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1 Introduction

Emergence of statistical thermodynamics from quantum mechanics is one of the exciting

open questions of theoretical physics. It has became an accepted paradigm that universal-

ity of thermal equilibrium can be explained in terms of Eigenstate Thermalization [1–3].

The latter is an expectation that local properties of individual microstates — energy eigen-

states of spatially extended sufficiently complex quantum system — may only depend on

thermodynamically relevant quantities, i.e. in most cases only on energy density of the

microstate. Technically, this means that the diagonal matrix elements of local observables

Aii ≡ 〈Ei|A|Ei〉 = fA(Ei), (1.1)

are smooth functions of energy density Ei/V .

When the system, besides energy, possesses a number of additional local (or quasi-

local [4]) conserved quantities, as is normally the case for integrable systems, densities of

these additional conserved charges are also thermodynamically relevant. This simply means

emerging equilibrium state will be dependent on these additional quantities, or, more accu-

rately their densities. Further assuming local properties of individual microstates (energy

eigenstates) will be dependent on these charges, but otherwise will be physically equivalent,

we arrive at the notation of generalized Eigenstate Thermalization Hypothesis [5–7],

Aii = fA(Qk(Ei)), (1.2)
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where fA is a smooth function of its arguments, Qk are the conserved charges, and Qk(Ei)

are the charge values associated with an individual energy eigenstate |Ei〉.
Eigenstate Thermalization Hypothesis has been established numerically for a range of

lattice models [8]. It is therefore natural to ask if Eigenstate Thermalization also applies

to conformal field theories [9–11, 11–23], which can be thought of as a continuous limit of

lattice systems at criticality. This assumes conformal field theory is quantized on a cylinder

of finite spatial size. The object of interest is the diagonal matrix element 〈E|A|E〉, where

|E〉 is the eigenstate of the CFT Hamiltonian and A is a local observable. In case of two-

dimensional theories, which is a focus of this work, there is a number of specifics which need

to be taken into account. First, the theory is split into “left” and “right” non-interacting

sectors, such that in conventional units the Hamiltonian H is a sum of L0 − c/24 and

L̄0 − c/24. We can assume that |E〉 is a tensor product of two eigenstates in each sector,

while A is a product of local holomorphic and anti-holomorphic components. Then the

calculation factorizes and in the rest of the paper we focus on the left-moving sector only.

Second, when A is a global descendant, its expectation value in the eigenstate of L0−c/24 is

zero, thus in the following we assume A is a quasi-primary. Third, and final point, we have

two distinct cases to consider: when A is a Virasoro descendant of identity or when A is

not from the vacuum family. In two dimensions thermal expectation values of all operators

outside of the vacuum family vanish (this also applies to KdV Generalized Gibbs Ensemble).

Thus a prediction of ETH in d = 2 for such operators would be that 〈E|A|E〉 vanish when

|E〉 is sufficiently heavy [12]. This is a physically straightforward but challenging question

to verify, as the behavior of individual OPE coefficients which govern this matrix element

is currently outside of our theoretical control. To summarize, we are interested in a special

set of observables — quasi-primary operators from the vacuum family, for which matrix

elements Aii are non-zero, universal and fixed by the Virasoro algebra.

The spectrum of 2d theories is highly degenerate and therefore the choice of |E〉 is

not unique. This is related to the fact that 2d theories possess an infinite number of

local conserved quantum KdV charges [24–26], which must be taken into account in the

context of eigenstate thermalization. In recent papers [18–20] we have demonstrated that

organizing descendant states in the eigenstates of the KdV hierarchy allows one to formulate

the diagonal part of the generalized Eigenstate Thermalization Hypothesis (1.2).

Any descendant state, including the KdV eigenstates |E〉 can be written as a linear

combination of Virasoro algebra generators acting on some primary state ∆,

|E〉 =
∑

k1,...km

ck1,...,kmL−k1 . . . L−km |∆〉, k1 + . . . km = n, E = ∆ + n, ki > 0.

