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ABSTRACT: Studies of Eigenstate Thermalization Hypothesis (ETH) in two-dimensional
CFTs call for calculation of the expectation values of local operators in highly excited en-
ergy eigenstates. This can be done efficiently by representing zero modes of these operators
in terms of the Virasoro algebra generators. In this paper we present a pedagogical intro-
duction explaining how this calculation can be performed analytically or using computer
algebra. We illustrate the computation of zero modes by a number of examples and list
explicit expressions for all local operators from the vacuum family with the dimension of
less or equal than eight. Finally, we derive an explicit expression for the quantum KdV
generator Q7 in terms of the Virasoro algebra generators. The obtained results can be used
for quantitative studies of ETH at finite value of central charge.
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1 Introduction

Emergence of statistical thermodynamics from quantum mechanics is one of the exciting
open questions of theoretical physics. It has became an accepted paradigm that universal-
ity of thermal equilibrium can be explained in terms of Eigenstate Thermalization [1-3].
The latter is an expectation that local properties of individual microstates — energy eigen-
states of spatially extended sufficiently complex quantum system — may only depend on
thermodynamically relevant quantities, i.e. in most cases only on energy density of the
microstate. Technically, this means that the diagonal matrix elements of local observables

Aii = <EZ’A‘EZ> = fA(Ei), (1.1)

are smooth functions of energy density E;/V .

When the system, besides energy, possesses a number of additional local (or quasi-
local [4]) conserved quantities, as is normally the case for integrable systems, densities of
these additional conserved charges are also thermodynamically relevant. This simply means
emerging equilibrium state will be dependent on these additional quantities, or, more accu-
rately their densities. Further assuming local properties of individual microstates (energy
eigenstates) will be dependent on these charges, but otherwise will be physically equivalent,
we arrive at the notation of generalized Eigenstate Thermalization Hypothesis [5-7],

Aii = fa(Qr(E)), (1.2)



where f4 is a smooth function of its arguments, Q) are the conserved charges, and Qy(FE;)
are the charge values associated with an individual energy eigenstate |Ej;).

Eigenstate Thermalization Hypothesis has been established numerically for a range of
lattice models [8]. It is therefore natural to ask if Eigenstate Thermalization also applies
to conformal field theories [9-11, 11-23], which can be thought of as a continuous limit of
lattice systems at criticality. This assumes conformal field theory is quantized on a cylinder
of finite spatial size. The object of interest is the diagonal matrix element (E|A|E), where
|E) is the eigenstate of the CFT Hamiltonian and A is a local observable. In case of two-
dimensional theories, which is a focus of this work, there is a number of specifics which need
to be taken into account. First, the theory is split into “left” and “right” non-interacting
sectors, such that in conventional units the Hamiltonian H is a sum of Ly — ¢/24 and
Lo — ¢/24. We can assume that |E) is a tensor product of two eigenstates in each sector,
while A is a product of local holomorphic and anti-holomorphic components. Then the
calculation factorizes and in the rest of the paper we focus on the left-moving sector only.
Second, when A is a global descendant, its expectation value in the eigenstate of Lo—c/24 is
zero, thus in the following we assume A is a quasi-primary. Third, and final point, we have
two distinct cases to consider: when A is a Virasoro descendant of identity or when A is
not from the vacuum family. In two dimensions thermal expectation values of all operators
outside of the vacuum family vanish (this also applies to KdV Generalized Gibbs Ensemble).
Thus a prediction of ETH in d = 2 for such operators would be that (E|A|E) vanish when
|E) is sufficiently heavy [12]. This is a physically straightforward but challenging question
to verify, as the behavior of individual OPE coefficients which govern this matrix element
is currently outside of our theoretical control. To summarize, we are interested in a special
set of observables — quasi-primary operators from the vacuum family, for which matrix
elements A;; are non-zero, universal and fixed by the Virasoro algebra.

