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This study presents a fractional-order continuum mechanics approach that allows combining selected character- 

istics of nonlocal elasticity, typical of classical integral and gradient formulations, under a single frame-invariant 

framework. The resulting generalized theory is capable of capturing both stiffening and softening effects and 

it is not subject to the inconsistencies often observed under selected external loads and boundary conditions. 

The governing equations of a 1D continuum are derived by continualization of the Lagrangian of a 1D lattice 

subject to long-range interactions. This approach is particularly well suited to highlight the connection between 

the fractional-order operators and the microscopic properties of the medium. The approach is also extended to 

derive, by means of variational principles, the governing equations of a 3D continuum in strong form. The posi- 

tive definite potential energy, characteristic of our fractional formulation, always ensures well-posed governing 

equations. This aspect, combined with the differ-integral nature of fractional-order operators, guarantees both 

stability and the ability to capture dispersion without requiring additional inertia gradient terms. The proposed 

formulation is applied to the static and free vibration analyses of either Timoshenko beams or Mindlin plates. 

Numerical results, obtained by a fractional-order finite element method, show that the fractional-order formu- 

lation is able to model both stiffening and softening response in these slender structures. The numerical results 

provide the foundation to critically analyze the physical significance of the different fractional model parameters 

as well as their effect on the response of the structural elements. 
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. Introduction 

Several experimental studies have demonstrated that size-dependent

ffects can become prominent in the response of several structures in-

ependently of their spatial scale. In the case of micro- and nano-

tructures, size-dependent effects have been traced back to material het-

rogeneity, geometric effects such as changes in curvature, and the ex-

stence of surface and interface stresses due to nonlocal atomic interac-

ions and Van der Waals forces [1–3] . Micro- and nano-structures such as

arbon nanotubes, thin films and monolayer graphene sheets have far-

eaching applications in atomic devices, micro/nano-electromechanical

evices, as well as sensors and biological implants. In macroscale appli-

ations, particularly those involving heterogeneous structures such as

unctionally graded materials, metallic foams, granular materials, and

orous materials, nonlocal effects have been shown to result from ma-

erial heterogeneity and interactions between different structural lay-

rs [4–7] . Additionally, specific geometric configurations can also lead

o size-dependent effects [8–10] . In all these macroscopic structures,

onlocal governing equations arise following a homogenization process

5,6,9,10] . Based on the examples above, it appears that the ability to
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ccurately model size-dependent effects has profound implications for

any engineering applications. 

From a general perspective, it is the coexistence of different spatial

cales in the above mentioned classes of structural problems that ren-

ers the response nonlocal [11,12] . The inability of the classical (i.e.

ocal) continuum theory to capture scale effects prevented its use in

hese applications and fostered the development of the so-called non-

ocal continuum theories. From a general standpoint, the mathematical

escription of nonlocal continuum theories relies on the introduction

f additional contributions in terms of either integrals or gradients of

train (or stress) fields or to the use of additional kinematic descrip-

ors in the constitutive equations. This approach leads to the so-called

strong ǥ integral methods or ǣweak ǥ gradient/microcontinuum meth-

ds, respectively. Microcontinuum theories such as the Cosserat theory

nd the micropolar theory account for nonlocal behaviour by enrich-

ng the kinematics of the continuum with additional descriptors such

s micro-rotations. Consequently, the couple-stresses, which are conju-

ated to the micro-rotations, are also included in the equations of motion

13–16] . Gradient elasticity theories [11,17–19] account for the nonlo-

al behavior by introducing strain or stress gradient dependent terms in

he stress-strain constitutive law. Integral methods [12,20,21] capture
perlotti). 
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onlocal effects by re-defining the constitutive law in the form of a con-

olution integral of either the strain or the stress field over the horizon

f nonlocality. The gradient and integral approaches are further classi-

ed as strain-driven or stress-driven [19–21] , depending on whether the

onlocal contributions are modeled using the strain or the stress fields.

Although these different approaches to nonlocal elasticity have been

ble to address a multitude of aspects typical of the response of size-

ependent nonlocal structures, some important challenges still remain

pen. From a high level perspective, gradient theories provide a satis-

actory description of the effects of the material microstructure but can

ntroduce significant difficulties connected with the overall stability of

he model. As discussed in Askes and Aifantis [19] , while the use of

nstable strain-gradients is critical to capture dispersive wave propa-

ation, they give rise to non-convex potential energies leading to the

oss of uniqueness in static boundary value problems (BVPs). This issue

s often circumvented by using a combination of stable strain-gradients

nd acceleration gradients [19,22,23] , whose stability comes at the cost

f additional terms in both the governing equation and the boundary

onditions. From this perspective, integral methods are better suited to

eal with boundary conditions and do not lead to any sign paradox,

hich is peculiar of the gradient methods. However, the corresponding

otential energy is not guaranteed to be positive definite, and leads to ill-

osed governing equations and inconsistent predictions for certain load-

ng and boundary conditions [21,24,25] . The ill-posed behaviour can be

ddressed using local-nonlocal two phase approaches [26] . However,

his effect is nullified when the local fraction vanishes, as also noted in

omano et al. [25] . More specifically, in the limit of a vanishing local

raction, the inherent ill-posedness of fully strain-driven integral prob-

em is not eliminated. This consideration is at the basis of restrictions on

he parameter space that determines the ratio of the local and nonlocal

ixture. 

From a perspective of practical application, another key limitation

f classical nonlocal formulations consists in the fact that, based on

he underlying formulation, they can capture only softening or stiffen-

ng response but not both simultaneously. Experimental investigations

ave shown that the size-dependent effects can lead to both stiffening

s well as softening of the nonlocal structure depending on the loading

nd external conditions, such as temperature, loading rate, and bound-

ry conditions [1–5,12,19,27–30] . To this regard, while classical strain-

riven integral formulations [20] are suitable for modeling softening ef-

ects, stress-driven integral formulations [21] and gradient formulations

11] are suitable to capture only stiffening effects. Thus it appears that

oth the classical integral and gradient formulations are not suitable

o capture both stiffening and softening responses. Efforts to achieve

n equivalence between the strain-driven integral and gradient formu-

ations, by using special exponential kernels, have been shown to lead

o mathematically ill-posed formulations resulting in inaccurate (often

alled “paradoxical ”) predictions [21,25] . Further, as stated in Askes

nd Aifantis [19] , an unresolved issue in strain-gradient formulations

ertains to the treatment of materials that exhibit strain-softening. 

A recently developed nonlocal gradient elasticity approach [31] was

hown to be able to capture both stiffening and softening response. In

his approach, Eringen’s integral law was combined with strain-gradient

lasticity to formulate a higher-order nonlocal theory. More specifically,

he stress is defined as the sum of two integral terms. The first term be-

ng the classical convolution between the strain and a smoothing kernel

epending on a nonlocal parameter. The second term consisting of the

erivative of the convolution of the strain gradient with a smoothing ker-

el depending on a different nonlocal parameter. The seminal work pre-

ented in Lim et al. [31] was further extended to develop strain-driven

32,33] and stress-driven approaches [34] . While the nonlocal gradi-

nt formulations capture both stiffening and softening response, some

mportant limitations follows from the corresponding numerical imple-

entation. Quadrature methods [33] and analytical methods [32] are

he most accredited techniques for the strain-driven nonlocal gradient

lasticity, while the stress-driven approach relies either on analytical
olutions or iterative methods [34,35] . Although these solution meth-

ds offer analytical insights into the problem, they encounter limitations

hen applied to structures having more complex geometry (even plates)

nd general loading conditions. Further, the nonlocal strain-driven gra-

ient approach is not positive-definite for all loading conditions and

equires additional constitutive boundary conditions to achieve well-

osedness when applied to slender structures of practical interest [36] .

ence, a formulation which is capable of capturing both stiffening and

oftening response, and amenable to numerical simulation for complex

eometries under general loading conditions is still lacking. 

In recent years, fractional calculus has emerged as a powerful math-

matical tool to model a variety of nonlocal and multiscale phenom-

na. Fractional derivatives, which are a differ-integral class of oper-

tors, are intrinsically multiscale and provide a natural way to ac-

ount for nonlocal effects. Given the multiscale nature of fractional

perators, fractional calculus has found several applications in nonlo-

al elasticity [6,7,37–44] . Recent studies have shown that a nonlocal

ontinuum approach based on fractional-order kinematic relations pro-

ides an effective way to model softening response in nonlocal struc-

ures [44,45] . These fractional-order nonlocal continuum models result

n frame-invariant, thermodynamically consistent and positive definite

ystems with well-posed governing equations [44–46] . 

In this study, we show that the differ-integral nature of fractional

perators allows them to combine the strengths of both gradient and in-

egral based methods while at the same time addressing a few important

hortcomings of both the integer-order formulations. More specifically,

e extend the fractional-order continuum formulation [7,45] to capture

oth softening and stiffening response of nonlocal structures in a unified

nd stable formulation amenable to finite element solution. The overall

oal of this study is three fold. 

First, we derive the fractional-order governing equations for a 1D

onlocal continuum by continualization of the Lagrangian of a 1D lat-

ice exhibiting long-range interactions with a power-law decay. We

ill show that fractional-order derivatives of the displacement field

i.e. the nonlocal strain) and fractional-order derivatives of the strain

eld (i.e. the strain-gradient) are obtained in the potential energy of

he 1D structure following continualization of the lattice potential en-

rgy. Further, we will demonstrate that the fractional-order formula-

ion is well-posed, frame-invariant, causal, and able to capture anoma-

ous attenuation-dispersion characteristics without the need to resort

o acceleration gradient terms, as required in classical strain-gradient

ormulations or the need to ensure non-vanishing strain-gradients, as

equired in the nonlocal strain-gradient formulation. In other terms, in

he fractional-order formulation, well-posed governing equations result

rom a positive definite potential energy while the ability to capture

ispersive behavior follows from the differ-integral nature of the frac-

ional operator. More specifically, the attenuation and dispersion in a

olid following the fractional-order formulation are shown to exhibit

 power-law dependency on the wave-number/frequency. Remarkably,

uch anomalous dispersion characteristics have been experimentally ob-

erved in different classes of materials including lossy media, fractal and

orous materials [47,48] , and animal tissues [47] . Anomalous attenua-

ion has also been observed in several (non-lossy) scattering media, par-

icularly those characterized by fractal, periodic or random structures

7,8,10,49] . Table 1 provides a comparative summary of the classical as

ell as the fractional-order approaches to nonlocal elasticity, and high-

ights some of the most distinctive features of the methods. 

A second important contribution of this study consists in extending

he 1D formulation to a fully 3D formulation. The governing equations

n strong form will be derived by using variational principles. In both

he 1D and the 3D formulations, we will demonstrate the positive def-

nite and convex nature of the system’s potential energy. This specific

roperty ensures that the governing equations derived by minimization

f the potential energy are naturally well-posed without requiring addi-

ional constitutive boundary conditions (unlike nonlocal strain-gradient

pproaches). Additionally, we will discuss the frame-invariance of the
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Table 1 

Summary of the fundamental approaches to nonlocal elasticity and comparison of their properties with those of the 

fractional-order continuum theory. In the table, S.G. denotes strain gradients and I.G. denotes inertia gradients. 

Features\Approach type Integral Gradient 

Fractional 
Strain driven Stress driven Stable S.G. Unstable S.G. Stable S.G. and I.G. 

Nature of response Soft Stiff Stiff Stiff Stiff Soft and Stiff

Positive definite system No No Yes No Yes Yes 

Capture dispersion Yes Yes No Yes Yes Yes 
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ormulation and the complete nature of the nonlocal kernel for bounded

D domains. 

A third key contribution of this work consists in the application of the

ractional-order formulation to the analysis of the static and free vibra-

ion response of Timoshenko beams and Mindlin plates. The selection

f these specific formulations was due to the fact that both the Euler-

ernoulli beam and the Kirchhoff plate formulations can be recovered as

pecial cases; hence, making our study more general and complete. By

xtending the fractional-order finite element method [44,45] to include

he additional gradient terms, we will demonstrate that the fractional-

rder formulation allows modeling both stiffening and softening effects.

e will also critically analyze how the overall structural behavior is af-

ected by the different parameters introduced by the fractional model. 

The characteristics discussed above also explain the choice of a

train-based fractional-order model versus a potential stress-based ap-

roach. While in integer-order techniques, the stress-based formula-

ion [34] has been proposed as a way to address the challenging

ell-posedness of the nonlocal elasticity problem, the fractional order

train-based formulation is always well-posed (contrarily to its integer-

rder counterpart). Certainly, a stress-based fractional order formu-

ation could potentially be envisioned. However, the corresponding

ethodologies for their numerical solution are not necessarily straight-

orward, and techniques like the finite element method (FEM) have not

et been proven to be applicable. In addition, unlike integer-order stress-

riven formulations that accept analytical solutions for selected cases

21,34] , fractional-order governing equations very seldom allow for

nalytical solutions (especially when dealing with bounded domains).

rom a practical point of view, these aspects limit the need to explore

tress-driven fractional-order formulations and suggest that their appli-

ation to the analysis of structures having complex geometry and for

eneral loading conditions would be more limited than its strain-based

ounterpart. 

The remainder of the paper is structured as follows: first, we moti-

ate the use of fractional calculus for the analysis of nonlocal structures

y considering a 1D lattice with long-range interactions and its corre-

ponding 1D continuum formulation. Next, we extend the 1D continuum

o a fully 3D continuum and derive the governing equations in strong

orm using variational principles. Finally, we use the fractional-order

ormulation to analyze the effect of the fractional-order nonlocality on

he static and free vibration response of beams and plates under different

ypes of loading conditions. 

. Fractional-order mechanics: from lattice to 1D continuum 

A well established route to develop formulations capable of captur-

ng nonlocal effects in solids is to enforce the continuum limit on a lattice

ystem whose particles are subject to long-range interactions. Several

revious works have shown that the continuum limit of lattice structures

ith one-neighbour and two-neighbour interactions and constant inter-

ction strength lead to the classical first and second integer-order strain-

radient theories of Mindlin, respectively [23,50] . An immediate exten-

ion of these models follows from considering the response of a lattice

ith even larger number (i.e. > 2) of long-range interactions. Assum-

ng pair-wise constant interaction strengths between different masses

cross the lattice, it can be easily shown that higher integer-order strain-
radient theories stem from these models. However, these integer-order

train-gradient models would invariably predict a stiffening response of

he overall structure. Recall that both softening and stiffening responses

ave been experimentally observed in the response of solids sensitive to

cale effects. In this study, we will show that fractional-order operators

an offer a route to develop continuum models capable of predicting

oth softening and stiffening response in a single formulation. To ob-

ain a physically consistent fractional-order continuum model, we start

rom a 1D lattice system in which particles are subject to long-range in-

eractions whose pair-wise constant strength decreases with distance in

 power-law fashion. While, in the past, other authors have modeled lat-

ices with long-range cohesive forces using fractional calculus [38,39] ,

n this study we extend the formulation by considering also the strain-

radient effects that arise due to microstructural considerations. 