Even if coefficients ck1,...,km are known explicitly, to calculate the diagonal matrix element

〈E|A|E〉, one needs to know an explicit form of the zero mode of the local operator A in

terms of the Virasoro algebra generators,

A0 =

∮
dw

2π
A(w) ≡ 1

2π

∫ 2π

0
duA(w). (1.3)

Here w = u+ iτ is a holomorphic coordinate on the cylinder, and u is a periodic coordinate

on a spacial circle of length 2π. The coordinate w is related to the conventional coordinate
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on the plane by z = e−iw. Local operator A admits the following mode expansion

A(w) =

∞∑
n=−∞

Ane
−inw. (1.4)

Since we assumed A is from the vacuum family, it is “built” out of energy-momentum

tensor T (w) whose mode expansion is

T (w) = − c

24
+

+∞∑
n=−∞

Lne
−inw. (1.5)

The operators Ln satisfy conventional commutation relations of Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0. (1.6)

In practical terms A are appropriately regularized polynomials in stress-energy tensor T (w)

and its holomorphic derivatives.

Among the local (not necessarily quasi-primary) operators there is a family of special

densities which, upon integration, give rise to the tower of mutually commuting quantum

KdV charges Q2k−1. There is one such density J2k for each even dimension 2k such that

Q2k−1 =

∮
dw

2π
J2k(w). (1.7)

The general expression for J2k is not known. However, they are uniquely determined

up to normalization by the requirement of commutativity [Q2k−1, Q2l−1] = 0 and scaling

homogeneity. First few densities J2k(w) are

J2(w) = T, (1.8)

J4(w) = (TT ), (1.9)

J6(w) = (T (TT )) +
c+ 2

12
(∂T∂T ), (1.10)

J8(w) = (T (T (TT ))) +
c+ 2

3
(T (∂T∂T )) +

2c2 − 17c− 42

360
(∂2T∂2T ). (1.11)

Here the parentheses (·) denote normal ordering which will be defined in the next section.

Explicit form of Q2k−1, i.e. the zero modes of J2k, in terms of the Virasoro algebra genera-

tors would allow computing the spectrum of Q2k−1 at finite c in terms of computer algebra.

In this paper we pedagogically develop the machinery of calculating zero modes of local

operators from the vacuum family and calculate explicit expressions for all quasi-primaries

of the dimension less or equal than eight. We also calculate the explicit expression for

Q7. Some of these results, albeit in a simplified thermodynamic limit, when certain terms

can be neglected, were already used by us in previous studies of ETH in [20]. We plan to

use the explicit results obtained in this paper to further elucidate ETH in 2d CFT in the

subsequent works.

The paper is organized as follows. In section 2 we develop general technique for

calculating the zero modes of the normal ordered product of local operators. In section 3 we
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show in detail how this technique applies in the simplest case and calculate first non-trivial

qKdV charge Q3. In section 4 we list the explicit expressions of the zero modes for all

quasi-primary operators with the dimension of less or equal to eight. Then, in section 5 we

give the explicit expression for Q7 in terms of the Virasoro algebra generators and verify

its consistency in the large c limit and also using the constraints coming from the (9,2)

minimal model. We conclude in section 6.

2 Zero modes of the operator product

In this section we will describe general technique of finding zero modes of the product of

arbitrary local operators A(w) and B(w) on a cylinder worldsheet, namely

(AB)0 =

∮
dw

2π
(AB)(w), (2.1)

where the contour is taken over a spacial circle. The operator A(w) and B(w) are assumed

to have analytic mode expansion

A(w) =

+∞∑
n=−∞

Ane
−inw, (2.2)

and similarly for B(w). The parentheses in (AB)(w) denote normal ordering of the oper-

ators and is defined as

(AB)(w) =

∮
w

dz

2πi

1

z − w
T (A(z)B(w)) , (2.3)

where the integration is performed over the circle around w and the symbol T stands for

“chronological ordering,” i.e.

T (A(z)B(w)) =

{
A(z)B(w), if Im z < Imw,

B(w)A(z), if Im z > Imw.
(2.4)

To perform the integration (2.3) we will split the contour into two pieces as showed

in the fugure 1, where we deform the contour in such a way that we can deal with two

chronologically ordered expressions separately,1 namely

(AB)(w) =

∫ 2π−iε

−iε

dz

2πi

A(z)B(w)

z − w
−
∫ 2π+iε

iε

dz

2πi

B(w)A(z)

z − w
. (2.5)

The strategy of calculating (2.5) is to express the integrand in terms of mode expansion

eiw and eiz. Let us introduce two axillary variables u and v,

u = eiz, v = eiw, (2.6)

1We thank Pavlo Gavrilenko for help with the following calculation.
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Figure 1. Deformation of the blue contour (2.3) into the green one (2.5).

and make the following transformation,

1

2πi

dz

z − w
=

1

2π

dz

log(u)− log(w)
=

1

2π

dz

log
(
1 + u−v

v

)
=
dz

2π

(
v

u− v
+

∞∑
k=0

ck

(
u− v
v

)k)
,

(2.7)

where we formally expanded one over logarithm and ck denote the coefficients of this

expansion. The combination v/(u − v) can be easily represented in terms of the mode

expansion, namely

v

u− v
=


∑+∞

k=1 e
ik(w−z), Im(z) < Im(w),∑+∞

k=0 e
ik(z−w), Im(z) > Im(w).