The spectrum of 2d theories is highly degenerate and therefore the choice of |E) is
not unique. This is related to the fact that 2d theories possess an infinite number of
local conserved quantum KdV charges [24-26], which must be taken into account in the
context of eigenstate thermalization. In recent papers [18-20] we have demonstrated that
organizing descendant states in the eigenstates of the KdV hierarchy allows one to formulate
the diagonal part of the generalized Eigenstate Thermalization Hypothesis (1.2).

Any descendant state, including the KdV eigenstates |E) can be written as a linear
combination of Virasoro algebra generators acting on some primary state A,

E) = Y ChypoknLloty - Lop|A), it km=n,  E=A+4n, k>0.
k1,...km

Even if coefficients cg, . 1, are known explicitly, to calculate the diagonal matrix element

(E|A|E), one needs to know an explicit form of the zero mode of the local operator A in
terms of the Virasoro algebra generators,
%:fmmmzl%mmm. (1.3)
2 2 Jo
Here w = u+ 47 is a holomorphic coordinate on the cylinder, and u is a periodic coordinate
on a spacial circle of length 27. The coordinate w is related to the conventional coordinate



on the plane by z = e~™. Local operator A admits the following mode expansion

Aw) = Y Ape™™. (1.4)

n=—oo

Since we assumed A is from the vacuum family, it is “built” out of energy-momentum
tensor T'(w) whose mode expansion is

+
T(w) = — = OOL —inw 15
(W)=t Y Luem™. (15)

n=—oo

The operators L, satisfy conventional commutation relations of Virasoro algebra
c
[Ln, Lin] = (0 — m) Ly + ﬁ(n?) — 1) 6ntm,0- (1.6)

In practical terms A are appropriately regularized polynomials in stress-energy tensor T'(w)
and its holomorphic derivatives.

Among the local (not necessarily quasi-primary) operators there is a family of special
densities which, upon integration, give rise to the tower of mutually commuting quantum
KdV charges Qor_1. There is one such density Jo for each even dimension 2k such that

Qak—1 = j{ di:Jzk(w)- (1.7)

The general expression for Jor is not known. However, they are uniquely determined
up to normalization by the requirement of commutativity [Qox—1,@2—1] = 0 and scaling
homogeneity. First few densities Jo,(w) are

Jo(w) =T, (1.8)
Jy(w) = (TT), (1.9)
Js(w) = (T(TT)) + 0;2(6T8T), (1.10)

c+2 2¢%2 — 17¢ — 42
T(OTOT - - -
(T(ITOT)) + =555

Js(w) = (T(T(TT))) + O*To*T).  (1.11)
Here the parentheses (-) denote normal ordering which will be defined in the next section.
Explicit form of (Qox_1, i.e. the zero modes of Joi, in terms of the Virasoro algebra genera-
tors would allow computing the spectrum of (Jo;_1 at finite ¢ in terms of computer algebra.

In this paper we pedagogically develop the machinery of calculating zero modes of local
operators from the vacuum family and calculate explicit expressions for all quasi-primaries
of the dimension less or equal than eight. We also calculate the explicit expression for
Q7. Some of these results, albeit in a simplified thermodynamic limit, when certain terms
can be neglected, were already used by us in previous studies of ETH in [20]. We plan to
use the explicit results obtained in this paper to further elucidate ETH in 2d CFT in the
subsequent works.

The paper is organized as follows. In section 2 we develop general technique for

calculating the zero modes of the normal ordered product of local operators. In section 3 we



show in detail how this technique applies in the simplest case and calculate first non-trivial
gKdV charge Q3. In section 4 we list the explicit expressions of the zero modes for all
quasi-primary operators with the dimension of less or equal to eight. Then, in section 5 we
give the explicit expression for ()7 in terms of the Virasoro algebra generators and verify
its consistency in the large ¢ limit and also using the constraints coming from the (9,2)

minimal model. We conclude in section 6.

2 Zero modes of the operator product

In this section we will describe general technique of finding zero modes of the product of
arbitrary local operators A(w) and B(w) on a cylinder worldsheet, namely

dw

(AB)o= § 52 (AB)(w) (21)
T

where the contour is taken over a spacial circle. The operator A(w) and B(w) are assumed

to have analytic mode expansion

+oo
Aw) = Y Ape ™, (2.2)

n=-—o0o
and similarly for B(w). The parentheses in (AB)(w) denote normal ordering of the oper-

ators and is defined as

(UB)w) = § 3% LT (A Bw)). (23)

where the integration is performed over the circle around w and the symbol 7 stands for
“chronological ordering,” i.e.