.1. Lattice model and continualization procedure 

Consider an infinite 1D lattice consisting of identical particles of

ass M as shown in Fig. 1 . The particles are periodically distributed in

he 𝑥̂ direction with spatial period l ∗ and exhibit only longitudinal mo-

ion. The location and displacement of the 𝑛 th particle (where 𝑛 ∈ ℤ ) at

he time t are denoted as x n ( t ) and u n ( t ), respectively. The strength of

nteraction between particles is modeled via lumped springs having stiff-

ess k i,j , where 𝑖 th and 𝑗 th are the two interacting particles and i ≠ j .

ote that, in this notation, the comma in the subscript of the spring

tiffness does not indicate differentiation. In the following derivation,

he dependence of u i on time t will be implied. Using the above config-

ration of the lattice and assuming that all the springs are unstressed at

he initial time 𝑡 = 0 , the potential energy stored in the 𝑖 th cell of the
attice is obtained as: 

 𝑖 = 

∞∑
𝑗=−∞

1 
2 
𝑘 𝑖,𝑗 |𝑢 𝑖 − 𝑢 𝑗 |2 (1) 

here  𝑖 denotes the potential energy of the 𝑖 th cell. By assuming small

isplacement gradients ( O ( 𝜀 )), Taylor’s expansion at the point x i gives:

 𝑖 − 𝑢 𝑗 = ( 𝑥 𝑖 − 𝑥 𝑗 ) 𝛿1 𝑥 𝑗 𝑢 𝑗 + 

1 
2 
( 𝑥 𝑖 − 𝑥 𝑗 ) 2 𝛿2 𝑥 𝑗 𝑢 𝑗 + h.o.t (2)

here 𝛿□𝑥 𝑗 ( □ ∈ {1 , 2}) denote the discretized integer-order derivatives
t x j . 

It is well known that the strength of long-range cohesive forces de-

ays as a function of the inter-atomic distance. Recall that, at contin-

um level and in integral formulations, this effect is typically accounted

or by using convolution terms in the stress-strain constitutive relation-

hips. These convolution kernels have often been chosen to be spatially-

ecaying exponential functions [12,20] . In the lattice model, the stiff-

ess of the springs used to model the interaction between distant par-

icles play a role analogous to the convolution kernels used in classical

ntegral nonlocal elasticity. Thus, in principle, the stiffness of the springs

manating from a given particle towards distant particles can be mod-

led using spatially decaying exponential functions. In this study, we

hoose to model the stiffness spatial decay according to power-law func-

ions as follows: 

 𝑖,𝑗 = 𝑘 0 

⎡ ⎢ ⎢ ⎣ 
𝑐 1 |𝑥 𝑖𝑗 |𝛼2 1 + 

𝑐 2 |𝑥 𝑖𝑗 |𝛼2 2 
⎤ ⎥ ⎥ ⎦ (3)
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Fig. 1. Schematic of the infinite lattice consisting of identical masses denoted as M . The masses occur periodically in space separated by a distance of l ∗ . The schematic 

also illustrates the classical nearest-neighbour interactions as well the long-range interactions between the masses within the infinite lattice. Note that each mass 

within the lattice is connected to every other mass by spatially decaying long-range connections. To streamline the schematic, we have illustrated only the nonlocal 

connections of the mass M i with a few other masses within the lattice. 
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here |𝑥 𝑖𝑗 | = |𝑥 𝑖 − 𝑥 𝑗 | indicates the distance between the 𝑖 th and the 𝑗 th
articles. Note that the above equation is valid only for i ≠ j , given that
 = 𝑗 would imply that the mass is connected to itself. The parameters

1 and 𝛼2 are such that 𝛼1 ∈ (0, 1), 𝛼2 ∈ (1, 2), and 𝛼2 − 𝛼1 ∈ (0 , 1) .
he specific reason behind choosing the aforementioned ranges for 𝛼1 
nd 𝛼2 is discussed later in this section with reference to the obtained

ontinualized model. The coefficients c 1 and c 2 will be chosen as a func-

ion of the parameters 𝛼1 and 𝛼2 , respectively, such that they ensure

imensional consistency and frame-invariance of the formulation. Fur-

her, the constant k 0 has the dimensions of classical stiffness ( [ 𝑀𝑇 −2 ] )
nd its physical significance will be discussed while deriving the con-

inuum limit of the lattice. Note that the only parameters introduced

t this level include 𝛼1 , 𝛼2 , and k 0 . For a given physical lattice with a

nown spatially decaying stiffness function, these parameters could be

btained by applying standard regression techniques. Substituting the

xpression of the stiffness in the infinite series in Eq. (1) along with

q. (2) and retaining terms up to O ( 𝜀 2 ), we obtain the potential energy

f the 𝑖 th cell as: 

 𝑖 = 

𝑘 0 
2 

⎡ ⎢ ⎢ ⎢ ⎣ 
⎛ ⎜ ⎜ ⎝ 

∞∑
𝑗=−∞

√
𝑐 1 ( 𝑥 𝑖 − 𝑥 𝑗 ) 𝛿1 𝑥 𝑗 𝑢 𝑗 |𝑥 𝑖 − 𝑥 𝑗 |𝛼1 

⎞ ⎟ ⎟ ⎠ 
2 

+ 

1 
4 

⎛ ⎜ ⎜ ⎝ 
∞∑

𝑗=−∞

√
𝑐 2 ( 𝑥 𝑖 − 𝑥 𝑗 ) 𝛿2 𝑥 𝑗 𝑢 𝑗 |𝑥 𝑖 − 𝑥 𝑗 |𝛼2 −1 

⎞ ⎟ ⎟ ⎠ 
2 ⎤ ⎥ ⎥ ⎥ ⎦ (4)

By assuming a small l ∗ and adopting a continualization process simi-

ar to [23,50] , the discrete variables indicating the position and the dis-

lacement of the particles, can be replaced by the corresponding con-

inuum variables ( x i → x, x j → s, u j → u ( s )). The constant k 0 in the

ontinuum limit can be defined as: 

 0 = 

𝐸𝐴 

𝑙 ∗ 
(5)

here E and A denote the Young’s modulus and cross-sectional area of

he equivalent 1D continuum, respectively. It follows that the constant

 0 can be interpreted as the equivalent spring constant representing the

trength of the nearest-neighbor interaction forces of a lattice that sim-

late the microstructure of a local solid (that is not affected by scale

ffects). Further, we define the constants c 1 and c 2 in Eq. (3) as: 

 1 = 

𝑙 2 ∗ 
4Γ(1 − 𝛼1 ) 

𝑐 2 = 

𝑙 4 ∗ 
4Γ(2 − 𝛼2 ) 

(6)

here Γ( · ) denotes the Gamma function. Note that the interparticle
nteraction stiffness in Eq. (3) can be expressed directly without c 1 and

 2 , which can be treated as merely book keeping parameters. From a

ore mathematical perspective, the parameters c 1 and c 2 allow scaling

he contributions of both the first and second derivatives of the dis-

lacement ( 𝛿1 𝑥 𝑗 
𝑢 𝑗 and 𝛿

2 
𝑥 𝑗 
𝑢 𝑗 , respectively) to the potential energy, hence

roviding a better control on their relative strength (see Eq. (4) ). 

Under the above assumptions, the continuum limit of the discrete

um in Eq. (4) is obtained to be the following integral representation
51] : 

 ( 𝑥 ) = 

𝐸𝐴 

2 𝑙 ∗ 

⎡ ⎢ ⎢ ⎣ 𝑙 2 ∗ 
[ 

1 
2Γ(1 − 𝛼1 ) ∫

∞

−∞

𝐷 
1 
𝑠 𝑢 ( 𝑠 ) |𝑥 − 𝑠 |𝛼1 d 𝑠 

] 2 

+ 

𝑙 4 ∗ 
4 

[ 

1 
2Γ(2 − 𝛼2 ) ∫

∞

−∞

𝐷 
2 
𝑠 𝑢 ( 𝑠 ) |𝑥 − 𝑠 |𝛼2 −1 d 𝑠 

] 2 ⎤ ⎥ ⎥ ⎦ (7) 

here 𝐷 
𝑚 
𝑠 ( ⋅) denotes the 𝑚 th integer-order derivative with respect to the

patial dummy variable s used in the convolution integral. The convo-

ution integrals in Eq. (7) match with the definition of fractional-order

aputo derivatives with intervals on the real axis, that is 𝑥 ∈ (−∞, ∞)
52] : 

𝐶 
∞ 𝐷 

𝛼𝑚 
𝑥 𝑢 = 

1 
Γ( 𝑚 − 𝛼𝑚 ) ∫

𝑥 

−∞

𝐷 
𝑚 
𝑠 𝑢 ( 𝑠 ) 

( 𝑥 − 𝑠 ) 𝛼𝑚 − 𝑚 +1 
d 𝑠 (8a)

 

 
𝐷 

𝛼𝑚 
∞ 𝑢 = 

(−1) 𝑚 

Γ( 𝑚 − 𝛼𝑚 ) ∫
∞

𝑥 

𝐷 
𝑚 
𝑠 𝑢 ( 𝑠 ) 

( 𝑠 − 𝑥 ) 𝛼𝑚 − 𝑚 +1 
d 𝑠 (8b)

here 𝐶 
−∞ 𝐷 

𝛼𝑚 
𝑥 ( ⋅) denotes the left-handed Caputo derivative to the order

m and lower terminal at −∞, and 𝐶 𝑥 𝐷 

𝛼𝑚 
∞ ( ⋅) denotes the right-handed

aputo derivative to the order 𝛼m and upper terminal at ∞. 
Using the above definitions of the left- and right-handed Caputo

erivatives, the potential energy density at a point x can be expressed

s: 

( 𝑥 ) = 

 ( 𝑥 ) 
𝐴𝑙 ∗ 

= 

𝐸 

2 

[ [ 
1 
2 

(
𝐶 

−∞ 𝐷 

𝛼1 
𝑥 𝑢 − 

𝐶 
𝑥 𝐷 

𝛼1 
∞ 𝑢 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Riesz-Caputo derivative 

] 
2 + 

𝑙 2 ∗ 
4 

[ 
1 
2 

(
𝐶 

−∞ 𝐷 

𝛼2 
𝑥 𝑢 + 

𝐶 
𝑥 𝐷 

𝛼2 
∞ 𝑢 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Riesz-Caputo derivative 

] 
2 

]

(9) 

ecall that, from Eq. (3) , 𝛼1 ∈ (0, 1) and 𝛼2 ∈ (1, 2). The above linear

ombinations of the left- and right-handed Caputo derivatives are typi-

ally referred to as the Riesz-Caputo (RC) derivatives. The total potential

nergy of the structure can now be expressed as: 

 = ∫
∞

−∞
Π( 𝑥 ) 𝐴 d 𝑥 = 

1 
2 ∫

∞

−∞
𝐸𝐴 

[ (
𝐷 

𝛼1 
𝑥 𝑢 

)2 
+ 

𝑙 2 ∗ 
4 

(
𝐷 

𝛼2 
𝑥 𝑢 

)2 
] 

d 𝑥 (10)

here 𝐷 

𝛼𝑚 
𝑥 ( ⋅) denotes RC derivatives. The over bar □ is used to indicate

hat the RC derivative in Eq. (10) is defined on the real axis, so to

ifferentiate the notation from the RC derivatives defined over bounded

omains in Section 3 . We merely note that the RC derivative used in the

bove equation is different from the concept of Riesz derivative defined

sing sets of Fourier and inverse Fourier transforms [52] . 

As evident from Eq. (10) , the strain in the continuum limit of the in-

nite lattice structure subject to power-law decaying long-range interac-

ions can be modeled using the RC derivative of the displacement field to

he order 𝛼1 ∈ (0, 1). The second term within the integral in Eq. (10) can

e interpreted as the fractional-order gradient of the strain field. This is
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vident by considering the following composition: 𝐷 

𝛼2 
𝑥 𝑢 = 𝐷 

𝛼2 − 𝛼1 
𝑥 ( 𝐷 

𝛼1 
𝑥 𝑢 ) .

t follows that we could define a new order 𝛼2 = 𝛼2 − 𝛼1 . Recall that we

ave assumed 𝛼2 − 𝛼1 ∈ (0 , 1) in Eq. (3) . In order to avoid the introduc-
ion of new symbols, we will drop the overline and denote 𝛼2 ≡ 𝛼2 , with

he understanding that 𝛼2 now lies in the range (0,1). Thus, the total

otential energy can be expressed as: 

 = 

1 
2 ∫

∞

−∞
𝐸𝐴 

[ (
𝐷 

𝛼1 
𝑥 𝑢 

⏟⏟⏟
Nonlocal 
strain 

)2 + 

𝑙 2 ∗ 
4 

[ 
𝐷 

𝛼2 
𝑥 

(
𝐷 

𝛼1 
𝑥 𝑢 

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Nonlocal gradient 
of nonlocal strain 

] 
2 

] 

d 𝑥 (11)

hile the specific range for the fractional-orders mentioned here are

btained from mathematical definitions, we will obtain physical con-

traints on the range of these fractional-orders in Section 2.3 . 

Given the differ-integral nature of fractional operators, it appears

hat the different fractional-order derivatives in Eq. (11) lead to a unifi-

ation of the classical integral and gradient based nonlocal approaches.

n fact, the expression in Eq. (11) presents clear insights and compar-

sons of the fractional-order formulation with both the classical integral

nd the first-order strain-gradient formulation: 

• The RC derivative with order 𝛼1 captures softening effects in the

solid due to the nonlocal interactions. The order 𝛼1 captures the

strength of the power-law kernel of the fractional derivative which

in turn determines the rate of decay in the strength of the nonlo-

cal interactions with distance. Further, the interval of the fractional

derivative (here chosen to be (−∞, ∞) ), determines the length of the
horizon of nonlocality. In other terms, it indicates the distance be-

yond which nonlocal interactions are no longer accounted for in the

fractional derivative [7,45] . 
• From Eqs. (4)–(7) it is seen that, for the lattice with long-range cohe-

sive interactions, the expression for the potential energy at a point

x includes contribution of the microstructural information (that is

the strain-gradient) of all points in the nonlocal horizon of x . This

is in addition to the nonlocal contribution of the strain energy cap-

tured by the RC derivative 𝐷 

𝛼1 
𝑥 𝑢 . It is immediate to see that the RC

derivative of the nonlocal strain with order 𝛼2 captures the stiffening

effects in the solid. More specifically, analogous to classical strain-

gradient formulations, this term would account for the microstruc-

tural information within the strain energy potential. Furthermore,

the parameter l ∗ that was initially introduced as the lattice parame-

ter can be interpreted as the microstructural length scale analogously

to classical formulations. 

