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Abstract—A 1D Gaussian expression is derived and used as
the 1D E/H incident field in the TF/SF formulation to efficiently
generate plane waves in 1D, 2D, and 3D FDTD simulations.
The analytic expression is simple, and it eliminates the need
for computational resources to store and compute the E/H-field
incident arrays and their associated absorbing boundaries. FDTD
simulation results at the magic time-step in 1D, 2D, and 3D FDTD
show good correlation between plane waves generated by the
1D analytic Gaussian function vs. those generated by 1D FDTD
incident arrays.

I. INTRODUCTION

The Finite-Difference Time-Domain (FDTD) [1] is a well-
known method for solving Maxwell’s electromagnetic equa-
tions in 1D, 2D, and 3D space. For certain electromagnetic
structures, it may be required to perform scattering analysis
[2] due to an incident plane wave which must be generated in
FDTD. Previous works have presented methods for generating
plane waves; for example, by running a parallel 1D FDTD
simulation of the incident electric field (E-field) and magnetic
field (H-field) [3].

In this work, we derive a simple analytic expression for
generating a Gaussian plane wave in 1D, and use it as the
E/H incident fields in the total-field/scattered-field (TF/SF) [3],
[4] formulation, to generate plane waves in 1D, 2D, and 3D
FDTD.

The proposed analytic expression is simple and quite easy
to implement in the traditional Yee-based FDTD algorithm,
while eliminating the need for computational resources to
store and compute the E/H-field incident arrays and their
associated perfectly matched layer (PML) [5] absorbing arrays.
Simulations show that the plane waves generated by the 1D
analytic Gaussian expression perform just as well as those
generated by 1D FDTD incident arrays, in 1D, 2D, and 3D
FDTD.

In section II, the analytic expression of the 1D Gaussian
plane wave is derived. In section III, results of simulations in
1D, 2D, and 3D FDTD are presented, comparing plane waves
generated by the analytic Gaussian vs. 1D FDTD incident
arrays. The paper is concluded with remarks are in section IV.

II. FORMULATION

We begin by defining the 1-dimensional (1D) Gaussian input
function g[t] in time-domain (TD), where t is time, ts is the
pulse spread, and tp is the time at which the pulse reaches its
peak amplitude a.

g[t] = ae
− (t−tp)2

2ts2 (1)

Taking the Fourier transform of g[t] leads to the frequency-
domain (FD) response G[ω] of the system [6], where ω is the
angular frequency, and  =

√
−1, below.

G[ω] =
ats√
2π
e−

t2sw2

2 +tpw (2)

The expression of a time-harmonic plane wave [2] travelling
in the +z direction in space at a single harmonic frequency
ω0, is given below.

p[t, z] = etω0−βz (3)

Noting that in free-space the phase constant β = ω0/c0, the
Fourier transform of (3) may be obtained, below.

P [ω,z] = e−
ω0z

c0 δ[ω + ω0], (4)

where c0 is the phase velocity in free-space, and δ[] is the Dirac
Delta impulse function. Note that the phase velocity may be
modified in terms of material properties, as appropriate.

The FD response to a Gaussian pulse may be obtained,
below.

PG[ω, z] = P [ω,z]×G[ω]

=
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2π
δ[ω + ω0]e−

ω0z
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+tpω− 1
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2
sω
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(5)

Applying the inverse Fourier transform to (5) yields the
complex response of the Gaussian input at a single harmonic
ω0, below.

pgω0
[t, z] =

ats√
2π
e

ω0(−2z+c0(2t−2tp+t2sω0))
2c0 (6)

Finally, integrating (6) over all frequencies ω0, gives the TD
system response to the Gaussian input excitation (1), as shown
below. Equation (7) is the 1D analytic Gaussian expression
which may be used as the E/H incident source in the TF/SF
formulation of 1D, 2D, and 3D FDTD simulations.

pg[t, z] =

∫ +∞

−∞
pgω0

[t, z] dω0 = ae
− (c0(tp−t)+z)2

2c2
0
t2s (7)



III. RESULTS AND DISCUSSION

The results of applying the 1D analytic Gaussian function
(7) to the TF/SF regions of 1D, 2D, and 3D FDTD simulations,
are shown in Figures 1, 2, 3. In each figure, the E-field is
plotted at an arbitrary point in time, as it propagates through
space. In each plot, we compare the recorded E-field generated
by the 1D analytic Gaussian vs. that generated by the 1D
FDTD incident array. The time-step used in each FDTD
simulation is set to the magic time-step in 1D (∆t = ∆x/c0),
in 2D (∆t = ∆x/

√
2c0), and in 3D (∆t = ∆x/

√
3c0);

where ∆x is the spatial discretization and ∆t is the temporal
discretization in FDTD.

As can be seen, in each case the plane waves generated
by the analytic Gaussian correlate those generated by the 1D
FDTD incident array. In the case of the analytic Gaussian, as
the pulse approaches the far side of the TF/SF boundary in 2D
and 3D FDTD, we observed a small amount of the incident
wave being transmitted into the SF region; however, this wave
is completely absorbed by the PML region.
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Fig. 1. Simulation results in 1D FDTD. Ex is plotted vs. distance, as the
plane wave propagates along the z-axis.

IV. CONCLUSION

In this work we derived a simple 1D analytic Gaussian
function for generating plane waves. The function was used as
the incident source in the TF/SF formulation to generate plane
wave in 1D, 2D, and 3D FDTD simulations. Results show
that plane waves generated by analytic Gaussian expression
are virtually indistinguishable from those generated by the 1D
FDTD incident array at the magic time-step for 1D, 2D, and
3D FDTD. In addition to its simplicity, the analytic function
eliminates the need for computational resources to store and
compute 1D E-field and H-field incident arrays and their
associated PML arrays.

A topic of future research may be to investigate the ex-
tension of the above 1D Gaussian function to 2D and 3D
Gaussian functions with arbitrary angles of incidence in 2D
and 3D FDTD.
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Fig. 2. Simulation results in 2D FDTD. Ez is plotted vs. distance, as the
plane wave propagates along the y-axis.
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Fig. 3. Simulation results in 3D FDTD. Magnitude of |E| =√
E2

x + E2
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z is plotted vs. distance, as the plane wave propagates along
the z-axis.
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