A(z)B(w), if Imz < Imw,

B(w)A(z), if Imz > Imw. (2.4)

T (A(2)B(w)) = {

To perform the integration (2.3) we will split the contour into two pieces as showed
in the fugure 1, where we deform the contour in such a way that we can deal with two
chronologically ordered expressions separately,! namely

2m—ie » 2 w 2m+ie > w Py
(AB)(w) :/ dA()B()_/ LM_ (2.5)

—ie  2m z—w e 2 z—w

The strategy of calculating (2.5) is to express the integrand in terms of mode expansion
e’ and e”*. Let us introduce two axillary variables « and v,

u=e? v=e", (2.6)

'We thank Pavlo Gavrilenko for help with the following calculation.



Figure 1. Deformation of the blue contour (2.3) into the green one (2.5).

and make the following transformation,

1 odz 1 dz _ 1 dz
2miz —w 2w log(u) — log(w) 27 log (1 4 uv;”)

dz v > u—v\*
(5 (5))

where we formally expanded one over logarithm and c¢; denote the coefficients of this

(2.7)

expansion. The combination v/(u — v) can be easily represented in terms of the mode

expansion, namely

. 125 k=) Im(2) < Im(w),

uw=v S ehEmw) - Tm(2) > Im(w).
Plugging (2.7) and (2.8) into (2.5) we obtain
2m—ie dz 00 o et ] k
_ haied ik(w—z) i(z—w)
(AB)(w) = / = <Ze +3 o (e 1) )A(z)B(w)
k=1 k=0 (2.9)
2m+ie ) k
B / dz Z ezk z— w) (ez(z—w) _ 1) B(w)A(z).

+i€ —0

In each of the two integrals in (2.9) we can integrate the first term assuming (2.2) and
combine the rest into an integral of the commutator [A(z), B(w)], i.e.

(AB)(w) = A (w)B(w ) B(w) A (w)

2 k 2.10
s [TES o (e 1) ), Bl (240

where - -
=D A ™ Ap(w) =D Ape ™. (2.11)

n=1 n=0



Substituting (2.10) into (2.1) we obtain

o

ABO__E:A7#3—%§:B WA

NS dzzck o0 1)), )

To move further one should calculate the commutator [A(z), B(w)] and perform the inte-

(2.12)

gration of an infinite sum over k. This seems to be a difficult task, but we will see shortly
that only finite number of terms in this sum give non-zero contributions to the integral

2 dz
/ d ch i( —1>k[A(z),B(w)] (2.13)

from (2.10). Indeed, if we fix £ and expand (ei(z_w) - l)k we immediately see that the
only modes of A(z) which contribute are those from 0 to k. More precisely for a given fixed
k we have

k
3 ckM(—weinw[An, B(w)] (2.14)
n=0 ) ’

If we now rewrite the commutator in terms of the mode expansion e~""[A,, B(w)] =
> nlAn, Bile™ ™% and keep in mind that both operators A and B are “built” out of
stress-energy tensor, then both A, and B,, will be some normal ordered polynomials in L;
such that the total sum of indexes is equal to n. The commutator [A,, B,,] is therefore
also a polynomial in L; with a coefficient which is a polynomial in n. Therefore the sum
n (2.14) will be a linear combination of the terms
S(a, k) = k ! 1) 2.1
(a’)_;n!(nk)!(_) n-, (2.15)

where a is some non-zero integer. The expression above is the Stirling number of the second
kind, which vanishes unless k < a. This immediately confirms that only finite number of
terms in (2.14) with k£ < a contribute.

We illustrate the emergence of the polynomial expression in n explicitly in the case
A = B = T(w) in the next section. Here we only note that the finite number of terms
contributing in the sum over k in (2.10) provide a crucial simplification. It allows comput-
ing (2.10) efficiently using computer algebra, which we use extensively in the computation
of the zero modes in section 4.2 as well as of ()7 in section 5.