The above discussions lead to the conclusion that the use of the dif-

erent fractional-order gradients allows the continuum model to cap-

ure simultaneously both long-range cohesive forces (leading to soften-

ng effects) as well as strain-gradient terms capturing microstructural

roperties (leading to stiffening effects). A remarkable outcome of this

pproach is that, not only it can capture both softening and stiffening

ffects in a single formulation, but it can account for these effects si-

ultaneously. Note that the first-order strain-gradient theory for the 1D

ontinuum can be obtained from the above formulation by using 𝛼1 = 1
nd 𝛼2 = 1 . Following the above discussion, we call 𝛼1 as nonlocal-strain
rder and 𝛼2 as the strain-gradient order . 

The kinetic energy of the 1D solid can be evaluated similar to classi-

al integer-order formulations. Note that the introduction of nonlocality

hrough the long-range spring connections has no effect on the expres-

ion for kinetic energy. It follows that, in the continuum limit, the kinetic

nergy of the above described 1D solid is given as Metrikine and Askes

23] , Polyzos and Fotiadis [50] : 

 = 

1 
2 ∫

∞

−∞

[ 

𝜌𝐴 ( 𝐷 
1 
𝑡 𝑢 ) 

2 + 𝜌′𝐴 

𝑙 2 ∗ 
3 

[
𝐷 

1 
𝑥 

(
𝐷 

1 
𝑡 𝑢 

)]2 ] 

d 𝑥 (12)

here 𝐷 
1 
𝑡 ( ⋅) denotes the first integer-order derivative with respect to

ime, 𝜌 is the density, and 𝜌′ is the microdensity of the solid that has the
ame interpretation as in classical integer-order strain-gradient models.

 possible extension of the fractional-order continuum theory developed

bove involves the use of time fractional derivatives within the kinetic

nergy as: 

 = 

1 
2 ∫

∞

−∞

[ 

𝜌𝐴 ( 𝐶 0 𝐷 
𝜅
𝑡 𝑢 ) 

2 + 𝜌′𝐴 

𝑙 2 ∗ 
3 

[
𝐷 

1 
𝑥 

(
𝐶 
0 𝐷 

𝜅
𝑡 𝑢 

)]2 ] 

d 𝑥 (13)

here 𝐶 0 𝐷 
𝜅
𝑡 𝑢 is a left-handed Caputo derivative with order 𝜅 ∈ (0, 1) and

efined on the interval (0, t ). This will allow the fractional-order model

o capture memory effects and non-conservative dissipation mecha-

isms, such as those encountered in viscoelastic materials. Such a for-

ulation can be found in Ansari et al. [53] where the nonlinear response

f viscoelastic nanobeams have been captured by using time fractional

erivatives. However, unlike our study, size-dependent effects in Ansari

t al. [53] were modeled using the classical first-order strain-gradient

ormulation. Since memory effects and dissipation have already been

ddressed in the literature, in this study we focus on the modeling of

onlocal effects in non-dissipative solids using space fractional deriva-

ives. 

The above presented formulation deserves some additional remarks.

irst, the expression of the potential energy in Eq. (10) allows for an

mportant remark on the range of the different fractional orders. It ap-

ears that, by adding additional higher-order power-law decaying terms

for example, 1∕ |𝑥 𝑖𝑗 |𝛼2 3 with 𝛼3 ∈ (2, 3)) to the definition of the spring

tiffness in Eq. (3) , we can account for successive higher-order frac-

ional strain gradients. As an example, upon including 1∕ |𝑥 𝑖𝑗 |𝛼2 3 , we
ould obtain the fractional-order equivalent of the classical second-

rder strain-gradient elasticity theory. In this study, we focused only

n the fractional-order modification of the classical first-order strain-

radient formulation and hence, we have ignored higher-order power-

aw decaying terms in Eq. (3) . 

Second, note that the definition of the spring stiffness in Eq. (3) leads

o 𝑘 𝑖,𝑗 = 𝑘 𝑗,𝑖 . This ensures that the internal state of the lattice cannot be

hanged following a translation of all the particles by the same distance.

hile this is sufficient to ensure frame-invariance of the 1D continuum,

he extension to a full 3D model would require the satisfaction of frame-

nvariance under rotations as well. It is also important to note that the

otential energy of the nonlocal 1D solid consists of Caputo derivatives

nd not other types of fractional derivatives (e.g. Riemann Liouville).

ecall that the Caputo derivative of a constant function is zero, as for

lassical integer order derivatives. This property does not hold true for

ll definitions of fractional derivatives [52] . However, in the context

f frame-invariance, this is a key point that ensures that no strain is

ccumulated in the 1D solid under translation, that is for a constant

 ( x ). 

Finally, we highlight that it is possible to envision different routes

or the development of the fractional-order continuum model. As an ex-

mple, a possible route to develop the fractional-order continuum for-

ulation can start from more complex and higher-dimensional lattice

tructures similar to [54,55] . In such a case, the resulting fractional-

rder continuum formulation would capture the information of addi-

ional lattice interactions via a higher number of material constants. It

ollows that the specific functional form of the fractional-order operator

ould be different from the definition adopted in this study ( Eq. (9) ).

evertheless, the overall procedure to obtain the continuum limit of the

attice and all the subsequent analyses would still apply in an identical

orm. Hence, the general methodology presented in this study is ap-

licable to other types of molecular models, provided that appropriate

unctional forms of the fractional operator are obtained. In this regard,

e emphasize that the selected 1D lattice used in this study was inten-

ionally chosen to yield a simplified mathematical structure, so to focus

n the ability of the fractional-order operators to capture the long-range

orces at molecular level as well as the microstructural properties in a

ohesive and physically consistent manner. 
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.2. Governing equations for the 1D continuum 

We derive the dynamic governing equations of the 1D structure by

sing Hamilton’s variational principle: 

𝑡 1 

𝑡 0 

𝛿(  − 𝑇 )d 𝑡 = ∫
𝑡 1 

𝑡 0 

𝛿

[ 

𝐴 

2 ∫
∞

−∞

[ 

𝐸 ( 𝐷 

𝛼1 
𝑥 𝑢 ) 

2 + 

𝑙 2 ∗ 
4 
𝐸 

[
𝐷 

𝛼2 
𝑥 

(
𝐷 

𝛼1 
𝑥 𝑢 

)]2 
− 𝜌( 𝐷 

1 
𝑡 𝑢 ) 

2 − 𝜌′
𝑙 2 ∗ 
3 

[
𝐷 

1 
𝑥 

(
𝐷 

1 
𝑡 𝑢 

)]2 ] 

d 𝑥 

] 

d 𝑡 (14)

erforming variational simplifications, the governing equation is ob-

ained as: 

 

[ 

𝐷 

2 𝛼1 
𝑥 𝑢 − 

𝑙 2 ∗ 
4 
𝐷 

2( 𝛼1 + 𝛼2 ) 
𝑥 𝑢 

] 

= 𝜌𝐷 
2 
𝑡 𝑢 − 𝜌′

𝑙 2 ∗ 
3 
𝐷 

2 
𝑥 

(
𝐷 

2 
𝑡 𝑢 

)
(15)

 detailed derivation of the above equations is provided for a 3D

ounded continuum in the Supplementary Information (SI). 

Recall that capturing dispersive wave propagation is one of the main

otivation promoting the development of gradient elasticity in classi-

al elastodynamics. As discussed in detail in Askes and Aifantis [19] ,

he use of “unstable ” (integer-order) strain-gradients is critical in cap-

uring wave dispersion, however, in the static sense, “unstable ” strain-

radients result in non-convex potential energies leading to the loss of

niqueness in static boundary value problems (BVPs). In the classical

nalogue of Eq. (15) , a positive (negative) sign of the strain-gradient

erm corresponds to an unstable (stable) strain-gradient. While the com-

ined used of these gradient terms is generally avoided because one of

he two terms will always tend to predominate, this issue is circum-

ented by using a combination of stable (integer-order) strain-gradients

nd acceleration gradients (see, Georgiadis et al. [22] , Metrikine and

skes [23] ) which allows for dispersive wave propagation while en-

uring a well-posed BVP. A detailed discussion on this aspect can be

ound in Askes and Aifantis [19] , where a combination of different stain

nd acceleration gradients 1 is studied to arrive at theories which are

ell suited for both static and dynamic applications. To this regard, we

ighlight that the fractional-order strain-gradient formulation provides

 natural way of dealing with this issue without the need of additional

tabilising acceleration gradients. Note that the potential energy given

n Eq. (11) , resulting from the fractional-order formulation, is quadratic

n nature and hence fully convex. Additionally, it is established in Pat-

aik et al. [45] that the fractional-order operators are self-adjoint and

he resulting formulation leads to well posed BVPs. Further, the specific

orm of the spring strength given in Eq. (3) indicates that the stiff-

ess of the structure exhibits dependence on wavelength and hence,

he fractional-order formulation, obtained via continualization of the

agrangian of the 1D lattice, is well suited to capture anomalous dis-

ersion characteristics ( Section 2.3 ). Further, we will establish in the

ollowing Section 2.3 that the fractional-order formulation is causal and

table. 

.3. Dispersion analysis of the 1D continuum 

To obtain the dispersion relation, we substitute in the fractional-

rder elastodynamic equation given in Eq. (15) the following ansatz:

 ( 𝑥, 𝑡 ) = 𝑢 0 𝑒 
𝑖 ( 𝑘𝑥 − 𝜔𝑡 ) (16)

here u 0 is the amplitude of the longitudinal wave, k denotes the wave-

umber, 𝜔 denotes the angular frequency of free longitudinal vibra-
1 Different researchers have used different terminology (acceleration-gradient 

r velocity-gradient) to refer to the term 𝐷 
2 
𝑥 
( 𝐷 

2 
𝑡 
𝑢 ) . We believe that both the 

erminology are appropriate since the term appears as an acceleration gradient 

n the strong form and translates to a velocity gradient in weak form. In this 

tudy, following [19] , we refer to it as the acceleration gradient. 

f  

i  

m  

o  

t  

d

ions, and 𝑖 = 

√
−1 . For the RC derivatives on the real line used in

q. (13) [52] : 

 
𝛼
𝑥 ( 𝑒 

𝑘𝑥 ) = 𝑘 𝛼𝑒 𝑘𝑥 (17)

sing the above RC derivative of the exponential, we obtain the com-

lete form of the dispersion relations for longitudinal waves in the 1D

olid as: 

𝜔 

𝑘 
= 

√ 

𝐸 

𝜌

[ 

− 𝑖 2 𝛼1 𝑘 2( 𝛼1 −1) + 𝑖 2( 𝛼1 + 𝛼2 ) 𝑘 2( 𝛼1 + 𝛼2 −1) 
𝑙 2 ∗ 
4 

] 1 
2 
[ 

1 + 

𝜌′𝑙 2 ∗ 
3 𝜌

𝑘 2 

] −1 

(18)

sing Euler’s formula, the above equation can be recast in the following

anner: 

𝜔 

𝑘 
=  = 

[ ( 

− cos ( 𝛼1 𝜋) 𝑘 2( 𝛼1 −1) + cos ( 2( 𝛼1 + 𝛼2 ) 𝜋) 𝑘 2( 𝛼1 + 𝛼2 −1) 
𝑙 2 ∗ 
4 

) 

+ 𝑖 

( 

− sin ( 𝛼1 𝜋) 𝑘 2( 𝛼1 −1) + sin ( 2( 𝛼1 + 𝛼2 ) 𝜋) 𝑘 2( 𝛼1 + 𝛼2 −1) 
𝑙 2 ∗ 
4 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑏 

) ] 
1 
2 

[ 

1 + 

𝜌′𝑙 2 ∗ 
3 𝜌

𝑘 2 

] 

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜙

−1 

(19) 

Expressing 𝜔 =  𝑘, stable and causal solutions are recovered when

 (  ) > 0 and ℑ (  ) < 0 . Note from Eq. (16) that ℜ (  ) > 0 would lead to
orward propagating solutions ensuring causality, while ℑ (  ) < 0 leads
o attenuation hence ensuring stability. Thus, it appears that the com-

lex number  must lie in the fourth quadrant of the Argand plane or,

quivalently,  
2 must lie below the real-axis of the Argand plane. It im-

ediately follows that the quantity 𝑏 = ℑ (  
2 ) in Eq. (18) must be less

han or equal to zero for all values of k and l ∗ . The latter condition holds

rue for all positive values of the wave-number k and microstructural

ength l ∗ under the following restrictions for 𝛼1 and 𝛼2 : 

1 , 𝛼2 ∈ [0 . 5 , 1] (20)

nder the above condition, sin ( 𝛼1 𝜋) > 0 and sin ( 2( 𝛼1 + 𝛼2 ) 𝜋) < 0 , en-
uring that 𝑏 < 0 for all positive values of k and l ∗ . It follows that, in
his study, we only consider values of the fractional-orders which lie

n [0.5,1]. Under the above conditions, the ℜ (  ) would contribute to
nomalous wave-number dependent dispersion in the propagating lon-

itudinal waves while ℑ (  ) would lead to attenuation in the propagating
aves. 

Note that the term indicated by 𝜙 in Eq. (19) appears from the in-

lusion of the acceleration gradient term in the governing equations. As

iscussed in Askes and Aifantis [19] , Sidhardh and Ray [56] , the inclu-

ion of the acceleration gradient term prevents an unbounded growth in

he wave speed following an increase in the wave number. We merely

ote that, given the attenuation in the wave speed, the inclusion of the

cceleration gradient term is no longer necessary in the fractional-order

ormulation. To this regard, note that ignoring the term 𝜙 would cause

he dispersion as well as the attenuation in the longitudinal wave speeds

o exhibit a power-law dependence on the wave-number. This is a direct

onsequence of the power-law nature of the strength of the long-range

nteractions. Remarkably, several studies have highlighted a power-law

ependence of the attenuation-dispersion relations on frequency/wave-

umber in many types of lossy and highly scattering media, including

ractal and porous materials, and animal tissues [47–49] . It follows that,

n this study, we will neglect the acceleration gradients and focus on

odeling media with power-law attenuation-dispersion behavior. An-

ther particularly interesting outcome of the above formulation is that

he dispersion and attenuation form a Hilbert pair, ensuring that the

ynamic formulation is fully causal [7,47,48] . 



