same form as Equation (2.25) replacing y with z, h with g, and R
with Q. O

Setting «; = « leads to the following algorithm.

Algorithm 3 Tterative Levenberg-Marquardt with Tikhonov-Phillips (ILM-TP)

1: Input: Initialization ug = m, length-step «.
2: For: =0,1,... do:

Set K; = aPGT (aG;PGT + Q)7 1, G; = g (u;).
Set
Uit1 = U; + KZ{Z — g(uz)} (230)

3: Output: uy,us,...

Proposition 3. Suppose that h(u) = Hu is linear and o = 1. The output of
Algorithm 3 satisfies

1
u; = arg muin{JTp(u) + §|u - m|2}. (2.31)
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Objective | Optimization | Derivative Method | Ensemble Method
Jrp GN IExKF IEKF
Jom LM ILM-DM EKI
Jrp LM ILM-TP TEKI

TABLE 2. Summary of the main algorithms in Sections 2 and 3.

Proof. The result is a corollary of Proposition 2. To see this, note that Jrp(u) =
iz — g(u)% can be viewed as a data-misfit objective with data z, forward model
g(u) and observation matrix (. Then, ILM-TP can be interpreted as applying
ILM-DM to Jrp, and the objective Jrp(u) + 2[u — m[? as its Tikhonov-Phillips
regularization. O

Example 2.2 (Convergence of ILM-TP with linear invertible observation map.).
It is again instructive to consider the case where H € R%*¢ is invertible. Then,
following the same reasoning as in Example 2.1 we deduce that the iterates of ILM-
TP converge to the unique minimizer of Jyp.

Continuum Limit. In the limit of small length-step a, we can derive the gradient
flow structure of update (2.30). This is similar to Section 2.2, with Jpy replaced
by Jrp. Precisely, the gradient flow of ILM-TP is given by

= Pg’ (u(t))TQ_l {Z — g(u(t))}
= —PJip(u).

3. Ensemble-based optimization for nonlinear least-squares. In this section
we review three subfamilies of iterative methods that update an ensemble {ugn) W
employing Kalman-based formulae, where ¢ = 0,1,... denotes the iteration index

and N is a fixed ensemble size. Each ensemble member ugn) is updated by optimizing

N

a (random) objective J™ defined using the current ensemble {u!™}Y | and/or

the initial ensemble {uén)}évzl. The optimization is performed without evaluating
derivatives by invoking a statistical linearization of a Gauss-Newton or Levenberg-
Marquardt algorithm. In analogy with the previous section, the three subfamilies of
ensemble methods we consider differ in the choice of the objective and in the choice
of the optimization algorithm. Table 2 summarizes the derivative and ensemble
methods considered in the previous and the current section.

Given an ensemble {ugn) I we use the following notation for ensemble empirical
means

1 ZN (n) 1 ZN (n)
. n L n
m; = N U; h; = N h(ui )a

n=1 n=1
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and empirical covariances

n=1
w1, (n) T
P = > (" —ma) (h(u™) = hi)
n=1
N
P = 37 (™) = 1) () ~ 1)
n=1

Two overarching themes that underlie the derivation and analysis of the ensemble
methods studied in this section and the following one are the use of a statistical
linearization to avoid evaluation of derivatives, and the study of continuum limits.
We next introduce these two ideas.

Statistical Linearization. If h(u) = Hu is linear, we have

P =Pp"“HT,
which motivates the approximation in the general nonlinear case
W™~ (P)T (P = H;,  n=1,...,N, (3.1)
where here and in what follows (P“)~! denotes the pseudoinverse of P“. Notice
that (3.1) can be regarded as a linear least-squares fit of pairs {(ugn), h(uz("))) }nN:1
normalized around their corresponding empirical means m; and h;. We remark that

in order for the approximation in (3.1) to be accurate, the ensemble size N should
not be much smaller than the input dimension d.

Continuum Limit. We will gain theoretical understanding by studying continuum
limits. Specifically, each algorithm includes a length-step parameter o > 0, and the
evolution of the ensemble for small « can be interpreted as a discretization of an
SDE system. We denote by {u(™ (t)}N_, the sample paths of the underlying SDE.
For each 1 < n < N, we have u(()n) =y (0), and we view ugn) as an approximation
of u(™(t) for t = ai. Similarly as above, we define P““(t), P“¥(t), P¥¥(t) as the
corresponding empirical covariances at time ¢ > 0.

Remark 3.1. For the subsequent algorithms we will employ random perturbations
yl(n) of the original data y. Randomly perturbing the data is common practice for
ensemble methods to ensure the correct statistics in the large ensemble limit under

linearity assumptions [39].

3.1. Ensemble Gauss-Newton optimization of Tikhonov-Phillips objec-
tive.

3.1.1. Iterative Ensemble Kalman Filter. Given an ensemble {ugn)}ﬁ;h consider
the following Gauss-Newton update for each n:
uh =u™ +av”, (32)

where v > 0 is the length-step, and vgn) is the minimizer of the following (linearized)

Tikhonov-Phillips objective (cf. equation (2.18))

n 1 n n 2 1 n n 2 n _
J(TP),,-(v) = §|yz( )—h(ug ))—HiU}R+§’ug )—ug )—U‘Péw, yf )NN(y,a 1R).
(3.3)
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Notice that we adopt the statistical linearization (3.1) in the above formulation.
(n)

%

vgn) = C’i{HiTRfl(yZ(n) - h(uﬁ"))) + (Péw)il(uén) - U(n))}’ (34)

Applying Lemma 2.1, the minimizer v; ’ can be calculated as

or, in an equivalent form,
of" = Ky = hu™)) + (I = KiH) (g — ), (3.5)
where
C; = (HTR™'H, + (Py)™") 7",
K; = PMHF (H; P H + R)™'.
Combining (3.2) and (3.5) leads to the Iterative Ensemble Kalman Filter (IEKF)
algorithm.

Algorithm 4 Iterative Ensemble Kalman Filter (IEKF)

1: Input: Initial ensemble {u(()”)}nNzl sampled independently from the prior,

length-step a.
2: For ¢t =0,1,... do:
Set K; = PYHI (H;PY*HF + R)™',  H; = (P")T(Pr)~1.
Draw 4™ ~ N(y,a"'R) and set
ul(_i)l _ ul(_n) + a{Kz( (n) _ h(u(n))) + (- Ksz)(u((Jn) _ ugn))}7 1<n<N

[ %

3: Output: Ensemble means my, ms, ...

