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ABSTRACT

Medication errors originating in community pharmacies can cause severe harm. To provide pharmacies with the
ability to accurately predict error rates, understand why errors are occurring, and mitigate problems, we de-
veloped a new human reliability analysis (HRA) called the Systems Analysis for Formal Pharmaceutical Human
Reliability (SAFPHR). Through the combination of HRA that is based on the Cognitive Reliability and Error
Analysis Method (CREAM) and probabilistic model checking (an automated method for proving properties about
stochastic systems), SAFPHR is able to address the limitations of previous HRAs. The previous, “basic” version of
SAFPHR. was based on the “basic” version of CREAM. With this, we predicted a realistic range of medication
error rates for a typical US community pharmacy dispensing procedure. However, basic SAFPHR was not
capable of providing point estimates except through averaging. In this research, we attempted to address this
limitation by making SAFPHR compatible with the two variations of extended CREAM, enabling SAFPHR to
make point predictions about pharmacy dispensing error rates. Then, to determine which of the versions of
SAFPHR. produce the most accurate predictions, we compare results from each approach to aggregate rates
published in the community pharmacy literature. In this, arithmetic averages across basic SAFPHR’s range were
consistently the most accurate for the overall error rate and rates of errors originating at different stages of the
dispensing procedure. We use this finding to derive recommendations from basic SAFPHR for improving the
reliability of community pharmacy dispensing with the ambition of improving patient health and safety.

1. Introduction

complex and not well understood. Procedures can vary from pharmacy
to pharmacy; the working environments change dynamically over the

Based on the two contemporary, comprehensive studies on com-
munity pharmacies that are primarily responsible for processing pre-
scriptions, between 0.057% and 11% of filled prescriptions have dis-
pensing errors (Szeinbach et al, 2007; Odukoya et al, 2015).
Americans filled 3.8 billion prescriptions at retail pharmacies in 2018
(BlueShield, 2019). Thus, even with the minimum error rate of 0.057%,
there are 216.6 million errors every year. Even a small error rate in
prescription dispensing can have serious consequences on patients’ lives
and health. As such, preventing medication errors in community
pharmacy has been a patient safety goal of the joint commission for
many years (Parker, 2013; The Joint Commission, 2014; The Joint
Commission, 2015; The Joint Commission, 2016a; The Joint
Commission, 2016b).

Unfortunately, medication errors from community pharmacies are
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course of the day; errors can occur in different stages; and, because all
reporting systems are voluntary, statistics on errors are under-reported
(Ashcroft et al., 2006; Allan and Barker, 1990; Wilson et al., 1998;
Kaushal et al., 2001; Pape, 2001). These factors together with the
reality that almost all community pharmacies are private organizations
that are not required to share information about procedures, make it
difficult to get comprehensive and consistent data. Some observational
and experimental studies have gathered error data and identified the
major causes of errors (Flynn et al., 2003; Berdot et al., 2013; Lao et al.,
2016). These techniques are useful, but require significant time and
effort and they are incapable of considering all of the complex system
interactions that could impact reliability (Zheng et al., 2020). Thus,
model-based approaches like human reliability analysis (HRA), which
can predict human error rates, are appropriate for application in
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addressing medication errors coming from community pharmacies.

HRAs are techniques used to predict human error probabilities by
assessing the effect sociotechnical factors have on human performance
(Hollnagel, 1998a; Swain and Guttmann, 1983). While they have been
used successfully in a number of safety—critical domains, they are static
and do not account for how system dynamics can impact error rates.
They also do not consider interactions between errors (Zheng et al.,
2017).

Thus, we have created a novel, model-based HRA called the Systems
Analysis for Formal Pharmaceutical Human Reliability (SAFPHR), an
approach that is capable of capturing how medications move through a
pharmacy, all while accounting for the types of errors, the potential
contributing factors, and the dynamism that impacts these factors
(Zheng et al., 2020). By combining the Cognitive Reliability and Error
Analysis Method (CREAM) (a well-validated approach to HRA) with
probabilistic model checking using PRISM, SAFPHR: is able to address
the major shortcomings of previous HRAs, while accounting for inter-
action between errors and dynamic system behaviors and considering
all of the possible paths through a modeled system.

Our previous version of SAFPHR (henceforth basic SAFPHR; (Zheng
et al., 2020)) was based on the basic version of CREAM, which enabled
us to predict a valid range of medication error rates of a typical phar-
macy dispensing procedure. However, basic SAFPHR could not produce
precise point estimates without averaging over the large ranges ne-
cessitated by basic CREAM.

Thus, in this work, we make SAFPHR compatible with the two
variations of extended CREAM to get precise predictions without the
need for averaging. Then, we apply the two variations of extended
SAFPHR to predict the overall error rate for the common community
pharmacy dispensing procedure. We compare the predictions made
with each basic and extended version of SAFPHR to published error
rates. To determine which of these methods is most appropriate for use
in community pharmacy, we conducted a validation study to compare
the different point estimates that can be produced from all of the dif-
ferent versions of SAFPHR to determine which best identified where
errors originate in the dispensing procedure. In the remainder of the
document, we first introduce the concepts of HRAs, CREAM, prob-
abilistic model checking, and basic SAFPHR.. We then detail the steps
for implementing and applying two variants of extended SAFPHR: to the
analysis of a typical community pharmacy dispensing procedure. After
this, we provide the details of our validation study: predicting the re-
lative error rates with different versions of SAFPHR and comparing our
results against rates published in an aggregate and comprehensive
community pharmacies study (Flynn et al., 2003). Finally, we discuss
our results along with directions for future research.
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2. Background
2.1. HRA

Even with advances in automation and autonomy, the safety of in-
dustrial systems is still dependent upon human operations. Therefore,
many HRAs have been developed in order to qualitatively and quanti-
tatively assess the human contribution to risk (De Felice et al., 2012).
HRAs can generally be divided into two generations dependent on
whether the methods are based on probabilistic risk assessment (PRA)
or cognition respectively (Di Pasquale et al., 2013).

First-generation HRAs [i.e. Technique for Human Error Rate
Prediction (THERP) (Swain and Guttmann, 1983; Swain, 1987), the
Human Error Assessment and Reduction Technique (HEART) (Williams,
1986; Williams, 1988), Human Cognitive Reliability (HCR) (Hannaman
et al., 1984) and the Operator Action Tree (OAT) (Wreathall, 1982)]
have been heavily influenced by PRA, where human errors are modeled
as if they are equipment failures. Thus, the nominal human error
probability can be assigned based on the characteristics of the opera-
tor’s task and then modified by performance shaping factors (PSF) such
as time pressure, equipment design, and stress (Boring et al., 2006; Bell
and Holroyd, 2009; Di Pasquale et al., 2013). While useful, first-gen-
eration HRAs are often criticized for failing to consider things like the
impact of context, organizational factors, and errors of commission
(Hollnagel, 1998a; Di Pasquale et al., 2013).

Second-generation HRAs improve on these by considering interac-
tions between human operators, production processes, the organisation,
and the environment and how they impact models of human cognition
(Hollnagel, 1998a; Bye et al., 1999; Kim and Jung, 2003; Fujita and
Hollnagel, 2004; Kim et al., 2006; Reer, 2008; Lee et al., 2011; Di
Pasquale et al., 2013; Zheng et al., 2017). CREAM is largely considered
the leading second-generation method (Bell and Holroyd, 2009). It is
introduced in the next section.

2.2. CREAM

CREAM (Hollnagel, 1998a) improves on first-generation methods by
grounding its approach in cognitive theory via the Contextual Control
Model (COCOM) (Hollnagel, 1998b). It posits that human performance
is determined more by the situation in which a task is performed than
by inherent properties of the task itself (Zheng et al., 2017). In CREAM,
nine sociotechnical factors called Common Performance Conditions
(CPCs; Table 1) are used to describe the criteria that influence human
performance (Hollnagel, 1998a). Human error probabilities are calcu-
lated based on assessments of these CPCs.

Table 1
CREAM CPCs, adapted from (Zheng et al., 2017; Hollnagel, 1998a).
CPC Description
Organization The roles and responsibilities of team members and the quality of additional support, communication systems, safety management, instructions, guidelines, and
oversight.
Conditions Physical working conditions such as ambient lighting, glare on screens, noise from alarms, and interruptions.
Support Man-machine interface quality, including information on control panels, computer workstations, and operational support from decision aids.
Procedures Availability and quality of operating and emergency procedures, familiar routines, and response heuristics.
Goals The number of goals/tasks a person is required to pursue or attend to concurrently.

Available Time

Time of Day Whether the person is adjusted to the current time.
Experience The quality of operator training and level of experience.
Collaboration The quality of crew collaboration.

The time available to carry out a task and how well the task execution is synchronized with process dynamics.
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2.2.1. Basic CREAM

There are three versions of CREAM that provide different levels of
quantitative analysis: one version of basic CREAM and two versions of
extended CREAM (Hollnagel, 1998a). The first step in basic CREAM
(which the other two build off of) is to describe the task sequences.
Then, for each task, CPCs (Table 1) are assessed subjectively by a
subject matter expert to determine whether the conditions associated
with each CPC improve human task performance, reduce it, or are not
significant (two CPCs, Goals and Time of Day, can only be not sig-
nificant and reduced).' Moreover, to account for the dependency be-
tween CPCs, adjustments on four CPCs (Conditions, Available Time,
Goals, and Collaboration) are required based on other assessed CPC
values (Hollnagel, 1998a). This process is described in Fig. 1.

After adjustments, for each task, the number of CPCs assessed as
improved and the number assessed as reduced are counted. Finally,
these counts map to one of four COCOM cognitive control modes
(Hollnagel, 1998a; Hollnagel, 1998b) (Fig. 2). The four basic control
modes describe different levels of control people have over the work
they are doing based on the environment (Bedford et al., 2013). In
Scrambled control, the human chooses actions randomly with little or no
thinking due to the loss of situation awareness. Opportunistic control
occurs when a human in a situation he or she is familiar with but has no
formal plan to follow. Thus, actions are chosen inefficiently. Tactical
control encapsulates situations where a human plans and executes ac-
tions by following known rules or procedures. Finally, Strategic control
occurs when the human has a deep knowledge of the system and can
thus plan for a number of different situations. As such, actions are
chosen after the human fully considers the situation. Human perfor-
mance (i.e. the probability of human error) ranges from worst (higher
probability) to best (lower probability) from scrambled (worst), to op-
portunistic, to tactical, to strategic (best) (Hollnagel, 1998a). Fig. 2
shows how each control mode maps to CREAM-specified ranges of error
probability.

