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This study presents a fractional-order continuum mechanics approach that allows combining selected character-
istics of nonlocal elasticity, typical of classical integral and gradient formulations, under a single frame-invariant
framework. The resulting generalized theory is capable of capturing both stiffening and softening effects and
it is not subject to the inconsistencies often observed under selected external loads and boundary conditions.
The governing equations of a 1D continuum are derived by continualization of the Lagrangian of a 1D lattice
subject to long-range interactions. This approach is particularly well suited to highlight the connection between
the fractional-order operators and the microscopic properties of the medium. The approach is also extended to
derive, by means of variational principles, the governing equations of a 3D continuum in strong form. The posi-
tive definite potential energy, characteristic of our fractional formulation, always ensures well-posed governing
equations. This aspect, combined with the differ-integral nature of fractional-order operators, guarantees both
stability and the ability to capture dispersion without requiring additional inertia gradient terms. The proposed
formulation is applied to the static and free vibration analyses of either Timoshenko beams or Mindlin plates.
Numerical results, obtained by a fractional-order finite element method, show that the fractional-order formu-
lation is able to model both stiffening and softening response in these slender structures. The numerical results
provide the foundation to critically analyze the physical significance of the different fractional model parameters
as well as their effect on the response of the structural elements.

1. Introduction

Several experimental studies have demonstrated that size-dependent
effects can become prominent in the response of several structures in-
dependently of their spatial scale. In the case of micro- and nano-
structures, size-dependent effects have been traced back to material het-
erogeneity, geometric effects such as changes in curvature, and the ex-
istence of surface and interface stresses due to nonlocal atomic interac-
tions and Van der Waals forces [1-3]. Micro- and nano-structures such as
carbon nanotubes, thin films and monolayer graphene sheets have far-
reaching applications in atomic devices, micro/nano-electromechanical
devices, as well as sensors and biological implants. In macroscale appli-
cations, particularly those involving heterogeneous structures such as
functionally graded materials, metallic foams, granular materials, and
porous materials, nonlocal effects have been shown to result from ma-
terial heterogeneity and interactions between different structural lay-
ers [4-7]. Additionally, specific geometric configurations can also lead
to size-dependent effects [8-10]. In all these macroscopic structures,
nonlocal governing equations arise following a homogenization process
[5,6,9,10]. Based on the examples above, it appears that the ability to
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accurately model size-dependent effects has profound implications for
many engineering applications.

From a general perspective, it is the coexistence of different spatial
scales in the above mentioned classes of structural problems that ren-
ders the response nonlocal [11,12]. The inability of the classical (i.e.
local) continuum theory to capture scale effects prevented its use in
these applications and fostered the development of the so-called non-
local continuum theories. From a general standpoint, the mathematical
description of nonlocal continuum theories relies on the introduction
of additional contributions in terms of either integrals or gradients of
strain (or stress) fields or to the use of additional kinematic descrip-
tors in the constitutive equations. This approach leads to the so-called
&strongg integral methods or &weakg gradient/microcontinuum meth-
ods, respectively. Microcontinuum theories such as the Cosserat theory
and the micropolar theory account for nonlocal behaviour by enrich-
ing the kinematics of the continuum with additional descriptors such
as micro-rotations. Consequently, the couple-stresses, which are conju-
gated to the micro-rotations, are also included in the equations of motion
[13-16]. Gradient elasticity theories [11,17-19] account for the nonlo-
cal behavior by introducing strain or stress gradient dependent terms in
the stress-strain constitutive law. Integral methods [12,20,21] capture
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nonlocal effects by re-defining the constitutive law in the form of a con-
volution integral of either the strain or the stress field over the horizon
of nonlocality. The gradient and integral approaches are further classi-
fied as strain-driven or stress-driven [19-21], depending on whether the
nonlocal contributions are modeled using the strain or the stress fields.

Although these different approaches to nonlocal elasticity have been
able to address a multitude of aspects typical of the response of size-
dependent nonlocal structures, some important challenges still remain
open. From a high level perspective, gradient theories provide a satis-
factory description of the effects of the material microstructure but can
introduce significant difficulties connected with the overall stability of
the model. As discussed in Askes and Aifantis [19], while the use of
unstable strain-gradients is critical to capture dispersive wave propa-
gation, they give rise to non-convex potential energies leading to the
loss of uniqueness in static boundary value problems (BVPs). This issue
is often circumvented by using a combination of stable strain-gradients
and acceleration gradients [19,22,23], whose stability comes at the cost
of additional terms in both the governing equation and the boundary
conditions. From this perspective, integral methods are better suited to
deal with boundary conditions and do not lead to any sign paradox,
which is peculiar of the gradient methods. However, the corresponding
potential energy is not guaranteed to be positive definite, and leads to ill-
posed governing equations and inconsistent predictions for certain load-
ing and boundary conditions [21,24,25]. The ill-posed behaviour can be
addressed using local-nonlocal two phase approaches [26]. However,
this effect is nullified when the local fraction vanishes, as also noted in
Romano et al. [25]. More specifically, in the limit of a vanishing local
fraction, the inherent ill-posedness of fully strain-driven integral prob-
lem is not eliminated. This consideration is at the basis of restrictions on
the parameter space that determines the ratio of the local and nonlocal
mixture.

From a perspective of practical application, another key limitation
of classical nonlocal formulations consists in the fact that, based on
the underlying formulation, they can capture only softening or stiffen-
ing response but not both simultaneously. Experimental investigations
have shown that the size-dependent effects can lead to both stiffening
as well as softening of the nonlocal structure depending on the loading
and external conditions, such as temperature, loading rate, and bound-
ary conditions [1-5,12,19,27-30]. To this regard, while classical strain-
driven integral formulations [20] are suitable for modeling softening ef-
fects, stress-driven integral formulations [21] and gradient formulations
[11] are suitable to capture only stiffening effects. Thus it appears that
both the classical integral and gradient formulations are not suitable
to capture both stiffening and softening responses. Efforts to achieve
an equivalence between the strain-driven integral and gradient formu-
lations, by using special exponential kernels, have been shown to lead
to mathematically ill-posed formulations resulting in inaccurate (often
called “paradoxical”) predictions [21,25]. Further, as stated in Askes
and Aifantis [19], an unresolved issue in strain-gradient formulations
pertains to the treatment of materials that exhibit strain-softening.

A recently developed nonlocal gradient elasticity approach [31] was
shown to be able to capture both stiffening and softening response. In
this approach, Eringen’s integral law was combined with strain-gradient
elasticity to formulate a higher-order nonlocal theory. More specifically,
the stress is defined as the sum of two integral terms. The first term be-
ing the classical convolution between the strain and a smoothing kernel
depending on a nonlocal parameter. The second term consisting of the
derivative of the convolution of the strain gradient with a smoothing ker-
nel depending on a different nonlocal parameter. The seminal work pre-
sented in Lim et al. [31] was further extended to develop strain-driven
[32,33] and stress-driven approaches [34]. While the nonlocal gradi-
ent formulations capture both stiffening and softening response, some
important limitations follows from the corresponding numerical imple-
mentation. Quadrature methods [33] and analytical methods [32] are
the most accredited techniques for the strain-driven nonlocal gradient
elasticity, while the stress-driven approach relies either on analytical
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solutions or iterative methods [34,35]. Although these solution meth-
ods offer analytical insights into the problem, they encounter limitations
when applied to structures having more complex geometry (even plates)
and general loading conditions. Further, the nonlocal strain-driven gra-
dient approach is not positive-definite for all loading conditions and
requires additional constitutive boundary conditions to achieve well-
posedness when applied to slender structures of practical interest [36].
Hence, a formulation which is capable of capturing both stiffening and
softening response, and amenable to numerical simulation for complex
geometries under general loading conditions is still lacking.

In recent years, fractional calculus has emerged as a powerful math-
ematical tool to model a variety of nonlocal and multiscale phenom-
ena. Fractional derivatives, which are a differ-integral class of oper-
ators, are intrinsically multiscale and provide a natural way to ac-
count for nonlocal effects. Given the multiscale nature of fractional
operators, fractional calculus has found several applications in nonlo-
cal elasticity [6,7,37-44]. Recent studies have shown that a nonlocal
continuum approach based on fractional-order kinematic relations pro-
vides an effective way to model softening response in nonlocal struc-
tures [44,45]. These fractional-order nonlocal continuum models result
in frame-invariant, thermodynamically consistent and positive definite
systems with well-posed governing equations [44-46].

In this study, we show that the differ-integral nature of fractional
operators allows them to combine the strengths of both gradient and in-
tegral based methods while at the same time addressing a few important
shortcomings of both the integer-order formulations. More specifically,
we extend the fractional-order continuum formulation [7,45] to capture
both softening and stiffening response of nonlocal structures in a unified
and stable formulation amenable to finite element solution. The overall
goal of this study is three fold.

First, we derive the fractional-order governing equations for a 1D
nonlocal continuum by continualization of the Lagrangian of a 1D lat-
tice exhibiting long-range interactions with a power-law decay. We
will show that fractional-order derivatives of the displacement field
(i.e. the nonlocal strain) and fractional-order derivatives of the strain
field (i.e. the strain-gradient) are obtained in the potential energy of
the 1D structure following continualization of the lattice potential en-
ergy. Further, we will demonstrate that the fractional-order formula-
tion is well-posed, frame-invariant, causal, and able to capture anoma-
lous attenuation-dispersion characteristics without the need to resort
to acceleration gradient terms, as required in classical strain-gradient
formulations or the need to ensure non-vanishing strain-gradients, as
required in the nonlocal strain-gradient formulation. In other terms, in
the fractional-order formulation, well-posed governing equations result
from a positive definite potential energy while the ability to capture
dispersive behavior follows from the differ-integral nature of the frac-
tional operator. More specifically, the attenuation and dispersion in a
solid following the fractional-order formulation are shown to exhibit
a power-law dependency on the wave-number/frequency. Remarkably,
such anomalous dispersion characteristics have been experimentally ob-
served in different classes of materials including lossy media, fractal and
porous materials [47,48], and animal tissues [47]. Anomalous attenua-
tion has also been observed in several (non-lossy) scattering media, par-
ticularly those characterized by fractal, periodic or random structures
[7,8,10,49]. Table 1 provides a comparative summary of the classical as
well as the fractional-order approaches to nonlocal elasticity, and high-
lights some of the most distinctive features of the methods.