We highlight that IEKF is a natural ensemble-based version of the derivative-
based IExKF Algorithm 1 with update (2.19). Algorithm 4 is a slight modification
of the iterative ensemble Kalman algorithm proposed in [63]. The difference is that
[63] sets H; = (P*)T(P¢+)~! rather than H; = (P*)T(P**)~1. Our modification
guarantees that Algorithm 4 is well-balanced in the sense that if @ = 1, u(()n) ~
N (m, P) and h(u) = Hu is linear, then the output of Algorithm 4 satisfies that, as
N — oo,

m; — W, t=1,2,...
where p is the minimizer of Jrp(u) given in Equation (1.3). This is analogous to
Proposition 1 for IExKF. A detailed explanation is included in Section 3.1.2 below.

Other statistical linearizations and approximations of the Gauss-Newton scheme
are possible. We next give a high-level description of the method proposed in [52],
one of the earliest applications of iterative ensemble Kalman methods for inversion
in the petroleum engineering literature. Consider the alternative characterization of
the Gauss-Newton update (3.4). However, instead of using a different preconditioner
C; for each step, [52] uses a fixed preconditioner C, = Py — Py¥(R+PyY) =1 (Py™)T.
Note that C, can be viewed as an approximation of Cj :

C,~ P — PHI(R+ HyPMHY) = Hy Pi™
_ wuy —1\ —1
= (Hy R™'Ho+ (P{")™") " = C.
This leads to the following algorithm.
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Algorithm 5 Iterative Ensemble Kalman Filter (IEKF-RZL)

1: Input: Initial ensemble {u(()n)}nj\’:1 sampled independently from the prior,
length-step a.

Set C, = Py — Py (R + PYY) ™~ (Py)T.
2: For:=0,1,... do:
Set H; = (P/")T (pPyu)~1
Draw yl(n) ~ N(y,a”'R) and set
“Ei)l = ugn)—&-a C*{HiTR_l (y(n) —h(ugn)))—i—(Pé“L)_l (u(()n)—uz(-n)) }, 1<n<N.

%

3: Output: Ensemble means mi,mo, ...

We note that IEKF-RZL, where RZL refers to the authors of the work [52],
is a natural ensemble-based version of the derivative-based IExKF Algorithm 1
with update (2.20). We have empirically observed in a wide range of numerical
experiments that Algorithm 4 is more stable than Algorithm 5, and we now give a
heuristic argument for the advantage of Algorithm 4 in small noise regimes.

e The update formula in Algorithm 4 is motivated by the large IV approximation
PHT(H,PMHY + R~ ~ PHY (H;PHI + R)™},

which only requires that F§** is a good approximation of P.

e The update formula in Algorithm 5 may be derived by invoking a large N
approximation of several terms. In particular, the error arising from the ap-
proximation

C.HI'R™ '~ CoHI'R™Y,
gets amplified when R is small.

Empirical evidence of the instability of Algorithm 5 will be given in Section 5.1.

3.1.2. Analysis of IEKF. In the literature [52, 63], the length-step « is sometimes
set to be 1. Here we state a simple observation about Algorithm 4 when @ = 1 and
h(u) = Hu is linear. We further assume that H; = H for all 5. Then K; = K :=
PHT(HP{*HT + R)~!, and the update (3.6) can be simplified as

ulty =" + Ko(y" = Hu™) + (I = KoH)(uf"” - u™)
_ u(()n) + Ko(yz(n) . Huén)),
where ygn) ~ N(y,R). If {u(()n) N_| are sampled independently from the prior

N(m, P) and we let N — oo, we have Ky — K = PHT (HPHT + R)~! and, by
the law of large numbers, for any ¢ > 1,

1o 1o 1~ (n)
anz:luzn):(j_KOH)Nzuon)—’_KOan::lyzn

n=1

— (I — KH)m + Ky,
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which is the posterior mean (and mode) in the linear setting. In other words, in
the large ensemble limit, the ensemble mean recovers the posterior mean after one
iteration. However, while the choice o = 1 may be effective in low dimensional
(nonlinear) inverse problems, we do not recommend it when the dimensionality is
high, as H; might not be a good approximation of H. Thus, we introduce Algorithms
4 and 5 with a choice of length-step «a, resembling the derivative-based Gauss-
Newton method discussed in Section 2.1. Further analysis of a new variant of
Algorithm 4 will be conducted in a continuum limit setting in Section 4.

Remark 3.2. Some remarks:

1. Although this will not be the focus of our paper, the IEKF Algorithm 4
(together with the EKI Algorithm 6 and TEKI Algorithm 7 to be discussed
later) enjoys the ‘initial subspace property’ studied in previous works [30, 55,
13] by which, for any 4 and any initialization of {uén)}ﬁ[:l,

span({ugn)},lyzl) C span({ué")}fyzl).
This can be shown easily for the IEKF Algorithm 4 by expanding the P§*
term in K; in the update formula (3.6).

2. Since we assume a Gaussian prior A/(m, P) on u, a natural idea is to replace
ué") by m and P}™ by P in the update formula (3.6). We pursue this idea
in Section 4.1, where we introduce a new variant of Algorithm 4 and analyze
it in the continuum limit setting. While the initial subspace property breaks
down, this new variant is numerically promising, as shown in Section 5.

3.2. Ensemble Levenberg-Marquardt optimization of data-misfit objec-
tive.

3.2.1. Ensemble Kalman Inversion. Given an ensemble {ugn)}ﬁle, consider the fol-

lowing Levenberg-Marquardt update for each n:

UE:L-)1 = ugn) + vgn), (3.7)
where vgn) is the minimizer of the following regularized (linearized) data-misfit
objective (cf. equation (2.25))

n 1 n 2 n _
IS ) = Sl — h™) - ooy, + y" ~ N(y,a ' R), (3.8)

1, 2
DM, i %|U|P;‘u’

and « > 0 will be regarded as a length-step. Notice that we adopt the statistical

linearization (3.1) in the above formulation. Applying Lemma 2.1, we can calculate
(n)

the minimizer v, explicitly:
o = (HI R Hy+ o7 (P T HIRT () = h™)),  (3.9)
or, in an equivalent form,
o = P T (H PP HT + a7 R) ™ (y!™ — h(u(™)). (3.10)

We combine (3.7) and (3.10), substitute P**H}! = P", and make another level of
approximation H;P"Y ~ P/Y. This leads to the Ensemble Kalman Inversion (EKI)
method [30].

We note that EKI is a natural ensemble-based version of the derivative-based
ILM-DM Algorithm 2. However, an important difference is that the Kalman gain
in ILM-DM only uses the iterates to update H; and P is kept fixed. In contrast,
the ensemble is used in EKI to update P;"Y and P/Y.
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Algorithm 6 Ensemble Kalman Inversion (EKI)

N

1: Input: Initial ensemble {u(()") EMIP

2: Fort=0,1,... do:

length-step a.
Set K; = P*(PY + o 'R)~\.
Draw 3\™ ~ N(y,a"'R) and set
u{™ = ul™ + Ki{ygm - h(u§."))}, 1<n<N. (3.11)

3: Output: Ensemble means mi,mo, ...