(2.8)

Plugging (2.7) and (2.8) into (2.5) we obtain

(AB)(w) =

∫ 2π−iε

−iε

dz

2π

( ∞∑
k=1

eik(w−z) +

∞∑
k=0

ck

(
ei(z−w) − 1

)k)
A(z)B(w)

−
∫ 2π+iε

+iε

dz

2π

(
−
∞∑
k=0

eik(z−w) +

∞∑
k=0

ck

(
ei(z−w) − 1

)k)
B(w)A(z).

(2.9)

In each of the two integrals in (2.9) we can integrate the first term assuming (2.2) and

combine the rest into an integral of the commutator [A(z), B(w)], i.e.

(AB)(w) = A−(w)B(w) +B(w)A+(w)

+

∫ 2π

0

dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[A(z), B(w)],

(2.10)

where

A−(w) =
∞∑
n=1

A−ne
inw, A+(w) =

∞∑
n=0

Ane
−inw. (2.11)
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Substituting (2.10) into (2.1) we obtain

(AB)0 =

∞∑
n=1

A−nBn +

∞∑
n=0

B−nAn

+

∫ 2π

0

dw

2π

∫ 2π

0

dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[A(z), B(w)].

(2.12)

To move further one should calculate the commutator [A(z), B(w)] and perform the inte-

gration of an infinite sum over k. This seems to be a difficult task, but we will see shortly

that only finite number of terms in this sum give non-zero contributions to the integral∫ 2π

0

dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[A(z), B(w)] (2.13)

from (2.10). Indeed, if we fix k and expand
(
ei(z−w) − 1

)k
we immediately see that the

only modes of A(z) which contribute are those from 0 to k. More precisely for a given fixed

k we have
k∑

n=0

ck
k!

n!(n− k)!
(−1)ne−inw[An, B(w)] (2.14)

If we now rewrite the commutator in terms of the mode expansion e−inw[An, B(w)] =∑
m[An, Bm]e−(n+m)w and keep in mind that both operators A and B are “built” out of

stress-energy tensor, then both An and Bn will be some normal ordered polynomials in Li
such that the total sum of indexes is equal to n. The commutator [An, Bm] is therefore

also a polynomial in Li with a coefficient which is a polynomial in n. Therefore the sum

in (2.14) will be a linear combination of the terms

S(a, k) =
k∑

n=0

1

n!(n− k)!
(−1)k−nna, (2.15)

where a is some non-zero integer. The expression above is the Stirling number of the second

kind, which vanishes unless k ≤ a. This immediately confirms that only finite number of

terms in (2.14) with k ≤ a contribute.

We illustrate the emergence of the polynomial expression in n explicitly in the case

A = B = T (w) in the next section. Here we only note that the finite number of terms

contributing in the sum over k in (2.10) provide a crucial simplification. It allows comput-

ing (2.10) efficiently using computer algebra, which we use extensively in the computation

of the zero modes in section 4.2 as well as of Q7 in section 5.

3 Warm-up: computation of Q3

In this section we apply the machinery devised in the previous section to the simplest

non-trivial example Q3 =
∮
dz
2π (TT )(z) and show explicitly how to perform the integra-

tion (2.12). It’s convenient to introduce shifted Virasoro generators,

L̃n = Ln −
c

24
δn,0. (3.1)
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In terms of these operators the stress-energy tensor T (z) has the following mode expansion

T (z) =
+∞∑

n=−∞
L̃ne

−inz, (3.2)

and the Virasoro algebra in terms of the shifted generators is modified as

[L̃n, L̃m] = (n−m)L̃n+m +
c

12
n3δn+m,0. (3.3)

Substituting A(z) = T (z) and B(w) = T (w) into (2.12) we obtain

Q3 = (TT )0 = 2

+∞∑
n=1

L̃−nL̃n + L̃2
0

+

∫ 2π

0

dw

2π

∫ 2π

0

dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[T (z), T (w)].

