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a b s t r a c t 

This study presents the analytical formulation and the finite element solution of a 

fractional-order nonlocal plate under both Mindlin and Kirchhoff formulations. By em- 

ploying consistent definitions for fractional-order kinematic relations, the governing equa- 

tions and the associated boundary conditions are derived based on variational principles. 

Remarkably, the fractional-order nonlocal model gives rise to a self-adjoint and positive- 

definite system that accepts a unique solution. Further, owing to the difficulty in obtain- 

ing analytical solutions to this fractional-order differ-integral problem, a 2D finite element 

model for the fractional-order governing equations is presented. Following a thorough val- 

idation against benchmark problems, the 2D fractional finite element model is used to 

study the static as well as the free dynamic response of fractional-order plates subject to 

various loading and boundary conditions. It is established that the fractional-order nonlo- 

cality leads to a reduction in the stiffness of the plate structure thereby increasing the dis- 

placements and reducing the natural frequency of vibration of the plates. Further, it is seen 

that the effect of nonlocality is stronger on the higher modes of vibration when compared 

to the fundamental mode. These effects of the fractional-order nonlocality are observed 

irrespective of the nature of the boundary conditions. More specifically, the fractional- 

order model of nonlocal plates is free from boundary effects that lead to mathematical 

ill-posedness and inaccurate (paradoxical) predictions such as hardening and absence of 

nonlocal effects, typical of classical strain-driven integral approaches to nonlocal elasticity. 

This consistency in the predictions is a result of the well-posed nature of the fractional- 

order governing equations that accept a unique solution. 

© 2020 Elsevier B.V. All rights reserved. 
1. Introduction 

In the recent years, following the rapid growth in many engineering fields including, but not limited to, functionally 

graded materials (FGM), metamaterials, composites, nanotechnology, and MEMS, the modeling of the static as well as the 

dynamic response of complex slender structures has received considerable attention. FGMs [1,2] and sandwiched designs 

have found many useful applications in the design of macroscale structures such as those involved in naval and automotive 

systems, as well as lightweight structures, such as those employed in space and aeronautic applications. Metamaterials have 

found several interesting applications in broadband passive vibration control [3,4] . Similarly, micro- and nano-structures 

such as thin films, carbon nanotubes, monolayer graphene sheets, and micro tubules have demonstrated far-reaching ap- 
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plications in atomic devices, micro/nano-electromechanical devices, sensors, and even biological implants [5–7] . Many of 

these complex structures often employ a combination of slender and thin-walled structures like beams, plates, and shells, 

whose response was often shown to be significantly impacted by size-dependent effects, also referred to as nonlocal effects. 

Nonlocal effects in slender structures can be identified either from static or dynamic considerations. From a static point of 

view [5–8] , length-scale effects lead to a softening of the structure (when compared to a local structure) which translates

to larger displacements and lower natural frequencies of vibrations. From a dynamic point of view, length-scale effects lead 

to an anomalous frequency and wavelength dependent dispersion characteristics [9,10] . In fact, this behavior along with the 

dispersive nature of the thin plate (a natural waveguide) allows for a greater control of elastic wave propagation through 

nonlocal plates, recently connected to interesting new avenues for broadband passive vibration control [3] . 

In the case of macrostructures, these nonlocal effects were shown to be originated from material heterogeneities, interac- 

tions between layers (e.g. FGMs or composites) or unit cells (e.g. periodic media) [9–12] and intentionally nonlocal designs 

[3,4] . In other terms, nonlocal governing equations for macrostructures often result from a process of homogenization of 

the initial inhomogeneous system. In the case of nano- and micro-structures, these size-dependent effects have been traced 

back to the existence of surface and interface stresses due to either nonlocal atomic or Van der Waals interactions [5] . Fur-

ther, geometric effects such as, for example, changes in curvature have also been shown to induce nonlocal size-dependent 

effects [6,8,13] . It appears that the ability to accurately model these nonlocal effects as part of the structural response is

paramount in many engineering applications. In order to capture scale effects, nonlocal continuum theories were developed. 

From a general perspective, nonlocal continuum theories enrich the classical (local) governing equations with information 

of the behavior of points within a prescribed distance; the latter typically indicated as the horizon of influence or horizon

of nonlocality. The key principle behind nonlocal theories relies on the idea that all the particles located inside the horizon

influence one another by means of long range cohesive forces. Seminal works from Kron ̎er [14] , Eringen [15] , and several

other authors [16,17] have explored the role of nonlocality in elasticity and laid its theoretical foundation. The mathematical 

description of nonlocal continuum theories relies on the introduction of additional contributions in terms of gradient or 

integrals of the strain field in the constitutive equations. This leads to so-called ǣweak ǥ gradient methods or ǣstrong ǥ
integral methods, respectively. Gradient elasticity theories [18–20] account for the nonlocal behavior by introducing strain 

gradient dependent terms in the stress-strain constitutive law. Integral methods [21–23] model nonlocal effects by defining 

the constitutive law in the form of a convolution integral between the strain, the stress, and the spatially dependent elastic

properties over the horizon of nonlocality. 

Several researchers have used the above mentioned nonlocal theories to model the response of nonlocal beams and 

plates with particular attention to their applications in micro- and nano-devices [24,25] where nonlocal effects are typically 

more noticeable. In particular, the effect of the nonlocality on the buckling load of the plates [6,7,26] as well as the vibra-

tion response of the plates [27] have been extensively studied. In this context, Challamel et al. [28,29] have developed a

phenomenological nonlocal model from a lattice-based nonlocal model from analytic continuation of the plate lattice equa- 

tions and have used it to analyze the effect of nonlocality on the buckling loads of a nonlocal plate. All these studies have

shown that the introduction of nonlocality leads to a decrease in the stiffness of the structure which translates to higher

static displacements [8,30] , lower buckling loads, and lower frequencies of vibration of the nonlocal structures. We merely 

note that a mixture of analytical [30,31] as well numerical methods have been employed to determine the response of the

nonlocal plates in the aforementioned studies. The numerical strategies included perturbation methods [8,27] , differential 

quadrature methods [6,32] , Galerkin methods [33,34] as well as spectral collocation methods [35] . 

Although these classical studies on nonlocal elasticity have been able to address several features of the response of size- 

dependent nonlocal structures, they encounter some key shortcomings. Gradient theories provide a satisfactory description 

of the material micro structure, but they introduce serious difficulties when enforcing the boundary conditions associated 

with the strain gradient-dependent terms [18,36] . On the other side, the integral methods are better suited to deal with

boundary conditions but require the attenuation functions to have a positive Fourier transform everywhere in order to 

avoid instabilities [22,37] . Additionally, in both these classes of methods, the stress at any point cannot be obtained unless

the strains in the neighbourhood of the particular point are known. In other terms, there exists no explicit relation for

obtaining the stress at a given point from the strain at that particular point. This prevents the application of variational

principles in these theories. More specifically, the basis of variational formulation is the principle of minimum total potential 

energy which is valid under the assumption that the stress at a point can be uniquely defined in terms of the strain at that

point. Since an explicit relation between stress and strain components at a reference point cannot be found in the classical

nonlocal theories, the principle of minimum potential energy cannot be applied to these theories. This aspect prevents 

the development of variational finite element methods to obtain numerical solutions to the classical nonlocal formulations. 