3.2.2. Analysis of EKI. In view of the definition of K;, we can rewrite the update
(3.11) as a time-stepping scheme (as similarly done in [55, 56]):

ugi)l = ugn) +aP"(aP! + R) "'y + ofl/QRl/Qﬁi(n) - h(ugn)))
— uE") +aP"(aP? + R)™! (y— h(ugn))) + al/QPi“y(aPZ.yy + R)flRl/ZEi("),
(3.12)

where 51-(") ~ N(0,I) are independent. Taking the limit o — 0, we interpret (3.12)
as a discretization of the SDE system

du™ = P ()R~ (y — h(u™)) dt + P (t)R~'/2dW ™. (3.13)
If h(u) = Hu is linear, the SDE system (3.13) turns into
du™ = P H" R (y — Hu™) dt + P*(t)H"R™Y/2dw ™. (3.14)

Proposition 4. For the SDE system (3.13), assume h(u) = Hu is linear, and

suppose that the initial ensemble {u(()n)}nNzl s drawn independently from a continu-
ous distribution with finite second moments. Then, in the large ensemble size limit
N — 0o (mean-field), the distribution of u™ (t) has mean m(t) and covariance €(t),
which satisfy

dm(t)

5 = C(t)H"R™ " (y — Hm(t)), (3.15)
d%t) = —C(t)HT R HC(t). (3.16)
Furthermore, the solution can be computed analytically:
m(t) = (€(0) + tHTRle)_l(e(O)*lm(O) +tHTR™y), (3.17)
e = (e + tHTR‘lH)_l. (3.18)

In particular, if H € R**? has full column rank (i.e., d < k, rank(H) = d), then,
ast — oo,

m(t) = (H'R'H) Y (HTR™1y), (3.19)
e(t) — 0. (3.20)
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If H € R**? has full row rank (i.e., d > k, rank(H) = k), then, as t — 0o,
Hm(t) — y, (3.21)
He(t)HT — 0. (3.22)
Proof. The proof technique is similar to [22]. We will use that
— 1 (n)
m(t) A}l_r)nOOIE[u QIR
¢(t) = lim E[e™(t) @ e™(1)],
N —o0

where e(™(t) := u(™ () — m(t). First, note that (3.15) follows directly from (3.14)
using that in the mean field limit P"%(¢) can be replaced by €(t). To obtain the
evolution of €(t), note that

de(t) = lim E {de(”) ®e™ +eM @ de™ + de™ @ de(”)] ,
—00

where the last term accounts for the It6 correction. This simplifies as

%Ef) = lim E{fc(t)HTR*IH(e(”) ®e™) — (e @ e™YHT RTYHE(t)
—00

+ e(t)HTR—ch(t)]
= —¢(t)H'R™'HC(1),

which gives Equation (3.16). To derive exact formulas for m(¢) and €(t), we notice

that

de(t)t de(t)

T —6(t)‘1T€(t)‘1 =H'R™'H,
and
d(c(t)dt m(t)) _ degt) m(t) +€(t>_1dn;£t) — HTR 1y,

Then (3.17) and (3.18) follow easily.
If H has full column rank, then HT R~ H is invertible and therefore, as ¢ — oo,
e(t) =t (t'e0) '+ HTR'H) " =0
by continuity of the matrix inverse function. The limit of m(¢), (3.19), follows
immediately from (3.17).
If H has full row rank, we make the following substitutions

m(t) = R™Y2Hm(t), &(t) = R-Y2He(t)HT R™Y/2,
Then (3.15) and (3.16) can be transformed into
dm(t) ~ _ ~
% = C(t)(R™?y —m(t)), (3.23)
de(t) Fi2
— = —C¢(t)". .24
= &) (3.24)

Using the fact that €(0) = R~Y2He&(0)HTR~'/? is invertible, we can solve these
using the same technique as in the previous case:

€)= €O+ mE) = (€0)7 1) (E0)Tm(0) + R y).

As t — oo, we have m(t) — R™Y/2y and €(t) — 0, which lead to (3.21) and
(3.22). O
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Remark 3.3. Some remarks:

1. In fact, (3.22) always holds, without rank constraints on H. The proof follows
the similar idea as in [55]. This can be viewed from Equation (3.24), where
we can perform eigenvalue decomposition €(0) = XA(0)X7, and show that
€(t) = XA(t)XT, where A(t) are diagonal matrices and A(t) — 0 as t — co.
The statement that HE(t)HT — 0 (or €(¢) — 0 if H has full column rank) is
referred to as ‘ensemble collapse’. This can be interpreted as ‘the images of all
the particles under H collapse to a single point as time evolves’. Our numerical
results in Section 5 show that the ensemble collapse phenomenon of Algorithm
6 is also observed in a variety of nonlinear examples and outside the mean-
field limit, with moderate ensemble size V. These empirical results justify the
practical significance of the linear continuum analysis in Proposition 4.

2. Under the same setting of Proposition 4, if we further require that the ini-

tial ensemble {ug") N_| is drawn independently from the prior distribution

N(m, P), then in the mean-field limit N — oo we have m(0) = m and

€(0) = P, leading to

m(l) = (P *+H'R'H)" (P 'm+ H'Ry),
¢(1) = (P*+H'R'H)™!

which are the true posterior mean and covariance, respectively. However, we

have observed in a variety of numerical examples (not reported here) that in

nonlinear problems it is often necessary to run EKI up to times larger than

1 to obtain adequate approximation of the posterior mean and covariance.

Providing a suitable stopping criteria for EKI is a topic of current research
[56, 32] beyond the scope of our work.

3.3. Ensemble Levenberg-Marquardt optimization of Tikhonov-Phillips
objective.

3.3.1. Tikhonov Ensemble Kalman Inversion. Recall that we define

|

N
n=1»

L )

Then, given an ensemble {ugn) we can define

and empirical covariances

N
]. n n
Bt = (9™ = g0) (9(u™) — 91) ",
n=1
1 & T
Pi* = 3 (™ = mi) (9(u™) ~g:)"-

n=1

Furthermore, we define the statistical linearization G;:

g W)~ (Pr)T (P~ = G, (3.25)

K2

It is not hard to check that
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with H; defined in (3.1).
Given an ensemble {ugn)}
date for each n:

N

1, consider the following Levenberg-Marquardt up-

W =l 4o

K2

(n)

3 ’

where vgn) is the minimizer of the following regularized (linearized) Tikhonov-

Phillips objective (cf. equation (2.29))

_ 1L

(n),uC
o) = 2

TP,i

n n 1 n -
|z( )*g(uz(- ))*Gw|ig+%|”|;;*u’ ZE )NN(Z’OZ 'Q), (3.26)

7

and « > 0 will be regarded as a length-step. We can calculate the minimizer vi(n)

explicitly, applying Lemma 2.1:
o =(GIQ G+ o (PTG R — g(w™)), (3.27)
or, in an equivalent form,
o = PG (G GT a7 Q) (2 — gu™)). (3.28)

Similar to EKI, in Equation (3.28) we substitute P**GT = P"*, and make the
approximation G;P** ~ P7*. This leads to Tikhonov Ensemble Kalman Inversion
(TEKI), described in Algorithm 7.