2.2.2. Extended CREAM

The intervals predicted by basic CREAM can be too large to be
practically useful (Hollnagel, 1998a). To address this, there are two
variations of extended CREAM that can produce precise point estima-
tion of human error rates (Hollnagel, 1998a; He et al., 2008). In both
versions, analysts must identify the primary cognitive function of each
task as well as the task’s most likely cognitive function failure (CFF; the
way that the cognitive function can fail to accomplish its goal).
CREAM’s cognitive function and CFFs are listed in Table 2. Each CFF
has an associated “nominal” probability of occurrence, its CFP (cogni-
tive function probability). In the first approach to extended CREAM,
these probabilities are modified by multiplying them by a scaling factor
(S in Fig. 2) that is associated with the control mode, where the control
mode is determined using the same process as basic CREAM. In the
second (and presumably more accurate) approach, the analyst does not
use the CPCs to compute a control mode. Instead, the nominal prob-
abilities are adjusted directly based on how specific CPCs impact the
associated cognitive activities (Hollnagel, 1998a). In this approach, the
probability for each CFF is modified by multiplying it against weighting
factors associated with each assessed CPC level for the given cognitive
function (Table 3). For example, assume you are assessing a task with
an “Observation” cognitive function and an “Observation Not Made”
(03) CFF. This corresponds to a CFP of 0.07 (Table 2). Then, to cal-
culate the probability of this observation not being made, you would
take the assessed values of the CPCs; adjust them using the method
employed by basic CREAM (Fig. 1); look up the value for each CPC’s
level in the observation column from Table 3; and multiply these

! Note that CPCs for each task are assessed using standardized questionnaires,
where the actual assessed levels ultimately translate into a CPC level of im-
proved, not significant, or reduced (see Table 3).
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together with the 0.07 CFP.

Note that in the standard practice of CREAM, a single analyst with
good general knowledge of the field should be able to apply it
(Hollnagel, 1998a). Thus, an analyst with adequate related experiences
will be in a good position to construct the event sequence and assess the
various CPCs and CFFs.

CREAM has been used successfully in nuclear power applications
(Hollnagel et al., 1999), radiation therapy (Castiglia et al., 2008), food
manufacturing (Geng et al., 2015), oil tanker shipping (Zhou et al.,
2018, 2017, 2018), gas network (Desmorat et al., 2013), and hospital
pharmacies (Rantanen et al., 2012b; Rantanen et al., 2012a). Despite
these successes, CREAM has the same limitations as other second-gen-
eration methods. This means that it does not account for sources of
system errors beyond humans. Additionally, CREAM’s predictions are
static in that they do not account for how rates will change dynamically
as a system evolves. In developing SAFPHR, we attempted to fix these
issues by combining HRA and probabilistic model checking.

2.3. Formal methods and probabilistic model checking

Formal method is a broad area of study that is concerned with
formal verification (Wing, 1990): proving properties against mathe-
matical models of systems. Formal methods have been successfully used
to evaluate erroneous human behavior in complex systems to discover
specific unsafe system conditions (Bolton et al., 2013; Weyers et al.,
2017; Bolton, 2017). However, non-stochastic models are used in these
methods: making them inadequate for assessing human reliability.

Probabilistic model checking is a software-based formal verification
technique that allows analysts to automatically prove properties about
models of dynamic systems (Kwiatkowska et al., 2007). Mathematical
languages describe the behavior of a system using a stochastic model
(e.g., variants of Markov chains), specification properties describe de-
sirable system properties or request the probability of a system condi-
tion occurring, and verification either proves the specification property
or accurately computes the probability requested in it. Thus, prob-
abilistic model checking accounts for all modeled system components,
interactions, and dynamism when computing probabilities. This means
that probabilistic model checking can address the limitations of tradi-
tional HRAs by accounting for dynamic system changes and interac-
tions between humans and other errors in a system (Zheng, 2020).

2.4. Basic SAFPHR

To addresses the limits of previous HRAs and allow analysts to ac-
curately predict pharmacy errors while accounting for system dyna-
mism and non-human source of errors, we developed basic SAFPHR
(Zheng et al., 2020) by combining concepts from the basic CREAM with
probabilistic model checking using PRISM (the world’s leading open-
source probabilistic model checker; Kwiatkowska et al., 2011).

We applied basic SAFPHR. to the analysis of a typical community
pharmacy procedure and obtained a valid range of medication error
rate predictions. In particular, we modeled a common dispensing pro-
cedure (shown later in Fig. 3) along with CPC assessments from a
subject matter expert, all while accounting for the dynamism associated
with different time periods (described later in Fig. 4) as well as non-
human sources of error (such as prescriptions arriving at the pharmacy
with validity, legality, appropriateness, and safety issues). With basic
SAFPHR, we predicted that between 1.02422E-03% and 2.8856292%
of prescriptions would reach patients with an error, which were in line
with the published range of 0.057% to 11% (Szeinbach et al., 2007;
Odukoya et al., 2015). However, because basic SAFPHR is derived from
basic CREAM, the large range of predicted errors may not allow ana-
lysts to make accurate recommendations. Further, while averaging can
be used to obtain point estimates from ranges, it isn’t clear what ap-
proach (i.e. arithmetic vs. geometric) will yield the most accurate
predictions.
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Fig. 1. Graphs illustrating the method CREAM uses to adjust CPC values to account for their dependencies (Hollnagel, 1998a). Each graph represents a CPC that is
adjusted based on a list of the other CPCs on which it is dependent. The adjusted value of a CPC is calculated based on the number of the dependent CPCs that are
improved (£ Improved) and reduced (£ Reduced). A pair of sums corresponds to a point on the graph that falls within a region. The region indicates if the adjusted
value of the CPC is improved, reduced, or unchanged. Reproduced from (Zheng et al., 2020).
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Fig. 2. The method for converting CPC values (post adjustment) into COCOM
control modes in CREAM. The number of the CPCs rated as improving (=
Improved) and reducing (£ Reduced) human performance are mapped to
control modes. These then map to ranges of human error probabilities
(Peumankror) and scaling factors (S). Adapted from (Zheng et al., 2020).

Table 2
Extended CREAM Cognitive Function Failures (CFFs) and Nominal Probabilities
(CFPs) (adapted from Hollnagel, 1998a).

Function CFF CFP
Observation 0O1: Wrong Object Observed 0.001
02: Wrong Identification 0.07
03: Observation Not Made 0.07
Interpretation 11: Faulty Diagnosis 0.2
12: Decision Error 0.01
13: Delayed Interpretation 0.01
Planning P1: Priority Error 0.01
P2: Inadequate Plan 0.01
Execution E1: Action of Wrong Type 0.003
E2: Action of Wrong Time 0.003
E3: Action on Wrong Object 0.0005
E4: Action Out of Sequence 0.003
E5: Missed Action 0.03

3. Objectives

In this work, we first attempt to address the shortcomings of basic
SAFPHR (Zheng et al., 2020) by making it capable of producing point
estimates. We accomplish this by extending it with the two variations of
extended CREAM. The use of extended CREAM can potentially produce
accurate point estimates of error rates, thus avoiding averaging across
the large ranges produced by the basic methods. Based on the two
variations of extended CREAM, we have developed two versions of
SAFPHR: mode-effect extended SAFPHR and CPC-effect extended
SAFPHR. Mode-effect extended SAFPHR. uses the version of extended
CREAM where the scaling factor associated with each control mode (S
from Fig. 2) is used to modify nominal probabilities associated with

cognitive function failures. CPC-effect extended SAFPHR uses the other
approach to extended CREAM, where the scaling factor is dependent on
the individual effects of specific CPCs on specific cognitive functions
(Table 3). We will describe how we modified basic SAFPHR to create
mode-effect extended SAFPHR and CPC-effect extended SAFPHR.. We
then use these new versions of SAFPHR. to predict the overall error rate
of the typical community pharmacy dispensing procedure and compare
these predictions to those obtained with basic SAFPHR as well as rates
found in the literature.

With fully development versions of both basic and extended
SAFPHR, we set out to determine which approach was the most accu-
rate and valid. Specifically, these three versions of SAFPHR can col-
lectively produce six different methods of computing error rates: basic
SAFPHR’s upper bound (U), basic SAFPHR’s lower bound (L), basic
SAFPHR’s arithmetic mean (A) of its upper and lower bounds, basic
SAFPHR’s geometric mean (G) of these same bounds, mode-effect ex-
tended SAFPHR’s (MEE) point estimate, and CPC-effect extended
SAFPHR’s (CEE) point estimate. We describe how we apply each ap-
proach to SAFPHR to predict the error rates for different stages of the
typical community pharmacy dispensing procedure. Finally, we com-
pare these predictions to error rate estimates published by Flynn et al.
(2003), who presents both overall error rates as well as rates of errors
originating from different parts of dispensing. These comparisons allow
us to assess how accurate our predictions are both in aggregate and for
specific tasks. Based on the results of the validation, we use SAFPHR to
make recommendations for improving community pharmacy dispen-
sing.

4. Extended SAFPHR

The application of extended SAFPHR generally follows the same
procedure outlined for basic SAFPHR. (Zheng et al., 2020). The analyst
first constructs the procedure (sequence of tasks) pharmacists use for
achieving system goals. He or she must also identify which CPCs
(Table 1) are static and which are dynamic. Static CPCs represent fac-
tors that are completely dependent on the tasks of the procedure, dy-
namic CPCs are variable based on other, dynamic environmental cri-
teria. The analyst then assesses the values of the CPCs. For static CPCs,
CPCs must be assessed for each task from the procedure. For dynamic
CPCs, each is assessed at all possible levels of the system’s dynamic
elements. Because we were interested in evaluating a typical pharmacy,
we used the same community pharmacy dispensing procedure con-
structed for (Zheng et al., 2020) (Fig. 3) and the same assessment of
CPCs employed in basic SAFPHR, which were assessed by the project’s
subject matter expert Dr. Daly. “For our analysis, Goals, Available Time,

2A full listing of the survey and its results can found at http://fhsl.eng.
buffalo.edu/SAFPHR/
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Table 3
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CREAM Multiplication Factors Used to Adjust Nominal Failure Probabilities (Table 2) Based on assessed CPC
Levels (Table 1) (Hollnagel, 1998a).