We note that the development of numerical methods is essential in this class of problems because the complex nonlocal 

governing equations associated with both gradient and integral formulations do not generally admit closed-form analytical 

solutions. Several researchers have developed inverse approaches in order to define a quadratic form of the total potential 

energy and then use it to obtain the response of the nonlocal structures via Galerkin or Ritz approximations [33,34] . In

addition to the above shortcomings, classical strain-driven integral approaches lead to mathematically ill-posed governing 

equations which leads to erroneous predictions such as the absence of nonlocal effects and the occurrence of hardening 

behavior for certain combinations of boundary conditions [23,38] . In this class of problems, the ill-posedness stems from 

the fact that the constitutive relation between the bending field and the curvature is a Fredholm integral of the first kind,

whose solution does not generally exists and, if it exists, it is not necessarily unique [23,38] . 
2 
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In recent years, fractional calculus has emerged as a powerful mathematical tool to model a variety of nonlocal and 

multiscale phenomena. Fractional derivatives, which are a differ-integral class of operators, are intrinsically multiscale and 

provide a natural way to account for nonlocal effects. In fact, the order of the fractional derivative dictates the shape of

the power-law influence function (kernel of the fractional derivative) while its interval defines the horizon of its influ- 

ence, i.e., the distance beyond which information is no longer accounted for in the derivative. As a result, time-fractional 

operators enable memory effects (i.e. the response of a system is a function of its past history) while space-fractional op-

erators can account for nonlocal and scale effects. Given the multiscale nature of fractional operators, fractional calculus 

has found wide-spread applications in nonlocal elasticity. Riesz-type fractional derivatives have been shown to emerge as 

the continuum limit of discrete systems (e.g. such as chains and lattices) with power-law long-range interactions [12,39,40] . 

Space-fractional derivatives have been used to formulate nonlocal constitutive laws [39,41–46] as well as to account for mi- 

croscopic interaction forces [47,48] . Space-fractional derivatives have also been employed to capture attenuation including a 

variety of conditions such as interatomic nonlocal forces [12,47,48] , nonlocal stress-strain constitutive relations [45,49] , and 

even bandgaps in periodic media [9] . Previous works conducted on the development of nonlocal continuum theories based 

on fractional calculus have highlighted that the differ-integral nature of the fractional operators allows them to combine the 

strengths of both gradient and integral based methods while at the same time addressing a few important shortcomings of 

the integer-order formulations [10,40,41] . 

In this study, we build upon the fractional-order nonlocal continuum model proposed in [10] to develop a fractional- 

order model for nonlocal plates. The overall goal of this study is three fold. First, we derive the governing equations for the

nonlocal plates in a strong form by using variational principles. We will show that the fractional-order formulation allows 

the application of variational principles because the stress in the fractional-order formulation can be uniquely and explicitly 

determined from the strain at the particular point. In fact, nonlocality will be introduced into the plate through nonlocal 

fractional-order kinematics and not through the classical integral/differential constitutive relations between the stress and 

the strain. Second, we formulate a fully consistent and highly accurate 2D fractional-order finite element method (f-FEM) 

by extending the work in [50] on 1D fractional-order beams, to numerically investigate the response of the fractional-order 

nonlocal plates. We also analyze important computational aspects including validation, convergence, and computational cost 

of the proposed algorithm. We highlight here that although Ritz FEMs for classical nonlocal elasticity problems have been 

developed in the literature, they do not extend to fractional-order nonlocal modeling, because the attenuation function 

capturing the nonlocal interactions in the fractional-order model involves a singularity within the kernel [51] . Moreover, 

the necessity and flexibility of the f-FEM developed here becomes clear from the complexities involved in the handling 

of integral boundary conditions. Finally, we use the developed 2D f-FEM to analyze the effect of nonlocality on the static

and free vibration response of the fractional-order plates. We will show that independently from the boundary conditions, 

the fractional-order theory predicts a consistent softening behaviour for the fractional-order plates as the nonlocality degree 

increases. This latter aspect is unlike the paradoxical predictions of hardening or of the absence of nonlocal effects predicted 

by classical integral nonlocal approaches [23,38,52–54] for certain combinations of boundary conditions. 

The remainder of the paper is structured as follows: first, we introduce the fractional-order formulation used in this 

study to model nonlocal elasticity. Next, we derive the governing equations of fractional-order Mindlin as well as fractional- 

order Kirchhoff plates in strong form using variational principles. Further, we derive a strategy for obtaining the numerical 

solution to the plate governing equations using 2D f-FEM. Finally we validate the 2D f-FEM, investigate its convergence and 

computational cost, and then use it to analyze the effect of the fractional-order nonlocality on the static and free vibration

response of plates under different loading conditions. 

2. Nonlocal elasticity via fractional calculus 

Previous works conducted on the development of nonlocal continuum theories based on fractional calculus have high- 

lighted its ability to combine the strengths of both gradient and integral based methods while simultaneously addressing a 

few important shortcomings of these integer-order formulations [10,40,41] . Recall that the key shortcomings included the 

requirement of higher-order boundary conditions in gradient based methods, the need for a kernel that is always positive 

in integral methods, and the inability of both methods to leverage variational principles. To this regard, note that the kernel

used in fractional derivatives is positive everywhere [51] . Unlike gradient elasticity methods, additional essential boundary 

conditions are not required when using Caputo fractional derivatives [9,10] . Further, we will show how variational principles 

can be used in the fractional-order formulation of nonlocality by using a specific strategy that involves defining a fractional- 

order (nonlocal) deformation gradient tensor. The nonlocal plate theory presented in this work builds on the fractional-order 

nonlocal continuum formulation presented in [10] . In the following, we briefly review the fractional-order nonlocal contin- 

uum model presented in [10] which provides the foundation to develop the fractional-order nonlocal plate theory. 

In analogy with the traditional approach to continuum mechanics, we perform the deformation analysis of a nonlocal 

solid by introducing two configurations, namely, the reference (undeformed) and the current (deformed) configurations. The 

motion of the body from the reference configuration (denoted as X ) to the current configuration (denoted as x ) is assumed

as: 

x = �( X , t) (1) 
3 
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Fig. 1. (a) Schematic indicating the infinitesimal material and spatial line elements in the nonlocal medium under the displacement field u . (b) Horizon of 

nonlocality and length scales at different material points. The nonlocal model can account for a partial (i.e. asymmetric) horizon condition that occurs for 

points X close to a boundary or an interface. The schematic is adapted from [10] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such that �( X , t) is a bijective mapping operation. The relative position of two point particles located at P 1 and P 2 in the

reference configuration of the nonlocal medium is denoted by d ̃  X (see Fig. 1 ). After deformation due to motion �( X , t) , the

particles occupy the new positions p 1 and p 2 , such that the relative position vector between them is d ̃ x . It appears that

d ̃  X and d ̃ x are the material and spatial differential line elements in the nonlocal medium, conceptually analogous to the 

classical differential line elements d X and d x in a local medium representation. 

The mapping operation described in Eq. (1) captures the nonlocal behavior of the solid by leveraging fractional calculus 

formulation. More specifically, the differential line elements of the nonlocal medium are modeled by imposing a fractional- 

order transformation on the classical differential line elements as follows: 

d ̃ x = 

[
D 

α
X �( X , t) 

]
d X = 

[
˜ F X ( X , t) 

]
d X (2a) 

d ̃  X = 

[
D 

α
x �

−1 ( x , t) 
]
d x = 

[
˜ F x ( x , t) 

]
d x (2b) 

where D 
α
X 
�( X , t) is a space-fractional derivative whose details will be presented below. Given the differ-integral nature of

the space-fractional derivative, the differential line elements d ̃  X and d ̃ x have a nonlocal character. Using the definitions for 

d ̃  X and d ̃ x , the fractional deformation gradient tensor
α
F with respect to the nonlocal coordinates is obtained in [10] as: 

d ̃ x 

d ̃  X 

= 

α

F = 
˜ F X F 

−1 ˜ F 
−1 

x (3) 

where F is the classical deformation gradient tensor given as F = d x / d X , in local and integer-order form. 