Algorithm 7 Tikhonov Ensemble Kalman Inversion (TEKI)

(M\N
0

1: Input: Initial ensemble {uy "’ },_;, length-step .

2: Fort=0,1,... do:
Set, K; = Pu*(P7* +a~1Q) L.
Draw ZZ-(n) ~ N(z,a71Q) and set

o =l + K {2 — g™}, 1<n<N. (3.29)

3: Output: Ensemble means mi,mo, ...

We note that TEKI is a natural ensemble-based version of the derivative-based
ILM-TP Algorithm 3. However, the Kalman gain in ILM-TP keeps P fixed, while
in TEKI P/** and P?* are updated using the ensemble.

3.3.2. Analysis of TEKI. When « is small, we can rewrite the update (3.29) as a
time-stepping scheme (as similarly done in [13]):

“51)1 = uz(-") +aP"(aP+ Q) (2 + a—1/2Q1/2§§”) - g(ugn)))
— ug") + apiuz(apizz + Q)_l(Z o g(ugn))) + a1/2}3iuz(a}3izz + Q)—lQl/Qgi(")’
(3.30)

where 51(”) ~ N (0, I41) are independent. Taking the limit o — 0, we can interpret
(3.30) as a discretization of an interacting particle SDE system

du® = PrQ ! (= — gu™)) dt + PE(OQVEAW ™. (331)
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If h(u) = Hu is linear, g(u) = Gu is also linear and the SDE system (3.31) can be
rewritten as

du™ = P**(1)Q " (z — Gu™) dt + P** ()@~ /2 aw ™)

3.32
= P(t)GTQ (2 — Gu™) dt + P*™(1)GT Q™2 dw ™. (3.52)

Proposition 5. For the SDE system (3.31), assume h(u) = Hu is linear, and that

the initial ensemble {u(()n) N_| is made of independent samples from a distribution

with finite second moments. Then, in the large ensemble limit (mean-field), the
distribution of u™ (t) has mean m(t) and covariance €(t), which satisfy:

d%” — e()GTQ (= — Gm(1), (3.33)
d%ﬂ = —¢(t)GTQGe(t). (3.34)
Furthermore, the solution can be computed analytically:
m() = (e(0) " + tGTQ‘lG)_l(C(O)_lm(O) 11GTQ ), (335)
e = (o) +167QG) . (3.36)

In particular, as t — oo,
m(t) = (GTQ™'G) G Q™)
=H'R'H+ P)"Y(H'R 'y + P™'m),
¢(t) — 0. (3.38)

(3.37)

Notice that m(t) converges to the true posterior mean.

Proof. Equations (3.33)-(3.36) can be derived similarly as in the proof of Proposition
4, replacing H by G, R by @, and y by z. Now since GTQ"'G = H'R™'H + P is
always invertible we have that, as t — oo,

et) =t (t'e(0) '+ GTQTIG) T =0

by continuity of the matrix inverse function. The limit of m(¢) in (3.37) follows
directly from (3.35). O

4. Ensemble Kalman methods: New variants. In the previous section we dis-
cussed three popular subfamilies of iterative ensemble Kalman methods, analogous
to the derivative-based algorithms in Section 2. The aim of this section is to intro-
duce two new iterative ensemble Kalman methods which are inspired by the SDE
continuum limit structure of the algorithms in Section 3. The two new methods
that we introduce have in common that they rely on statistical linearization, and
that the long-time limit of the ensemble covariance recovers the posterior covariance
in a linear setting. This holds true even if the initial ensemble is not drawn from
the prior distribution on the unknown.

Subsection 4.1 contains a new variant of IEKF which in addition to recovering
the posterior covariance, it also recovers the posterior mean in the long-time limit.
Subsection 4.2 introduces a new variant of the EKI method. Finally, Subsection 4.3
highlights the gradient structure of the algorithms in this and the previous section,
shows that our new variant of IEKF can also be interpreted as a modified TEKI
algorithm, and sets our proposed new methods into the broader literature.
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4.1. Iterative Ensemble Kalman Filter with statistical linearization. In
some of the literature on iterative ensemble Kalman methods [52, 63], the length-
step (a in Algorithms 4 and 5) is set to be 1. Although this choice of length-step
allows to recover the true posterior mean in the linear case after one iteration (see
Section 3.1.2), it leads to numerical instability in complex nonlinear models. Alter-
native ways to set « include performing a line-search that satisfies Wolfe’s condition,
or using other ad-hoc line-search criteria [24]. These methods allow « to be adap-
tively chosen throughout the iterations, but they introduce other hyperparameters
that need to be selected manually.

Our idea here is to slightly modify Algorithm 4 so that in the linear case its
continuum limit has the true posterior as its invariant distribution. In this way we
can simply choose a small enough a and run the algorithm until the iterates reach
a statistical equilibrium, avoiding the need to specify suitable hyperparameters and
stopping criteria. Our empirical results show that this approach also performs well
in the nonlinear case.

In the update Equation (3.6), we replace each of the ué") by a perturbation of
the prior mean m, and we replace F§'" by the prior covariance matrix P in the
definition of K;. Details can be found below in our modified algorithm, which we
call IEKF-SL.

Algorithm 8 Iterative Ensemble Kalman Filter with Statistical Linearization
(IEKF-SL)

N

1: Input: Initial ensemble {u(()") o1,

2: Fort=0,1,... do:

step size a.

Set K; = PHT(H;PH + R)™',  H; = (P"™)T(P*)",
Draw ygn) ~ N(y,2a71R), mgn) ~ N (m,2a~!P) and set

ugi)l = ugn) + a{Ki (yz(n) - h(ufn))) + (I - KiHi)(mgn) — ugn))}, 1<n<N.

3: Output: Ensemble means mq, ms, ...

It is natural to regard the update (4.1) as a time-stepping scheme. We rewrite
it in an alternative form, in analogy to (3.4):

) = ol 4 o R () — ™) + P () — )}

= u{” +aCi{ HT R (y = n(u(™)) + P~ (m — u") + (HIR™'¢C+ P71 },
(4.2)
where
Ci= (H'R'Hi+ P™) ™", ¢ ~N(0,207'R), n~N(0,207'P).

We interpret Equation (4.2) as a discretization of the SDE system

du™ = C(1) (H(t)TR*I(y—h(u(”))) +P*1(m—u<”>)) dt /200 AW ™| (4.3)
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where
1

H(t) = (P™(t)" (P™(1) ",
C(t)=(HOTRH(t)+ P 1) "
The diffusion term can be derived using the fact that

Ci(HIR™'(¢+ P~ 'n) ~ N (0,20 'Ci(HI R™'H; + P~)C;) = N(0,2a7 1 C)).

