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a b s t r a c t

We propose a simple and fast approach to identify and estimate the unknown group
structure in panel models by adapting the M-estimation method. We consider both
linear and nonlinear panel models where the regression coefficients are heterogeneous
across groups but homogeneous within a group and the group membership is unknown
to researchers. The main result of the paper is that under certain assumptions, our
approach is able to provide uniformly consistent estimation as long as the number of
groups used in estimation is not smaller than the true number of groups. We also show
that, asymptotically, our method may partition some true groups into further subgroups,
but cannot mix units from different groups. When the true number of groups is used
in estimation, all units can be categorized correctly with probability approaching one,
and we establish the limiting distribution for the estimators of the group parameters.
In addition, we provide an information criterion to select the number of groups, and
establish the consistency of the selection criterion under some mild conditions. Monte
Carlo simulations are conducted to examine the finite sample performance of the
proposed method. The findings in the simulation confirm our theoretical results in the
paper. Applications to two real datasets also highlight the necessity to consider both
individual heterogeneity and group heterogeneity in the model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Panel data models are widely used in empirical research of both economics and finance. A challenging problem in panel
data models is how to control or model the individual-level heterogeneity. Unfortunately, most of the heterogeneity is
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unobservable (e.g., willingness to pay for education, impact of economic policy, etc.). In practice, besides the commonly-
used fixed effects to control the individual-level heterogeneity, there are two opposite approaches to deal with the
heterogeneity in coefficients or parameters. The first one is to assume homogeneous coefficients across individuals
(see, e.g., Lancaster, 2002; Hahn and Newey, 2004; Arellano and Bonhomme, 2009). Indeed, this approach reduces the
model complexity and facilitates statistical inference. However, this common coefficients assumption might be too strong
in practice and could lead to model misspecification (see, e.g., Hsiao and Tahmiscioglu, 1997; Lee et al., 1997). The other
approach is to allow heterogeneous coefficients across individuals (see, e.g., Hsiao and Pesaran, 2008; Baltagi et al., 2008).
This assumption helps avoid misspecification problem. However, it may lose the latent connections among individuals
and the efficiency of estimation.

To allow such a possibility that a portion of the individuals share common coefficients, a mild and reasonable
assumption is to impose group structures in panels. Group structures in panels refer to the regression coefficients that
are the same within each group but differ across groups. Recently, group structures in panels have received considerable
attention in the literature. To name a few, Lin and Ng (2012) provide two methods for estimating panel data models with
group specific parameters when group membership is unknown. Under the same settings of Lin and Ng (2012), Sarafidis
and Weber (2015) propose a modified k-means algorithm to determine the number of clusters and estimate the common
coefficients. More recently, Su et al. (2016) propose a Classifier Lasso (C-Lasso) penalized procedure to identify and
estimate nonlinear panels with latent group structures. Based on the seminal work of Su et al. (2016), Lu and Su (2017)
study the determination of the number of groups in latent panel structure, Su and Ju (2018) identify the latent grouped
pattern in panel models with interactive fixed effects, and Su et al. (2019) apply the C-Lasso to identify and estimate
the time-varying panel data models with latent group structures. For nonparametric panel data models, Vogt and Linton
(2019) develop a bandwidth-free method to identify and estimate the latent group structure of nonparametric regression
curves. In addition, there is another strand of literature studying the group structure of individual fixed effects. For
example, Bonhomme and Manresa (2015) consider a linear panel model with a latent group structure on the time-varying
fixed effects and propose a ‘‘grouped fixed effects" estimator based on the k-means algorithm, and Bester and Hansen
(2016) investigate the asymptotic properties of the group effects estimates of common parameters in nonlinear panel
data models when the individual-specific fixed effects are assumed common across groups at some level. Further, Ando
and Bai (2016) extend the work of Bonhomme and Manresa (2015) to linear panel data models with an unknown grouped
factor structure.

Following the work by Lin and Ng (2012) and Su et al. (2016), this paper proposes a simple and straightforward method
to identify and estimate panels with group structures when the true number of groups and the group membership are
both unknown. The proposed method can be applied to both linear and nonlinear panels, and is computationally simple
and fast. Besides the simplicity, our method has several advantages as follows.

First, the major theoretical contribution of this paper is that we show, under certain regularity conditions, that the
consistency of our proposed estimation is independent of the number of groups used as long as this number is not less
than the true number of groups.1 A practical implication of this result is that a safe way to estimate the panel model
with an unknown group structure is to set a slightly large number of groups. This is of crucial importance to researchers
since the number of groups in the data is usually unknown. We also show that, asymptotically, our method can partition
some true groups into further subgroups but cannot mis-classify individuals from different groups into the same group.
When the true number of groups is used in estimation, all the individuals can be categorized correctly with probability
approaching one.

Second, unlike the C-Lasso approach proposed by Su et al. (2016), relying on the choice of tuning parameters for
estimation and classification, our approach is penalty-free if the number of groups is specified, which is a significant
advantage for empirical applications. It is well known in the literature that Lasso-type methods are able to perform model
selection consistently. However, the consistency highly relies on the right choice of the tuning parameters (e.g., Chand,
2012; Kirkland et al., 2015). Therefore, in empirical applications, the estimation results may be sensitive to the choice of
tuning parameters, and how to choose the optimal tuning parameters in C-Lasso is still an open question. Consequently, it
would be convenient to have a penalty-free approach to identify the group structures in panels, and our proposed method
serves this purpose. Moreover, compared with C-Lasso, our method is computationally simple and much faster, especially
when the model is nonlinear.

Finally, once the group membership is correctly identified and estimated, our proposed estimation performs similarly
to the estimation based on the true group membership. This oracle property allows one to combine existing estimation
and inference techniques with our method. For instance, for the classified group units, one can adapt the jackknife method
in Hahn and Newey (2004) or Dhaene and Jochmans (2015) to reduce the bias of the fixed effects estimators in nonlinear
panels.

The rest of the paper is organized as follows. In Section 2, we first introduce the fixed effects panel data model with
an unknown group structure, and then propose an estimation and classification procedure. The asymptotic properties
of our estimator are established in Section 3. Section 4 carries out a set of Monte Carlo simulations to investigate the
finite sample performance of our method. Applications to two real datasets are provided in Section 5. The conclusion

1 Moon and Weidner (2015) established a similar result for the linear panel data model with interactive fixed effects when the number of factors
is overspecified.
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is presented in Section 6. All mathematical derivations of main theorems and propositions are provided in Appendix A.
An online Supplement contains the proofs of all relevant technical lemmas, additional simulation results and additional
empirical studies.

Notation: For any squared matrix A, let λmin(A) and λmax(A) be the smallest and largest eigenvalues of A. Let ∥B∥2 =√
tr(BB′) denote the Frobenius norm for matrix B. Define a set of integers [k] := {1, 2, . . . , k} for any positive integer

k. Let (N, T ) → ∞ denote N and T diverging to infinity jointly and
P

−→,
D

−→ denote convergence in probability and in
distribution as (N, T ) → ∞, respectively.

2. Model and estimation

Let Yit be a real-valued observation and Xit ∈ Rp be a real vector of observed covariates, both collected on the ith
individual at time t for i ∈ [N], t ∈ [T ]. Assume that the N individuals actually belong to G0 underlying groups where G0

is unknown. In particular, G0
= 1 corresponds to the traditional fixed effects model without group structures (see Hahn

and Newey, 2004).
To identify the unknown group structures, a common practice is to predetermine the number of groups, denoted by

G, and classify the N individuals into G groups. In practice, correctly specifying G (i.e., G = G0) is difficult due to the
unobservability of group patterns. A more realistic way is to pick G to be relatively large so that G ≥ G0. Obviously, such
misspecification brings more challenges into the theoretical studies. In this paper, we propose a method for identifying
group patterns under this misspecification and investigate its asymptotic properties.

For individual i, let gi ∈ [G] denote the group membership variable, βgi ∈ K ⊂ Rp denote the unobservable group-
specific parameter, and αi ∈ A ⊂ R denote the unobservable individual-specific effect, with bothK and A being compact. If
individuals i and j belong to the same group, then βgi = βgj (i.e., they share a common group parameter, but αi and αj might
still be different due to individual-level heterogeneity). Let β = (β1, β2, . . . , βG) ∈ KG denote the tuple of G group-specific
parameters, α = (α1, α2, . . . , αN ) ∈ AN denote the N-vector of individual parameters, and γN = (g1, g2, . . . , gN ) ∈ ΓN
denote the N-vector of group membership variables, where ΓN = [G]

N is the collection of all possible group assignments.
Our aim is to estimate the triplet θN = (β, α, γN ), which can be achieved through the following M-estimation:

θ̂N = argmax
θN=(β,α,γN )∈ΘN

1
NT

N∑
i=1

T∑
t=1

ψ(Xit , Yit , βgi , αi), (2.1)

where ΘN = KG
× AN

× ΓN denotes the entire parameter space, ψ(Xit , Yit , βgi , αi) denotes the logarithm of the pseudo
likelihood function of Yit given Xit with parameters βgi , αi. Here, we provide several examples of the explicit form of
ψ(Xit , Yit , βgi , αi) for different panel models.