S. Patnaik, S. Sidhardh and F. Semperlotti International Journal of Mechanical Sciences 189 (2021) 105992 

Fig. 2. (a) Schematic indicating the infinitesimal material d ̃𝑿 and spatial d ̃𝒙 line elements in the nonlocal medium subject to the displacement field u . (b) Horizon 

of nonlocality and length scales at three different material points X 1 , X 2 , and X 3 in a 2D domain. Note that in the 𝑋̂ direction, X 2 has a horizon of nonlocality equal 

to l f on both the left and the right sides, while the horizon of nonlocality at the points X 1 and X 3 are truncated to 𝑙 
†
𝑓 
such that 𝑙 †

𝑓 
< 𝑙 𝑓 , on the left and the right sides, 

respectively. Clearly, the nonlocal model can account for a partial (i.e. asymmetric) horizon condition that occurs at points close to a boundary or interface. 
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. Extension to 3D continuum 

The previous section used a 1D framework to illustrate the remark-

ble features of the fractional-order formulation. In this section, we ex-

end the formulation to a fully three-dimensional and finite solid. The

overning equations for the 3D continuum are derived using Hamilton’s

ariational principle. We highlight here that, although the 3D formula-

ion presented in the following is developed by continualization of the

D lattice, the same formulation can also be derived from a continuum-

echanics approach by considering different configurations of a nonlo-

al solid, as illustrated in Patnaik and Semperlotti [7] . More specifically,

he 3D formulation developed in this study via continualization princi-

les can also be obtained from the fractional-order continuum formula-

ion presented in Patnaik and Semperlotti [7] by adding fractional-order

train-gradient terms to the constitutive relations. To this regard, note

hat the continualization route adopted in this study motivates the need

f a fractional-order approach to capture both stiffening and softening

ffects within a single formulation. 

.1. Weak formulation 

The potential energy derived for the nonlocal 1D continuum in

q. (11) is extended to a 3D continuum in the following manner: 

 = 

1 
2 ∫Ω [ 𝝐 ∶ 𝑪 ∶ 𝝐 + 𝜼 ∶ 𝑮 ∶ 𝜼] d 𝕍 (21)

here C denotes the classical fourth-order elasticity tensor and G is the

ixth-order elasticity tensor. 𝝐 and 𝜼 denote the fractional-order strain

nd its gradient, respectively. The volume of the 3D continuum is de-

oted by Ω and d 𝕍 denotes an infinitesimal volume element. Note that
he total potential energy is positive definite for positive definite mate-

ial elasticity tensors. 

The infinitesimal strain in the 3D nonlocal continuum is obtained by

xtending the 1D nonlocal strain indicated in Eq. (11) as: 

= 

1 
2 

(
𝛁 
𝛼1 𝑼 𝑋 + 𝛁 

𝛼1 𝑼 
𝑇 
𝑋 

)
= 

1 
2 

(
𝛁 
𝛼1 𝒖 𝑥 + 𝛁 

𝛼1 𝒖 𝑇 𝑥 
)

(22)

here 𝑼 ( 𝑿 ) = 𝒙 ( 𝑿 ) − 𝑿 and 𝒖 ( 𝒙 ) = 𝒙 − 𝑿 ( 𝒙 ) are the displacement fields
n the Lagrangian ( X ) and Eulerian ( x ) coordinates, respectively (see

ig. 2 (a)). 𝛁 
𝛼𝑚 ( ⋅) ( 𝛼𝑚 ∈ { 𝛼1 , 𝛼2 }) is the RC fractional gradient operator

efined as: 

 
𝛼𝑚 ( ⋅) = 𝐷 

𝛼𝑚 
𝑥 ( ⋅) ̂𝑥 + 𝐷 

𝛼𝑚 
𝑦 ( ⋅) ̂𝑦 + 𝐷 

𝛼𝑚 
𝑧 ( ⋅) ̂𝑧 (23)

here { ̂𝑥 , ̂𝑦 , ̂𝑧 } are the Cartesian basis vectors. 𝐷 

𝛼𝑚 
𝑥 𝑗 
( ⋅) are the RC frac-

ional derivatives which will be defined in the following. We empha-

ize that the above definition for the strain tensor can also be derived

igorously following a continuum mechanics approach, starting from

 fractional-order definition of the deformation gradient tensor (see

7,45] ). Further, the fractional gradient of the nonlocal strain is defined
s: 

= 𝛁 
𝛼2 𝝐 (24) 

t follows that the constitutive relations for the Cauchy stress and the

igher-order stress, in terms of the work-conjugates 𝝐 and 𝜼, can be

xpressed as: 

= 𝑪 ∶ 𝝐 (25a) 

= 𝑮 ∶ 𝜼 (25b) 

While the RC fractional derivatives used for the infinite 1D solid in

ection 2 were defined on the real axis, these derivatives are modified

or bounded domains to ensure frame-invariance everywhere on the do-

ain and a complete kernel when approaching boundaries [7,45] . Note

hat completeness of the kernel in nonlocal elasticity is critical to ensure

ell-posed problems and stable numerical implementations. The space-

ractional derivative 𝐷 

𝛼𝑚 
𝑿 
𝝍 ( 𝑿 , 𝑡 ) ( m ∈ {1, 2}) of the function 𝝍( X , t )

= 𝑼 ( 𝑿 , 𝑡 ) or 𝝐( X , t )) in Eqs. (22)–(24) is taken according to a RC defini-
ion with order 𝛼m ∈ (0.5, 1) defined on the interval 𝑿 ∈ ( 𝑿 𝐴 , 𝑿 𝐵 ) ∈ ℝ 

3 .

he RC definition for this bounded domain is defined as a linear combi-

ation of the left- and right-handed Caputo derivatives in the following

anner [7] : 

 

𝛼𝑚 
𝑿 
𝝍 ( 𝑿 , 𝑡 ) = 

1 
2 
Γ(2 − 𝛼𝑚 ) 

[
𝑳 

𝛼𝑚 −1 
𝐴 

𝐶 
𝑿 𝐴 

𝐷 

𝛼𝑚 
𝑿 
𝝍 ( 𝑿 , 𝑡 ) − 𝑳 

𝛼𝑚 −1 
𝐵 

𝐶 
𝑿 
𝐷 

𝛼𝑚 
𝑿 𝐵 

𝝍 ( 𝑿 , 𝑡 ) 
]

(26a) 

 

𝛼𝑚 
𝑋 𝑗 

𝜓 𝑖 ( 𝑿 , 𝑡 ) = 

1 
2 
Γ(2 − 𝛼𝑚 ) 

[ 
𝐿 

𝛼𝑚 −1 
𝐴 𝑗 

𝐶 
𝑋 𝐴 𝑗 

𝐷 

𝛼𝑚 
𝑋 𝑗 

𝜓 𝑖 ( 𝑿 , 𝑡 ) − 𝐿 

𝛼𝑚 −1 
𝐵 𝑗 

𝐶 
𝑋 𝑗 

𝐷 

𝛼𝑚 
𝑋 𝐵 𝑗 

𝜓 𝑖 ( 𝑿 , 𝑡 ) 
]

(26b) 

here, 𝐶 
𝑿 𝐴 

𝐷 

𝛼𝑚 
𝑿 
𝝍 ( 𝑿 , 𝑡 ) and 𝐶 

𝑿 
𝐷 

𝛼𝑚 
𝑿 𝐵 

𝝍 ( 𝑿 , 𝑡 ) are the left- and right-handed
aputo derivatives of 𝝍( X , t ) respectively. In the indicial expression in

q. (26b) , 𝐿 𝐴 𝑗 
and 𝐿 𝐵 𝑗 

are length scales along the j th direction in the

eference configuration. The index j in Eq. (26b) is not a repeated index

ecause the length scales are scalar multipliers. In the current configu-

ation, these length scales are denoted as 𝑙 𝐴 𝑗 and 𝑙 𝐵 𝑗 . The interval of the

ractional derivative ( X A , X B ) defines the horizon of nonlocality which

s schematically shown in Fig. 2 for a generic point 𝑿 ∈ ℝ 
2 . This in-

erval defines the set of all points in the solid that influence the elastic

esponse at X or, equivalently, the characteristic distance beyond which

nformation of nonlocal interactions is no longer accounted for in the

erivative. 

Recall that the use of Riesz-Caputo derivatives ensured a frame-

nvariant model for the 1D continuum. The analysis of frame-invariance

s necessary for the fractional-order approach because the integration of

he nonlocal behavior occurs via the kinematic (strain-displacement) re-

ations (see Eq. (22) ). Under this assumption, frame-invariance is not

utomatically guaranteed. This is contrary to integer-based approaches
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o nonlocal elasticity (regardless if in strain- or stress-driven form) which

re based on a classical continuum mechanics framework and there-

ore, automatically satisfy the concept of frame-invariance in a classical

ense. Thus, it is essential to establish that the state of stress is not al-

ered by rigid body motions of either the solid or of any observer. The

rame invariance was rigorously established in Patnaik and Semperlotti

7] where it was shown that either a rigid rotation or translation of

he solid does not alter the state of strain (or stress) in the solid. As

iscussed in Patnaik and Semperlotti [7] , the terms 1 2 Γ(2 − 𝛼𝑚 ) , 𝐿 

𝛼𝑚 −1 
𝐴 𝑗 

,

nd 𝐿 

𝛼𝑚 −1 
𝐵 𝑗 

are critical to ensure the frame-invariance of the 3D formula-

ion. Further, the length scales must satisfy the conditions 𝑳 𝐴 = 𝑿 − 𝑿 𝐴 

nd 𝑳 𝐵 = 𝑿 𝐵 − 𝑿 . Hence, it follows that the length scales, 𝐿 𝐴 𝑗 
and 𝐿 𝐵 𝑗 

hysically denote the dimension of the horizon of nonlocality to the left

nd to the right of a point X along the 𝑗 th direction. The length scales

ave been schematically illustrated in Fig. 2 (b). The introduction of the

ifferent length scales ( L A and L B ) also enables the formulation to deal

ith possible asymmetries in the horizon of nonlocality (e.g. resulting

rom a truncation of the horizon when approaching a boundary or an

nterface). Note also that the length scale parameters ensure the dimen-

ional consistency of the formulation. 

A key aspect in nonlocal integral formulations is the nature of the

ernel when approaching the boundaries. To this regard, we highlight

hat the definition of the RC derivative in Eq. (26) ensures the complete-

ess of the power-law convolution kernel within the fractional-order

erivative. Note that the lower terminal is 𝑿 𝐴 = 𝑿 − 𝑳 𝐴 and the up-

er terminal is 𝑿 𝐵 = 𝑿 + 𝑳 𝐵 . This definition allows the length scales

 A and L B to be truncated when the point X approaches a boundary

see Fig. 2 (b)). It follows that the terminals of the RC derivative are

roperly modified hence resulting in a complete kernel over the trun-

ated domain. We highlight that this truncation of the terminal of the

C derivative (or, the horizon of nonlocality) is analogous to the modifi-

ation of the potential energy in lattice mechanics, where contributions

rom missing bonds for atoms close to boundaries are removed [55] . 

The completeness of the kernel can also be established by investigat-

ng the nature of the fractional-order model at points on the boundary,

hat is when either 𝐿 𝐴 𝑗 
→ 0 or 𝐿 𝐵 𝑗 

→ 0 . As established in Patnaik and
emperlotti [7] , Patnaik et al. [45] , for a material point (say X 0 ) located

n one of the boundaries (identified by the normal in the j th direction),

or the limiting case when 𝐿 𝐴 𝑗 
→ 0 , the RC fractional derivative reduces

o: 

lim 

𝐿 𝐴 𝑗 →0 
𝐷 

𝛼𝑚 
𝑋 𝑗 

𝜓 𝑖 ( 𝑿 , 𝑡 ) (27)

= 

1 
2 

[ 

d 𝜓 𝑖 ( 𝑿 , 𝑡 ) 
d 𝑋 𝑗 

||||𝑿 0 
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Local effect due 
to truncation of 
nonlocal horizon 

⇔
Removal of non- 

existing bond energies 
in lattice mechanics 

+ (1 − 𝛼𝑚 ) 𝐿 

𝛼𝑚 −1 
𝐵 𝑗 ∫

𝑋 𝐵 𝑗 

𝑋 0 𝑗 

𝐷 
1 
𝑆 𝑗 
𝜓 𝑖 ( S , 𝑡 ) 

( 𝑆 𝑗 − 𝑋 𝑗 ) 𝛼𝑚 
𝑑𝑆 𝑗 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Remaining nonlocal interactions 

] 

here S j is a dummy vector variable used to carry out the spatial con-

olution integral. From Eq. (27) it is immediate to observe that while

he right-handed Caputo derivative captures nonlocality ahead of the

oint X 0 (in the 𝑗 th direction), the left-handed derivative is reduced to

he classical first-order derivative. This result suggests that the trunca-

ion of the nonlocal horizon (and the corresponding convolution) at the

oundary has been accounted for in a consistent manner analogous to

he approach used in molecular models [55] . Similar expressions hold

hen 𝐿 𝐵 𝑗 
= 0 and for the deformed configuration ( 𝑙 𝐴 𝑗 = 0 or 𝑙 𝐵 𝑗 = 0 ). 

The above discussions on the frame-invariance of the formulation

nd on the nature of the kernel close to material boundaries establish

oth the completeness and consistency of the fractional-order contin-

um formulation. It remains to obtain the expressions for the kinetic

nergy of the continuum and the work done by externally applied forces.

he work done by external forces is defined analogous to classical for-
ulations of gradient elasticity as: 

 = ∫Ω( 𝒃 ⋅ 𝒖 )d 𝕍 + ∫𝜕Ω
( 𝒕 ⋅ 𝒖 + 𝒒 ⋅ 𝒏̂ ⋅ ( 𝒖 ⊗ 𝛁 

𝛼1 ))d 𝔸 + ∮Γ
( 𝒓 ⋅ 𝒖 )dl (28)

here dA and dl indicate area and line elements along the surface 𝜕Ω
with normal 𝒏̂ ) and edge Γ of the solid, respectively. The bar on Γ
ymbol in the above equation, is used to differentiate the same from the

( · ) function and the symbol ⊗ denotes the dyadic product. 𝒃̄ , 𝒕 , 𝒒 ,

nd 𝒓̄ are the prescribed values of body force per unit volume, surface

raction per unit area, double stress traction vector and line load along

harp edges of the continuum, respectively. Finally, recalling that the

ntroduction of nonlocality has no effect on the expression of the kinetic

nergy, we can write: 

 = 

1 
2 ∫Ω 𝜌( ̇𝒖 ⋅ 𝒖̇ )d 𝕍 (29)

here 𝜌 indicates the density of the solid and □̇ indicates the first

nteger-order derivative with respect to time. By using the Hamilton’s

rinciple and the expressions of the potential energy, kinetic energy, and

ork done by external forces, the weak form of the governing equations

or the 3D continuum are expressed as: 

𝑡 2 

𝑡 1 

( 𝛿 − 𝛿𝑉 − 𝛿𝑇 ) d 𝑡 = 0 (30)

.2. Strong formulation 

The strong form of the fractional-order governing equations are

btained by applying the fundamental law of variational calculus to

q. (30) . Analogously to classical integer-order formulations, the pro-

edure to obtain the strong form for 3D domains involves the use of

ifferent principles of vector calculus. To this regard, note that frac-

ional vector calculus principles have been recently developed and do

ot hold true for a general bounded geometry [57] . This aspect can be

ttributed to the fact that fractional-order operators (i.e. derivatives or

ntegrals) do not generally commute, except when defined on the real

xis [52,57] . However, we will show that the variational statement in

q. (30) can be exactly simplified when considering a cuboidal (or,

ectangular) geometry. It can also be envisioned that, the strong form

erived assuming a cuboidal geometry will also be applicable for ge-

metries wherein the surfaces/edges can be exactly represented or even

pproximated by using rectangular/line elements. Although the strong

orm requires the simplified cuboidal geometry, we emphasize that the

eak form in Eq. (30) is applicable to any geometry. 