A second important contribution of this study consists in extending
the 1D formulation to a fully 3D formulation. The governing equations
in strong form will be derived by using variational principles. In both
the 1D and the 3D formulations, we will demonstrate the positive def-
inite and convex nature of the system’s potential energy. This specific
property ensures that the governing equations derived by minimization
of the potential energy are naturally well-posed without requiring addi-
tional constitutive boundary conditions (unlike nonlocal strain-gradient
approaches). Additionally, we will discuss the frame-invariance of the
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Summary of the fundamental approaches to nonlocal elasticity and comparison of their properties with those of the
fractional-order continuum theory. In the table, S.G. denotes strain gradients and I.G. denotes inertia gradients.

Features\Approach type Integral Gradient
Fi ional
Strain driven Stress driven Stable S.G. Unstable S.G. Stable S.G. and L.G. ractiona
Nature of response Soft Stiff Stiff Stiff Stiff Soft and Stiff
Positive definite system No No Yes No Yes Yes
Capture dispersion Yes Yes No Yes Yes Yes

formulation and the complete nature of the nonlocal kernel for bounded
3D domains.

A third key contribution of this work consists in the application of the
fractional-order formulation to the analysis of the static and free vibra-
tion response of Timoshenko beams and Mindlin plates. The selection
of these specific formulations was due to the fact that both the Euler-
Bernoulli beam and the Kirchhoff plate formulations can be recovered as
special cases; hence, making our study more general and complete. By
extending the fractional-order finite element method [44,45] to include
the additional gradient terms, we will demonstrate that the fractional-
order formulation allows modeling both stiffening and softening effects.
We will also critically analyze how the overall structural behavior is af-
fected by the different parameters introduced by the fractional model.

The characteristics discussed above also explain the choice of a
strain-based fractional-order model versus a potential stress-based ap-
proach. While in integer-order techniques, the stress-based formula-
tion [34] has been proposed as a way to address the challenging
well-posedness of the nonlocal elasticity problem, the fractional order
strain-based formulation is always well-posed (contrarily to its integer-
order counterpart). Certainly, a stress-based fractional order formu-
lation could potentially be envisioned. However, the corresponding
methodologies for their numerical solution are not necessarily straight-
forward, and techniques like the finite element method (FEM) have not
yet been proven to be applicable. In addition, unlike integer-order stress-
driven formulations that accept analytical solutions for selected cases
[21,34], fractional-order governing equations very seldom allow for
analytical solutions (especially when dealing with bounded domains).
From a practical point of view, these aspects limit the need to explore
stress-driven fractional-order formulations and suggest that their appli-
cation to the analysis of structures having complex geometry and for
general loading conditions would be more limited than its strain-based
counterpart.

The remainder of the paper is structured as follows: first, we moti-
vate the use of fractional calculus for the analysis of nonlocal structures
by considering a 1D lattice with long-range interactions and its corre-
sponding 1D continuum formulation. Next, we extend the 1D continuum
to a fully 3D continuum and derive the governing equations in strong
form using variational principles. Finally, we use the fractional-order
formulation to analyze the effect of the fractional-order nonlocality on
the static and free vibration response of beams and plates under different
types of loading conditions.

2. Fractional-order mechanics: from lattice to 1D continuum

A well established route to develop formulations capable of captur-
ing nonlocal effects in solids is to enforce the continuum limit on a lattice
system whose particles are subject to long-range interactions. Several
previous works have shown that the continuum limit of lattice structures
with one-neighbour and two-neighbour interactions and constant inter-
action strength lead to the classical first and second integer-order strain-
gradient theories of Mindlin, respectively [23,50]. An immediate exten-
sion of these models follows from considering the response of a lattice
with even larger number (i.e. > 2) of long-range interactions. Assum-
ing pair-wise constant interaction strengths between different masses
across the lattice, it can be easily shown that higher integer-order strain-

gradient theories stem from these models. However, these integer-order
strain-gradient models would invariably predict a stiffening response of
the overall structure. Recall that both softening and stiffening responses
have been experimentally observed in the response of solids sensitive to
scale effects. In this study, we will show that fractional-order operators
can offer a route to develop continuum models capable of predicting
both softening and stiffening response in a single formulation. To ob-
tain a physically consistent fractional-order continuum model, we start
from a 1D lattice system in which particles are subject to long-range in-
teractions whose pair-wise constant strength decreases with distance in
a power-law fashion. While, in the past, other authors have modeled lat-
tices with long-range cohesive forces using fractional calculus [38,39],
in this study we extend the formulation by considering also the strain-
gradient effects that arise due to microstructural considerations.

2.1. Lattice model and continualization procedure

Consider an infinite 1D lattice consisting of identical particles of
mass M as shown in Fig. 1. The particles are periodically distributed in
the % direction with spatial period l- and exhibit only longitudinal mo-
tion. The location and displacement of the nth particle (where n € Z) at
the time t are denoted as x,(t) and u,(t), respectively. The strength of
interaction between particles is modeled via lumped springs having stiff-
ness k;;, where ith and jth are the two interacting particles and i # j.
Note that, in this notation, the comma in the subscript of the spring
stiffness does not indicate differentiation. In the following derivation,
the dependence of u; on time t will be implied. Using the above config-
uration of the lattice and assuming that all the springs are unstressed at
the initial time ¢ = 0, the potential energy stored in the ith cell of the
lattice is obtained as:

o 1
V=Y kil = u;1? (1)
Jj=—
where VU denotes the potential energy of the ith cell. By assuming small
displacement gradients (O(¢)), Taylor’s expansion at the point x; gives:

1
U —u; =(xi—xj)5ijuj+E(x,»—xj)zéijuj +ho.t ?2)

where 5%‘ (O € {1,2}) denote the discretized integer-order derivatives
at x;.

It is well known that the strength of long-range cohesive forces de-
cays as a function of the inter-atomic distance. Recall that, at contin-
uum level and in integral formulations, this effect is typically accounted
for by using convolution terms in the stress-strain constitutive relation-
ships. These convolution kernels have often been chosen to be spatially-
decaying exponential functions [12,20]. In the lattice model, the stiff-
ness of the springs used to model the interaction between distant par-
ticles play a role analogous to the convolution kernels used in classical
integral nonlocal elasticity. Thus, in principle, the stiffness of the springs
emanating from a given particle towards distant particles can be mod-
eled using spatially decaying exponential functions. In this study, we
choose to model the stiffness spatial decay according to power-law func-
tions as follows:

c + [

|x..|“?“ |x..|“§
ij ij

k

ij = ko 3)
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Fig. 1. Schematic of the infinite lattice consisting of identical masses denoted as M. The masses occur periodically in space separated by a distance of L.. The schematic
also illustrates the classical nearest-neighbour interactions as well the long-range interactions between the masses within the infinite lattice. Note that each mass
within the lattice is connected to every other mass by spatially decaying long-range connections. To streamline the schematic, we have illustrated only the nonlocal

connections of the mass M; with a few other masses within the lattice.

where |x;;| = |x; — x;| indicates the distance between the ith and the jth
particles. Note that the above equation is valid only for i # j, given that
i = j would imply that the mass is connected to itself. The parameters
a; and a4 are such that a; € (0, 1), ay € (1, 2), and @, — a; € (0, 1).
The specific reason behind choosing the aforementioned ranges for a;
and a, is discussed later in this section with reference to the obtained
continualized model. The coefficients ¢; and c, will be chosen as a func-
tion of the parameters a; and a,, respectively, such that they ensure
dimensional consistency and frame-invariance of the formulation. Fur-
ther, the constant k, has the dimensions of classical stiffness ([M7T~2])
and its physical significance will be discussed while deriving the con-
tinuum limit of the lattice. Note that the only parameters introduced
at this level include a4, a4, and k,. For a given physical lattice with a
known spatially decaying stiffness function, these parameters could be
obtained by applying standard regression techniques. Substituting the
expression of the stiffness in the infinite series in Eq. (1) along with
Eq. (2) and retaining terms up to O(¢2), we obtain the potential energy
of the ith cell as:

2
kol & Vet —x)s,
Vi=~

2
2
o 4 fey(x; — xj)éxj u;

+ a—1
[x; = x;|%2

ARSI Ik/A I
|x; — x| 4

)
Jj==co Jj==co

By assuming a small I« and adopting a continualization process simi-
lar to [23,50], the discrete variables indicating the position and the dis-
placement of the particles, can be replaced by the corresponding con-
tinuum variables (x; — x, x; — s, u; — u(s)). The constant ky in the

J j
continuum limit can be defined as:

EA
ko= (6]
,

where E and A denote the Young’s modulus and cross-sectional area of
the equivalent 1D continuum, respectively. It follows that the constant
ko can be interpreted as the equivalent spring constant representing the
strength of the nearest-neighbor interaction forces of a lattice that sim-
ulate the microstructure of a local solid (that is not affected by scale
effects). Further, we define the constants ¢; and c, in Eq. (3) as:

12 T

T U—a) 2T AC-ay) ®

where T'( - ) denotes the Gamma function. Note that the interparticle
interaction stiffness in Eq. (3) can be expressed directly without ¢; and
c9, which can be treated as merely book keeping parameters. From a
more mathematical perspective, the parameters c¢; and c, allow scaling
the contributions of both the first and second derivatives of the dis-
placement (5)1‘1_ u; and 63‘;“ ;, respectively) to the potential energy, hence
providing a better control on their relative strength (see Eq. (4)).
Under the above assumptions, the continuum limit of the discrete
sum in Eq. (4) is obtained to be the following integral representation

[51]:

2
v = EAlp | 1 /m Do)
2 * 201 —ay) J_o |x = s|™

2
T ©  D2u(s
+—= ! / Oy @)
4| 2rQ—m) J_g |x — s|2-!

where D7'(-) denotes the mth integer-order derivative with respect to the
spatial dummy variable s used in the convolution integral. The convo-
lution integrals in Eq. (7) match with the definition of fractional-order
Caputo derivatives with intervals on the real axis, that is x € (-0, c0)
[52]:

1 x D"u(s)
Cpny — / s d 8
—co Ux U I'(m— am) oo (X — S)a,,,—m+l § (8a)
—_1m o D™u(s)
Doy = =D s (8b)

- I'(m— am) x (s— x)am_'”‘"1 g

where 7°°C Dy"(-) denotes the left-handed Caputo derivative to the order
a,, and lower terminal at —oco, and fDZg‘(-) denotes the right-handed
Caputo derivative to the order «,, and upper terminal at co.