If h(u) = Hu is linear and the empirical covariance P“*(t) has full rank for all
t,then H(t) = H, C(t) = C = (P ' + H'R7'H)~!, and the SDE system can be
decoupled and further simplified:

du™ = C(HTR—l (y— Hu™) + P~ (m — u("))) dt + V20 dw
(4.4)
= ( —u™ 4 C(HTR 'y + P’lm)) dt +V2C dW.

Proposition 6. For the SDE system (4.3), assume h(u) = Hu is linear and

H(t) = H holds. Assume that the initial ensemble {ué”)}ﬁyzl is made of inde-
pendent samples from a continuous distribution with finite second moments. Then,
for 1 <n < N, the mean m(t) and covariance €(t) of u(™(t) satisfy

dn;—it) = -—m(t)+C(H"R 'y + P7'm), (4.5)
de(t)
= 2 +2C. (4.6)

Furthermore, as t — oo,
m(t) = C(H'R Yy + P~1m)
= (P '+ H'R'H)"Y(HTR 'y + P~ 'm),
¢t)—»C=P '+H"R'H) . (4.8)

(4.7)

In other words, m(t) and €(t) converge to the true posterior mean and covariance,
respectively.

Proof. Tt is clear that, for fixed t > 0, {u(™(¢t)}\_, are independent and identi-
cally distributed. The evolution of the mean follows directly from (4.4), and the
evolution of the covariance follows from (4.4) by applying It&’s formula. It is then
straightforward to derive (4.7) and (4.8) from (4.5) and (4.6), respectively. O

4.2. Ensemble Kalman inversion with statistical linearization. Recall that
in the formulation of EKI, we define a regularized (linearized) data-misfit objective
(3.8), where we have a regularizer on v with respect to the norm |- |pu«. However,
in view of Proposition 4, under a linear forward model h(u) = Hu, the particles

{ugn)}?zl will ‘collapse’, meaning that the empirical covariance of {H ugn)}ﬁ[:l will
vanish in the large 4 limit. One possible solution to this is ‘covariance inflation’,
namely to inject certain amount of random noise after each ensemble update. How-
ever, this requires ad-hoc tuning of additional hyperparameters. An alternative
approach to avoid the ensemble collapse is to modify the regularization term in
the Levenberg-Marquardt formulation (3.8). The rough idea is to consider another
regularizer on H;v in the data space, as we describe in what follows.
We define a new regularized data-misfit objective, slightly different from (3.8):

n), 1 @ n 2 1 2 n —
IoniC @) = S lu™ = h) = Hioly 4 5-fole, ™ ~ N(y.207'R), (49)
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where
Ci=(P '+ H'R'H)™ ", (4.10)
and H; is defined in (3.1). The regularization term can be decomposed as

[[&, = olE + | HivlR.

The first term can be regarded as a regularization on v with respect to the prior
covariance P. The second term can be regarded as a regularization on H;v with
respect to the noise covariance R. Applying Lemma 2.1, we can calculate the
minimizer of (4.9):
o) = (HI R H; + 07 07 HI R (3" — h(u(™))
= (@ P (10 HI R ) T HTR (6 — b)) (1)
= aPHT (1 + a)H;PHF + R) ™" (4" — h(u{™)),

where the second equality follows from the definition of C;, and the third equality
follows from the matrix identity (2.7). This leads to Algorithm 9.

Algorithm 9 Ensemble Kalman Inversion with Statistical Linearization (EKI-SL)

N

1: Input: Initial ensemble {u(()") EMIP

2: Fort=0,1,... do:

step size a.

Set K; = aPHT (14 a)H,PHF + R)™',  H, = (P)T(Pr)~1,
Draw 4\™ ~ N(y, 20~ R) and set

o™ =l + Ki{ygm - h<u§">>}7 1<n<N. (4.12)

3: Output: Ensemble means my, mo, ...

For small o > 0, we interpret the update (4.12) as a discretization of the coupled

SDE system
du™ = PHO)T (HOPH®T + )™ ((y = h(u™)) dt + V2RV aw) )
= COHGTR™ (y — h(u™)) dt + V2O H(t)TR™2 aw, ‘

where

H(t) = (P™(1)" (P™(t)) ",

C(t)y= (P '+ H®TRH(t) .

For our next result we will work under the assumption that H(t) = H is constant,
which in particular requires that the empirical covariance P**(t) has full rank for
all t. Importantly, under this assumption C(t) = C = (P~! + HTR~'H)'and the
SDE system is decoupled:

du™ = CH"R™(y — Hu™) dt + V2CH" R™'/2 aw ™. (4.14)

Proposition 7. For the SDE system (4.13), assume h(u) = Hu is linear and
H(t) = H holds. Assume that the initial ensemble {uf{”}ﬁ:l is made of independent
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samples from a continuous distribution with finite second moments. Then the mean
m(t) and covariance €(t) of u'™ (t) satisfy

d‘z—it) =CH"R™'(y — Hm(t)), (4.15)
di—f) = —CHTR'H¢(t) —¢(t)HTR'HC + 2CHTR™'HC. (4.16)

In particular, if H € R**? has full column rank (i.e., d < k, rank(H) = d), then,
ast — oo,

m(t) = (H'R'H) Y (HTR™'y), (4.17)
¢t) - C=P '+H'R'H)™". (4.18)
If H € R**? has full row rank (i.e., d > k, rank(H) = k), then, as t — oo,
Hw(t) — vy, (4.19)
He(t)H” — HCH?'. (4.20)

Proof. Note that here, in contrast to the setting of Proposition 4, the distribution
of u(™(t) does not depend on the ensemble size N, and we have simply m(t) =
E[uM™(t)] and €(t) = E [e™(t) ® e (t)], with e(™(t) := w™(t) — m(t). The
evolution of m(t) follows directly from (4.14). To obtain the evolution of €(t), we
use a similar technique as in the proof of Proposition 4. Applying 1t6’s formula,

det) _ [ —~CHTR'H(e™ @ e™) — (e @ ™ YHTR™'HC + 2CHTR™*HC

dt
= -CH'R'H¢(t) —¢(t)H'R'HC +2CHTR™'HC,
which recovers (4.16).
If H has full column rank, then HT R~1H is invertible, and (4.17) follows im-
mediately from (4.15). By setting the right-hand side of (4.16) to 0, and using the
fact that it has a unique solution, we derive (4.18).

