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Abstract: This paper focuses on the distributed learning in nonparamet-
ric regression framework. With sufficient computational resources, the ef-
ficiency of distributed algorithms improves as the number of machines in-
creases. We aim to analyze how the number of machines affects statistical
optimality. We establish an upper bound for the number of machines to
achieve statistical minimax in two settings: nonparametric estimation and
hypothesis testing. Our framework is general compared with existing work.
We build a unified frame in distributed inference for various regression
problems, including thin-plate splines and additive regression under ran-
dom design: univariate, multivariate, and diverging-dimensional designs.
The main tool to achieve this goal is a tight bound of an empirical pro-
cess by introducing the Green function for equivalent kernels. Thorough
numerical studies back theoretical findings.
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1. Introduction

In a distributed computing environment, a common practice is to distribute a
massive data set to multiple processors and then aggregate local results obtained
from separate machines into global counterparts. Recently, researchers have
made impressive progress in this modern Divide-and-Conquer (D&C) frame-
work with different conquer strategies. Examples include median-of-means es-
timator proposed by [13], Bayesian aggregation considered by [18, 23, 20, 22],
and simple averaging considered by [30] and [17].

Divide-and-Conquer often requires a growing number of machines to deal with
an increasingly large data set. A fundamental question in distributed learning
that statisticians are particularly interested in is how the number of machines
affects statistical optimality? To address this question, [30] and [17] studied
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the upper bounds for the number of machines s by analyzing statistical ver-
sus computational trade-off in D&C, where the number of deployed machines
is treated as a simple proxy for computing cost. Consider a classical nonpara-
metric regression setup, i.e., kernel ridge regression (KRR), [30] showed that,
when s processors are employed with s in a suitable range, D&C method still
preserves minimax optimal estimation. [17] derived critical, i.e., un-improvable,
upper bounds for s to achieve either optimal estimation or optimal testing. The
critical bound of processors for estimation in [17] significantly improves the one
in [30] by polynomial order. Unfortunately, [17]’s results only focus on smooth-
ing spline regression (a special case of KRR) with univariate even design and
cannot be generalized to a random designed setting due to its technical limita-
tion. However, in practice, data are usually generated with random designed,
and multidimensional predictors. On the other hand, there is a lack of literature
dealing with distributed nonparametric testing. To the best of our knowledge,
[17] is the only reference but with the aforementioned model limitation.

In this paper, we consider distributed KRR in a general setup: design is ran-
dom and multivariate. As our technical contribution, we characterize the upper
bounds of s for achieving statistical optimality based on quantifying an em-
pirical process. We show that a sharper concentration bound of the empirical
process leads to a tighter upper bound of s. Efforts then have been devoted to
a delicate bound of that empirical process. In the particular smoothing spline
regression example, we establish a tight bound of the empirical process by in-
troducing the Green function for equivalent kernels, leading to a polynomial
order improvement of s compared with [30]. Our result is almost identical to
the benchmark result in [17] (up to a logarithmic factor) for optimal estimation
in smoothing spline, but under random design setting instead of the univariate
evenly spaced design. Our theory can naturally handle various function spaces,
including Sobolev space, Gaussian RKHS, or spaces of special structures such
as additive functions, in a unified manner, as long as we can characterize the
empirical process correspondingly.

The second contribution of this paper is to propose a Wald type test statis-
tic for nonparametric testing in D&C regime. We derive the null limit distri-
bution of the test statistics and characterize how the number of processors s
affects minimax optimality of testing. The testing results are derived in a gen-
eral framework that covers the aforementioned important function spaces. As
an important byproduct, we obtain a minimax rate of testing for nonparametric
additive models with a diverging number of components. Such rate is crucial
in obtaining the upper bound of s for optimal testing and is of independent
interest. Our results indicate an intrinsic difference in bounding s for optimal
testing and estimation. For example, in smoothing spline, the upper bound of s
for estimation is of the order N2m/(2m+1)/ logN , while the one for testing is of
the order N (4m−3)(4m+1)/ logN .

The remainder of the article is organized as follows. In Section 2, we introduce
background on reproducing kernel Hilbert space, describe the distributed kernel
ridge regression and the nonparametric hypothesis testing. In Section 3, we
establish minimax optimal estimation and testing for distributed KRR along
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with some concrete examples. Section 4 contains thorough numerical studies. In
Section 5, we conclude with a discussion. We defer the main proofs in Appendix.

2. Background and distributed kernel ridge regression

We begin by introducing some background on reproducing kernel Hilbert space
(RKHS), and our nonparametric testing formulation under the distributed ker-
nel ridge regression.

2.1. Nonparametric regression in reproducing kernel Hilbert spaces

Suppose that data {(Yi, Xi) : i = 1, . . . , N} are i.i.d generated from the follow-
ing regression model

Yi = f(Xi) + εi, i = 1, . . . , N, (2.1)

where εi are random errors with E(εi) = 0, E(ε2i |Xi) = σ2(Xi) > 0, the co-
variates Xi ∈ X ⊆ R

d follows a distribution π(x), and Yi ∈ R is a real-valued
response. Here, d ≥ 1 is either fixed or diverging with N , and f is unknown.

Throughout we assume that f ∈ H, where H ⊂ L2
π(X ) is a reproducing

kernel Hilbert space (RKHS) associated with an inner product 〈·, ·〉H and a
reproducing kernel function R(·, ·) : X × X → R. By Mercer’s Theorem, R has
the following spectral expansion

R(x, x′) =
∞∑
i=1

μiϕi(x)ϕi(x
′), x, x′ ∈ X ,

where μ1 ≥ μ2 ≥ · · · ≥ 0 is a sequence of eigenvalues and {ϕi}∞i=1 form a basis
in L2

π(X ). Moreover, for any i, j ∈ N,

〈ϕi, ϕj〉L2
π(X ) = δij and 〈ϕi, ϕj〉H = δij/μi,

where δij is Kronecker’s δ.
We introduce an embedded norm ‖ · ‖ in H by combining the L2 norm and

‖ · ‖H norm to facilitate our statistical inference theory. For f, g ∈ H, define

〈f, g〉 = V (f, g) + λ〈f, g〉H, (2.2)

where V (f, g) = E{f(X)g(X)} and λ > 0 is the penalization parameter. Clearly,
〈·, ·〉 defines an inner product on H. As shown in [16], (H, 〈·, ·〉) is also an RKHS
with reproducing kernel function K(·, ·) satisfying the reproducing property

〈f,Kx(·)〉 = f(x), for all f ∈ H,

where Kx(·) = K(x, ·) for x ∈ X .
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For any f ∈ H, we can express the function in terms of the Fourier expansion
as f =

∑
ν≥1 V (f, ϕν)ϕν . Therefore,

〈f, ϕν〉 =
∑
i≥1

V (f, ϕi)〈ϕi, ϕν〉 = V (f, ϕν)(1 + λ/μν). (2.3)

Replacing f with Kx in (2.3), we have V (Kx, ϕν) = 〈Kx,ϕν〉
1+λ/μν

= ϕν(x)
1+λ/μν

. Then

for any x, y ∈ X , K(x, y) has an explicit eigen-expansion expressed as

K(x, y) =
∑
ν≥1

V (Kx, ϕν)ϕν(y) =
∑
ν≥1

ϕν(x)ϕν(y)

1 + λ/μν
.

2.2. Distributed kernel ridge regression

To estimate f , we consider the kernel ridge regression (KRR) in a divide-and-
conquer (D&C) regime. First, randomly divide the N samples into s subsamples.
Let Ij denote the set of indices of the observations from subsample j for j =
1, . . . , s. For simplicity, suppose |Ij | = n, i.e., all subsamples are of equal sizes.
Hence, the total sample size is N = ns. Then, we estimate f based on the jth
subsample through the following KRR method:

f̂j = argmin
f∈H

�j,λ(f) ≡ argmin
f∈H

1

2n

∑
i∈Ij

(Yi − f(Xi))
2 +

λ

2
‖f‖2H, j = 1, . . . , s,

where λ > 0 is the penalization parameter. The D&C estimator of f is defined
as the average of f̂j ’s, that is, f̄ =

∑s
j=1 f̂j/s. In Section 3.2, we characterize

the upper bounds of s for f̄ to be a minimax estimator.
For nonparametric inference, we focus on testing whether the nonparametric

function in (2.1) is equal to some known function. That is, we consider the
hypothesis testing problem

H0 : f = f0, vs. H1 : f ∈ H\{f0},

where f0 is an arbitrarily known hypothesized function. In general, testing f =
f0 is equivalent to testing f∗ = f −f0 = 0. Therefore, without loss of generality,
we focus on the hypothesis testing

H0 : f = 0, vs. H1 : f ∈ H\{0}. (2.4)

Based on f̄ , we propose a Wald-type statistic

TN,λ = ‖f̄‖2, (2.5)

where ‖ · ‖ is the embedded norm defined in (2.2). Intuitively, a large value of
TN,λ tends to reject H0. In Section 3.3, we will derive the null limit distribution
of TN,λ, and explicitly show how the number of processors s affects the minimax
optimality of testing.
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3. Main results

In this section, we derive some general results relating to f̄ and TN,λ. We first
introduce some regularity assumptions.