Cognitive Function

CpC Assessed Level CPC Level Observation Interpretation Planning Execution
Organization  Very Efficient Improved 1.0 1.0 0.8 0.8
Efficient Not Significant 1.0 1.0 1.0 1.0
Inefficient Not Significant 1.0 1.0 1.2 1.2
Deficient Reduced 1.0 1.0 2.0 2.0
Conditions Advantageous Improved 0.8 0.8 1.0 0.8
Compatible Not Significant 1.0 1.0 1.0 1.0
Incompatible Reduced 2.0 2.0 1.0 2.0
Support Improve Improved 0.5 1.0 1.0 0.5
No Impact Not Significant 1.0 1.0 1.0 1.0
Tolerable Not Significant 1.0 1.0 1.0 1.0
Reduce Reduced 5.0 1.0 1.0 5.0
Procedures Improve Improved 0.8 1.0 0.5 0.8
No Impact Not Significant 1.0 1.0 1.0 1.0
Reduce Reduced 2.0 1.0 5.0 2.0
Goals Below Capacity Not Significant 1.0 1.0 1.0 1.0
Matching Capacity Not Significant 1.0 1.0 1.0 1.0
Over Capacity Reduced 2.0 2.0 5.0 2.0
Time Adequate Improved 0.5 0.5 0.5 0.5
Reduced Not Significant 1.0 1.0 1.0 1.0
Inadequate Reduced 5.0 5.0 5.0 5.0
Time of Day  Adjusted Not Significant 1.0 1.0 1.0 1.0
Unadjusted Reduced 1.2 1.2 1.2 1.2
Experience Improve Improved 0.8 0.5 0.5 0.8
No Impact Not Significant 1.0 1.0 1.0 1.0
Reduce Reduced 2.0 5.0 5.0 2.0
Collaboration Very Efficient Improved 0.5 0.5 0.5 0.5
Efficient Not Significant 1.0 1.0 1.0 1.0
Inefficient Not Significant 1.0 1.0 1.0 1.0
Deficient Reduced 2.0 2.0 2.0 5.0

Note. Value colors show how they impact the probability of error. Black indicates no change, Blue a decrease,

and Red an increase.

and Time of Day are dynamic because they will vary based on when a
prescription is being dispensed and the number of other tasks hap-
pening at the time. This leaves Organization, Conditions, Support,
Procedures, Experience, and Collaboration as static (a deeper discussion
of the difference between static and dynamic CPCs can be found in
(Zheng et al., 2020)). When assessing static CPCs for each task, the
procedure in Fig. 3 was presented to analysts to help them understand
what they were assessing. Similarly, the distribution of prescriptions
with percentages shown in Fig. 4 was used as a reference during dy-
namic CPC assessment. We collected the CPCs assessments by asking
our subject matter expert to fill out a CREAM survey that accounted for
the methodological differences introduced by SAFPHR while using
specific language familiar to community pharmacists. It is important to
note that the procedure evaluated, the static-dynamic CPC distribution,
and CPC level assessment can all be customized to account for the
specifics of an individual pharmacy (Zheng et al., 2020).

In both versions of extended SAFPHR, analysts are then required to
identify the primary cognitive function of each task as well as the task’s
most likely CFF (Table 2). This work was also completed by the pro-
ject’s subject matter expert. °.With these tasks completed, an analyst
uses a systematic process to convert these assessments into a formal

3The results of assessment on cognitive functions and cognitive function
failures can found at http://fhsl.eng.buffalo.edu/SAFPHR/

PRISM model and runs analyses. In what follows, we describe how this
is achieved while using our modeled procedure and assessments as an
example.

4.1. The formal modeling architecture

To enable analyst to translate a dispensing procedure model, CPC
assessments, and CFP assessments into a formal model, we modified the
formal modeling architecture from basic SAFPHR. to accommodate the
new extended versions. An overview of this architecture can be found in
Fig. 5.

In this, the task that is executing at a given time is encapsulated by
the procedure sub-model. This also controls the order in which tasks are
performed based on the analyzed procedure model (e.g. Fig. 3). The
environmental dynamism sub-model is used to represent dynamic fac-
tors in the environment that can impact the CPCs that are not specifi-
cally connected to human operator’s procedure task. In our model, this
represents the time of day (Fig. 4), which impacts the dynamic CPCs
associated with time and workload (Goals, Available Time, and Time of
Day). For a given procedure task, formulas map the state of the pro-
cedure and environmental dynamism submodels to the associated static
and dynamic CPC values. Another formula then adjusts the CPC values
in accordance with Fig. 1. An additional formula then uses principles
from extended CREAM to compute a probability of error. When the
procedure is indicating the performance of a non-human task (for
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Fig. 3. Flow diagram of the community pharmacy dispensing procedures analyzed with SAFPHR.. The procedure’s start and end are circles. Diamonds are used for
human decision tasks. Other human tasks are rectangles. Arrows point to the next step/task in the procedure. Arrows out of decisions point to the next step/task
based on the answer to the decision’s question. Reproduced from (Zheng et al., 2020).

example, “B Arrives at Pharmacy” from Fig. 3), a formula maps the step
to a probability of error which is passed through “Compute Probability
of Error”. Ultimately, procedure compliance uses the computed error
probability to determine if the given procedure step is performed
“correct” or “incorrect.” The procedure and environmental dynamism
models can observe the state of procedure compliance so that the

“correct” or “incorrect” outcomes can influence future procedure per-
formance. For example, a pharmacist examines whether part of a pre-
scription was filled properly in a decision task.

The major difference in the new version of the architecture (com-
pared to basic SAFPHR; (Zheng et al., 2020)) comes from the “Map
Procedure State to Nominal Probabilities” formula (highlighted in
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Fig. 4. Graph illustrating the distribution of prescriptions filled at a Western
New York pharmacy. There are eight time zones, where all but the last en-
capsulates a two-hour time period. The last represents a three-hour period. The
bar above each period shows the average percentage of prescriptions filled
during that period. (Reproduced from (Zheng et al., 2020)). Note that this
temporal distribution is calculated based on five-and-half months of real data
from a typical, Western New York, community pharmacy. This data was used
because it was the distribution most familiar to our subject matter expert. On
average, 425 prescriptions will be dispensed daily. The average fill counts per
hour from 6 AM to 10 PM are 29, 22, 34, 44, 39, 36, 37, 34, 33, 36, 27, 19, 12,
9, 4, 8, and 2, respectively.

blue). This functionally maps the state of the procedure sub-model to
the nominal probabilities of occurrence (CFP; Table 2). Specifically, this
formula uses CPC values to calculate the scaling factor for adjusting the
CFP. The “Compute Probability of Error” formula will then multiply the
CFP by the scaling factor associated with the control mode (S; Fig. 2;
indicated by the CPCs) or by the CPCs’ impacts (Table 3) for mode-
effect and CPC-effect extended SAFPHR respectively.

4.2. Architectural Implementation in PRISM

Following the architecture in Fig. 5, we implement the extended
SAFPHR analysis on the dispensing procedure model using PRISM’s
input language (Parker et al., 2017) for both the mode-effect and CPC-
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effect versions of extended SAFPHR.. As with the basic SAFPHR model
(Zheng et al., 2020), the procedure and dynamics from Figs. 3 and 4
and their associated CPC and cognitive function failure assessments
were formulated as a discrete-time Markov chain (DTMC). In what
follows, we describe PRISM code that was used to realize models for
both versions of extended SAFPHR. (see Figs. 6-12). Note that all of this
code is derivative of the code originally used in the creation of basic
SAFPHR (Zheng et al., 2020). Thus, the discussion below specifically
describes where differentiation occurs from basic SAFPHR..

Presented code is formatted consistently. Comments are light blue
and follow // marks. The reserved words of the PRISM modeling lan-
guage are magenta. Named constants (i.e. Improved in Fig. 6) are
green. Modules (i.e. TimePeriod in Fig. 7) are dark yellow. Variables
(i.e. t in Fig. 7) are blue. Formulas like ProbError in Fig. 8 (which are
dynamically computed in each state based on the values of the model’s
constants, variables, and other formulas) are orange. Red items are
placeholders for code that the analyst would manually specify when
completing a model. For example, b in Fig. 8 is the step of a task such as
Task_b. Similarly, DecisionCriterion is a Boolean expression in-
dicating when a decision task should evaluate to “yes.”.

