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Many supply chain stakeholders rely on the cross-docking concept, according to which
products delivered in specific transportation management units to the cross-docking ter-
minal (CDT) undergo decomposition, sorting based on the end customer preferences, con-
solidation, and then transported to the final destinations. Scheduling of the inbound and
outbound trucks for service at the CDT doors is considered as one of the convoluted deci-
sion problems faced by the CDT operators. This study proposes a new Adaptive Polyploid
Memetic Algorithm (APMA) for the problem of scheduling CDT trucks that can assist with
proper CDT operations planning. APMA directly relies on the polyploidy concept, where
copies of the parent chromosomes (i.e., solutions) are stored before performing the cross-
over operations and producing the offspring chromosomes. The number of chromosome
copies is controlled through the adaptive polyploid mechanism based on the objective
function improvements achieved and computational time changes. Moreover, a number
of problem-specific hybridization techniques are used within the algorithm to facilitate
the search process. Computational experiments show that the application of adaptive poly-
ploidy alone may not be sufficient for the considered decision problem. Hybridization tech-
niques that directly consider problem-specific properties are required in order to improve
solution quality at convergence. Furthermore, the APMA algorithm developed in this article
substantially outperforms some of the well-known state of the art metaheuristics with
regards to solution quality and returns truck schedules that have lower total truck service
cost.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Cross-docking in supply chains

The cross-docking concept and cross-docking terminals (CDTs) have been extensively used by many supply chain stake-
holders in order to enhance the effectiveness of various supply chain processes [1,2]. The cross-docking concept can be
described as follows. A set of inbound trucks deliver different types of products from various suppliers and/or manufactures
to the CDT (see Fig. 1). These products are transported in specific transportation management units (e.g., boxes, barrels, pal-
lets, mini-containers, and others - depending on the product type transported). Certain products may be temperature-
sensitive (e.g., food products, pharmaceuticals, chemical products) and need to be transported by trucks with refrigerated
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Fig. 1. A supply chain network with a cross-docking terminal.
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containers. The arriving trucks are docked at the assigned CDT doors. Next, internal handling equipment is used to unload the
inbound trucks and transfer the delivered products to the designated storage areas. Upon delivery to the designated storage
areas, the transportation management units are decomposed, and the products are sorted considering the specific prefer-
ences of end customers. Finally, these products are consolidated in other transportation management units and transferred
by the internal handling equipment to the outbound doors, where the products are loaded into the outbound trucks for
delivery to the end customers (see Fig. 1).

One of the key advantages of cross-docking consists in the fact that it substantially reduces the inventory level. According
to Ladier and Alpan [1], products delivered by the inbound trucks to the CDT generally do not spend more than 24 hours
before these products will be loaded into the designated outbound trucks. There are other advantages from using the
cross-docking concept throughout the management of supply chain processes, such as [3]: (i) lower inventory levels at CDTs
are associated with the storage space occupancy savings; (ii) cross-docking typically decreases the number of handling oper-
ations for the delivered transportation management units as compared to other freight terminals and distribution facilities,
which further reduces a potential risk of damaging the delivered products; (iii) cross-docking has been proven to shorten
delivery times and make supply chains more agile, which leads to improvements in end customer service; and (iv) carbon
footprint of supply chains is reduced due to power savings throughout the transport of products both inside and outside
CDTs.

Along with cross-docking advantages, there are some challenges that have to be addressed by the supply chain stakehold-
ers in order to effectively implement the cross-docking concept. One of the most critical challenges is to ensure proper plan-
ning and coordination of CDT operations [2,3]. CDT operators face a wide range of decision problems throughout the
planning of operations at their facilities. These decision problems include selection of the appropriate CDT shape (e.g., I-
shape, T-shape, L-shape), determination of the appropriate number of CDT doors, deployment of the appropriate equipment
for internal transportation (e.g., conveyor belts, forklift operators), allocation of the areas for temporary product storage, allo-
cation of loading and unloading tasks for the equipment units available for internal transportation, scheduling of the
inbound trucks and outbound trucks for service at the CDT doors available, among others [1]. This study will primarily con-
centrate on the truck scheduling problem, which is considered as one of the most convoluted decision problems that are
faced by CDT operators. In the truck scheduling problem, a given CDT operator aims to allocate the arriving inbound trucks
and outbound trucks among the CDT doors available, set the appropriate order of service for the trucks at each CDT door, as
well as determine the start and finish service times for each truck. The aforementioned decisions have to take into consid-
eration important constraints from the operational perspective (e.g., number of the equipment units available for internal
transportation, existing capacity of the equipment units available for internal transportation, and capacity of the existing
areas for temporary product storage).

1.2. Solution approaches for CDT truck scheduling and polyploidy concept

The CDT truck scheduling problem is known to have high computational complexity. The existing CDT truck scheduling
studies generally use metaheuristic and heuristic algorithms to solve the CDT truck scheduling problem in a reasonable
amount of computational time for the realistic-size problem instances [1,2,4,5]. Evolutionary Algorithms (referred to as
“EAs” in this study) have been extensively used in the state of the art to tackle some of the challenging decision problems
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Fig. 2. An example of a crossover operation for diploid organisms.

that have high computational complexity [6-12]. EAs typically start the search process by initializing the population of chro-
mosomes or individuals that represent candidate solutions to the considered decision problem [13]. After evaluation of the
fitness for the initial population chromosomes, EAs execute the main loop, where the available chromosomes are being con-
tinuously modified by applying different crossover and mutation operators until a pre-defined stopping criterion is satisfied.

Throughout the EA search process, two types of selection are applied: the parent selection and the survivor selection. The
purpose of parent selection is to select the parent chromosomes that will undergo crossover and mutation to generate the
offspring. On the other hand, the survivor selection aims to select the chromosomes that will be moved to the following gen-
eration. Some EAs do not allow competition between the parent and offspring chromosomes, and the next generation chro-
mosomes are identified from the pool of the offspring chromosomes only (e.g., the canonical Genetic Algorithm that was
developed by Holland in the 1970s; the canonical Genetic Programming that was developed by Koza in the 1990s) [13].
However, there are some types of EAs that allow competition between the parent and offspring chromosomes, and the next
generation chromosomes are identified from the combined pool of the parent and offspring chromosomes (e.g., the canonical
Evolutionary Programming that was developed by Fogel in the 1960s; the canonical Evolution Strategies that were devel-
oped by Rechenberg in the 1960s-1970s) [13].

The purpose of applying crossover and mutation operators is to discover the chromosomes with higher fitness values. The
canonical EAs mostly rely on the haploid structure of chromosomes throughout the crossover operations, where two parent
chromosomes will produce two offspring chromosomes that inherit features of both parental chromosomes. Only a limited
number of studies considered the polyploidy concept, where copies of the parent chromosomes are being stored before per-
forming the crossover operation and producing the offspring chromosomes [5,14]. Fig. 2 shows an illustrative example of a
crossover operation for diploid organisms, where one copy of each parent chromosome (“P1” and “P2”) along with two off-
spring chromosomes (“O1” and “02”) are present after the crossover operation. The crossover operations generally result in
major genetic changes and may produce the offspring chromosomes that have lower fitness compared to the parent chro-
mosomes. Therefore, storage of the parental genome by means of polyploidy is expected to increase the population diversity,
prevent loss of high-fitness chromosomes, and return superior solutions at convergence.

1.3. Focus of this study

Given potential advantages of polyploidy, this study proposes a new Adaptive Polyploid Memetic Algorithm (APMA) for
the CDT truck scheduling problem that can assist CDT operators with proper operations planning from the truck scheduling
perspective. Unlike the polyploid EA-based algorithms that were previously developed for different decision problems, the
proposed APMA algorithm adaptively deploys the polyploidy concept based on the objective function improvements
achieved and computational time changes. Although increasing the number of chromosome copies in polyploid individuals
enhances the explorative capabilities of the algorithm, computational time can be significantly increased due to polyploidy.
Such a challenge would be effectively addressed by introducing the proposed adaptive polyploidy concept. Moreover, a num-
ber of problem-specific hybridization techniques are used within the developed algorithm to facilitate the search process.
The remaining sections of the manuscript elaborate on the following aspects. The second section contains a detailed review
of the relevant studies and highlights the contributions of the present study to the state of the art. The third section formally
introduces the CDT truck scheduling problem, while the fourth section proposes a mixed integer linear programming formu-
lation for the problem. Details regarding the design of the APMA algorithm are presented in the fifth section, while compu-
tational experiments that were performed are discussed in the sixth section. This study is concluded in the last section.
Furthermore, some future research opportunities are outlined in the last section as well.

2. Literature review

This section of the manuscript overviews the relevant literature, including the recent studies on CDT truck scheduling as
well as previous studies that deployed polyploid EAs for different decision problems. Furthermore, the critical state of the art
shortcomings along with the key contributions of this work will be highlighted.
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2.1. Recent studies on CDT truck scheduling

A thorough review of the CDT truck scheduling literature can be found in Ladier and Alpan [1] and Theophilus et al. [2].
The literature review in this study primarily captures recent CDT truck scheduling efforts, which were not reviewed in Ladier
and Alpan 1] and Theophilus et al. [2]. Castellucci et al. [ 15] studied a container loading problem at the distribution facilities
with a limited storage space (e.g., CDTs). The proposed model explicitly considered the expected arrival of products and the
requested departure time of trucks, aiming to maximize the total output and minimize the truck ready times. The model was
solved using a dynamic programming approach. It emphasized that the presented methodology could be used to quantify
the effects of delays on the CDT capacity utilization. Fathollahi-Fard et al. [ 16] applied a set of social engineering optimizers
inspired by social engineering phenomena to the CDT truck scheduling problem. The presented mathematical formulation
focused on the makespan minimization. Numerical experiments performed for the benchmark test problems confirmed
the efficiency of proposed optimizers.

Ardakani et al. [17] addressed the problem of scheduling CDT trucks, considering preemption for the inbound trucks (in
other words, some of the inbound trucks could temporarily leave the assigned doors, so the other trucks could be served).
The objective minimized the makespan. A set of heuristic algorithms were developed to solve the problem. The heuristics
were differentiated based on the criteria that were used for assigning the arriving trucks for service. The number of trans-
ferred products was found to be an important criterion to schedule the service of arriving trucks. Wisittipanich et al. [18]
developed a mathematical formulation for the problem of truck scheduling in a CDT network. The objective minimized
the makespan. LINGO was used to solve the developed mathematical model. It was found that optimizing truck schedules
in a CDT network was more effective compared to optimizing truck schedules for each CDT individually. Shahmardan and
Sajadieh [19] addressed the problem of scheduling CDT trucks, where the inbound trucks could serve as outbound trucks.
The objective minimized the makespan. A hybrid heuristic-simulated annealing was adopted as a resolution approach. A ser-
ies of numerical experiments clearly showed that partial unloading of the compound trucks could significantly reduce the
makespan.

Guemri et al. [20] proposed two probabilistic Tabu Search heuristics for the CDT door assignment problem with an
objective to assign the arriving inbound trucks to the inbound doors and the arriving outbound trucks to the outbound doors.
The objective minimized the total cost of material handling inside the CDT. The heuristics, evaluated for 99 benchmark
problem instances, were able to discover the 53 best-known solutions and required less computational time. Wang and Ali-
daee [21] also studied the CDT door assignment problem. Due to the problem’s complexity, a new solution method was
designed and inspired by genetic random-key, multi-start, and very large scale neighborhood search. It was shown that
the developed algorithm could tackle very large problem instances that have up to 300 inbound doors and 300 outbound
doors.

Some of the recent efforts considered joint truck and workforce scheduling. Corsten et al. [22] presented a mathematical
formulation for integrated truck and workforce scheduling at a CDT. Based on the derived truck schedules, the model allo-
cated the available workers to shifts. The objective minimized the total cost due to the assignment of temporary workers.
GUROBI was used as a solution approach. Computational experiments indicated that the truck arrival times, capacity of stag-
ing areas, duration of truck service time windows, as well as the number of shifts had a significant influence on the total cost.
Selma et al. [23] studied the internal operations at automated CDTs that allocate the available loading tasks to robots and
ensure timely departures of trucks. A greedy heuristic algorithm was proposed to solve the problem. Numerical experiments
underlined the effectiveness of the heuristic compared to CPLEX. Tadumadze et al. [24] focused on integrated truck and
workforce scheduling with the major objective to facilitate the service of trucks at CDTs and distribution centers. The objec-
tive minimized the total truck service time. A set of heuristic algorithms were proposed in the study to address the problem
of interest. Computational experiments demonstrated that integrated truck and workforce scheduling could significantly
reduce the total truck service time and ensure punctuality of truck departures.