3.1. Assumptions

We assume the design density is bounded, and the error ε has a finite fourth
moment. Such assumption is commonly used in literature [3].

Assumption 3.1. There exists a constant cπ > 0 such that for all x ∈ X ,
0 ≤ π(x), σ2(x) ≤ cπ.

Assumption 3.2. There exists a positive constant τ such that E{ε4|X} < τ
almost surely.

For any function f , define its supremum norm as ‖f‖sup = supx∈X |f(x)|. We
further assume the eigenfunctions {ϕν}∞ν=1 are uniformly bounded on X , and
the eigenvalues {μν}∞ν=1 satisfy certain tail sum property.

Assumption 3.3. cϕ := supj≥1 ‖ϕj‖sup < ∞ and supk≥1

∑∞
ν=k+1 μi

kμk
< ∞.

The uniform boundedness condition of eigenfunctions holds for various ker-
nels including univariate periodic kernel, 2-dimensional Gaussian kernel, multi-
variate additive kernel; see [9], [12] and reference therein. The tail sum property
can also be verified in various RKHS, and is deferred to Appendix.

Define h = (
∑

ν≥1
1

1+λ/μν
)−1. h−1 is known as the effective dimension mea-

suring the capacity of H, and has been widely studied in [1], [11], [29]. In fact,
there exists an explicit relationship between h and λ. For example, for the
polynomial decaying kernels with μν 
 ν−2m, simple calculation shows that
h 
 λ1/(2m). We provide concrete examples to illustrate such connection in
Section 3.4.

Define Pf = E{f(X)}, Pjf = n−1
∑

i∈Ij
f(Xi) and

ξj = sup
f,g∈H

‖f‖=‖g‖=1

|Pjfg − Pfg|, 1 ≤ j ≤ s.

ξj is the supremum of the empirical processes indexed by the classH·H := {f ·g :
f, g ∈ H} based on subsample j. The quantity max1≤j≤s ξj plays a vital role in
determining the critical upper bound of s to guarantee statistical optimality. As
shown in our main theorems in Section 3.2 and 3.3 later, a sharper bound of ξj
directly leads to an improved upper bound of s. The following Assumption 3.4
provides a concentration bound for ξj , and says that ξj are uniformly bounded

by
√

logb N
nha , a, b are constants that are specified in various kernels. Verification of

Assumption 3.4 is deferred to Section 3.4 in concrete settings based on empirical
processes methods, where the values of a, b will be explicitly specified.
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Assumption 3.4. There exist nonnegative constants a, b such that

max
1≤j≤s

ξj = OP

⎛⎝√ logb N

nha

⎞⎠ .

3.2. Minimax optimal estimation

We are ready to establish the minimax property for the distributed KRR esti-
mator with the assumptions stated in place.

Let Xj = {Xi : i ∈ Ij} and X = {X1, . . . ,Xs}. Suppose that (2.1) holds
under f = f0. Let Pλ be a self-adjoint operator from H to itself such that
〈Pλf, g〉 = λ〈f, g〉H for all f, g ∈ H. Then for any f ∈ H, ‖f‖2 = E{f2(X)} +
〈Pλf, f〉. The existence of Pλ follows by [16, Proposition 2.1].

In the following Lemma 3.1, we obtain an uniform error bound for f̂j ’s (j =
1, . . . , s). Then a general error bound for f̄ can be achieved by aggregating local
estimators.

Lemma 3.1. Suppose Assumptions 3.1, 3.3, 3.4 are satisfied and logb N =
o(nha) with a, b given in Assumption 3.4. Then with probability approaching
one, for any 1 ≤ j ≤ s,

E{‖f̂j − E{f̂j |Xj} −
1

n

∑
i∈Ij

εiKXi‖2|Xj} ≤
4cπc

2
ϕξ

2
j

nh
, (3.1)

‖E{f̂j |Xj} − f0 + Pλf0‖ ≤ 2ξjλ
1/2‖f0‖H (3.2)

In Lemma 3.1, we decompose the deviation from f̂j to f0 as two terms rep-

resenting bias and variance, that is, f̂j − f0 = E{f̂j |Xj} − f0 + f̂j −E{f̂j |Xj}.
Equation (3.1) quantifies the variance of f̂j via the leading term 1

n

∑
i∈Ij

εiKXi

and a higher order remainder term involving ξj . Equation (3.2) represents the

bias of f̂j as the dominating term Pλf0 and a higher order reminder as a function
of ξj for any 1 ≤ j ≤ s.

Lemma 3.1 immediately leads to the result on f̄ via triangle inequality. Specif-
ically, (3.1) and (3.2) lead to the following (3.3) in Theorem 3.1, which, together

with the rates of
∑N

i=1 εiKXi and Pλf0 in Lemma A.1, leads to (3.4).

Theorem 3.1. If the conditions in Lemma 3.1 hold, then with probability ap-
proaching one,

E{‖f̄ − 1

N

N∑
i=1

εiKXi − f0 + Pλf0‖2|X} ≤ 4

(
cπc

2
ϕ

Nh
+ λ‖f0‖2H

)
max
1≤j≤s

ξ2j (3.3)

E{‖f̄ − f0‖2|X} ≤
4cπc

2
ϕ

Nh
+ 8λ‖f0‖2H. (3.4)
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Theorem 3.1 is a general result that holds for many commonly used kernels.
The upper bound of s is implied by the key condition max1≤j≤s ξj = o(1), that

is, logb N = o(nha) according to Assumption 3.4 with n = N/s. Then Equation
(3.4) in Theorem 3.1 states that as long as s is dominated by Nha/ logb N , the
conditional mean squared errors can be upper bounded by the variance term
(Nh)−1 and the squared bias term λ‖f0‖2H. Minimax optimal estimation can
be obtained through the particular λ∗ that satisfies such bias-variance trade-off;
see [1], [26]. Since h is a function of λ, denote h∗ = (

∑
ν≥1

1
1+λ∗/μν

)−1, we claim

Nh∗a/ logb N as the upper bound of s to achieve optimal estimation. Section
3.4 further illustrates concrete, and interpretable guarantees on the conditional
mean squared errors to particular kernels with a, b specified accordingly.

We build a connection between the upper bound of s and the performance
of f̄ through the uniform bound of the empirical process ξj . A tighter upper
bound of s can be achieved by a sharper concentration bound of max1≤j≤s ξj .
Therefore, in Section 3.4, efforts are devoted to a tight bound of max1≤j≤s ξj
based on various empirical process methods. For instance, in smoothing spline
regression stated in Section 3.4.1, we provide a sharp concentration bound of ξj
with a = b = 1 holds in Assumption 3.4 based on [3]. Consequently, we achieve
an upper bound for s almost identical to the critical one obtained in [17] (up to
a logarithmic factor), and improve [17]’s sharp result in the sense of removing
the fixed univariate design assumption.

3.3. Minimax optimal testing

In this section, we study the nonparametric distributed inference based on f̄ .
Consider the hypothesis testing (2.4), we first derive the asymptotic distribution
of the Wald-type test statistics TN,λ := ‖f̄‖2 and further investigate its power
behavior. For simplicity, assume that σ2(x) ≡ σ2 is known. Otherwise, we can
replace σ2 by its consistent estimator to fulfill our procedure.

To prove the testing consistency, we show that TN,λ = ‖ 1
N

∑N
i=1 εiKXi‖2 +

remainder ; detailed proof is deferred to Appendix. It is feasible to characterize
the asymptotic behavior of ‖ 1

N

∑N
i=1 εiKXi‖2 thanks to the explicit expression

of the embedded kernel KXi .
DefineW (N)=

∑
1≤i<k≤N Wik withWik =2εiεkK(Xi, Xk), and let σ2(N) =

Var{W (N)}. Denote the empirical kernel matrix as K = [K(Xi, Xj)]
N
i,j=1 and

ε = (ε1, . . . , εN )T . In the following Lemma 3.2, we characterize the asymptotic

behavior of ‖ 1
N

∑N
i=1 εiKXi‖2.

Lemma 3.2. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 are all satisfied, and N →
∞, h = o(1), Nh2 → ∞. Then it holds that

ε′Kε = σ2Nh−1 +W (N) +OP (
√
Nh−2). (3.5)

Furthermore, as N → ∞, W (N)
σ(N)

d−→ N(0, 1), where σ2(N) = 2σ4N(N −
1)
∑

ν≥1
1

(1+λ/μν)2

 N2h−1.
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The following Theorem 3.2 shows that TN,λ is asymptotically normal under

H0, provided that s satisfies a key condition logb N = o(nha+1), where a, b are
determined through the uniform bound of ξj in Assumption 3.4.

Theorem 3.2. Suppose Assumptions 3.1 to 3.4 hold, and as N → ∞, h = o(1),
Nh2 → ∞, and logb N = o(nha+1). Then, as N → ∞,

N2

σ(N)

(
TN,λ − σ2

Nh

)
d−→ N(0, 1).