(3.4)

The calculation of the commutator is a bit tedious but straightforward:

[T (z), T (w)] =
∑
m,n∈Z

e−inze−imw[L̃n, L̃m]

=
∑
m,n∈Z

e−imze−inw
(

(n−m)L̃n+m +
c

12
n3δn+m,0

)
=
∑
m,n∈Z

e−in(z−w)(2n− (m+ n))e−i(m+n)wL̃m+n +
c

12

∑
n∈Z

n3e−in(z−w).

(3.5)

As was anticipated in the end of previous section, the commutator of two local operators

gives rise to a polynomial expression in n. Namely, using the notations of the previous

section (An is equal to L̃n and B(w) is equal to T (w)),

e−inw[An, B(w)] =
∑
m∈Z

(2n−m)e−imwL̃m +
c

12
n3,

and therefore only terms with k ≤ 3 will contribute in the sum over k in (2.10). Here we

would like to illustrate that by combing (3.5) into a local expression. We continue,

[T (z), T (w)] = 2(i∂z)
∑
n∈Z

e−in(z−w)T (w) + i
∑
n∈Z

e−in(z−w)∂wT (w) +
c

12
(i∂z)

3
∑
n∈Z

e−in(z−w)

= 4πi∂zδ(z − w)T (w) + 2πiδ(z − w)∂wT (w) +
c

12
(i∂z)

32πδ(z − w), (3.6)

where on the last line we have used the following representation of delta-function,

2πδ(z − w) =
∑
n∈Z

e−in(z−w). (3.7)

Note, that we have represented the commutator of stress-energy tensors [T (z), T (w)] in

such a way that every term in the final expression contains delta-function δ(z − w) or its

– 7 –
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derivatives. This representation helps us easily perform the integration over z in (3.4),

namely∮
dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[T (z), T (w)] = ic0∂wT (w)

−2i∂z

+∞∑
k=0

ck

(
ei(z−w) − 1

)k∣∣∣∣∣
z=w

T (w) +
c

12
(−i∂z)3

+∞∑
k=0

ck

(
ei(z−w)−1

)k∣∣∣∣∣
z=w

.

(3.8)

Here in the first term we have used 00 = 1. Let us denote

ak = −i∂z
(
ei(z−w) − 1

)k∣∣∣∣
z=w

, bk = (−i∂z)3
(
ei(z−w) − 1

)k∣∣∣∣
z=w

. (3.9)

The coefficients ak and bk are non-zero only for the first few values of k ≤ 3. Specifically,

a1 = 1, a2,3,4,... = 0,

b1 = 1, b2 = 6, b3 = 6, b4,5,6,... = 0.
(3.10)

That means that the sums
∑
ck ak and

∑
ck bk contain only finite number of terms

and only four first coefficients ck contribute to these sums. From the definition we find

c0 =
1

2
, c1 = − 1

12
, c2 =

1

24
, c3 = − 19

720
. (3.11)

Combining (3.8) and (2.10) we get the normal ordered expression

(TT )(w) = T−(w)T (w) + TT+(w)− 1

6
T (w) +

i

2
∂wT (w) +

c

1440
, (3.12)

where T−(w) =
∑

k=1 e
ikwL̃−k and T+(w) =

∑
k=0 e

−ikwL̃k.

And, finally, for zero mode

Q3 = (TT )0 =

∮
dw

2π
(TT )(w) = 2

+∞∑
n=1

L̃−nL̃n + L̃2
0 −

1

6
L̃0 +

c

1440

= 2
+∞∑
n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880
.

(3.13)

The result matches that one of [24]. The technique we have described here in principle can

be applied to a calculation of zero modes of any product of local operators.

4 Quasi-primaries

In this section we list the explicit expressions for the zero modes of all quasi-primaries

from the vacuum family with the dimension less or equal to eight. Up to dimension nine

all quasi-primaries have even dimension. There is a unique operator of dimension zero —

the identity operator, which is a primary. There is also a unique quasi-primary at level

– 8 –
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two, the stress-energy tensor T . Its zero mode is the CFT Hamiltonian — first KdV charge

Q1 = L0 − c/24. At level two there is also a unique quasi-primary

T2 = (TT )− 3

10
∂2T. (4.1)

Its zero mode is the first non-trivial KdV charge Q3 given by (3.13). At all other levels

the quasi-primaries are not unique and we organize them by dimension, nested powers of

T and orthogonality of Zamolodchikov metric.