Using the above definitions of the left- and right-handed Caputo
derivatives, the potential energy density at a point x can be expressed
as:

Al, 2|2

N

U 2
I(x)= ©_E “l(;D:‘u—SDzu)]z+f[%(;D§2u+§D:§u)]2]

Riesz-Caputo derivative Riesz-Caputo derivative

®

Recall that, from Eq. (3), a; € (0, 1) and a4 € (1, 2). The above linear
combinations of the left- and right-handed Caputo derivatives are typi-
cally referred to as the Riesz-Caputo (RC) derivatives. The total potential
energy of the structure can now be expressed as:

© 1 [ —o \2 1 3 —a \?
1/=/ l'I(x)Adx:z/ EA [(DX u) + 5 (D) ]dx (10)
—00 —00

where Bzm(-) denotes RC derivatives. The over bar [] is used to indicate
that the RC derivative in Eq. (10) is defined on the real axis, so to
differentiate the notation from the RC derivatives defined over bounded
domains in Section 3. We merely note that the RC derivative used in the
above equation is different from the concept of Riesz derivative defined
using sets of Fourier and inverse Fourier transforms [52].

As evident from Eq. (10), the strain in the continuum limit of the in-
finite lattice structure subject to power-law decaying long-range interac-
tions can be modeled using the RC derivative of the displacement field to
the order «; € (0, 1). The second term within the integral in Eq. (10) can
be interpreted as the fractional-order gradient of the strain field. This is
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evident by considering the following composition: BZzu = Ezz_al (5:] u).
It follows that we could define a new order @, = @, — a,. Recall that we
have assumed a, — @; € (0,1) in Eq. (3). In order to avoid the introduc-
tion of new symbols, we will drop the overline and denote «, = a,, with
the understanding that a, now lies in the range (0,1). Thus, the total
potential energy can be expressed as:

o0 —a 12 —y [(—a
u:%/ EA[( D' )2+Z*[ b7 (Dy'w) de (1)
—00 N—— \ J

Nonlocal

strain Nonlocal gradient

of nonlocal strain
While the specific range for the fractional-orders mentioned here are
obtained from mathematical definitions, we will obtain physical con-
straints on the range of these fractional-orders in Section 2.3.

Given the differ-integral nature of fractional operators, it appears
that the different fractional-order derivatives in Eq. (11) lead to a unifi-
cation of the classical integral and gradient based nonlocal approaches.
In fact, the expression in Eq. (11) presents clear insights and compar-
isons of the fractional-order formulation with both the classical integral
and the first-order strain-gradient formulation:

e The RC derivative with order «; captures softening effects in the
solid due to the nonlocal interactions. The order «; captures the
strength of the power-law kernel of the fractional derivative which
in turn determines the rate of decay in the strength of the nonlo-
cal interactions with distance. Further, the interval of the fractional
derivative (here chosen to be (—o0, 0)), determines the length of the
horizon of nonlocality. In other terms, it indicates the distance be-
yond which nonlocal interactions are no longer accounted for in the
fractional derivative [7,45].

From Egs. (4)-(7) it is seen that, for the lattice with long-range cohe-
sive interactions, the expression for the potential energy at a point
x includes contribution of the microstructural information (that is
the strain-gradient) of all points in the nonlocal horizon of x. This
is in addition to the nonlocal contribution of the strain energy cap-
tured by the RC derivative B:' u. It is immediate to see that the RC
derivative of the nonlocal strain with order a, captures the stiffening
effects in the solid. More specifically, analogous to classical strain-
gradient formulations, this term would account for the microstruc-
tural information within the strain energy potential. Furthermore,
the parameter l- that was initially introduced as the lattice parame-
ter can be interpreted as the microstructural length scale analogously
to classical formulations.

The above discussions lead to the conclusion that the use of the dif-
ferent fractional-order gradients allows the continuum model to cap-
ture simultaneously both long-range cohesive forces (leading to soften-
ing effects) as well as strain-gradient terms capturing microstructural
properties (leading to stiffening effects). A remarkable outcome of this
approach is that, not only it can capture both softening and stiffening
effects in a single formulation, but it can account for these effects si-
multaneously. Note that the first-order strain-gradient theory for the 1D
continuum can be obtained from the above formulation by using a; =1
and a, = 1. Following the above discussion, we call a; as nonlocal-strain
order and «, as the strain-gradient order.

The kinetic energy of the 1D solid can be evaluated similar to classi-
cal integer-order formulations. Note that the introduction of nonlocality
through the long-range spring connections has no effect on the expres-
sion for kinetic energy. It follows that, in the continuum limit, the kinetic
energy of the above described 1D solid is given as Metrikine and Askes
[23], Polyzos and Fotiadis [50]:

1 [® 2 2
T=§/ pA(D}u)2+p'A§[Dl(Dtlu)] dx (12)

where D!(-) denotes the first integer-order derivative with respect to
time, p is the density, and p’ is the microdensity of the solid that has the
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same interpretation as in classical integer-order strain-gradient models.
A possible extension of the fractional-order continuum theory developed
above involves the use of time fractional derivatives within the kinetic
energy as:

oo 2
1 ) U 2
T=3 /_m [pA(gD;‘u)z +hAS [DL(§ DFu)]” | dx 13)

where OCD;“ u is a left-handed Caputo derivative with order « € (0, 1) and
defined on the interval (0, t). This will allow the fractional-order model
to capture memory effects and non-conservative dissipation mecha-
nisms, such as those encountered in viscoelastic materials. Such a for-
mulation can be found in Ansari et al. [53] where the nonlinear response
of viscoelastic nanobeams have been captured by using time fractional
derivatives. However, unlike our study, size-dependent effects in Ansari
et al. [53] were modeled using the classical first-order strain-gradient
formulation. Since memory effects and dissipation have already been
addressed in the literature, in this study we focus on the modeling of
nonlocal effects in non-dissipative solids using space fractional deriva-
tives.

The above presented formulation deserves some additional remarks.
First, the expression of the potential energy in Eq. (10) allows for an
important remark on the range of the different fractional orders. It ap-
pears that, by adding additional higher-order power-law decaying terms
(for example, 1/|x; j|a§ with a3 € (2, 3)) to the definition of the spring
stiffness in Eq. (3), we can account for successive higher-order frac-
tional strain gradients. As an example, upon including 1/ |xij|“§, we
would obtain the fractional-order equivalent of the classical second-
order strain-gradient elasticity theory. In this study, we focused only
on the fractional-order modification of the classical first-order strain-
gradient formulation and hence, we have ignored higher-order power-
law decaying terms in Eq. (3).

Second, note that the definition of the spring stiffness in Eq. (3) leads
to k; ; = k; ;. This ensures that the internal state of the lattice cannot be
changed following a translation of all the particles by the same distance.
While this is sufficient to ensure frame-invariance of the 1D continuum,
the extension to a full 3D model would require the satisfaction of frame-
invariance under rotations as well. It is also important to note that the
potential energy of the nonlocal 1D solid consists of Caputo derivatives
and not other types of fractional derivatives (e.g. Riemann Liouville).
Recall that the Caputo derivative of a constant function is zero, as for
classical integer order derivatives. This property does not hold true for
all definitions of fractional derivatives [52]. However, in the context
of frame-invariance, this is a key point that ensures that no strain is
accumulated in the 1D solid under translation, that is for a constant
u(x).

Finally, we highlight that it is possible to envision different routes
for the development of the fractional-order continuum model. As an ex-
ample, a possible route to develop the fractional-order continuum for-
mulation can start from more complex and higher-dimensional lattice
structures similar to [54,55]. In such a case, the resulting fractional-
order continuum formulation would capture the information of addi-
tional lattice interactions via a higher number of material constants. It
follows that the specific functional form of the fractional-order operator
would be different from the definition adopted in this study (Eq. (9)).
Nevertheless, the overall procedure to obtain the continuum limit of the
lattice and all the subsequent analyses would still apply in an identical
form. Hence, the general methodology presented in this study is ap-
plicable to other types of molecular models, provided that appropriate
functional forms of the fractional operator are obtained. In this regard,
we emphasize that the selected 1D lattice used in this study was inten-
tionally chosen to yield a simplified mathematical structure, so to focus
on the ability of the fractional-order operators to capture the long-range
forces at molecular level as well as the microstructural properties in a
cohesive and physically consistent manner.
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2.2. Governing equations for the 1D continuum

We derive the dynamic governing equations of the 1D structure by
using Hamilton’s variational principle:

i g A [® —a 2 — (—a| 2
6(1/‘—T)dt=/ B —/ ED, 'u?+ ZE|D (D,
/,U ' [2 . [ YTy [ ( “)]
1,32 /lz 1(pl,\1?
—p(D}uy* — p g[Dx(Dtu)] dx [dr (14

Performing variational simplifications, the governing equation is ob-
tained as:

—2a 12 (e +ay) 5 ,lf 270
E|D, u- D, u =pD,u—p§Dx(Dtu) (15)
A detailed derivation of the above equations is provided for a 3D
bounded continuum in the Supplementary Information (SD).