Several studies addressed the vehicle routing problem, where the transportation network included CDTs as well. For
example, Ahkamiraad and Wang [25] studied the vehicle routing problem within a CDT distribution network, taking into
account pickup and delivery operations as well as time window constraints. The objective focused on the minimization of
total cost of transportation along with the total fixed cost of vehicles. A hybrid metaheuristic was deployed as a solution
method, which was based on the EA and Particle Swarm Optimization (PSO) features. Numerical experiments demonstrated
the superiority of the algorithm developed over CPLEX for the medium as well as large problem instances. Abad et al. [26]
introduced a multi-objective formulation for the vehicle routing problem, where the products were processed and consol-
idated in a CDT. The considered objectives aimed to minimize the total cost, minimize the total fuel consumption, and max-
imize the total satisfaction level of suppliers and customers. The problem was solved using the Multi-Objective Imperialist
Competitive Algorithm (MOICA) and the Multi-Objective Grey Wolf Optimizer (MOGWO). The conducted experiments
revealed that MOGWO generally had more solutions in the Pareto Front. Rahbari et al. [27] formulated a bi-objective model
for the problem of vehicle routing with a CDT, considering perishability of the products transported, travel time uncertainty,
and product freshness-life uncertainty. The first objective function focused on the minimization of total transportation cost.
In the meantime, the second objective maximized the total weighted product freshness. It was found that the travel time
uncertainty could substantially affect the vehicle routing decisions.
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2.2. Previous studies on polyploid EAs

Bagley [28] was one of the first studies that applied the concept of polyploidy within EAs. However, no comprehensive
comparison of haploid and diploid EAs was conducted. A number of subsequent studies introduced various dominance
schemes within polyploid EAs [29-31], where the alleles of genes were categorized into dominant alleles and recessive alle-
les. Kamrani et al. [32] applied a set of EAs for intelligent knowledge acquisition and data mining. It was found that the
diploidy concept was more promising than the haploidy concept. However, consideration of dominance and gender might
worsen the fitness of chromosomes throughout the algorithmic evolution. Cavill et al. [33] highlighted that many organisms
in nature are polyploid, and multiple copies of various chromosomes might improve the EA performance. Numerical exper-
iments conducted for the symbolic regression problem demonstrated that an increasing amount of different chromosomes,
as well as the amount of copies of these chromosomes, could substantially improve the fitness values at convergence.

Elshamy et al. [34] assessed the effects of polyploidy on the performance of multi-objective EAs. A series of computational
experiments were undertaken using the benchmark test problems. It was found that 2- and 3-ploid EAs had the least dis-
tance to the true Pareto Front. On the other hand, 7- and 10-ploid EAs generally performed worse than 2- and 3-ploid
EAs with regards to solution quality but were superior to NSGA-II. Furthermore, the diversity of polyploid EAs typically
increased with the number of objectives. Pop et al. [35] presented a hybrid diploid EA for the generalized traveling salesman
problem, where the vertices of the graph were partitioned in clusters. The key objective was to find the minimum cost tour
and visit exactly one vertex for each cluster. The problem was decomposed into two levels. Numerical experiments that were
performed as a part of the study showed that the developed diploid EA outperformed the Memetic Algorithm (MA), classical
EA, Random-Key EA (RKEA), and PSO with regards to solution quality. A similar decision problem, called “the family traveling
salesman problem,” was studied by Pop et al. [36], where only a specific number of nodes had to be visited for each family of
nodes. It was found that the diploid representation ensured the population diversity. Furthermore, the developed diploid EA
showed a competitive performance against the RKEA, Greedy Randomized Adaptive Search procedure (GRASP), and classical
EA.

Diploid and polyploid EAs were also found to be effective solution approaches for non-stationary optimization problems
with the dynamic environment, where the optimal solution is subject to changes over time [14,29,37-43]. Goldberg and
Smith [29] was one of the pioneering studies that relied on the concepts of polyploidy and dominance under the dynamic
environment settings. Uyar and Harmanci [37] showed that the diploid representation of individuals, meiotic division of
cells, and dynamic dominance map allowed preserving diversity and improving solution quality for a variation of the 0-1
knapsack problem with a changing weight constraint. Uyar and Harmanci [38] presented an innovative approach for adap-
tive dominance that can be applied to diploid EAs, where the dominance of a given individual was calculated based on the
phenotypic and fitness values of individuals in the population. The proposed methodology was compared to the ones pre-
sented by Ryan [30] and Ng and Wong [31]. Computational experiments performed for the dynamic 0-1 knapsack problem
indicated that the developed methodology was able to better adjust for the dynamic environment.

Uyar and Harmanci [39] developed an adaptive domination change mechanism that can be applied to diploid EAs, aiming
to improve the algorithmic capabilities under the dynamic environment settings. A series of experiments were performed for
the dynamic bit matching problem. It was found that the application of diploidy and the adaptive domination method were
more beneficial for the algorithmic search process compared to the application of diploidy only and application of the adap-
tive domination method only. Shabash and Wiese [42] proposed a new dominance mechanism for the real valued diploid EA,
where a chromosome with higher fitness was considered as dominant. The developed diploid EA outperformed the haploid
EA for the optimization model with a dynamic function. Moreover, it was highlighted that the advantage of the diploidy con-
cept primarily stemmed from the genetic information arrangement - not from increasing the amount of genetic information.
Petrovan et al. [43] focused on a comprehensive comparative analysis of a diploid EA against a haploid EA for a number of
common benchmark functions (i.e., the Sphere function, the Griewank function, the Ackley function, the Rastrigin function,
as well as the Schwefel function). Numerical experiments clearly showed the superiority of the diploid EA for the considered
benchmark functions.

2.3. State of the art limitations and contributions of this study

A thorough review of the state of the art revealed a variety of nature-inspired algorithms that were applied to the problem
of scheduling trucks at CDTs. Nevertheless, the polyploidy concept is generally ignored by the studies on CDT truck schedul-
ing. However, the polyploidy concept has been proven to be effective for a wide range of different decision problems (e.g., the
symbolic regression problem, the family traveling salesman problem, the dynamic bit matching problem). In the meantime,
many studies on polyploid solution algorithms primarily use solution quality and population diversity as the major perfor-
mance indicators [14]. Computational time, which can significantly increase with increasing number of copies of each chro-
mosome in polyploid individuals, is often ignored. Moreover, a significant increase in the number of chromosome copies
does not necessarily improve solution quality [34]. Acknowledging the aforementioned shortcomings, this study proposes
a new Adaptive Polyploid Memetic Algorithm (APMA) for the CDT truck scheduling problem, which adaptively deploys
the polyploidy concept and controls the number of chromosome copies for each individual based on both solution quality
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and computational time criteria. Along with the adaptive polyploidy concept, this study offers the following contributions to
the state of the art and the state of the practice:

e A novel heuristic algorithm (referred to as a Truck Sequence Refinement [TSR] heuristic) is proposed for initializing solu-
tions within the developed algorithm. The developed heuristic directly accounts for the truck service precedence con-
straints based on practical considerations in cross-docking. A set of computational experiments are performed to
evaluate the TSR heuristic against the alternative heuristics that were used in the previous studies on CDT truck
scheduling.

e A set of innovative problem-specific hybridization techniques are used to facilitate the search process. A customized local
search heuristic (referred to as an Optimal Truck Sequence Identification [OTSI] heuristic) is developed to improve the
quality of population chromosomes after applying the crossover and mutation operations. The OTSI heuristic periodically
solves the Outbound Truck Sequencing Problem to global optimality (i.e., after a pre-specified number of generations).

o The developed APMA algorithm is evaluated against well-known metaheuristics that have been extensively used in the
CDT truck scheduling literature (such as Ant Colony Optimization, Tabu Search, Variable Neighborhood Search, and Sim-
ulated Annealing). Moreover, the developed APMA algorithm is evaluated against the exact optimization approach
(CPLEX) that has been extensively used in the state of the art for large-scale mixed integer linear programming models.

e A set of managerial insights are presented after evaluating the computational performance of the developed APMA algo-
rithm for the considered problem instances. These insights could potentially assist CDT operators with proper operations
planning and truck scheduling as well as reduce the associated costs throughout the service of inbound and outbound
trucks.

3. CDT operations description

A description of the CDT modeled in this study and the key CDT operations are presented under this section of the manu-
script. The CDT has a set of doors (D = {1,---,n}) that are available to serve the arriving trucks (see Fig. 3). A set of the
inbound trucks and outbound trucks to be served at the CDT will be further denoted as T = {1, ---, m}. Each inbound truck

belonging to a subset of the inbound trucks T' = {1,---,m;},T' C T delivers the products either for one or several outbound
trucks belonging to a subset of the outbound trucks T° = {1,..-,m,},T° C T. However, the products that are delivered by
inbound trucks are not interchangeable. In this study, it is assumed that ' N T° = ¢ and T' U T® = T, which means that each
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Fig. 3. A schematic illustration of the CDT and truck service.
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arriving truck can be considered as either inbound or outbound (but not both). The service of an outbound truck may not be
started prior to the service start of the inbound truck delivering the products for that particular outbound truck. Each CDT
door operates in a mixed service mode - i.e. the service of inbound trucks and service of outbound trucks can be provided at
each CDT door. The arrival times of inbound trucks and outbound trucks (747, t € T - hours) are assumed to be known to the
CDT operator and deterministic in nature, which is in line with the previous studies on CDT truck scheduling [5,44,45]. A
given truck may have to wait in a dedicated area of the CDT, when the assigned CDT door is not available immediately.
In such situation, the CDT operator will be imposed a truck waiting cost (5/'7, t € T - USD/hour), since excessive waiting time
of trucks may disrupt supply chain processes.

Upon docking at the assigned CDT door, the available handling equipment will be used to unload the products from the
inbound trucks and load the products into the outbound trucks. The forklift operators will perform truck loading and unload-
ing operations at the considered CDT as well as the horizontal transfer of the delivered products inside the CDT. This study
does not allow truck service preemption. In particular, each truck will have to stay at the CDT door assigned until its service
completion. The forklift operators transfer the products unloaded from the inbound trucks either directly to the correspond-
ing outbound trucks or to the designated storage areas in case the delivered products require decomposition, sorting, and/or
consolidation based on the end customer preferences. In the truck service example, presented in Fig. 3, the products are
transported to the CDT by inbound trucks “1” and “4”. The forklift operator transported then delivered products from
inbound trucks “1” and “4”, which are docked at CDT doors “4” and “3”, directly to outbound truck “7”, which is docked
at CDT door “7”, without using the available storage areas. The CDT operator is expected to plan accordingly for the amount
of delivered products to ensure that the available storage areas have an adequate capacity for accommodating these
products.

Several factors may directly influence the handling time of inbound trucks and outbound trucks (z7.t € T,d € D - hours)
at the considered CDT, including the following: (i) quantity of the delivered products; (ii) type of the delivered products; and
(iii) location of the CDT door assigned. The handling time of a given inbound truck increases with increasing number of pro-
duct units to be unloaded from that inbound truck, while the handling time of a given outbound truck increases with increas-
ing number of product units to be loaded into that outbound truck. Furthermore, the products, which are placed in
overweight and/or oversized transportation units, may increase the total time that is required by a given forklift operator
to transfer these products inside the CDT. In the meantime, location of the CDT door assigned can be considered as an impor-
tant determinant of the handling time for inbound and outbound trucks. In the truck service example, presented in Fig. 3,
inbound trucks “1” and “4” delivering the products for outbound truck “7” are assigned for service at CDT doors “4” and
“3”, respectively. However, if inbound truck “4” is re-assigned for service at CDT door “1”, the handling time of outbound
truck “7” will increase. Such an increase can be justified by the fact that CDT door “1” is located farther away from CDT door
“7", where outbound truck “7” is assigned for service, compared to CDT door “3”, and the forklift operators will require more
time for transferring the products between CDT doors “7” and “1”.

The handling times of inbound trucks and outbound trucks are presumed to be deterministic in nature, which are in line
with the previous studies on CDT truck scheduling [5,44,45]. The CDT operator incurs certain costs throughout the service of
inbound trucks and service of outbound trucks. In particular, the handling cost (6", ¢ € T - USD/hour) is imposed to account
for compensation of the CDT employees (e.g., forklift operators) and maintenance of the available equipment, insurance fees,
and other operational costs. Moreover, the inventory cost (67", t € T — USD/hour) is imposed to account for the CDT inven-
tory levels at the available storage areas. Increasing inventory levels is not desirable, as it may disrupt the CDT operations
(e.g., CDT congestion).

The CDT operator is also expected to complete the service of inbound trucks and service of outbound trucks in a timely
manner, following the scheduled departure time (73°, t € T - hours). The early departure cost (6, t e T - USD/hour) and the
delayed departure cost (3”7, t € T - USD/hour) are imposed in case of completing the truck service before and after the sched-
uled departure time, respectively. Such an assumption forcing the just-in-time completion of truck service is in line with the
previous studies on CDT truck scheduling [1,2,45]. The just-in-time completion of truck service is expected to facilitate sup-
ply chain processes. The main objective of the CDT operator in this study is to design a truck service schedule that will min-
imize the total truck service cost, which incorporates the following cost components: (i) the total cost of waiting trucks at the
CDT; (ii) the total cost of handling trucks at the CDT; (iii) the total inventory cost for the products to be loaded into the out-
bound trucks; (iv) the total early departure cost of trucks from the CDT; and (v) the total delayed departure cost of trucks
from the CDT.

4. Model formulation

A mixed integer linear programming formulation for the inbound and outbound truck scheduling problem at the CDT
(IOTSP) is presented in this section of the manuscript. Basic notations, which will be used in the proposed IOTSP mathemat-
ical model and throughout this manuscript, are described in Table 1.