By Theorem 3.2, we can define an asymptotic testing rule with (1 − α) sig-
nificance level as follows:

ψN,λ = I
(
|TN,λ − σ2/(Nh)| ≥ z1−α/2σ(N)/N2

)
,

where z1−α/2 is the (1− α/2)× 100 percentile of standard normal distribution.
Intuitively, the smaller ‖f‖2 is, the harder it is to distinguish the alternative

hypothesis from the null. The power performance can be evaluated by the min-
imax rate of testing (MRT) that is defined as the minimal distance between the
null and the alternative hypotheses such that valid testing is possible ([5], [7]).
In the following, we show that the distributed test statistic TN,λ can achieve
minimax rate of testing, provided that the number of divisions s belongs to a
suitable range.

For any f ∈ H, define the separation rate

dN,λ = λ1/2‖f‖H︸ ︷︷ ︸
Bias of f̄

+ (Nh1/2)−1/2︸ ︷︷ ︸
Standard deviation of TN,λ

. (3.6)

The separation rate dN,λ is used to measure the distance between the null and
the alternative hypotheses. The following Theorem 3.3 shows that, if the al-
ternative signal f is separated from zero by an order dN,λ, then the proposed
test statistic asymptotically achieves high power. It is sufficient to minimize the
separation rate dN,λ to achieve optimal testing. We show that the minimax rate
of testing can be achieved by selecting λ to balance the trade-off between the
bias of f̄ and the standard derivation of TN,λ; see [8], [24].

Theorem 3.3. If the conditions in Theorem 3.2 hold, then for any ε > 0, there
exist Cε and Nε s.t.

inf
‖f‖≥CεdN,λ

Pf (ψN,λ = 1) ≥ 1− ε, for any N ≥ Nε.

In Section 3.4, we develop upper bounds for s in various concrete examples
based on the above general theorems. Our results indicate that there has an
intrinsic difference in bounding s for optimal testing and estimation. The ratio-
nale behind this phenomenon is that, different from the classical “bias-variance”
trade-off in the optimal nonparametric estimation; the optimal nonparametric
testing can be achieved by another type of trade-off between the squared bias
of the estimator and the standard deviation of the test statistic, leading to a
different number of processors s.
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3.4. Examples

In this section, we derive upper bounds for s in four featured examples to achieve
optimal estimation and testing, based on the general results obtained in Sections
3.2 and 3.3. Our examples cover the settings of univariate, multivariate, and
diverging-dimensional designs.

3.4.1. Example 1: Smoothing spline regression

Suppose H = {f ∈ Sm(I) : ‖f‖H ≤ C} for a constant C > 0, where Sm(I) is
the mth order Sobolev space on I ≡ [0, 1], i.e.,

Sm(I) =
{
f ∈ L2(I)| f (j) are abs. cont. for j = 0, 1, . . . ,m− 1,

and

∫
I

|f (m)(x)|2dx < ∞
}
,

and ‖f‖H =
∫
I
|f (m)(x)|2dx. Then model (2.1) becomes the usual smoothing

spline regression. In addition to Assumption 3.1, we assume that

c−1
π ≤ π(x) ≤ cπ, for any x ∈ I. (3.7)

We call the design satisfying (3.7) as quasi-uniform, a common assumption on
many statistical problems; see [3]. Quasi-uniform assumption excludes cases
where design density is (nearly) zero at certain data points, which may cause
estimation inaccuracy at those points.

It is known that when m > 1/2, Sm(I) is an RKHS under the inner product
〈·, ·〉; see [16], [4]. Meanwhile, Assumption 3.3 holds with kernel eigenvalues
μν 
 ν−2m, ν ≥ 1. Hence, Proposition A.1 holds with h 
 λ1/(2m). We next
provide a sharp concentration inequality to bound ξj .

Proposition 3.1. Under (3.7), there exist universal positive constants c1, c2, c3
such that for any 1 ≤ j ≤ s,

P (ξj ≥ t) ≤ 2n exp

(
− nht2

c1 + c2t

)
, for all t ≥ c3(nh)

−1.

The proof of Proposition 3.1 is based on the technical tool that applying
Green function for equivalent kernels; see [3, Corollary 5.41]. An immediate
consequence of Proposition 3.1 is that Assumption 3.4 holds with a = b = 1.
Then based on Theorem 3.1 and Theorem 3.3, we have the following results.

Corollary 3.1. Suppose that H = Sm(I), (3.7) holds, and Assumptions 3.1,
3.2 hold.

(a) If m > 1/2, s = o(N2m/(2m+1)/ logN) and λ 
 N−2m/(2m+1), then ‖f̄ −
f0‖ = OP (N

−m/(2m+1)).
(b) If m > 3/4, s = o(N (4m−3)/(4m+1)/ logN) and λ 
 N−4m/(4m+1), then

the Wald-type test achieves minimax rate of testing N−2m/(4m+1).
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It is known that the estimation rateN−m/(2m+1) is minimax-optimal; see [21].
Furthermore, the testing rateN−2m/(4m+1) is also minimax optimal, in the sense
of [8]. It is worth noting that the upper bound for s = o(N2m/(2m+1)/ logN)
matches (upto a logarithmic factor) the critical one by [17] in evenly spaced
design, which is substantially larger than the one obtained by [30], i.e., s =
o(N (2m−1)/(2m+1)/ logN); see Table 1 for the comparison.

Table 1

Comparison of upper bounds of s to achieve minimax estimation.

Zhang et al. [30] Shang et al. [17] Our approach

smoothing spline

regression

s � N
2m−1
2m+1 / logN

sharpness of s ✗

s � N
2m

2m+1

sharpness of s ✓

s = o(N
2m

2m+1 / logN)

sharpness of s ✓

3.4.2. Example 2: Nonparametric additive regression

Consider the function space

H = {f(x1, . . . , xd) =

d∑
k=1

fk(xk) : fk ∈ Sm(I), ‖fk‖H ≤ C for k = 1, . . . , d},

where C > 0 is a constant. That is, any f ∈ H has an additive decomposition
of fk’s. Here, d is either fixed or slowly diverging. Such additive model has
been well studied in many literatures; see [21], [10], [15], [28] among others. For
x = (x1, · · · , xd) ∈ X , suppose xi, xj are independent for i �= j ∈ {1, · · · , d}
and each xi satisfies (3.7). For identifiability, assume E{fk(xk)} = 0 for all

1 ≤ k ≤ d. For f =
∑d

k=1 fk and g =
∑d

k=1 gk, define

〈f, g〉H =
d∑

k=1

〈fk, gk〉H =
d∑

k=1

∫
I

f
(m)
k (x)g

(m)
k (x)dx, and

V (f, g) =
d∑

k=1

Vk(fk, gk) ≡
d∑

k=1

E{fk(Xk)gk(Xk)}.

It is easy to verify that H is an RKHS under 〈·, ·〉 defined in (2.2). Lemma
3.3 below summarizes the properties for H with d additive components.

Lemma 3.3. (a) There exist eigenfunctions ϕν and eigenvalues μν satisfying
Assumption 3.3.

(b) It holds that
∑

ν≥1(1 + λ/μν)
−1 := h−1 
 dλ−1/(2m), and

∑
ν≥1(1 +

λ/μν)
−2 
 h−1 accordingly.

(c) For f ∈ H, ‖Pλf‖2 ≤ cdλ, where c is a bounded constant.
(d) Assumption 3.4 holds with a = b = 1.

Lemma 3.3 (d) establishes a concentration inequality of ξj for the additive

model, such that max1≤j≤s = OP (
√

logN
nh ). The proof is based on the extension
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of the Green function techniques [3] to diverging dimensional setting; see Lemma
A.2 in Appendix.

Combining Lemma 3.3, Theorems 3.1, 3.2 and 3.3, we have the following
result.

Corollary 3.2. (a) Suppose Assumptions 3.1, 3.2 hold. If m > 1/2, d =

o(N
2m

2m+1 / logN), s = o(d−1N
2m

2m+1 / logN), λ 
 N− 2m
2m+1 , then ‖f̄−f0‖ =

OP (d
1/2N− m

2m+1 ).
(b) Suppose Assumptions 3.1, 3.2 hold.

If m > 3/4, d = o(N
4m−3

4(2m+1) (logN)−
4m+1

4(2m+1) ), s = o(d−
4(2m+1)
4m+1 N

4m−3
4m+1 /

logN), and λ 
 d−
2m

4m+1N− 4m
4m+1 , then the Wald-type test achieves mini-

max rate of testing with d
2m+1

2(4m+1)N− 2m
4m+1 .

Remark 3.1. It was shown by [15] that d1/2N− m
2m+1 is the minimax estimation

rate in nonparametric additive model. Corollary 3.2 (a) provides an upper bound
for s such that f̄ achieves this rate. Meanwhile, Corollary 3.2 (b) provides a
different upper bound for s such that our Wald-type test achieves minimax rate

of testing d
2m+1

2(4m+1)N− 2m
4m+1 . It should be emphasized that such a minimax rate of

testing is a new result in literature, which is of independent interest. The proof
is based on a local geometry approach recently developed by [24]. When d = 1,
all results in this section reduce to Example 1 on univariate smoothing splines.