Recall that capturing dispersive wave propagation is one of the main
motivation promoting the development of gradient elasticity in classi-
cal elastodynamics. As discussed in detail in Askes and Aifantis [19],
the use of “unstable” (integer-order) strain-gradients is critical in cap-
turing wave dispersion, however, in the static sense, “unstable” strain-
gradients result in non-convex potential energies leading to the loss of
uniqueness in static boundary value problems (BVPs). In the classical
analogue of Eq. (15), a positive (negative) sign of the strain-gradient
term corresponds to an unstable (stable) strain-gradient. While the com-
bined used of these gradient terms is generally avoided because one of
the two terms will always tend to predominate, this issue is circum-
vented by using a combination of stable (integer-order) strain-gradients
and acceleration gradients (see, Georgiadis et al. [22], Metrikine and
Askes [23]) which allows for dispersive wave propagation while en-
suring a well-posed BVP. A detailed discussion on this aspect can be
found in Askes and Aifantis [19], where a combination of different stain
and acceleration gradients! is studied to arrive at theories which are
well suited for both static and dynamic applications. To this regard, we
highlight that the fractional-order strain-gradient formulation provides
a natural way of dealing with this issue without the need of additional
stabilising acceleration gradients. Note that the potential energy given
in Eq. (11), resulting from the fractional-order formulation, is quadratic
in nature and hence fully convex. Additionally, it is established in Pat-
naik et al. [45] that the fractional-order operators are self-adjoint and
the resulting formulation leads to well posed BVPs. Further, the specific
form of the spring strength given in Eq. (3) indicates that the stiff-
ness of the structure exhibits dependence on wavelength and hence,
the fractional-order formulation, obtained via continualization of the
Lagrangian of the 1D lattice, is well suited to capture anomalous dis-
persion characteristics (Section 2.3). Further, we will establish in the
following Section 2.3 that the fractional-order formulation is causal and
stable.

2.3. Dispersion analysis of the 1D continuum

To obtain the dispersion relation, we substitute in the fractional-
order elastodynamic equation given in Eq. (15) the following ansatz:

u(x, 1) = uge'kx=on (16)

where uy is the amplitude of the longitudinal wave, k denotes the wave-
number, w denotes the angular frequency of free longitudinal vibra-

1 Different researchers have used different terminology (acceleration-gradient
or velocity-gradient) to refer to the term D*(D?u). We believe that both the
terminology are appropriate since the term appears as an acceleration gradient
in the strong form and translates to a velocity gradient in weak form. In this
study, following [19], we refer to it as the acceleration gradient.

International Journal of Mechanical Sciences 189 (2021) 105992

tions, and i = \/—1. For the RC derivatives on the real line used in
Eq. (13) [52]:

D% (") = ket (7

Using the above RC derivative of the exponential, we obtain the com-
plete form of the dispersion relations for longitudinal waves in the 1D
solid as:

1
1 -1
2]2 /72
o _ E —j20 2 =) i2(01+“2)k2(01+"2*1)[_* 1+ ﬂkQ (18)
k p 4 3p

Using Euler’s formula, the above equation can be recast in the following
manner:

=18

2
=z = < — cos(a; k2D + cos(2(a; + az)zr)kz(“l*'“rl)%*)
- ey -1 . 2 1 Z\]:
+ i< — sin(a; )X 4 sin(2(a + ay) )k o2~ )Z ) 3

172 -1
P
1+ —k

————
¢

19)

Expressing w = Zk, stable and causal solutions are recovered when
R(Z) > 0and J(Z) < 0. Note from Eq. (16) that R(Z) > 0 would lead to
forward propagating solutions ensuring causality, while §(Z) < 0 leads
to attenuation hence ensuring stability. Thus, it appears that the com-
plex number Z must lie in the fourth quadrant of the Argand plane or,
equivalently, Z2 must lie below the real-axis of the Argand plane. It im-
mediately follows that the quantity b = $(22) in Eq. (18) must be less
than or equal to zero for all values of k and I-. The latter condition holds
true for all positive values of the wave-number k and microstructural
length I under the following restrictions for «; and a,:

aj,a, €[0.5,1] (20)

Under the above condition, sin(a;z) > 0 and sin(2(e; + a,)7) < 0, en-
suring that b < 0 for all positive values of k and L. It follows that, in
this study, we only consider values of the fractional-orders which lie
in [0.5,1]. Under the above conditions, the R(Z) would contribute to
anomalous wave-number dependent dispersion in the propagating lon-
gitudinal waves while §(Z) would lead to attenuation in the propagating
waves.

Note that the term indicated by ¢ in Eq. (19) appears from the in-
clusion of the acceleration gradient term in the governing equations. As
discussed in Askes and Aifantis [19], Sidhardh and Ray [56], the inclu-
sion of the acceleration gradient term prevents an unbounded growth in
the wave speed following an increase in the wave number. We merely
note that, given the attenuation in the wave speed, the inclusion of the
acceleration gradient term is no longer necessary in the fractional-order
formulation. To this regard, note that ignoring the term ¢ would cause
the dispersion as well as the attenuation in the longitudinal wave speeds
to exhibit a power-law dependence on the wave-number. This is a direct
consequence of the power-law nature of the strength of the long-range
interactions. Remarkably, several studies have highlighted a power-law
dependence of the attenuation-dispersion relations on frequency/wave-
number in many types of lossy and highly scattering media, including
fractal and porous materials, and animal tissues [47-49]. It follows that,
in this study, we will neglect the acceleration gradients and focus on
modeling media with power-law attenuation-dispersion behavior. An-
other particularly interesting outcome of the above formulation is that
the dispersion and attenuation form a Hilbert pair, ensuring that the
dynamic formulation is fully causal [7,47,48].
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Fig. 2. (a) Schematic indicating the infinitesimal material dX and spatial dx line elements in the nonlocal medium subject to the displacement field u. (b) Horizon
of nonlocality and length scales at three different material points X;, X,, and X; in a 2D domain. Note that in the X direction, X, has a horizon of nonlocality equal
to [; on both the left and the right sides, while the horizon of nonlocality at the points X; and Xj are truncated to l} such that l; <y, on the left and the right sides,
respectively. Clearly, the nonlocal model can account for a partial (i.e. asymmetric) horizon condition that occurs at points close to a boundary or interface.

3. Extension to 3D continuum

The previous section used a 1D framework to illustrate the remark-
able features of the fractional-order formulation. In this section, we ex-
tend the formulation to a fully three-dimensional and finite solid. The
governing equations for the 3D continuum are derived using Hamilton’s
variational principle. We highlight here that, although the 3D formula-
tion presented in the following is developed by continualization of the
1D lattice, the same formulation can also be derived from a continuum-
mechanics approach by considering different configurations of a nonlo-
cal solid, as illustrated in Patnaik and Semperlotti [7]. More specifically,
the 3D formulation developed in this study via continualization princi-
ples can also be obtained from the fractional-order continuum formula-
tion presented in Patnaik and Semperlotti [7] by adding fractional-order
strain-gradient terms to the constitutive relations. To this regard, note
that the continualization route adopted in this study motivates the need
of a fractional-order approach to capture both stiffening and softening
effects within a single formulation.

3.1. Weak formulation

The potential energy derived for the nonlocal 1D continuum in
Eq. (11) is extended to a 3D continuum in the following manner:

‘l/'=l/[e:C:€+11:G:n]d\/ 21)
2 Ja

where C denotes the classical fourth-order elasticity tensor and G is the
sixth-order elasticity tensor. € and n denote the fractional-order strain
and its gradient, respectively. The volume of the 3D continuum is de-
noted by Q and dV denotes an infinitesimal volume element. Note that
the total potential energy is positive definite for positive definite mate-
rial elasticity tensors.

The infinitesimal strain in the 3D nonlocal continuum is obtained by
extending the 1D nonlocal strain indicated in Eq. (11) as:

€= 3(VIU +VUL) = 5 (Vi + ¥ @)

where U(X) = x(X) — X and u(x) = x — X (x) are the displacement fields
in the Lagrangian (X) and Eulerian (x) coordinates, respectively (see
Fig. 2(a)). V¥ () (a,, € {a;,a,}) is the RC fractional gradient operator
defined as:

Von(-) = DY ()% + Dy ()9 + D" ()2 (23)

where {Z%, y, 2} are the Cartesian basis vectors. D:;_"(~) are the RC frac-
tional derivatives which will be defined in the following. We empha-
size that the above definition for the strain tensor can also be derived
rigorously following a continuum mechanics approach, starting from
a fractional-order definition of the deformation gradient tensor (see
[7,45]). Further, the fractional gradient of the nonlocal strain is defined

as:
n=V=Ze (24)

It follows that the constitutive relations for the Cauchy stress and the
higher-order stress, in terms of the work-conjugates e and #, can be
expressed as:

c=C:¢€ (25a)

t=G:n (25b)

While the RC fractional derivatives used for the infinite 1D solid in
Section 2 were defined on the real axis, these derivatives are modified
for bounded domains to ensure frame-invariance everywhere on the do-
main and a complete kernel when approaching boundaries [7,45]. Note
that completeness of the kernel in nonlocal elasticity is critical to ensure
well-posed problems and stable numerical implementations. The space-
fractional derivative D';('” w(X,t) (m € {1, 2}) of the function y(X, ¢t)
(=U(X,1) or e(X, t)) in Egs. (22)-(24) is taken according to a RC defini-
tion with order a,, € (0.5, 1) defined on the interval X € (X 4, X ) € R3.
The RC definition for this bounded domain is defined as a linear combi-
nation of the left- and right-handed Caputo derivatives in the following
manner [7]:

I . .
DYy(X.n) = 3T -a| Ly DYy - L™ DY w(X.n)]
(26a)

1 -1 -1
DY wi(X,n = 5T2 - ay) [L';*;’ ij DY (X, 0Ly £ DY V/i(X,t)]
J

(26b)

where, XS D"y (X, 1) and f(D;"B w(X,1) are the left- and right-handed
Caputo derivatives of y (X, t) respectively. In the indicial expression in
Eq. (26b), L 4, and L B, are length scales along the jth direction in the
reference configuration. The index j in Eq. (26b) is not a repeated index
because the length scales are scalar multipliers. In the current configu-
ration, these length scales are denoted as / 4 and / B, The interval of the
fractional derivative (X,, Xp) defines the horizon of nonlocality which
is schematically shown in Fig. 2 for a generic point X € R2. This in-
terval defines the set of all points in the solid that influence the elastic
response at X or, equivalently, the characteristic distance beyond which
information of nonlocal interactions is no longer accounted for in the
derivative.