Fig. 6 lists all the constants that will be shared in later model con-
cepts for both versions of extended SAFPHR. Constants in lines 4-25
are defined the same as in basic SAFPHR. Improved, NotSignifi-
cant, and Reduced from lines 4-6 are integer constants representing
the three levels of CPCs. From lines 9-11, Incorrect, NotApplic-
able, and Correct are constants for indicating if a task was per-
formed incorrectly, not performed yet (or at all), or correctly. The
Correct and Incorrect constants are also used to represent whether
components of a filled prescription have errors. From lines 14-18,
Start-End define unique IDs for each element in the procedure model
(Fig. 3). In special circumstances, such as the non-human task “B Ar-
rives at Pharmacy” from Fig. 3, the element has two IDs (RxArrivesl
and RxArrives?2 in Fig. 6) because it must account for two respective
factors in the modeled prescription: (1) its validity and legality and (2)
its appropriateness and safety. In lines 21-22, constants define the
probabilities of prescriptions arriving with validity and legality (p_v)
and appropriateness and safety (P_S) problems. The actual probabilities
used here were based on the values we identified through a combina-
tion of literature review and simulation analyses (Zheng et al., 2020;
Zheng, 2020). The probability that a patient will discover errors with a
prescription once it has been delivered to her (Witte and Dundes
(2007)) occurs on line 25. Finally, for both versions of extended
SAFPHR, we define the constant nominal values for each type of cog-
nitive function failures from Table 2 in lines 28-34.

f h / [ N
! Map Procedure ! | Map Procedureto !
Procedure Procedure MapProcedure to | } p . i P | Procedure
State —> | State to Nominal | ! Non-human Source | ;
Model ﬁ;b Static CPC Values | w.‘ S Probabilities | | of Error | Compliance
5 b
CPBs ML - e -
==s) Static \N inal Non-h Probabil
CPC omina on-human robability
Values Probability Error Probability of E[ror
{/ 7777777777 o\ \ iiiiiiiiii ™\ P N
- Environmental SEtmtl. | Mggnir:r\{i'cto LD%‘SQE " AdustcPC CPC | Compute Probability i
Dynamism ate r‘ CPC Values J Values > : Values | Values } of Error :
Aepes - —

Fig. 5. Overview of extended SAFPHR’s formal modeling architecture. Solidly lined shapes are sub-models. Dotted shapes are formulas (functions that compute
values using variables from other formulas and sub-models). Variables shared between sub-models and formulas are represented with arrows. Dotted arrows
represent shared variables that could exist in the architecture, but are not used in current analyses. Note that “Map Procedure State to Nominal probabilities,” which
is highlighted, represents the new contribution beyond what was reported in (Zheng et al., 2020).
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1| dtmc

int
int
int

3
4] const
5| const
6| const

Improved =1;
NotSignificant =
Reduced =

I
o
~

Incorrect
NotApplicable 0;
Correct = 1;

int
int
int

9| const

10| const
u| const

int
int
int

Start = 1;
RxArrivesl
RxArrives2 = 3;

14| const
15| const
16 const

I
N
~

18| const int End = 32;

t double
t double

21

Q Q
O O
g
n <

|
= e

22
23
24
25| const
26

double P_PatientFindsIssues = 12/33;

27
28| const

29| const

double
double
double
double
double
double
double

Ol_WrongObjectObserved

03_ObservationNotMade =
I2_DecisionError =
Pl_PriorityError =
El_ActionOfWrongType =
E3_ActionOnWrongObject =
E5_MissedAction =

.001;
.07;
.01;
.01;
.003;
.0005;
.03;

30| const
51| const
32| const
33| const
34| const

O O OO o oo

35

double
double
double
double
double
double

.07;
.2;
.01;
.01;
.003;
.003;

02_WrongIdentification =
I1_FaultyDiagnosis =
I3_DelayedInterpretation =
P2_InadequatePlan =
E2_ActionAtWrongType. =
E4_ActionOutOfSequence =

const
const
const
const
const

O O O O oo

const

Fig. 6. Example model code for defining general constants that will be used in later model concepts for both versions of extended SAFPHR. Those constants defined
from lines 4-22 were also used in basic SAFPHR analysis (Zheng et al., 2020). Constants in lines 28-34 will be used in extended SAFPHR analysis to define the

associated nominal probabilities for each CFF.

37|l module TimePerioc

38 t:[0..8] init O0;

39 [] £t =0->0.12 (t" = 1)

40 + 0.18 (t’ = 2)

41 + 0.18 : (t’ = 3)

42 + 0.17 : (£t = 4)

43 + 0.16 : (£’ =5)

44 + 0.11 (£’ = 6)

45 + 0.05 (£ =17)

46 + 0.03 (t’ = 8);

47| endmodule

Fig. 7. Example model code for implementing the environmental dynamism of
the model TimePeriod from Fig. 4 for both versions of extended SAFPHR.
This TimePeriod module were also used in basic SAFPHR (Zheng et al.,
2020).

Figs. 7 and 8 describe the two synchronously composed modules
that represent the discrete-time Markov chain behavior of the model for
the environmental dynamism of the model (TimePeriod) and the
performance of the dispensing procedure (Procedure) respectively.
Both are unchanged from basic safer.

The TimePeriod module appears in lines 37-47 from Fig. 7. In
this, t represents which of the eight time periods a prescription arrives
in Fig. 4. The time period t in the larger model’ state is assigned based
on the distribution of prescription arrivals (the detailed transition as-
signment are listed in lines 39-46). Thus, there is a 12% chance that t
will equal 1, an 18% chance that it will be 2, and so on for all eight time
periods.

The module for representing the procedure is presented in lines

50-100 of Fig. 8. This has a single variable ProcedureStep (line
52) to represent the element of the procedure being performed. The
following variables (lines 55-68) are associated with each task of the
procedure, indicating if it has been performed correctly (Correct),
incorrectly (Incorrect), or not performed (NotApplicable; the
default). This includes RxValidLegal and RxAppSafe, which ac-
count for non-human source of errors and (in our implementation)
whether the prescription arrives to the pharmacy with errors. All other
variables that begin with Task_ are generic. The transition logic that
follows variable definition describes how the procedure changes based
on modeled system conditions. The first transition (lines 70-71) starts
the performance of the procedure. This requires that module Time-
Period to have assigned a value for t that is bigger than 0. With this
assignment completed (t > 0 to be true), with a probability of 1, the
procedure step will be set to RxArrivesl (the ID of the first task in
current model). The two transitions that follow (lines 73-78) show how
a non-human task is represented. Because the task in question (“R
Arrives at Pharmacy”; Fig. 3) can determine whether a prescription
arrives with errors in two different ways, its behavior is spread over two
transitions. The first determines if validity and legality issues will exist
in the arriving prescription. In this, with a probability of P_v (a con-
stants), RxValidLegal will be Incorrect indicating that the pre-
scription is invalid or illegal; with a probability of 1 - P_V, RxVali-
dLegal will be Correct implying that the prescription will arrive
without validity and legality errors. The ProcedureStep will move to
the next transition in both situations. In the second transition, the same
logic is used to determine if the arriving prescription contains appro-
priateness and safety issues.

Transitions from lines 59-68 (Fig. 8) describe different generic
types of human task behavior. Given that these are human tasks,
probability of each being performed erroneously (ProbError) is
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module Procedure
ProcedureStep [Start..End] init Start;
RxValidLegal [Incorrect..Correct] init NotApplicable;
RxAppSafe [Incorrect..Correct] init NotApplicable;
Task_a, [Incorrect..Correct] init NotApplicable;
Task_Db, [Incorrect..Correct] init NotApplicable;
Task_c, [Incorrect..Correct] init NotApplicable;
Task_d, [Incorrect..Correct] init NotApplicable;
Task_e, [Incorrect..Correct] init NotApplicable;
Task_f, [Incorrect..Correct] init NotApplicable;
Task_g, [Incorrect..Correct] init NotApplicable;
Task_h, [Incorrect..Correct] init NotApplicable;
[l £ >0 & (ProcedureStep = Start) ->
1 (ProcedureStep’ = RxArrivesl);

[1 (ProcedureStep = RxArrivesl) ->

1 -P_V (RxValidLegal’ = Correct) & (ProcedureStep’ = RxArrives2)
+ P_V (RxValidLegal’ = Incorrect) & (ProcedureStep’ RxArrives2);
[1] (ProcedureStep = RxArrives2) ->
1 - P_S (RxAppSafe’ = Correct) & (ProcedureStep’
+ P_S (RxAppSafe’ = Incorrect) & (ProcedureStep’
[1 (ProcedureStep = b) & DecisionCriterion ->
1 - Pr Error (Task_b’ = Correct) & (ProcedureStep’ = c)
+ ProbError (Task_b’ = Incorrect) & (ProcedureStep’ = d);
[] (ProcedureStep = b) & !DecisionCriterion ->
1l - ProbError (Task_b’ = Correct) & (ProcedureStep’ = d)
+ ProbError (Task_b’ = Incorrect) & (ProcedureStep’ = c);
[1 (ProcedureStep = e) —>
1 - Pr Error (Task_e’ = Correct) & (ProcedureStep’ f)
+ P (Task_e’ = Incorrect) & (ProcedureStep’ = f);
[] (ProcedureStep = g) & ErrorInFilledPrescription ->

1 - P_PatientFindsIssues
+ P_PatientFindsIssues

[1 (ProcedureStep =

1
endmodule

g)

&

(ProcedureStep’ = End)
(ProcedureStep’ = h);

!ErrorInFilledPrescription ->

(ProcedureStep’

= End);

Fig. 8. Example model code for implementing the procedure sub-model for both versions of extended SAFPHR. This Procedure module were also used in basic
SAFPHR analysis (Zheng et al., 2020) to describe how the prescription will move through the procedure.

formule
formu
formul
formu
formu

formula Collaboratic

formula Collal

formula CFP =

ProcedureStep =

Gaaa
]
[N

ProcedureStep =

ProcedureStep
ProcedureStep
ProcedureStep
ProcedureStep

[ SR

ProcedureStep =

i ? CFP_i

Support_i

ENIEN PRI IUN TN

Improved ? 1 : O

Improved ? 1

Reduced ? 1 : 0

Reduced 2?1

0;

Procedures_
Experience_
Collaboration_i

Reduced
Reduced
Reduced
NotSignificant

Organization_i
Conditions_.

i

i
i

)
0))
)
0))

NotSignificant;
NotSignificant;

2 ? Reduced : Coll

Improved;

NotSignificant;
NotSignificant;
NotSignificant;
NotSignificant;
NotSignificant;
NotSignificant;

2 ? Improved

Fig. 9. Example model code for implementing all shared formulas that will be used for both versions of extended SAFPHR.. The formula definitions from lines
103-122 were also used in basic SAFPHR analysis (Zheng et al., 2020). CFP is the new formula defined to get the corresponding cognitive function probabilities for
each task.
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127
128

129 ble StrategicS = 0.94; const double TacticalS = 1.9;

130 double OpportunisticS = 7.5; const douk ScrambledS = 23;

131

132

33| formula e = ( 1 = Reduced ? 1 0) + ( e y = Reduced ? 1 0)
134 + ( 3j = Reduced ? 1 0) + ( e e = uced ? 1 0)
135 + (ConditionsAd: = Reduced ? 1 0) + (Suppor = >duced ? 1 0)
136 + (Pr r = Reduced ? 1 0) + (Experien = Reduced ? 1 0)
137 + tionAdj = Reduced ? 1 0);