The space-fractional derivative D 
α
X 
�( X , t) is taken according to a Riesz-Caputo (RC) definition with order α ∈ (0 , 1) de-

fined on the interval X ∈ ( X A , X B ) ⊆ R 
3 and given by: 

D 
α
X �( X , t) = 

1 

2 
�(2 − α) 

[
L α−1 
A 

C 
X A 
D 

α
X �( X , t) − L α−1 

B 
C 
X D 

α
X B 

�( X , t) 
]

(4a) 

D 
α
X j 
�i ( X , t) = 

1 

2 
�(2 − α) 

[
L α−1 
A j 

C 
X A j 

D 
α
X j 
�i ( X , t) − L α−1 

B j 

C 
X j 
D 

α
X B j 

�i ( X , t) 
]

(4b) 

where �(·) is the Gamma function, and C 
X A 

D 
α
X 
� and C 

X 
D 

α
X B 

� are the left- and right-handed Caputo derivatives of �, respec-

tively. Before proceeding further, we first discuss the physical significance and importance of the different parameters α, L A j 
and L B j present within the definition of the fractional-order derivative. Note that the order α appears as the exponent of the

power law kernel ( 1 / | X − X ′ | α) embedded in the definition of the fractional derivatives [51] . The power law kernel is analo-

gous to the attenuation function commonly used in classical integral theories of nonlocal elasticity. It follows that the order 

of the fractional derivative α ∈ (0 , 1) characterizes the strength of the nonlocal interaction over the spatial interval defined

by the terminals of the fractional derivative. For α close to 1.0, the power-law kernel behaves analogous to a Dirac-delta

function, and reduces the model to be purely local. However, for values of α increasingly smaller than 1.0, points distant 

from the target point play a significant role in the response at the target point, thereby accounting for nonlocal interaction

effects. 

The length scale parameters L A j and L B j , along with the term 
1 
2 �(2 − α) , ensure the frame invariance of the constitu-

tive relations [10] . For a frame-invariant model, it is required that the length scales L A = X − X A and L B = X B − X . Hence,

it follows that the length scales, L A j and L B j , physically denote the dimension of the horizon of nonlocality to the left and

right of point X along the j th direction. Consequently, the interval of the fractional derivative ( X A , X B ) defines the horizon

of nonlocality (also called attenuation range in classical nonlocal elasticity) which is schematically shown in Fig. 1 b for a

generic point X ∈ R 
2 . Note that, in general, l A x j 

� = l B x j 
. From a physical standpoint, this suggests that the horizon of nonlo-

cality is asymmetric in a given direction (see Fig. 1 b). Such a case can arise for points close to the boundary or near material

interfaces such as an interface between a local and a nonlocal medium [10] . Depending on the location of the specific point,

l A x j 
and l B x j 

go to zero while approaching a boundary. As an example, consider the partial horizon illustrated in Fig. 1 b. As
4 
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the material point approaches the right-hand boundary (with the unit normal ˆ x ) the right-hand length scale, that is, l B x → 0 .

For a point lying exactly on the right-hand boundary, l B x = 0 . In other terms, when approaching a boundary (or boundaries)

the length-scales get truncated. This truncation of the length scales translates into a truncation of the nonlocal interactions 

due to the presence of the boundary, and it is essential to satisfy frame-invariance and completeness of the nonlocal kernel

[10,50] . Further, as discussed in [10,50] , this makes the deformation gradient tensor introduced via Eq. (3) more general

than [42,44] because it enables an efficient and accurate treatment of frame invariance in the presence of asymmetric hori- 

zons, material boundaries, and interfaces (see Fig. 1 b). A detailed proof of this aspect can be found in [10,50] . We merely

note that the use of a symmetric horizon of nonlocality (that is, l A x j 
= l B x j 

) would require spatially variable length scales to

account for the truncation of the nonlocal interactions (or equivalently, the horizon of nonlocality) at material boundaries 

and interfaces. 

The length scale parameters L α−1 
A j 

and L α−1 
B j 

serve also an additional purpose, that is, they ensure that the deformation

gradient tensor is dimensionless, analogous to the classical (local) continuum formulation. As a result, all the other physical 

quantities such as strains (derived from the deformation gradient tensor), stresses (derived from the strains), the potential 

energy (derived from both stresses and the strains) have the same physical dimensions as in classical continuum formula- 

tion. Thus, due to the definition of the RC operator with the length scale parameters, the physical units of all the quantities

introduced in this study are the same as their classical (local) counterparts. 

In analogy with the classical strain measures, the nonlocal strain can be defined using the difference between the scalar 

products of the fractional-order differential line elements as d ̃ x d ̃ x − d ̃  X d ̃  X . Using Eq. (3) , the Lagrangian strain tensor in the

nonlocal medium is obtained as: 
α

E = 

1 

2 
( 
α

F T 
α

F −I ) (5) 

where I is the identity tensor. Using kinematic position-displacement relations, the expressions of the strains can be ob- 

tained in terms of the displacement gradients. The fractional displacement gradient is obtained using the definition of the 

fractional deformation gradient tensor from Eq. (1) and the displacement field U ( X ) = x ( X ) − X as: 

∇ 
αU X = 

˜ F X − I (6) 

The fractional gradient denoted by ∇ 
αU X is given as ∇ 

αU X i j 
= D 

α
X j 
U i . Using the nonlocal strain defined in Eq. (5) and the

fractional deformation gradient tensor 
α
F given in Eq. (3) together with Eq. (6) , the relationship between the infinitesimal 

strain tensor and displacement gradient tensor is obtained as: 

ε = 

1 

2 

(∇ 
αU X + ∇ 

αU 
T 
X 

)
(7) 

For small displacements, the above infinitesimal strain tensor has the same definition in both Eulerian and Lagrangian de- 

scriptions [10] . Further, the stress tensor in the fractional-order model of the nonlocal medium has a form analogous to the

local case as: 

σi j = C i jkl εkl (8) 

where C i jkl denotes the constitutive matrix of the solid. We emphasize that the stress defined through the above equation 

is nonlocal in nature. This follows from the fractional-order definition of the deformation gradient tensor which is then 

reflected in the nonlocal strain as evident from Eq. (5) . As expected, classical continuum mechanics relations are recovered

when the order of the fractional derivative is set as α = 1 . 

Note that in the above presented fractional-order formulation, nonlocality has been modeled using fractional-order kine- 

matic relations. More specifically, differential line elements in the undeformed and deformed nonlocal configurations were 

modeled using fractional-order deformation gradients which, in turn, were used to obtain the strain in the nonlocal medium. 

This definition of the strain has critical implications on the nonlocal formulation. Note that, given the strain at a point, the

stress at the same point can be uniquely and explicitly determined by using Eq. (8) . Recall that the basis of variational for-

mulation is the principle of minimum total potential energy which is valid under the assumption that the stress at a point

can be uniquely defined in terms of the strain at that point. It is immediate to deduce that the fractional-order model of

nonlocality allows the application of variational principles. It is exactly this opportunity offered by the fractional operators 

that forms the basis for the development of a fractional-order model of nonlocal plates via the application of the extended

Hamilton’s principle. Additionally, this fractional-order formulation of nonlocality also ensures a quadratic form of the po- 

tential energy of the system as we will show in Section 3 . The quadratic form of the potential energy ensures that the

governing equations are well-posed and the system is self-adjoint in nature. In the following, we will use this fractional- 

order formulation to model the response of both nonlocal Mindlin and Kirchhoff plates. 