Recall that the use of Riesz-Caputo derivatives ensured a frame-
invariant model for the 1D continuum. The analysis of frame-invariance
is necessary for the fractional-order approach because the integration of
the nonlocal behavior occurs via the kinematic (strain-displacement) re-
lations (see Eq. (22)). Under this assumption, frame-invariance is not
automatically guaranteed. This is contrary to integer-based approaches
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to nonlocal elasticity (regardless if in strain- or stress-driven form) which
are based on a classical continuum mechanics framework and there-
fore, automatically satisfy the concept of frame-invariance in a classical
sense. Thus, it is essential to establish that the state of stress is not al-
tered by rigid body motions of either the solid or of any observer. The
frame invariance was rigorously established in Patnaik and Semperlotti
[7]1 where it was shown that either a rigid rotation or translation of
the solid does not alter the state of strain (or stress) in the solid. As

discussed in Patnaik and Semperlotti [7], the terms %1’(2 - a,,), LZ@_I,
J

and L';’fl are critical to ensure the frame-invariance of the 3D formula-

tion. FL{rther, the length scales must satisfy the conditions L, = X — X 4
and Lz = X — X. Hence, it follows that the length scales, L 4 and L B
physically denote the dimension of the horizon of nonlocality to the left
and to the right of a point X along the jth direction. The length scales
have been schematically illustrated in Fig. 2(b). The introduction of the
different length scales (L, and Lp) also enables the formulation to deal
with possible asymmetries in the horizon of nonlocality (e.g. resulting
from a truncation of the horizon when approaching a boundary or an
interface). Note also that the length scale parameters ensure the dimen-
sional consistency of the formulation.

A key aspect in nonlocal integral formulations is the nature of the
kernel when approaching the boundaries. To this regard, we highlight
that the definition of the RC derivative in Eq. (26) ensures the complete-
ness of the power-law convolution kernel within the fractional-order
derivative. Note that the lower terminal is X, = X — L, and the up-
per terminal is Xz = X + L. This definition allows the length scales
L, and Lg to be truncated when the point X approaches a boundary
(see Fig. 2(b)). It follows that the terminals of the RC derivative are
properly modified hence resulting in a complete kernel over the trun-
cated domain. We highlight that this truncation of the terminal of the
RC derivative (or, the horizon of nonlocality) is analogous to the modifi-
cation of the potential energy in lattice mechanics, where contributions
from missing bonds for atoms close to boundaries are removed [55].

The completeness of the kernel can also be established by investigat-
ing the nature of the fractional-order model at points on the boundary,
that is when either L 4, >0o0r Ly —0. As established in Patnaik and
Semperlotti [7], Patnaik et al. [45], for a material point (say X)) located
on one of the boundaries (identified by the normal in the jth direction),
for the limiting case when L 4,0 the RC fractional derivative reduces
to:

lim D"y (Xt 27
LAI/{I() x, Vil ) 27
1
1 dy; (X, 1) a1 X5 DS/Wi(S’ )
=5 ——lx, +U-g,)Ly / ———dS,
2 dx; ' x, (S; = X;)m
|

Local effect due
to truncation of
nonlocal horizon
<
Removal of non-
existing bond energies
in lattice mechanics

Remaining nonlocal interactions

where S; is a dummy vector variable used to carry out the spatial con-
volution integral. From Eq. (27) it is immediate to observe that while
the right-handed Caputo derivative captures nonlocality ahead of the
point X, (in the jth direction), the left-handed derivative is reduced to
the classical first-order derivative. This result suggests that the trunca-
tion of the nonlocal horizon (and the corresponding convolution) at the
boundary has been accounted for in a consistent manner analogous to
the approach used in molecular models [55]. Similar expressions hold
when L B, =0 and for the deformed configuration (/ 4, =0o0rlp = 0).
The above discussions on the frame-invariance of the formulation
and on the nature of the kernel close to material boundaries establish
both the completeness and consistency of the fractional-order contin-
uum formulation. It remains to obtain the expressions for the kinetic
energy of the continuum and the work done by externally applied forces.
The work done by external forces is defined analogous to classical for-
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mulations of gradient elasticity as:
V= /(E‘u)d\/+/ (i~u+a~ﬁ-(u®V”‘))dA+?£(;~u)dl (28)
Q oQ r

where dA and dl indicate area and line elements along the surface 0Q
(with normal #) and edge T of the solid, respectively. The bar on T’
symbol in the above equation, is used to differentiate the same from the
I'( - ) function and the symbol ® denotes the dyadic product. b, 7, §,
and r are the prescribed values of body force per unit volume, surface
traction per unit area, double stress traction vector and line load along
sharp edges of the continuum, respectively. Finally, recalling that the
introduction of nonlocality has no effect on the expression of the kinetic
energy, we can write:

r=1 / p(it - w)dV (29)
2 Jo

where p indicates the density of the solid and [] indicates the first
integer-order derivative with respect to time. By using the Hamilton’s
principle and the expressions of the potential energy, kinetic energy, and
work done by external forces, the weak form of the governing equations
for the 3D continuum are expressed as:

5]
/ (U =6V =6T)dt =0 (30)
il

3.2. Strong formulation

The strong form of the fractional-order governing equations are
obtained by applying the fundamental law of variational calculus to
Eq. (30). Analogously to classical integer-order formulations, the pro-
cedure to obtain the strong form for 3D domains involves the use of
different principles of vector calculus. To this regard, note that frac-
tional vector calculus principles have been recently developed and do
not hold true for a general bounded geometry [57]. This aspect can be
attributed to the fact that fractional-order operators (i.e. derivatives or
integrals) do not generally commute, except when defined on the real
axis [52,57]. However, we will show that the variational statement in
Eq. (30) can be exactly simplified when considering a cuboidal (or,
rectangular) geometry. It can also be envisioned that, the strong form
derived assuming a cuboidal geometry will also be applicable for ge-
ometries wherein the surfaces/edges can be exactly represented or even
approximated by using rectangular/line elements. Although the strong
form requires the simplified cuboidal geometry, we emphasize that the
weak form in Eq. (30) is applicable to any geometry.

Considering the cuboidal geometry Q illustrated in Fig. 3, the first
variation of the potential energy is obtained as:

SU = —/Q v (0‘—€w2 ~r) - SudV+ faQ [I;_al . (0' -v* -1)
1

(R (17 ) @] owaa+ + fo [T @] e 1)
A+ (5u® V)] dA+ f HI;’“' e ‘r)“ - Sudl
The detailed derivation of the above governing equations is provided
in the SI. In Eq. (31), the tensor R is the projector onto the surface
0Q, m is the co-normal vector at the edges and [[ - 1] operator denotes
difference of the argument across both sides of the edge I'. For smooth

edges (for example, a cube with filleted edges), the line integral vanishes
analogous to classical formulations [58]. R and 7 are given as:

R=1-i®n (32a)

m=8AR (32b)

where § is a unit vector tangent to the edge T and A denotes the exterior
product. The operator I ;_“’”(J is defined as:

1- 1- N I=p , | o 1=ty \a
1) = n LT OF 4, L, OP +n 1 ()2 (33)
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Fig. 3. Schematic of the cuboidal domain (Q) illustrating the different geomet-
rical parameters. The surface of the cuboid is given as 0Q = 9Q, U0Q, UIQ,,
where 0Q, denotes a surface with its normal oriented along the positive or
negative %, axis. The edges of the cuboid are denoted by T =T U I_“y uT,. l_"xA

denotes the edges of the surface 9Q, oriented in the anti-clockwise sense with
respect to the normal to the surface.

such that i = n,X + n,y + n_2. The same definition directly extends to
the operator I 'l;l_”’"(-) that appears in Eq. (31). Further, ];j_a"'(~) is a
Riesz integral operator defined in the following manner:

1- 1 -1 1- -1 1-
Ix/ a'")( = 5[‘(2 -a,) [l‘;':’ (X/_[Bj IX,‘ aml’) + IZ’;' < i m 1>:| (34)

Xjoxi+ly.
Joxjtla;

where x; = x, x, = yand x; = z. I;j_a’”;( and XJII_"’” 7z are the left

x;—=lp. ;
JT'B; xj+lAj

and right Riesz integrals (in the x; direction) to the order «,, of an arbi-
trary function y. Further, the gradient operator denoted by V"(yisa
Riesz Riemann-Liouville gradient (analogous to the RC gradient V% (-)
in Eq. (23)) containing Riesz Riemann-Liouville derivatives instead of
RC derivatives. More specifically,

V() = D3+ DY ()5 + DI ()2 (35)

where Q)i;"(-) is the Riesz Riemann-Liouville derivative of order ay,
which is defined as:

ay  _ 1 =1 RL 1@ @u=1 ( RL 1y
oy = ;Te- am)[zgj <x,—lg, DY x) ~ 15 (Xj L (36)

am

i1, X are the left- and right-handed Rie-
A

where xjf,’;jL D"y and ot
mann Liouville derivatives of y to the order ay, in the x; direction.
Note that the Riesz fractional derivative @i;”(-) and the Riesz fractional
integral I i;“’”() are defined over the interval (x; —/ B X+ I} Aj) unlike
the RC fractional derivative Dy”(-) which is defined over the interval
(xj =l x; +1p) This change in the terminals of the interval of the
Riesz Riemann-Liouville integral and derivative follows from the varia-
tional simplifications (see SI).