The objective function (1) of the proposed mathematical formulation for IOTSP minimizes the total cost (Z - measured in
USD) incurred by the CDT operator throughout the service of inbound trucks and service of outbound trucks. The total truck
service cost incorporates a number of individual cost components, such as: (i) the total cost of waiting trucks at the CDT; (ii)

396



M.A. Dulebenets Information Sciences 565 (2021) 390-421

Table 1
Basic notations.
Model Component Description
Type Notation
Sets T={1,---,m} set of the inbound trucks and outbound trucks to be served at the CDT
T = {1,--,m}, T'cT set of the inbound trucks to be served at the CDT
TO={1,---,my}, T°CT set of the outbound trucks to be served at the CDT
D={1,--,n} set of the CDT doors available to serve the arriving trucks
Decision Xq€{0,1}VteT,deD =1 if truck t is assigned for service at door d (=0 otherwise)
variables ¥ys €{0,1}Vp,s € T.p#s =1 if service of truck s is provided immediately after service of truck p at a given CDT door (=0
otherwise)
y{ €{0,1}VteT =1 if truck t is assigned for service as the first truck at a given CDT door (=0 otherwise)
yLe{0,1}vteT =1 if truck t is assigned for service as the last truck at a given CDT door (=0 otherwise)
Auxiliary Zc R total truck service cost incurred by the CDT operator (USD)
variables W eR*VEeT waiting time of truck t at the CDT (hours)
Tl eR'VEeT start service time of truck ¢t at the CDT (hours)
ERWVteT finish service time of truck t at the CDT (hours)
T eRWVEeT storage time of the products, which will be loaded into truck t, at the CDT (hours)
T eRVEET early departure of truck t from the CDT (hours)
T eRVteT delayed departure of truck t from the CDT (hours)
Parameters Wl eRVEeT scheduled arrival time of truck t at the CDT (hours)
DA cRVdeD time when door d becomes available in the considered planning horizon for the first time (hours)
il eR*VteT,deD handling time of truck ¢ at door d of the CDT (hours)
P eRVEET scheduled departure time of truck t from the CDT (hours)
rps € {0,1}Vp € T'seTO pzs =1 if the products delivered by inbound truck p will be further loaded into outbound truck s (=0
otherwise)
WI c RYVte T unit waiting cost of truck t at the CDT (USD/hour)
5?7 eR'vVteT unit handling cost of truck t at the CDT (USD/hour)
BT eRVEeT unit inventory cost of the products, which will be loaded into truck t (USD/hour)
T cR'VWteT unit cost of early departure for truck t from the CDT (USD/hour)
DT c Rtvyt e T unit cost of delayed departure for truck ¢ from the CDT (USD/hour)
IeR* large positive number

the total cost of handling trucks at the CDT; (iii) the total inventory cost for the products to be loaded into the outbound
trucks; (iv) the total early departure cost of trucks from the CDT; and (v) the total delayed departure cost of trucks from
the CDT.

minZ = Z WTE)WT Jr Z Z Ttd xtd(sHT + Z TPST()PST + Z ‘EETbET + Z TDT()DT (1)
teT teT deD teT teT teT

Constraint set (2) guarantees that every truck will be assigned for service at one of the CDT doors available.

> xa=1vteT )

deD

Constraint set (3) assures that every truck will be either assigned for service as the first truck at the considered CDT door
or after another truck.

Yo+ Yy =1vseT 3)

peT:p#s

Constraint set (4) assures that every truck will be either assigned for service as the last truck at the considered CDT door
or before another truck.

Yot > ¥ =1vpeT (4)

seT:s#p
Constraint set (5) indicates that only one truck will be assigned for service as the first truck at the considered CDT door.
Y+ ¥ <3 %4 —X4Vp,seT,ps,deD (5)
Constraint set (6) indicates that only one truck will be assigned for service as the last truck at the considered CDT door.
Yy +Y <3 =X —XqVp,s €T, p#s,deD (6)

Constraint sets (7) and (8) state that a given truck can be assigned for service after another truck, if both trucks are to be
served at the same door of the CDT.

397



M.A. Dulebenets Information Sciences 565 (2021) 390-421
y;s —1 <X —X4Vp,seT,ps,deD (7)

Xa—X4<1-y,Vp,se T,p#s,deD (8)

Constraint set (9) guarantees that the service of a given truck at the CDT may start only after its arrival to the assigned
CDT door.

o >Vt eT C)

Constraint set (10) assures that the service of a given truck at the CDT may start only once the assigned CDT door becomes
available in the considered planning horizon.

T >y TRVt eT (10)
deD

Constraint set (11) ensures that the service of a given truck at the CDT will not start before completing the service of the
preceding trucks that are assigned to the same door of the CDT.
s zrgqug;xpd—r@ —y;s>Vp,seT,p#s (11)
deD

Constraint set (12) states that a given outbound truck can be served at the assigned CDT door only upon the beginning of
service of the inbound trucks delivering the products, which will be further loaded into that outbound truck.

T > TrWp e T' s € T% p#s (12)
Constraint set (13) calculates the waiting time of every truck at the CDT.

W >oT vt eT (13)
Constraint set (14) computes the finish service time of every truck at the CDT.

o> > TRVt ET (14)
deD

Constraint set (15) estimates the temporary storage time of the products, which will be loaded into a given outbound
truck, at the CDT.

T > <1:§T - rgT>rpSVp €T seTO ps (15)
Constraint set (16) calculates the early departure hours of every truck from the CDT.

>0 1yt eT (16)
Constraint set (17) calculates the delayed departure hours of every truck from the CDT.

T > Pt eT (17)

5. Solution methodology

The polyploid EA-based solution algorithms were found to be effective for a wide range of different decision problems.
Considering potential advantages of polyploidy, an Adaptive Polyploid Memetic Algorithm (APMA) was designed in this
study to solve the CDT truck scheduling problem represented by the IOTSP mathematical model. A detailed description of
the developed APMA algorithm is presented under this section of the manuscript. A set of basic principles behind APMA
are introduced first. Then, the key algorithmic steps and the main APMA features are presented.

5.1. Basic principles

A thorough review of the relevant literature revealed that studies employing polyploid solution algorithms mainly con-
sider solution quality and population diversity as the major performance indicators [14] often ignoring computational time.
Nevertheless, computational time can significantly increase with increasing number of copies of each chromosome in poly-
ploid individuals. Taking into account the latter feature, the developed APMA algorithm deploys the adaptive polyploid
mechanism that controls the number of chromosome copies for each individual based on both solution quality and compu-
tational time criteria. Fig. 4 illustrates the basic principles behind the APMA design. The search process starts assuming that
the APMA population is composed of IT individuals, where IT - population size. Every individual represented by a chromo-
some corresponds to a potential solution for the IOTSP mathematical model. The concept of polyploidy is explicitly imple-
mented throughout the crossover operations. The parent chromosomes are assumed to be diploid at the beginning of the
algorithmic run. After each crossover operation, applied with a specific crossover probability - ¢, two offspring chromo-
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Computational Time
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Fig. 4. The basic principles behind the APMA design.

somes will be produced and appended to the APMA population along with one copy of each parent chromosome (see Sec-
tion 5.7.1 of the manuscript for more details). Therefore, the parent chromosomes will be allowed to compete with the newly
produced offspring chromosomes in order to be present in the following generation. The APMA population begins increasing
after the polyploidy application, which enhances the explorative capabilities of the algorithm.

After a certain number of generations, referred to as “epoch” in this study, APMA quantifies the changes in the objective
function (AZ) and changes in the computational time (AT). If the computational time increase after Epoch generations does
not exceed AT" (%) and the objective function improvements do not exceed AZ* (%), APMA will increase the number of copies
of each parent chromosome stored before each crossover operation by one chromosome (e.g., diploid parent chromosomes
will become triploid, triploid parent chromosomes will become tetraploid, etc.). Therefore, the APMA population starts
increasing faster to facilitate the explorative capabilities of the algorithm even further and prevent convergence at the local
optimum. The example, presented in Fig. 4, shows that the computational time increase between generations g* = Epoch and
g* =2 - Epoch did not exceed AT" (%), and the objective function improvements were not significant (i.e., below the pre-
defined threshold AZ*). Hence, APMA started increasing the population size after generation g* = 2 - Epoch by increasing
the number of copies of each parent chromosome stored before each crossover operation. Thus, the parent chromosomes
became triploid. Note that along with increasing the population size, APMA deploys a number of problem-specific hybridiza-
tion techniques (see Section 5.7.3 of the manuscript for more details) to improve solution quality even further.

A constant population size increase is expected to facilitate the search process for promising search space domains and
high-quality solutions but will negatively impact computational time. If the computational time increase after Epoch gener-
ations exceeds AT" (%), APMA will start decreasing the population size by removing all the parent chromosomes selected for
the crossover operation (i.e., no parent chromosomes and no offspring chromosomes will be appended to the APMA popu-
lation). When the computational time stabilizes, APMA will resume performing normal polyploid crossover operations. How-
ever, APMA will decrease the number of copies of each parent chromosome stored before each crossover operation by one
chromosome (e.g., tetraploid parent chromosomes will become triploid, triploid parent chromosomes will become diploid,
etc.). The example, presented in Fig. 4, shows that the computational time significantly increased between generations
g* =2 -Epoch and g* = 3 - Epoch (i.e., above the pre-defined threshold AT*), and APMA started decreasing the population size
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after generation g* = 3 - Epoch by removing all the parent chromosomes selected for the crossover operation. Therefore, the
developed APMA algorithm directly considers the tradeoff between the objective function improvements and computational
time changes throughout the algorithmic run.

5.2. Main algorithmic steps

The main steps of the developed APMA algorithm are illustrated in Fig. 5. In step 0, APMA initializes the data structures
that will be used throughout the algorithmic run. In step 1, the generation counter is initialized (g = 1). Furthermore, gen-
eration g*, when the polyploidy adjustments are made and the hybridization techniques (i.e., memetic operations) are
applied, is set equal to Epoch (g* = Epoch). In step 2, APMA initializes the chromosomes and population for generation
g = 1. In step 3, APMA evaluates fitness of the population chromosomes for generation g = 1. After that, APMA executes
the main loop, where the stopping criterion is checked first. In case the stopping criterion is not satisfied, APMA proceeds
to the next step. The generation counter is updated in step 5, while the parent chromosomes are further identified in step
6. Then, APMA performs basic operations, including crossover and mutation, for the identified parent chromosomes in step 7.
In steps 9 and 10, APMA adjusts polyploidy and applies the hybridization techniques after Epoch generations (i.e., when
g = g*), respectively. In step 11, generation g* is reset to make sure that the polyploidy adjustments will be made and the
hybridization techniques will be applied every Epoch generation. In step 12, APMA evaluates fitness of the produced and
mutated chromosomes, while the surviving chromosomes to be moved to the following generation are identified in step
13. Steps 5-13 are continuously repeated by APMA until the pre-defined stopping criterion is satisfied.

5.3. Solution representation
Selection of the appropriate solution representation is important as it may directly impact the overall algorithmic perfor-
mance [13]. Two-dimensional integer chromosomes were adopted to represent the candidate solutions for the IOTSP math-

ematical model. An example of a chromosome is illustrated in Fig. 6, where a total of 8 inbound trucks and outbound trucks
are assigned for service at the CDT that has 3 doors available. In particular, trucks “2” and “4” are assigned for service at CDT

START ‘

Step 0: A - - - - - - - - - |

I Main APMA Loop

Initialize Data Structures

L Step 7: Step 9: I
I Perform APMA Operations Adjust Polyploidy
Step 1:
g=1;g*=Epoch T I
L l Step 6:
Choose Parents
Step 2: I
Initialize Chromosomes and Population I T

Step 5: Step 12: P Step 11: I

I g=g+1 Evaluate Fitness g*=g*+ Epoch
Step 3:
Evaluate Fitness } I
I Step 13:

A 4

Is the Stopping Criterion Met?

Choose Survivors I

FINISH ‘

Fig. 5. The main steps of the developed APMA algorithm.

Serv.Order— 1 2 1 2 3 4 1 2
Truck— |2 |4|8|3|[1]|6|5]|7
Door— |1|1]2]2[2]|2(3|3

Fig. 6. An illustrative example chromosome for the considered problem.
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door “1” (truck “2” is served first, while truck “4” is served second). Trucks “8”, “3”, “1”, and “6” are assigned for service at
CDT door “2” and have service orders “1”, “2”, “3”, and “4”, respectively. On the other hand, trucks “5” and “7” are assigned
for service at CDT door “3” (truck “5” is served first, while truck “7” is served second). The adopted chromosome represen-
tation does not require encoding truck service orders, as they can be identified based on the sequence of genes in the chro-
mosome (the term “genes” is used for the individual chromosome components representing doors and trucks). Note that the
location of a gene along the chromosome will be denoted using the term “locus” [13]. The actual value of a gene will be
denoted using the term “allele” [13]. In the presented example (see Fig. 6), the genes with CDT door “2” and truck “8” have
locus “3” (i.e., the locus counter starts from the left part of the chromosome and proceeds to the right). The CDT door iden-
tifier (i.e., CDT door “2”) and the truck identifier (i.e., truck “8”) are the alleles of the genes that are placed in locus “3”.

5.4. Population initialization

Population initialization is a critical step in the design of metaheuristic algorithms. Random initialization of the popula-
tion chromosomes can be considered as a common approach [13,46,47]. However, it will not be appropriate for the IOTSP
mathematical model due to the truck service precedence constraints (since the service of an outbound truck may not be
started prior to the service start of the inbound truck delivering the products for that particular outbound truck). A novel
Truck Sequence Refinement (TSR) heuristic was developed as a part of this study in order to generate the chromosomes
of the initial population. The developed TSR heuristic is based on the First Come First Served (FCFS) policy, according to
which the trucks will be assigned to the available doors based on the order of their arrival at the CDT. In the meantime,
TSR ensures that each outbound truck will be assigned for service after the last inbound truck delivering the products for
that particular outbound truck. The TSR main steps are shown in Algorithm 1, where additional notation tY?,d € D (hours)
was adopted to represent the updated availability of CDT door d for truck service. The remaining notations used within Algo-
rithm 1 are described in Table 1.