3. Fractional-Order modeling of nonlocal mindlin plates 

We use the fractional-order continuum formulation presented above to develop a fractional-order analogue of the classi- 

cal Mindlin plate formulation. A schematic of the undeformed rectangular plate along with the chosen Cartesian reference 

frame is illustrated in Fig. 2 . The top surface of the plate is identified as z = h/ 2 , while the bottom surface is identified as
5 
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Fig. 2. Schematic of the rectangular plate showing key geometric parameters. The midplane of the plate is indicated by the z = 0 plane of the domain (�) . 

The boundaries of the domain are also indicated in the schematic. 

 

 

 

 

 

 

 

 

z = −h/ 2 . The domain corresponding to the mid-plane of the plate (i.e., z = 0 ) is denoted as �, such that � = [0 , L ] × [0 , B ]

where L and B are the length and width of the plate, respectively. The domain of the plate is identified by the tensor prod-

uct � × [ −h/ 2 , h/ 2] . The edges forming the boundary of the mid-plane of the plate are denoted as { �x , �y } as shown in the

Fig. 2 . 

For the chosen coordinate system, the in-plane and transverse components of the displacement field, denoted by 

u (x, y, z, t) , v (x, y, z, t) and w (x, y, z, t) at any spatial location x (x, y, z) , are related to the mid-plane displacements in the

following manner: 

u (x, y, z, t) = u 0 (x, y, t) − zθx (x, y, t) (9a) 

v (x, y, z, t) = v 0 (x, y, t) − zθy (x, y, t) (9b) 

w (x, y, z, t) = w 0 (x, y, t) (9c) 

where u 0 , v 0 , and w 0 are the mid-plane displacements of the plate along the ˆ x , ˆ y , and ˆ z directions. θx and θy are the
rotations of the transverse normal about the ˆ y and ˆ x axes, respectively. In the interest of a more compact notation, the 

functional dependence of the displacement fields on the spatial and the temporal variables will be implied unless explicitly 

expressed to be constant. Based on the above displacement fields, the strain components in a fractional-order Mindlin plate 

are evaluated using Eq. (7) as: 

εxx = D 
α
x u 0 − zD 

α
x θx (10a) 

εyy = D 
α
y v 0 − zD 

α
y θy (10b) 

γxy = D 
α
y u 0 + D 

α
x v 0 − z(D 

α
y θx + D 

α
x θy ) (10c) 

γxz = D 
α
x w 0 − θx (10d) 

γyz = D 
α
y w 0 − θy (10e) 

εzz = 0 (10f) 

Note that similarly to the classical Mindlin theory, the in-plane strain components { εxx , εyy , γxy } vary in a linear fashion
through the plate thickness, while the transverse shear strains { γxz , γyz } are constant through the thickness. The correspond-
ing stresses are determined using the linear stress-strain relationships given in Eq. (8) . 

By using the above defined strain and stress fields, we derive the strong-form of the governing equations for the 

fractional-order plate using the extended Hamilton’s principle: ∫ t 2 
t 1 

( δU − δV − δT ) d t = 0 (11) 

The nonlocal virtual strain energy δU , the virtual work done by externally applied forces δV, and the virtual kinetic energy

δT are obtained as: 

δU = 

∫ 
�

{ ∫ h 
2 

− h 
2 

[ σxx δεxx + σyy δεyy + σxy δγxy + σxz δγxz + σyz δγyz ] d z 

} 
d� (12a) 

δV = 

∫ [
F x δu 0 + F y δv 0 + F z δw 0 + M θx δθx + M θy δθy 

]
d� (12b) 
�

6 
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δT = 

∫ 
�

{ ∫ h 
2 

− h 
2 

ρ
[(

˙ u 0 − z ˙ θx 
)(

δ ˙ u 0 − zδ ˙ θx 
)

+ 

(
˙ v 0 − z ˙ θy 

)(
δ ˙ v 0 − zδ ˙ θy 

)
+ ˙ w 0 δ ˙ w 0 

]
d z 

} 
d� (12c) 

where ρ denotes the mass density of the plate. Note that d� = d x d y for a rectangular plate. { F x , F y , F z } are the external
loads applied in the ˆ x , ˆ y and ˆ z directions, respectively, and { M θx , M θy } are the external moments applied about the ˆ y and x̂

axes, respectively. By substituting the expression for the stress given in Eq. (8) in Eq. (12a) , it is immediate that the poten-

tial energy of the fractional-order nonlocal plate is quadratic in nature. In fact, the use of the fractional-order formulation 

leads to a self-adjoint and positive definite system. The proof for the same can be found in [50] where the fractional-order

formulation introduced earlier in Section 2 was used to model nonlocal beams. The same proof directly extends to the 

fractional-order plate formulations presented in the following and hence, we do not provide it again here. 

We first simplify the virtual strain energy in order to relieve the variations of any differentiation. By substituting the 

expressions for the strains in the expression for δU we obtain: 

δU = 

∫ 
�

[ 
N xx δD 

α
x u 0 + M xx δD 

α
x θx + N yy δD 

α
y v 0 + M yy δD 

α
y θy + N xy δ(D 

α
y u 0 + D 

α
x v 0 )+ 

M xy δ(D 
α
y θx + D 

α
x θy ) + Q xz δ(D 

α
x w 0 − θx ) + Q yz δ(D 

α
y w 0 − θy ) 

] 
d�

(13) 

where the in-plane stress resultants { N xx , N yy , N xy } , the transverse stress resultants { Q xz , Q yz } and the moment resultants

{ M xx , M yy , M xy } are defined as: 

{ N xx , N yy , N xy , Q xz , Q yz } = 

∫ h 
2 

− h 
2 

{ σxx , σyy , σxy , K s σxz , K s σyz } d z (14a)

{ M xx , M yy , M xy } = 

∫ h 
2 

− h 
2 

{−zσxx , −zσyy , −zσxy } d z (14b) 

where K s is the shear correction factor. The expression for δU in Eq. (13) is further simplified using integration by parts and

the definitions of the fractional derivatives. Here below, we provide the result of this simplification for only one term within

the integral in Eq. (13) : ∫ 
�
N xx [ δD 

α
x u 0 ] d x d y = −

∫ 
�
[ D 

α
x N xx ] δu 0 d� + 

∫ 
�x 

[
I 1 −α
x N xx 

]
δu 0 d y (15) 

The detailed steps leading to the above simplification can be found in [50] where a similar variational approach has been

used in the context of 1D beams. In the above Eq. (15) , D 
α
x (·) is the Riesz Riemann-Liouville derivative of order α which is

defined as: 

D 
α
x ψ = 

1 

2 
�(2 − α) 

[ 
l α−1 
B x 

(
RL 
x −l B x 

D 
α
x ψ 

)
− l α−1 

A x 

(
RL 
x D 

α
x + l A x ψ 

)] 
(16) 

where ψ is an arbitrary function and RL 
x −l B x 

D 
α
x ψ and RL x D 

α
x + l A x 

ψ are the left- and right-handed Riemann Liouville derivatives 

of ψ to the order α, respectively. The Riesz fractional integral I 1 −α
x (·) is defined as: 

I 1 −α
x ψ = 

1 

2 
�(2 − α) 

[ 
l α−1 
B x x −l B x 

I 1 −α
x ψ − l α−1 

A x x I 
1 −α
x + l A x 

ψ 

] 
(17) 

where x −l B x 
I 1 −α
x ψ and x I 

1 −α
x + l A x 

ψ are the left and right Riesz integrals to the order α, respectively. Note that the fractional

derivative D 
α
x (·) and the fractional integral I 1 −α

x (·) are defined over the interval (x − l B x , x + l A x ) unlike the fractional deriva-

tive D 
α
x (·) which is defined over the interval (x − l A x , x + l B x ) . This change in the terminals of the interval of the Riesz

Riemann-Liouville fractional integral and derivative follows from the integration by parts technique used to simplify the 

variational integrals (see [50] ). The remaining terms within the integral in Eq. (13) can be simplified in a similar fashion. 