3 Warm-up: computation of Q3

In this section we apply the machinery devised in the previous section to the simplest
non-trivial example Q3 = § g—;(TT)(z) and show explicitly how to perform the integra-
tion (2.12). It’s convenient to introduce shifted Virasoro generators,

c

L,=0L,— ﬁan,o. (3.1)



In terms of these operators the stress-energy tensor 7'(z) has the following mode expansion

+00 _
> Lpe ™, (3.2)

n=—oo

and the Virasoro algebra in terms of the shifted generators is modified as

=~ = C
[Ln, Lm] = (n - m)Ln+m + En35n+m70. (33)

Substituting A(z) = T'(z) and B(w) = T'(w) into (2.12) we obtain

+oo
Qs = (TT)y =2 Z LonL,+L}

2m d 27 d i (34)
[ [ e (e <) ). Tl
The calculation of the commutator is a bit tedious but straightforward:
[T(2), T(w)] = Y e ™™ [Ly, L]

mne”

_ Z e~ imz p—inw <(n — m)Lner + 127’L 5n+m O) (35)
mne”

_ Z e—in(z—w)(Qn - (m + n))e—i(m+n)wim+n + % Z nSe—in(z—w)'
mneE”L nez

As was anticipated in the end of previous section, the commutator of two local operators
gives rise to a polynomial expression in n. Namely, using the notations of the previous
section (A, is equal to L,, and B(w) is equal to T'(w)),

. PN c
e ""An, B(w)] = 2632(2?1 —m)e "™ L, + En3
m

and therefore only terms with £ < 3 will contribute in the sum over k in (2.10). Here we
would like to illustrate that by combing (3.5) into a local expression. We continue,

[T(2), T(w)] = 2(i0:) Y _ e ™= T(w) +i Y e "9, T(w) + 1%(@)3 3 emintw)

nez neZ neZ
= 47i0.0(2 — w)T(w) + 2mid(z — w)du T (w) + %(z‘@z)%na(z —w),  (3.6)

where on the last line we have used the following representation of delta-function,

27o(z — Z e~ imzmw), (3.7)

nez

Note, that we have represented the commutator of stress-energy tensors [T'(z), T (w)] in
such a way that every term in the final expression contains delta-function d(z — w) or its



derivatives. This representation helps us easily perform the integration over z in (3.4),
namely

?{ ;lTZr ki;o k (ei(z_w) - 1)k [T(2), T (w)] = icodyT (w)

(3.8)
2i0 < i(z—w) 1 b T ¢ %) 3 <« i(z—w)—1 k
—2i Zch(e — ) (w)—i-ﬁ(—z 2) ch(e >
k=0 2=w k=0 Zz=w
Here in the first term we have used 0° = 1. Let us denote
. k . k
= —i0, (<=9 1), b= iang? (e 1) 9)

The coefficients ay and b are non-zero only for the first few values of k < 3. Specifically,

a1 =1, az34. =0,

(3.10)
by =1, bp=6, b3 =06, bys6..=0.

That means that the sums > ciar and ) ¢x by contain only finite number of terms
and only four first coefficients ¢ contribute to these sums. From the definition we find

1 1 1 19

== = —— = — =——. 3.11
Q=350 =13 @@= 35 B= (3.11)
Combining (3.8) and (2.10) we get the normal ordered expression
1 l c
(TT)(w) =T-(w)T'(w) + TTy(w) — ET(w) + §8wT(w) + 110’ (3.12)
where T_(w) = 3, _; e*L_, and Ty (w) = 3 ,_g e * L.
And, finally, for zero mode
dw = 1 c
— — b —_ T 7 72 _ 71
Qs = (TT) = f{ 5 (TT)(w) 22_:1L_nLn + L3 - s Lo+ 100
1— (3.13)
X c+2 c(5e + 22)
=2 L_nLy L:-—"L _
;_:1 TR T g0

The result matches that one of [24]. The technique we have described here in principle can

be applied to a calculation of zero modes of any product of local operators.