Algorithm 1. Truck Sequence Refinement (TSR) Heuristic

TSR(T, D, TAT, PA, 1T 1)

in:T={1,---,m} - setof trucks; D = {1, ---,n} - set of doors; 74T - truck arrival times; t°4 - door availability; tH" - truck
handling times; r - inbound-to-outbound truck assignment

out: x - initial truck-to-door assignment

0: TS| = m; W — @; TUPA — 1PA; x| — m - n; |T5T| — m; |2fT| — m < Initialization

1: T® — SortAscend(T, ") < Sort the arriving trucks

2:i1

3: while i < |T5| do

4:  d — argming(t§P*) < Identify the first available door at the CDT

5: if max;(r,) > O then

6: W—wu {i7 argmax, (rpl-)} < Store the outbound truck and associated inbound truck
7: else

8: if W =  then

9: t — i < Select a truck

10:  else if W and min (W’) > i then

11: t — i < Select a truck

12: else

13: t— W((J)rgmin(wl) < Select a truck

14: We—W-— {Wargmin(wl)} < Update the data structure with the outbound trucks
15: i—i-1

16: end if

17: end if

18: &y — 1 < Assign the selected truck to the first available door at the CDT
19: 77 — max (74T, 7YP1) < Compute the start service time of a truck

20: tfT — 2§74+ tHl < Compute the finish service time of a truck

21: YP4 — fT g Update availability of the assigned CDT door

22: i—i+1

23: end while

24: return x
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In step O, TSR initializes the data structures that will be used by the heuristic. In step 1, TSR sorts the arriving trucks based
on their arrival times in ascending order. After that, TSR executes the main loop (steps 3-23). In step 4, TSR identifies the first
available CDT door. If the next arriving truck is outbound, TSR stores that truck in the list (W) along with the identifier of the
last inbound truck that delivers the products for that outbound truck (since the service of an outbound truck cannot be com-
pleted until the last inbound truck delivers the required products) in steps 5-7. If the next arriving truck is inbound, TSR
checks a number of conditions before selecting the next truck for service (steps 8-16). If list W is empty, then TSR will select
the next arriving inbound truck for service (step 9). Furthermore, if list W is not empty and the next inbound truck arrives
before the earliest last inbound truck in list W, TSR will also assign the next arriving inbound truck for service (step 11).
Otherwise, TSR will select the outbound truck with the earliest last inbound truck from list W (step 13). In step 14, the
assigned outbound truck is removed from list W. In step 18, TSR assigns the selected truck (either inbound or outbound)
for service at the first available CDT door. The start and finish service times for the assigned truck are further computed
in steps 19 and 20, respectively. In step 21, TSR updates availability of the assigned CDT door. The heuristic is terminated
once all the arriving trucks are scheduled for service at the CDT doors available.

The proposed TSR heuristic is expected to be more advantageous compared to the alternative population initialization
approaches (e.g., assign the arriving trucks to be served at the CDT doors available randomly; assign the arriving inbound
trucks to be served first before assigning any outbound trucks to ensure that the truck service precedence constraints will
not be violated), as it not only captures the truck service precedence constraints but can also reduce the total waiting time of
outbound trucks. For instance, assume that there are five trucks arriving for service at the CDT in the order “1” - “2” — “3”
— “4” - “5” Trucks “2” and “4” are outbound, while trucks “1”, “3”, and “5” are inbound. Inbound truck “1” is delivering the
products for outbound truck “2”, while inbound trucks “3” and “5” are delivering the products for outbound truck “4”. The
TSR heuristic will assign the arriving trucks for service at the CDT in the order “1” — “2” — “3” - “5” — “4”, ensuring that
inbound truck “1” will be served before outbound truck “2”, while inbound trucks “3” and “5” will be served before truck “4”.
On the other hand, assigning the arriving inbound trucks for service before any outbound trucks (i.e., the order “1” — “3” —
“5” — “2” — “4”)may result in a significant waiting time for outbound truck “2”. Note that the entire APMA population will
be created using TSR. The scope of this study includes a comprehensive evaluation of the developed TSR heuristic against the
alternative mechanisms for population initialization (Section 6.3.1 of the manuscript presents more details).

5.5. Fitness function

After initializing the population chromosomes, APMA evaluates their fitness. Let C = {1,---,a} denote a set of chromo-
somes in the APMA population; and G = {1,---, b} denote a set of generations throughout the APMA evaluation. The devel-
oped APMA algorithm relies on the following function to evaluate fitness of chromosome c in generation g:

Fite = Q> (2o!) + > (vl xaof™) + > (2FT0PT) + 3 (8o + > (2Po7") Ve e C.g €6 (18)
teT teT deD teT teT teT

It can be noticed that the APMA fitness function includes all the components of the objective function Z, which was
adopted for the proposed IOTSP mathematical model. Furthermore, the APMA fitness function has an additional component
(denoted as Q) that is used to penalize the infeasible chromosomes. As a result of the APMA operations (i.e., crossover and
mutation that are described under Sections 5.7.1 and 5.7.2 of the manuscript), the APMA population may have some chro-
mosomes, where the service of an outbound truck starts prior to the service start of the inbound truck delivering the prod-
ucts for that particular outbound truck. Since the latter scenario does not replicate realistic CDT operations, such
chromosomes will be penalized by APMA. The penalization approach ensures that infeasible chromosomes will have lower
survival chances compared to feasible chromosomes in each generation. One of the key challenges with the implementation
of the penalization approach consists in selection of the appropriate penalty value. Setting a fairly low penalty value may
cause some negative implications throughout the algorithmic search (e.g., propagation of a large quantity of infeasible indi-
viduals from one generation to another). The appropriate value of the penalty term (Q) will be established based on the
parameter tuning analysis (Section 6.2 of the manuscript presents more details).

Note that there are some alternative approaches for handling infeasible individuals that include, but are not limited to,
the following [13]: (1) maintain the feasibility of individuals by using special genetic operators; (2) maintain the feasibility
of individuals by using specific chromosome representations; (3) repair the individuals that become infeasible throughout
the search process; (4) remove the individuals that become infeasible from the population; and (5) apply particular types
of decoders. The scope of future research for this study includes a detailed evaluation of the APMA performance under dif-
ferent approaches for handling infeasible individuals.

5.6. Procedure for selecting parents

After evaluation of the fitness of chromosomes in the initial population, APMA executes the main loop. In case the stop-
ping criterion is not satisfied, APMA identifies the parent chromosomes using the Ranking Selection mechanism. The main
steps performed by the Ranking Selection mechanism are shown in Algorithm 2. In step 0, the data structure for the new
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parent chromosomes is initialized by the Ranking Selection mechanism. In step 1, the list of candidate chromosomes is cre-
ated based on the available population of chromosomes. Then, fitness of the candidate chromosomes is determined in step 2.
In steps 3 through 7, the Ranking Selection mechanism executes the main loop. In step 4, the fittest chromosome from the
list of candidate chromosomes is identified. In step 5, the fittest chromosome is appended to the data structure with the new
parent chromosomes. The list of candidate chromosomes is further updated in step 6. The parent selection procedure is ter-
minated when the required number of the parent chromosomes has been chosen.

Algorithm 2. Ranking Selection

Ranking (Popg, Fitg)
in: Pop, - population in generation g; Fitg - fitness of population chromosomes in generation g

out: Parentsy - parent chromosomes in generation g
: Parentsg — () < Initialization

cand Pop, U Pop, < Create the list of candidate chromosomes

: Popy
: Fity™" — Fit, U Fit, < Determine fitness of the candidate chromosomes
: while |Parentsg||Popy| do

c* — argmin (Fitga”d> < Identify the fittest chromosome

cand

Parentsy — Parentsg U {Popvg } < Assign the fittest chromosome to become a parent

cand

Pop{™® — Pop™ — {Popg?gd} < Update the list of candidate chromosomes

g
: end while
: return Parentsg

5.7. APMA operations

After selecting the parent chromosomes, APMA applies crossover and mutation in order to explore and exploit the search
space domains. The offspring chromosomes to be generated by the crossover operator will be mutated. Furthermore, APMA
adjusts polyploidy and applies the hybridization techniques to the produced offspring chromosomes after Epoch generations.
A comprehensive description of the crossover operations, mutation operations, and memetic operations (i.e., application of
the adaptive polyploid mechanism and the hybridization techniques) is presented under Sections 5.7.1 to 5.7.3 of the
manuscript.

5.7.1. Crossover operations

Crossover operators enable the EA-based algorithms with explorative capabilities, so different domains of the search
space can be explored [13]. As two-dimensional integer chromosomes were adopted to represent candidate solutions for
the IOTSP mathematical model (see Fig. 6), only specific types of crossover operators will be appropriate (e.g., order cross-
over operator, cycle crossover operator, partially mapped crossover operator). Selection of the alternative crossover opera-
tors for the adopted integer chromosomes (e.g., single arithmetic crossover, one-point crossover) may cause infeasibility,
since certain trucks may not be even scheduled for service at the CDT doors, while some other trucks can be scheduled
for service more than once. APMA deploys the order crossover operator to produce the offspring chromosomes. Fig. 7 illus-
trates an example of the APMA crossover operation.

First, two parent chromosomes are chosen at random from the pool of available parent chromosomes with a specific
crossover probability — ¢°". Since APMA is polyploid, a number of copies of the parent chromosomes will be stored before
performing a crossover operation. As it was indicated under Section 5.1 of the manuscript, the parent chromosomes are
assumed to be diploid at the beginning of the algorithmic run. Hence, after each crossover operation, two offspring chromo-
somes will be produced and appended to the APMA population along with one copy of each parent chromosome. Fig. 7
shows how two offspring chromosomes “O1” and “02” are produced after applying the order crossover operator. In partic-
ular, offspring chromosome “01” is produced by copying a segment of gene arrays from parent chromosome “P1” and past-
ing the selected gene arrays into offspring chromosome “01”. The length of a segment may vary from one deployment of the
crossover operator to another and is set randomly. In the considered example, the gene arrays that contain trucks “8”, “3”,
“1”, and “6” are copied directly from parent chromosome “P1” and pasted into offspring chromosome “O1”. After that, the
order crossover operator will copy the gene arrays with the trucks, which have not been assigned for service, directly from
parent chromosome “P2”. In particular, the gene arrays that contain trucks “2”, “4”, “5”, and “7” are copied from parent chro-
mosome “P2” and pasted into offspring chromosome “O1”. The order crossover operator produces offspring chromosome
“02” in a similar manner.

As indicated earlier, the crossover operations generally cause substantial genetic changes in the population chromosomes
that can ultimately worsen their fitness. The application of the polyploidy concept is expected to prevent decreasing fitness
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Notes: Chromosomes “P17, “O1”, “P2”, and “O2” will be appended to the APMA population after
completion of the crossover operation.

Fig. 7. An illustrative example of a polyploid crossover operation.

of the chromosomes in the APMA population as a result of applying the crossover operations. The number of copies of each
parent chromosome to be stored before performing the crossover operations will be determined by APMA based on the
tradeoff between the objective function improvements and computational time changes throughout the memetic operations.

5.7.2. Mutation operations

Mutation operators enable the EA-based algorithms with exploitative capabilities, so the promising domains identified by
crossover operators can be further exploited for superior solutions [13]. APMA deploys the mutation operator that is based
on the features of swap mutation, insert mutation, and invert mutation. A combination of different types of mutation is
expected to enhance the exploitative capabilities of the developed mutation operator. The generated offspring chromosomes
along with the stored copies of parent chromosomes will undergo mutation after the application of polyploid crossover oper-
ations. The main steps performed by the developed mutation operator are shown in Algorithm 3.

Algorithm 3. Mutation Operator

Mutation (Popg, a’““f)
in: Pop, - chromosomes in generation g; ¢™* - mutation probability
out: Pfo\ﬁg - mutated chromosomes in generation g
: ‘PT)EgL—\Popg’ < Initialization
ic—1
: while ¢ < |Pop,| do
@ < Rand(0,1) < Generate a random value
if 0 < ¢ < 1/3 then
Po;lcg — Swap <Popcg, am”f> < Apply swap mutation
else if 1/3 < ¢ < 2/3 then
Pozacg — Insert(Popcg, a"”“) < Apply insert mutation
else if 2/3 < ¢ < 1 then

N QD AN 2

9: Po?)cg — Invert (Popcg, om“f) < Apply invert mutation

10: end if
11: c—~c+1
12: end while

13: return Pgﬁg
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In step O, the data structure is initialized by the mutation operator for the mutated population chromosomes. In steps 2
through 12, the mutation operator executes the main loop. In step 3, the mutation operator generates a random value (@),
which varies between 0 and 1. In case the generated random value falls between “0” and “1/3,” swap mutation will be
applied to a given population chromosome. Insert mutation will be applied to a given population chromosome when the
generated random value falls between “1/3” and “2/3.” On the other hand, if the generated random value falls between
“2/3” and “1,” invert mutation will be applied to a given population chromosome. Note that the selected mutation type will
be used either for the gene arrays that represent the CDT doors or the gene arrays that represent the arriving trucks on a
random basis (hence, the genes with the CDT doors and the genes with the arriving trucks will have a 50% probability of
being mutated). Steps 2-12 are continuously repeated until each chromosome in the APMA population is mutated.