18| formula 1 = ( 1ization = Improved ? 1 0) + ( f = Improved ? 1 0)
139 + ( 1sAdj = Improved ? 1 0) + ( T i = Improved ? 1 0)
140 + ( 1 nsh = Improved ? 1 0) + ( = Improved ? 1 0)
141 + ( = Improved ? 1 0) + ( = Improved ? 1 0)
142 + ( = Improved ? 1 0);

143

us| formula e = ( e 0 & mIimp >= 4) | (N ed = 1 & np >= 5)

145 [« ed = 2 & mlmp >= 6) ? Strategics

146 ( =0 & NumImp < 4) | (N 1 & Numlmp < 5)

147 [ ( =2 & NumImp < 6) | (Nur = 3 & NumImp >= 2)

148 |« =4 & Numlmp >= 3) | (Nu 5 & NumlImp >= 4) ? Tactical$S

149 ( =3 & mImp < 2) | (Nu = 4 & NumImp < 3)

150 | ( R =5 & NumlImp < 4) | (Numk >= 6 & Numlmp >= 1) ? OpportunisticS
151 ScrambledS;

152

153] formula = ngx > 1 7 1: * ;

Fig. 10. Example model code for completing model for Mode-Effect Extended SAFPHR: [the version that adjusts the nominal probability with scaling factors dictated
by the control modes (S from Fig. 2)]. The formulas NumRed and NumImp from lines 133-142 were also used in basic SAFPHR analysis (Zheng et al., 2020) to count
the number of CPCs that are improved and the number of CPCs that are reduced. Codes in lines 129-130 and in lines 144-151 are specifically used to calculate the
weighting factors to adjust the CFP for mode-effect extended SAFPHR. The formula ProbError in line 153 shows how the probability of error will be calculated in
mode-effect extended SAFPHR. analysis.

computed using a formula reported in Fig. 10 or Fig. 12 for different execution, where DecisionCriterion (a placeholder for a task-
versions of extended SAFPHR. (discussed later). Lines 82-87 depict how specific Boolean expression) is true and the pharmacist should decide
two transitions are used to represent a decision task. The two transitions “Yes” or DecisionCriterion is false (! DecisionCriterion) and
account for the two conditions that could occur during model he or she should decide “No,” with errors potentially made under both

13| formula EXEOrganization = Organization =1 ? 0.8 : rganization =0 2 1 : 1.2 ;

15| formula ki itior = lition 7 =1
136| formula INTWorl I = Condi Ons? =1

17| formula PLANW t =1;
18| formula E k I = 11 1 =172 0.8 : 5 =-1722 :1;

yo| formula 3y I PP = Sup =172 0.5 : - =-17?257:1;

12| formula pe Pr =
13| formula EXEOperationalSuppor = pport =1 2 0.5 : pport = -1 2 5 : 1;

5| formula OBSPr reAvailability = Pr r =172 0.8 : Pr r =-1?22 :1;
u6| formula b reAvai ility =15
u7| formula PLANP reAvailability = P 1 =

u8| formula E s ceAvail lit =P edure
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Fig. 11. Example model code using in CPC-Effect Extended SAFPHR models to implement the CPC-based scaling of probabilities from Table 3.
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174
175
16| formula = . ProcedureStep = i ?
177| formula = . ProcedureStep = i ? Inte
18| formula = . ProcedureStep = i ?
19| formula = . ProcedureStep = i ?
180
81| formula = =020
* *
;
182
83| formula = =020
* *
;
184
185] formula = =020
* *
;
186
187| formula = =020
* *
;
188
89| formula = max ( ’ ’ ’ )
190
11| formula = * > 1?21 :

*

ObservationError_i
rpretationError_i
PlanningError_i
ExecutionError_i

i

Fig. 12. Example model code for completing models for CPC-Effect Extended SAFPHR analysis by calculating the scaling factors for CPCs and the probabilities of
error. Lines 176-189 together with the content of Fig. 11 illustrate how we calculate the weighting factors used to adjust the CFP. The formula ProbError in line

191 shows how the probability of error is calculated.

conditions. Note that across these transitions, the task procedure that
will be performed next will be determined by the truth of Deci-
sionCriterion as well as whether or not the pharmacist makes an
error. In contrast to a decision task, a standard human task (see 1ines
90-92) only had one transition, has no DecisionCriterion, and
only ever proceeds to one next step.

The last set of transitions in the module (lines 95-99) represent the
transitions that can complete the prescription filling process and setting
ProcedureStep to End. These transitions also account for contexts in
which a patient may discover an error in the filled prescription and may
either give it back to the pharmacist or accept it (both conditions that
can occur with or without error). For these transitions,
ErrorInFilledPrescription represents a Boolean expression that
indicates if the filled prescription contains any error. If the arriving
prescription is invalid, illegal, inappropriate, or unsafe, and the phar-
macists failed to catch and correct those issues; or if the pharmacists
made any mistakes under the “Dispense R” sub-model, the value of
ErrorInFilledPrescription will be true. It is false otherwise.
Furthermore, if the prescription contains an error, there is a set prob-
ability that the patient will identify it (P_PatientFindsIssues in
Fig. 8). Thus, under ProcedureStep g and Error-
InFilledPrescription, with a probability of P _Patient-
FindsIssues (a constant discussed above), the patient discovers an
error thus the ProcedureStep will go back to a middle step. All of the
filled prescriptions will be delivered otherwise.

Fig. 9 shows all the shared formulas that will be used in both ver-
sions of extended SAFPHR. Formulas in lines 103-122 were also used
in the implementation of basic SAFPHR, where the three formulas in
lines 103-106 compute the three dynamic CPC values based on the
time period t and those in lines 110-115 determine the values of the
static CPCs at the current procedure step (all derived from assessments
performed with the subject matter expert). The formula in lines
119-122 provides an example of how the “Collaboration” CPC is ad-
justed based on rules from Fig. 1. The remaining formula in line 126,
was unique to the implementations of extended SAFPHR. In this, we
determine the nominal probability of an error occurring (the CFP value)
at the current procedure step based on which CFF is most relevant to
the current task (note that this is determined by assessments taken from
the subject matter expert). If ProcedureStep = i, the value of CFP at
step i will be CFp_i. Otherwise, the value of CFP will be Not-
Significant. Note that i represents a placeholder for any given pro-
cedure step and CFP_i is the assessed value of the CFP for that step.

11

Fig. 10 illustrates the supplement steps that are required to com-
plete the mode-effect extended SAFPHR: analysis while Figs. 11 and 12
list all the supplement code required to complete the CPC-effect ex-
tended analysis. Code for both extended SAFPHR versions are designed
to compute the required scaling factors and then calculate the prob-
abilities of human error (ProbError) used in the transitions from
Fig. 8.

For mode-effect extended SAFPHR, the formulas for NumRed and
NumImp (lines 133-142 in Fig. 10) are used to count the number of
CPCs (post adjustment) rated as Reduced or Improved, respectively.
The ModeScaling formula (lines 144-151) uses these values to
compute the scaling factor associated with the COCOM control modes
(S from Fig. 2). In this model, the different possible values of S are
modeled as the constants StrategicS, TacticalS, Opportunis-
tics, and ScrambledsS from lines 129-130. Then, the probability of
error is computed by multiplying the values of ModeScaling and CFP
via the formula ProbError (Fig. 10, 1ine 153). Note that if the CPCs
are assessed as being generally unfavorable, the calculated total influ-
ence of the CPCs could be large, which will lead to a probability greater
than 1. Since this violates the laws of probability, we adopt the method
used in CREAM (Hollnagel, 1998a), where such values become 1.

For CPC-effect extended SAFPHR, all formulas in Fig. 11 are used to
represent the rules described in Table 3 into PRISM’s input language.
For example, the OBSWorkingConditions (line 135) represents how
the CPC “Conditions” will impact an “Observation” function-related
error. The value that measures this impact will be determined based on
the value of Conditions for the current activity (ProcedureStep). If
Conditions is rated as Improved, the scaling factor for it adjusting
“Observation” function-related failures is 0.8; if the Conditions is
NotSignificant, the scaling factor will be 1; if the Conditions is
Reduced, the scaling factor will be 2. All of these scaling factors will be
passed through formulas OBS, INT, PLAN, and EXE (lines 181-187
from Fig. 12)) to calculate the total influence of the CPCs under Ob-
servation, Interpretation, Planning, and Execution respectively. To get
these total influence factors, we also need to know the corresponding
cognitive function from Table 2 based on the assessment of cognitive
function failures. Formulas from lines 176-179 are used to calculate
this information: where each of the four variables (Ob-
servationError, InterpretationError, PlanningError, and
ExecutionError) will be 1 if the procedure step is associated with
the corresponding cognitive function and 0 otherwise. The 1 or 0 values
are encompassed by ObservationError_i,
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InterpretationError_i, PlanningError_i, and Execu-
tionError_i for a given step i in the model. For example, when
ProcedureStep = i, if the current procedure step is identified to
have an Observation-related error, ObservationError_i will be 1
and InterpretationError_i, PlanningError_i, and Execu-
tionError_i will be 0 because the failure of each task will only fall
into one function category. Thus, formula CPCWeighting (line 189)
can use the MAX function to find the weighting factor that accounts for
how specific CPCs impact the associated cognitive activities. Similar to
mode-effect extended SAFPHR, multiplying CFP by a weighting factor
CPCWeighting will get the probability of error (formula ProbError
from line 191).

4.3. Specification properties

To perform analyses on a formal model using probabilistic model
checking, an analyst must have a specification property that requests
the computation of a probability or proof about the model. To make
predictions using the two new versions of extended SAFPHR. compar-
able with predictions from basic SAFPHR and published overall error
data, we check a probabilistic temporal logic property we identified in
(Zheng et al., 2020) called Procedure Eventual Reliability. This allows
us to use probabilistic model checking to assess the overall reliability of
the pharmacy procedure (its overall dispensing error rate, which we
refer to as procedure eventual reliability) with:

Procedure Eventual Reliability:

(ProcedureStep = End)

(RxValidLegal = Incorrect)
A| V(RxAppSafe = Incorrect)
Vier(t = Incorrect)

P=7?