Note that the expression for the virtual work given in Eq. (12b) can be directly used within Eq. (11) . Further, the expres-

sion of the virtual kinetic energy matches exactly its counterparts in the classical integer-order plate theory (see [55] ) and

can be expressed as: 

δT = −
∫ 
�

[
I 0 ̈u 0 δu 0 + I 0 ̈v 0 δv 0 + I 0 ẅ 0 δw 0 + I 2 ̈θx δθx + I 2 ̈θy δθy 

]
d� (18) 

where I 0 = ρh and I 2 = ρh 3 / 12 . 

The expressions for the virtual quantities are substituted within the Hamilton’s principle statement in Eq. (11) . The gov-

erning equations and the boundary conditions of the fractional-order Mindlin plate are then obtained by using the funda- 

mental lemma of variational calculus as: 

D 
α
x N xx + D 

α
y N xy + F x = I 0 

∂ 2 u 0 
2 

(19a) 

∂t 

7 
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D 
α
x N xy + D 

α
y N yy + F y = I 0 

∂ 2 v 0 
∂t 2 

(19b) 

D 
α
x Q xz + D 

α
y Q yz + F z = I 0 

∂ 2 w 0 

∂t 2 
(19c) 

D 
α
x M xx + D 

α
y M xy − Q xz + M θx = I 2 

∂ 2 θx 
∂t 2 

(19d) 

D 
α
x M xy + D 

α
y M yy − Q yz + M θy = I 2 

∂ 2 θy 
∂t 2 

(19e) 

The corresponding essential and natural boundary conditions are obtained as: 

δu 0 = 0 , δv 0 = 0 , δw 0 = 0 , δθx = 0 , δθy = 0 ∀ �x ∪ �y (20a)

I 1 −α
x N xx = 0 , I 1 −α

x N xy = 0 , I 1 −α
x Q xz = 0 , I 1 −α

x M xx = 0 , I 1 −α
x M xy = 0 ∀ �x (20b)

I 1 −α
y N xy = 0 , I 1 −α

y N yy = 0 , I 1 −α
y Q yz = 0 , I 1 −α

y M xy = 0 , I 1 −α
y M yy = 0 ∀ �y (20c)

Note that the natural boundary conditions are nonlocal in nature due to the presence of the fractional-order operators. 

This is a direct result of the nonlocal nature of the plate. More specifically, the fractional-order operators account for the

long-range interactions between material points that can be either inside the domain or on the boundary. The resulting 

traction forces at the plate boundaries are nonlocal in nature and, in this study, are modeled using the fractional-order 

operators (I 1 −α
x (·) , I 1 −α

y (·)) . We note that this is similar to what is seen in classical integer-order approaches to nonlocal

elasticity [24,52,54] . We anticipate that the nonlocal nature of the natural boundary conditions does not concern us imme- 

diately as we will solve the above system of equations using a FE technique. Recall that natural boundary conditions are

implicitly satisfied when obtaining the solutions using FE techniques and are accurate up to the order of the specific FEM.

Additionally, the following initial conditions are required to obtain the transient response: 

δu 0 = 0 , δv 0 = 0 , δw 0 = 0 , δθx = 0 , δθy = 0 ∀ � at t = 0 (21a)

δ ˙ u 0 = 0 , δ ˙ v 0 = 0 , δ ˙ w 0 = 0 , δ ˙ θx = 0 , δ ˙ θy = 0 ∀ � at t = 0 (21b)

Note that the governing equations for the in-plane and transverse displacements are uncoupled, similar to what is seen 

in the classical Mindlin plate formulation. As expected, the classical plate governing equations and boundary conditions are 

recovered for α = 1 . Note that the solution of the above equations yield the mid-plane displacements. The entire displace-

ment field of the plate can then be obtained using Eq. (9) . 

The plate governing equations given in Eq. (19) can be expressed in terms of the displacement field variables by using

the constitutive stress-strain relations of the plate. For the sake of generality, here below, we provide the expressions for an

orthotropic plate: 

A 11 D 
α
x [ D 

α
x u 0 ] + A 12 D 

α
x 

[
D 

α
y v 0 
]

+ A 66 D 
α
y 

[
D 

α
y u 0 + D 

α
x v 0 
]

+ F x = I 0 
∂ 2 u 0 
∂t 2 

(22a) 

A 66 D 
α
x 

[
D 

α
y u 0 + D 

α
x v 0 
]

+ A 12 D 
α
y [ D 

α
x u 0 ] + A 22 D 

α
y 

[
D 

α
y v 0 
]

+ F y = I 0 
∂ 2 v 0 
∂t 2 

(22b) 

K s A 55 D 
α
x [ D 

α
x w 0 − θx ] + K s A 44 D 

α
y 

[
D 

α
y w 0 − θy 

]
+ F z = I 0 

∂ 2 w 0 

∂t 2 
(22c) 

D 11 D 
α
x [ D 

α
x θx ] + D 12 D 

α
x 

[
D 

α
y θy 
]

+ D 66 D 
α
y 

[
D 

α
y θx + D 

α
x θy 
]

+ K s A 55 [ D 
α
x w 0 − θx ] + I 2 

∂ 2 θx 
∂t 2 

= M θx (22d) 

D 66 D 
α
x 

[
D 

α
y θx + D 

α
x θy 
]

+ D 12 D 
α
y [ D 

α
x θx ] + D 22 D 

α
y 

[
D 

α
y θy 
]

+ K s A 44 
[
D 

α
y w 0 − θy 

]
+ I 2 

∂ 2 θy 
∂t 2 

= M θy (22e) 

where the different material constants used in the above equations are given as: 

A 11 = 

E 1 h 

1 − ν12 ν21 

, A 12 = 

ν12 E 2 h 

1 − ν12 ν21 

, A 22 = 

E 2 h 

1 − ν12 ν21 

, A 44 = G 23 h, A 55 = G 13 h, A 66 = G 12 h (23)

In the above equation, E 1 and E 2 are the moduli of elasticity along the ˆ x and ˆ y axes, respectively. ν12 and ν21 are the Pois-

son’s ratios. Recall that, for an orthotropic material, we have ν /E = ν /E . We highlight here that the different subscripts
12 1 21 2 

8 
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used with the above material constants are consistent with the notations used in literature. Additionally, we also have: 

D 11 = 

E 1 h 
3 

12(1 − ν12 ν21 ) 
, D 12 = 

ν12 E 2 h 
3 

12(1 − ν12 ν21 ) 
, D 22 = 

E 2 h 
3 

12(1 − ν12 ν21 ) 
, D 66 = 

G 12 h 
3 

12 
(24) 

The expressions for the boundary conditions in terms of the displacement variables are given as: 

∀ �x 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δu 0 = 0 or I 1 −α
x 

[
A 11 D 

α
x u 0 + A 12 D 

α
y v 0 
]

= 0 

δv 0 = 0 or I 1 −α
x 

[
A 66 
(
D 

α
x v 0 + D 

α
y u 0 
)]