Fig. 8 illustrates several examples of a mutation operation. An illustrative example of performing swap mutation for a
given population chromosome is presented in Fig. 8A, where truck “4”, which was originally assigned to CDT door “1” after
truck “2”, is re-assigned to CDT door “2” after truck “3”. On the other hand, truck “1”, which was originally assigned to CDT
door “2” after truck “3”, is re-assigned to CDT door “1” after truck “2”. An illustrative example of insert mutation is presented
in Fig. 8B, where the gene with CDT door “2” is inserted in locus “2”, and the remaining genes with CDT doors are shifted to
the right. An illustrative example of invert mutation is presented in Fig. 8C, where the genes with trucks “1”, “6”, “5”, and “7"
undergo inversion (i.e., trucks “1” and “6”, originally assigned to CDT door “2”, are re-assigned to CDT door “3”; while trucks
“5” and “7”, originally assigned to CDT door “3”, are re-assigned to CDT door “2”). The mutated two-dimensional chromo-
somes can be sorted by CDT doors in ascending order to prevent the truck service order disruptions (see Fig. 8B, where truck
“4”, assigned to CDT door “2”, was originally placed by the mutation operator between trucks “2” and “8” that are both
assigned to CDT door “1”).

5.7.3. Memetic operations

In order to facilitate the search process, APMA applies a set of memetic operations after Epoch generations. Note that the
memetic operations are not applied in every APMA generation to prevent increasing computational complexity of the algo-
rithm. First, APMA deploys the adaptive polyploid mechanism, which controls the number of copies for each parent chromo-
some stored before each crossover operation based on both solution quality and computational time criteria. As discussed
under Section 5.1 of the manuscript, if the computational time increase after Epoch generations does not exceed AT" (%)
and the objective function improvements do not exceed AZ* (%), APMA will increase the number of copies of each parent
chromosome stored before each crossover operation by one chromosome. Therefore, the APMA population will start increas-

Before Swap Mutation Operation i efore Invert Mutation Operation @
: Truck — |24 |8 |3|1]6]5 i Truck— |2 |4 |8|3|1|6([5]|7
Door— [1|1[2]2]2]|2|3|3] & Door— [1|1[2[2]2]|2]|3]|3

After Swap Mutation Operation ii After Invert Mutation Operation
: Tmck—+21834657§§ Truck— |2 |4 |8|3|7|5|6]1

i Before Insert Mutation Operation

Truck —» |24 ]|8|3|1[6]5
Door— [1|1|2]2]2]|2|3]|3

After Insert Mutation Operation
: Truck — |2 [4]|8[3[1]6]5
Door— | 1|2]|1]2]2]2]|3]|3

After Sorting
i Truck — |2 [(8|4|3|1[6]5

Fig. 8. Illustrative examples of a mutation operation.
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ing faster to facilitate the explorative capabilities of the algorithm even further and prevent convergence at the local opti-
mum. The parent chromosomes are assumed to be diploid at the beginning of the algorithmic run.

However, a constant population size increase may drastically increase computational time. Hence, if the computational
time increase after Epoch generations exceeds AT" (%), APMA will start decreasing the population size by removing all the
parent chromosomes selected for the crossover operation (i.e., no parent chromosomes and no offspring chromosomes will
be appended to the APMA population). When the computational time stabilizes, APMA will resume performing normal poly-
ploid crossover operations. However, APMA will decrease the number of copies of each parent chromosome stored before
each crossover operation by one chromosome. The appropriate values of Epoch, AT, and AZ* will be established based on
the parameter tuning analysis (Section 6.2 of the manuscript presents more details).

Second, APMA deploys a local search heuristic to each one of the mutated population chromosomes, aiming to improve
their fitness. Throughout the APMA evolution, the arriving trucks will be distributed among the CDT doors available. The
problem of the optimal truck sequencing at each CDT door (i.e., the optimal sequence of service for the trucks assigned to
a given CDT door) has high computational complexity, and commercial optimization solvers (e.g., GUROBI, MOSEK, CPLEX)
may require a significant amount of computational time. However, solving the optimal truck sequencing problem for a sub-
set of trucks (i.e., a “string” of trucks) at a given CDT door will require less computational efforts. Moreover, the truck service
precedence constraints (the service of outbound trucks may not be started before the service start of the corresponding
inbound trucks) should be directly accounted for in the optimal truck sequencing problem. The developed APMA algorithm

focuses on optimizing the truck sequence for the longest string of consecutive outbound trucks (t € T°) at one of the CDT
doors (selected randomly); so that the start service times of the inbound trucks (t;,p € T') delivering the products for
the corresponding outbound trucks can be treated as parameters that will be defined throughout the crossover and mutation
operations for each population chromosome. A mathematical formulation for the Outbound Truck Sequencing Problem
(OTSP) has some similarities with the IOTSP mathematical model and can be presented as follows:

Outbound Truck Sequencing Problem (OTSP):

min Z° — Z (TWTSMT) + Z Z Tx,g0tT) + Z (75T oT) 4 Z (15T + Z (107507 (19)
teT? teT0 deD teT? teT® teT®
Subject to:
Yo+ >y =1vseT (20)
peTO:p#s
> ¥ =1vpeT’ 1)
seTO:s#p

Syl=1 (22)

teT?

Syi=1 (23)

teT?

o > vt e T° (24)

ol > ngﬂxmw eT’ (25)

deD

T + dzzrp”jxpd - 1"(1 —y;S)Vp,s e TO p#s (26)
eD

T > rWp e T s € T prs (27)

™ > ATyt e T° (28)

> 4 Z Hlx vt € T° (29)
dep
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T > <1§T — )i € T s € T%, ps (30)
o > 1P — tfTve e T° (31)
7 > T — Pyt e T° (32)

The objective function (19) of the OTSP mathematical model minimizes the total cost incurred by the CDT operator

throughout the service of considered outbound trucks (Z° - measured in USD). Constraint set (20) indicates that every truck
in the considered string of outbound trucks will be either assigned for service as the first truck at the selected CDT door or
after another outbound truck. Constraint set (21) indicates that every truck in the considered string of outbound trucks will
be either assigned for service as the last truck at the selected CDT door or before another outbound truck. Constraint set (22)
ensures that only one outbound truck will be assigned for service as the first truck in the considered string of outbound
trucks at the selected CDT door. Constraint set (23) ensures that only one outbound truck will be assigned for service as
the last truck in the considered string of outbound trucks at the selected CDT door. Constraint set (24) guarantees that
the service of an outbound truck at the CDT may start only after its arrival to the assigned CDT door. Constraint set (25) indi-
cates that the service of a given outbound truck at the CDT may start only once the assigned CDT door becomes available in
the considered planning horizon. Constraint set (26) guarantees that the service of a given outbound truck at the CDT will not
start before service completion of the preceding trucks in the considered string of outbound trucks.

Constraint set (27) enforces the condition that a given outbound truck can be served only upon the beginning of the ser-
vice of the inbound trucks delivering the products, which will be further loaded into that outbound truck. Constraint sets
(28) and (29) calculate the waiting time and finish service time of every truck in the considered string of outbound trucks.
Constraint set (30) estimates the storage time of the products, which will be loaded into a given outbound truck. Constraint
sets (31) and (32) calculate the early departure hours and delayed departure hours of every truck in the considered string of
outbound trucks. Note that, unlike the IOTSP mathematical model, the OTSP mathematical model treats components
X, t € T°,d € D and rff,p € T' as parameters, since their values will be known after conducting the crossover and mutation
operations. The developed APMA algorithm applies the Optimal Truck Sequence Identification (OTSI) heuristic to periodically
solve the OTSP mathematical model (i.e., every Epoch generations) and identify the optimal sequence for outbound trucks at
one of the CDT doors (selected randomly) for the longest string of consecutive outbound trucks in each population chromo-
some. The main steps performed by the OTSI heuristic are shown in Algorithm 4.

In step 0, the data structure for the updated population chromosomes is initialized by OTSI. In step 1, OTSI checks if the
current generation counter (g) is equal to generation g* (i.e., the generation in which the polyploidy adjustments are made
and the hybridization techniques are applied). When g = g*, the OTSP mathematical model will be solved to global
optimality for the longest string of consecutive outbound trucks for each one of the mutated population chromosomes (steps
3-6). In step 7, generation g* is reset by OTSI to make sure that the OTSP mathematical model will be solved to global
optimality for each one of the mutated population chromosomes again after Epoch generations. In step 9, OTSI returns
the updated chromosomes to the APMA population. Note that CPLEX will be used in this study to solve the OTSP mathemat-
ical model to global optimality. Fig. 9 illustrates an example of how the OTSI heuristic selects the outbound trucks for
optimizing their service sequence. In the considered example, a total of 16 trucks are assigned for service at CDT door “2”
(therefore, CDT door “2” was selected by OTSI to optimize the truck service sequence for a given population chromosome).
There are a total of three strings of outbound trucks. The OTSI heuristic will be executed for outbound trucks “2”, “4”, “13”,
“9”, “10”, and “12", since they form the longest string of consecutive outbound trucks at CDT door “2” of the considered
population chromosome.

Inbound Trucks Outbound Trucks

Truck— | 6 | 3 |16|11| 7 |14 | 8| S |15 12 |4 |13|9 |[10]12
el 2 |22z 222|2| 222|222 2] 2

Trucks Selected by OTSI /

Fig. 9. An illustrative example of outbound truck selection by the OTSI heuristic.
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Algorithm 4. Optimal Truck Sequence Identification (OTSI) Heuristic

oTSI (InData, Pop, , T°, Epoch)

in: InData - input parameters for the OTSP mathematical model; PEEg - mutated chromosomes in generation g; T° -
string of outbound trucks selected for optimization; Epoch - epoch value

out: Pop, - updated chromosomes in generation g

0: Pop, PEEg < Initialization

1: if g = g* then

2: c«1

3: for all ¢ € Pop, do

4 Pop.y — OTSP(InData, Pop,,, To) < Solve the OTSP mathematical model

5: c—c+1

6: end for

7: g* < g* + Epoch < Reset generation g*

8: end if

9: return Pop,

5.8. Procedure for selecting survivors

After producing the offspring chromosomes via the APMA operations and fitness evaluation, APMA identifies the surviv-
ing chromosomes that will represent the next generation population from the pool of available chromosomes. The Stochastic
Universal Sampling mechanism is used by APMA to identify the next generation chromosomes. The main steps performed by
the Stochastic Universal Sampling mechanism are shown in Algorithm 5. In step 0, the Stochastic Universal Sampling mech-
anism initializes the data structures that will be used. In steps 2-5, the fitness values of the population chromosomes are
adjusted, since the IOTSP mathematical model is of a minimization type. In step 6, the Stochastic Universal Sampling mech-
anism computes the fitness interval (1). In step 7, the available chromosomes are sorted, based on the adjusted fitness values,
in descending order. In step 8, the starting fitness value (¢), varying between “0” and “/,” is chosen. Then, the Stochastic
Universal Sampling mechanism executes another loop (steps 10-14). Within the loop, the next generation chromosomes
are sampled from the pool of available chromosomes using the evenly spaced fitness intervals. The survivor selection pro-
cedure is terminated when the required number of the next generation chromosomes has been chosen.

Algorithm 5. Stochastic Universal Sampling

StocUnSampl (Popg, Fitg)
in: Pop, - chromosomes in generation g; Fitg - fitness of chromosomes in generation g
out: Pop, , - chromosomes selected to represent generation g + 1

: [Popg 1| < |Popgl; \Fitgdj| « |Popg| < Initialization
tc—1
: while ¢ < |Pop,| do
Fit?gj « 1/Fite,; <« Compute the adjusted fitness values
c—c+1
: end while

DA e (ZcFitggj)/|Fitgdj\ < Compute the fitness interval

: Popg Sort(Popg,Fitgdj) < Sort the chromosomes based on the adjusted fitness

: @ — Rand(0, 2) <« Choose the starting fitness value
tc—1
10: while ¢ < |Pop,| do

11: Pop 1) + ChromSel (q)., Fitgdj , Popg> < Choose the next generation chromosome
12: @ < ¢ + 4 < Update the starting fitness value

13: c—c+1

14: end while

15: return Pop, 4
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5.9. Elitism

The application of stochastic APMA operators (e.g., crossover operator, mutation operator) does not ensure that the off-
spring chromosomes with superior values of fitness function (compared to the parent chromosomes) will be produced. In
some instances, the stochastic APMA operators may worsen the quality of population chromosomes (despite the application
of the polyploidy concept). In order to prevent the loss of good-quality chromosomes throughout the algorithmic run, the
elitism strategy has been often deployed in evolutionary computation [13]. The developed APMA algorithm applies the elit-
ism strategy before the parent selection to make sure that the fittest chromosome will be moved to the population in the
next generation.

5.10. Stopping criteria

The proposed APMA algorithm will be stopped when one of the following criteria has been satisfied: (1) no improvements
in the objective function have been identified by APMA after a pre-specified number of consecutive generations (g°%); (2)
APMA reaches the maximum number of generations (g™*). The appropriate values of g°% and g™® will be established based
on the parameter tuning analysis (Section 6.2 of the manuscript presents more details). Technically, an additional parameter
could be introduced for the first stopping criterion [e.g., the objective function improvements do not exceed Z°¥ (%) after a
pre-specified number of consecutive generations g°”]. However, the introduction of additional parameters for the stopping
criterion is anticipated to increase the amount of computational time required for tuning of all the parameters of the APMA
algorithm, which is not considered as desirable from the practical point of view.