(€Y

This tells PRISM to calculate the probability (P = ?) that the prescrip-
tion eventually (F) is delivered to the patient (ProcedureStep = End)
with an error that the prescription either arrived with
((RxValidLegal = Incorrect)V(RxAppSafe = Incorrect)) or manifested
through the misperformance of any of the human tasks from the “Dis-
pense B” and “Deliver R to Patient” sub-models (t € T).

4.4. Methods

Using extended SAFPHR with the CPC and CFF assessments from
our subject matter expert, we evaluated the reliability for the same
typical United States community pharmacy in Fig. 3 (based on data
from a Western New York pharmacy that does not use automated dis-
pensing equipment; see Fig. 4) as in the basic SAFPHR analyses (Zheng
et al., 2020).

To calculate the overall error rate of the procedure, specification
asserted using the property pattern in Eq. (1) was checked using the
PRISM model checker on a desktop computer with a 3.70 GHz Xeon
processor and 128 GB of RAM running Linux Mint. In doing this, we
used PRISM’s command-line option to set the upper memory limits to 4
Gigabytes and to use the multi-terminal binary decision diagrams
(MTBDDs) engine, the developer-recommended option for enabling
PRISM to handle large, structured models (Parker, 2003).

4.5. Results and conclusion

Our analyses of the formal models resulted in CPC-effect extended
SAFPHR predicting a procedure eventual reliability error rate of
0.125069976, after 210.671 seconds of analysis time. The mode-effect
extended SAFPHR analysis produced an error rate of 0.060506516 in
920.884 seconds. By comparison, basic SAFPHR produced a range of
error rates between 1.02422E-05 and 0.028856292 (in 33.098 and
153.238 s respectively), with a geometric mean of 0.000543647 (Zheng
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Fig. 13. A graph indicating the relationship among published error data with
error rate estimates predicted by different versions of SAFPHR. Note that the
upper and lower bounds as well as the geometric mean for basic SAFPHR were
originally reported in (Zheng et al., 2020). The arithmetic mean was computed
as the arithmetic average of the upper and lower bound.

et al., 2020) and an arithmetic mean of 0.014433267. Fig. 13 compares
the computed rates along with the range of error rates reported in the
literature (Szeinbach et al., 2007; Odukoya et al., 2015).

This showed how we were able to successfully incorporate extended
CREAM concepts into SAFPHR to create two versions of extended
SAFPHR and use these to analyze the reliability of the community
pharmacy procedures. By grounding the HRA in extended CREAM
(Hollnagel, 1998a) and the PRISM probabilistic model checker
(Kwiatkowska et al., 2011), both versions of extended SAFPHR. allow us
to get point estimation on reliability error rates.

However, the results produced by extended SAFPHR are incon-
sistent with results from basic SAFPHR.. As was shown in Fig. 13, both
versions of extended SAFPHR. produced error rate predictions that were
outside of the range predicted by basic SAFPHR.. In fact, both were
noticeably higher than basic SAFPHR’s upper bound. Furthermore,
three of the estimates reported in Fig. 13 failed to fall into the published
error rate ranges: the value produced with CPC-effect extended
SAFPHR, the lower bound predicted by basic SAFPHR, and the geo-
metric mean calculated from the basic SAFPHR range. However, basic
SAFPHR’s lower bound and geometric mean are both very close to the
lowest error rate of 0.057% reported by (Szeinbach et al., 2007). The
error rate 0.125069976 produced with CPC-effect extended SAFPHR is
the only one clearly outside of the range seen in the literature. The
inconsistent estimates among different approaches make it unclear
which version of the method should be trusted. Thus, in what follows,
we set out to determine which of the six different SAFPHR. estimation
methods produces the most valid predictions.

5. Validation

Given the range of possible realistic values from the literature
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Table 4
The rates of errors originating from different stages.
Dispensing Error Rate
Stage L 1) G A CEE MEE By Flynn et al. (2003)
Screening 0.0000001 0.0004023 0.0000046 0.0002012 0.1203438 0.0056226 0.0002232
Order Entry 0.0000032 0.0071865 0.0001513 0.0035948 0.1224741 0.0297437 0.0035706
Get Drug < 1E-07 0.0000807 0.0000000 0.0000403 0.1200007 0.0000888 0.0055791
Count Drug 0.0000006 0.0078885 0.0000709 0.0039446 0.1203449 0.0023049 0.0015622
Packaging and Label < 1E-07 0.0008701 0.0000018 0.0004351 0.0001924 0.0058238 0.0002232
Inspection and Storage 0.0000070 0.0222254 0.0003947 0.0111162 0.1230375 0.0378611 0.0113814
SR 0.0225287 0.0161138 0.0219164 0.0032074 0.5838538 0.0589053 0
Log SR 27.3169485 3.9845467 13.5061329 2.8913570 8.5847381 6.2275372 0
Uss 0.0001758 0.0002014 0.0001658 0.0000365 0.0682357 0.0014774 0

In the above, L, U, G, A, CEE, and MEE represent the lower model of basic SAFPHR, upper model of basic SAFPHR, geometric mean of basic SAFPHR, arithmetic
mean of basic SAFPHR,, CPC-effect extended SAFPHR, and mode-effect extended SAFPHR. respectively. SR, Log SR, and USS represent the sum of residuals, logarithm
sum of residuals, and unweighted sum of square between the current column of data with the last column of data by Flynn et al. (2003).

(Szeinbach et al., 2007; Odukoya et al., 2015), we had to find other
types of data on which to make validation comparisons. Fortunately,
SAFPHR supports a number of different specification properties that
can be used to determine the reliability of different parts of a procedure
(Zheng et al., 2020). Thus, for the validation study, we compared re-
sults from each approach to SAFPHR. to rates published in an aggregate
and comprehensive study by Flynn et al. (2003). The particular study
was chosen for two reasons. First, the error data were obtained by
observing 50 pharmacies across the United States for approximately
10 months. Pharmacies from all four U.S Census Bureau regions (Mid-
west, Northeast, South, and West) were involved in their observational
experiments. This makes their data collection more representative and
general compared to other reports from the pharmacy literature.
Second, and most importantly, Flynn et al. (2003) also measured the
rate of process deviations and actual errors occurring at each stage of
the prescription filling process. While the actual error rates among
pharmacies could be different due to the variations in working process
and environment, this study is good for allowing us to compare the
relative size of rates from different parts of the process. These rates are
shown later in the last column of Table 4. This allowed us to compare
the accuracy of overall error rate predictions and error rates from dif-
ferent stages of the dispensing procedures.

5.1. Modeling

As shown in Table 4, Flynn et al. (2003) measured the frequency of
errors occurring at different stages of the filling process: Screening,
Order Entry, Get Drug, Count Drug, Packaging and Labeling, Inspec-
tion, and Storage of Filled Prescription. To check model predictions
against these numbers, we first mapped tasks from our procedure
(Fig. 3)) to each of Flynn et al. (2003) stages. “Data Entry” and “Print
Label” from Fig. 3 correspond to Flynn et al. (2003) Order Entry stage;
“Get Stock Bottle” and “Bottle Passes NDC check?” fall into the Get
Drug stage; “Count Medication” represents the Count Drug stage, “At-
tach Label” and “Attach Auxiliary Label” are in the Packaging and La-
beling stage; “Is Correct Label Attached?”, “Is Label Data Correct?”, “Is
Drug Correct”, “Is Quantity of Drug Correct?”, “Is Correct Auxiliary
Label Attached?”, “Give Filled R to Patient”, and “Deliver Counseling to
Patient” all correspond to inspection and storage; the remainder of
Fig. 3’s tasks account for the Screening stage.

With this mapping complete, we formulated specification properties
to compute the probability of errors occurring at each of the different
Flynn et al. (2003) stages. Each of these properties, when checked,
calculate so called eventual reliability (Zheng et al., 2020): error rates
based on whether errors are still present once the prescription is de-
livered to a patient. All of these specifications followed the pattern:
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Eventual Reliability of StageX:
(ProcedureStep = End)

F/\( \/

taskeStageX

P=7? (task = Incorrect))

(2)

This tells the model checker to compute the probability (P = ?) that
eventually (F) the procedure will end (ProcedureStep = End) with one
or more of the tasks associated with the given state (StageX) having
been done incorrectly (\/mk eStageX (task = Incorrect)).

Specification properties of this form were formulated for all six of
the stages identified by Flynn et al. (2003).*

5.2. Methods

While using the nominal community dispensing procedure (Fig. 3)
and CPC and CFF assessments from our subject matter expert, we
checked the six specifications (one for each stage) formulated using the
property pattern from Eq. (2) to compute error rates comparable to
those reported by Flynn et al. (2003). This was done for each of the
estimation options for basic SAFPHR (upper bound, lower bound,
geometric mean, arithmetic mean) as well as CPC-effect extended
SAFPHR, and mode-effect extended SAFPHR..

As in the previous analyses, we constructed the models and con-
ducted the model checking using the PRISM model checker (with the
same command-line options) on the same computer workstation. Note
that, for specific cases that would not converge within 10000 iterations,
we increased the speed of convergence by using the “topological value
iteration” method and set the “termination epsilon” to 0.001. This only
occurred when checking the rate of errors originating in the packaging
and labeling stage with CPC-effect extended SAFPHR..

To facilitate comparison between how well the different model
predictions fit Flynn et al.’s data, we also calculated several goodness of
fit measures. The first two were based on the sum of residuals in for
both the base 10

n
SR=Y Iy — 7l

i=1

3)
and the logarithmic

LogSR = Z llog, .y, — log, 7!

i=1

4

scales. Note that in Egs. (3) and (4), y, is the actual probability and 7; is
the predicted probability. These gave us aggregate measures of the

4 A full listing of specification properties checked in this work can be found at
http://thsl.eng.buffalo.edu/SAFPHR/
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Fig. 14. The predicted SAFPHR point estimates of error rates originating from different stages of the dispensing on (a) base 10 and (b) logarithmic scales.

distance between the curves on both coordinate systems. The third
statistical indicator we used was the Unweighted Sum of Squares (USS):

n
USS =), o — &)

i=1

(5)

This was used because it has been shown to be an effective test for the
goodness of fit for proportions (Copas, 1989; Hosmer et al., 1997;
Allison, 2014). In all three of these measures, lower scores are better.