4 Quasi-primaries

In this section we list the explicit expressions for the zero modes of all quasi-primaries
from the vacuum family with the dimension less or equal to eight. Up to dimension nine
all quasi-primaries have even dimension. There is a unique operator of dimension zero —
the identity operator, which is a primary. There is also a unique quasi-primary at level



two, the stress-energy tensor 7T'. Its zero mode is the CF'T Hamiltonian — first KdV charge
Q1 = Lo — ¢/24. At level two there is also a unique quasi-primary

Ty = (TT) — 1%82T. (4.1)

Its zero mode is the first non-trivial KAV charge Q3 given by (3.13). At all other levels
the quasi-primaries are not unique and we organize them by dimension, nested powers of
T and orthogonality of Zamolodchikov metric.

4.1 Quasi-primaries of dimension 6

At level four there are two quasi-primaries,

B = (0TOT) — g(@QTT) - 4—1284T, (4.2)

" D = (T(TT)) = —(8°TT) — —'T + —2>_R. (4.3)
10 28 70c + 29

Zero mode of their combination D — %B is the KdV charge @5, which was found

explicitly in [24]. To find the explicit form of By and Dy we introduce the “building block”

> ~ ~ io C
ATOT)g = —(0°TT)y = 2 2L Ly + — — ——, 4.4
OT0T)) = ~@TT)0 =23 w’honk+ G~ iy (44)
which is different from the quasi-primary B by a total derivative. Therefore
9
By = g(GTaT)O. (4.5)
Similarly, to calculate Dy we introduce
(T(TT))o = Z L_piLipLi +2 Z L_yLy L+ Z L_wL_yLis
k,1=0 y k=1,~l=0 ] k=1 (4.6)
- - L} cLy L c
- LfnLn -2 Ton T 9no4’
; 2 + 480 + 15 3024
such that 9
Do = (T(TT))o + E(8T6T)0. (4.7)
4.2 Quasi-primaries of dimension 8
At level eight there are three quasi-primaries,
10, . 10 1
£ = (0*TO*T) — —(0°TAT) + — (9*TT) — 3T 4.8
4 2 3 9(140c¢ + 83)
= (T (OTT)) — =(O*T(TT)) + —(O*TAT) — — (' TT) + —————— &, (4.9
"= (97( ) 5( ( ))+15( ) 70( )+50(105c—|—11) (4.9)



and

9 3 81(35¢ — 51)
I = (T(T(TT))) — —(PT(TT)) + —(*TIT) + ——Fr——
(T(T(TT)) 5( (TT)) + 10( )+ 100(105¢ + 11) (4.10)
12(465¢ — 127) 2 ’
5¢(210c + 661) — 251"~
The “building block” for calculating & is
e c
PTO*T)y = —(8°TOT)o = (0*TT)o =2 n*L_pLy — —> + —— 4.11
( Jo = —( )o = ( )o ;n 126 980" (4.11)
And therefore,
43 oo
&= —(0°To°T)y. (4.12)
63
There are two “building blocks” for H:
(dT(ATT))o Z KIL_ i LpLy+2 Z kIL_xLy_ 1Ly (4.13)
k=0,1=0 k=1,I=0

L (5c493)Ly | 113c
60 15120 1814400

_ Z KIL_yL_ lLkH—i— (aTaT 0+30 ZL_n nt =2

ki=1

and

(O*T(TT))o=— Y PLpyLili— Y (K +1%)L_jLyiLy (4.14)
k=0 k=1,1=0

L2 c¢Ly 61Lg 131c
K’L_xL_,L 7 ] _ .
" ; ) kSt 19 Z nbn =50 T 1512 T 7560 1814400

The zero mode of H is

7035¢ + 13652
110250c¢ + 11550

Ho = (OT(OTT))o — %(82T(TT))0 + (9*TI*T)y. (4.15)