4.1 Quasi-primaries of dimension 6

At level four there are two quasi-primaries,

B = (∂T∂T )− 4

5
(∂2TT )− 1

42
∂4T, (4.2)

and

D = (T (TT ))− 9

10
(∂2TT )− 1

28
∂4T +

93

70c+ 29
B. (4.3)

Zero mode of their combination D − 5(43+14c)
2(29+70c)B is the KdV charge Q5, which was found

explicitly in [24]. To find the explicit form of B0 and D0 we introduce the “building block”

(∂T∂T )0 = −(∂2TT )0 = 2

∞∑
n=1

n2L̃−nL̃n +
L̃0

60
− c

3024
, (4.4)

which is different from the quasi-primary B by a total derivative. Therefore

B0 =
9

5
(∂T∂T )0. (4.5)

Similarly, to calculate D0 we introduce

(T (TT ))0 =
∞∑

k,l=0

L̃−k−lL̃kL̃l + 2
∞∑

k=1,l=0

L̃−kL̃k−lL̃l +
∞∑

k,l=1

L̃−kL̃−lL̃k+l

−
∞∑
n=1

L̃−nL̃n −
L̃2
0

2
+
cL̃0

480
+
L̃0

15
− c

3024
,

(4.6)

such that

D0 = (T (TT ))0 +
9

10
(∂T∂T )0. (4.7)

4.2 Quasi-primaries of dimension 8

At level eight there are three quasi-primaries,

E = (∂2T∂2T )− 10

9
(∂3T∂T ) +

10

63
(∂4TT )− 1

324
∂6T, (4.8)

H = (∂T (∂TT ))− 4

5
(∂2T (TT )) +

2

15
(∂3T∂T )− 3

70
(∂4TT ) +

9(140c+ 83)

50(105c+ 11)
E , (4.9)
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and

I = (T (T (TT )))− 9

5
(∂2T (TT )) +

3

10
(∂3T∂T ) +

81(35c− 51)

100(105c+ 11)
E

+
12(465c− 127)

5c(210c+ 661)− 251
H.

(4.10)

The “building block” for calculating E0 is

(∂2T∂2T )0 = −(∂3T∂T )0 = (∂4TT )0 = 2
∞∑
n=1

n4L̃−nL̃n −
L̃0

126
+

c

2880
, (4.11)

And therefore,

E0 =
143

63
(∂2T∂2T )0. (4.12)

There are two “building blocks” for H:

(∂T (∂TT ))0 =−
∞∑

k=0,l=0

klL̃−k−lL̃kL̃l+2

∞∑
k=1,l=0

klL̃−kL̃k−lL̃l (4.13)

−
∞∑

k,l=1

klL̃−kL̃−lL̃k+l+
1

12
(∂T∂T )0+

1

30

∞∑
n=1

L̃−nL̃n+
L̃2
0

60
− (5c+93)L̃0

15120
+

113c

1814400

and

(∂2T (TT ))0 = −
∞∑

k,l=0

l2L̃−k−lL̃kL̃l −
∞∑

k=1,l=0

(k2 + l2)L̃−kL̃k−lL̃l (4.14)

−
∞∑

k=1,l=1

k2L̃−kL̃−lL̃k+l +
7

120

∞∑
n=1

L̃−nL̃n −
L̃2
0

30
+

cL̃0

1512
+

61L̃0

7560
− 131c

1814400
.

The zero mode of H is

H0 = (∂T (∂TT ))0 −
4

5
(∂2T (TT ))0 +

7035c+ 13652

110250c+ 11550
(∂2T∂2T )0. (4.15)

The expression for (T (T (TT )))0 is too bulky to write it twice. We do not write it

explicitly here, but simply mention that it can be obtained from the Virasoro algebra

expression for Q7, which we give explicitly in the next section, by subtracting (∂2T∂2T )0
and (T (∂T∂T ))0 with proper coefficients, see equation (5.1). Thus, in lieu of (T (T (TT )))0
we give explicitly the expression for (T (∂T∂T ))0,

(T (∂T∂T ))0 =

∞∑
k,l=1

(k + l)lL̃−kL̃−lL̃k+l +

∞∑
l=0,k=1

(k − l)kL̃−kL̃k−lL̃l

+

∞∑
k,l=0

(k + l)kL̃−k−lL̃kL̃l +

∞∑
k=0,l=1

(k − l)kL̃−lL̃l−kL̃k

− 7

6

∞∑
n=1

n2L̃−nL̃n +
1

30

∞∑
n=1

L̃−nL̃n +
L̃2
0

60
+

cL̃0

3024
− L̃0

135
+

13c

86400
.