5.3. Results

The results of the verifications from each stage’s eventual reliability
property (Eq. (2)) are shown in Table 4. To better visualize these data,
we compare predicted and actual (Flynn et al., 2003) rates on a stan-
dard base 10 scale (to illustrate the difference in prediction estimates)
and on a logarithmic scale (to illustrate the difference in orders of
magnitude) in Fig. 14. An examination of these results from both per-
spectives suggests that the worst predictions were made by CPC-effect
SAFPHR (dashed green), basic SAFPHR’s lower bound (light blue da-
shed line), and basic SAFPHR’s geometric average (dotted gray line),
while the best predictions were made by the arithmetic average of basic
SAFPHR (the yellow dotted line).

Each of the three goodness of fit metrics ranked the six safer

0.14
0.1250700
0.12
2 010
& 0.0171837| from Flynn et al. (2003)
g 008 0.0605065
w
s 006
o 0.0288563
© 004
0.0005436 0.0144333
002 b e e e /e = e e e ——————-
000 0.0000102
L u G A CEE MEE
Methods

Fig. 15. The procedure eventual reliability error ratew predicted using different
versions of SAFPHR.. Note that L, U, G, A, CEE, and MEE represent the lower
bound from basic SAFPHR, upper bound from basic SAFPHR, geometric mean
from basic SAFPHR, arithmetic mean from basic SAFPHR, prediction from
CPC-effect extended SAFPHR, and prediction mode-effect extended SAFPHR
respectively. The blue dotted line indicates the actual error rate reported by
Flynn et al. (2003).
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predictions differently (Table 4). However, all three were consistent
with our observations from Fig. 14: that basic SAFPHR/’s arithmetic
mean produced the best performance.

From the comparison of overall procedure eventual reliability error
rate predictions using different versions of SAFPHR (see Fig. 15), we
further found that the prediction made by the arithmetic mean for basic
SAFPHR produced the closest overall error rate to that observed by
Flynn et al. (2003).

6. Discussion And future work

In this work, we showed how we were able to incorporate extended
CREAM concepts (Hollnagel, 1998a) into SAFPHR to create two ver-
sions of extended SAFPHR.. This gave us the ability to find point esti-
mates for human error rates. We used the new methods to analyze the
reliability of a typical community pharmacy procedure and compared
predictions to previous predictions with basic SAFPHR. and the litera-
ture. Because the rates produced from the different versions of SAFPHR
were inconsistent, we conducted a validation study to determine which
of the different point estimates that can be obtained from SAFPHR. are
the most accurate. This showed that the arithmetic mean of basic
SAFPHR’s range was able to predict error rates best for both where they
originate in a procedure and for the overall procedure.

In the following discussion, we explore the implication of these
results from several perspectives. First, because the arithmetic average
of basic SAFPHR. ranges produced the most accurate results, we revisit
the community pharmacy recommendations made in Zheng et al.
(2020), which were based on the use of the geometric mean. Next, we
investigate why CPC-effect extended SAFPHR. appeared to perform
worse than all of the other options, even though the theory would
suggest it would perform the best. Finally, we explore the limitations of
our method and recommend future research directions.

6.1. Recommendations for improving community pharmacy

In addition to the property for computing procedure eventual re-
liability (Eq. (1)), Zheng et al., 2020) introduced a number of methods
for computing useful and insightful error rates from a SAFPHR model
(all of which can be applied to any version of SAFPHR.). Here, we revisit
the recommendations made by Zheng et al. (2020) to determine what
interventions have the potential to be the most effective given that this
work has shown the arithmetic mean of basic SAFPHR averages are the
most valid. Note that we restrict our discussion here to the analyses that
provide the most insights into task-level design interventions. Ad-
ditionally analyses can be found in (Zheng, 2020).
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Task General Reliability, Procedure Eventual Probability without task error contributions (New Prob.), and its Improvement over original Procedure Eventual

Reliability using the Arithmetic Mean of Basic SAFPHR’s Range.

Task Task General Reliability New Prob. Improvement
“Is Valid and Legal?” 0.0573620 0.0142598 0.0001735
“Contact Prescriber” 0.0160587 0.0144333 < le-07
“Document changes” (validity and legality issues) 0.0001109 0.0144295 0.0000037
“Is Appropriate and Safe?” 0.0528028 0.0144154 0.0000178
“Contact Patient and/or Review history” (appropriateness and safety issues) 0.0009876 0.0144333 < le—07
“Contact Prescriber” (appropriateness and safety issues) 0.0099080 0.0144333 < le—07
“Document Changes” (appropriateness and safety issues) 0.0009867 0.0144300 0.0000032
“Data Entry” 0.0090344 0.0140826 0.0003506
“Print Label” 0.0090849 0.0112709 0.0031624
“Get Stock Bottle” 0.0921102 0.0143964 0.0000369
“Bottle Passes NDC check?” 0.0109651 0.0143964 0.0000369
“Count Medication” 0.0787577 0.0105909 0.0038424
“Attach Label” 0.0782910 0.0141011 0.0003321
“Attach Auxiliary Label” 0.0180332 0.0143670 0.0000663
“Is Valid and Legal?” (final check, validity and legality issues) 0.0662771 0.0142611 0.0001721
“Contact Prescriber” (final contact, validity and legality issues) 0.0008269 0.0144333 < le—-07
“Document Changes” (final changes, validity and legality issues) 0.0000117 0.0144300 0.0000032
“Is Appropriate and Safe?” (final check, appropriateness and safety issues) 0.0081712 0.0144131 0.0000202
“Contact Patient” (final contact, appropriateness and safety issues) 0.0001395 0.0144333 < le—07
“Contact Prescriber” (final contact, appropriateness and safety issues) 0.0002219 0.0144333 < le—07
“Document Changes” (final changes, appropriateness and safety issues) 0.0000194 0.0144325 0.0000007
“Is Correct Label Attached?” 0.0008214 0.0140826 0.0003506
“Is Label Data Correct?” 0.0007329 0.0141011 0.0003321
“Is Drug Correct” 0.0000798 0.0143959 0.0000373
“Is quantity of Drug Correct?” 0.0063675 0.0105909 0.0038424
“Is Correct Auxiliary Label Attached?” 0.0001140 0.0143646 0.0000686
“Give Filled R to Patient” 0.0050662 0.0112709 0.0031624
“Deliver Counseling to Patient” 0.0032359 0.0112709 0.0031624

Note. Bold entries represent values from each column that are orders of magnitude larger than non-bolded entries. “Improvement” column entries are calculated
based on the improvement over the original procedure eventual reliability of the corresponding “New Prob.” entry.

First, Zheng et al. (2020) offered a property pattern for assessing the
general reliability (the probability that a task ever is done incorrectly)
of a give task (g) as

Task General Reliability:

ProcedureStep = NextSte,
bo [F(( P p))].

A(& = Incorrect) )

Note that here NextStep represents the task (or tasks) that immediately
follow task g in the procedure model. Further note that this property
does not account for the fact that error can be corrected due to feedback
and checking within the procedure. Thus, task general reliability is best
used to assess procedure efficiency rather than identify reliability-re-
lated interventions. To allow such evaluations, Zheng et al. (2020)
shows that analysts can modify the system model so that a given task
will never be performed incorrectly. The analyst then checks the new
model for procedure eventual reliability (Eq. (1)) and compares the
original value to the new one to determine how much improvement
resulted from the change.

Thus, using the arithmetic mean of basic SAFPHR’s predicted
ranges, we calculated the task general reliability of each task, the
procedure eventual reliability when each task was always performed
correctly (New Prob.) and its associated improvement (Improve) from
the original reliability. These results are shown in Table 5.

Because of the way it is calculated, the arithmetic average rates
were universally higher than their geometric mean counterparts from
Zheng et al. (2020). However, the tasks that produced the highest
predicted values (based on their relative orders of magnitude to the
other results) were largely consistent, with a few key differences. All of
the tasks that produced the highest error rates for the geometric mean
doing so for the arithmetic mean. However, “Bottle Passes NDC Check?”
is additionally included in this list based on the arithmetic average
results (Table 5; it was not included in the geometric mean results). The
relative magnitude of the predicted probability also varied slightly in
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the results, where pharmacists hoping to address inefficiencies in their
process would prioritize interventions (based on magnitude the prob-
ability of a task general reliability failure) as follows: (1)“Get Stock
Bottle,” (2) “Count Medication,” (3) “Attach Label,” (4) “Is Valid and
Legal?” (final check, validity and legality issues), (5) “Is Valid and
Legal?,” (6) “Is Appropriate and Safe?,” (7) “Attach Auxiliary Label,”
(8) “Contact Prescriber,” and (9) “Bottle Passes NDC Check?”.

The results of the “Improvement” metric (Table 5, which uses New
Prob.) is helpful for exploring the effectiveness of interventions. In fact,
the highlighted tasks whose correction would most improve medication
error rates are exactly the same for the arithmetic mean results as for
the geometric mean results (Zheng et al., 2020). However, the internal
rankings of the associated tasks (based on the amount of improvement)
were different. Specifically, in the new results “Count Medication” and
“Quantity of Drug Correct?” appear to have the highest effect on final
reliability. This is followed by “Print Label,” “Give Filled R to Patient,”
and “Deliver Counseling to Patient,” which all saw the same amount of
improvement. In the original results, the order of these two groupings
was reversed. Thus, according to the new results, pharmacists could
focus on improving any of these factors to significantly improve phar-
macy dispensing reliability, but the most significant improvements
could be seen through the elimination of errors at “Count Medication”
and “Quantity of Drug Correct?.” This suggests that investment in au-
tomated dispensing technology could have a profound impact on
community pharmacy dispensing.