= 0 

δw 0 = 0 or I 1 −α
x [ A 55 ( D 

α
x w 0 − θx ) ] = 0 

δθx = 0 or I 1 −α
x 

[
D 11 D 

α
x θx + D 12 D 

α
y θy 
]

= 0 

δθy = 0 or I 1 −α
x 

[
D 66 

(
D 

α
y θx + D 

α
x θy 
)]

= 0 

(25) 

∀ �y 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δu 0 = 0 or I 1 −α
y 

[
A 66 
(
D 

α
x v 0 + D 

α
y u 0 
)]

= 0 

δv 0 = 0 or I 1 −α
y 

[
D 12 D 

α
x u 0 + D 22 D 

α
y v 0 
]

= 0 

δw 0 = 0 or I 1 −α
y 

[
A 44 
(
D 

α
y w 0 − θy 

)]
= 0 

δθx = 0 or I 1 −α
y 

[
D 66 

(
D 

α
y θx + D 

α
x θy 
)]

= 0 

δθy = 0 or I 1 −α
y 

[
D 12 D 

α
x θx + D 22 D 

α
y θy 
]

= 0 

(26) 

The governing equations for an isotropic fractional-order plate can be obtained by setting E 1 = E 2 = E, ν12 = ν21 = ν, and

G 12 = G 13 = E/ 2(1 + ν) in the above equations. 

4. Fractional-Order modeling of nonlocal kirchhoff plates 

In a similar way to the approach used above, we apply variational principles to develop a fractional-order analogue of the

classical Kirchhoff plate theory. Recall that the Kirchhoff theory is applicable only to thin plates, that is when the plate in- 

plane characteristic dimension to thickness ratio is on the order of 50 or greater [55] . Under such conditions, the transverse

shear strains γxz and γyz can be neglected and the rotations θx and θy , introduced previously in Section 3 , are approximated

as: 

{ θx , θy } ≈
{

∂w 0 

∂x 
, 

∂w 0 

∂y 

}
(27) 

The strain-displacement relations for the fractional-order Kirchhoff plate are derived by substituting the above assumptions 

in the strain-displacement relations of the fractional-order Mindlin plate given in Eq. (9) . Using the above formalism, the

fractional-order strains for the Kirchhoff plate are obtained as: 

εxx = D 
α
x u 0 − zD 

α
x 

(
∂w 

∂x 

)
(28a) 

εyy = D 
α
y v 0 − zD 

α
y 

(
∂w 

∂y 

)
(28b) 

γxy = D 
α
y u 0 + D 

α
x v 0 − z 

[
D 

α
y 

(
∂w 

∂x 

)
+ D 

α
x 

(
∂w 

∂y 

)]
(28c) 

The corresponding stresses are determined using the stress-strain relationships given in Eq. (8) . The governing differential 

equations and the corresponding boundary and initial conditions of the fractional-order Kirchhoff plate are derived by using 

variational principles as illustrated in Section 3 for fractional-order Mindlin plates, hence we do not provide the detailed 

derivation here. It appears that the differential equations governing the linear in-plane and the transverse response are 

uncoupled similar to the Mindlin plates. Given the nature of the kinematic relations in ( Eqs. 9,27 ), it is immediate that

the differential equations and the boundary conditions governing the in-plane response of both the fractional-order Mindlin 

and the fractional-order Kirchhoff plates are identical to each other, similar to what is established in classical plate theories. 

Hence, we do not provide them explicitly here. However, the governing equation corresponding to the transverse response 

of the fractional-order Kirchhoff plate is different from that of the fractional-order Mindlin plate and it is obtained as: 

D 
1 
x [ D 

α
x M xx ] + D 

1 
x 

[
D 

α
y M xy 

]
+ D 

1 
y [ D 

α
x M xy ] + D 

1 
y 

[
D 

α
y M yy 

]
+ F z = I 0 

∂ 2 w 0 

∂t 2 
− I 2 

∂ 2 

∂t 2 

[
∂ 2 w 0 

∂x 2 
+ 

∂ 2 w 0 

∂y 2 

]
(29) 

The corresponding boundary conditions and initial conditions are obtained as: 

∀ �x 

{
δw 0 = 0 or D 

α
x M xx + 2 D 

α
y M xy + I 2 D 

1 
x ẅ 0 = 0 

δD 
1 
x w 0 = 0 or I 1 −α

x M xx = 0 
(30a) 
9 
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∀ �y 

{
δw 0 = 0 or D 

α
y M yy + 2 D 

α
x M xy + I 2 D 

1 
y ẅ 0 = 0 

δD 
1 
y w 0 = 0 or I 1 −α

y M yy = 0 
(30b) 

∀ � at t = 0 , δw 0 = 0 , δ ˙ w 0 = 0 (30c) 

In the above equations, D 
1 
� denotes the first-integer order derivative with respect to the spatial variables � ∈ { x, y } , and �̈

denotes the second integer-order derivative with respect to time. The governing equations and the corresponding boundary 

conditions given in ( Eqs. 29,30 ) are expressed in terms of the displacement variables for an orthotropic plate as: 

D 11 D 
1+ α
x 

[
D 
1+ α
x w 0 

]
+ 2 D 12 D 

1+ α
x 

[
D 
1+ α
y w 0 

]
+ D 22 D 

1+ α
y 

[
D 
1+ α
y w 0 

]
+ 

D 66 

[
D 
1 
y D 

α
x (D 

α
x D 

1 
y w 0 + D 

α
y D 

1 
x w 0 ) + D 

1 
x D 

α
y (D 

α
x D 

1 
y w 0 + D 

α
y D 

1 
x w 0 ) 

]
= F z − I 0 ẅ 0 + I 2 ∇ 

2 ẅ 0 

(31a) 

∀ �x 

⎧ ⎨ 

⎩ 

δw 0 = 0 or D 11 D 
α
x 

[
D 
1+ α
x w 0 

]
+ 2 D 66 

[
D 

α
y 

(
D 

α
x D 

1 
y w 0 + D 

α
y D 

1 
x w 0 

)]
+ 

D 12 

[
D 

α
x D 

1+ α
y w 0 

]
− I 2 D 

1 
x ẅ 0 = 0 

δD 
1 
x w 0 = 0 or I 1 −α

x 

[
D 11 D 

1+ α
x w 0 + D 12 D 

1+ α
y w 0 

]
= 0 

(31b) 

∀ �y 

⎧ ⎨ 

⎩ 

δw 0 = 0 or D 22 D 
α
y 

[
D 
1+ α
y w 0 

]
+ 2 D 66 

[
D 

α
x 

(
D 

α
x D 

1 
y w 0 + D 

α
y D 

1 
x w 0 

)]
+ 

D 12 D 
α
y 

[
D 
1+ α
x w 0 

]
− I 2 D 

1 
x ẅ 0 = 0 

δD 
1 
y w 0 = 0 or I 1 −α

y 

[
D 12 D 

1+ α
x w 0 + D 22 D 

1+ α
y w 0 

]
= 0 

(31c) 

We highlight here that we have avoided using brackets within the various operators in the above equations for the 

sake of brevity. We emphasize that the various operators in the above equation are applied sequentially, for example, 

D 
1 
y D 

α
x D 

α
x D 

1 
y w 0 = D 

1 
y 

[
D 

α
x 

{
D 

α
x 

(
D 
1 
y w 0 

)}]
. 