3.4.3. Example 3: Gaussian RKHS regression

SupposeH is an RKHS generated by the Gaussian kernelK(x, x′) = exp(−c‖x−
x′‖22), x, x′ ∈ R

d, where c, d > 0 are constants, ‖ ·‖2 is the Euclidean norm. Here
we consider d = 1, 2. Then Assumption 3.3 holds with μν 
 [(

√
5−1)/2]−(2ν+1),

ν ≥ 1; see [19]. It can be shown that h 
 (− log λ)−1/2 holds. To verify Assump-
tion 3.4, we need the following lemma.

Lemma 3.4. For Gaussian RKHS, Assumption 3.4 holds with a = 2, b = d+2.

Following Theorem 3.1, Theorems 3.2 and 3.3, we get the following conse-
quence.

Corollary 3.3. Suppose that H is a Gaussian RKHS and Assumptions 3.1 and
3.2 hold.

(a) If s = o(N/ logd+3(N)) and λ 
 N−1
√
logN , then

‖f̄ − f0‖ = OP (N
−1/2 log1/4 N).

(b) If s = o(N/ logd+3.5 N) and λ 
 N−1 log1/4 N , then the Wald-type test

achieves minimax rate of testing N−1/2 log1/8 N .

Corollary 3.3 shows that in Gaussian RKHS, as the sample size in the local
machine is greater than a logarithmic order of N , one can obtain both optimal
estimation and testing. This conclusion is consistent with the upper bound ob-
tained by [30] for optimal estimation, which is of a different logarithmic factor.
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In fact, the effective dimension h−1 for Gaussian RKHS is of order logN , which
is used to measure the space complexity.

3.4.4. Example 4: Thin-Plate spline regression

Consider the mth order Sobolev space on I
d, i.e., H = Sm(Id), with d = 2 being

fixed. It is known that Assumption 3.3 holds with μν 
 ν−2m/d; see [6]. Hence
h 
 λd/(2m). The following lemma verifies Assumption 3.4.

Lemma 3.5. For thin-plate splines, Assumption 3.4 holds with a = 3−d/(2m),
b = 1.

Following Theorem 3.1, Theorem 3.2 and Theorem 3.3, we have the following
result.

Corollary 3.4. Suppose f ∈ Sm(Id) with d = 2, Assumption 3.1 and Assump-
tion 3.2 hold.

(a) If s = o(N
(2m−d)2

2m(2m+d) / logN) and λ 
 N− 2m
2m+d , then

‖f̄ − f0‖ = OP (N
−m/(2m+d)).

(b) If s = o(N
4m2−7dm+d2

(4m+d)m / logN) and λ 
 N− 4m
4m+d , then the Wald-type test

achieves minimax rate of testing N−2m/(4m+d).

Corollary 3.4 demonstrates upper bounds on s. These upper bounds are
smaller compared with Corollary 3.1 in the univariate case, since the proof tech-
nique in bounding the empirical process ξj here is not as sharp as the Green
function technique used in Proposition 3.1 for the univariate example.

4. Simulation

In this section, we examined the performance of our proposed estimation and
testing procedures versus various choices of the number of machines in two
examples based on simulated datasets.

4.1. Smoothing spline regression

The data were generated from the following regression model

Yi = c ∗ (0.6 sin(1.5πXi)) + εi, i = 1, · · · , N, (4.1)

where Xi
iid∼ Unif[0, 1], εi

iid∼ N(0, 1) and c is a constant. Cubic spline (i.e.,m = 2
in Section 3.4.1) was employed for estimating the regression function. To display
the impact of the number of divisions s on statistical performance, we set sample
sizes N = 2l for 9 ≤ l ≤ 13 and chose s = Nρ for 0.1 ≤ ρ ≤ 0.8. To examine
the estimation procedure, we generated data from model (4.1) with c = 1.
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Mean squared errors (MSE) were reported based on 100 independent replicated
experiments. The left panel of Figure 1 summarizes the results. Specifically, it
displays that the MSE increases as s does so; while the MSE increases suddenly
when ρ ≈ 0.7, where ρ ≡ log(s)/ log(N). Recall that the theoretical upper bound
for s, is N0.8; see Corollary 3.1. Hence, estimation performance becomes worse
near this theoretical boundary.

Next consider the hypothesis testing problem H0 : f = 0. To examine the
proposed Wald test, we generated data from model (4.1) at both c = 0, 1;
c = 0 used for examining the size of the test, and c = 1 used for examining
the power of the test. The significance level was chosen as 0.05. Both size and
power were calculated as the proportions of rejections based on 500 independent
replications. The middle and right panels of Figure 1 summarize the results.
Specifically, the right panel shows that the size approaches the nominal level
0.05 under various choices of (s,N), confirming the validity of the Wald test.
The middle panel displays that the power increases when ρ decreases; the power
maintains at 100% when ρ ≤ 0.5 and N ≥ 4096. Whereas the power quickly
drops to zero when ρ ≥ 0.6. This result is consistent with our theoretical finding.
Recall that the theoretical upper bound for s is N0.56; see Corollary 3.1. The
numerical results also reveal that the upper bound of s to achieve optimal testing
is smaller than the one required for optimal estimation.

Fig 1. Smoothing Spline Regression. (a) MSE of f̄ versus ρ ≡ log(s)/ log(N). (b) Power of
the Wald test versus ρ. (c) Size of the Wald test versus ρ.

4.2. Nonparametric additive regression

We generated data from the following nonparametric model of two additive
components

Yi = c ∗ f(Xi1, Xi2) + εi, i = 1, · · · , N, (4.2)

where f(x1, x2) = 0.4 sin(1.5πx1) + 0.1(0.5 − x2)
3, and Xi1, Xi2

iid∼ Unif[0, 1],

εi
iid∼ N(0, 1), and c is a constant. To examine the estimation procedure, we

generated data from (4.2) with c = 1. To examine the testing procedure, we
generated data at c = 0, 1. N, s were chosen to be the same as the smoothing
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spline example in Section 4. Results are summarized in Figure 2. The interpre-
tations are again similar to Figure 1, only with a slightly different asymptotic
trend. Specifically, the MSE suddenly increases at ρ ≈ 0.6, and the power quickly
approaches one at ρ ≈ 0.5. The sizes are around the nominal level 0.05 for all
cases.

Fig 2. Additive Regression Model. (a) MSE of f̄ versus ρ ≡ log(s)/ log(N). (b) Power of the
Wald test versus ρ. (c) Size of the Wald test versus ρ.

5. Conclusion

This paper offers theoretical insights on how to allocate data in parallel com-
puting for KRR in both estimation and testing procedures. In comparison
with [30] and [17], our work provides a general and unified treatment of such
problems in modern diverging-dimension or big data settings. Furthermore, us-
ing the green function for equivalent kernels to provide a sharp concentration
bound on the empirical processes related to s, we have improved the upper
bound of the number of machines in smoothing spline regression by [30] from
N (2m−1)/(2m+1)/ logN to N2m/(2m+1)/ logN for optimal estimation, which is
proven un-improvable in [17] (up to a logarithmic factor). In the end, we would
like to point out that our theory is useful in designing a distributed version of
generalized cross validation method that is developed to choose tuning param-
eter λ and the number of machines s; see [25].

Appendix A: Proofs of main results

A.1. Notation table

A.2. Some preliminary results

Lemma A.1. (a) For any x, y ∈ X , K(x, y) ≤ c2ϕh
−1.

(b) For any f ∈ H, ‖Pλf‖ ≤ λ1/2‖f‖H.
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Table 2

A table that lists all useful notation and their meanings.

N sample size
Y response
X covariate
ε random error
H reproducing kernel Hilbert space (RKHS)

π(x) density distribution
d dimension of covariate

〈·, ·〉H, ‖ · ‖H the inner product and norm under H
R(·, ·) kernel function under the norm ‖ · ‖H
μi eigenvalue
ϕ eigenfunction

〈·, ·〉L2
π(X ) L2 inner product

〈·, ·〉, ‖ · ‖ embedded inner product and norm
V (·, ·) L2 inner product
K(·, ·) kernel function equipped with ‖ · ‖
Kx(·) = K(x, ·)

s number of division
Ij the set of indices of the observation from subsample j
n the subsample size

f̂j the estimate of f based on subsample j
λ penalization parameter
f̄ D&C estimator

TN,λ test statistic
‖ · ‖sup the supremum norm
h−1 =

∑
ν≥1

1
1+λ/μν

ξj = sup f,g∈H
‖f‖=‖g‖=1

|Pjfg − Pfg|

Pλ self-adjoint operator satisfies 〈Pλf, g〉 = λ〈f, g〉H
K empirical kernel matrix

Sm(I) the mth order Sobolev space on I ≡ [0, 1]

Proof. (a)

K(x, y) =
∑
ν≥1

ϕν(x)ϕν(y)

1 + λ/μν
≤ c2ϕh

−1,

where the last inequality is by Assumption 3.3 and the definition of h−1.
(b)

‖Pλf‖ = sup
g∈H,‖g‖≤1

〈Pλf, g〉 = sup
g∈H,‖g‖≤1

λ〈f, g〉H

≤ sup
g∈H,‖g‖≤1

λ1/2‖f‖Hλ1/2‖g‖H ≤ λ1/2‖f‖H.