6.2. Diagnosing CPC-Effect Extended SAFPHR: Performance

The results for the extended SAFPHR. analyses are somewhat sur-
prising given that we would expect the additional information required
by these analyses to improve estimates, not make them more in-
accurate. This is particularly true of CPC-effect extended SAFPHR,
where individual CPC ratings are used to refine error rates.

Thus, to determine why CPC-effect extended SAFPHR yields
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Table 6
Step by step simulation analyses using CPC-effected extended SAFPHR
CPCWeighting ProbError
Single Task CFP Wi Wa Wi Ws78 t=1 t=2 t=3|4]6 t=5]7]8
“Is Valid and Legal?” 0.2 2.5 0.25 0.25 0.15 0.5 0.05 0.05 0.03
“Contact Prescriber” 0.0005 16 1.6 1.6 0.96 0.008 0.0008 0.0008 0.00048
“Document changes” (validity and legality issues) 0.03 1.28 0.128 0.256 0.1536 0.0384 0.00384 0.00768 0.004608
“Is Appropriate and Safe?” 0.2 5 05 05 0.3 1 0.1 0.1 0.06
“Contact Patient and/or Review history” 0.0005 0.64 0.064 0.128 0.0768 0.00032  0.000032 0.000064  0.0000384
“Contact Prescriber” (appropriateness and safety issues) 0.0005 8 0.8 0.8 0.48 0.004 0.0004 0.0004 0.00024
“Document Changes”(appropriateness and safety issues) 0.03 0.64 0.064 0128  0.0768 0.0192 0.00192 0.00384 0.002304
“Data Entry” 0.03 1.28 0.128 0.256 0.1536 0.0384 0.00384 0.00768 0.004608
“Print Label” 0.03 0.64 0.064 0128  0.0768 0.0192 0.00192 0.00384 0.002304
“Get Stock Bottle” 0.0005 8 0.8 0.8 0.48 0.004 0.0004 0.0004 0.00024
“Bottle Passes NDC check?” 0.2 5 0.5 0.5 0.3 1 0.1 0.1 0.06
“Count Medication” 0.03 10 1 1 0.6 0.03 0.003 0.003 0.0018
“Attach Label” 0.003 8 0.8 0.8 0.4767 0.024 0.0024 0.0024 0.00143
“Attach Auxillary Label” 0.03 1.6 0.16 0.32 0.192 0.048 0.0048 0.0096 0.00576
“Is Valid and Legal?” (final check) 0.2 5 05 1 0.6 1 0.1 0.2 0.12
“Contact Prescriber” (final contact, validity and legality issues) 0.03 0.64 0.064 0128  0.0768 0.0192 0.00192 0.00384 0.002304
“Document Changes” (final changes, validity and legality issues) 0.003 8 0.08 0.16 0.96 0.024 0.00024 0.00048 0.00288
“Is Appropriate and Safe?” (final check) 0.2 1 0.1 0.2 0.12 0.2 0.02 0.04 0.024
“Contact Patient” (final contact, appropriateness and safety issues) 0.03 0.64 0.064 0.128  0.0768 0.0192 0.00192 0.00384 0.002304
“Contact Prescriber” (final contact, appropriateness and safety issues) 0.03 0.64 0.064 0.128  0.0768 0.0192 0.00192 0.00384 0.002304
“Document Changes” (final changes, appropriateness and safety issues) 0.003 0.64 0.064 0.128  0.0768 0.00192 0.000192 0.000384  0.0002304
“Is Correct Label Attached?” 0.2 1 0.1 0.2 0.12 0.2 0.02 0.04 0.024
“Is Label Data Correct?” 0.2 5 1 1 0.6 1 0.2 0.2 0.12
“Is Drug Correct” 0.2 1 0.1 0.2 0.12 0.2 0.02 0.04 0.024
“Is Quantity of Drug Correct?” 0.2 5 1 1 0.6 1 0.2 0.2 0.12
“Is Correct Auxiliary Label Attached?” 0.2 1 0.1 0.2 0.12 0.2 0.02 0.04 0.024
“Give Filled R to Patient” 0.0005 0.64 0.064 0.128 0.0768 0.00032  0.000032 0.000064  0.0000384
“Deliver Counseling to Patient” 0.03 0.64 0.064 0.128  0.0768 0.0192 0.00192 0.00384 0.002304

Note that entries in red represent the weighting factors that increase the probability of error. Bold entries in both blue and black are probabilities bigger than 0.1, blue

bold entries are those reach to 1.

predictions that are much bigger than the other methods (and the lit-
erature data), we used PRISM to manually steps through our model in
order to identify the value of model variables under specific model
conditions. Specifically, to give us insights into how a single task im-
pacted the procedure’s reliability under different situations, this al-
lowed us to observer the probability of error (ProbError from Fig. 12)
for each task at different time periods (t; from Fig. 7). In doing this, we
also determined what the weighting factors were for each task
(cPCWeighting; from Fig. 12) at each period to gain insight into how
the large error rates were produced.

The simulation results are reported in Table 6. The probabilities of
an error occurring in each task at different time periods are reported
under “ProbError”. “CFP” represents the associated nominal cognitive
failure probability of the cognitive function failure assessed by our
subject matter expert for each task. W; and W, represent the weighting
factors required to adjust the CFP under time period t =1 and t = 2,
respectively. Similarly, W; 46 represent the weighting factors used to
adjust the CFP under time period t = 3, t = 4, and ¢ = 6. Finally, W; ;5
represents the weighting factors used under time periods t = 5, t = 7,
and t = 8. Note that time periods were grouped together because they
produced identical results.

These results show that there are 39 error rates predicted to be
greater than 0.1 over the 224 cases. Thus, even with the feedback steps
(the decision tasks in Fig. 3) that can detect and send errors back to be
corrected, these high error rates can accumulate and lead to high
overall error rates. Specifically, in time period t = 1, the error rates of
“Is Appropriate and Safe?,” “Bottle Passes NDC check?,” “Is Valid and
Legal?” (final check, validity and legality issues), “Is Label Data Cor-
rect?,” and “Is Quantity of Drug Correct?” are all 1. All of these deci-
sion-related tasks will have significant impacts on procedure reliability.
For example, the ProbError under step “Bottle Passes NDC check?”
being 1 means that an error made during “Get Stock Bottle” can never
be detected. The error will always be passed through the NDC check to
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the next step. Conversely, a correct drug bottle selection will always
circulate back to “Get Stock Bottle” until an error occurs. As such, the
decision-related tasks will never be able to effectively check the cor-
rectness of the factors they are designed to validate. Even worse, with
these invalid “checking” steps, new errors are introduced in “Data
Entry,” “Count Medication,” and “Attach Label” when the prescription
is sent back. The results also show that probabilities of 1 are caused by
large weighting factors. The weighting values responsible for this effect
are inherently part of CREAM. Because they were originally derived
from data collected in the nuclear power field, they may not accurately
transfer to pharmacy tasks. Thus, future research should focus on de-
termining how to calibrate these weighting values to the pharmacy
domain. This could potentially improve the accuracy of extended
SAFPHR.

6.3. Generalizability

The results presented here were all derived using the ratings of one
subject matter expert who both a practicing pharmacist, a professor of
pharmacy practice, and intimately familiar with community pharmacy
procedures in multiple states. The use of a single expert is consistent
with CREAM, on which SAFPHR'’s probabilistic estimates are based.
That we achieve results that were remarkably consistent with the most
comprehensive study we could find in the literature speaks to the
generalizability of our findings. However, it is true that there would
likely be variation in the assessments offered by different pharmacists.
Unfortunately, CREAM’s documentation does not provide any guidance
for how to aggregate assessments across a population. Future research
should investigate how population assessments can be incorporated
into SAFPHR..

This said, it is important to note that SAFPHR was originally de-
signed as a tool that individual pharmacies could use to understand and
improve their reliability without the need for long, expensive,
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observational studies (Zheng et al., 2020). The application of both basic
and extended SAFPHR. presented here was modeled after nominal
community pharmacy dispensing. There can be a variety of dispensing
procedures. Thus, future work should seek to apply and evaluate the
performance of SAFPHR in a number of different operational en-
vironments.

6.4. Scalability

One of the biggest limitations of model checking is a combinatorial
explosion (sometimes called the state explosion problem; (Katoen,
2010)). Specifically, as concurrent elements are added to a formal
model, the size of the model’s statespace grows exponentially (Clarke
et al., 1999). This can result in models that are too big or take too long
to be formally verified. In basic SAFPHR analysis, it took 33.098 and
153.238 s to get the lower and upper bound procedure eventual relia-
bility error rates respectively (186.336 s total). This time is similar to
those we observed for performing comparable extended SAFPHR ana-
lyses: 210.671 s for CPC-effect extended SAFPHR. and 920.884 s for
mode-effect extended SAFPHR.. All of these times are very reasonable
for analyzing a full pharmacy procedure. Thus, the choice of SAFPHR
technique does not appear to be significantly impacted by scalability
concerns.

Even if it is unlikely that scale would present a significant problem
for other pharmacy environments, it is conceivable that it could limit
the applicability of SAFPHR for other more complex domains. Given
that our results show that the arithmetic average produced the most
accurate predictions, it may be possible to use averages of control mode
ranges (Fig. 2) in SAFPHR model implementations. Such an effort could
avoid the need to run two verifications for every error rate produced
with basic SAFPHR. This should be explored in future work. Ad-
ditionally, PRISM also supports a number of methods for improving
scalability. This includes different analysis engines that are more effi-
cient for different types of models (Parker, 2003). It also has support for
statistical model checking (Kwiatkowska et al., 2011), an approach that
can be used to get approximate results in situations where scalability is
a constraint. Future research should investigate how the different fea-
tures of PRISM influence performance/accuracy trade-offs with
SAFPHR.

6.5. Human reliability analysis

As with basic SAFPHR, extended SAFPHR. has implications for
HRAs in general. By addressing the major limitations of first- and
second-generation HRAs, this work shows that HRA can be made to
account for dynamic system behaviors at a level that was not previously
possible. While SAFPHR: has specifically been developed for use with
community pharmacies, there is no reason it could not be applied to
other pharmacy environments or other safety—critical domains. This
should be the subject of future work.
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