5. 2D Fractional finite element method (f-FEM) 

The fractional-order nonlocal governing equations for the nonlocal Mindlin and Kirchhoff plates are numerically solved 

via a nonlocal finite element method. The FE formulation developed for the fractional-order governing equations builds upon 

the FE methods developed in the literature for integral models of nonlocal elasticity [33,56,57] . However, several modifica- 

tions are necessary owing to both the choice and the behavior of the attenuation functions used in the definition of the

fractional-order derivatives, as well as to the nonlocal continuum model adopted in this study. In the following, we present 

the f-FEM for the fractional-order Mindlin theory and then we outline the modifications that would be required in the f-FEM

for the fractional-order Kirchhoff theory. 

5.1. 2D F-FEM formulation 

We formulate the f-FEM starting from a discretized form of the Hamiltonian functional given in Eq. (11) . For this purpose,

the plate domain � = [0 , L ] × [0 , B ] is uniformly discretized into disjoint four-noded quadrilateral (Q4) elements �e 
i 
, such

that ∪ 
N e 
i =1 

�e 
i 

= �, and �e 
j 
∩ �e 

k 
= ∅ ∀ j � = k . N e is the total number of discretized elements. The Cartesian coordinates (x, y )

of each point x ∈ �e 
i 
are interpolated by using the C 0 Lagrangian shape functions for Q4 elements 

(
L 

(k ) , k = 1 , 2 , 3 , 4 
)
in the 

following manner: 

(x, y ) = 

({L} i { X } e i , {L} i { Y } e i 
)

(32) 

where {L i } = 

{ 
L 

(1) 
i 

L 
(2) 
i 

L 
(3) 
i 

L 
(4) 
i 

} 
is a row vector consisting of the shape functions, while { X e 

i 
} and { Y e 

i 
} are column vectors

consisting of the x and y coordinates of the nodes of the element �e 
i 
. The vector containing the nodal degrees of freedom

of the element �e 
i 
is given as: 

{ U 
e 
i } = { { u 0 v 0 w 0 θx θy } i, 1 { u 0 v 0 w 0 θx θy } i, 2 { u 0 v 0 w 0 θx θy } i, 3 { u 0 v 0 w 0 θx θy } i, 4 } T (33) 

where the subscript (i, k ) denotes the element number (i ) and the local node number (k ) . The unknown displacement field

variables { u 0 , v 0 , w 0 , θx , θy } at any point x ∈ �e 
i 
are evaluated by interpolating the corresponding nodal degrees of freedom

of �e 
i 
. For example, u 0 at a point x ∈ �e 

i 
can be obtained as: 

u 0 ( x ) = 

{
L 

(1) 
i 

0 0 0 0 L 

(2) 
i 

0 0 0 0 L 

(3) 
i 

0 0 0 0 L 

(4) 
i 

0 0 0 0 
}{ U 

e 
i } ≡

{
L 

(u 0 ) 
i 

( x ) 
}{ U 

e 
i } (34) 

The superscript in the row vector 

{ 
L 

(u 0 ) 

i 
( x ) 
} 

indicates the specific displacement variable being interpolated which is u 0 in 

Eq. (34) and the subscript denotes the element number. The other displacement variables can be obtained using similar 

interpolations. 

We use the discretization scheme discussed above to approximate the Hamiltonian of the system. We start by deriving 

the discretized form of the nonlocal virtual strain energy. The stress and moment resultants in Eq. (13) can be expressed as:
10 
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{ N xx , N yy , N xy , M xx , M yy , M xy } T = [ S B ] 
{
D 

α
x u 0 , D 

α
x v 0 , D 

α
y u 0 + D 

α
x v 0 , D 

α
x θx , D 

α
y θy , D 

α
y θx + D 

α
x θy 
}
T (35a) 

{ Q yz , Q xz } T = [ S S ] 
{
D 

α
y w 0 − θy , D 

α
x w 0 − θx 

}
T (35b) 

where [ S B ] and [ S S ] are the constitutive matrices of the plate. The different elements of these matrices have already been

presented for orthotropic materials in ( Eqs. 23,24 ). It is immediate that the approximation of the virtual strain energy re-

quires the approximation of the different fractional-order derivatives in Eq. (35) . 

Consider the fractional-order derivative D 
α
x u 0 at the point x ∈ �e 

i 
. Using the definition of the RC derivative given in Eq. (4) ,

D 
α
x [ u 0 ( x ) ] is expressed as: 

D 
α
x [ u 0 ( x ) ] = 

1 

2 
(1 − α) 

[
l α−1 
A x 

∫ x 
x −l A x 

D 
1 
x ′ [ u 0 ( x 

′ )] 
(x − x ′ ) α d x ′ + l α−1 

B x 

∫ x + l B x 
x 

D 
1 
x ′ [ u 0 ( x 

′ )] 
(x ′ − x ) α

d x ′ 
]

(36) 

where x ′ is a dummy variable along the ˆ x axis used within the definition of the fractional-order derivative. The above

expression can be recast as: 

D 
α
x [ u 0 ( x ) ] = 

∫ x + l B x 
x −l A x 

K(x, x ′ , l A x , l B x , α) D 
1 
x ′ 
[
u 0 ( x 

′ ) 
]
d x ′ (37a) 

where 

K(x, x ′ , l A x , l B x , α) = 

{
1 
2 
(1 − α) l A x 

α−1 | x − x ′ | −α x ′ ∈ (x − l A x , x ) 
1 
2 
(1 − α) l B x 

α−1 | x − x ′ | −α x ′ ∈ (x, x + l B x ) 
(37b) 

is the kernel of the fractional derivative. Note that kernel K(x, x ′ , l A x , l B x , α) is a function of the relative distance between the

points x and x ′ , and can be interpreted similarly to the attenuation functions used in integral models of nonlocal elasticity.

Clearly, the attenuation decays as a power-law in the distance with an exponent equal to the order α of the fractional

derivative. Note that D 
α
x [ u 0 ( x ) ] contains the integer-order derivative D 

1 
x ′ [ u 0 ( x 

′ )] . D 
1 
x ′ [ u 0 ( x 

′ )] is evaluated at x ′ in terms of

the nodal displacement variables corresponding to the element �e 
p , such that x 

′ ∈ �e 
p . Using Eq. (34) , the integer-order

derivative can be expressed as: 

D 
1 
x ′ [ u 0 ( x 

′ )] = [ B u 0 ,x ( x 
′ )] { U 

e 
p } (38) 

where the [ B u 0 ,x ( x 
′ )] is given as: 

[ B u 0 ,x ( x 
′ )] = 

{
∂L 

(1) 
p 

∂x 
0 0 0 0 

∂L 

(2) 
p 

∂x 
0 0 0 0 

∂L 

(3) 
p 

∂x 
0 0 0 0 

∂L 

(4) 
p 

∂x 
0 0 0 0 

}
≡ ∂ 

∂x 

[{
L 

(u 0 ) 
p ( x ′ ) 

}]
(39) 

The subscript in [ B u 0 ,x ( x 
′ )] indicates that the displacement variable under consideration is u 0 and the direction of the dif-

ferentiation is ˆ x . Using the above expression for the integer-order derivative D 
1 
x ′ [ u 0 ( x 

′ )] , the fractional-order derivative in
Eq. (37) is obtained as: 

D 
α
x [ u 0 ( x ) ] = 

∫ x + l B x 
x −l A x 

K(x, x ′ , l A x , l B x , α)[ B u 0 ,x ( x 
′ )] { U 

e 
x ′ } d x ′ (40)

where { U 
e 
x ′ } denotes the vector containing the nodal degrees of freedom of the element �e 

p such that x 
′ ∈ �e 

p . It is imme-

diate that the evaluation of the fractional derivative in the Eq. (40) requires a convolution of the integer-order derivative

across the interval (x − l A x , x + l B x ) . Note that, although the interval of the fractional derivative in Eq. (40) is (x − l A x , x + l B x ) ,

the horizon of locality at any point x ∈ � is still two-dimensional in nature. In Eq. (40) , the fractional derivative is being

evaluated only in the ˆ x direction, hence the interval of the derivative is one-dimensional in nature. 