Example 2.1. Linear panel model: Yit = β ′
giXit + αi + ϵit , where ϵit represents the idiosyncratic error. In this case, one

chooses ψ(x, y, β, α) = −(y − β ′x − α)2.

Example 2.2. Binary choice panel model: Yit = 1(β ′
giXit + αi ≥ ϵit ), where ϵit is the idiosyncratic error with common

distribution function F , and 1(·) denotes the indicator. In this case, the pseudo likelihood is ψ(x, y, β, α) = y log F (β ′x +

α)+(1−y) log[1−F (β ′x+α)]. When F is the distribution function of standard normal (logistic), the above model becomes
the probit (logit) model.

Example 2.3. Poisson panel model: Given Xit and (βgi , αi), Yit follows the Poisson distribution with mean exp(β ′
giXit +αi).

In this case, we can choose ψ(x, y, β, α) as the logarithm of Poisson density function with mean exp(β ′x + α).

Unlike the penalized approach, such as the C-Lasso by Su et al. (2016), our M-estimation procedure (2.1) requires
optimizing the objective function over the pre-regularized parameter space ΘN where the parameters βgi intrinsically
incorporate group constraint. This important feature avoids the delicate choice of penalty parameters as required by these
penalization-based methods.

However, due to the complex structure of the parameter space ΘN , it is challenging to directly solve (2.1). Instead, we
introduce an efficient iterative algorithm. Before that, let us introduce some notation for future use:

Ĥi(β, α) =
1
T

T∑
t=1

ψ(Xit , Yit , β, α) and Ψ̂N (θN ) = Ψ̂N (β, α, γN ) =
1
N

N∑
i=1

Ĥi(βgi , αi).

Here Ĥi is the empirical pseudo likelihood function for individual i, and ΨN (θN ) is the empirical pooled pseudo likelihood
function considering the group variables. Consequently, (2.1) can be rewritten as follows:

θ̂N = (̂β, α̂, γ̂N ) = argmax
θN∈ΘN

1
N

N∑
i=1

Ĥi(βgi , αi), (2.2)

where β̂ = (̂β1, . . . , β̂G), α̂ = (̂α1, . . . , α̂N ), and γ̂N = (̂g1, . . . , ĝN ).
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We suggest the following iterative algorithm to solve (2.2):

(a) Choose the initial estimators β (0)
= (β (0)

1 , . . . , β
(0)
G ).

(b) Update Group Membership: for each i ∈ [N], in the (s + 1)th iteration, find

g (s+1)
i = argmaxg∈[G] max

α∈A
Ĥi(β (s)

g , α).

Then, update the group membership γ (s+1)
N = (g (s+1)

1 , . . . , g (s+1)
N ).

(c) Update Coefficients: given group membership γ (s+1)
N , solve2

(β (s+1), α(s+1)) = argmax
β∈KG

max
α∈AN

Ψ̂N (β, α, γ
(s+1)
N ).

(d) Repeat steps (b)-(c) until Ψ̂N (β (s+1), α(s+1), γ
(s+1)
N ) = Ψ̂N (β (s), α(s), γ

(s)
N ) or some tolerance criterion is met.3

The above algorithm is essentially a modified k-means algorithm. Bonhomme and Manresa (2015) also proposed a
similar algorithm to study the group patterns of fixed effects in a linear panel. As discussed by Bonhomme and Manresa
(2015), the modified k-means algorithm is sensitive to the choice of initial estimators β (0), and they recommended trying
different initial values. For our algorithm, we propose the following two strategies to obtain initial estimators:

Strategy 1 Randomly generate β (0)
= (β (0)

1 , . . . , β
(0)
G ) around the usual fixed effects estimators to obtain the initial

estimators. For this strategy, we firstly treat all the individuals as a group and compute the fixed effects estimator
β∗

= (β∗

1 , . . . , β
∗
p ) ∈ Rp, and then, for each g ∈ [G], we generate β (0)

g = β∗
+ rδg , where r > 0 is some prespecified

constant and δg is a centered p-dimensional normal random vector whose variance matrix is diagonal with diagonal
elements |β∗

1 |
2, . . . , |β∗

p |
2.4

Strategy 2 For each i ∈ [N], let β̂ML
i and α̂ML

i be the pseudo maximum likelihood estimators of β0
i and α0

i based on
{Xit , Yit}

T
t=1, namely, (̂βML

i , α̂ML
i ) = argmaxβ∈K,α∈A Ĥi(β, α). Next, apply the standard k-means algorithm with G groups

to (̂βML
1 , . . . , β̂ML

N ) and denote the estimated groups as (β (0)
1 , . . . , β

(0)
G ). Finally, set β (0)

= (β (0)
1 , . . . , β

(0)
G ) to be the initial

estimators for iteration.

In the simulation studies and empirical applications, we try 21 different initial estimators, of which 20 are randomly
generated by Strategy 1 and one is generated by Strategy 2. After implementing the proposed algorithm using different
initial estimators, we choose the one leading to the largest pseudo likelihood. The simulation results show that our
proposed procedure works very well and is also quite fast even when multiple initial values are used.5

3. Asymptotic theory

In this section, we prove several asymptotic results, such as estimation consistency, classification consistency for using
an overspecified G, and asymptotic normality for the estimators obtained with a correctly specified G. We also provide a
procedure to determine the number of groups consistently. Throughout this section, let θ0N = (β0, α0, γ 0

N ) denote the true
parameters under which the observations Xit and Yit are generated, where β0

= (β0
1 , β

0
2 , . . . , β

0
G0
), α0

= (α0
1, α

0
2, . . . , α

0
N ),

and γ 0
N = (g0

1 , g
0
2 , . . . , g

0
N ). Moreover, we denote D as the σ -field generated by the fixed effects {α0

1, α
0
2, . . . , α

0
N} and

define PD(·), ED(·) to be the conditional probability and expectation given D, respectively. Using the above notations, we
define Hi(β, α) = ED(Ĥi(β, α)) and ΨN (θN ) = ΨN (β, α, γN ) =

1
N

∑N
i=1 Hi(βgi , αi), which are the population counterparts of

Ĥi’s and Ψ̂N , respectively.

3.1. Estimation consistency

The main result of this section is to show that the proposed M-estimation is consistent. Before stating our main
theorem, let us introduce some technical conditions. To start, for each g ∈ [G0

], we define Ng =
∑N

i=1 1(g
0
i = g) (i.e., the

true number of individuals from group g).

2 The optimization problem can be solved as follows. First, divide all individuals into G groups based on γ (s+1)
N . Next, notice for individuals in the

gth group, it is a fixed effects model (without group structures) and can be solved efficiently by existing R packages (e.g., speedglm package, see
Fernández-Val and Weidner, 2016). The corresponding estimators based on different groups are denoted as β (s+1)

g for g ∈ [G] and α(s+1)
i for i ∈ [N].

Finally, set β (s+1)
= (β (s+1)

1 , . . . , β
(s+1)
G ) and α(s+1)

= (α(s+1)
1 , . . . , α

(s+1)
N ).

3 The criterion we used to stop iteration is that the difference between β (s+1) and β (s) in Euclidean norm is less than 10−6 . For the above proposed
modified k-means algorithm, a proof of local convergence is provided in the online Supplement S.III.
4 Even though there is no golden principle to choose the random initial estimators, the recommended procedure with r = 1 performs considerably

well in both simulation and empirical studies.
5 For the robustness and computational time of the proposed strategies, we defer the simulation results to the online Supplement S.IV for

additional simulation evidences.
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Assumption A1.

(a) {(Xit , Yit ), t ∈ [T ]} are mutually conditionally independent of each other across i ∈ [N] given D.
(b) For each i ∈ [N], the process {Xit , Yit : t ∈ [T ]} is conditionally stationary and α-mixing given D with conditional

mixing coefficients α[i](·). Moreover, α(τ ) := supN≥1 max1≤i≤N α[i](τ ) satisfies α(τ ) ≤ exp(−C0τ
b0 ) almost surely for

all τ ≥ 0 and some constants C0, b0 > 0.
(c) For each i ∈ [N], Hi(β, α) is uniquely maximized at (β0

g0i
, α0

i ). Furthermore, the following identification condition
holds almost surely:

χ (ϵ) := inf
N≥1

inf
1≤i≤N

inf
∥β−β0

g0i
∥
2
2+|α−α0i |

2
≥ϵ

[Hi(β0
g0i
, α0

i ) − Hi(β, α)] > 0, for all ϵ > 0.