6. Computational experiments

The computational experiments, which were performed as a part of this study, are described under this section of the
manuscript. During the experiments, the computational performance of the developed APMA algorithm was evaluated in
three steps. The first step focused on assessing the effectiveness of the TSR heuristic that was developed for initializing
the APMA population against the alternative mechanisms for population initialization. The second step focused on assessing
the effects of polyploidy and hybridization within the developed APMA algorithm. The third step focused on assessing the
performance of the developed APMA algorithm based on a comprehensive comparative analysis against the alternative solu-
tion approaches, including the following: (i) CPLEX; (ii) Ant Colony Optimization (ACO); (iii) Tabu Search (TS); (iv) Variable
Neighborhood Search (VNS); and (v) Simulated Annealing (SA). While CPLEX is considered as an effective exact optimization
approach for large-scale mixed integer linear programming models, ACO, TS, VNS, and SA are well-recognized state of the art
metaheuristics that have been extensively used for solving challenging decision problems in the CDT operations literature as
well as the other studies on freight terminal operations [1,2,44,48,49)|.

This study refers to Boloori Arabani et al. [48], Rajabi and Shirazi [49], and Liao et al. [44] for a more detailed description of
the ACO, TS, VNS, and SA algorithms. MATLAB 2016a was used to encode the APMA, ACO, TS, VNS, and SA algorithms. A CPU
with 32 GB of RAM, Dell Intel(R) Core™ i7 Processor, and Operating System Windows 10 was used to perform all the com-
putational experiments as a part of this study. The following sections of the manuscript further elaborate on the input data
selection for the IOTSP mathematical model, the tuning of parameters for the considered solution algorithms, and the afore-
mentioned three steps that were undertaken to evaluate the APMA computational performance.

6.1. Input data selection for the IOTSP mathematical model

The existing studies on cross-docking operations and freight terminal operations were used to assign the appropriate
parameter values for the IOTSP mathematical model [1,2,4,5,44,45,49]. Table 2 provides more details regarding the input
data generation. The inbound and outbound trucks were assumed to arrive at the CDT following an exponential distribution
(term “EXP” is used in Table 2 to denote the pseudorandom numbers that follow an exponential distribution). The inbound
and outbound trucks were assumed to have an inter-arrival time of 10 min on average, which corresponds to approximately
0.1667 h. The CDT doors were assumed to be available for service of the arriving trucks from the beginning of the planning
horizon: 1% = 0Vd € D (hours). The handling time of the arriving trucks was assumed to vary between 0.50 h and 2.50 h and
was generated as follows: tH = U[0.50;2.50)Vt € T,d € D (hours), where term “U[Valy; Val,]” is used to denote the pseudo-
random numbers that follow a uniform distribution. The scheduled departure time of truck t from the CDT was generated as
follows: 70 = " 4 miny(t!) - U[1.2;1.5]vt € T (hours). Each inbound truck, which arrives to be served at the CDT, was
assumed to deliver the products for no more than 3 outbound trucks (3=, o, ps < 3¥p € T').

A set of uniform distributions were used to assign the unit cost components of the IOTSP mathematical model (see
Table 2). In particular, the unit waiting cost of trucks was assumed to range from 100 USD/hour to 150 USD/hour, while
the unit handling cost of trucks varied between 200 USD/hour and 300 USD/hour. The unit product inventory cost ranged
from 40 USD/hour to 80 USD/hour. On the other hand, the unit cost of early truck departures and the unit cost of late truck
departures were both assumed to vary between 300 USD/hour and 400 USD/hour. The generated parameter values were fur-
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Table 2
The input data for the parameters of the IOTSP mathematical model.
Parameter Adopted Values
Amount of the arriving trucks: |T| (trucks) Depends on the problem instance
Amount of the CDT doors available: |D| (doors) Depends on the problem instance
Truck inter-arrival time: AtAT (hours) ATT = EXP[0.1667]
Scheduled arrival time of truck t: ©A7,t € T (hours) T = + ATVt e T
Time when door d becomes available: 744, d € D (hours) 4 =ovd e D
Handling time of truck t at door d: /.t € T,d € D (hours) THl = U[0.50;2.50)vt € T.d € D
Scheduled departure time of truck t from the CDT: 7{°,t € T (hours) 30 =T + ming () - U1.2;1.5vt e T
Inbound-to-outbound truck assignment:rys,p € T',s € T°, p#s D serosnplps < 3VP € T
Unit waiting cost of truck t: 7, t € T (USD/hour) sV = U[100;150)vt € T
Unit handling cost of truck t: /7, ¢ € T (USD/hour) oM = U[200;300)vt € T
Unit inventory cost of the products, which will be loaded into truck t: 6{',t € T (USD/hour) oST = U40;80)vt € T
Unit cost of early departure for truck ¢ from the CDT: 6", t e T (USD/hour) ST — U[300;400)t € T
Unit cost of delayed departure for truck t from the CDT: 6P, t e T (USD/hour) oPT = U[300;400)vt € T
Large positive number:I" 10,000

ther used to develop a total of 30 problem instances by making the changes in the total amount of the CDT doors available
(from 2 CDT doors to 10 CDT doors) and the total amount of the arriving trucks (from 8 trucks to 140 trucks).

6.2. Tuning of the algorithmic parameters

Before analyzing the performance of the considered solution algorithms, it is necessary to set the appropriate values for
their parameters. The considered solution algorithms have quite a significant number of parameters. For example, the devel-
oped APMA algorithm has a total of 9 parameters, which include the following: (i) population size — IT; (ii) penalty for infea-
sible individuals - Q; (iii) crossover probability - ¢¢"; (iv) mutation probability - ¢™; (v) number of generations between
the polyploidy adjustments and application of the hybridization techniques - Epoch; (vi) threshold for the computational
time increase — AT"; (vii) threshold for the objective function improvements — AZ*; (viii) number of consecutive generations
without any improvements in the objective function - g°¥; and (ix) maximum number of generations — gm®,

The APMA parameters define the APMA computational complexity. Increasing population size enhances the explorative
APMA capabilities but will increase its computational time as well (since the APMA procedures will have to be applied to a
larger number of chromosomes). Increasing crossover and mutation probabilities is also expected to increase the APMA com-
putational time, as the crossover and mutation operations will be applied more often to the APMA chromosomes. Similarly,
increasing the maximum number of generations will increase the APMA computational time, as the APMA procedures will
have to be applied for more generations. Furthermore, the adopted parameter values of the IOTSP mathematical model can
influence the APMA computational time. For example, increasing amount of the arriving trucks will increase the length of the
APMA chromosomes, which will further increase the computational time required to conduct the fitness function evalua-
tions, crossover operations, and mutation operations.

Considering the number of APMA parameters, evaluation of all the possible combinations of parameters may not be fea-
sible from the computational time standpoint. A “Taguchi’s method” was used in this study for tuning of the algorithmic
parameters, where each candidate algorithm was executed only for “the most favorable” combinations of parameters
[45,48]. A tradeoff between the computational time required and objective function value, recorded for a given combination
of parameters, was the primary criterion for the identification of the most favorable combinations of parameters. The tuning
of algorithmic parameters was performed using 4 problem instances, which were sampled at random from the generated 30
problem instances (see Section 6.1 of the manuscript for the description of input data and problem instances). Throughout
the analysis, each algorithm was launched 10 times for each most favorable combination of parameters in order to compute
the average values of computational time and objective function. Table 3 presents the parameter tuning results for the con-
sidered solution algorithms and provides the following data: (a) names of the solution algorithms; (b) parameters of the
solution algorithms; (c) candidate values used for each parameter; and (d) the most promising value for each parameter (se-
lected based on a tradeoff between the computational time required and objective function value).

6.3. Algorithmic performance

All the steps that were used to evaluate the computational performance of the developed APMA algorithm are described
under this section of the manuscript, including the following: (i) evaluation of the mechanism for population initialization;
(ii) evaluation of the effects of polyploidy and hybridization; and (iii) comparative analysis against the alternative solution
approaches.
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Table 3
The results of parameter tuning for the considered solution algorithms.
Algorithm Parameter Candidate Values Best Algorithm Parameter Candidate Values  Best
Value Value
APMA Population size (IT) [30; 40; 50] 40 ACO Maximum number of [2,000; 2,500; 3,000
iterations (iter™™) 3,000]
APMA Penalty term (Q) [4.00; 5.00; 6.00] 4.00 TS Number of solutions [30; 40; 50] 40
evaluated during the
local search (IT™)
APMA Crossover probability (o) [0.30; 0.50; 0.70] 030 TS Penalty term (Q) [4.00; 5.00; 6.00] 4.00
APMA Mutation probability (™) [0.01; 0.03; 0.05] 0.01 TS Exchange rate (¢™)! [2; 4; 6] 2
APMA Number of generations between the [500; 600; 700] 600 TS Tabu List size (Y) [10; 15; 20] 10
polyploidy adjustments and application
of the hybridization techniques (Epoch)
APMA Threshold for the computational time [10; 30; 50] 30 TS Maximum number of [2,000; 2,500; 3,000
increase (AT*, %) iterations (iter™™) 3,000]
APMA Threshold for the objective function [2; 5; 10] 5 VNS Number of solutions [30; 40; 50] 40
improvements (AZ*, %) evaluated during the
neighborhood search
(HVNS)
APMA Number of consecutive generations [1,000; 1,250; 1,000 VNS Penalty term (Q) [4.00; 5.00; 6.00] 4.00
without any improvements in the 1,500]
objective function (g°%)
APMA Maximum number of generations (g™*) [2,000; 2,500; 3,000 VNS Exchange rate (GVN5)1 [2; 4; 6] 2
3,000]
ACO Population size (IT) [30; 40; 50] 40 VNS Maximum number of [2,000; 2,500; 3,000
iterations (iter™™) 3,000]
ACO Penalty term (Q) [4.00; 5.00; 6.00] 4.00 SA Initial temperature (U)o) [1,500: 1,750; 1,500
2,000]
ACO Evaporation rate (p) [0.20; 0.30; 0.40] 0.20 SA Temperature interval [0.10; 0.20; 0.50] 0.50
(Aw)?
ACO Initial pheromone amount [0.25; 0.30; 0.35] 030 SA Penalty term (Q) [4.00; 5.00; 6.00] 4.00
(0. p,5 € T, ps)
ACO Pheromone trail parameter (o) [1.00; 1.50; 2.00] 1.50 SA Exchange rate (gSA)l [2; 4; 6] 2
ACO Heuristic parameter (B) [1.00; 1.50; 2.00] 1.50 SA Maximum number of [2,000; 2,500; 3,000
iterations (iter™™) 3,000]

1 - The exchange rate within the TS, VNS, and SA algorithms defines the number of truck-to-door assignments to be altered in the considered solution in
order to create a new solution as a result of the local search; 2 — The proposed SA algorithm establishes the temperature in iteration iter as follows:
Wier = W° — Aw - iter (temperature units).

6.3.1. Evaluation of the mechanism for population initialization

As it was indicated under Section 5.4 of the manuscript, a novel TSR heuristic was designed to generate the initial pop-
ulation chromosomes for the developed APMA algorithm. As a part of the computational experiments, the TSR heuristic was
compared against the alternative mechanisms for population initialization that have been used in the CDT truck scheduling
literature, such as: (i) ITPC - the entire APMA population is generated using the Inbound Truck Precedence Constraint (ITPC)
heuristic, where the arriving inbound trucks are scheduled for service first before scheduling any outbound trucks to ensure
that the truck service precedence constraints will not be violated; (ii) R - the entire APMA population is generated based on a
random assignment of the arriving inbound trucks and outbound trucks to the CDT doors available; (iii) TSR-ITPC - half of
the APMA population is generated using TSR, and the other half is generated using ITPC; (iv) TSR-R - half of the APMA pop-
ulation is generated using TSR, while the other half is generated randomly; and (v) ITPC-R - half of the APMA population is
generated using ITPC, while the other half is generated randomly.

The APMA variations, which were differed based on the population initialization mechanism used, were evaluated for all
the generated 30 problem instances (see Section 6.1 of the manuscript for the description of input data and problem
instances). Throughout the analysis, each APMA variation was launched 10 times in order to compute the average values
of computational time and objective function. Table 4 presents the analysis results for the considered APMA variations with
different population initialization mechanisms and provides the following data: (i) the problem instance number; (ii) the
total amount of CDT doors available; (iii) the total amount of arriving inbound trucks and outbound trucks; (iv) the objective
function values (average over 10 replications); and (v) the computational time values (average over 10 replications). Further-
more, Fig. 10 shows the convergence diagrams, which were recorded for the last replication of each APMA variation. Note
that the convergence diagrams are provided for the problem instances with the largest number of CDT doors available
and the largest number of arriving trucks (i.e.,, problem instances 21 through 30). However, similar tendencies for the
remaining problem instances were noticed.