Another quantity of interest is the series
∑

ν≥1(1+λ/μν)
−2, which represents

the variance term of the test statistics that will be analyzed in Theorem 3.2. In
the following Proposition A.1, we show that such variance term has the same
order of the effective dimension.

Proposition A.1. Suppose Assumption 3.3 holds. For any λ > 0,
∑

ν≥1(1 +

λ/μν)
−2 
 h−1.
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A.3. Proofs in Section 3.2

Our theoretical analysis relies on a set of Fréchet derivatives to be specified
below: for j = 1, 2, . . . , s, the Fréchet derivative of �j,λ can be identified as: for
any f, f1, f2 ∈ H,

D�j,λ(f)f1 = − 1

n

∑
i∈Ij

(Yi − f(Xi))〈KXi , f1〉+ 〈Pλf, f1〉 := 〈Sj,λ(f), f1〉,

DSj,λ(f)f1f2 =
1

n

∑
i∈Ij

f2(Xi)〈KXi , f1〉+ 〈Pλf2, f1〉 = 〈DSj,λ(f)f2, f1〉,

D2Sj,λ(f) ≡ 0.

More specifically,

Sj,λ(f) = − 1

n

∑
i∈Ij

(Yi − f(Xi))KXi + Pλf,

DSj,λ(f)g =
1

n

∑
i∈Ij

g(Xi)KXi + Pλg.

Define Sλ(f) = E{Sj,λ(f)}, hence, DSλ(f) = E{DSj,λ(f)}. It follows from [16]
that

〈DSλ(f)f1, f2〉 = 〈f1, f2〉

for any f, f1, f2 ∈ H which leads to DSλ(f) = id.

A.3.1. Proof of Lemma 3.1

Proof. Throughout the proof, let f̃j = E{f̂j |Xj}. It is easy to see that

0 = Sj,λ(f̂j) = − 1

n

∑
i∈Ij

(Yi − f̂j(Xi))KXi + Pλf̂j ,

0 =
1

n

∑
i∈Ij

(f̃j(Xi)− f0(Xi))KXi + Pλf̃j .

Subtracting the two equations one gets that

1

n

∑
i∈Ij

(f̂j − f̃j)(Xi)KXi + Pλ(f̂j − f̃j) =
1

n

∑
i∈Ij

εiKXi . (A.1)

Equation (A.1) shows that

f̂j − f̃j = argmin
f∈H

�
j,λ(f) ≡ argmin
f∈H

1

2n

∑
i∈Ij

(εi − f(Xi))
2 +

λ

2
‖f‖2H.
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Let ej =
1
n

∑
i∈Ij

εiKXi and εj = f̂j − f̃j . Then consider Taylor’s expansion

�
j,λ(ej)− �
j,λ(εj) =
1

2
D2�
j,λ(εj)(ej − εj)(ej − εj)

=
1

2
Pj(ej − εj)

2 +
1

2
〈Pλ(ej − εj), ej − εj〉,

�
j,λ(εj)− �
j,λ(ej) = D�
j,λ(ej)(εj − ej) +
1

2
D2�
j,λ(ej)(εj − ej)(εj − ej)

= (Pj − P )(ej(εj − ej)) +
1

2
Pj(εj − ej)

2

+
1

2
〈Pλ(εj − ej), εj − ej〉.

Adding the two equations one obtains that

Pj(εj − ej)
2 + 〈Pλ(εj − ej), εj − ej〉+ (Pj − P )(ej(εj − ej)) = 0.

Uniformly for j, it holds that

|(Pj − P )(ej(εj − ej))| ≤ ξj‖ej‖ · ‖εj − ej‖,
Pj(εj − ej)

2 + 〈Pλ(εj − ej), (εj − ej)〉 ≥ (1− ξj)‖εj − ej‖2.

Combining the two inequalities one gets that

(1− ξj)‖εj − ej‖2 ≤ ξj‖ej‖ · ‖εj − ej‖.

Taking expectations conditional on Xj on both sides and noting that ξj is
σ(Xj)-measurable, one gets that

(1− ξj)E{‖εj − ej‖2|Xj} ≤ξjE{‖ej‖ · ‖εj − ej‖|Xj}
≤ξjE{‖ej‖2|Xj}1/2E{‖εj − ej‖2|Xj}1/2.

By assumption logb N = o(nha) and Assumption 3.4, max1≤j≤s ξj = oP (1), i.e.,
with probability approaching one max1≤j≤s ξj ≤ 1/2, hence,

E{‖εj − ej‖2|Xj} ≤ 4ξ2jE{‖ej‖2|Xj}

=
4ξ2j
n2

∑
i,i′∈Ij

E{εiεi′K(Xi, Xi′)|Xj}

=
4ξ2j
n2

∑
i∈Ij

σ2(Xi)K(Xi, Xi)

≤
4cπc

2
ϕξ

2
j

nh
, (A.2)

where the last inequality follows from Assumption 3.1 and Lemma A.1 that
K(x, x) ≤ c2ϕh

−1. This proves (3.1).
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By (A.2), it is easy to derive

E{‖f̂j − f̃j‖2|Xj} ≤
4cπc

2
ϕ

nh
. (A.3)

Now we look at ‖f̃j − f

0 ‖, where f


0 = (id − Pλ)f0. Note that f̃j is the
minimizer of the following problem

f̃j = argmin
f∈H

�̃j,λ(f) ≡ argmin
f∈H

1

2n

∑
i∈Ij

(f0(Xi)− f(Xi))
2 +

λ

2
‖f‖2H.

We use a similar strategy for handling part (3.1). Note that

�̃j,λ(f


0 )− �̃j,λ(f̃j) =

1

2
D2�̃j,λ(f̃j)(f



0 − f̃j)(f



0 − f̃j)

=
1

2
Pj(f



0 − f̃j)

2 +
1

2
〈Pλ(f



0 − f̃j), f



0 − f̃j〉,

�̃j,λ(f̃j)− �̃j,λ(f


0 ) = Pj(f



0 − f0)(f̃j − f


0 ) + 〈Pλf


0 , f̃j − f


0 〉

+
1

2
Pj(f̃j − f


0 )
2 +

1

2
〈Pλ(f̃j − f


0 ), f̃j − f

0 〉.

Adding the two equations, one gets that

Pj(f̃j − f

0 )

2 + 〈Pλ(f̃j − f

0 ), f̃j − f


0 〉
= Pj(f0 − f


0 )(f̃j − f

0 )− 〈Pλf



0 , f̃j − f


0 〉
= (Pj − P )(f0 − f


0 )(f̃j − f

0 ) + P (f0 − f


0 )(f̃j − f

0 )− 〈Pλf



0 , f̃j − f


0 〉
= (Pj − P )(f0 − f


0 )(f̃j − f

0 ) + 〈f0 − f


0 , f̃j − f

0 〉

−〈Pλ(f0 − f

0 ), f̃j − f


0 〉 − 〈Pλf


0 , f̃j − f


0 〉
= (Pj − P )(f0 − f


0 )(f̃j − f

0 ) + 〈f0 − f


0 − Pλ(f0 − f

0 )− Pλf



0 , f̃j − f


0 〉
= (Pj − P )(f0 − f


0 )(f̃j − f

0 ).

Therefore,

(1− ξj)‖f̃j − f

0 ‖2 ≤ξj‖f0 − f


0 ‖ × ‖f̃j − f

0 ‖ = ξj‖Pλf0‖ × ‖f̃j − f


0 ‖
≤Cξjλ

1/2‖f0‖H‖f̃j − f

0 ‖,

implying that, with probability approaching one, for any 1 ≤ j ≤ s, ‖f̃j −f

0 ‖ ≤

2Cξjλ
1/2‖f0‖H. This proves (3.2).

A.3.2. Proof of Theorem 3.1

Proof. Recall f

0 = (id − Pλ)f0 and f̃j = E(f̂j |Xj). Also notice that

1
N

∑N
i=1 εiKXi = 1

s

∑s
j=1 ej . By direct calculations and Lemma 3.1, we have
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with probability approaching one,

E{‖f̄ − f

0 − 1

N

N∑
i=1

εiKXi‖2|X}

=
1

s2

s∑
j=1

E{‖f̂j − f̃j − ej‖2|Xj}+
1

s2
‖

s∑
j=1

(f̃j − f

0 )‖2

≤ 4

(
cπc

2
ϕ

Nh
+ λ‖f0‖2H

)
max
1≤j≤s

ξ2j .

This proves (3.3). The result (3.4) immediately follows by the assumption that
max1≤j≤s ξ

2
j = oP (1).

A.4. Proofs in Section 3.3

A.4.1. Proof of Lemma 3.2

Proof. It is easy to see that

ε′Kε =
N∑
i=1

ε2iK(Xi, Xi) +W (N).