(d) d0 := inf̃g ̸=g ∥β0
g − β0

g̃ ∥2 > 0.
(e) There exists a non-negative function Q (x, y) such that for all (β, α), (β̌, α̌) ∈ K × A,

|ψ(x, y, β, α) − ψ(x, y, β̌, α̌)| ≤ Q (x, y)(∥β − β̌∥
2
2 + |α − α̌|

2)1/2,

and |ψ(x, y, β, α)| ≤ Q (x, y) for all (β, α) ∈ K × A. Furthermore, there exist b1 ∈ (0,∞] and B1 > 0 such that the
following inequality holds almost surely:

sup
N≥1

sup
1≤i≤N

PD(Q (Xi1, Yi1) > v) ≤ exp
(
1 − (v/B1)b1

)
, for all v > 0.

(f) For all g ∈ [G0
], there exists a positive constant πg such that Ng/N → πg as N → ∞.

Remark 3.1. Assumption A1.(a) assumes conditional cross-sectional independence among the individuals given D.
Assumption A1.(b) imposes conditional weak dependence for the observations along time with the level of dependence
controlled by an exponential bound with parameter b0. The conditional stationarity assumption can be relaxed at the
cost of introducing extra notations. The conditional stationarity and α-mixing conditions are also used in Su and Chen
(2013) and Fernández-Val and Weidner (2016). Assumption A1.(c) is a regularity condition for identification, which can be
verified case by case under certain mild conditions. Assumption A1.(d) assumes that the pairwise differences between the
group parameters are bounded from zero. This condition is needed to ensure the identification of the group parameters.
Similar conditions are also assumed by Bonhomme and Manresa (2015) and Su et al. (2016). Assumption A1.(e) states
that ψ is smooth and satisfies certain exponential tail conditions with the decay rate of the tail probability characterized
by b1. When ψ is a bounded function, we can choose B1 = 2∥ψ∥∞ and b1 = ∞. Similar tail conditions are also
assumed by Bonhomme and Manresa (2015) for the error term. Compared with other conditions, such as finite moment
assumptions on Q , the exponential tail condition can lead to better convergence results and is still valid for many
commonly-used models, such as Examples 2.1 and 2.3. Assumption A1.(f) excludes the groups with ignorable proportions.
This condition is standard and necessary for panel models with a finite number of groups (e.g., see Bonhomme and
Manresa, 2015; Su et al., 2016).

Let d = b0b1/(b0 +b1). Since b0 and b1 characterize the weak dependence of the observations and decay rate of the tail
probability, respectively (see discussion in Remark 3.1), d can be viewed as a quantity jointly controlling both. A special
case is b1 = ∞ for bounded ψ , and we have d = b0.

Assumption A2. logN = o(T
d

1+d ).

Remark 3.2. Compared with the standard assumption on the rate of N and T in the literature where the ratio of T/N
being a nonzero constant (e.g., Hahn and Newey, 2004), Assumption A2 is a relatively weak condition since Assumption A2
allows N to diverge exponentially faster than T , where the ratio of T/N approaches to zero. Moreover, Assumption A2 is
also quite reasonable in practice since most microeconomics datasets are with moderately large T and large N .

To prove the consistency of θ̂N , we introduce the following pseudo metric dN on ΘN . For any θN = (β, α, γN ), θ̃N =

(̃β, α̃, γ̃N ) ∈ ΘN , we define:

dN (θN , θ̃N ) =
1
N

N∑
i=1

(
∥βgi − β̃g̃i∥2 + |αi − α̃i|

)
.

Specifically, dN (θN , θ̃N ) measures the average discrepancy of (βgi , αi)’s and (̃βg̃i , α̃i)’s. Theorem 1 proves consistency for θ̂N
under this pseudo metric as well as uniform consistency of β̂ĝi ’s.

Theorem 1. Suppose G ≥ G0 and Assumptions A1 and A2 hold. Then, it follows that

dN (̂θN , θ0N )
P

−→ 0 and sup
1≤i≤N

∥β̂ĝi − β0
g0i

∥2
P

−→ 0 as (N, T ) → ∞.
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Theorem 1 establishes two consistency results of the proposed estimator, namely, consistency on the average for θ̂N
and uniform consistency for β̂ĝ under the assumption G ≥ G0. However, if G < G0, the above results will be invalid since,
in this scenario, some individuals from different groups need to be classified into a same group, and this will lead to
inconsistency.

3.2. Detection of group structure among individuals

Detection of group structures in panel data is a fundamental problem in panels with group structure. The popular
C-Lasso approach recently proposed by Su et al. (2016) requires the use of penalty for effectively classifying the individuals.
In this section, we study our penalty-free grouping method and investigate its asymptotic property if G is pre-specified.
Our theory and method are valid under G ≥ G0.

Recall that γ̂N = (̂g1, ĝ2, . . . , ĝN ) is the estimator of the group membership variables obtained in (2.2). Our grouping
method is simply based on ĝi’s as follows. For g ∈ [G], define Ĉg = {i ∈ [N] : ĝi = g} (i.e., Ĉg is the collection of the
individuals belonging to the gth estimated group). We also define C0

g = {i ∈ [N] : g0
i = g} for g ∈ [G0

] (i.e., C0
g is the

population analogy based on the true group membership variables). It is necessary to provide the conditions under which
such a simple grouping method is valid, that is, for any g ∈ [G], a g̃ ∈ [G0

] exists such that Ĉg ⊆ C0
g̃ with probability

approaching one. A formal statement of this result is provided in Theorem 2. Such a property implies that the individuals
are correctly grouped.

To prove this result, we need stronger assumptions on the smoothness of ψ . To deal with partial derivatives of a
multivariate function, we introduce the following multi-index notation. Let k = (k1, k2, . . . , kp+1) denote a multi-index,
where kl’s are non-negative integers. For any β ∈ K ⊂ Rp, denote β = (β[1], β[2], . . . , β[p]), where β[l] is the lth coordinate
of β . Define the kth order partial derivative of ψ(x, y, β, α) with respect to β, α as follows:

Dkψ(x, y, β, α) =
∂ |k|ψ(x, y, β, α)

∂β
k1
[1] . . . ∂β

kp
[p]∂α

kp+1
,

where |k| = k1 + k2 + · · · + kp+1. We also denote the Hessian of ψ and Hi (with respect to β, α) by

ψ̈(x, y, β, α) =

(
∂2ψ(x,y,β,α)

∂β∂β ′

∂2ψ(x,y,β,α)
∂β ′∂α

∂2ψ(x,y,β,α)
∂β∂α

∂2ψ(x,y,β,α)
∂α2

)
, Ḧi(β, α) = ED(ψ̈(Xi1, Yi1, β, α)).

We require the following conditions on the partial derivatives of ψ and Hessian of Hi’s. Let Bi = {(β, α) ∈ K × A :

∥β − β0
g0i

∥2 + |α − α0
i | ≤ a0} for i ≥ 1, and B = ∪i≥1Bi.

Assumption A3.

(a) There exist a function J(x, y), a constant a0 > 0 and an integer q0 ≥ 4 such that, for any k with |k| ≤ 4 and
(β, α) ∈ B,

|Dkψ(x, y, β, α)| ≤ J(x, y) and sup
N≥1

sup
1≤i≤N

EDJq0 (Xi1, Yi1) < ∞, almost surely.

(b) supN≥1 sup1≤i≤N λmax(Ḧi(β0
g0i
, α0

i )) < 0 almost surely.

Remark 3.3. Assumption A3.(a) requires higher-order smoothness and existence of finite q0th moment on the derivatives
of pseudo likelihood function ψ to guarantee the correct classification. A similar assumption has been made by Hahn
and Newey (2004) and Su et al. (2016). Assumption A3.(b) requires the largest eigenvalues of Hessian matrices at the
true values are uniformly bounded away from zero almost surely, which implies that Hessian matrices of the expected
objective function are uniformly negative definite. This assumption is similar to the conditions on the Hessian matrices
of the profiled pseudo likelihood function in Su et al. (2016). Note that both Assumptions A1.(c) and A3.(b) are imposed
on the population counterpart of pseudo likelihood function. They are both standard regularity conditions for nonlinear
panels, where the former is the uniqueness condition for identification of parameters of interest and the latter is a
local condition to study the asymptotic distribution of the estimators. In general, neither of these two assumptions is
nested in the other. However, if Hi(β, α)’s are convex and (β0

g0i
, α0

i )’s are the local maximizers, Assumption A3.(b) implies
Assumption A1. (c).

Below is the main theorem which provides the classification consistency of our grouping method under G ≥ G0.

Theorem 2. Suppose G ≥ G0 and Assumptions A1–A3 hold. Then, for each g ∈ [G], there exists a g̃ ∈ [G0
] such that

lim(N,T )→∞ P
(
Ĉg ⊆ C0

g̃

)
= 1.
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Remark 3.4. Theorem 2 demonstrates that the proposed grouping method is valid under misspecification in the
sense that, with probability approaching one, any grouped individuals asymptotically belong to a population group. This
implies that any population group is either identical to a selected group or is partitioned into subgroups without any
misclassification, which is possibly the best result one can expect under G ≥ G0. In the special case G = G0, Theorem 2
naturally leads to classification consistency (i.e., up to a proper relabeling, Ĉg = C0

g for all g ∈ [G0
] with probability

approaching one). When G = G0 the classification consistency is also established by Su et al. (2016).