Considering the cuboidal geometry Ω illustrated in Fig. 3 , the first

ariation of the potential energy is obtained as: 

 = − ∫Ω 𝛁̃ 

𝛼1 ⋅
(
𝝈− ̃𝛁 

𝛼2 ⋅ 𝝉
)
⋅ 𝛿𝒖 d 𝕍 + ∫

𝜕Ω

[
𝑰 
1− 𝛼1 
𝒏̂ 

⋅
(
𝝈 − ̃𝛁 

𝛼2 ⋅ 𝝉
)

− 

[
𝑹 ∶ 

(
𝑰 
1− 𝛼2 
𝒏̂ 

⋅ 𝝉
)
⊗ 𝛁̃ 

𝛼1 
]]

⋅ 𝛿𝒖 d 𝔸 + + ∫
𝜕Ω

[
𝑰 
1− 𝛼2 
𝒏̂ 

⊗ 𝒏̂ 
]
∶ 𝝉

⋅
[
𝒏̂ ⋅

(
𝛿𝒖 ⊗ 𝛁 

𝛼1 
)]
d 𝔸 + ∮Γ

[[
𝑰 
1− 𝛼1 
𝒎̂ 

⋅ ( 𝑰 1− 𝛼2 
𝒏̂ 

⋅ 𝝉) 
]]

⋅ 𝛿𝒖 dl 

(31) 

he detailed derivation of the above governing equations is provided

n the SI. In Eq. (31) , the tensor R is the projector onto the surface

Ω, 𝒎̂ is the co-normal vector at the edges and [[ · ]] operator denotes

ifference of the argument across both sides of the edge Γ. For smooth
dges (for example, a cube with filleted edges), the line integral vanishes

nalogous to classical formulations [58] . R and 𝒎̂ are given as: 

 = 𝟏 − 𝒏̂ ⊗ 𝒏̂ (32a)

̂  = 𝒔̂ ∧ 𝒏̂ (32b)

here 𝒔̂ is a unit vector tangent to the edge Γ and ∧ denotes the exterior
roduct. The operator 𝑰 

1− 𝛼𝑚 
𝒏̂ 

( ⋅) is defined as: 

 

1− 𝛼𝑚 
𝒏̂ 

( ⋅) = 𝑛 𝑥 𝐼 
1− 𝛼𝑚 
𝑥 ( ⋅) ̂𝑥 + 𝑛 𝑦 𝐼 

1− 𝛼𝑚 
𝑦 ( ⋅) ̂𝑦 + 𝑛 𝑧 𝐼 

1− 𝛼𝑚 
𝑧 ( ⋅) ̂𝑧 (33)
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Fig. 3. Schematic of the cuboidal domain ( Ω) illustrating the different geomet- 
rical parameters. The surface of the cuboid is given as 𝜕Ω = 𝜕Ω𝑥 ∪ 𝜕Ω𝑦 ∪ 𝜕Ω𝑧 , 

where 𝜕Ω𝑥 𝑘 
denotes a surface with its normal oriented along the positive or 

negative 𝑥̂ 𝑘 axis. The edges of the cuboid are denoted by Γ = Γ𝑥 ∪ Γ𝑦 ∪ Γ𝑧 . Γ𝑥 𝑘 

denotes the edges of the surface 𝜕Ω𝑥 𝑘 
oriented in the anti-clockwise sense with 

respect to the normal to the surface. 
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Fig. 4. Schematic of the beam illustrating the different geometric parameters. 
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uch that 𝒏̂ = 𝑛 𝑥 ̂𝑥 + 𝑛 𝑦 ̂𝑦 + 𝑛 𝑧 ̂𝑧 . The same definition directly extends to

he operator 𝑰 
1− 𝛼𝑚 
𝒎̂ 

( ⋅) that appears in Eq. (31) . Further, 𝐼 1− 𝛼𝑚 𝑥 𝑗 
( ⋅) is a

iesz integral operator defined in the following manner: 

 

1− 𝛼𝑚 
𝑥 𝑗 

𝜒 = 

1 
2 
Γ(2 − 𝛼𝑚 ) 

[ 
𝑙 
𝛼𝑚 −1 
𝐵 𝑗 

(
𝑥 𝑗 − 𝑙 𝐵 𝑗 

𝐼 
1− 𝛼𝑚 
𝑥 𝑗 

𝜒
)
+ 𝑙 

𝛼𝑚 −1 
𝐴 𝑗 

( 

𝑥 𝑗 
𝐼 
1− 𝛼𝑚 
𝑥 𝑗 + 𝑙 𝐴 𝑗 

𝜒

) ] 
(34)

here 𝑥 1 = 𝑥, 𝑥 2 = 𝑦 and 𝑥 3 = 𝑧 . 𝑥 𝑗 − 𝑙 𝐵 𝑗 
𝐼 
1− 𝛼𝑚 
𝑥 𝑗 

𝜒 and 𝑥 𝑗 𝐼 
1− 𝛼𝑚 
𝑥 𝑗 + 𝑙 𝐴 𝑗 

𝜒 are the left

nd right Riesz integrals (in the x j direction) to the order 𝛼m of an arbi-

rary function 𝜒 . Further, the gradient operator denoted by 𝛁̃ 

𝛼𝑚 ( ⋅) is a
iesz Riemann-Liouville gradient (analogous to the RC gradient 𝛁 

𝛼𝑚 ( ⋅)
n Eq. (23) ) containing Riesz Riemann-Liouville derivatives instead of

C derivatives. More specifically, 

̃
 

𝛼𝑚 ( ⋅) = 𝔇 

𝛼𝑚 
𝑥 ( ⋅) ̂𝑥 + 𝔇 

𝛼𝑚 
𝑦 ( ⋅) ̂𝑦 + 𝔇 

𝛼𝑚 
𝑧 ( ⋅) ̂𝑧 (35)

here 𝔇 

𝛼𝑚 
𝑥 𝑗 
( ⋅) is the Riesz Riemann-Liouville derivative of order 𝛼m 

hich is defined as: 

 

𝛼𝑚 
𝑥 𝑗 

𝜒 = 

1 
2 
Γ(2 − 𝛼𝑚 ) 

[ 
𝑙 
𝛼𝑚 −1 
𝐵 𝑗 

( 

𝑅𝐿 
𝑥 𝑗 − 𝑙 𝐵 𝑗 

𝐷 

𝛼𝑚 
𝑥 𝑗 

𝜒

) 

− 𝑙 
𝛼𝑚 −1 
𝐴 𝑗 

( 

𝑅𝐿 
𝑥 𝑗 

𝐷 

𝛼𝑚 
𝑥 𝑗 + 𝑙 𝐴 𝑗 

𝜒

) ] 
(36)

here 𝑅𝐿 
𝑥 𝑗 − 𝑙 𝐵 𝑗 

𝐷 

𝛼𝑚 
𝑥 𝑗 

𝜒 and 𝑅𝐿 
𝑥 𝑗 

𝐷 

𝛼𝑚 
𝑥 𝑗 + 𝑙 𝐴 𝑗 

𝜒 are the left- and right-handed Rie-

ann Liouville derivatives of 𝜒 to the order 𝛼m , in the x j direction.

ote that the Riesz fractional derivative 𝔇 

𝛼𝑚 
𝑥 𝑗 
( ⋅) and the Riesz fractional

ntegral 𝐼 
1− 𝛼𝑚 
𝑥 𝑗 

( ⋅) are defined over the interval ( 𝑥 𝑗 − 𝑙 𝐵 𝑗 , 𝑥 𝑗 + 𝑙 𝐴 𝑗 ) unlike
he RC fractional derivative 𝐷 

𝛼𝑚 
𝑥 𝑗 
( ⋅) which is defined over the interval

 𝑥 𝑗 − 𝑙 𝐴 𝑗 , 𝑥 𝑗 + 𝑙 𝐵 𝑗 ) . This change in the terminals of the interval of the
iesz Riemann-Liouville integral and derivative follows from the varia-

ional simplifications (see SI). 

The first variation of the external work done follows directly from

q. (28) as: 

 = ∫Ω( 𝒃 ⋅ 𝛿𝒖 )d 𝕍 + ∫𝜕Ω
( 𝒕 ⋅ 𝛿𝒖 + 𝒒 ⋅ 𝒏̂ ⋅ ( 𝛿𝒖 ⊗ 𝛁 

𝛼1 ))d 𝔸 + ∮Γ
( 𝒓 ⋅ 𝛿𝒖 )dl (37)

urther, the first variation of the kinetic energy is obtained as: 

𝑇 = − ∫Ω 𝜌𝒖̈ ⋅ 𝛿𝒖 d 𝕍 (38)

ow by using the extended Hamilton’s principle in Eq. (30) and apply-

ng the fundamental theorem of variational calculus, the elastodynamic

overning equations for the 3D nonlocal continuum are obtained as: 

̃
 

𝛼1 ⋅
(
𝝈 − ̃𝛁 

𝛼2 ⋅ 𝝉
)
+ 𝒃 = 𝜌𝒖̈ ∀ 𝒙 ∈ Ω (39)
he associated boundary conditions are obtained as: 

 

1− 𝛼1 
𝒏̂ 

⋅
(
𝝈 − ̃𝛁 

𝛼2 ⋅ 𝝉
)
− 

[
𝑹 ∶ 

(
𝑰 
1− 𝛼2 
𝒏̂ 

⋅ 𝝉
)
⊗ 𝛁̃ 

𝛼1 
]
= 𝒕 or 𝒖 = 𝒖 ∀ 𝒙 ∈ 𝜕Ω

(40a) 

𝑰 
1− 𝛼2 
𝒏̂ 

⊗ 𝒏 
]
∶ 𝝉 = 𝒒 or 𝒏̂ ⋅ ( 𝛿𝒖 ⊗ 𝛁 

𝛼1 ) = 𝒏̂ ⋅ ( 𝛿𝒖 ⊗ 𝛁 
𝛼1 ) ∀ 𝒙 ∈ 𝜕Ω (40b)[

𝑰 
1− 𝛼1 
𝒎̂ 

⋅ ( 𝑰 1− 𝛼2 
𝒏̂ 

⋅ 𝝉) 
]]

= 𝒓 or 𝒖 = 𝒖 ∀ 𝒙 ∈ Γ (40c) 

Note that the natural boundary conditions are nonlocal in nature.

his is similar to what is seen in classical integral approaches [3,12] .

he nonlocal nature follows from the nonlocal definition of the consti-

utive relations given in Eq. (25) . It follows that the surface tractions

epend on the response of a range of particles, hence leading to nonlo-

al boundary conditions. The partial horizon at the point X 3 in Fig. 2 )

erves as an example to illustrate the nonlocal nature of the boundary

ondition. We anticipate that the nonlocal nature of the natural bound-

ry conditions does not concern us immediately as we will solve the

bove system of equations using a finite element (FE) technique. Recall

hat natural boundary conditions are implicitly satisfied when obtaining

he solutions using FE techniques and are accurate up to the order of the

pecific finite element. Additionally, the following initial conditions are

equired to obtain the transient response: 

𝒖 = 0 and 𝛿𝒖̇ = 0 ∀ 𝒙 ∈ Ω at 𝑡 = 0 (41)

iven the complex nature of the fractional-order governing equations

nd the associated boundary conditions, they do not generally admit

losed-form analytical solutions. Consequently, numerical methods be-

ome indispensable to simulate the above governing equations. This is-

ue is typical also of classical strain-gradient or integral nonlocal ap-

roaches, which typically are solved via numerical techniques [19] . 

In the following, we will use the fractional-order continuum formu-

ation developed above to analyze both the static and the free vibration

esponse of slender nonlocal structures, including a Timoshenko beam

nd a Mindlin plate. We will demonstrate that the fractional-order con-

inuum model is able to capture both stiffening and softening effects

epending on the values of the parameters involved in the fractional for-

ulation. Numerical solutions will be obtained by using an adapted ver-

ion of the fractional-order FEM (f-FEM) developed in Patnaik et al. [44] ,

5 ] for fractional-order nonlocal BVPs. Note that the f-FEM is obtained

y discretization of the Hamiltonian of the system using an isoparamet-

ic formulation. Hence, we only provide the weak form of the governing

quations for the Timoshenko beam and the Mindlin plate. The strong

orm of the governing equations for both the beam and the plate can be

asily obtained following the detailed derivation of the 3D governing

quations outlined in the SI. 

. Application to Timoshenko beams 

We start analyzing the fractional-order continuum model by consid-

ring its application to a Timoshenko beam. A schematic of the unde-

ormed beam along with the chosen Cartesian reference frame is illus-

rated in Fig. 4 . The top surface of the beam is identified as 𝑧 = ℎ 𝑇 ∕2 ,
hile the bottom surface is identified as 𝑧 = − ℎ 𝑇 ∕2 . The width of the
eam is denoted as b T . The domain corresponding to the mid-plane of

he beam (i.e., 𝑧 = 0 ) is denoted as Ω , such that Ω = [0 , 𝐿 ] where
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 T is the length of the beam. The domain of the beam is identified by

he tensor product Ω𝑇 ⊗ [− 𝑏 𝑇 ∕2 , 𝑏 𝑇 ∕2] ⊗ [− ℎ 𝑇 ∕2 , ℎ 𝑇 ∕2] . The subscript T
ndicates that all the above dimensions correspond to the Timoshenko

eam. 