The first variation of the external work done follows directly from
Eq. (28) as:

oY = /(Z 5u)d\/+/ (t-6u+q- ﬁ-(&u@V“l))dA+§Z{(7- ouydl (37)
Q oQ r
Further, the first variation of the kinetic energy is obtained as:
oT = —/ pii - 6udV (38)
Q

Now by using the extended Hamilton’s principle in Eq. (30) and apply-
ing the fundamental theorem of variational calculus, the elastodynamic
governing equations for the 3D nonlocal continuum are obtained as:

] o* " .
V' (6-V -1)+b=pii VxeQ (39
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Fig. 4. Schematic of the beam illustrating the different geometric parameters.
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The associated boundary conditions are obtained as:

~a

L (o=¥"r) = [R: (17 )@ ¥ ] =7 or u=7 Vxeon

(40a)
[I:.l_a2®n] c1=G or A-(Gu@V™)=A-(E® V™) VxeIQ (40b)

[[1;’“1 ake ~1)H =7 or u=u Vxel (40c)

Note that the natural boundary conditions are nonlocal in nature.
This is similar to what is seen in classical integral approaches [3,12].
The nonlocal nature follows from the nonlocal definition of the consti-
tutive relations given in Eq. (25). It follows that the surface tractions
depend on the response of a range of particles, hence leading to nonlo-
cal boundary conditions. The partial horizon at the point X3 in Fig. 2)
serves as an example to illustrate the nonlocal nature of the boundary
condition. We anticipate that the nonlocal nature of the natural bound-
ary conditions does not concern us immediately as we will solve the
above system of equations using a finite element (FE) technique. Recall
that natural boundary conditions are implicitly satisfied when obtaining
the solutions using FE techniques and are accurate up to the order of the
specific finite element. Additionally, the following initial conditions are
required to obtain the transient response:

su=0 and 6u=0 VxeQatr=0 (41)

Given the complex nature of the fractional-order governing equations
and the associated boundary conditions, they do not generally admit
closed-form analytical solutions. Consequently, numerical methods be-
come indispensable to simulate the above governing equations. This is-
sue is typical also of classical strain-gradient or integral nonlocal ap-
proaches, which typically are solved via numerical techniques [19].

In the following, we will use the fractional-order continuum formu-
lation developed above to analyze both the static and the free vibration
response of slender nonlocal structures, including a Timoshenko beam
and a Mindlin plate. We will demonstrate that the fractional-order con-
tinuum model is able to capture both stiffening and softening effects
depending on the values of the parameters involved in the fractional for-
mulation. Numerical solutions will be obtained by using an adapted ver-
sion of the fractional-order FEM (f-FEM) developed in Patnaik et al. [44],
45] for fractional-order nonlocal BVPs. Note that the f-FEM is obtained
by discretization of the Hamiltonian of the system using an isoparamet-
ric formulation. Hence, we only provide the weak form of the governing
equations for the Timoshenko beam and the Mindlin plate. The strong
form of the governing equations for both the beam and the plate can be
easily obtained following the detailed derivation of the 3D governing
equations outlined in the SIL

4. Application to Timoshenko beams

We start analyzing the fractional-order continuum model by consid-
ering its application to a Timoshenko beam. A schematic of the unde-
formed beam along with the chosen Cartesian reference frame is illus-
trated in Fig. 4. The top surface of the beam is identified as z = h; /2,
while the bottom surface is identified as z = —h; /2. The width of the
beam is denoted as by. The domain corresponding to the mid-plane of
the beam (i.e., z =0) is denoted as Qr, such that Q; = [0, L] where
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Ly is the length of the beam. The domain of the beam is identified by
the tensor product Q; ® [—by /2, by /2] @ [—hy /2, hy /2]. The subscript T
indicates that all the above dimensions correspond to the Timoshenko
beam.

For the Timoshenko beam, analogous to the classical case, the axial
and transverse components of the displacement field denoted by u(x, y,
z, t) and w(x, y, 2, t) at any spatial location x(x, y, 2) are related to the
mid-line displacements of the beam in the following manner:

u(x,y,z,t) = uy(x, 1) — z0y(x, 1) (42a)

w(x,y,z,1) = wy(x, 1) (42b)

where uy and w, are the mid-plane axial and transverse displacements
of the beam, and 6, is the rotation of the transverse normal of the beam
about the y axis. In the following, for a compact notation, the functional
dependence of the displacement fields on the spatial and the tempo-
ral variables will be implied unless explicitly expressed to be constant.
Based on the above displacement fields, the non-zero strain components
in the Timoshenko beam are evaluated using Eq. (22) as:

« = D{'ug — 2Dy 6, (43a)
1
€z =73 [D3 wy — 6] (43b)

The strain-gradients developed in the beam are obtained using
Eq. (24) as:

Nxxr = l)lrl2 [D:] Uy — ZD:] 0()] (443)

1
Naer = D23 [DE iy = 6] (44b)

where r € {x, y, z}. Specializing the above expressions, the following
strain-gradient components are obtained exactly:

Mxxz = D2* [ DY ug] = D2 [2D51 6] = —Di' 0y (452)
eee = 5 [0 [DX ] - D20y] = =3 D6, (4sb)
ezz = 3 (D22 [D5 ] - DE26y) =0 (@5¢)

In the above simplification we have used that D3?[z] = 1, which is
exact and follows immediately from the definition of the RC deriva-
tive defined in Eq. (26). Further, assuming small displacement gradi-
ents (O(¢)), the strain-gradient #,,, is 0(¢2) while the strain-gradients
in Eq. (45) are either O(¢) or exactly zero. Hence it appears that, for the
normal strain ¢,,, the transverse strain-gradient #,,, is significant when
compared to the axial gradient 7. Conversely, for the shear strain e,,,
the axial gradient #,,, is significant while the transverse gradient #,,,
is exactly zero. Thus, when obtaining the response of the beam via the
weak form, the contribution of the strain-gradient #,,, can be ignored
when compared to the contribution of the non-zero strain-gradients in
Eq. (45). We have further justified this approximation in detail in the
SL

The first variations of the nonlocal potential energy, the work done
by externally applied forces, and the kinetic energy corresponding to
the Timoshenko beam assumptions are obtained as:

Ly
SU = [Nxan;” up + M, D% 6, + 0,..6(D™ wy — 6y)

+N,..6D" 0+ N . 6D ao] dx (46a)

by hy
Ly pZ T

5V = /0 / fT / fr [Fx6u0 +F15w0+M90590]dzdydx (46b)
T2 T
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{F,, F,} are the external loads applied in the axial () and transverse

(2) directions, respectively, and M, is the external moment applied

about the j axis. The axial stress resultant {N,,}, the shear resultant

{Q,;}, the moment resultant {M,, }, and the hlgher order stress resul-

tants {N,,, N ..} in Eq. (46a) are given as:

XXz

— z6) (81 — z66,) + I,bOSwO]dzdydx (46¢)

{ Xx? QXZ’ MXX’ NXXZ’ NXZX}
/br /h-r Oxxs KOyzs =203, = Tyxzs =K Tyzi Jdzdy (47

where Kj is the shear correction factor.

In the following, we briefly discuss the f-FEM method used to numer-
ically simulate the fractional-order system. The details of the f-FEM are
extensive and will not be reported here, but the interested reader can
refer to [44,45]. The f-FEM for the Timoshenko beam is formulated by
obtaining a discretized form of the first variation of the Lagrangian of
the beam. For this purpose, the beam domain Q = [0, L] is uniformly
discretized into disjoint three-noded line elements and the different frac-
tional derivatives that appear in Eq. (46a) are expressed as:

D! [uy()] = [Byy «(O1U) (48a)
D" [6(x)] = [By” (01U} (48b)
D 10g(x)] = 0 = 1B, (001 = (L 01| (V) (480)

where {U} denotes the global degrees of freedom vector and [L(%)(x)]
is obtained by assembling the element interpolation vectors for 6,. The
matrices [B &m ()] contain the fractional-order derivatives of the shape
functions used to interpolate the nodal displacement degrees of freedom
of the Timoshenko beam. A brief discussion on the details of these matri-
ces is provided in SI. By using the above expressions for the FE approx-
imation of the different fractional-order derivatives, the first variation
of the potential energy 6" given in Eq. (46a) is obtained as:

U = 5{U}T[/Q [Br(I" [STI[Br(0)1dQr [{U} = 6{U} [K1{U}  (49)

where [S7] is the constitutive matrix of the beam and [B;(x)] is given
as:

[Br(x)] = [[B“l I, (1B, 01 = W@l 1By Con”, [By: ol 1By ol |7

sgx

Contributions from the nonlocal strains Contributions from the nonlocal strain-gradients

(50)
The algebraic equations for the f-FEM are given as:
MU} + [Kr (U} = (Fr) (5D

where the stiffness matrix [K;] is indicated in Eq. (49). The expressions for the
force vector {F;} and the mass matrix [M;] follow directly from classical Timoshenko
beam formulations and are provided in SI. The solution of the algebraic Eq. (51) gives
the nodal displacement variables which can then be used along with the kinematic
relations in Eq. (42) to determine the displacement field at any point in the beam.
Note that the f-FEM also involves the numerical evaluation of the mass matrix, the
stiffness matrix, and the force vector. The procedure to numerically evaluate the
mass matrix and the force vector follows directly from classical FE formulations. The
stiffness matrix of the fractional-order nonlocal system requires the evaluation of
the different nonlocal matrices given in Eq. (50). Further, the attenuation function
in the fractional-order model involves an end-point singularity due to the nature of
the kernel [52]. The fractional-order nonlocal interactions as well as the end-point
singularity are addressed in detail in Patnaik et al. [44], 45]. We emphasize that the
numerical integration procedure presented in Patnaik et al. [44], 45] directly extends
to the evaluation of the stiffness matrix of the FE governing equations derived in this
study.



S. Patnaik, S. Sidhardh and F. Semperlotti
4.1. Static response

In this section, we analyse the static response of the Timoshenko
beam which was obtained by solving the static part of the fractional-
order FE algebraic equations in Eq. (51). In the following study, the
dimensions of the beam were fixed to be Ly = 1 m, by = 0.1 mand h; =
0.05m (= Ly /20). The simplified constitutive relations proposed in Lazar
et al. [59] were used in this study:

U= %Cijkleijekl + %Iicijmnrlmnk”ijk (52
The material was assumed to be isotropic with an elastic modulus
E = 30 GPa, Poisson’s ratio v = 0.3 and density p = 2700 kg/m?3. Further,
we have assumed a symmetric and isotropic horizon of nonlocality for
points sufficiently inside the domain of the beam, thatis/, =1z =1,.
For points located close to a boundary, the length scales are truncated
as shown in Fig. 2. Using the above material properties, we analyzed the
effect of the following fractional model parameters: nonlocal strain or-
der (ay), strain-gradient order (a5), nonlocal horizon length (lf) and mi-
crostructure length (I+), on the static response of the Timoshenko beam.
We merely note that the Young’s modulus E and the Poisson’s ratio v
chosen above correspond to a general class of soft metals (e.g. lead).
Given the linearity of the problem and the fact that results will be pre-
sented in a normalized form, the choice of specific elastic constants is
quite immaterial for the interpretation of the results.