Remark 3.5. Intuitively, Theorem 2 implies that, under Assumptions A1–A3 and if G > G0, then asymptotically,
(i) individuals from the same group may be divided into different subgroups; (ii) individuals from different groups cannot
be categorized into the same group.

Remark 3.6. The implication of Theorem 2 is that, since the true number of groups is unknown in practice, it is safe
to use a relatively large number of groups to classify the data and to obtain consistent estimation. Otherwise, if G < G0,
neither the estimation nor the classification is consistent.

3.3. Asymptotic normality

In this section, we study the asymptotic normality of β̂ under G = G0. First, we introduce the ‘‘oracle’’ estimator β̃ of
β when the true group assignment γ 0

N were known. Let

β̃ = argmax
β∈KG0

max
αi∈A

1
N

N∑
i=1

Ĥi(βg0i
, αi).

Clearly, β̃ is infeasible since γ 0
N is practically unavailable. In fact, β̃ and β̂ are asymptotically equivalent if G = G0, as

shown in the following proposition.

Proposition 1. Suppose G = G0 and Assumptions A1–A3 hold, then

lim
(N,T )→∞

P (̂β = β̃) = 1.

The above proposition roots from Theorem 2 when G = G0. In this case, we can recover the true latent group
structure with probability approaching one and, asymptotically, there is no difference between the oracle estimator and
our proposed estimator. Thus, to derive the asymptotic normality of β̂ , it is sufficient to derive the asymptotic normality
of β̃ , i.e., given γ 0

N . To this end, we make an additional assumption, Assumption A4. Before that, let us define

ρi = E−1
D

(
∂2ψ

∂α2 (Xi1, Yi1, β
0
g0i
, α0

i )
)
ED

(
∂2ψ

∂β∂α
(Xi1, Yi1, β

0
g0i
, α0

i )
)
,

Ui(x, y, β, α) =
∂ψ

∂β
(x, y, β, α) − ρi

∂ψ

∂α
(x, y, β, α), Ri(x, y, β, α) =

∂ψ

∂α
(x, y, β, α),

Vi(x, y, β, α) =
∂Ui

∂β ′
(x, y, β, α), Ii = ED(Vi(Xi1, Yi1, β

0
g0i
, α0

i )).

The above notation is standard in the literature of nonlinear panel models (e.g., Hahn and Newey, 2004; Arellano
and Hahn, 2007). For notational simplicity, we denote Uαi = ∂Ui/∂α, Uααi = ∂2Ui/∂α

2, Uit = Ui(Xit , Yit , β
0
g0i
, α0

i ), and

Uαit = Uαi (Xit , Yit , β
0
g0i
, α0

i ). We also define Rit and Rαit analogically. For each i ∈ [N], letΛi denote the asymptotic conditional

covariance matrix of
∑T

t=1 Uit/
√
T as T → ∞, which has the following expression:

Λi = lim
T→∞

1
T
ED

([ T∑
t=1

Uit

][ T∑
t=1

U ′

it

])
= ED(Ui1U ′

i1) + 2
∞∑
t=1

ED(Ui1U ′

i,1+t ).

Convergence of the above series holds uniformly for i under Assumptions A1 and A3.

Assumption A4.

(a) There exists a constant B3 ∈ (0, 1) such that

B3 ≤ inf
N≥1

inf
1≤i≤N

λmin(Λi) ≤ sup
N≥1

sup
1≤i≤N

λmax(Λi) ≤ 1/B3 almost surely.
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Moreover, for each g ∈ [G0
], there exist a strictly positive definite matrix Dg and a strictly negative definite matrix

Wg such that the following convergence results hold almost surely

lim
N→∞

∑
i:g0i =g

Λi/Ng = Dg and lim
N→∞

∑
i:g0i =g

Ii/Ng = Wg .

(b) For each g ∈ [G0
], there exists a vector ∆g ∈ Rp such that the following convergence holds almost surely:

lim
(N,T )→∞

1
Ng

∑
i:g0i =g

ED

{( ∑T
t=1 Rit

√
TED(Rαi1)

)(
1

√
T

T∑
t=1

[Uαit −
ED(Uααi1 )
2ED(Rαit )

Rit ]

)}
= ∆g .

Remark 3.7. Assumption A4.(a) requires that the eigenvalues of the covariance matrices Λi are all bounded away from
zero and infinity. Assumption A4.(b) is a common condition to handle the asymptotic bias; see Hahn and Newey (2004)
and Arellano and Hahn (2007) for similar assumptions.

As the main result of this section, Theorem 3 shows that the elements of β̂ are asymptotically normally distributed.

Theorem 3. Suppose G = G0 and Assumptions A1, A3 and A4 hold. If N/T → κ for some κ ≥ 0, then as (N, T ) → ∞, for
each g ∈ [G0

] and conditioning on D,
√
NT (̂βg − β0

g )
D

−→ N(−
√
κW−1

g ∆g , π
−1
g W−1

g DgW−1
g ), almost surely.

Furthermore, for each g ∈ [G0
], it follows that√

πgNTD−1/2
g Wg (̂βg − β0

g ) +
√
πgκD−1/2

g ∆g
D

−→ N(0, I).

Remark 3.8. Theorem 3 is closely related to a number of studies on panel data models with fixed effects. First, the
asymptotic bias of β̂g is of order

√
N/T . For the fixed effects model, Hahn and Newey (2004) derived the same order for

the asymptotic bias of the fixed effects estimator. In particular, β̂g ’s become asymptotically unbiased when N = o(T ).
Second, when (Xit , Yit ) are conditionally independent given D across i and t , the bias term has following expression:

−
√
κW−1

g ∆g = −
√
κW−1

g lim
N→∞

1
Ng

∑
i:g0i =g

(
ED(Ri1Uαi1)
ED(Rαi1)

−
ED(Uααi1 )ED(|Ri1|

2)
2E2

D(Rαi1)

)
.

For the fixed effects model without group structures (i.e., πg = Ng/N = 1), the above expression coincides with those
obtained by Arellano and Hahn (2007).

Remark 3.9. For statistical inference, we need to obtain a bias-corrected estimator and the associated estimator of the
variance–covariance matrix. In practice, for each subgroup, one can either use the jackknife procedure proposed by Hahn
and Newey (2004) and Dhaene and Jochmans (2015), or the plug-in method suggested by Arellano and Hahn (2007) to
obtain the bias-corrected estimator. For instance, let N̂g be the number of individuals in the corresponding estimated
group Ĉg , then the bias-corrected estimator using the plug-in method is given by

β̂BC
g = β̂g +

1
T
Ŵ−1

g ∆̂g ,

where Ŵg =
∑

i:g0i =g Îi/N̂g with Îi = ÊT (V̂it ), V̂it = Vi(Xit , Yit , β̂ĝi , α̂i), ÊT (·) =
∑T

t=1 (·) /T denoting the sample average
and

∆̂g =
1
N̂g

∑
i:̂gi=g

ÊT

{( ∑T
t=1 R̂it

√
T ÊT (̂Rαit )

)(
1

√
T

T∑
t=1

[Ûαit −
ÊT (Ûααit )
2̂ET (̂Rαit )

R̂it ]

)}
,

with R̂it = Ri(Xit , Yit , β̂ĝi , α̂i), R̂αit = Rαi (Xit , Yit , β̂ĝi , α̂i), Ûαit = Uαit (Xit , Yit , β̂ĝi , α̂i), Ûααit = Uααi (Xit , Yit , β̂ĝi , α̂i). Similarly, the
variance–covariance matrix can be estimated by π̂−1

g Ŵ−1
g D̂gŴ−1

g , where π̂g = N̂g/N and

D̂g =
1
N̂g

∑
i:̂gi=g

Λ̂i,

with Λ̂i = T ÊT (Ûit )̂ET (Û ′

it ), and Ûit = Ui(Xit , Yit , β̂ĝi , α̂i). It should be noted that in practice β̂g can be replaced with the
bias-corrected estimator β̂BC

g . For details, see Arellano and Hahn (2007).
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3.4. Determination of the number of groups

Although our estimation and classification consistency results are valid for overspecified G, it is still of interest to
estimate the number of groups due to following reasons. Estimating G can provide a guideline to select the number of
groups for estimation and classification, while statistical inference requires a correctly specified G. In this section, we
propose an efficient approach based on an information criterion to address this problem and establish its theoretical
validity. Let θ̂GN be the estimator in (2.2) using G as the number of groups. To estimate G0, we define the following
information criterion function

PC(G) = Ψ̂N (̂θGN ) − ηNTG,

where ηNT > 0 is a penalty parameter that is used to exclude the extremely large and unlikely choice of G. We estimate
G0 by

Ĝ = argmax
G∈[Gmax]

PC(G), (3.1)

where Gmax is a predetermined upper bound for G. The following theorem shows that Ĝ is a consistent estimator of G0.