For the Timoshenko beam, analogous to the classical case, the axial

nd transverse components of the displacement field denoted by u ( x, y,

, t ) and w ( x, y, z, t ) at any spatial location x ( x, y, z ) are related to the

id-line displacements of the beam in the following manner: 

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑢 0 ( 𝑥, 𝑡 ) − 𝑧𝜃0 ( 𝑥, 𝑡 ) (42a)

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑤 0 ( 𝑥, 𝑡 ) (42b)

here u 0 and w 0 are the mid-plane axial and transverse displacements

f the beam, and 𝜃0 is the rotation of the transverse normal of the beam

bout the 𝑦̂ axis. In the following, for a compact notation, the functional

ependence of the displacement fields on the spatial and the tempo-

al variables will be implied unless explicitly expressed to be constant.

ased on the above displacement fields, the non-zero strain components

n the Timoshenko beam are evaluated using Eq. (22) as: 

𝑥𝑥 = 𝐷 

𝛼1 
𝑥 𝑢 0 − 𝑧𝐷 

𝛼1 
𝑥 𝜃0 (43a)

𝑥𝑧 = 

1 
2 

[
𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃0 

]
(43b)

The strain-gradients developed in the beam are obtained using

q. (24) as: 

𝑥𝑥𝑟 = 𝐷 

𝛼2 
𝑟 

[
𝐷 

𝛼1 
𝑥 𝑢 0 − 𝑧𝐷 

𝛼1 
𝑥 𝜃0 

]
(44a)

𝑥𝑧𝑟 = 𝐷 

𝛼2 
𝑟 

[ 1 
2 

[
𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃0 

]]
(44b)

here r ∈ { x, y, z }. Specializing the above expressions, the following

train-gradient components are obtained exactly: 

𝑥𝑥𝑧 = 𝐷 

𝛼2 
𝑧 

[
𝐷 

𝛼1 
𝑥 𝑢 0 

]
− 𝐷 

𝛼2 
𝑧 

[
𝑧𝐷 

𝛼1 
𝑥 𝜃0 

]
= − 𝐷 

𝛼1 
𝑥 𝜃0 (45a)

𝑥𝑧𝑥 = 

1 
2 

[
𝐷 

𝛼2 
𝑥 

[
𝐷 

𝛼1 
𝑥 𝑤 0 

]
− 𝐷 

𝛼2 
𝑥 𝜃0 

]
= − 

1 
2 
𝐷 

𝛼2 
𝑥 𝜃0 (45b)

𝑥𝑧𝑧 = 

1 
2 

[
𝐷 

𝛼2 
𝑧 

[
𝐷 

𝛼1 
𝑥 𝑤 0 

]
− 𝐷 

𝛼2 
𝑧 𝜃0 

]
= 0 (45c)

In the above simplification we have used that 𝐷 

𝛼2 
𝑧 [ 𝑧 ] = 1 , which is

xact and follows immediately from the definition of the RC deriva-

ive defined in Eq. (26) . Further, assuming small displacement gradi-

nts ( O ( 𝜀 )), the strain-gradient 𝜂xxx is O ( 𝜀 2 ) while the strain-gradients

n Eq. (45) are either O ( 𝜀 ) or exactly zero. Hence it appears that, for the

ormal strain 𝜖xx , the transverse strain-gradient 𝜂xxz is significant when

ompared to the axial gradient 𝜂xxx . Conversely, for the shear strain 𝜖xz ,

he axial gradient 𝜂xzx is significant while the transverse gradient 𝜂xzz 
s exactly zero. Thus, when obtaining the response of the beam via the

eak form, the contribution of the strain-gradient 𝜂xxx can be ignored

hen compared to the contribution of the non-zero strain-gradients in

q. (45) . We have further justified this approximation in detail in the

I. 

The first variations of the nonlocal potential energy, the work done

y externally applied forces, and the kinetic energy corresponding to

he Timoshenko beam assumptions are obtained as: 

 = ∫
𝐿 𝑇 

0 

[
𝑁 𝑥𝑥 𝛿𝐷 

𝛼1 
𝑥 𝑢 0 + 𝑀 𝑥𝑥 𝛿𝐷 

𝛼1 
𝑥 𝜃0 + 𝑄 𝑥𝑧 𝛿( 𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃0 ) 

+ 𝑁 𝑥𝑥𝑧 𝛿𝐷 

𝛼1 
𝑥 𝜃0 + 𝑁 𝑥𝑧𝑥 𝛿𝐷 

𝛼2 
𝑥 𝜃0 

]
d 𝑥 (46a)

 = ∫
𝐿 𝑇 

0 ∫
𝑏 𝑇 
2 

− 𝑏 𝑇 ∫
ℎ 𝑇 
2 

− ℎ 𝑇 

[
𝐹 𝑥 𝛿𝑢 0 + 𝐹 𝑧 𝛿𝑤 0 + 𝑀 𝜃0 

𝛿𝜃0 

]
d 𝑧 d 𝑦 d 𝑥 (46b)
2 2 
𝑇 = ∫
𝐿 𝑇 

0 ∫
𝑏 𝑇 
2 

− 𝑏 𝑇 2 
∫

ℎ 𝑇 
2 

− ℎ 𝑇 2 

𝜌
[(
𝑢̇ 0 − 𝑧 𝜃0 

)(
𝛿𝑢̇ 0 − 𝑧𝛿 ̇𝜃0 

)
+ 𝑤̇ 0 𝛿𝑤̇ 0 

]
d 𝑧 d 𝑦 d 𝑥 (46c)

{ F x , F z } are the external loads applied in the axial ( ̂𝑥 ) and transverse

 ̂𝑧 ) directions, respectively, and 𝑀 𝜃0 
is the external moment applied

bout the 𝑦̂ axis. The axial stress resultant { N xx }, the shear resultant

 Q xz }, the moment resultant { M xx }, and the higher-order stress resul-

ants { 𝑁 𝑥𝑥𝑧 , 𝑁 𝑥𝑧𝑥 } in Eq. (46a) are given as: 

{ 𝑁 𝑥𝑥 , 𝑄 𝑥𝑧 , 𝑀 𝑥𝑥 , 𝑁 𝑥𝑥𝑧 , 𝑁 𝑥𝑧𝑥 } 

= ∫
𝑏 𝑇 
2 

− 𝑏 𝑇 2 
∫

ℎ 𝑇 
2 

− ℎ 𝑇 2 

{ 𝜎𝑥𝑥 , 𝐾 𝑠 𝜎𝑥𝑧 , − 𝑧𝜎𝑥𝑥 , − 𝜏𝑥𝑥𝑧 , − 𝐾 𝑠 𝜏𝑥𝑧𝑥 }d 𝑧 d 𝑦 (47) 

here K s is the shear correction factor. 

In the following, we briefly discuss the f-FEM method used to numer-

cally simulate the fractional-order system. The details of the f-FEM are

xtensive and will not be reported here, but the interested reader can

efer to [44,45] . The f-FEM for the Timoshenko beam is formulated by

btaining a discretized form of the first variation of the Lagrangian of

he beam. For this purpose, the beam domain Ω𝑇 = [0 , 𝐿 ] is uniformly
iscretized into disjoint three-noded line elements and the different frac-

ional derivatives that appear in Eq. (46a) are expressed as: 

 

𝛼1 
𝑥 

[
𝑢 0 ( 𝑥 ) 

]
= [ ̃𝐵 

𝛼1 
𝑢 0 ,𝑥 

( 𝑥 )]{ 𝑈} (48a)

 

𝛼𝑚 
𝑥 

[
𝜃0 ( 𝑥 ) 

]
= [ ̃𝐵 

𝛼𝑚 
𝜃0 ,𝑥 

( 𝑥 )]{ 𝑈} (48b)

 

𝛼1 
𝑥 

[
𝑤 0 ( 𝑥 ) 

]
− 𝜃𝑥 = 

[
[ ̃𝐵 

𝛼1 
𝑤 0 ,𝑥 

( 𝑥 )] − [ 𝕃 ( 𝜃0 ) ( 𝑥 )] 
]
{ 𝑈} (48c)

here { U } denotes the global degrees of freedom vector and [ 𝕃 ( 𝜃0 ) ( 𝑥 )]
s obtained by assembling the element interpolation vectors for 𝜃0 . The

atrices [ ̃𝐵 

𝛼𝑚 
□,𝑥 

( 𝑥 )] contain the fractional-order derivatives of the shape
unctions used to interpolate the nodal displacement degrees of freedom

f the Timoshenko beam. A brief discussion on the details of these matri-

es is provided in SI. By using the above expressions for the FE approx-

mation of the different fractional-order derivatives, the first variation

f the potential energy 𝛿 given in Eq. (46a) is obtained as: 

 = 𝛿{ 𝑈 } 𝑇 
[ 
∫Ω𝑇 

[ ̃𝐵 𝑇 ( 𝑥 )] 𝑇 [ 𝑆 𝑇 ][ ̃𝐵 𝑇 ( 𝑥 )]dΩ𝑇 

] 
{ 𝑈 } = 𝛿{ 𝑈 } 𝑇 [ 𝐾 𝑇 ]{ 𝑈} (49)

here [ S T ] is the constitutive matrix of the beam and [ ̃𝐵 𝑇 ( 𝑥 )] is given
s: 

 ̃𝐵 𝑇 ( 𝑥 )] = 
[ 
[ ̃𝐵 𝛼1 

𝑢 0 ,𝑥 
( 𝑥 )] 𝑇 , 

[
[ ̃𝐵 𝛼1 𝑤 0 ,𝑥 

( 𝑥 )] − [ 𝕃 ( 𝜃0 ) ( 𝑥 )] 
]𝑇 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contributions from the nonlocal strains 

, [ ̃𝐵 𝛼1 
𝜃0 ,𝑥 

( 𝑥 )] 𝑇 , [ ̃𝐵 𝛼1 
𝜃0 ,𝑥 

( 𝑥 )] 𝑇 , [ ̃𝐵 𝛼2 
𝜃0 ,𝑥 

( 𝑥 )] 𝑇 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contributions from the nonlocal strain-gradients 

] 
𝑇 

(50) 

he algebraic equations for the f-FEM are given as: 

 𝑀 𝑇 ]{ ̈𝑈 } + [ 𝐾 𝑇 ]{ 𝑈} = { 𝐹 𝑇 } (51)

here the stiffness matrix [ K T ] is indicated in Eq. (49) . The expressions for the

orce vector { F T } and the mass matrix [ M T ] follow directly from classical Timoshenko

eam formulations and are provided in SI. The solution of the algebraic Eq. (51) gives

he nodal displacement variables which can then be used along with the kinematic

elations in Eq. (42) to determine the displacement field at any point in the beam.

ote that the f-FEM also involves the numerical evaluation of the mass matrix, the

tiffness matrix, and the force vector. The procedure to numerically evaluate the

ass matrix and the force vector follows directly from classical FE formulations. The

tiffness matrix of the fractional-order nonlocal system requires the evaluation of

he different nonlocal matrices given in Eq. (50) . Further, the attenuation function

n the fractional-order model involves an end-point singularity due to the nature of

he kernel [52] . The fractional-order nonlocal interactions as well as the end-point

ingularity are addressed in detail in Patnaik et al. [44] , 45 ]. We emphasize that the

umerical integration procedure presented in Patnaik et al. [44] , 45 ] directly extends

o the evaluation of the stiffness matrix of the FE governing equations derived in this

tudy. 
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[  
.1. Static response 

In this section, we analyse the static response of the Timoshenko

eam which was obtained by solving the static part of the fractional-

rder FE algebraic equations in Eq. (51) . In the following study, the

imensions of the beam were fixed to be 𝐿 𝑇 = 1 m, 𝑏 𝑇 = 0 . 1 m and ℎ 𝑇 =
 . 05 m (= 𝐿 𝑇 ∕20) . The simplified constitutive relations proposed in Lazar
t al. [59] were used in this study: 

 = 

1 
2 
𝐶 𝑖𝑗𝑘𝑙 𝜖𝑖𝑗 𝜖𝑘𝑙 + 

1 
2 
𝑙 2 ∗ 𝐶 𝑖𝑗𝑚𝑛 𝜂𝑚𝑛𝑘 𝜂𝑖𝑗𝑘 (52)

he material was assumed to be isotropic with an elastic modulus

 = 30 GPa, Poisson’s ratio 𝜈 = 0 . 3 and density 𝜌 = 2700 kg/m 
3 . Further,

e have assumed a symmetric and isotropic horizon of nonlocality for

oints sufficiently inside the domain of the beam, that is 𝑙 𝐴 𝑥 = 𝑙 𝐵 𝑥 = 𝑙 𝑓 .

or points located close to a boundary, the length scales are truncated

s shown in Fig. 2 . Using the above material properties, we analyzed the

ffect of the following fractional model parameters: nonlocal strain or-

er ( 𝛼1 ), strain-gradient order ( 𝛼2 ), nonlocal horizon length ( l f ) and mi-

rostructure length ( l ∗ ), on the static response of the Timoshenko beam.

e merely note that the Young’s modulus E and the Poisson’s ratio 𝜈

hosen above correspond to a general class of soft metals (e.g. lead).

iven the linearity of the problem and the fact that results will be pre-

ented in a normalized form, the choice of specific elastic constants is

uite immaterial for the interpretation of the results. 

Although the numerical results presented below for Timoshenko

eams (and later, for Mindlin plates in Section 5 ) are obtained for

sotropic materials with simplified constitutive relations [59] , the for-

ulation is general and can account for additional material constants

ia the material elasticity tensors C and G (see Eq. (21) ). A detailed

iscussion on the appropriate number of material constants necessary to

apture accurately the response of complex multiscale materials can be

ound in Capecchi et al. [54] , which outlines the Voight’s and Poincaré’s

pproach to multiscale modeling. It follows that the simplified constitu-

ive relations does not limit the possibility of this study to use more gen-

ral continuum constitutive relations. Hence, while the use of additional

aterial constants would definitely extend the capability of the model

n dealing with more complex materials, the fundamental approach and

ormulation remain unchanged. 

We analyzed the static response of the beam subject to a uniformly

istributed transverse load (UDTL) of magnitude 𝐹 𝑧 = 10 7 N ∕ m for two

ifferent kinds of boundary conditions: (1) clamped-clamped (CC), and

2) simply supported at both ends (SS). For each boundary condition,

e obtained the response of the beam for the following different cases:

• Case 1: the fractional-orders 𝛼1 and 𝛼2 were varied within the range

[0.7,1] for fixed values of the nonlocal horizon length 𝑙 𝑓 = 0 . 5 m (=
𝐿 𝑇 ∕2) . For this case, the microstructural length was chosen as 𝑙 ∗ =
0 . 005 m ( 𝐿 𝑇 ∕200) for the CC beam and 𝑙 ∗ = 0 . 002 m ( 𝐿 𝑇 ∕500) for the
SS beam. 

• Case 2: the horizon length l f was varied within the range

[0 . 1 , 0 . 5] m (= [ 𝐿 𝑇 ∕10 , 𝐿 𝑇 ∕2]) and the microstructure length l ∗ was
varied in [0 . 002 , 0 . 01] m (= [ 𝐿 𝑇 ∕500 , 𝐿 𝑇 ∕100]) , for fixed values of the
fractional-orders 𝛼1 = 𝛼2 = 0 . 8 . Both orders were chosen in the frac-
tional range so to obtain more general conditions (see Fig. 7 ). 