(4.16)
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Finally, for the last quasi-primary at level 8 we have

I0 = (T (T (TT )))0 −
9

5
(∂2T (TT ))0 −

3

10
(∂2T∂2T )0 +

81(35c− 51)

100(105c+ 11)
E0

+
12(465c− 127)

5c(210c+ 661)− 251
H0.

(4.17)

This concludes the list of zero modes of the quasi-primary operators at level 8.2

5 Expression for Q7

In this section we present the expression for Q7 in terms of Virasoro generators, which we

calculated by applying the technique described above. Then we test our result by showing

that it is consistent with the known spectrum Q7 at the leading 1/c order. We further

check at that our expression for Q7 vanishes as an operator for the (9, 2) minimal model at

the first dozen of descendant levels, as is predicted in [24, 27]. Finally, we will show how to

use commutativity of qKdV charges, known results about spectrum in 1/c expansion and

the constraints from the minimal models to get a shortcut for the expression (5.2).

5.1 The result

Q7 is the zero mode of the operator

J8 = (T (T (TT ))) +
c+ 2

3
(T (∂T∂T )) +

2c2 − 17c− 42

360
(∂2T∂2T ). (5.1)

In principle J8 (and higher densities J2n) can be determined by requiring commutativity

of Q7 with Q5 and Q3, however, the calculation is quite involved. Alternatively, one can

use the expression for the thermal correlation function 〈Q2n−1〉, which can be calculated

using other means and fix the coefficients of J2n in this way. This was done for J8, J10 and

J12 in [27]. However, for J14 and higher densities the number of independent coefficients

becomes too large to be uniquely fixed from the form of 〈Q2n−1〉 alone.

We find the following expression for Q7 in terms of the Virasoro algebra generators

Q7 =
∞∑

k,l,m=1

L−kL−lL−mLk+l+m +
∞∑

k,l,m=0

L−k−l−mLkLlLm

+ 3
∞∑

k,l=1
m=0

L−kL−lLk+l−mLm + 3
∞∑
k=1
l,m=0

L−kLk−l−mLlLm

+
8 + c

3

 ∞∑
k,l=1

(k + l)lL−kL−lLk+l +
∞∑
k=1
l=0

(k − l)kL−kLk−lLl


2There are three quasi-primary operators at level 8, denoted E , H, I, while we lilts five expressions. This

is because two operators are linearly dependent with others, (∂T (∂TT ))0 − (T (∂T∂T ))0 + 1
3
(∂2T∂2T )0 +

c
1512

L̃0 = 0, (∂T (∂TT ))0 + 1
2
(∂2T (TT ))0 + 1

12
(∂2T∂2T )0 + 1

12
B− 1

32
Q3 + 1

32
L̃2

0− L̃0
192

+ c
46080

= 0. We thank

A. Kakkar and S. Sugishita for discussing this point.
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+
8 + c

3

 ∞∑
k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk

 (5.2)

+
∞∑
n=1

(
c2 − c− 141

90
n4 − 7c+ 59

18
n2
)
L−nLn −

(
1

48
c2 +

53

360
c+

19

90

)
Q̃3

−
(

1

6
c+ 1

)
Q̃5 −

c+ 6

6
L3
0 +

15c2 + 194c+ 568

1440
L2
0

− (c+ 2)(c+ 10)(3c+ 28)

10368
L0 +

c(3c+ 46)(25c2 + 426c+ 1400)

24883200
.

This is one of the main results of this paper. Here Q̃3 and Q̃5 are defined as parts of Q3

and Q5 which annihilate the primary states, Q̃3 |∆〉 = 0 and Q̃5 |∆〉 = 0, namely,

Q̃3 = 2
∑

L−nLn, (5.3)

and

Q̃5 =

∞∑
k,l=0

L−k−lLkLl + 2

∞∑
k=1,l=0

L−kLk−lLl +

∞∑
k,l=1

L−kL−lLk+l

+

∞∑
n=1

(
c+ 2

6
n2 − c

4
− 1

)
L−nLn − L3

0.