The expression for (T(T(TT)))o is too bulky to write it twice. We do not write it
explicitly here, but simply mention that it can be obtained from the Virasoro algebra
expression for 7, which we give explicitly in the next section, by subtracting (0?T0°T)g
and (T'(0T0T))o with proper coefficients, see equation (5.1). Thus, in lieu of (T(T(TT)))o
we give explicitly the expression for (T'(0T9T))o,

o0
(T(OTOT))o = Y (k+DIL_pL_Liys + Z k—UkL_pLy_L;

k=1 1=0,k=1
o0 ~ B B [o.¢] B 5 B

+ > (k+ DEL_jyLpLi+ Y (k= DkL_yLi_Ly (4.16)
k,1=0 k=0,l=1
7 > ~ L2 Cf/() io 13¢

—— —N'I_ ~0 -2 .
6n:1 - ”+ Z nn 50 T 3024 T 135 T 86400

~10 -



Finally, for the last quasi-primary at level 8 we have

81(35¢ — 51)

Ty = (T(T(TT))o = 2@T(TT))o = 1T Do + 35 foe— 5o

4.17
12(465¢ — 127) (417)

5¢(210¢ 4 661) — 251

Ho.
This concludes the list of zero modes of the quasi-primary operators at level 8.2

5 Expression for Q-

In this section we present the expression for Q7 in terms of Virasoro generators, which we
calculated by applying the technique described above. Then we test our result by showing
that it is consistent with the known spectrum @7 at the leading 1/c order. We further
check at that our expression for ()7 vanishes as an operator for the (9,2) minimal model at
the first dozen of descendant levels, as is predicted in [24, 27]. Finally, we will show how to
use commutativity of gKdV charges, known results about spectrum in 1/¢ expansion and
the constraints from the minimal models to get a shortcut for the expression (5.2).

5.1 The result
@7 is the zero mode of the operator

c+2 2¢2 — 17¢ — 42
T(OTOT = - =
(T(OTOT)) + =55

Js = (T(T(TT))) + (9*TO°T). (5.1)
In principle Jg (and higher densities Jo,) can be determined by requiring commutativity
of Q7 with Q)5 and @3, however, the calculation is quite involved. Alternatively, one can
use the expression for the thermal correlation function (Q2,—1), which can be calculated
using other means and fix the coefficients of Js, in this way. This was done for Jg, Ji9 and
Ji2 in [27]. However, for Ji4 and higher densities the number of independent coefficients
becomes too large to be uniquely fixed from the form of (Q2,—1) alone.
We find the following expression for Q7 in terms of the Virasoro algebra generators

o0 oo
Q7 = Z L L L yLyyism+ Z L_p—i—mLypLiLy,
k,lm=1 k,l,m=0

o0 [e.o]
+3 ) LokLoiLipi-mLn +3 Y LowLi-i-mlilm

k=1 =1
m=0 l,m:O
+ > (k+DIL_pL_ Ly + Y (k= kL _x Ly Ly
k=1 k=1

=0

2There are three quasi-primary operators at level 8, denoted &, H, I, while we lilts five expressions. This
is because two operators are linearly dependent with others, (0T(0TT))o — (T(0T9T))o + +(8°T9*T)o +

155 Lo =0, (9T (OTT))o+ 3(O*T(TT))o + 15 (0T T)o + 5B — 55 Qs + 55 L3 — = 0. We thank
A. Kakkar and S. Sugishita for discussing this point.

Lg c
192 + 46080

- 11 -



8+c

Z k+l kL_j_ lLkLl+Z —l kL_;L;_iLy (52)
k,l=0 k=0
=1
[ —c—141 , Tc+59 , 1 53 19
- L—nLn_ —c?
+nzl< 90 18 ”) (480+360 + >Q3
Lo1)o c+6L3+15c2+194c+568
6° 0 1440 0
(c+2)(c+10)(3c+ 28) I +c(:’>c+46)(25c2+426c+ 1400)
10368 0 24883200 '

This is one of the main results of this paper. Here Q3 and Qs are defined as parts of Qs
and Qs which annihilate the primary states, Q3 |A) = 0 and Q5 |A) = 0, namely,