We emphasize that, while the choice of the different fractional-model

arameters were somewhat arbitrary, their specific value does not affect

he generality of the results. The range of the fractional-orders 𝛼1 and 𝛼2 
as selected following the restriction in Eq. (20) . The specific ranges for

 f and l ∗ were chosen in order to demonstrate the ability of the fractional-

rder framework in capturing both stiffening and softening effects. 

The numerical results, expressed in terms of the static transverse

isplacement and corresponding to Case 1 for the CC beam and the

S beam, are presented in Figs. 5 (a) and 6 (a), respectively. Similarly,

he results for Case 2 subject to either CC or SS boundary conditions

re provided in Figs. 5 (b) and 6 (b), respectively. The results presented
or each case correspond to the maximum transverse displacement ob-

erved in the beam at the mid point ( w 0 ( L T /2)). To clearly visualize the

xtent of softening and stiffening occurring in the beam, the maximum

ransverse displacement was non-dimensionalized against the maximum

ransverse displacement obtained for a classical Timoshenko beam in

he absence of both nonlocal and strain-gradient effects. More specif-

cally, the non-dimensional transverse displacement ( 𝑤 ) for each spe-
ific boundary configuration, was obtained by dividing the maximum

ransverse displacement of the fractional-order beam by the maximum

ransverse displacement of the classical beam for the same boundary

ondition. The maximum transverse displacement obtained for the clas-

ical CC beam was 𝑤 0 = 8 . 95 × 10 −2 m and for the classical SS beam was

 0 = 41 . 93 × 10 −2 m . Note that a higher value of the static displacement

ith respect to the classical solution indicates softening of the structure,

hile a lower value of the transverse displacement indicates a stiffening

f the structure. 

As evident from Figs. 5 and 6 , the fractional-order continuum for-

ulation is able to capture both stiffening and softening response of the

imoshenko beam depending on the choice of the nonlocal parameters.

ote that the horizontal reference plane in black color denotes the non-

imensional classical solution ( 𝑤 = 1 ). When the transverse displace-
ent is above this plane ( 𝑤 > 1 ) it indicates a softened response while,
alues below the plane ( 𝑤 < 1 ) indicate a stiffened response. The results
resented for the different cases lead to the following conclusions on the

pecific effects of the different fractional model parameters: 

• Effect of 𝛼1 : As discussed in Patnaik et al. [45] , a decrease in the

value of 𝛼1 leads to an increase in the strength of the power-law

kernel that captures nonlocal interactions across the horizon of non-

locality. Consequently, the resulting formulation exhibits a greater

degree of softening with respect to the classical response. Recall that

for 𝛼1 = 1 and 𝑙 ∗ = 0 (no microstructural effects), the classical local
continuum formulation is recovered from the fractional-order for-

mulation. 
• Effect of l f : recall that l f indicates the size of the nonlocal horizon,

thus by increasing the value of l f the size of the horizon of nonlocality

increases. It follows that a larger number of points within the solid

is accounted contribute to the nonlocal interactions, thus the degree

of nonlocality increases and so does the degree of softening of the

structure. 
• Effect of 𝛼2 : Recall from Section 2.1 that the strain-gradient order 𝛼2 
captures the nonlocal effects of the strain-gradients. Thus, analogous

to 𝛼1 , a decrease in the value of 𝛼2 leads to an increase in the strength

of the power-law kernel that captures nonlocal strain-gradient con-

tributions across the horizon of nonlocality. Consequently, the result-

ing formulation would exhibit a softening with respect to the clas-

sical first-order strain gradient response. Note that for 𝛼1 = 1 and
𝛼2 = 1 , the classical first-order strain-gradient theory is recovered
from the fractional-order formulation. 

• Effect of l ∗ : As evident from the discussion of the lattice structure in

Section 2.1 , the microstructural length parameter l ∗ plays the same

role as in classical strain-gradient formulations. Thus, an increase in

the value of l ∗ leads to a stiffer response of the structure. 

The effects discussed above are schematically summarized in Fig. 7 ,

hich provides a visual representation of the resulting formulation as a

unction of the different parameters. 

.2. Free vibration response 

In the interest of a comprehensive analysis, we analyse the effect

f the different fractional model parameters on the natural frequency

f transverse vibration of the Timoshenko beam. The material proper-

ies chosen for this study are the same as those provided for the static

tudy in Section 4.1 . The natural frequencies are obtained by solving the

igenvalue problem: 

 𝑀 𝑇 ] −1 [ 𝐾 𝑇 ]{ 𝕌 } = 𝜔 
2 
0 { 𝕌 } (53)
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Fig. 5. Non-dimensional transverse displacement at the center point of the Timoshenko beam subject to clamped-clamped boundary conditions. Results are obtained 

via the fractional-order formulation. The response is parameterized for different values of (a) the fractional orders and (b) the length scales. 

Fig. 6. Non-dimensional transverse displacement at the center point of the Timoshenko beam subject to simply supported boundary conditions. Results are obtained 

via the fractional-order formulation and parameterized for different values of (a) the fractional orders and (b) the length scales. 
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hich is derived by assuming a periodic solution { 𝑈} = { 𝕌 } 𝑒 − 𝑖𝜔 0 𝑡 to the
omogeneous part of the algebraic FE Eq. (51) . In the above assumed

olution, 𝜔 0 denotes the natural frequency of vibration, and 𝕌 is the am-

litude of the harmonic oscillation. Similar to Section 4.1 , we obtained

he natural frequencies of CC and SS beams for the two different cases:

ase 1 and Case 2. The results are presented in Figs. 8 and 9 . Similar

o the static analysis, the natural frequency obtained for each case ( 𝜔 0 )

as non-dimensionalized against the natural frequency of a classical lo-

al beam, which was found to be 53 Hz for the CC beam and 24 Hz for

he SS beam. Note that a lower value of the natural frequency ( 𝜔 0 < 1 )
ith respect to the classical solution indicates softening of the struc-

ure, while a higher value of the natural frequency ( 𝜔 0 < 1 ) indicates a
tiffening of the structure. Clearly, the results presented in Figs. 8 and

 complement the discussion presented in Section 4.1 , on the effect of

he different fractional-order parameters on the static response of the

eam. 

. Application to Mindlin plates 

We extend the studies carried out in Sections 3 and 4 to develop

 fractional-order analogue of the classical Mindlin plate formulation

hat captures both stiffening and softening response. A schematic of the

ndeformed rectangular plate along with the chosen Cartesian refer-

nce frame is given in Fig. 10 . The top surface of the plate is identified

s 𝑧 = ℎ 𝑀 
∕2 , while the bottom surface is identified as 𝑧 = − ℎ 𝑀 

∕2 . The
omain corresponding to the mid-plane of the plate (i.e., 𝑧 = 0 ) is de-
oted as ΩM , such that Ω𝑀 
= [0 , 𝐿 𝑀 

] ⊗ [0 , 𝐵 𝑀 
] where L M and B M are

he length and width of the plate, respectively. The domain of the plate

s identified by the tensor product Ω𝑀 
⊗ [− ℎ 𝑀 

∕2 , ℎ 𝑀 
∕2] . The edges

orming the boundary of the mid-plane of the plate are denoted as

Γ𝑀 𝑥 
, Γ𝑀 𝑦 

} . The subscript M indicates that all the above dimensions

orrespond to the Mindlin plate. 

For the Mindlin plate, following the coordinate system illustrated

n Fig. 10 , the in-plane and transverse components of the displacement

eld, denoted by u ( x, y, z, t ), v ( x, y, z, t ) and w ( x, y, z, t ) at any spatial

ocation x ( x, y, z ), are related to the mid-plane displacements of the

late in the following manner: 

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑢 0 ( 𝑥, 𝑦, 𝑡 ) − 𝑧𝜃𝑥 ( 𝑥, 𝑦, 𝑡 ) (54a)

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑣 0 ( 𝑥, 𝑦, 𝑡 ) − 𝑧𝜃𝑦 ( 𝑥, 𝑦, 𝑡 ) (54b)

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑤 0 ( 𝑥, 𝑦, 𝑡 ) (54c)

here u 0 , v 0 , and w 0 are the mid-plane displacements of the plate along

he 𝑥̂ , 𝑦̂ , and 𝑧̂ directions. 𝜃x and 𝜃y are the rotations of the transverse

ormal about the 𝑦̂ and 𝑥̂ axes, respectively. In the interest of a more

ompact notation, the functional dependence of the displacement fields

n the spatial and the temporal variables will be implied unless explicitly

xpressed to be constant. Based on the above displacement fields, the

on-zero strain components in the fractional-order Mindlin plate are

valuated using Eq. (22) as: 
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Fig. 7. Schematic illustrating the effects of the different fractional-model parameters on the direction of softening or stiffening. In the above figure, S.G. denotes 

strain gradient, and 𝑙 𝑓 and 𝑙 ∗ indicate the upper bound on the nonlocal horizon length and the microstructural length. The direction of the solid arrow lying on 

a particular plane, indicates the direction of softening. It is immediate that the opposite direction would lead to stiffening. In each sub-figure, the combination of 

parameters that would result in the stiffest and the softest solution is indicated by a six-edged star symbol ( ∗ ) and a cross symbol ( × ), respectively. In (d) the fully 
local solution is obtained at the corner indicated by a filled circular symbol. 

Fig. 8. Non-dimensional natural frequency of the Timoshenko beam clamped at its boundaries and parameterized for different values of (a) the fractional orders 

and (b) the length scales. 
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Fig. 9. Non-dimensional natural frequency of the Timoshenko beam simply-supported at its boundaries and parameterized for different values of (a) the fractional 

orders and (b) the length scales. 

Fig. 10. Schematic of the rectangular plate illustrating the different geometric 

parameters. 
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𝜂  

𝜂  

F

a

𝑥𝑥 = 𝐷 

𝛼1 
𝑥 𝑢 0 − 𝑧𝐷 

𝛼1 
𝑥 𝜃𝑥 (55a)

𝑦𝑦 = 𝐷 

𝛼1 
𝑦 𝑣 0 − 𝑧𝐷 

𝛼1 
𝑦 𝜃𝑦 (55b)

𝑥𝑦 = 

1 
2 

[
𝐷 

𝛼1 
𝑦 𝑢 0 + 𝐷 

𝛼1 
𝑥 𝑣 0 − 𝑧 ( 𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝐷 

𝛼1 
𝑥 𝜃𝑦 ) 

]
(55c)

𝑥𝑧 = 

1 
2 

[
𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃𝑥 

]
(55d)
ig. 11. Non-dimensional transverse displacement at the center point of the Mindli

nd (b) the length scales. 
𝑦𝑧 = 

1 
2 

[
𝐷 

𝛼1 
𝑦 𝑤 0 − 𝜃𝑦 

]
(55e)

The strain-gradients developed in the plate are obtained using

q. (24) as: 

𝑥𝑥𝑟 = 𝐷 

𝛼2 
𝑟 

[
𝐷 

𝛼1 
𝑥 𝑢 0 − 𝑧𝐷 

𝛼1 
𝑥 𝜃𝑥 

]
(56a)

𝑦𝑦𝑟 = 𝐷 

𝛼2 
𝑟 

[
𝐷 

𝛼1 
𝑦 𝑣 0 − 𝑧𝐷 

𝛼1 
𝑦 𝜃𝑦 

]
(56b)

𝑥𝑦𝑟 = 𝐷 

𝛼2 
𝑟 

[1 
2 

[
𝐷 

𝛼1 
𝑦 𝑢 0 + 𝐷 

𝛼1 
𝑥 𝑣 0 − 𝑧 ( 𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝐷 

𝛼1 
𝑥 𝜃𝑦 ) 

]]
(56c)

𝑥𝑧𝑟 = 𝐷 

𝛼2 
𝑟 

[1 
2 

[
𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃𝑥 

]]
(56d)

𝑦𝑧𝑟 = 𝐷 

𝛼2 
𝑟 

[ 1 
2 

[
𝐷 

𝛼1 
𝑦 𝑤 0 − 𝜃𝑦 

]]
(56e)

here r ∈ { x, y, z }. While simplifying the expressions in the above equa-
ion, the following strain-gradients are obtained exactly: 

𝑥𝑥𝑧 = 𝐷 

𝛼2 
𝑧 [ 𝐷 

𝛼1 
𝑥 𝑢 0 ] − 𝐷 

𝛼2 
𝑧 [ 𝑧𝐷 

𝛼1 
𝑥 𝜃𝑥 ] = − 𝐷 

𝛼1 
𝑥 𝜃𝑥 (57a)

𝑦𝑦𝑧 = 𝐷 

𝛼2 
𝑧 [ 𝐷 

𝛼1 
𝑦 𝑣 0 ] − 𝐷 

𝛼2 
𝑧 [ 𝑧𝐷 

𝛼1 
𝑦 𝜃𝑦 ] = − 𝐷 

𝛼1 
𝑦 𝜃𝑦 (57b)

𝜂𝑥𝑦𝑧 = 

1 
2 

[
𝐷 

𝛼2 
𝑧 [ 𝐷 

𝛼1 
𝑦 𝑢 0 + 𝐷 

𝛼1 
𝑥 𝑣 0 ] − 𝐷 

𝛼2 
𝑧 [ 𝑧𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝑧𝐷 

𝛼1 
𝑥 𝜃𝑦 ] 

]

n plate clamped at all its edges for different values of (a) the fractional orders 
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Fig. 12. Non-dimensional transverse displacement at the center point of the Mindlin plate simply-supported at all its edges parameterized for different values of (a) 

the fractional orders and (b) the length scales. 