Since

V ar

(
N∑
i=1

ε2iK(Xi, Xi)

)
≤ NE{ε4iK(Xi, Xi)

2} ≤ τc4ϕNh−2,

where the last “≤” follows by Assumption 3.2 and Lemma A.1 that K(x, x) ≤
c2ϕh

−1, we get that

N∑
i=1

ε2iK(Xi, Xi) = E{
N∑
i=1

ε2iK(Xi, Xi)}+OP

(√
c4ϕNh−2

)
= σ2Nh−1 +OP (

√
c4ϕNh−2).

Next we prove asymptotic normality of W (N). Note σ2(N) = E{W (N)2}.
Let GI , GII , GIV be defined as

GI =
∑

1≤i<t≤n

E{W 4
it},

GII =
∑

1≤i<t<k≤n

(E{W 2
itW

2
ik}+ E{W 2

tiW
2
tk}+ E{W 2

kiW
2
kt})

GIV =
∑

1≤i<t<k<l≤n

(E{WitWikWltWlk}+ E{WitWilWktWkl}

+E{WikWilWtkWtl}).
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Since K(x, x) ≤ c2ϕh
−1, we have GI = O(N2h−4) and GII = O(N3h−4). It can

also be shown that for pairwise distinct i, k, t, l,

E{WikWilWtkWtl}
= 24E{ε2i ε2kε2t ε2lK(Xi, Xk)K(Xi, Xl)K(Xt, Xk)K(Xt, Xl)}

= 24σ8
∞∑
ν=1

1

(1 + λ/μν)4
= O(h−1),

which implies that GIV = O(N4h−1). In the mean time, a straight algebra leads
to that

σ2(N) = 4σ4

(
N

2

) ∞∑
ν=1

1

(1 + λ/μν)2

= 2σ4N(N − 1)
∑
ν≥1

1

(1 + λ/μν)2

 N2h−1,

where the last conclusion follows by Proposition A.1. Thanks to the conditions
h → 0, Nh2 → ∞, GI , GII and GIV are all of order o(σ4(N)). Then it follows
by [2] that as N → ∞,

W (N)

σ(N)

d−→ N(0, 1).

The above limit leads to that W (N) = OP (Nh−1/2).

A.4.2. Proof of Theorem 3.2

Proof. The proof is based on Lemma 3.2. Under f0 = 0, it follows from Corollary
3.1 and Assumption 3.4 that

E{‖f̄ − 1

N

N∑
i=1

εiKXi‖2|X} = OP

(
c2ϕ logb N

Nnh1+a

)
,

leading to

‖f̄ − 1

N

N∑
i=1

εiKXi‖2 = OP

(
c2ϕ logb N

Nnh1+a

)
.

Following the proof of Lemma 3.1 and the trivial fact f̂j = 0 when f0 = 0, we
have for any 1 ≤ j ≤ s,

E{‖f̂j − ej‖2|Xj} ≤
4cπc

2
ϕξ

2
j

nh
, E{‖ej‖2|Xj} ≤

cπc
2
ϕ

nh
, a.s. (A.4)

Therefore, by Cauchy-Schwartz inequality,

E{|〈f̂j − ej , ej〉|
∣∣Xj} ≤

√
E{‖f̂j − ej‖2|Xj}E{‖ej‖2|Xj} ≤

2cπc
2
ϕ

nh
ξj ,
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and hence,

E

⎧⎨⎩
s∑

j=1

|〈f̂j − ej , ej〉|
∣∣∣∣X
⎫⎬⎭ ≤

2cπsc
2
ϕ

nh
max
1≤j≤s

ξj .

By Assumption 3.4, the above leads to that

s∑
j=1

〈f̂j − ej , ej〉 = OP

⎛⎝sc2ϕ
nh

√
logb N

nha

⎞⎠ .

Meanwhile, it holds that∑
j �=l

〈f̂j − ej , el〉 =
∑
j<l

〈f̂j − ej , el〉+
∑
j>l

〈f̂j − ej , el〉 ≡ R1 +R2,

with

R1 = OP

⎛⎝sc2ϕ
nh

√
logb N

nha

⎞⎠ , R2 = OP

⎛⎝sc2ϕ
nh

√
logb N

nha

⎞⎠ .

To see this, note that

E{R2
1|X} =

∑
j<l

E{|〈f̂j − ej , el〉|2|X}

≤
∑
j<l

E{‖f̂j − ej‖2‖el‖2|X}

=
∑
j<l

E{‖f̂j − ej‖2|Xj}E{‖el‖2|Xl}

≤
(
s

2

)
4c2πc

4
ϕ

n2h2
max
1≤j≤s

ξ2j ,

where the last inequality is based on (A.4). Similar result holds for R2. Hence,
by Lemma 3.2 and direct algebra, we get that

TN,λ = N−2ε′Kε+
2

s2

s∑
j,l=1

〈f̂j − ej , el〉+ ‖f̄ − 1

N

N∑
i=1

εiKXi‖2

= N−2ε′Kε+
2

s2

s∑
j=1

〈f̂j − ej , ej〉+
2

s2
(R1 +R2)+ ‖f̄ − 1

N

N∑
i=1

εiKXi‖2

=
σ2

Nh
+

W (N)

N2
+OP

(
c2ϕ

N3/2h

)
+OP

(
c2ϕ
Nh

√
logb N

nha

)
+OP

(
c2ϕ logb N

Nnh1+ a

)

=
σ2

Nh
+

W (N)

N2
+OP

(
c2ϕ

N3/2h

)
+OP

(
c2ϕ
Nh

√
logb N

nha

)
.
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The last equality follows from the condition logb N = o(nha+1). Therefore, by
c4ϕ/(Nh) = o(1), Nh → ∞ (from Nh2 → ∞ and h → 0), condition logb N =
o(nha+1) and σ2(N) 
 N2h−1 (Lemma 3.2), as N → ∞,

N2

σ(N)

(
TN,λ − σ2

Nh

)
=

W (N)

σ(N)
+OP

⎛⎝ c2ϕ√
Nh

+ c2ϕ

√
logb N

nha+1

⎞⎠
=

W (N)

σ(N)
+ oP (1)

d→ N(0, 1).

Proof is completed.

A.4.3. Proof of Theorem 3.3

Proof. For any f ∈ H, define Rf = f̄ −N−1
∑N

i=1 εiKXi − f + Pλf . By direct
examinations, it holds that

‖f̄‖2 − σ2/(Nh)

= ‖Rf +
1

N

N∑
i=1

εiKXi + f − Pλf‖2 − σ2/(Nh)

≥
{
ε′Kε/N2 − σ2/(Nh)

}
+ ‖f − Pλf‖2 −

2

N

N∑
i=1

εi(f − Pλf)(Xi)

+
2

N

N∑
i=1

εiRf (Xi)− 2〈f − Pλf,Rf 〉

≡ T1 + T2 + T3 + T4 + T5.

It follows by (3.5), Theorem 3.1, Assumption 3.4 that, uniformly for f ∈ H,

T1 = W (N)/N2 +OP ((N
3/2h)−1), (by (3.5))

Pf

(
|T3| ≥ σ‖f − Pλf‖/(ε

√
N)
)
≤ ε2, for arbitrary ε > 0

T4 = OP (bN,λ/
√
Nh), (by Theorem 3.1, Assumption 3.4 and ( 3.5))

T5 = ‖f − Pλf‖ ×OP (bN,λ), (by Theorem 3.1 and Assumption 3.4)

Note that ‖Pλf‖ ≤ λ1/2‖f‖H for any f ∈ H. Therefore, to achieve high
power, i.e., power is at least 1 − ε, one needs to choose a large Nε and Cε s.t.
N ≥ Nε and

‖f‖ ≥ Cε/
√
Nh1/2, ‖f‖ ≥ Cε/

√
N, ‖f‖ ≥ Cε

√
bN,λ/

√
Nh,

‖f‖ ≥ CεbN,λ, ‖f‖ ≥ Cελ
1/2‖f‖H.

Proof is completed.
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A.5. Proofs in Section 3.4

A.5.1. Proof of Lemma 3.3 (a)

Proof. For each ν ≥ 1, there exist p ∈ N and 1 ≤ k ≤ d, such that ν =

pd+ k. Suppose x = (x1, · · · , xd), then for each xk, there exists (ϕ
(k)
p , μ

(k)
p ) and

(ϕ
(k)
p′ , μ

(k)
p′ ) satisfying Vk(ϕ

(k)
p , ϕ

(k)
p′ ) = δpp′ and

∫
I
ϕ
(k)
p (x)ϕ

(k)
p′ (x)dx = δpp′/μ

(k)
p .

In fact, the eigenfunctions ϕν and eigenvalues μν can be constructed by an

ordered sequence of ϕ
(k)
p , μ

(k)
p as ϕν(x) = ϕ

(k)
p (xk) and μν = μ

(k)
p .