If H has full row rank, then (4.19) follows immediately from (4.15). Next, the
substitutions

&(t) = R-Y?He(t)H " R™1/?, C =R Y?HCHTR™'/?
allow to transform (4.16) into
de(t T e
% = —CC(t) — €(t)C + 2C2. (4.21)
Since C is invertible, by setting the right-hand side of (4.21) to 0 we deduce that
€(t) — C as t — oo, which recovers (4.20). O

4.3. Gradient structure and discussion.

LM Algorithms in the Continuum Limit. Levenberg-Marquardt algorithms
have a natural gradient structure in the continuum limit. This was shown in Equa-
tion (2.27), where the preconditioner P corresponds to the regularizer | - |p that
is used in the Levenberg-Marquardt algorithm (2.22). Ensemble-based Levenberg-
Marquardt algorithms also possess a gradient structure. To see this, we consider an
update ugi)l = ul(-n) + vgn) gn)
objective as (4.9)

, where v; ’ is the unconstrained minimizer of the same

y™ ~ N(y,2a7'R),

2
) S;

" L o n 2 1
Jl(m)l,gc(v) = 5‘1/1( )~ h(u{™) - Hvlp, + %’v
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except that we allow any positive (semi)definite matrix S; to act as a ‘regularizer’.
The resulting continuum limit is given by the SDE system

du™ = S HETR™ (y — h(u™)) dt + V2SO HEHTR-V2dW ™ (4.22)

where u(™)(t), S(t), H(t) are continuous time analogs of ugn), S;, H;. Notice that
H(t)TR 1 (y — h(u™)) is exactly —J,,(u™), so that we may rewrite (4.22) as

Q™ — _S(t)J;DM(u(n)) + \/QS(t)H(t)TR_l/QW(n), (4.23)

which is a perturbed gradient descent with preconditioner S(t). We recall that
S(t) = Pu(t) in EKI and S(t) = C(t) = (P~' + H(t)TR"*H(t)) " in EKI-SL.
Other choices of S(t) are possible and will be studied in future work.

Gauss-Newton Algorithms in the Continuum Limit. Gauss-Newton algo-
rithms also have a natural gradient structure in the continuum limit. As we have
shown in Equation (2.21), the Gauss-Newton method applied to a Tikhonov-Phillips
objective can be regarded as a gradient flow with a preconditioner that is the in-
verse Hessian matrix of the objective. Ensemble-based Gauss-Newton methods also
possess a similar gradient structure. Recall that in Equation (4.3) we formulate the
continuum limit of IEKF-SL:

du™ = C(t) (H(t)TR’l (y—h(u™))+P! (m—u(”))) dt++/2C () dW™ . (4.24)
Notice that the drift term is exactly —C'(t)J,p(u(™), so we may rewrite (4.24) as
a™ = —C ) Vo (u™) + 20 ()W ™), (4.25)

which is a perturbed gradient descent with preconditioner C(t), the inverse Hessian
of Jrp.

A Unified View of Levenberg-Marquardt and Gauss-Newton Algorithms
in the Continuum Limit. As a conclusion of above discussion, in the continuum
limit Levenberg-Marquardt algorithms (e.g., EKI, EKI-SL) are (perturbed) gradient
descent methods, with a preconditioner determined by the regularizer used in the
Levenberg-Marquardt update step. Gauss-Newton algorithms (e.g., IEKF, IEKF-
SL) are also (perturbed) gradient descent, with a preconditioner determined by the
inverse Hessian of the objective.

Interestingly, there are cases when the two types of algorithms coincide, even
with the same amount of perturbation in the gradient descent step. A way to see
this is to set the Levenberg-Marquardt regularizer to be the inverse Hessian of the
objective. In equation (4.23), if we consider the Tikhonov-Phillips objective (i.e.,
replace Jpy by Jrp, H by G, Q by R), and set S(t) = C(t), then (4.23) and (4.25)
will coincide, leading to the same SDE system. This is the reason why we do not
introduce a ‘TEKI-SL’ algorithm, as it is identical to IEKF-SL.

Relationship to Ensemble Kalman Sampler (EKS). Another algorithm of
interest is the Ensemble Kalman Sampler (EKS) [22, 17]. Although not discussed
in this work, the EKS update is similar to (4.24). In fact, if we replace C(t) by
the ensemble covariance P““(t), and use the fact that PU“(t)H(t)T = P“(t) by
definition, we immediately recover the evolution equation of EKS:

du™ = (Pmuf(t)T}r1 (y — h(u™)) + P~ (m — u("))) dt + /2P (1) AW ™.
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Then an Euler-Maruyama discretization is performed to compute the update for-
mula in discrete form. However, as we find out in several numerical experiments,
the length-step « needs to be chosen carefully. If the noise R has a small scale,
EKS often blows up in the first few iterations, while other algorithms with the
same length-step do not. Also, if we consider a linear forward model h(u) = Hu,
EKS still requires a mean field assumption N — oo in order for it to converge to the
posterior distribution, while IEKF-SL approximately needs N =z d particles where
d is the input dimension.

5. Numerical examples. In this section we provide a numerical comparison of
the iterative ensemble Kalman methods introduced in Sections 3 and 4. Our exper-
iments highlight the variety of applications that have motivated the development
of these methods, and illustrate their use in a wide range of settings. In order to
provide a comparison between all variants, we will assess the performance in various
ways. First, the relative error at artificial time ¢ > 0 is defined as

[m(t) — u'|

relative error = ,
Juf]|

where m(t) denotes the mean of the ensemble at time ¢. Plots of the evolution
of the data misfit Jpy (m(t)) and Tikhonov-Phillips Jrp (m(t)) objectives will also
be provided. We will also assess the performance through reconstruction plots,
which show the ensemble mean and several ensemble quantiles at the last iteration.
Additionally, for the first experiment we compare each variant through the evolution
of the Frobenius norm || P**(¢)||r of the ensemble covariance.

5.1. Elliptic boundary value problem. In this subsection we consider a simple
nonlinear Bayesian inverse problem originally presented in [19], where the unknown
parameter is two dimensional and the forward map admits a closed formula. These

features facilitate both the visualization and the interpretation of the solution.

5.1.1. Problem setup. Consider the elliptic boundary value problem

% (exp(ul)dclp(x)> —1, z€(0,1),

(5.1)
p(0)=0,  p(1)=us.
It can be checked that (5.1) has an explicit solution
1
pu(T) = ugw — 3 exp(—uy ) (z? — ). (5.2)

We seek to recover u = (u1,uz)?’ from noisy observation of p, at two points

x1 = 0.25 and x2 = 0.75. Precisely, we define h(u) := (pu(xl),pu(:cg))T and
consider the inverse problem of recovering v from data y of the form

y = h(u) +1, (5.3)

where 1 ~ N(0,723). We set a Gaussian prior on the unknown parameter u ~
N(0,1) x N(100,16). In our numerical experiments we let the true parameter be
u = (—2.6,104.5)T and use it to generate synthetic data y = h(u') + n with noise
level v =0.1.
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FIGURE 1. Ensemble members (green) after 100 iterations, with
truth u® (red star) and contour plot of (unnormalized) posterior
density.