The conducted analysis shows that APMA with the TSR population initialization mechanism clearly outperformed the
other APMA variations that rely on the alternative population initialization mechanisms. In particular, TSR demonstrated
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Table 4
The objective function values and computational time required for the population initialization mechanisms considered.
Instance #Doors #Trucks TSR ITPC R TSR-ITPC TSR-R ITPC-R
Z, 10> USD CPU, sec Z, 10> USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z,10° USD CPU, sec

1 2 8 15.359 58.12 15.359 57.66 15.359 61.98 15.359 63.78 15.359 64.71 15.359 60.71
2 2 10 21.748 63.63 21.748 64.48 21.748 66.00 21.748 66.09 21.748 67.58 21.748 65.93
3 2 12 26.304 66.11 26.304 70.56 26.304 73.54 26.304 72.05 26.304 71.74 26.304 67.02
4 2 14 34.817 72.20 34.817 78.54 34.817 73.58 34.817 74.92 34.817 76.02 34.817 73.89
5 2 16 46.577 76.15 46.577 83.14 46.967 79.88 46.577 79.56 46.577 81.49 46.577 78.25
6 4 8 8.229 61.54 8.229 61.62 8.229 59.52 8.229 65.28 8.229 65.74 8.229 60.60
7 4 10 11.417 65.65 11.417 70.51 11.417 68.41 11.417 68.47 11.417 66.33 11.417 67.03
8 4 12 13.747 68.54 13.747 68.32 13.747 76.33 13.747 72.82 13.747 70.45 13.747 70.81
9 4 14 17.810 67.49 17.810 76.10 17.928 76.02 17.810 73.01 17.810 74.33 17.810 83.06
10 4 16 23.167 73.07 23.271 83.23 23414 85.83 23.207 80.91 23.254 84.93 23.292 90.23
11 8 50 73.464 142.83 74.411 163.87 74.861 160.52 73.523 159.16 73.599 166.62 74.669 179.82
12 8 60 100.123 158.46 100.371 192.64 100.450 184.94 100.274 189.85 100.328 197.36 100.394 172.82
13 8 70 130.386 191.53 131.020 205.01 133.093 201.56 130.591 218.56 130.642 22221 132.644 190.65
14 8 80 172.358 234.94 174.213 213.80 175.921 214.23 173.854 219.33 173.994 224.02 174.738 217.03
15 8 90 211.981 262.65 215.953 239.07 218.648 240.92 212.802 236.10 214.749 250.97 217.085 242.29
16 8 100 258.503 277.05 259.787 271.70 261.025 256.70 259.102 278.46 259.343 270.87 260.519 287.89
17 8 110 312.743 286.45 316.391 290.53 1208.910 311.87 314.517 295.78 315.178 290.93 318.260 299.18
18 8 120 371.247 301.09 377.948 320.11 1421.538 324.87 375.847 313.37 377.461 316.16 380.289 33435
19 8 130 438.150 347.27 454.383 335.49 1717.813 345.68 441.690 328.71 443.908 332.55 459.769 360.56
20 8 140 506.418 349.83 526.677 367.76 1973.577 386.92 514.529 362.00 515.820 372.96 532.194 392.73
21 10 50 52.758 142.34 53.382 144.74 53.801 155.88 53.027 145.59 53.234 151.30 53.792 162.89
22 10 60 69.956 169.44 70.834 181.61 72.185 179.50 70.701 178.00 70.782 186.83 70.994 189.32
23 10 70 90.476 184.26 92.991 196.70 94.720 205.67 91.589 200.23 92.842 204.76 93.792 201.55
24 10 80 118.249 219.86 119.378 235.64 121.385 21213 119.112 223.71 119.211 234.04 120.207 226.40
25 10 90 144.192 242.82 147.905 240.33 153.374 248.69 145.578 263.93 145.877 246.28 150.324 245.77
26 10 100 176.635 265.24 178.789 273.73 184.012 269.00 177.859 273.33 178.283 277.09 180.159 270.71
27 10 110 209.148 277.77 217.357 317.26 673.880 311.26 211.041 29411 214.155 291.15 223438 280.26
28 10 120 251.723 304.73 260.021 323.68 800.073 301.31 258.756 322.65 259.067 342.88 268.215 312.73
29 10 130 293.604 333.93 312.095 337.74 1190.785 368.04 303.618 344.04 311.675 356.23 330.873 354.48
30 10 140 344.095 362.53 375.069 345.79 1343.195 398.12 354.818 373.80 367.202 392.46 387.441 383.63
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Fig. 10. The recorded convergence diagrams for APMA with different population initialization mechanisms [problem instances 21 through 30].

objective function improvements of up to 9.00%, 3.41%, 6.72%, and 12.69% over the ITPC, TSR-ITPC, TSR-R, and ITPC-R pop-
ulation initialization mechanisms, respectively (see Table 4). The superiority of TSR over ITPC can be explained by the fact
that TSR assigns the arriving trucks to the available doors based on the order of their arrival at the CDT and ensures that each
outbound truck will be assigned for service after the last inbound truck delivering the products for that outbound truck. On
the other hand, ITPC simply assigns the arriving inbound trucks for service first before assigning any outbound trucks to
ensure that the truck service precedence constraints will not be violated, which may substantially increase the total waiting
time of outbound trucks. The convergence diagrams show that the APMA variations that relied on the TSR population ini-
tialization mechanism (i.e., TSR, TSR-ITPC, and TSR-R) began the search process with the initial solutions, which typically
have superior values of the objective function compared to the alternative APMA variations (i.e., ITPC, R, and ITPC-R).
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Furthermore, APMA with the R population initialization mechanism was not able to identify any feasible solutions
throughout the search process and returned the solutions with infeasible truck-to-door assignments at convergence for
some of the large problem instances - i.e., problem instances 17 through 20 and problem instances 27 through 30 (see
Table 4 and Fig. 10). Therefore, it can be concluded that random population initialization mechanisms demonstrate poor per-
formance for the CDT truck scheduling problems that have the truck service precedence constraints (e.g., as the IOTSP math-
ematical model that was adopted in this study), which highlights the need for problem-specific heuristics at the population
initialization stage. As for the required computational efforts, the average computational time values were 190.92 sec, 197.04
sec, 199.96 sec, 197.92 sec, 201.70 sec, and 200.75 sec for the APMA variations with the TSR, ITPC, R, TSR-ITPC, TSR-R, and
ITPC-R population initialization mechanisms, respectively. Hence, the changes in the population initialization mechanism
did not cause any substantial fluctuations with regards to the APMA computational time.

6.3.2. Evaluation of the effects of polyploidy and hybridization

As a part of the computational experiments, advantages of applying the adaptive polyploid mechanism and hybridization
techniques were evaluated by means of comparing the developed APMA algorithm against the alternative EA-based algo-
rithms. In particular, the following EA-based algorithms were considered throughout the analysis: (i) APMA - an EA that
relies on the adaptive polyploid mechanism throughout the crossover operations and deploys the OTSI heuristic (i.e., peri-
odically solves the OTSP mathematical model to global optimality - see Section 5.7.3 of the manuscript for more details); (ii)
APEA - an EA that relies on the adaptive polyploid mechanism throughout the crossover operations without deploying the
OTSI heuristic; (iii) MA - an EA that relies on the haploidy concept throughout the crossover operations and deploys the OTSI
heuristic; and (iv) EA - an EA that relies on the haploidy concept throughout the crossover operations without deploying the
OTSI heuristic.

The APMA, APEA, MA, and EA algorithms were evaluated for all the generated 30 problem instances (see Section 6.1 of the
manuscript for the description of input data and problem instances). Throughout the analysis, each EA-based algorithm was
launched 10 times in order to compute the average values of computational time and objective function. Table 5 presents the
results of performed analysis for the considered EA-based algorithms and provides the following data: (i) the problem
instance number; (ii) the total amount of CDT doors available; (iii) the total amount of arriving inbound trucks and outbound
trucks; (iv) the objective function values (average over 10 replications); and (v) the computational time values (average over
10 replications). Furthermore, Fig. 11 shows the convergence diagrams, which were recorded for the last replication of each
EA-based algorithm. Note that the convergence diagrams are provided for the problem instances with the largest number of

Table 5
The objective function values and computational time required for APMA, APEA, MA, and EA.
Instance #Doors #Trucks APMA APEA MA EA
Z,10°USD  CPU,sec  Z, 10°USD  CPU,sec  Z 10°USD  CPU,sec  Z,10°USD  CPU, sec

1 2 8 15.359 58.12 15.359 38.42 15.359 53.80 15.359 35.10
2 2 10 21.748 63.63 21.748 44.02 21.748 58.36 21.748 39.01
3 2 12 26.304 66.11 26.304 51.11 26.304 62.23 26.304 43.94
4 2 14 34.817 72.20 34.817 55.05 34.817 67.72 34.817 48.18
5 2 16 46.577 76.15 46.577 57.50 46.577 70.37 46.687 51.73
6 4 8 8.229 61.54 8.229 40.92 8.229 54.81 8.229 36.03
7 4 10 11.417 65.65 11.417 42.54 11.417 58.55 11.417 41.31
8 4 12 13.747 68.54 13.747 46.81 13.747 63.81 13.747 4414
9 4 14 17.810 67.49 17.810 53.57 17.854 67.21 17.897 48.04
10 4 16 23.167 73.07 23.189 53.96 23.256 71.76 23.295 52.33
11 8 50 73.464 142.83 73.814 131.15 73.877 135.69 73.921 124.37
12 8 60 100.123 158.46 100911 150.54 101.212 153.02 101.983 149.81
13 8 70 130.386 191.53 131.956 175.62 131.994 178.77 134.257 167.20
14 8 80 172.358 234,94 174435 196.90 174.724 199.35 176.917 186.37
15 8 90 211.981 262.65 216.429 216.27 216.700 23249 221.472 204.72
16 8 100 258.503 277.05 266.773 236.96 267.629 265.13 274.643 231.06
17 8 110 312.743 286.45 323.983 261.49 325.497 27213 331.857 257.64
18 8 120 371.247 301.09 385.294 286.04 393.655 286.04 399.483 286.04
19 8 130 438.150 347.27 454.799 323.26 465.448 325.80 478.424 321.03
20 8 140 506.418 349.83 535.662 343.87 545.461 346.18 557.551 332.34
21 10 50 52.758 142.34 52.815 131.39 53.665 136.69 54.051 126.61
22 10 60 69.956 169.44 70.822 154.95 71.103 160.97 72.281 136.97
23 10 70 90.476 184.26 92.660 174.58 93.338 175.05 95.755 157.24
24 10 80 118.249 219.86 121.352 197.09 122.238 207.33 125.284 178.31
25 10 90 144.192 24282 149.680 215.98 153.940 230.68 160.304 199.45
26 10 100 176.635 265.24 184.386 239.54 188.877 253.69 197.870 22235
27 10 110 209.148 27777 225.326 259.03 229.936 263.88 233.193 245.03
28 10 120 251.723 304.73 273.991 280.68 279.830 303.11 283.838 266.56
29 10 130 293.604 333.93 326.018 315.39 332.366 331.63 340.383 288.24
30 10 140 344.095 362.53 385.375 350.91 395.580 354.57 402.456 331.30
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Fig. 11. The recorded convergence diagrams for APMA, APEA, MA, and EA [problem instances 21 through 30].

CDT doors available and the largest number of arriving trucks (i.e., problem instances 21 through 30). However, similar ten-
dencies for the remaining problem instances were noticed.

The conducted analysis shows that the APMA algorithm that relies on the adaptive polyploid mechanism throughout the
crossover operations and deploys the OTSI heuristic clearly outperformed the APEA, MA, and EA algorithms. In particular, the
APMA algorithm demonstrated objective function improvements of up to 12.00%, 14.96%, and 16.96% over the APEA, MA, and
EA algorithms, respectively (see Table 5). Therefore, the application of the adaptive polyploid mechanism and hybridization
techniques were favorable for the search process and allowed the identification of superior solutions. The convergence dia-
grams show that the APMA, APEA, MA, and EA algorithms began the search process with the same initial solutions, since the
TSR population initialization mechanism was used for each algorithm. However, after ~600 = 700 generations APMA started
moving more effectively along the search space, which further allowed the identification of good-quality domains of the
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search space as well as superior solutions (see Fig. 11). Hence, the adaptive polyploidy and hybridization techniques facil-
itated the APMA explorative and exploitative capabilities.

Furthermore, based on the performed analysis, it can be stated that the application of adaptive polyploidy alone may not
be sufficient for decision problems of high computational complexity (e.g., as the IOTSP mathematical model that was
adopted in this study), and the hybridization techniques that directly consider problem-specific properties are required to
improve the search process. Such a finding can be supported by the fact that APMA consistently outperformed APEA for
the majority of the generated 30 problem instances (the same values of objective function were observed only for the
small-size problem instances 1 through 9 with up to 4 CDT doors and 14 arriving trucks). As for the required computational
efforts, the average computational time values were 190.92 sec, 170.85 sec, 181.36 sec, and 161.75 sec for the APMA, APEA,
MA, and EA algorithms, respectively. Hence, the application of the adaptive polyploid mechanism and hybridization tech-
niques increased the computational time. Nevertheless, the APMA computational time did not surpass ~6 min even for
the large problem instances with up to 10 CDT doors and 140 arriving trucks. Such a performance can be considered as sat-
isfactory from the practical perspective.