Theorem 4. Suppose Assumptions A1 and A3 hold. If logN = o(T
d

2(1+d) ), ηNTT
1

2(1+d) → ∞ and ηNT → 0, then
lim(N,T )→∞ P (̂G = G0) = 1.

Note that the rate condition logN = o(T
d

2(1+d) ) in Theorem 4 is slightly stronger than Assumption A2, though both
conditions allow N to grow exponentially with T . Since ηNT plays a crucial role in determining the number of groups, we
follow Su et al. (2016) to pick ηNT by trying a list of candidates (see Section 4 for details).

4. Monte Carlo simulation

To investigate the finite-sample performance of our proposed procedure and compare it with C-Lasso, we consider
three data generating processes (DGPs) that cover both linear and nonlinear panels of static and dynamic models.
Throughout these DGPs, we generate the fixed effect αi from standard normal distribution with a truncation of 3 standard
deviations independently across i, and draw the idiosyncratic error uit independently from standard normal distribution
across i and t . Moreover, uit is also independent of all regressors. We set the number of groups to be three (i.e., G0

= 3),
and the number of elements in each group are given by N1 = ⌊0.3N⌋, N2 = ⌊0.3N⌋ and N3 = N − N1 − N2, where N is
the total number of cross-sectional units and ⌊·⌋ denotes the integer part of ‘‘·’’.

DGP 1 (Linear panel model): The data is generated as follows:

yit = αi + X ′

itβgi + uit ,

where Xit =
(
0.2αi + eit,1, 0.2αi + eit,2

)′ and eit,1, eit,2 ∼ I.I.D.N (0, 1) across i, t and are independent of αi. The true
coefficients are (0.4, 1.6), (1, 1) and (1.6, 0.4) for the three groups, respectively.

DGP 2 (Linear dynamic panel model): The observations are generated by the following:

yit = αi
(
1 − γgi

)
+ γgiyit−1 + X ′

itβgi + uit ,

where Xit is a two-dimensional random vector generated in the same way as DGP 1. The true coefficients are (0.4, 1.6, 1),
(0.6, 1,−1) and (0.8, 0.4, 1.6) for the three groups, respectively.

DGP 3 (Dynamic probit panel model): The data follows the generating process below,

yit = 1
(
γgiyit−1 + xitβ1,gi + β2,gi + αi > uit

)
,

where xit = 0.1αi + eit with eit ∼ I.I.D.N (0, 1) and is independent of all other variables. The true coefficients are
(1,−1, 0.5), (0.5, 0,−0.25), and (0, 1, 0). It should be noted that γgi and β1,gi are identifiable in this model, whereas
β2,gi is unidentifiable because it is absorbed into the individual specified effects αi.

For all the three DGPs, we consider the combinations of (N, T ) with N = (100, 200) and T = (15, 25, 50). During each
replication, the group membership is held fixed and several numbers of groups, namely G = 3, 4, 5, are employed to
estimate to coefficients. The number of replications is set to be R = 1000. Since the goal of this paper is to consistently
estimate the regression coefficients, group membership, and number of groups, we consider the following three criteria
to compare the finite sample performance of the proposed M-estimation and C-Lasso.

(1) Estimation consistency. For G ≥ G0, the consistency of estimation is evaluated using the root mean squared error
(RMSE) of the estimated coefficients for each individual, which is defined as follows:

RMSE =

√ 1
N

N∑
i=1

∥β̂ĝi − β0
g0i

∥
2
2.
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Table 1
RMSE under G = 3, 4, 5 with G0

= 3.
DGP 1 DGP 2 DGP 3

G 3 4 5 3 4 5 3 4 5

N T M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso

100 15 0.190 0.189 0.217 0.225 0.234 0.238 0.115 0.245 0.178 0.341 0.224 0.415 0.296 0.366 0.512 0.623 0.571 0.732
100 25 0.113 0.120 0.140 0.145 0.157 0.165 0.055 0.195 0.117 0.234 0.154 0.352 0.190 0.187 0.256 0.242 0.277 0.268
100 50 0.036 0.028 0.068 0.066 0.083 0.088 0.036 0.092 0.131 0.166 0.109 0.258 0.119 0.142 0.173 0.163 0.182 0.179
200 15 0.188 0.186 0.214 0.221 0.233 0.238 0.111 0.201 0.174 0.324 0.201 0.428 0.286 0.278 0.381 0.532 0.399 0.503
200 25 0.109 0.122 0.136 0.150 0.153 0.163 0.048 0.157 0.167 0.235 0.184 0.248 0.185 0.170 0.240 0.302 0.261 0.256
200 50 0.032 0.046 0.065 0.090 0.080 0.106 0.028 0.035 0.074 0.158 0.101 0.143 0.116 0.110 0.162 0.174 0.176 0.168

Table 2
GRMSE of DGPs 1–3 with G0

= 3. ‘‘Oracle’’ refers to estimation using the true group membership (i.e., g0
i ’s are used).

DGP 1 DGP 2 DGP 3

N T M-Est C-Lasso Oracle M-Est C-Lasso Oracle M-Est C-Lasso Oracle

100 15 0.070 0.062 0.048 0.083 0.132 0.082 0.180 0.332 0.135
100 25 0.042 0.044 0.037 0.055 0.088 0.055 0.110 0.164 0.091
100 50 0.034 0.029 0.025 0.036 0.043 0.036 0.077 0.089 0.066
200 15 0.050 0.048 0.036 0.060 0.095 0.060 0.125 0.279 0.094
200 25 0.031 0.035 0.026 0.043 0.063 0.043 0.080 0.123 0.068
200 50 0.021 0.023 0.018 0.029 0.035 0.029 0.054 0.065 0.047

When G = G0, we also consider another type RMSE similar to Su et al. (2016), which is defined as follows:

Group RMSE =

√ 1
G0

G0∑
g=1

∥β̂g − β0
g ∥

2
2.

(2) Consistency of Ĝ. The selection consistency for the number of groups is measured by the empirical percentage of
selecting the true number of groups, namely, Ĝ = G0

= 3 in our designs.6
(3) Classification consistency. We evaluate the percentage of correctly specifying the group membership of individuals,

which is calculated as
∑N

i=1 1(̂gi = g0
i )/N under appropriate relabeling.

The simulation results of DGPs 1–3 are summarized in Tables 1–4. Several interesting findings can be observed. First,
Table 1 provides the RMSE for the proposed M-estimation and C-Lasso7 using various numbers of groups under G0

= 3.
From Table 1, we can observe that the RMSE decreases rapidly with the increase of either N or T for both M-estimation
and C-Lasso regardless of the choices of G. Moreover, the estimation obtained using our approach in general has a smaller
RMSE than those obtained using C-Lasso. Second, Table 2 provides the results that, if G0 is prespecified, the Group RMSE
(GRMSE) of M-estimator and C-Lasso diminishes quickly when increasing N and T , and both approaches perform similarly
to the oracle estimator (e.g., knowing the true group membership), which is consistent with our findings in Theorem 1.
Compared with C-Lasso, our method has better finite sample performance for both linear (DGPs 1–2) and nonlinear (DGP
3) models. It is worth mentioning that the GRMSE obtained from our proposed method is almost identical to that of the
oracle one in the dynamical linear panel (DGP 2) regardless of the sample size. Third, Table 3 summarizes the accuracy
of selection for the number of groups using the criterion PC(G) proposed in Section 3.4 and the C-Lasso procedure. We
note that, throughout all our designs of both linear and nonlinear panels, the determination of the number of groups
is fairly accurate in the sense that the percentage of choosing the true number of groups is quite close to 1 when the
sample size is large enough, which is comparable with that using C-Lasso. Finally, Table 4 presents the simulation results
of the correct classification. For the correctness of classification, we observe that, with a large enough sample size, the
classification for both linear and nonlinear panels is fairly accurate, and it is evident that the classification is consistent,
as shown in Theorem 2. Furthermore, compared with C-Lasso, our method has significantly better classification accuracy
in both linear and nonlinear dynamic panels (DGPs 2 and 3). In conclusion, the performance of our proposed procedure
is fairly good with a finite sample, and performs comparably better than the C-Lasso method. Therefore, we can claim

6 For the choice of the tuning parameter ηNT in Theorem 4 in determining the number of groups, we follow the idea in Su et al. (2016) and try
various distinct values. We find that 1

5 log(T )T1/8
and log(N)1/8

5 log(T )T1/8
have fairly good performance in linear and probit models, respectively. These settings

are also used in empirical studies. For implementation of C-Lasso, we follow the same settings and principle in Su et al. (2016) to choose the tuning
parameters.
7 The authors appreciate (Su et al., 2016) for sharing their codes for C-Lasso.
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Table 3
Percentage of choosing G = 1, 2, . . . , 5 with G0

= 3.
DGP 1 DGP 2 DGP 3

N T G 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

100 15 M-Est 0 0.004 0.976 0.020 0 0 0.002 0.473 0.372 0.153 0 0.081 0.612 0.262 0.045
C-Lasso 0 0 0.994 0.004 0.002 0 0.249 0.743 0.003 0.005 0 0.129 0.583 0.192 0.096