Fig. 13. Non-dimensionalized natural frequency of the Mindlin plate clamped at its edges parameterized for different values of (a) the fractional orders and (b) the 

length scales. 
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𝛿 𝑥 

𝛿

= − 

1 
2 
[ 𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝐷 

𝛼1 
𝑥 𝜃𝑦 ] (57c) 

𝑥𝑧𝑥 = 

1 
2 

[
𝐷 

𝛼2 
𝑥 [ 𝐷 

𝛼1 
𝑥 𝑤 0 ] − 𝐷 

𝛼2 
𝑥 𝜃𝑥 

]
= − 

1 
2 
𝐷 

𝛼2 
𝑥 𝜃𝑥 (57d)

𝑥𝑧𝑦 = 

1 
2 

[
𝐷 

𝛼2 
𝑦 [ 𝐷 

𝛼1 
𝑥 𝑤 0 ] − 𝐷 

𝛼2 
𝑦 𝜃𝑥 

]
= − 

1 
2 
𝐷 

𝛼2 
𝑦 𝜃𝑥 (57e)

𝑥𝑧𝑧 = 

1 
2 

[
𝐷 

𝛼2 
𝑧 [ 𝐷 

𝛼1 
𝑥 𝑤 0 ] − 𝐷 

𝛼2 
𝑧 𝜃𝑥 

]
= 0 (57f)

𝑦𝑧𝑥 = 

1 
2 

[
𝐷 

𝛼2 
𝑥 [ 𝐷 

𝛼1 
𝑦 𝑤 0 ] − 𝐷 

𝛼2 
𝑥 𝜃𝑦 

]
= − 

1 
2 
𝐷 

𝛼2 
𝑥 𝜃𝑦 (57g)

𝑦𝑧𝑦 = 

1 
2 

[
𝐷 

𝛼2 
𝑦 [ 𝐷 

𝛼1 
𝑦 𝑤 0 ] − 𝐷 

𝛼2 
𝑦 𝜃𝑦 

]
= − 

1 
2 
𝐷 

𝛼2 
𝑦 𝜃𝑦 (57h)

𝑦𝑧𝑧 = 

1 
2 

[
𝐷 

𝛼2 
𝑧 [ 𝐷 

𝛼1 
𝑦 𝑤 0 ] − 𝐷 

𝛼2 
𝑧 𝜃𝑦 

]
= 0 (57i)

Assuming small displacement gradients ( O ( 𝜀 )), the strain-gradient

erms except for those provided in Eq. (57) are O ( 𝜀 2 ). Thus, analogously

o the arguments used in the development of the Timoshenko beam, for

he normal strains the transverse strain-gradients are significant when

ompared to the in-plane gradients. When obtaining the solution via

he weak form, the contribution of the in-plane strain-gradients of the

ormal strains can be ignored compared to the contribution of the non-

ero strain-gradients in Eq. (57) . This observation can also be noted
rom results presented in Jafari et al. [60] , where it is shown that ig-

oring the transverse strain-gradients of the normal strains leads to a

ignificant change in the response of the structure, while the inclusion

f the in-plane strain-gradients of the normal strains does not lead to a

ignificant change in the response. 

Using strains and strain-gradients in Eqs. (55)–(57) , the first varia-

ions of the potential energy, the kinetic energy and the work done by

xternally applied forces are obtained as: 

 = ∫Ω𝑀 

[ 𝑁 𝑥𝑥 𝛿𝐷 

𝛼1 
𝑥 𝑢 0 + 𝑁 𝑦𝑦 𝛿𝐷 

𝛼1 
𝑦 𝑣 0 + 𝑁 𝑥𝑦 𝛿

(
𝐷 

𝛼1 
𝑦 𝑢 0 + 𝐷 

𝛼1 
𝑥 𝑣 0 

)
+ 𝑀 𝑥𝑥 𝛿𝐷 

𝛼1 
𝑥 𝜃

+ 𝑀 𝑦𝑦 𝛿𝐷 

𝛼1 
𝑦 𝜃𝑦 + 𝑀 𝑥𝑦 𝛿

(
𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝐷 

𝛼1 
𝑥 𝜃𝑦 

)
+ 𝑄 𝑥𝑧 𝛿( 𝐷 

𝛼1 
𝑥 𝑤 0 − 𝜃𝑥 ) 

+ 𝑄 𝑦𝑧 𝛿( 𝐷 

𝛼1 
𝑦 𝑤 0 − 𝜃𝑦 ) + 𝑁 𝑥𝑥𝑧 𝛿𝐷 

𝛼1 
𝑥 𝜃𝑥 + 𝑁 𝑦𝑦𝑧 𝛿𝐷 

𝛼1 
𝑦 𝜃𝑦 

+ 𝑁 𝑥𝑦𝑧 𝛿
(
𝐷 

𝛼1 
𝑦 𝜃𝑥 + 𝐷 

𝛼1 
𝑥 𝜃𝑦 

)
+ 𝑁 𝑥𝑧𝑥 𝛿𝐷 

𝛼2 
𝑥 𝜃𝑥 + 𝑁 𝑥𝑧𝑦 𝛿𝐷 

𝛼2 
𝑦 𝜃𝑥 

+ 𝑁 𝑦𝑧𝑥 𝛿𝐷 

𝛼2 
𝑥 𝜃𝑦 + 𝑁 𝑦𝑧𝑦 𝛿𝐷 

𝛼2 
𝑦 𝜃𝑦 ]dΩ𝑀 

(58a) 

𝑉 = ∫Ω𝑀 

[
𝐹 𝑥 𝛿𝑢 0 + 𝐹 𝑦 𝛿𝑣 0 + 𝐹 𝑧 𝛿𝑤 0 + 𝑀 𝜃𝑥 

𝛿𝜃𝑥 + 𝑀 𝜃𝑦 
𝛿𝜃𝑦 

]
dΩ𝑀 

(58b) 

𝛿𝑇 = ∫Ω𝑀 

{ 

∫
ℎ 
2 

− ℎ 2 

𝜌
[(
𝑢̇ 0 − 𝑧 ̇𝜃𝑥 

)(
𝛿𝑢̇ 0 − 𝑧𝛿𝜃̇𝑥 

)
+ 

(
𝑣̇ 0 − 𝑧 ̇𝜃𝑦 

)(
𝛿𝑣̇ 0 − 𝑧𝛿𝜃̇𝑦 

)
+ 𝑤̇ 0 𝛿𝑤̇ 0 

]
d 𝑧 

} 

dΩ𝑀 
(58c) 
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Fig. 14. Non-dimensionalized natural frequency of the Mindlin plate simply supported at its boundaries parameterized for different values of (a) the fractional orders 

and (b) the length scales. 
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Note that d Ω𝑀 
= d 𝑥 d 𝑦 for a rectangular plate. { F x , F y , F z } are

he external loads applied in the 𝑥̂ , 𝑦̂ , and 𝑧̂ directions, respectively.

 𝑀 𝜃𝑥 
, 𝑀 𝜃𝑦 

} are the external moments applied about the 𝑦̂ and 𝑥̂ axes,
espectively. The different stress, moment, and higher-order stress re-

ultants in Eq. (58c) extend directly from Eq. (47) . 

The f-FEM for the Mindlin plates extends directly from the f-FEM

ormulation briefly reviewed in Section 4 . We also highlight that the

-FEM for fractional-order Mindlin plates can also be found in Patnaik

t al. [44] . Thus, for the sake of brevity, we do not provide all the de-

ails but we highlight the additional contributions following from the

onlocal strain-gradient terms. The expression for the stiffness matrix

orresponding to the f-FEM for the Mindlin plate is: 

 𝐾 𝑀 
] = ∫Ω𝑀 

[ ̃𝐵 𝑀 
( 𝒙 )] 𝑇 [ 𝑆 𝑀 

][ ̃𝐵 𝑀 
( 𝒙 )]dΩ𝑀 

(59)

here [ S M ] is the constitutive matrix of the plate and the matrix [ ̃𝐵 𝑀 
( 𝒙 )]

s given as: 

 ̃𝐵 𝑀 
( 𝒙 )] = 

[ 
[ ̃𝐵 𝛼1 

𝑢 0 ,𝑥 
( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼1 

𝑣 0 ,𝑦 
( 𝒙 )] 𝑇 , 

[
[ ̃𝐵 𝛼1 

𝑢 0 ,𝑦 
( 𝒙 )] + [ ̃𝐵 𝛼1 

𝑣 0 ,𝑥 
( 𝒙 )] 

]𝑇 
, [ ̃𝐵 𝛼1 

𝜃𝑥 ,𝑥 
( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼1 

𝜃𝑦 ,𝑦 
( 𝒙 )] 𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contributions from the nonlocal strains 

[ ̃𝐵 𝛼1 
𝜃𝑦 ,𝑥 

( 𝒙 )] + [ ̃𝐵 𝛼1 
𝜃𝑥 ,𝑦 

( 𝒙 )] 
]𝑇 

, 
[
𝐵̃ 

𝛼1 
𝑤 0 ,𝑥 

( 𝒙 )] − [ 𝕃 ( 𝜃𝑥 ) ( 𝒙 )] 
]𝑇 
, 
[
[ ̃𝐵 𝛼1 𝑤 0 ,𝑦 

( 𝒙 )] − [ 𝕃 ( 𝜃𝑦 ) ( 𝒙 )] 
]𝑇 

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contributions from the nonlocal strains 

, 

 ̃𝐵 
𝛼1 
𝜃𝑥 ,𝑥 

( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼1 
𝜃𝑦 ,𝑦 

( 𝒙 )] 𝑇 , 
[
[ ̃𝐵 𝛼1 

𝜃𝑦 ,𝑥 
( 𝒙 )] + [ ̃𝐵 𝛼1 

𝜃𝑥 ,𝑦 
( 𝒙 )] 

]𝑇 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Contributions from the nonlocal strain-gradients 

, 

 ̃𝐵 
𝛼2 
𝜃𝑥 ,𝑥 

( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼2 
𝜃𝑥 ,𝑦 

( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼2 
𝜃𝑥 ,𝑥 

( 𝒙 )] 𝑇 , [ ̃𝐵 𝛼2 
𝜃𝑥 ,𝑦 

( 𝒙 )] 𝑇 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Contributions from the nonlocal strain-gradients 

] 

(60)

he details of the fractional-order derivative matrices [ ̃𝐵 𝛼𝑚 □,𝑟 
( 𝒙 )] can be found in

I and [44] . 

.1. Static response 

In this section, we analyze the static response of the Mindlin plate

btained via the fractional-order continuum formulation. For this pur-

ose, the in-plane dimensions of the plate were fixed to be 𝐿 𝑀 
= 1 m

nd 𝐵 𝑀 
= 1 m and the thickness of the plate was taken to be ℎ 𝑀 

= 0 . 1 m
= 𝐿 𝑀 

∕10) . The simplified constitutive relations given in Eq. (52) were
sed in this study. The material was assumed isotropic with an elastic

odulus 𝐸 = 30 GPa, Poisson’s ratio 𝜈 = 0 . 3 and density 𝜌 = 2700 kg/m 
3 .

urther, we have assumed a symmetric and isotropic horizon of non-

ocality for points sufficiently inside the domain of the plate, that is
 𝐴 □
= 𝑙 𝐵 □ = 𝑙 𝑓 , □ ∈ { 𝑥, 𝑦 } . For points located close to a boundary, the

ength scales were truncated as shown in Fig. 2 . 

We analyzed the static response of the plate subject to a UDTL of

agnitude 𝐹 𝑧 = 10 7 Pa for two different kinds of boundary conditions:
he plate clamped at all the edges (CCCC) and the plate simply supported

t all ts edges (SSSS) for different combinations of the fractional model

arameters. For each boundary condition, we obtained the response of

he plate for the following different cases: 

• Case 1: the fractional-orders 𝛼1 and 𝛼2 were varied within the range

[0.5,1] for fixed values of the nonlocal horizon length 𝑙 𝑓 = 0 . 5 m (=
𝐿 𝑀 

∕2) . For this case, the microstructural length was chosen as 𝑙 ∗ =
0 . 02 m (= 𝐿 𝑀 

∕50) . 
• Case 2: the nonlocal horizon l f was varied in [0 . 5 , 1] m (= [ 𝐿 𝑀 

∕2 , 𝐿 𝑀 
])

and the microstructure length l ∗ was varied in [0 . 01 , 0 . 05] m (=
[ 𝐿 𝑀 

∕100 , 𝐿 𝑀 
∕20]) , for fixed values of the fractional-orders 𝛼1 = 𝛼2 =

0 . 8 . 

The numerical results, in terms of the maximum transverse dis-

lacement (obtained at the mid-point of the plate), are presented in

igs. 11 and 12 for the CCCC plate and the SSSS plate, respectively.

urther, similar to the Timoshenko beam, the transverse displacement

btained for each case ( 𝑤 ) is non-dimensionalized against the maximum

ransverse displacement obtained for a classical Mindlin plate without

onlocality or strain-gradient effects. The maximum transverse displace-

ent obtained for the classical CCCC plate was 𝑤 0 = 0 . 55 × 10 −2 m and

or the classical SSSS plate was 𝑤 0 = 1 . 55 × 10 −2 m . As evident from the

igs. 11 and 12 , the fractional-order continuum formulation is able to

odel both stiffening and softening response of the Mindlin plate with

espect to the classical formulation. The conclusions noted for the Tim-

shenko beam directly extend to the Mindlin plate. More specifically,

he plate exhibits a stiffened response with increasing values of 𝛼1 , 𝛼2 
nd l ∗ and softened response with an increasing value of l f (see Fig. 7 ). 

.2. Free vibration response 

In the following, we present the results capturing the effect of the

ifferent fractional model parameters on the natural frequency of trans-

erse vibrations of the Mindlin plates. The material properties, loading

onditions, boundary conditions and the range of the different fractional

odel parameters are the same as chosen for the static analysis of the

indlin plate in Section 5.1 . The results for the CCCC plate and the

SSS plate are presented in Figs. 11–14 , respectively, in terms of the

on-dimensionalized natural frequency 𝜔 0 . Similar to the analysis in

ection 4.2 , the non-dimensionalized natural frequency is obtained by
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ividing the natural frequency of the fractional-order plate with the nat-

ral frequency of the classical Mindlin plate for the specific boundary

ondition. The natural frequency obtained for the classical CCCC plate

as 𝜔 0 = 522 Hz and for the classical SSSS plate was 𝜔 0 = 306 Hz . As ev-
dent from the Figs. 11–14 , the conclusions presented in Section 4.1 on

he specific effects of the different fractional model parameters, hold

rue for the free vibration response of the Mindlin plates. 

. Conclusions 

The present study leveraged the fractional-order mechanics frame-

ork to develop a unified approach to nonlocal elasticity that com-

ines the characteristics of both integral and gradient based classical

ormulations. More specifically, the differ-integral nature of fractional

rder operators was exploited to formulate a nonlocal continuum the-

ry capable of modeling both stiffening and softening responses in struc-

ures exhibiting size-dependent effects. The fractional-order formulation

as derived by the continualization of the Lagrangian of a 1D lattice

ubject to long-range cohesive interactions. Then, the governing equa-

ions corresponding to a 3D continuum were derived using variational

rinciples. The resulting nonlocal theory is frame-invariant and causal.

ontrary to classical integral formulations, the fractional-order formu-

ation of a nonlocal continuum leads to positive definite systems with

ell-posed governing equations. Particularly remarkable is the ability of

he fractional-order continuum model to capture anomalous attenuation

nd dispersion without having to incorporate inertia gradients in the

overning equations; otherwise needed in classical strain-gradient for-

ulations. Consequently, the fractional theory is well suited to capture

onlocality, scale effects, and medium heterogeneity in structural prob-

ems. The ability of the fractional-order formulation to model both stiff-

ning and softening response was exemplified by performing both static

nd free vibration analysis of Timoshenko beams and Mindlin plates. In

onclusion, the formulation and the results presented in the study illus-

rated several unique features of fractional calculus and suggested that

his mathematical tool could play a critical role in the development of

nified and comprehensive simulation tools for modeling the response

f complex nonlocal structures. 
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