Next, we verify such construction of eigenfunctions ϕν and eigenvalues μν

satisfy Assumption 3.3. When ν �= μ, then there exist p1, q1, p2, q2, such that
ν = p1d+ q1, μ = p2d+ q2, then

V (ϕp1d+q1 , ϕp2d+q2)

= V (ϕq1
p1
(xq1), ϕ

q2
p2
(xq2))

=

{
0 p1 �= p2, q1 = q2

Vq1(ϕ
q1
p1
(xq1), 0) + Vq2(0, ϕ

q2
p2
(xq2)) = 0 q1 �= q2

On the other hand,

〈ϕν , ϕμ〉H = 〈ϕq1
p1
, ϕq2

p2
〉H =

{
1/μq1

p1
= 1/μν p1 = p2, q1 = q2

0 ν �= μ

For any f ∈ H,

f(x1, · · · , xd) = f1(x1) + · · ·+ fd(xd) =

d∑
k=1

∞∑
ν=1

Vk(fk, ϕ
(k)
ν )ϕ(k)

ν (xk)

=
d∑

k=1

∞∑
ν=1

V (f, ϕ(k)
ν )ϕ(k)

ν (xk) =

∞∑
ν=1

V (f, ϕν)ϕν(x)

A.5.2. Proof of Lemma 3.3 (b)

Proof. It is easy to see that

∑
ν≥1

(1 + λ/μν)
−1 =

d∑
q=1

∑
p≥1

(1 + λ/μ(k)
p )−1 
 dλ−1/(2m) := h−1.

A.5.3. Proof of Lemma 3.3 (c)

Proof. Notice that ‖f‖2H ≤
∑d

i=1 ‖fk‖2H ≤ Cd, then by Lemma A.1 (b),
‖Pλf‖2 ≤ λ‖f‖2H ≤ Cdλ.

Next, we prove Lemma 3.3 (d). To prove Lemma 3.3 (d), it is sufficient to
prove the following Lemma A.2.
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Lemma A.2. Under (3.7), there exist universal positive constants c1, c2, c3 such
that for any 1 ≤ j ≤ s,

P (ξj ≥ t) ≤ 2n exp

(
− nht2

c1 + c2t

)
, for all t ≥ c3(nh)

−1,

where h−1 
 dλ−1/(2m).

The proof of Lemma 3.3 is based on the green function for equivalent kernel
technique in [3], see Section B.3 for details.

A.5.4. Proof of Lemma 3.4

Proof. For p, δ > 0, define G(p) = {f ∈ H : ‖f‖sup ≤ 1, ‖f‖H ≤ p} and the
corresponding entropy integral

J(p, δ) =

∫ δ

0

ψ−1
2 (D(ε,G(p), ‖ · ‖sup)) dε+ δψ−1

2

(
D(δ,G(p), ‖ · ‖sup)2

)
, (A.5)

where ψ2(s) = exp(s2) − 1 and D(ε,G(p), ‖ · ‖sup) is the ε-packing number of
G(p) in terms of ‖ · ‖sup-metric. In what follows, we particularly choose p =
c−1
K (h/λ)1/2, where cK ≡ supg∈H h1/2‖g‖sup/‖g‖ is finite, according to [27].

Define ψi(g) = c−1
k h1/2g(Xi) and Zj(g) = n−1/2

∑
i∈Ij

[ψi(g)KXi −
E{ψi(g)KXi}]. Following [27, Lemma 6.1], for any 1 ≤ j ≤ s, for any t ≥ 0,

P

(
sup

g∈G(p)
‖Zj(g)‖ ≥ t

)
≤ 2 exp

(
− t2

C2J(p, 1)2

)
, (A.6)

for an absolute constant C > 0. Since ‖f‖ = 1 implies that c−1
K h1/2f ∈ G(p).

Then it can be shown that
√
nξj ≤ c2Kh−1 sup

g∈G(p)
‖Zj(g)‖, j = 1, . . . , s.

Following (A.6) we have

P

(√
n max

1≤j≤s
ξj ≥ t

)
≤ 2s exp

(
− c−4

K h2t2

C2J(p, 1)2

)
,

which implies that

√
n max

1≤j≤s
ξj = OP

(√
logN

h2
J(p, 1)

)
. (A.7)

It follows by [31, Proposition 1] that J(p, 1) = O
(
[log(h/λ)](d+1)/2

)
=

O
(
[logN ](d+1)/2

)
. Then

max
1≤j≤s

ξj = OP

⎛⎝√ logd+2 N

nh2

⎞⎠ .

That is, Assumption 3.4 holds with a = 2 and b = d+ 2. Proof completed.
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A.5.5. Proof of Lemma 3.5

Proof.

J(p, 1) ≤
∫ 1

0

√
logD(ε,G, ‖ · ‖sup) dε+

√
logD(1,G, ‖ · ‖sup)

≤
∫ 1

0

√(p
ε

) d
m

+ 1 dε+
√
2p

d
2m

≤ c′d p
d/(2m)

where the penultimate step is based on [14]. Therefore, J(p, 1) = O(p
d

2m ), where
p = (h/λ)1/2. From e.q. (A.7), we have

max
1≤j≤s

ξj = OP

(√
logN

nh3−d/(2m)

)

Appendix B: Some technical proofs and auxiliary lemmas

B.1. Proof of Proposition 3.1

Proof. Define
sλ = argmin{j : μj ≤ λ} − 1,

that is, sλ is the number of eigenvalues that are greater than λ. Then the effective
dimension can be written as

h−1 =

∞∑
j=1

μj

μj + λ
=

sλ∑
j=1

μj

μj + λ
+

∞∑
j=sλ+1

μj

μj + λ
.

Note that
∑sλ

j=1 μj/(μj + λ) ≤ sλ, then we have

sλ ≤ h−1 ≤ sλ +

∞∑
j=sλ+1

μj

μj + λ
≤ sλ +

1

λ

∞∑
j=sλ+1

μj . (B.1)

By Assumption 3.3, we have
∑∞

j=sλ+1 μj ≤ Csλμsλ ≤ sλλ. Therefore, by (B.1),

we have h−1 
 sλ. Next we show
∑

ν≥1(1 + λ/μν)
−2 
 h−1.

Note that∑
ν≥1

(1 + λ/μν)
−2 =

∞∑
j=1

μ2
j

(μj + λ)2
=

sλ∑
j=1

( μj

μj + λ

)2
+

∞∑
j=sλ+1

( μj

μj + λ

)2
,

similar to (B.1), we have

sλ ≤
∑
ν≥1

(1 + λ/μν)
−2 ≤ sλ +

∞∑
j=sλ+1

( μj

μj + λ

)2 ≤ sλ +
1

λ2

∞∑
j=sλ+1

μ2
j .

Since 1
λ2

∑∞
j=sλ+1 μ

2
j ≤ μsλ+1

λ2

∑∞
j=sλ+1 μj ≤ 1

λ

∑∞
j=sλ+1 μj ≤ sλ. Then we have∑

ν≥1(1+λ/μν)
−2 
 sλ. Based on the previous conclusion that h−1 
 slambda,

we finally get
∑

ν≥1(1 + λ/μν)
−2 
 h−1.
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B.2. Verification of Assumption 3.3

Let us verify Assumption 3.3 in polynomially decaying kernels (PDK) and ex-
ponentially decaying kernels (EDK).

First consider PDK with μi 
 i−2m for a constant m > 1/2 which includes
kernels of Sobolev space and Besov Space. Anm-th order Sobolev space, denoted
Hm([0, 1]), is defined as

Hm([0, 1]) ={f : [0, 1] → R|f (j) is abs. cont for j = 0, 1, · · · ,m− 1,

and fm ∈ L2([0, 1])}.

An m-order periodic Sobolev space, denoted Hm
0 (I), is a proper subspace of

Hm([0, 1]) whose element fulfills an additional constraint g(j)(0) = g(j)(1) for
j = 0, . . . ,m− 1. The basis functions ϕi’s of H

m
0 (I) are

ϕi(z) =

⎧⎨⎩
σ, i = 0,√

2σ cos(2πkz), i = 2k, k = 1, 2, . . . ,√
2σ sin(2πkz), i = 2k − 1, k = 1, 2, . . . .

The corresponding eigenvalues are μ2k = μ2k−1 = σ2(2πk)−2m for k ≥ 1 and
μ0 = ∞. In this case, supi≥1 ‖ϕ‖sup < ∞. For any k ≥ 1,

∞∑
i=k+1

μi �
∫ ∞

k

x−2mdx =
k1−2m

2m− 1
� kμk

2m− 1
.

Therefore, there exists a constant C < ∞, such that

sup
k≥1

∑∞
i=k+1 μi

kμk
= C < ∞.

Hence, Assumption 3.3 holds true.
Next, let us consider EDK with μi 
 exp(−γip) for constants γ > 0 and

p > 0. Gaussian kernel K(x, x′) = exp
(
−(x− x′)2/σ2

)
is an EDK of order

p = 2, with eigenvalues μi 
 exp(−πi2) as i → ∞, and the corresponding
eigenfunctions

ϕi(x) = (
√
5/4)1/4(2i−1i!)−1/2e−(

√
5−1)x2/4Hi((

√
5/2)1/2x),

where Hi(·) is the i-th Hermite polynomial; see [19] for more details. Then
supi≥1 ‖ϕi‖sup < ∞ trivially holds. For any k ≥ 1,

∞∑
i=k+1

μi �
∫ ∞

k

e−γxp

dx =
1

γpkp−1
e−γkp −

∫ ∞

k

p− 1

γpxp
e−γxp

dx ≤ 1

γpkp−1
e−γkp

.