100 25 M-Est 0 0 0.996 0.004 0 0 0 0.939 0.060 0.001 0 0.058 0.810 0.128 0.004
C-Lasso 0 0 1 0 0 0 0.010 0.980 0.005 0.005 0 0.096 0.646 0.242 0.016

100 50 M-Est 0 0 0.988 0.012 0 0 0 0.995 0.005 0 0 0.007 0.895 0.098 0
C-Lasso 0 0 1 0 0 0 0 1 0 0 0 0 0.986 0.014 0

200 15 M-Est 0 0 0.996 0.004 0 0 0 0.669 0.221 0.110 0 0.063 0.705 0.221 0.011
C-Lasso 0 0 0.890 0.106 0.004 0 0.028 0.972 0 0 0 0.121 0.662 0.235 0.018

200 25 M-Est 0 0 1 0 0 0 0 0.963 0.037 0 0 0.011 0.881 0.106 0.002
C-Lasso 0 0 1 0 0 0 0 1 0 0 0 0 0.986 0.014 0

200 50 M-Est 0 0 1 0 0 0 0 0.998 0.002 0 0 0.002 0.932 0.066 0
C-Lasso 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Table 4
Percentage of correct classification with G0

= 3.
DGP 1 DGP 2 DGP 3

N T M-Est C-Lasso M-Est C-Lasso M-Est C-Lasso

100 15 0.902 0.889 0.995 0.943 0.752 0.703
100 25 0.934 0.958 1 0.952 0.909 0.893
100 50 0.966 0.996 1 1 0.979 0.945
200 15 0.903 0.898 0.995 0.923 0.883 0.856
200 25 0.967 0.972 0.999 0.944 0.929 0.893
200 50 0.995 0.996 1 0.981 0.980 0.955

that the simulation results confirm our theoretical findings in this paper regarding the identification and estimation for
panels with unknown group structures.8

5. Empirical application

In this section, we apply the above estimation and classification method to two datasets, including linear and binary
choice models.

5.1. Women’s labor-force participation

The first dataset comes from the Panel Study of Income Dynamics (PSID) and contains 664 married women for 10
calendar years from 1979 to 1988. We consider the following dynamic probit panel model with fixed effects:9

yit = 1
(
αi + γgiyit−1 + X ′

itβgi + εit > 0
)

where yit takes a value of one if woman i participates in period t , and zero otherwise. Moreover, αi represents individual-
specific effect and ϵit is standard normal. Other independent variables are Xit =(#childrenit , logincomeit , race, eduwife,
agewife, and agewife2), where #childrenit is the number of children aged between 0 and 17, logincome is the log of the
husband’s labor income deflated by the Consumer Price Index, race is an indicator function and takes value 1 for black,
eduwife is the years of education of the woman, agewife is the age of the woman (divided by 10) and agewife2 is the
squared age. Similar variables were also considered by Hyslop (1999) and Carro (2007).

Using the classification method in the previous section, we divide the original sample into two groups (i.e., G = 2). The
summary statistics for the full sample and the two subgroups are provided in Table 5. From Table 5, we can observe that
these two groups have quite distinct observations for some variables. For example, comparatively, individuals in Group
2 have more children, lower percentage of black race, and younger age, while individuals in Group 1 have more years of
education. The differences in these two groups make a difference in the estimation. Furthermore, on average, individuals
from Group 2 have a much higher tendency to join the labor market compared with individuals from Group 1, e.g., the
mean of labor force participation rate is 0.7898 for individuals from Group 2 and is 0.3982 for Group 1.

For the estimated group membership, we apply the fixed effects probit regression for each group and the whole sample.
The estimation results are summarized in Table 6. Several interesting findings can be observed in the above estimation.
First, we note that the effects of variables of the previous year’s labor force participation, husband’s income, and wife’s age

8 We also provide the comparison of the computational time of the proposed algorithm and C-Lasso, which is included in Supplement S.IV. As
shown in the Supplement, for the nonlinear dynamic model (DGP 3), our algorithm is much faster.
9 The estimation of model with both individual and time effects is provided in the Supplement S.V.
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Table 5
Summary statistics for the original sample and two subgroups.

Full Sample Group 1 Group 2

Variables min mean max min mean max min mean max

yit 0 0.574 1 0 0.398 1 0 0.789 1
#children 0 1.76 7 0 1.691 6 0 1.841 7
logincome 5.806 10.471 13.846 5.806 10.483 12.995 6.64 10.46 13.85
race 0 0.164 1 0 0.179 1 0 0.147 1
eduwife 5 12.05 18 5 12.13 18 5 11.95 18
agewife 1.8 3.557 6.3 1.9 3.671 6.2 1.8 3.424 6.3
agewife2 3.24 13.41 39.69 3.61 14.25 38.44 3.24 12.43 39.69

Table 6
Estimation results of women’s labor-force participation.
Variables Full Sample Group 1 Group 2

yi,t−1 2.0504∗∗∗ 2.1779∗∗∗ 0.8835∗∗∗

#children 0.0000 −0.0395 −0.0915∗∗

logincome −0.1933∗∗∗
−0.2408∗∗∗

−0.1787∗∗

race −0.1735∗∗
−0.1938∗ 0.1215

eduwife 0.0096 0.0088 0.0257∗∗

agewife 1.2635∗∗∗ 1.8465∗∗∗ 2.6434∗∗∗

agewife2 −0.1610∗∗∗
−0.2297∗∗∗

−0.3097∗∗∗

Note: *, **, and *** refer to significance at 10%, 5% and 1% level, respectively.

remain the same across the whole sample and two groups, even if the effects are quite different across different groups.
Second, the race has negative effects on the labor force participation in the whole sample and Group 1, while race is no
longer significant in Group 2. From the summary statistics, we notice that Group 2 has a relatively low percentage of
black wives, which indicates that the effect of race is offset by other variables in this group. Finally, we observe that the
education of the wife is not significant in the whole sample and Group 1, while it is significant in Group 2, which indicates
that education indeed has a positive significant effect on the labor force participation for individuals in Group 2.10

5.2. Aggregate production

The second empirical application is to analyze the aggregate production function, which is important for economists
to understand economic growth, technology changes, productivity difference across countries, and production efficiency.
In the following, we apply our method to the Aggregate Production Data, which is extracted from version 9.0 of the
Penn World Table. We keep a balanced panel dataset for 43 countries across the world during the period 1950–2014.
Following Glass et al. (2016), we consider following linear model11:

yit = βk,gikit + βl,gi lit + βpub,gipubit + βxm,gixmit + αi + errorit ,

where yit , kit , and lit are the real log GDP, capital stock, and number of people engaged in the ith country at year
t , respectively. Furthermore, pubit is the government/public expenditure and xmit is the net trade openness defined
as the exports minus imports of merchandise. Based on our estimation procedure, we divide the whole sample into
three subgroups. Table 7 reports the estimated parameters and corresponding significance based on the full sample and
three subgroups. All the estimated coefficients are highly significant among the four models under 1% level, except the
coefficient of xm in Group 1, which is insignificant under 10% level. The capital and labor elasticity of full sample are
estimated to be 0.6366 and 0.3845, approximately summing up to 1, which coincides with the convention in the Cobb–
Douglas model (appropriately scaled). These two elasticities are similar between Groups 2 and 3 with capital elasticity
being higher, while in Group 1, the capital elasticity is estimated as 0.4113, about 0.2 smaller than the labor elasticity.
Furthermore, in terms of the coefficient for pub, Groups 1 and 3 are fairly close, with coefficients estimated to be around
1. However, the slope for pub in Group 2 is −3.4091, showing a significant difference. Finally, xm has distinct impacts
on y for three groups, namely, no impact for Group 1, a negative impact for Group 2 with coefficient of −0.6887, and a
positive impact for Group 1 with coefficient of 0.8006.12

10 A possible reason for the heterogeneity between the two groups could be the motivation to participate the job market for married women
with different background such as race, years of education, etc. However, to verify whether this is the source of heterogeneity needs more empirical
evidences, which is out of the scope of this paper.
11 The estimation of model with both individual and time effects is provided in the Supplement S.V.
12 A possible reason for the heterogeneity among countries and groups on the capital and labor elasticities might be due to the difference
of economic structures, natural endowment and distinct technological background among countries (see, e.g., Villacorta, 2017 and the references
therein).
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Table 7
Estimation results of aggregate production.
Variable Full Sample Group 1 Group 2 Group 3

k 0.6366∗∗∗ 0.4113∗∗∗ 0.6533∗∗∗ 0.6152∗∗∗

l 0.3845∗∗∗ 0.6005∗∗∗ 0.5610∗∗∗ 0.5771∗∗∗

pub 0.7636∗∗∗ 1.0805∗∗∗
−3.4091∗∗∗ 1.0224∗∗∗

xm 0.5649∗∗∗ 0.1609 −0.6887∗∗∗ 0.8006∗∗∗

Note: *, **, and *** refer to significance at 10%, 5% and 1% level, respectively.