5.1.2. Implementation details and numerical results. We set the ensemble size to be

N = 50. The initial ensemble {u(()")}f;]:1 is drawn independently from the prior. The
length-step « is fixed to be 0.1 for all methods. We run each algorithm up to time
T = 10, which corresponds to 100 iterations. We emphasize that the results here
are not sensitive to the choice of «, provided that it is taken to be sufficiently small.
The range of suitable length-steps will, in general, depend on the strength of the
nonlinearity of h and the dimension of the problem. For the choice of T, stopping
criteria for convergence could be added to the algorithms. Here for simplicity we
set T manually and let all algorithms run for a sufficient amount of time.

We plot the level curves of the posterior density of u = (uy,u2)? in Figure 1.
The forward model is approximately linear, as can be seen from the contour plots
in Figure 1 or directly from Equation (5.2). Hence it can be used to validate the
claims we made in previous sections.

Figure 2 compares the time evolution of the empirical covariance of the different
methods. The IEKF-RZL algorithm consistently blows up in the first few iterations
due to the small noise which, as discussed in Section 3.1, is an important drawback.
Due to the poor performance of IEKF-RZL in small noise regimes, we will not
include this method in subsequent comparisons. The EKI and TEKI plots show
the ‘ensemble collapse’ phenomenon discussed in Sections 3.2 and 3.3. Note that
the size of the empirical covariances of EKI and TEKI decreases monotonically, and
by the 100-th iteration their size is one order of magnitude smaller than that of
the new variants IEKF-SL and EKI-SL. The ensemble collapse of EKI and TEKI
can also be seen in Figure 1, where we plot all the ensemble members after 100
iterations. In contrast, Figure 2 shows that the size of the empirical covariances
of the new variants IEKF-SL and EKI-SL stabilizes after around 40 iterations, and
Figure 1 suggests that the spread of the ensemble matches that of the posterior.
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FIGURE 2. Evolution of the Frobenius norm of the ensemble co-
variance P““(t). For reference, we also plot the Frobenius norm
of the true posterior covariance (red dashed line). The norm of
IEKF-RZL blows up after a few iterations. The norms of the EKI
and TEKI are almost identical and monotonically decreasing. The
norms of the new variants EKI-SL and TEKF-SL are similar and
stabilize after around 40 iterations. The norm of IEKF lies between
those of the old and new variants.
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FIGURE 3. EKI & EKI-SL: Relative errors and data misfit w.r.t
time t.

These results are in agreement with the theoretical results derived in Sections 4.2
and 4.1 in a linear setting. Although we have not discussed the IEKF method when
« is small, its ensemble covariance does not collapse in the linear setting, as can be
seen in Figure 2.

In Figures 3 and 4 we show the performance of the different methods along the
full iteration sequence. Here and in subsequent numerical examples we use two
performance assessments. First, the relative error, defined as |m(t) — u'|/|uf| where
m(t) is the ensemble’s empirical mean, which evaluates how well the ensemble mean
approximates the truth. Second, we assess how each ensemble method performs in
terms of its own optimization objective. Precisely, we report the data-misfit objec-
tive Jpu (m(t)) for EKI and EKI-SL, and the Tikhonov-Phillips objective Jrp (m(t))
for IEKF, TEKI and IEKF-SL. We run 10 trials for each algorithm, using different
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Ficure 4. TEKI, TEKF & IEKF-SL: Relative errors and
Tikhonov-Phillips objective w.r.t time t.

ensemble initializations (drawn from the same prior), and generate the error bars
accordingly. Since this is a simple toy problem, all methods perform well. However,
we note that the first iterations of EKI and TEKI reduce the objective faster than
other algorithms.

5.2. High-dimensional linear inverse problem. In this subsection we consider
a linear Bayesian inverse problem from [30]. This example illustrates the use of
iterative ensemble Kalman methods in settings where both the size of the ensemble
and the dimension of the data are significantly smaller than the dimension of the
unknown parameter.

5.2.1. Problem setup. Consider the one dimensional elliptic equation

d2
_dixg'i_p:ua 1‘6(0,77),
p(0) = p(m) = 0.

We seek to recover u from noisy observation of p at k = 24 — 1 equispaced points
xj = grm. We assume that the data is generated from the model

24
y; =plxj)+n;, j=1,...,k, (5.5)

where 7; ~ N(0, +?) are independent. By defining A = f% + id and letting O be
the observation operator defined by ((’)(p))j = p(z;), we can rewrite (5.5) as

y=h(u)+n, n~N0~I),

where h = O o A=!. The forward problem (5.4) is solved on a uniform mesh
with meshwidth w = 278 by a finite element method with continuous, piecewise
linear basis functions. We assume that the unknown parameter u has a Gaussian
prior distribution, u ~ N(0,Cp) with covariance operator Cop = 10(A — id)~! with
homogeneous Dirichlet boundary conditions. This prior can be interpreted as the
law of a Brownian bridge between 0 and 7. For computational purposes we view
u as a random vector in R and the linear map h(u) is represented by a matrix
H e R®'-D*2° The true parameter u' is sampled from this prior (cf. Figure 5),
and is used to generate synthetic observation data y = Hu' + 1 with noise level
v = 0.01.

(5.4)
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5.2.2. Implementation details and numerical results. We set the ensemble size to
be N = 50. The initial ensemble {ug") N_is drawn independently from the prior.

n=1
The length-step « is fixed to be 0.05 for all methods. We run each algorithm up to
time T = 30, which corresponds to 600 iterations.

We note that the linear inverse problem considered here has input dimension
28 = 256, which is much larger than the ensemble size N. Combining the results
from Figure 5, 6 and 7, EKI and EKI-SL clearly overfit the data. In contrast, TEKI
over-regularizes the data, and we easily notice the ensemble collapse. The IEKF

and IEKF-SL lie in between, and approximate the truth slightly better.
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FIGURE 5. Ensemble mean (red) at the final iteration, with 10,
90-quantiles (blue).
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FIGURE 6. EKI & EKI-SL: Relative errors and data misfit w.r.t
time t.
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Ficure 7. IEKF, TEKI & IEKF-SL: Relative errors and
Tikhonov-Phillips objective w.r.t time t.

5.3. Lorenz-96 model. In this subsection we investigate the use of iterative en-
semble Kalman methods to recover the initial condition of the Lorenz-96 system
from partial and noisy observation of the solution at two positive times. The ex-
perimental framework is taken from [14] and is illustrative of the use of iterative
ensemble Kalman methods in numerical weather forecasting.