Although the numerical results presented below for Timoshenko
beams (and later, for Mindlin plates in Section 5) are obtained for
isotropic materials with simplified constitutive relations [59], the for-
mulation is general and can account for additional material constants
via the material elasticity tensors C and G (see Eq. (21)). A detailed
discussion on the appropriate number of material constants necessary to
capture accurately the response of complex multiscale materials can be
found in Capecchi et al. [54], which outlines the Voight’s and Poincaré’s
approach to multiscale modeling. It follows that the simplified constitu-
tive relations does not limit the possibility of this study to use more gen-
eral continuum constitutive relations. Hence, while the use of additional
material constants would definitely extend the capability of the model
in dealing with more complex materials, the fundamental approach and
formulation remain unchanged.

We analyzed the static response of the beam subject to a uniformly
distributed transverse load (UDTL) of magnitude F, = 107 N/m for two
different kinds of boundary conditions: (1) clamped-clamped (CC), and
(2) simply supported at both ends (SS). For each boundary condition,
we obtained the response of the beam for the following different cases:

e Case 1: the fractional-orders a; and a4 were varied within the range
[0.7,1] for fixed values of the nonlocal horizon length /, = 0.5 m (=
Ly /2). For this case, the microstructural length was chosen as /, =
0.005 m (L /200) for the CC beam and /,, = 0.002 m (L /500) for the
SS beam.

e Case 2: the horizon length I was varied within the range
[0.1,0.5lm (= [L4/10, Ly /2]) and the microstructure length I was
varied in [0.002,0.01]m (= [L4 /500, L1 /100]), for fixed values of the
fractional-orders a; = a, = 0.8. Both orders were chosen in the frac-
tional range so to obtain more general conditions (see Fig. 7).

We emphasize that, while the choice of the different fractional-model
parameters were somewhat arbitrary, their specific value does not affect
the generality of the results. The range of the fractional-orders «; and a,,
was selected following the restriction in Eq. (20). The specific ranges for
land I were chosen in order to demonstrate the ability of the fractional-
order framework in capturing both stiffening and softening effects.

The numerical results, expressed in terms of the static transverse
displacement and corresponding to Case 1 for the CC beam and the
SS beam, are presented in Figs. 5(a) and 6(a), respectively. Similarly,
the results for Case 2 subject to either CC or SS boundary conditions
are provided in Figs. 5(b) and 6(b), respectively. The results presented
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for each case correspond to the maximum transverse displacement ob-
served in the beam at the mid point (wy(Ly/2)). To clearly visualize the
extent of softening and stiffening occurring in the beam, the maximum
transverse displacement was non-dimensionalized against the maximum
transverse displacement obtained for a classical Timoshenko beam in
the absence of both nonlocal and strain-gradient effects. More specif-
ically, the non-dimensional transverse displacement (w) for each spe-
cific boundary configuration, was obtained by dividing the maximum
transverse displacement of the fractional-order beam by the maximum
transverse displacement of the classical beam for the same boundary
condition. The maximum transverse displacement obtained for the clas-
sical CC beam was w, = 8.95 x 1072 m and for the classical SS beam was
wqy = 41.93 x 1072 m. Note that a higher value of the static displacement
with respect to the classical solution indicates softening of the structure,
while a lower value of the transverse displacement indicates a stiffening
of the structure.

As evident from Figs. 5 and 6, the fractional-order continuum for-
mulation is able to capture both stiffening and softening response of the
Timoshenko beam depending on the choice of the nonlocal parameters.
Note that the horizontal reference plane in black color denotes the non-
dimensional classical solution (w = 1). When the transverse displace-
ment is above this plane (w > 1) it indicates a softened response while,
values below the plane (w < 1) indicate a stiffened response. The results
presented for the different cases lead to the following conclusions on the
specific effects of the different fractional model parameters:

o Effect of a;: As discussed in Patnaik et al. [45], a decrease in the
value of a; leads to an increase in the strength of the power-law
kernel that captures nonlocal interactions across the horizon of non-
locality. Consequently, the resulting formulation exhibits a greater
degree of softening with respect to the classical response. Recall that
for a; =1 and /, = 0 (no microstructural effects), the classical local
continuum formulation is recovered from the fractional-order for-
mulation.

Effect of I recall that [ indicates the size of the nonlocal horizon,
thus by increasing the value of I the size of the horizon of nonlocality
increases. It follows that a larger number of points within the solid
is accounted contribute to the nonlocal interactions, thus the degree
of nonlocality increases and so does the degree of softening of the
structure.

o Effect of a,: Recall from Section 2.1 that the strain-gradient order a,,
captures the nonlocal effects of the strain-gradients. Thus, analogous
to a;, a decrease in the value of a, leads to an increase in the strength
of the power-law kernel that captures nonlocal strain-gradient con-
tributions across the horizon of nonlocality. Consequently, the result-
ing formulation would exhibit a softening with respect to the clas-
sical first-order strain gradient response. Note that for ¢; = 1 and
a, = 1, the classical first-order strain-gradient theory is recovered
from the fractional-order formulation.

Effect of L.: As evident from the discussion of the lattice structure in
Section 2.1, the microstructural length parameter I plays the same
role as in classical strain-gradient formulations. Thus, an increase in
the value of I+ leads to a stiffer response of the structure.

The effects discussed above are schematically summarized in Fig. 7,
which provides a visual representation of the resulting formulation as a
function of the different parameters.

4.2. Free vibration response

In the interest of a comprehensive analysis, we analyse the effect
of the different fractional model parameters on the natural frequency
of transverse vibration of the Timoshenko beam. The material proper-
ties chosen for this study are the same as those provided for the static
study in Section 4.1. The natural frequencies are obtained by solving the
eigenvalue problem:

[M7]7' [K71{U) = o {U} (53)
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Fig. 5. Non-dimensional transverse displacement at the center point of the Timoshenko beam subject to clamped-clamped boundary conditions. Results are obtained
via the fractional-order formulation. The response is parameterized for different values of (a) the fractional orders and (b) the length scales.
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Fig. 6. Non-dimensional transverse displacement at the center point of the Timoshenko beam subject to simply supported boundary conditions. Results are obtained
via the fractional-order formulation and parameterized for different values of (a) the fractional orders and (b) the length scales.

which is derived by assuming a periodic solution {U} = {U}e~"® to the
homogeneous part of the algebraic FE Eq. (51). In the above assumed
solution, w, denotes the natural frequency of vibration, and U is the am-
plitude of the harmonic oscillation. Similar to Section 4.1, we obtained
the natural frequencies of CC and SS beams for the two different cases:
Case 1 and Case 2. The results are presented in Figs. 8 and 9. Similar
to the static analysis, the natural frequency obtained for each case (@)
was non-dimensionalized against the natural frequency of a classical lo-
cal beam, which was found to be 53 Hz for the CC beam and 24 Hz for
the SS beam. Note that a lower value of the natural frequency (@, < 1)
with respect to the classical solution indicates softening of the struc-
ture, while a higher value of the natural frequency (@, < 1) indicates a
stiffening of the structure. Clearly, the results presented in Figs. 8 and
9 complement the discussion presented in Section 4.1, on the effect of
the different fractional-order parameters on the static response of the
beam.

5. Application to Mindlin plates

We extend the studies carried out in Sections 3 and 4 to develop
a fractional-order analogue of the classical Mindlin plate formulation
that captures both stiffening and softening response. A schematic of the
undeformed rectangular plate along with the chosen Cartesian refer-
ence frame is given in Fig. 10. The top surface of the plate is identified
as z = hy, /2, while the bottom surface is identified as z = —h,, /2. The
domain corresponding to the mid-plane of the plate (i.e., z =0) is de-

noted as Q, such that Q,, = [0, L,,]1® [0, B),] where L, and B, are
the length and width of the plate, respectively. The domain of the plate
is identified by the tensor product Q,, ® [—h,/2,h),/2]. The edges
forming the boundary of the mid-plane of the plate are denoted as
{Tp,.Tar, }- The subscript M indicates that all the above dimensions
correspond to the Mindlin plate.

For the Mindlin plate, following the coordinate system illustrated
in Fig. 10, the in-plane and transverse components of the displacement
field, denoted by u(x, y, 2, t), v(x, ¥, 2, t) and w(x, y, 2, t) at any spatial
location x(x, y, 2), are related to the mid-plane displacements of the
plate in the following manner:

u(x, y,z,1) = up(x, y, 1) = z0,.(x, y, 1) (54a)
v(X, y,z,1) = vo(x, y,1) = 20,(x, y, 1) (54b)
w(x,y,z,t) = wy(x, y,1) (54¢)

where uy, Vg, and w, are the mid-plane displacements of the plate along
the %, y, and 2 directions. 6, and 0, are the rotations of the transverse
normal about the § and % axes, respectively. In the interest of a more
compact notation, the functional dependence of the displacement fields
on the spatial and the temporal variables will be implied unless explicitly
expressed to be constant. Based on the above displacement fields, the
non-zero strain components in the fractional-order Mindlin plate are
evaluated using Eq. (22) as:
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Fig. 7. Schematic illustrating the effects of the different fractional-model parameters on the direction of softening or stiffening. In the above figure, S.G. denotes
strain gradient, and 7f and I, indicate the upper bound on the nonlocal horizon length and the microstructural length. The direction of the solid arrow lying on
a particular plane, indicates the direction of softening. It is immediate that the opposite direction would lead to stiffening. In each sub-figure, the combination of
parameters that would result in the stiffest and the softest solution is indicated by a six-edged star symbol (*) and a cross symbol ( x ), respectively. In (d) the fully
local solution is obtained at the corner indicated by a filled circular symbol.
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Fig. 10. Schematic of the rectangular plate illustrating the different geometric
parameters.
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1
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The strain-gradients developed in the plate are obtained using
Eq. (24) as:

Nxxr = Dy [Dug = 2D 0, (562)
fyyr = D2 [Dy vy — 2D310,] (56b)
ey = DI [3 (D51 + D vy = 2D 0, + D0, (560)
eer = D2 502wy - 0] (564)
e = D[P0 - 0] (56¢)

where r € {x, y, z}. While simplifying the expressions in the above equa-
tion, the following strain-gradients are obtained exactly:

fexz = D2 [D{'ug] — D2 [2D5 0,] = = D' 0, (57a)
nyyz = D:z [D;l UO] - DZZ [ZD;l Gy] = _Dzl 19y (57b)
1
Maye = 5 [D2[Dy uy + DY vy] — D2 [zDy' 6, + zDy'0,]]
(b)
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Fig. 11. Non-dimensional transverse displacement at the center point of the Mindlin plate clamped at all its edges for different values of (a) the fractional orders

and (b) the length scales.
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Fig. 12. Non-dimensional transverse displacement at the center point of the Mindlin plate simply-supported at all its edges parameterized for different values of (a)

the fractional orders and (b) the length scales.
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Fig. 13. Non-dimensionalized natural frequency of the Mindlin plate clamped at its edges parameterized for different values of (a) the fractional orders and (b) the

length scales.