6. Conclusion

In this paper, we consider the identification and estimation of panel models with group structures when the true
number of groups and the group membership are unknown to researchers. We propose an M-estimation procedure
to estimate the parameters of interest and classify individuals, and an information criterion function to determine the
number of groups. The method we proposed is applicable to both linear and nonlinear panels. Asymptotic properties
are established for the estimation, classification and the determination of the number of groups. As a major theoretical
contribution, we show that, under certain assumptions, the consistency of our proposed estimation and classification
procedure is independent of the number of groups used in estimation as long as this number is not underestimated. The
important practical implication of this result is that it is safe to use a relative large number of groups to estimate the
model. Monte Carlo simulations are conducted to examine the finite sample properties of the proposed method, and the
results confirm our theoretical findings. Applications to two real datasets also highlight the necessity to consider both
individual-level and group-level heterogeneity.

Appendix A

In this appendix, we provide the proofs of main results in the paper. The proofs use some technical lemmas whose
proofs are provided in the online supplement.

Before proceeding, we define some notation. We say a random variable ζNT = oPD (rNT ) for some real number rNT if
and only if for any ϵ > 0, PD(ZNT > r−1

NT ϵ) = oP (1) holds. Similarly, We say random variable ζNT = OPD (rNT ) if and only if
for any ϵ > 0, there exists Cϵ > 0 such that PD(ZNT > r−1

NT Cϵ) ≤ ϵ + oP (1). We say an event ANT holds with conditional
probability given D approaching one, if and only if PD(Ac

NT ) = oP (1). By the definitions of oPD , OPD and the Dominated
Convergence Theorem (DCT), we can show the following statements which reveal the relation between PD and P:

(s.1) If ZNT = oPD (rNT ), then ZNT = oP (rNT ).
(s.2) If ZNT = OPD (rNT ), then ZNT = OP (rNT ).
(s.3) If an event ANT holds with conditional probability given D approaching one, then ANT also holds with probability

approaching one.

A.1. Proof of Theorem 1

We complete the proof of Theorem 1 in three propositions. Proposition A.1 shows the first part of Theorem 1, and
Propositions A.2 and A.3 prove the second part of Theorem 1. The technical lemmas used in the proofs of each proposition
are provided before the corresponding proposition.

Lemma A.1. Under Assumption A1, for every 0 < ϵ < R, with R = supβ1,β2∈K,α1,α2∈A ∥β1 − β2∥2 + |α1 − α2|, the inequality

inf
dN (θN ,θ0N )≥ϵ

[ΨN (θ0N ) − ΨN (θN )] ≥
ϵ

2R
χ (ϵ2/8)

holds almost surely.

Lemma A.2. Suppose Assumption A1 holds. Then there exist positive constants C3, C4, C5 such that the inequality

sup
1≤i≤N

PD

(
sup

(β,α)∈K×A

⏐⏐⏐⏐Ĥi(β, α) − Hi(β, α)
⏐⏐⏐⏐ > 10z

)
≤ C4

[
1 +

1
z2(p+2)

]

×

[(
1 +

T
1

1+d z2

C5

)−T
d

1+d /4

+
1
d
exp

(
−C3T

d
1+d zd

)
+

exp(−C3dT
d

1+d zd)

1 − exp(−C3dT
d

1+d zd)

]
holds almost surely for all z > 0,N ≥ 1 and T

d
1+d ≥ 4(p + 2). Furthermore, the condition logN = o(T

d
1+d ) implies

sup
1≤i≤N

sup
(β,α)∈K×A

⏐⏐⏐⏐Ĥi(β, α) − Hi(β, α)
⏐⏐⏐⏐ = oPD (1) = oP (1)
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and

sup
θN∈ΘN

⏐⏐⏐⏐Ψ̂N (θN ) − ΨN (θN )
⏐⏐⏐⏐ = oPD (1) = oP (1).

Lemma A.2 indicates the following concentration inequality:

SNT := sup
1≤i≤N

sup
β∈K,α∈A

|Ĥi(β, α) − Hi(β, α)| = oPD (1) = oP (1),

which plays an important role in our proof. Moreover, the definition of Ψ̂ suggests the following inequality:

sup
θn∈ΘN

|Ψ̂N (θN ) − ΨN (θN )| = sup
(β,α,γN )∈K×A×ΓN

⏐⏐⏐⏐ 1N
N∑
i=1

(
Ĥi(βgi , αi) − Hi(βgi , αi)

)⏐⏐⏐⏐ ≤ SNT .

Proposition A.1. Suppose G ≥ G0 and Assumptions A1, A2 hold. Then dN (̂θN , θ0N ) = oPD (1) = oP (1).

Proof. By the definition of θ̂N , we have the inequality

ΨN (θ0N ) − SNT ≤ Ψ̂N (θ0N ) ≤ Ψ̂N (̂θN ) ≤ ΨN (̂θN ) + SNT ≤ ΨN (θ0N ) + SNT .

This inequality and Lemma A.2 establish the convergence result

ΨN (̂θN ) − ΨN (θ0N ) = oPD (1). (A.1)

Fix ϵ in the interval (0, R) with R = supβ1,β2∈K,α1,α2∈A ∥β1 − β2∥2 + |α1 − α2|. Lemma A.1 yields the lower bound

ΨN (θ0N ) − ΨN (̂θN ) ≥ [ΨN (θ0N ) − ΨN (̂θN )]I(dN (̂θN , θ0N ) ≥ ϵ) ≥ c0I(dN (̂θN , θ0N ) ≥ ϵ)

with c0 = ϵχ (ϵ2/8)/(4R). From this and (A.1) we derive that PD(dN (̂θN , θ0N ) ≥ ϵ) converges to zero in probability. This
and (s.1) together give the desired results. □

Proposition A.1 proves the first part of Theorem 1. To prove the second part (see Proposition A.3), we need more
notation. For β ∈ K, we define

α̂i(β) := argmax
α∈A

Ĥi(β, α),

and for β := (β1, β2, . . . , βG) ∈ KG, define

γ̂N (β) := argmax
γN∈ΓN

max
α∈AN

Ψ̂N (β, α), (A.2)

with (̂g1(β), ĝ2(β), . . . , ĝN (β)) being the elements in γ̂N (β). To measure the difference between (̂β1, β̂2, . . . , β̂G) and
(β0

1 , β
0
2 , . . . , β

0
G0
) with possibly G ̸= G0, we define a map σ : [G0

] → [G] by:

σ (g) = argmin
g̃∈[G]

∥β̂g̃ − β0
g ∥2, for g ∈ [G0

]. (A.3)

If there are multiple minimizers, we just pick one of them.

Lemma A.3. Under Assumption A1, the following Lipchitz condition holds almost surely:

sup
N≥1

sup
1≤i≤N

sup
(β1,α1)̸=(β2,α2)∈K×A

|Hi(β1, α1) − Hi(β2, α2)|
(∥β1 − β2∥

2
2 + |α1 − α2|

2)1/2
≤ B2, (A.4)

where B2 =
∫

∞

0 exp
(
1 − (t/B1)b1

)
dt if 0 < b1 < ∞ and B2 = B1 if b1 = ∞.

Proposition A.2. Suppose Assumptions A1–A2 and G ≥ G0 hold. Then we have

max
g∈[G0]

∥β̂σ (g) − β0
g ∥2 = oPD (1) = oP (1).

Proof. Recall that Ng =
∑N

i=1 I(g
0
i = g) denotes the size of group g . By the definition of σ , we have

∥β̂σ (g) − β0
g ∥2 =

1
Ng

N∑
i=1

I(g = g0
i )∥β̂σ (g0i ) − β0

g0i
∥2 ≤

1
Ng

N∑
i=1

I(g = g0
i )∥β̂ĝi − β0

g0i
∥2
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for g ∈ [G0
], and therefore obtain the bound

max
g∈[G0]

∥β̂σ (g) − β0
g ∥2 ≤ max

g∈[G0]

N
NNg

N∑
i=1

∥β̂ĝi − β0
g0i

∥2 ≤ max
g∈[G0]

N
Ng

dN (̂θN , θ0N ).

Thus the desired result follows from Assumption A1.(f) and Proposition A.1. □

Lemma A.4. Suppose Assumptions A1–A2 hold. Then

sup
1≤i≤N

|̂αi(β0
g0i
) − α0

i | = oPD (1) = oP (1).

Furthermore, if {βTi, i ∈ [N]} are random vectors satisfying sup1≤i≤N ∥βTi − β0
g0i

∥2 = oPD (1), then we have

sup
1≤i≤N

|̂αi(βTi) − α0
i | = oPD (1) = oP (1).

Proposition A.3. Suppose G ≥ G0 and Assumptions A1 and A2 hold, then sup1≤i≤N ∥β̂ĝi − β0
g0i

∥2 = oPD (1) = oP (1).