Therefore,

sup
k≥1

∑∞
i=k+1 μi

kμk
< ∞.

Hence, Assumption 3.3 holds.
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B.3. Proof of Lemma A.2

To prove Lemma A.2, based on Lemma 3.5 and Lemma 3.4 in Chapter 21 in
[3], we only need to bound

‖ 1
n

n∑
i=1

Kh(Xi, ·)− E[Kh(Xi), ·]‖∞,

and ‖ 1
n

n∑
i=1

hK ′
h(Xi, ·)− hE[K ′

h(Xi), ·]‖∞.

To prove this, we use the Green function technic tool that replace the kernels
Kh(x, y) with the one-sided exponential family gh(x− y), defined by

g(x) = exp(−x)1{x≥0}

gh(x) =h−1g(h−1x), x ∈ R.

Lemma B.1. Assume that the family Kh =
∑d

j=1 Kh0,j with Kh0,j , 0 < h0 ≤ 1
is convolution-like. Then there exists a constant c, such that, for all h, 0 < h ≤ 1,
and for every strictly positive design X1, X2, · · · , Xn ∈ (0, 1]d,

‖ 1
n

n∑
i=1

Kh(Xi, ·)‖∞ ≤ c‖ 1
n

n∑
i=1

gh(Xi − ·)‖∞.

Proof. For t = (t1, · · · , td) ∈ [0, 1]d and x = (x1, · · · , xd) ∈ [0, 1]d, let Snh(t) =
1
n

∑n
i=1 Kh(Xi, t), and snh(t) = 1

n

∑n
i=1 gh(Xi − t). For j = 1, · · · , d, Kh,j sat-

isfies

Kh0,j(tj , xj)

=h0gh,j(x)Kh0,j(tj , 0) +

∫ 1

0

gh0,j(xj − zj){h0K
′
h0,j(tj , zj) +Kh0,j(tj , zj)}dzj ,

where h0 = dh. Note that Kh0,j , h0K
′
h0,j

are all convolutional-like, then

|h0K
′
h0,j

(tj , zj)| ≤ ch−1
0 and |Kh0,j(tj , zj)| ≤ ch−1

0 . Therefore,∫ 1

0

gh0,j(xj − zj){h0K
′
h0,j(tj , zj) +Kh0,j(tj , zj)}dzj

≤ 2c · h−1
0

∫ 1

0

gh0,j(xj − zj)dzj

= 2c · h−2
0

∫ 1

0

e−h−1
0 (xj−zj)dzj

≤ 2c ·
(
gh0,j(xj)− gh0,j(xj − 1)

)
≤ 2c · gh0,j(xj).

Then, we have Kh0,j(tj , xj) ≤ h0 · gh0,j(x)Kh0,j(tj , 0) + c · gh0,j(xj).

Kh(x, t) =

d∑
j=1

Kh0,j(tj , xj) ≤ h0

d∑
j=1

gh0,j(xj)Kh0,j(tj , 0) + c

d∑
j=1

gh0,j(xj)



3098 M. Liu et al.

≤c1

d∑
j=1

gh0,j(xj) + c

d∑
j=1

gh0,j(xj) ≤ c′
d∑

j=1

gh0,j(xj) = c′gh(x),

where c1 = max{h0Kh0,1(t1, 0), · · · , h0Kh0,d(td, 0)} is a bounded constant by
the convolution-like assumption. Let Xi = x and substitute the formula above
into the expression for Snh(t) and snh(t), this gives Snh(t) ≤ c′snh(0). Therefore,
‖Snh‖∞ ≤ c′|snh(0)| ≤ ‖snh‖∞. The last inequality is due to the fact that all
Xi are strictly positive, then snh(t) is continuous at t = 0, and so snh(0) ≤
‖snh‖∞.

Let Pn be the empirical distribution function of the design X1, X2, · · · , Xn,
and let P0 be the design distribution function. Here P0 = π(x). Define

[gh � (dPn − dP0)
]
(t) =

∫
[0,1]d

gh(x− t)(dPn(x)− dP0(x)),

then based on Lemma B.1, we only need to show the following results to prove
Lemma A.2.

Lemma B.2. For all x = (x1, · · · , xd) ∈ [0, 1]d, t > 0,

P

[
|
[
gh � (dPn − dP0)

]
(x)| > t

]
≤ 2 exp

{
− nht2

w2 + 2/3t

}
, (B.2)

where w2 is an upper bound on the density P0(x).

Proof. Consider for fixed x, 1
n

∑n
i=1 gh(Xi − x) =

∑d
k=1

∑n
i=1 θik, with θik =

1
ngh0,k(xi,k − xk). Then θik (i = 1, · · · , n; k = 1, · · · , d) are i.i.d. and |θik| ≤
(nh0)

−1, where h0 = d−1h. For the variance Var(θik),

Var(θik) =
1

n2

{
[g2h0,k � dP0](xk)− ([gh0,k � dP0](x))

2
}

≤ 1

n2

[
g2h0,k � dP0

]
(xk)

=n−2

∫ 1

0

h−2
0 e−2h−1

0 (Xik−xk)dP0(xk)

≤1

2
w2n

−2h−1
0 .

Therefore, V :=
∑n

i=1

∑d
k=1 Var(θik) ≤ 1

2w2n
−1h−1. Then by Bernstein’s in-

equality, (B.2) has been proved.

Lemma B.3. For all j = 1, · · · , n,

P{[gh � (dPn − dP0)](Xj) > t} ≤ 2 exp{− 1/4nht2

w2 + 2/3t
},

provided t ≥ 2(1 + w2)(nh)
−1, where w2 is an upper bound on the density.
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Proof. Consider j = n. Note that

[gh � dPn](Xn) =
1

n
gh(0) +

1

n

n−1∑
i=1

gh(Xi −Xn)

=
1

n

d∑
k=1

gh0,k(0) +
1

n

n−1∑
i=1

gh(Xi −Xn)

= d(nh0)
−1 +

n− 1

n
[gh � dPn−1](Xn),

so that its expectation, conditional on Xn, equals

E
[
[gh � dPn](Xn)|Xn

]
= (nh)−1 +

n− 1

n
[gh � dP0](Xn).

Then P
[
|[gh� (dPn−1− dP0)](Xn)| > t|Xn

]
≤ 2 exp{− (n−1)ht2

w2+2/3t }. Note that this
upper bound does not involve Xn, it follows that

P
[
|[gh � (dPn−1 − dP0)](Xn) > t|

]
= E

[
P
[
|[gh � (dPn−1 − dP0)](Xn)| > t|Xn

]]
has the same bound. Finally, note that

[gh � (dPn − dP0)](Xn) = εnh +
n− 1

n
[gh � (dPn−1 − dP0)](Xn),

where |εnh| = |(nh)−1 − 1
n [gh � dP0](Xn)| ≤ (nh)−1 + (nh)−1w2 ≤ c2(nh)

−1.
Therefore,

P

{[
|gh � (dPn − dP0)

]
(Xn)| > t

}
≤P

{
|
[
gh � (dPn−1 − dP0)

]
(Xn)| >

n

n− 1
(t− c2(nh)

−1)
}

≤2 exp
{
− nh(t− c2(nh)

−1)2

w2 + 2/3(t− c2(nh)−1)

}
.

B.4. Proof of Corollary 3.2

Note that for any x, y ∈ [0, 1]d, by Lemma A1, we have K(x, y) ≤ c2ϕh
−1, where

h−1 
 dλ−1/(2m), and ‖Pλf‖2 ≤ λ‖f‖2H ≤ Cdλ, then Corollary 3.2 can be easily
achieved by applying Theorem 3.1 and Theorem 3.3.

Next, we show that d∗N,λ,d = d
2m+1

2(4m+1)N− 2m
4m+1 is the minimax testing rate.

Consider the model
ỹ = θ + w, (B.3)

where θ ∈ R
n satisfies the ellipse constraint

∑n
j=1

θ2
j

μj
≤ d, where μ1 ≥ μ2 ≥

· · · ≥ 0, and the noise vector w is zero-mean with variance σ2

n . Note that model



3100 M. Liu et al.

(2.1) is equivalent to model (B.3) (see Example 3 in [24] for details), thus we
only need to prove the minimax testing rate under model (B.3) for the testing

problem θ = 0 with μj 
 � i
d�

−2m
.

Let mu(δ; ε) := argmax1≤k≤d{dμk ≥ 1
2δ

2}, and ml(δ; ε) :=

argmax1≤k≤d{dμk+1 ≥ 9
16δ

2}. Then by Corollary 1 in [24], we have

sup{δ|δ ≤ 1

4
σ2

√
ml(δ; ε)

δ
} ≤ d∗N,λ,d ≤ inf{δ|δ ≥ cσ2

√
mu(δ; ε)

δ
}.

Let δ∗ satisfies δ2 

√

ml(δ; ε) 

√

mu(δ; ε), we have

δ∗ = d∗N,λ,d 
 d
2m+1

2(4m+1)N− 2m
4m+1 .
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