5.3.1. Problem setup. Consider the dynamical system

dz
=g (g —ae) —a+ F 1=1,....d,

dt (5.6)

20 = Zdy Rd+1 = R1, R—1 = Zd—1-

Here z denotes the I*" coordinate of the current state of the system and F is a
constant forcing with default value of F' = 8. The dimension d is often chosen as
40. We want to recover the initial condition

u:= (21(0), ..., 24(0))"
of (5.6) from noisy partial measurements at discrete times {s;}!_;:

Yij = w;(8i) + Mg, (5.7)
where {lj}f:1 C {1,2,...,d} is the subset of observed coordinates, and 7;; ~
N(0,72) are assumed to be independent. In our numerical experiments we set
I=2,J =20, {s1,s2} = {0.3,0.6}, {[; 3‘;1 = {1,3,5,...,39}. We set the prior
on u to be a Gaussian A(0,21;). The true parameter u! € R° is shown in Figure

8, and is used to generate the observation data {y; ;} according to (5.7) with noise
level v = 0.01.

5.3.2. Implementation details and numerical results. We set the ensemble size to
be N = 50. The initial ensemble {u(()") N_| is drawn independently from the prior.
The length-step « is fixed to be 0.05 for all methods. We run each algorithm up to
time 7" = 30, which corresponds to 600 iterations.

This is a moderately high dimensional nonlinear problem, where the forward
model involves a black-box solver of differential equations. Figure 8 clearly indicates
an ensemble collapse for the EKI and TEKI methods. Although they are still
capable of finding a descending direction of the loss direction (see Figures 9 and

10), iterates get stuck in a local minimum. In contrast, we can see the advantage
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of IEKF, EKI-SL and TEKI-SL in this setting: intuitively, a broader spread of the
ensemble allows these methods to ‘explore’ different regions in the input space, and
thereby to find a solution with potentially lower loss.

We notice that in practice ‘covariance inflation’ is often applied in EKI and TEKI
algorithms, by manually injecting small random noise after each ensemble update.
In general, this technique will ‘force’ a non-zero empirical covariance, prevent en-
semble collapse and boost the performence of EKI and TEKI. However, the amount
of noise injected is an additional hyperparameter that should be chosen manually,
which should depend on the input dimension, observation noise, etc. Here we give a
fair comparison of the different methods introduced, under the same time-stepping
setting, with as few hyperparameters as possible.

4 4 4
3 3 3
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FIGURE 8. Ensemble mean (red) at the final iteration, with 10,
90-quantiles (blue).
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FIGURE 9. EKI & EKI-SL: Relative errors and data misfit w.r.t
time t.
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Ficure 10. IEKF, TEKI & IEKF-SL: Relative errors and
Tikhonov-Phillips objective w.r.t time t.

5.4. High-dimensional nonlinear regression. In this subsection we consider a
nonlinear regression problem with a highly oscillatory forward map introduced in
[26], where the authors investigate the use of iterative ensemble Kalman methods
to train neural networks without back propagation.

5.4.1. Problem setup. We consider a nonlinear regression problem
y=h(w)+n, n~N0L),
where u € R%,y € R, and h is defined by
h(u) := Au + sin(cBu), (5.8)

where A, B € R¥*? are random matrices with independent A/(0, 1) entries. We set
d =200, £k = 150 and ¢ = 20. We want to recover u from y. We assume that the
unknown u has a Gaussian prior u ~ N(0,41;). The true parameter u' is set to be
2-1, where 1 is the all-one vector. Observation data is generated as y = h(ul) 4.

By definition, h is highly oscillatory, and we may expect that the loss function,
either Tikhonov-Phillips or data misfit objective, will have many local minima.
Figure 11 visualizes the Tihonov-Phillips objective function Jrp(u) with respect to
two randomly choosen coordinates while other coordinates are fixed to value of 2.
The data misfit objective exhibits a similar behavior.

5.4.2. Implementation details and numerical results. We set the ensemble size to be
N = 200. The initial ensemble {u(()n) N_is drawn independently from the prior.

n=1
The length-step « is fixed to be 0.05 for all methods. We set v = 0.01 for the
observation noise. We run each algorithm up to time 7" = 30, which corresponds to
600 iterations.

We notice that this is a difficult problem, due to its high dimensionality and
nonlinearity. All methods except for IEKF-SL are not capable of reconstructing
the truth. In particular, from Figures 12, 13 and 14, both EKI and TEKI do a
poor job with relative error larger than 1, while IEKF and EKI-SL have slightly
better performance. It is worth noticing from Figure 14 that IEKF-SL has a larger
Tikhonov-Phillips objective function, with a much lower relative error. This may
suggest that other types of regularization objectives can be used, other that the
Tikhonov-Phillips objective, to solve this problem.
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FiGUre 11. Tikhonov-Phillips objective function with respect to
two randomly chosen coordinates.
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FIGURE 12. Ensemble mean (red) at the final iteration, with 10,
90-quantiles (blue).

6. Conclusions and open directions. In this paper we have provided a uni-
fied perspective of iterative ensemble Kalman methods and introduced some new
variants. These new variants include a statistical linearization of both EKI and
the IEnKF. Our numerical experiments suggest that the IEnKF-SL does not suf-
fer from the overfitting of data. Furthermore and more interestingly, that for
high-dimensional nonlinear problems, the IEnKF-SL may outperform other known
methodologies. This is a promising result which has potential for other highly non-
linear inverse problems. However, for linear inverse problems, all variants discussed,
new and known, perform well. As stated the advantage of such new variants is that
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no parameter tuning is required. We hope that our work will stimulate further
research in this active area, and we conclude with a list of some open directions.

Continuum limits have been formally derived in our work. The rigorous deriva-
tion and analysis of SDE continuum limits, possibly in nonlinear settings,
deserves further research.

We have advocated the analysis of continuum limits for the understanding and
design of iterative ensemble Kalman methods, but it would also be desirable
to develop a framework for the analysis of discrete, implementable algorithms,
and to further understand the potential benefits of various discretizations of
a given continuum SDE system.

From a theoretical viewpoint, it would be desirable to further analyze the
convergence and stability of iterative ensemble methods with small or mod-
erate ensemble size. While mean-field limits can be revealing, in practice the
ensemble size is often not sufficiently large to justify the mean-field assump-
tion. It would also be important to further analyze these questions in mildly
nonlinear settings.

An important methodological question, still largely unresolved, is the develop-
ment of adaptive and easily implementable line search schemes and stopping
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criteria for ensemble-based optimization schemes. An important work in this
direction is [32].

e Another avenue for future methodological research is the development of it-

erative ensemble Kalman methods that are sparse-promoting, considering al-
ternative regularizations beyond the least-squares objectives discussed in our
paper [38, 40, 57].

e Ensemble methods are cheap in comparison to derivative-based optimization

methods and Markov chain Monte Carlo sampling algorithms. It is thus nat-
ural to use ensemble methods to build ensemble preconditioners or surrogate
models to be used within more expensive but accurate computational ap-
proaches.

e Finally, a broad area for further work is the application of iterative ensemble

Kalman filters to new problems in science and engineering.
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