Proof. From the inequality Ĥi (̂βσ (g0i ), α̂(̂βσ (g0i ))) ≤ Ĥi (̂βĝi , α̂(̂βĝi )) and the definition of SNT , we derive

Hi (̂βσ (g0i ), α̂(̂βσ (g0i ))) − SNT ≤ Ĥi (̂βσ (g0i ), α̂(̂βσ (g0i ))) ≤ Ĥi (̂βĝi , α̂(̂βĝi )) ≤ Hi (̂βĝi , α̂(̂βĝi )) + SNT

and therefore

CNT := sup
1≤i≤N

(
Hi (̂βσ (g0i ), α̂(̂βσ (g0i ))) − Hi (̂βĝi , α̂(̂βĝi ))

)
≤ 2SNT . (A.5)

Fix ϵ > 0 and set ANT = {sup1≤i≤N ∥β̂ĝi − β0
g0i

∥2 ≥ ϵ}. By Assumption A1.(c), we have

inf
1≤i≤N

(
Hi(β0

g0i
, α0

i ) − Hi (̂βĝi , α̂(̂βĝi ))
)

≥ inf
1≤i≤N

(
Hi(β0

g0i
, α0

i ) − Hi (̂βĝi , α̂(̂βĝi ))
)
I(ANT )

≥ χ (ϵ2)I(ANT ). (A.6)

Lemma A.3 and the triangle inequality imply

DNT := sup
1≤i≤N

(
Hi(β0

g0i
, α0

i ) − Hi (̂βσ (g0i ), α̂(̂βσ (g0i )))
)

≤ sup
1≤i≤N

B2

(
∥β̂σ (g0i )

− β0
g0i

∥2 + |̂α(̂βσ (g0i )) − α0
i |

)
. (A.7)

By Proposition A.2, we have

sup
1≤i≤N

∥β̂σ (g0i )
− βg0i

∥2 ≤ max
g∈[G0]

∥β̂σ (g) − βg∥2 = oPD (1). (A.8)

Thus Lemma A.4 applied with βTi = β̂σ (g0i )
yields

sup
1≤i≤N

|̂α(̂βσ (g0i )) − α0
i | = oPD (1). (A.9)

The inequalities (A.7)–(A.9) further imply

DNT = oPD (1) (A.10)

Combining (A.5), (A.6), (A.10) and Lemma A.2, we have

χ (ϵ2)I(ANT ) ≤ CNT + DNT ≤ 2SNT + DNT = oPD (1).

This implies PD(ANT ) = oPD (1) = oP (1), which is the desired result. □

Proof of Theorem 1. This is a direct consequence of Propositions A.1 and A.3. □

A.2. Proof of Theorem 2

To compare β = (β1, . . . , βG) ∈ KG and β̃ = (̃β1, . . . , β̃G̃) ∈ KG̃ for possible G ̸= G̃, we introduce following Hausdorff
distance:

dH (β, β̃) = max
{
max
g∈[G]

min
g̃∈[̃G]

∥βg − β̃g̃∥2,max
g̃∈[̃G]

min
g∈[G]

∥βg − β̃g̃∥2

}
.
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Define a η-neighborhood of β0 by Nη = {β ∈ KG
: dH (β, β0) < η}. Also for each β ∈ Nη , we denote sets

Aη(β, g) = {̃g ∈ [G] : ∥βg̃ − β0
g ∥2 < η} ⊂ [G], for all g ∈ [G0

]. Here Aη(β, ·) plays a role of relabeling that connects
labels in [G0

] with labels in [G].
Before proving Theorem 2, we provide two useful lemmas.

Lemma A.5. Suppose Assumptions A1–A2 and G ≥ G0 hold. Then we have

dH (̂β, β0) = oPD (1) = oP (1).

Lemma A.6. Suppose Assumptions A1, A3 and G ≥ G0 hold. Then for η > 0 small enough, we have the following:

(i) For all β ∈ Nη , {Aη(β, g), g ∈ [G0
]} is a partition of [G] and each Aη(β, g) is non-empty for all g ∈ [G0

].

(ii) PD

(
supβ∈Nη

sup1≤i≤N I (̂gi(β) ̸∈ Aη(β, g0
i )) > 0

)
= oP (1).

(iii) If G = G0, then each Aη(β, g) contains exactly one element for all g ∈ [G0
] and thus Aη(β, ·) is a permutation of [G0

].
Under this permutation,

PD

(
sup
β∈Nη

sup
1≤i≤N

I (̂gi(β) ̸= g0
i ) > 0

)
= oP (1).

Proof of Theorem 2. From the definition of dH and Lemma A.5, we conclude that for 0 < η < d0/2, with conditional
probability given D approaching one, {Aη (̂β, g), g ∈ [G0

]} is a partition of [G] and each Aη (̂β, g) is non-empty for all
g ∈ [G0

].
Next by Lemma A.6 and the fact that with conditional probability given D approaching one, β̂ ∈ Nη , we have

1 − PD
(̂
gi ∈ Aη (̂β, g0

i ),∀i ∈ [N]

)
= oP (1).

By DCT, it follows that

lim
(N,T )→∞

P
(̂
gi ∈ Aη (̂β, g0

i ),∀i ∈ [N]

)
= 1.

Finally, suppose i, j ∈ Ĉg for some g ∈ [G], then ĝi = ĝj = g . From argument above, we can see, with conditional
probability given D approaching one, g ∈ Aη (̂β, g0

i ) and g ∈ Aη (̂β, g0
j ). Notice with conditional probability given D

approaching one, {Aη (̂β, g), g ∈ [G0
]} is a partition of [G], so it follows that g0

i = g0
j . Now define g̃ = g0

i = g0
j ∈ [G0

],
then i, j ∈ C̃g . Therefore, with conditional probability given D approaching one, for each g ∈ [G], there exists g̃ ∈ [G0

],
such that Ĉg ⊂ C̃g . □

A.3. Proof of Proposition 1 and Theorem 3

Proof of Proposition 1. Suppose G = G0, then in the proof of Theorem 2, under appropriate relabeling, it follows that
for each g ∈ [G0

], PD(Ĉg ̸= Cg ) = oP (1). Further, we have 1 − PD (̂gi = g0
i ,∀i ∈ [N]) = oP (1). Since on the event

{̂gi = g0
i ,∀i ∈ [N]}, we have β̂ = β̃ . Therefore, we finish the proof. □

Lemma A.7. Suppose Assumptions A1, A3, A4 hold and N = O(T ), then for all g ∈ [G0
] and conditioning on D,√

NgT (̃βg − β0
g ) +

√
Ng/TW−1

g ∆g
D

−→ N(0,W−1
g DgW−1

g ), almost surely.

Moreover, for all g ∈ [G0
],√

NgTD−1/2
g Wg (̃βg − β0

g ) +
√
Ng/TD−1/2

g ∆g
D

−→ N(0, I).

Proof of Theorem 3. In the proof of Proposition 1, we show that β̂ = β̃ holds with conditional probability given D
approaching one. By (s.3), it also holds that β̂ = β̃ with probability approaching one. Therefore, the asymptotic distribution
follows from above asymptotic equivalence and Lemma A.7. □

A.4. Proof of Theorem 4

Before proving Theorem 4, we first supply two lemmas.

Lemma A.8. Under Assumptions A1, A3 and G < G0, there exists a constant B4 such that the following hold almost surely:

[ΨN (θ0N ) − ΨN (̂θN )] ≥ B4 > 0.
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Lemma A.9. Suppose Assumptions A1, A3 and G > G0 hold. Then the condition logN = o(T
d

2(1+d) ) implies

|Ψ̂N (̂θN ) − Ψ̂N (θ0N )| = OPD (T−
1

4(1+d) ).

Proof of Theorem 4. By (s.1), it suffices to show that

PD(PC(G) > PC(G0)) = oP (1) holds for each G ̸= G0. (A.11)

Now we consider two cases, namely G < G0 and G > G0.
Under-fitting case, G < G0: By direct examination and Lemma A.8 , for (N, T ) is large enough, it follows that

PC(G0) − PC(G) = Ψ̂N (̂θG
0

N ) − Ψ̂N (θ0N ) − Ψ̂N (̂θGN ) + Ψ̂N (θ0N ) − ηNT (G0
− G)

≥ Ψ̂N (θ0N ) − Ψ̂N (̂θGN ) − ηNT (G0
− G)

≥ ΨN (θ0N ) − ΨN (̂θGN ) − ηNT (G0
− G) − 2SNT

≥ B4/2 + oPD (1). (A.12)

Since ηNT → 0, it follows from (A.12) that (A.11) holds for the case G < G0.
Over-fitting case, G > G0: By Lemma A.9, it follows that

PC(G0) − PC(G) = Ψ̂N (̂θG
0

N ) − Ψ̂N (θ0N ) − Ψ̂N (̂θGN ) + Ψ̂N (θ0N ) + ηNT (G − G0)

= OPD (T−
1

4(1+d) ) + ηNT (G − G0). (A.13)

Since ηNTT
1

4(1+d) → ∞ and G > G0, so (A.11) holds for the case when G > G0. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.09.008.
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