(5.4)

The expression (5.4) can also be represented in a slightly different way [24] using the

following identity,

∞∑
k,l=0

L−k−lLkLl + 2

∞∑
k=1,l=0

L−kLk−lLl +

∞∑
k,l=1

L−kL−lLk+l

=
∑

n1+n2+n3=0

: Ln1Ln2Ln3 : +
3

2

∑
n=1

n2L−nLn +
3

2

∑
r=1

L1−2rL2r−1.

(5.5)

5.2 The consistency check: 1/c expansion and the (9, 2) minimal model

In this section we perform two different consistency checks of the Virasoro algebra expres-

sion for Q7 (5.2).

In an upcoming paper [28] we have calculated the spectrum of all KdV charges using

semi-classical quantization at the first few orders in 1/c expansion. This calculation did

not rely on the explicit form of Q2k−1 in terms of the Virasoro algebra generators, and

hence can be used to cross-check our result.

The spectrum in 1/c expansion can be parametrized by “quantum numbers” of the

conventional basis in the space of descendants, namely

|{mi},∆〉 = L−m1 . . . L−mk
|∆〉 . (5.6)

Each set {mi} can be rewritten using the so-called boson representation. Namely, each set

{mi} can be parametrized by the set of integers {nk}, where nk is the number of times
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natural number k appears in {mi}. Therefore, for any integer p,

∑
i

mp
i =

∞∑
k=1

kpnk, (5.7)

Leading 1/c spectrum of Q7 in these notations is given by Q7 |λ〉 = λ |λ〉, where

λ = ∆′4 + ∆′3

(
28
∑
k

nkk − 1

)
+ ∆′2c

(
7

3

∑
k

nkk
3 +

7

720

)

+ ∆′c2

(
7

90

∑
k

nkk
5 − 1

6480

)
+ c3

(
1

1080

∑
k

nkk
7 +

1

518400

)

+ ∆′2

(
98n2 − 77

∑
k

n2kk
2 +

259

3

∑
k

nkk
3 − 77

∑
k

nkk
2 − 14

3

∑
k

nkk +
71

180

)

+ ∆′c

98

15

∑
k,l

k3lnknl −
56

15

∑
k

n2kk
4 +

63

25

∑
k

nkk
5

−56

15

∑
k

nkk
4 − 7

90

∑
k

nkk
3 +

49

1800

∑
k

nkk −
23

4320

)

+ c2

 7

180

∑
k,l

nknlk
3l3 +

7

90

∑
k,l

nknlk
5l − 7

120

∑
k

n2kk
6 +

127

5400

∑
nkk

7

− 7

120

∑
k

nkk
6 +

7

21600

∑
k

nkk
3 − 1

6480

∑
k

nkk +
103

2073600

)

− 504
∆′3

c

(∑
k

n2k − 2
∑
k

nkk +
∑
k

nk

)
+O(c)

(5.8)

Using computer algebra one can check explicitly at first dozen of descendant levels that

this spectrum matches with the one following from (5.2).

Another check is provided by [24, 27], which shows that for the minimal models (2n+

3, 2), n 6 1, the qKdV charges Qk with k divisible by 2n + 1 vanish as operators. Hence

Q7 should vanish as an operator in the minimal model (9, 2), with n = 3 and central

charge c = −46/3. This minimal model includes primaries with the following dimensions

{∆k} = {0,−1/3,−2/3,−5/9}. Using computer algebra we have verified that Q7 vanishes

for all non-zero states of this model up to the descendant level twelve.

5.3 A shortcut

In this subsection we show how to get the Virasoro algebra expression for Q7 without

full explicit calculation of all involved commutators by exploiting the restrictions from

the commutativity of qKdV charges, 1/c expansion and the (9, 2) minimal model. Our

goal here will be to understand what kind of terms may appear in the Virasoro algebra

expression of Q7 and then fix the coefficients using the constraints.