Q3 =2 Z L—nLnu (53)
and

(o) o0 (o]
= Z L Lyl +2 Z L Ly L+ Z L _yL_ Ly
k,1=0 k=1,1=0 k=1

. [c+2 c
+Z< ; n2—4—1>L_nLn—Lg.

n=1

(5.4)

The expression (5.4) can also be represented in a slightly different way [24] using the
following identity,

o0 oo oo
Z L Lyl +2 Z L _yLy L+ Z L gL Lkt
k,1=0 k=1,1=0 k=1 (5.5)

3 3
— Z - Ly, Ly L, +5 nzl n2L_, Ly, + 3 Zl Li_oyLoy_1.

ni1+nz2+n3=0
5.2 The consistency check: 1/c expansion and the (9, 2) minimal model

In this section we perform two different consistency checks of the Virasoro algebra expres-
sion for Q7 (5.2).

In an upcoming paper [28] we have calculated the spectrum of all KdV charges using
semi-classical quantization at the first few orders in 1/c¢ expansion. This calculation did
not rely on the explicit form of Qsr_1 in terms of the Virasoro algebra generators, and
hence can be used to cross-check our result.

The spectrum in 1/c¢ expansion can be parametrized by “quantum numbers” of the
conventional basis in the space of descendants, namely

{mi}, A) = Lo, ... Lo, |A). (5.6)

Each set {m;} can be rewritten using the so-called boson representation. Namely, each set
{m;} can be parametrized by the set of integers {ny}, where nj is the number of times
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natural number k appears in {m;}. Therefore, for any integer p,

me = ikpnk, (5.7)
i k=1

Leading 1/c spectrum of @7 in these notations is given by Q7 |\) = A|\), where

A=A" 4 AB |2 E—1|4+ A" —
+ (8;7% >+ c an +720

+ A (90Z nik _6480> ¢ (1080Z nik 518400>
+ A2 (98n2 — 77y gk’ + Zn k3 — 77ank2 - ank 180)
k

98 56 63
Ae 5 Z k3ngn; — T Z nzk4 + % Z ngk®
k.l k k

7 7 7 127
2 313 5 21,6 7
+cf | — npmk’l° + % E ngk’l — — 4 ngk® + —— £ 100 nik

103
120 Z nik 21600 Z ik = @ Z nik 2073600>
— 504% (Z ni — Qank + an> +O(c)
k k k

Using computer algebra one can check explicitly at first dozen of descendant levels that
this spectrum matches with the one following from (5.2).

Another check is provided by [24, 27], which shows that for the minimal models (2n +
3,2), n < 1, the gKdV charges Q) with k divisible by 2n + 1 vanish as operators. Hence
Q@7 should vanish as an operator in the minimal model (9,2), with n = 3 and central
charge ¢ = —46/3. This minimal model includes primaries with the following dimensions
{Ax} =1{0,-1/3,-2/3,—5/9}. Using computer algebra we have verified that ()7 vanishes
for all non-zero states of this model up to the descendant level twelve.

5.3 A shortcut

In this subsection we show how to get the Virasoro algebra expression for )7 without
full explicit calculation of all involved commutators by exploiting the restrictions from
the commutativity of qKdV charges, 1/c expansion and the (9,2) minimal model. Our
goal here will be to understand what kind of terms may appear in the Virasoro algebra
expression of ()7 and then fix the coefficients using the constraints.
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We start from the last term of Jg (5.1):
Ag = (0*TO°T). (5.9)
Substiting Ag into (2.10)—(2.12) we obtain

dw

o0
%Ag ~ ; n*L_, L, + comm, (5.10)

where comm comes from the integral of the commutator in (2.10). Expressing the commu-
tator in terms of Virasoro generators we get [0?T,0?T| ~ [Ly, Ly, ~ Ly due to Virasoro
algebra. It is easy to see that the final answer for the zero mode should contain only
such operators that map states of level k£ to the states of level k. That means that after
integrating the commutator we can only get some function of Lg. Therefore,

dw >
— Ag ~ ‘L_nLn Lo). 5.11
§ s St bkt 100 (511)
Now we turn to the next term
Bg = (T'(0T0T)). (5.12)