=316, +D'0,) (570)
eee = 5 [DEIDS ) - DP0] =~ Do, 570
ey = 5 [P0 wg] = DP6,] = 2 D26, (57¢)
Meee = 5 [DE DY ) - DP0,] =0 570
e = 3 [D2ID ) - DP6,] = -1 D20, 579
ey = 3 [P LD} o) - D?0,] = =2 D0, (57h)
Nyoz = %[DZZ[D;I wy] - DF20,] =0 (579)

Assuming small displacement gradients (O(e)), the strain-gradient
terms except for those provided in Eq. (57) are O(¢2). Thus, analogously
to the arguments used in the development of the Timoshenko beam, for
the normal strains the transverse strain-gradients are significant when
compared to the in-plane gradients. When obtaining the solution via
the weak form, the contribution of the in-plane strain-gradients of the
normal strains can be ignored compared to the contribution of the non-
zero strain-gradients in Eq. (57). This observation can also be noted

from results presented in Jafari et al. [60], where it is shown that ig-
noring the transverse strain-gradients of the normal strains leads to a
significant change in the response of the structure, while the inclusion
of the in-plane strain-gradients of the normal strains does not lead to a
significant change in the response.

Using strains and strain-gradients in Egs. (55)—(57), the first varia-
tions of the potential energy, the kinetic energy and the work done by
externally applied forces are obtained as:

U = /QM [N, 6D% uy + N, 6D} vy + N,,6( Dy ug + DY vg) + M, D56,
+ M, 5D;'0, + M _6(D;'0, + D0,) + Q8D wy —6,)
+0,,6(D}'wy—0,)+ N, 6D 0, + N, 6D}'0,
+N,,.6(D}' 0, + D5'0,) + N . 6D, + N,.,5D}0,

Nxyz T xzx
+ N, 8D320,+ N,,,6D;20,]dQy,
(58)
5V = /Q [anuo + Fy60y + F.b1y + My 80, + M,,yaey]dQM (58b)
M

ol (g — 26,) (51 — 260, + (0 — 26,) (65, — 268,

[SIERNTE

IRV

+w06w0]dz}dQM (58¢)
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Fig. 14. Non-dimensionalized natural frequency of the Mindlin plate simply supported at its boundaries parameterized for different values of (a) the fractional orders

and (b) the length scales.

Note that dQ,, =dxdy for a rectangular plate. {F,, F,, F,} are
the external loads applied in the %, y, and 2 directions, respectively.
{M,_, ng} are the external moments applied about the y and % axes,
respectively. The different stress, moment, and higher-order stress re-
sultants in Eq. (58c) extend directly from Eq. (47).

The f-FEM for the Mindlin plates extends directly from the f-FEM
formulation briefly reviewed in Section 4. We also highlight that the
f-FEM for fractional-order Mindlin plates can also be found in Patnaik
et al. [44]. Thus, for the sake of brevity, we do not provide all the de-
tails but we highlight the additional contributions following from the
nonlocal strain-gradient terms. The expression for the stiffness matrix
corresponding to the f-FEM for the Mindlin plate is:

[Kyl= / [B s 1T [S 31 11B ()1dQy, (59
Qum

where [S),] is the constitutive matrix of the plate and the matrix [ B,,(x)]
is given as:

~ ~ ~ ~ ~ T ~ ~
[By (0] = [[B,fn[x(x)]T, (B: (oI, [[B;';,y(x)l + [B:n',x(xn] SEANCO NI ANC

T Contributions from the nonlocal strains .
[[B;;,Xu)] + [ﬁ;’;_y(x)]] ) e I CRTEY) | W [9: e ) B VAl e ) |

Contributions from the nonlocal strains

L85! oI B! T, [1B]) ol + 185! Gol|

Contributions from the nonlocal strain-gradients

By ol 1By (oI, 1By (ol [B;’f,y(x)]T]

Contributions from the nonlocal strain-gradients

(60)

The details of the fractional-order derivative matrices [E’E"ir(x)J can be found in
SI and [44].

5.1. Static response

In this section, we analyze the static response of the Mindlin plate
obtained via the fractional-order continuum formulation. For this pur-
pose, the in-plane dimensions of the plate were fixed to be L,; =1 m
and B,, = 1 m and the thickness of the plate was taken to be 4,, = 0.1 m
(= Ly /10). The simplified constitutive relations given in Eq. (52) were
used in this study. The material was assumed isotropic with an elastic
modulus E = 30 GPa, Poisson’s ratio v = 0.3 and density p = 2700 kg/m?>.
Further, we have assumed a symmetric and isotropic horizon of non-
locality for points sufficiently inside the domain of the plate, that is

1 ag = 1 By = I;,[0 € {x,y}. For points located close to a boundary, the
length scales were truncated as shown in Fig. 2.

We analyzed the static response of the plate subject to a UDTL of
magnitude F, = 107 Pa for two different kinds of boundary conditions:
the plate clamped at all the edges (CCCC) and the plate simply supported
at all ts edges (SSSS) for different combinations of the fractional model
parameters. For each boundary condition, we obtained the response of
the plate for the following different cases:

e Case 1: the fractional-orders a; and a4 were varied within the range
[0.5,1] for fixed values of the nonlocal horizon length / r=05m(=
L,,/2). For this case, the microstructural length was chosen as /, =
0.02 m (= L, /50).

e Case 2: the nonlocal horizon lfwas variedin [0.5, 1lm (= [L, /2, Ly D
and the microstructure length l. was varied in [0.01,0.05]m (=
[L,,/100, L,,/20]), for fixed values of the fractional-orders a; = a, =
0.8.

The numerical results, in terms of the maximum transverse dis-
placement (obtained at the mid-point of the plate), are presented in
Figs. 11 and 12 for the CCCC plate and the SSSS plate, respectively.
Further, similar to the Timoshenko beam, the transverse displacement
obtained for each case (w) is non-dimensionalized against the maximum
transverse displacement obtained for a classical Mindlin plate without
nonlocality or strain-gradient effects. The maximum transverse displace-
ment obtained for the classical CCCC plate was w, = 0.55 X 1072 m and
for the classical SSSS plate was w, = 1.55 x 1072 m. As evident from the
Figs. 11 and 12, the fractional-order continuum formulation is able to
model both stiffening and softening response of the Mindlin plate with
respect to the classical formulation. The conclusions noted for the Tim-
oshenko beam directly extend to the Mindlin plate. More specifically,
the plate exhibits a stiffened response with increasing values of a;, a5
and - and softened response with an increasing value of [; (see Fig. 7).

5.2. Free vibration response

In the following, we present the results capturing the effect of the
different fractional model parameters on the natural frequency of trans-
verse vibrations of the Mindlin plates. The material properties, loading
conditions, boundary conditions and the range of the different fractional
model parameters are the same as chosen for the static analysis of the
Mindlin plate in Section 5.1. The results for the CCCC plate and the
SSSS plate are presented in Figs. 11-14, respectively, in terms of the
non-dimensionalized natural frequency w,. Similar to the analysis in
Section 4.2, the non-dimensionalized natural frequency is obtained by
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dividing the natural frequency of the fractional-order plate with the nat-
ural frequency of the classical Mindlin plate for the specific boundary
condition. The natural frequency obtained for the classical CCCC plate
was o, = 522 Hz and for the classical SSSS plate was w, = 306 Hz. As ev-
ident from the Figs. 11-14, the conclusions presented in Section 4.1 on
the specific effects of the different fractional model parameters, hold
true for the free vibration response of the Mindlin plates.

6. Conclusions

The present study leveraged the fractional-order mechanics frame-
work to develop a unified approach to nonlocal elasticity that com-
bines the characteristics of both integral and gradient based classical
formulations. More specifically, the differ-integral nature of fractional
order operators was exploited to formulate a nonlocal continuum the-
ory capable of modeling both stiffening and softening responses in struc-
tures exhibiting size-dependent effects. The fractional-order formulation
was derived by the continualization of the Lagrangian of a 1D lattice
subject to long-range cohesive interactions. Then, the governing equa-
tions corresponding to a 3D continuum were derived using variational
principles. The resulting nonlocal theory is frame-invariant and causal.
Contrary to classical integral formulations, the fractional-order formu-
lation of a nonlocal continuum leads to positive definite systems with
well-posed governing equations. Particularly remarkable is the ability of
the fractional-order continuum model to capture anomalous attenuation
and dispersion without having to incorporate inertia gradients in the
governing equations; otherwise needed in classical strain-gradient for-
mulations. Consequently, the fractional theory is well suited to capture
nonlocality, scale effects, and medium heterogeneity in structural prob-
lems. The ability of the fractional-order formulation to model both stiff-
ening and softening response was exemplified by performing both static
and free vibration analysis of Timoshenko beams and Mindlin plates. In
conclusion, the formulation and the results presented in the study illus-
trated several unique features of fractional calculus and suggested that
this mathematical tool could play a critical role in the development of
unified and comprehensive simulation tools for modeling the response
of complex nonlocal structures.
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