– 13 –
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We start from the last term of J8 (5.1):

A8 = (∂2T∂2T ). (5.9)

Substiting A8 into (2.10)–(2.12) we obtain∮
dw

2π
A8 ∼

∞∑
n=1

n4L−nLn + comm, (5.10)

where comm comes from the integral of the commutator in (2.10). Expressing the commu-

tator in terms of Virasoro generators we get [∂2T, ∂2T ] ∼ [Ln, Lm] ∼ Lk due to Virasoro

algebra. It is easy to see that the final answer for the zero mode should contain only

such operators that map states of level k to the states of level k. That means that after

integrating the commutator we can only get some function of L0. Therefore,∮
dw

2π
A8 ∼

∞∑
n=1

n4L−nLn + f(L0). (5.11)

Now we turn to the next term

B8 = (T (∂T∂T )). (5.12)

The term B8 contains nested normal ordering. We will deal with it subsequently,

(∂T∂T )(w) = ∂T∂T+ + ∂T−∂T +

∮
dz

2π

∞∑
k=0

ck

(
ei(z−w) − 1

)k
[∂T (z), ∂T (w)]. (5.13)

One can calculate the commutator and perform the integration (5.13) explicitly but we

just notice that the result of the integration can only contain terms with one stress-energy

tensor T or its derivatives and the terms like TT or T∂T are not present due to Virasoro

algebra, which means

(∂T∂T )(w) = ∂T (w)∂T+(w) + ∂T−(w)∂T (w) + f(T (w), ∂T (w), ∂2T (w)), (5.14)

where f(T, ∂T, ∂2T ) is some linear function of its arguments. Substituting (5.13) into B8

we get

(T (∂T∂T )) = T−∂T∂T+ + ∂T∂T+T+ + T−∂T−∂T + ∂T−∂TT+ + comm. (5.15)

Here comm again denotes some expression associated with the commutators, which we will

not calculate explicitly. But let us notice again that it contains at most two stress-tensors

or its derivatives. The only expression that survives after integration of such terms is

proportional to ∼ L−nLn, namely

∮
dz∂αT∂βT ∼

+∞∑
−∞

nα+βL−nLn. (5.16)
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Counting the amount of dervatives and integrating (5.15) we obtain∮
dw

2π
B8 =

∞∑
k,l=1

(k + l)lL−kL−lLk+l +

∞∑
k=1
l=0

(k − l)kL−kLk−lLl

+
∞∑

k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk

+
∞∑
n=1

(
αn4 + βn2 + γ

)
L−nLn + f(L0),

(5.17)

where α, β, γ are some c-dependent coefficients and f(L0) is some function of c and L0.

In the same manner one can deal with the term (T (T (TT )). As a result we get an

expression for Q7 with some coefficients to fix. The expression is

Q7 =

∞∑
k,l,m=1

L−kL−lL−mLk+l+m +

∞∑
k,l,m=0

L−k−l−mLkLlLm

+ 3
∞∑

k,l=1
m=0

L−kL−lLk+l−mLm + 3
∞∑
k=1
l,m=0

L−kLk−l−mLlLm

+
8 + c

3

 ∞∑
k,l=1

(k + l)lL−kL−lLk+l +

∞∑
k=1
l=0

(k − l)kL−kLk−lLl


+

8 + c

3

 ∞∑
k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk


+
∞∑
n=1

(
αn4 + βn2

)
L−nLn + γQ̃3 + δQ̃5 + f(L0)

, (5.18)

where α, β, γ and δ are the coefficients dependent on central charge and f(L0) is some

polynomial of L0 and central charge.

The term f(L0) determines the value of Q7 on a primary state. That has been pre-

viously calculated in the appendix B of [29]. The coefficients α and β can be found from

the commutativity constraint [Q3, Q7] = 0. From 1/c expansion of the spectrum (5.8)

we see that δ is at most linear polynomial in c, δ = δ1c + δ2 and γ is at most quadratic

polynomial in c, γ = γ1c
2 + γ2c + γ3. The coefficients δ1, δ2 and γ1, γ2 can be extracted

directly from (5.8) and, finally, γ3 can be fixed by requiring that Q7 vanishes acting on any

descendant state of the (9,2) minimal model.

6 Conclusions

In this paper we pedagogically developed and presented the machinery of calculating the

zero modes of local operators in a 2d CFT on a cylinder. We focused on the situation when
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the operators are from the vacuum family, i.e. are built from the powers of stress-energy

tensor and its derivatives. We have calculated explicit expressions in terms of the Virasoro

algebra generators for all quasi-primaries with the dimension of less or equal than eight.

We have also calculated the explicit expression for the KdV charge Q7, thus bringing the

number of explicitly known charges to three (excluding Q1, which is trivial). The explicit

formulae obtained in this paper can be used to study spectral properties of the qKdV

hierarchy and further investigate Eigenstate Thermalization Hypothesis in 2d CFTs, in

particular by means of computer algebra.
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