The term Bg contains nested normal ordering. We will deal with it subsequently,
dz & i(z—w) b
(9TOT)(w) = ITIT, + OT-OT + p =3 ey <e - 1) 0T(2), 0T (w)].  (5.13)
k=0

One can calculate the commutator and perform the integration (5.13) explicitly but we
just notice that the result of the integration can only contain terms with one stress-energy
tensor T or its derivatives and the terms like 77T or T'OT are not present due to Virasoro
algebra, which means

(OTOT)(w) = 0T (w)dTy (w) + OT—(w)OT (w) + f(T(w),dT (w), d*T(w)), (5.14)

where f(T,0T,0*T) is some linear function of its arguments. Substituting (5.13) into Bg
we get

(T(OTOT)) =T_0TOTy + 0TIT Ty +T_0T_0T + 0T_O0TT, + comm. (5.15)

Here comm again denotes some expression associated with the commutators, which we will
not calculate explicitly. But let us notice again that it contains at most two stress-tensors
or its derivatives. The only expression that survives after integration of such terms is
proportional to ~ L_,, L,,, namely

—+o00
}'{ dz0°TO T ~ Y n*PL_,Ly. (5.16)
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Counting the amount of dervatives and integrating (5.15) we obtain

f —Bg = (k? +OIL_pL_jLpyy + Z —DkL_p Ly Ly
k,l=1

)

+ Z k+ DkL lLkLl+Z — DkL_ Ly Ly (5.17)

k,1=0 k=0
=1

+ Z (om4 + Bn? + fy) L_,L,+ f(Lo),
n=1

where a, 3, v are some c-dependent coefficients and f(Lg) is some function of ¢ and Ly.
In the same manner one can deal with the term (7T'(T(7T'T)). As a result we get an
expression for ()7 with some coefficients to fix. The expression is

o o0
Z L_yL_ L pLgyiom + Z L_p_y—mLgLiLy,
k,l,m=1 k,l,m=0

o0 o0
+3 ) Lowlotlpsi-mLn +3 Y LoxLi-i-mLiLm
k=1 k=1

m=0 l7m:0
84 ¢ | — >
+ =3 > (k+DIL_pL_Lip + Y (k= DEL_ gLy Ly | (5.18)
k=1 k=1
. l:
L 8+c i(k:Jrl)kL LL+Z —DkL_1Li_L
3 —k—1LgdL IHl—kLE
k,1=0 h=0
+ Z (an* + Bn?) L_, Ly, + Q3 + 6Q5 + f(Lo)
n=1

where «, 3, 7 and 0 are the coefficients dependent on central charge and f(Lg) is some
polynomial of Ly and central charge.

The term f(Lo) determines the value of Q7 on a primary state. That has been pre-
viously calculated in the appendix B of [29]. The coefficients o and § can be found from
the commutativity constraint [@s3, Q7] = 0. From 1/c¢ expansion of the spectrum (5.8)
we see that § is at most linear polynomial in ¢, § = d1c + d2 and v is at most quadratic
polynomial in ¢, ¥ = v1¢® + y2¢ 4+ v3. The coefficients 1, d2 and 71, 2 can be extracted
directly from (5.8) and, finally, v3 can be fixed by requiring that Q)7 vanishes acting on any
descendant state of the (9,2) minimal model.

6 Conclusions

In this paper we pedagogically developed and presented the machinery of calculating the
zero modes of local operators in a 2d CFT on a cylinder. We focused on the situation when
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the operators are from the vacuum family, i.e. are built from the powers of stress-energy
tensor and its derivatives. We have calculated explicit expressions in terms of the Virasoro
algebra generators for all quasi-primaries with the dimension of less or equal than eight.
We have also calculated the explicit expression for the KdV charge ()7, thus bringing the
number of explicitly known charges to three (excluding (1, which is trivial). The explicit
formulae obtained in this paper can be used to study spectral properties of the qKdV
hierarchy and further investigate Figenstate Thermalization Hypothesis in 2d CFTs, in
particular by means of computer algebra.
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