6.3.3. Comparative analysis against the alternative solution approaches

As a part of the computational experiments, the APMA algorithm was compared against the alternative solution
approaches, including the following: (i) CPLEX; (ii) ACO; (iii) TS; (iv) VNS; and (v) SA. All the considered solution approaches
were evaluated for all the generated 30 problem instances (see Section 6.1 of the manuscript for the description of input data
and problem instances). Throughout the analysis, each solution approach was launched 10 times in order to compute the
average values of computational time and objective function. The maximum allowable computational time was set to
7,200 sec for CPLEX, while the target optimality gap was set to 0.10%. Table 6 presents the analysis results for the considered
solution approaches and provides the following data: (i) the problem instance number; (ii) the total amount of CDT doors
available; (iii) the total amount of arriving inbound trucks and outbound trucks; (iv) the objective function values (average
over 10 replications); and (v) the computational time values (average over 10 replications).

The conducted analysis shows that the performance of the adopted exact optimization approach (CPLEX) clearly declines
with increasing problem size. In particular, only the small-size problem instances 1 through 8 with up to 4 CDT doors and 12
arriving trucks could be solved within the imposed computational time limit to global optimality. Such a finding highlights
high computational complexity of the proposed IOTSP mathematical model and underlines the necessity for the deployment
of effective metaheuristic or/and heuristic algorithms in order to handle large problem instances in a timely manner. The
considered metaheuristics returned either the same or near-optimal solutions when comparing to CPLEX for the small-
size problem instances 1 through 8, which confirms their accuracy. Moreover, the APMA algorithm clearly outperformed
the ACO, TS, VNS, and SA algorithms. More specifically, the APMA algorithm demonstrated the average objective function
improvements of 8.06%, 13.84%, 10.88%, and 17.11% over the ACO, TS, VNS, and SA algorithms, respectively, for the large-
size problem instances 11 through 30 (see Table 6). The superiority of APMA demonstrates the effectiveness of the developed
adaptive polyploid mechanism and the OTSI heuristic, which was deployed throughout the memetic operations.

A weaker performance of the ACO, TS, VNS, and SA algorithms can be justified by the fact that they are stochastic search
algorithms that do not deploy any operators, which account for problem-specific properties. Lack of problem-specific
hybridization techniques negatively affects the search process of the solution methods that mainly rely on stochastic search
operators, especially for decision problems of high computational complexity (e.g., as the IOTSP mathematical model that
was adopted in this study). Furthermore, ACO was typically superior with regards to the values of objective function at con-
vergence compared to TS, VNS, and SA, since ACO is a population-based metaheuristic that performs the search process using
a population of solutions. On the contrary, TS, VNS, and SA are classified as single-solution-based metaheuristics that per-
form the search process using just a single solution and its neighbor(s).

Throughout the computational experiments, a comprehensive analysis of the solutions returned by the considered solu-
tion algorithms with regards to the objective function components was performed as well. Fig. 12 shows the average values
of objective function components for the APMA, ACO, TS, VNS, and SA truck schedules over the problem instances generated,
which include the following: (i) the average total waiting time of trucks - ATWT = 3", (t}'T)/30; (ii) the average total
handling time of trucks - ATHT =Y, ;> .., (T x,4)/30; (iii) the average total storage time of products - ATPST =
> er (TT) /30; (iv) the average total early departure time of trucks - ATET = 3", _+(t") /30; and (v) the average total delayed
departure time of trucks - ATDT = 3", (7PT)/30. It can be observed that APMA yielded a substantial reduction in the total
waiting time of trucks, total handling time of trucks, total storage time of products, total early departure time of trucks, and
total delayed departure time of trucks over the alternative solution algorithms with the average time savings of up to 18.40%,
5.78%, 52.76%, 62.82%, and 19.01%, respectively.

As for the required computational efforts, the average computational time values were 190.92 sec, 147.46 sec, 103.71 sec,
108.77 sec, and 33.31 sec for the APMA, ACO, TS, VNS, and SA algorithms, respectively. Hence, the application of the adaptive
polyploid mechanism and hybridization techniques increased the computational time. However, as it was pointed out under
Section 6.3.2 of the manuscript, the APMA computational time did not surpass ~6 min even for the large problem instances with
up to 10 CDT doors and 140 arriving trucks. Such a performance can be considered as satisfactory from the practical perspective.

Since the APMA, ACO, TS, VNS, and SA algorithms are stochastic in their nature due to the application of probabilistic
operators (e.g., crossover operator, mutation operator), the values of objective function at convergence may differ from
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Table 6
The objective function values and computational time required for the solution approaches considered.
Instance #Doors #Trucks CPLEX APMA ACO TS VNS SA
Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec Z, 10° USD CPU, sec

1 2 8 15.359 0.39 15.359 58.12 15.359 34.88 15.359 21.93 15.359 24.73 15.359 6.14
2 2 10 21.748 0.63 21.748 63.63 21.748 38.65 21.748 24.41 21.748 26.94 21.748 7.13
3 2 12 26.304 2.00 26.304 66.11 26.304 42.89 26.304 27.13 26.304 28.73 26.304 8.05
4 2 14 34.817 7.81 34.817 72.20 34.817 46.45 34.817 30.18 34.817 31.24 34.817 8.89
5 2 16 46.577 41.40 46.577 76.15 46.577 50.56 46.898 32.87 46.677 33.92 46.957 9.78
6 4 8 8.229 4.77 8.229 61.54 8.229 36.00 8.229 22.79 8.229 24.39 8.229 6.58
7 4 10 11.417 94.81 11.417 65.65 11.417 40.08 11.417 25.78 11.417 27.41 11.417 7.55
8 4 12 13.747 2671.93 13.747 68.54 13.747 4493 13.747 28.15 13.747 29.91 13.747 8.12
9 4 14 19.340 7201.65 17.810 67.49 17.810 48.32 17.960 30.72 17.880 31.62 17.990 9.20
10 4 16 25.183 7201.56 23.167 73.07 23.397 49.45 23.717 33.22 23.567 35.00 23.847 10.24
11 8 50 95.631 7202.96 73.464 142.83 74.198 113.99 76.351 79.36 75.088 80.38 76.365 23.72
12 8 60 134.035 7200.66 100.123 158.46 102.394 136.02 104.359 92.50 102.454 95.94 104.429 28.77
13 8 70 182.989 7200.78 130.386 191.53 135.396 155.27 140.277 108.84 138.981 112.83 142.789 33.67
14 8 80 254.767 7200.94 172.358 23494 180.977 174.38 182.526 120.41 181.581 131.46 189.874 38.45
15 8 90 357.001 7201.23 211.981 262.65 225.764 185.86 230.851 137.31 227.721 145.37 236.115 42.59
16 8 100 579.944 7201.55 258.503 277.05 280.828 206.24 287.581 150.42 286.086 158.96 292.107 46.71
17 8 110 949.441 7201.64 312.743 286.45 337.260 226.18 353.031 163.57 345.931 174.69 354.553 52.46
18 8 120 1100.148 7201.98 371.247 301.09 400.555 248.28 425.693 177.03 413.586 190.79 427.919 58.45
19 8 130 1632.189 7202.21 438.150 347.27 473.572 266.33 510.650 193.80 490.431 201.75 529.787 63.98
20 8 140 1619.329 7201.23 506.418 349.83 558.192 287.88 598.599 214.28 577.251 214.63 607.715 66.93
21 10 50 61.946 7200.62 52.758 142.34 53.382 110.71 57.065 79.91 55.559 80.39 57.381 23.70
22 10 60 88.176 7201.05 69.956 169.44 72.957 129.56 76.783 91.30 73.473 94.88 78.515 29.29
23 10 70 118.825 7201.05 90.476 184.26 95.381 148.44 101.259 108.48 100.982 110.53 106.477 33.95
24 10 80 191.477 7201.10 118.249 219.86 127.767 169.04 130.135 122.71 128.837 123.69 142.972 38.82
25 10 90 265.134 7201.38 144.192 242.82 161.540 187.44 166.276 135.56 164.999 138.68 177.896 44.47
26 10 100 318.584 7201.63 176.635 265.24 199.446 207.63 205.751 141.97 199.731 152.03 216.057 48.98
27 10 110 669.405 7202.09 209.148 277.77 236.887 228.25 257.316 157.23 244.695 167.10 258.858 54.36
28 10 120 757.213 7202.44 251.723 304.73 283.737 24931 309.408 172.25 294.970 183.75 320.648 60.20
29 10 130 1126.973 7202.76 293.604 333.93 339.496 270.48 376.595 185.97 356.359 197.16 386.729 63.61
30 10 140 1195.247 7203.22 344.095 362.53 393.540 290.20 436.209 201.22 416.887 214.18 454.551 64.65
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Fig. 12. The average values of objective function components for APMA, ACO, TS, VNS, and SA over the generated problem instances.
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Fig. 13. The coefficient of variation of objective function for APMA, ACO, TS, VNS, and SA [problem instances 1 through 30].

one replication to another. Significant differences in the values of objective function, which are returned by the given solu-
tion algorithms at convergence, are not desirable from the practical perspective, as such algorithms cannot be viewed as reli-
able decision support tools for practitioners (e.g., CDT operators). As a part of the numerical experiments, the coefficient of
variation of objective function over 10 replications was computed for each of the considered solution algorithms and all the
generated 30 problem instances. Fig. 13 shows the results from conducted analysis, where it can be noticed that the coef-
ficient of variation of objective function did not surpass ~2.50% for the considered solution algorithms. Hence, it can be con-
cluded that the considered solution algorithms have an acceptable stability level. However, the APMA and ACO algorithms
generally demonstrated higher stability levels with the coefficient of variation of objective function not surpassing ~1.50%.
Despite fairly high stability levels of the considered solution algorithms, APMA can be still considered as the most promising
solution approach for the IOTSP mathematical model, since it substantially outperformed the alternative solution
approaches with regards to solution quality.

7. Summary of findings and future research

The cross-docking concept and cross-docking terminals (CDTs) have been extensively used by many supply chain stake-
holders, aiming to enhance the effectiveness of various supply chain processes. Cross-docking offers many advantages to CDT
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operators, including reduced inventory levels, reduced handling operations, shortened delivery times, enhanced agility of
supply chain operations, decreased carbon footprint, just to name a few. However, CDT operators face a wide range of dif-
ferent decision problems throughout planning of operations at their facilities. The truck scheduling problem is considered as
one of the most convoluted decision problems at CDTs, where a given CDT operator has to allocate the arriving inbound
trucks and outbound trucks among the CDT doors available, set the appropriate order of service for the trucks at each
CDT door, as well as determine the start and finish service times for each truck. This study proposed a new Adaptive Poly-
ploid Memetic Algorithm (APMA) for the CDT truck scheduling problem. Unlike the polyploid EA-based algorithms that were
previously developed for different decision problems, the proposed APMA algorithm adaptively deployed the polyploidy
concept based on the objective function improvements achieved and computational time changes. Moreover, a number of
problem-specific hybridization techniques were used within the developed algorithm to facilitate the search process.

Computational experiments that were performed as a part of this study indicated that the application of adaptive poly-
ploidy alone may not be sufficient for the considered decision problem, and the hybridization techniques that directly consider
problem-specific properties are required in order to improve solution quality at convergence. It was also found that the per-
formance of the adopted exact optimization approach (CPLEX) clearly declined with increasing problem size. Furthermore, the
developed APMA algorithm substantially outperformed Ant Colony Optimization, Tabu Search, Variable Neighborhood Search,
and Simulated Annealing, which are viewed as the state of the art metaheuristics that have been extensively used for solving
challenging decision problems in the CDT operations literature, with regards to the values of objective function at convergence.
As for the required computational efforts, the APMA computational time did not surpass ~6 min even for the large problem
instances with up to 10 CDT doors and 140 arriving trucks. Such a performance can be considered as satisfactory from the prac-
tical perspective. Therefore, the APMA algorithm developed can assist CDT operators with proper operations planning and
truck scheduling as well as reduce the associated costs throughout the service of inbound trucks and outbound trucks.

A number of simplifying assumptions were applied within the proposed mathematical formulation for the problem of
scheduling CDT trucks. Moreover, additional steps could be undertaken to better assess the computational performance
of the APMA algorithm developed and improve its design. Hence, as a part of the future research, the following activities
can be conducted: (i) assess the effects of polyploidy and hybridization in multi-objective settings (e.g., when the CDT oper-
ator deals with conflicting objectives throughout scheduling of the arriving inbound trucks and outbound trucks); (ii) eval-
uate the proposed adaptive polyploidy concept against a self-adaptive polyploidy concept (a self-adaptive polyploidy will
decrease the number of APMA parameters required to perform the polyploidy adjustments); (iii) consider perishability
for certain product types throughout transfer of these products inside the CDT by internal handling equipment; (iv) consider
truck arrival time uncertainties that may occur due to inclement weather, traffic congestion, vehicle breakdowns, and other
factors; (v) consider truck handling time uncertainties that may occur due to the CDT congestion, lack of the available inter-
nal handling equipment, internal handling equipment breakdowns, and other factors; (vi) evaluation of the APMA algorithm
for different stopping criteria; (vii) evaluation of the APMA performance under different approaches for handling infeasible
individuals; and (viii) assess the computational performance of the APMA algorithm developed based on a comprehensive
comparative analysis against some other solution approaches that have been extensively deployed for solving challenging
decision problems in the CDT operations literature as well as the other freight terminal operations studies (e.g., Particle
Swarm Optimization, Keshtel Algorithm, Stochastic Beam Search, Differential Evolution, Artificial Bee Colony, Stochastic
Fractal Search, Grey Wolf Optimizer).
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