While obtaining the FE approximation of the fractional derivative in Eq. (40) , the nonlocal contributions from the differ-

ent finite elements in the horizon have to be correctly attributed to the corresponding nodes of those elements. In order

to correctly account for these nonlocal contributions from the elements in the horizon, we transform the nodal values { U 
e 
x ′ }

into the global degrees of freedom vector { U} using connectivity matrices in the following manner: 

{ U 
e 
x ′ } = [ ̃  C ( x , x ′ )] { U} (41) 

The connectivity matrix [ ̃  C ( x , x ′ )] is designed such that it is non-zero only if the point x ′ lies in the domain ( x − l A , x + l B ) ,

that is the horizon of nonlocality for x . It is immediate to see that these matrices activate the contribution of the nodes

enclosing x ′ for the numerical evaluation of the convolution integral in Eq. (40) . Using the above formalism, Eq. (40) is

expressed as: 

D 
α
x [ u 0 ( x ) ] = [ ̃  B u 0 ,x ( x )] { U} (42a) 

where 

[ ̃  B u 0 ,x ( x )] = 

∫ x + l B x 
x −l A 

K(x, x ′ , l A x , l B x , α)[ B u 0 ,x ( x 
′ )][ ̃  C ( x , x ′ )] d x ′ (42b)
x 

11 
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By following the steps summarized by Eqs. (36) –(42) , all the remaining fractional derivatives in Eq. (35) are approximated

as: 

D 
α
y [ v 0 ( x ) ] = [ ̃  B v 0 ,y ( x )] { U} (43a) 

D 
α
y [ u 0 ( x ) ] + D 

α
x [ v 0 ( x ) ] = 

[
[ ̃  B u 0 ,y ( x )] + [ ̃  B v 0 ,x ( x )] 

]{ U} (43b) 

D 
α
x [ θx ( x ) ] = [ ̃  B θx ,x ( x )] { U} (43c) 

D 
α
y [ θy ( x ) ] = [ ̃  B θy ,y ( x )] { U} (43d) 

D 
α
y [ θx ( x ) ] + D 

α
x [ θy ( x ) ] = 

[
[ ̃  B θx ,y ( x )] + [ ̃  B θy ,x ( x )] 

]{ U} (43e) 

D 
α
x [ w 0 ( x ) ] − θx = 

[
[ ̃  B w 0 ,x ( x )] − [ L 

(θx ) ( x )] 
]{ U} (43f) 

D 
α
y [ w 0 ( x ) ] − θy = 

[
[ ̃  B w 0 ,y ( x )] − [ L 

(θy ) ( x )] 
]{ U} (43g) 

[ L 
(θx ) ( x )] and [ L 

(θy ) ( x )] are obtained by assembling the element interpolation vectors for the displacement variables θx 
and θy given in Eq. (34) . By using the above expressions for FE approximation of the different fractional-order derivatives 

and the constitutive relations given in Eq. (35) , the first variation of the strain energy δU defined in Eq. (13) is obtained as:

δU = δ{ U } T 
[ ∫ 

�
[ ̃  B B ( x )] 

T [ S B ][ ̃  B B ( x )]d� + 

∫ 
�
[ ̃  B S ( x )] 

T [ S S ][ ̃  B S ( x )]d�
] 
{ U } (44) 

where the matrices [ ̃  B B ( x )] and [ ̃  B S ( x )] are given as: 

[ ̃  B B ( x )] = 

[ 
[ ̃  B u 0 ,x ( x )] 

T , [ ̃  B v 0 ,y ( x )] 
T , 
[
[ ̃  B u 0 ,y ( x )] + [ ̃  B v 0 ,x ( x )] 

]T 
, [ ̃  B θx ,x ( x )] 

T , [ ̃  B θy ,y ( x )] 
T , [

[ ̃  B θx ,y ( x )] + [ ̃  B θy ,x ( x )] 
]T ] T (45a) 

[ ̃  B S ( x )] = 

[ [
[ ̃  B w 0 ,x ( x )] − [ L 

(θx ) ( x )] 
]T 

, 
[
[ ̃  B w 0 ,y ( x )] − [ L 

(θy ) ( x )] 
]] T 

(45b) 

By using the interpolations for the displacement fields, the virtual work is approximated as: 

δV = δ{ U} T 
∫ 
�

[{
L 

(u 0 ) 
}
T F x + 

{
L 

(v 0 ) 
}
T F y + 

{
L 

(w 0 ) 
}
T F z + 

{
L 

(θx ) 
}
T M θx + 

{
L 

(θy ) 
}
T M θy 

]
d� (46) 

where the row vectors 
{
L 

(�) 
}
are obtained by assembling the element interpolation vectors given in Eq. (34) . Similarly, the

approximation for the kinetic energy is obtained as: 

δT = −δ{ U} T 
[ ∫ 

�

{
L̄ 

}{ I 0 , I 0 , I 0 , I 2 , I 2 } T {L̄ 

}
T d�

] 
{ ̈U } (47) 

where 
{
L̄ 

}
= 

{{
L 

(u 0 ) 
}
T , 
{
L 

(v ) 
}
T , 
{
L 

(w 0 ) 
}
T , 
{
L 

(θx ) 
}
T , 
{
L 

(θy ) 
}
T 
}
. The expressions for δU , δV and δT given in Eqs. (44) - (47) are 

substituted in Eq. (11) and the algebraic equations corresponding to the 2D f-FEM are derived by using the fundamental

lemma of variational calculus as: 

[ M] { ̈U } + [ K] { U} = { F } (48) 

where the mass matrix [ M] , the stiffness matrix [ K] , and the force vector { F } are given as: 

[ M] = 

∫ 
�

{
L̄ 

}{ I 0 , I 0 , I 0 , I 2 , I 2 } T {L̄ 

}
T d� (49a) 

[ K] = 

∫ 
�
[ ̃  B B ( x )] 

T [ S B ][ ̃  B B ( x )]d� + 

∫ 
�
[ ̃  B S ( x )] 

T [ S S ][ ̃  B S ( x )]d� (49b)

{ F } = 

∫ 
�

[{ L 
(u 0 ) } T F x + { L 

(v 0 ) } T F y + { L 
(w 0 ) } T F z + { L 

(θx ) } T M θx + { L 
(θy ) } T M θy 

]
d� (49c) 

The solution of the algebraic Eq. (48) gives the nodal displacement variables which can then be used along with the

kinematic relations in Eq. (9) to determine the displacement field at any point in the plate. 
12 
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5.2. Adaptation to a fractional-Order kirchhoff plate 

In the following, we briefly discuss the modifications required in the above FE formulation in order to obtain the response

of the fractional-order Kirchhoff plate: 

Modification #1 : it appears from Eq. (27) that the FE approximation must ensure continuity of the first-order derivatives 

of the transverse displacement. Consequently, C 1 Hermitian shape functions for Q4 elements have to be used in order to 

interpolate the transverse displacement field. Recall that Q4 elements are of two types: conforming and non-confirming. In 

this study, we have used conforming Q4 elements, hence the degrees of freedom corresponding to a node k of the element

�e 
i 
are: 

{ U 
e 
i,k } = 

{
u 0 v 0 w 0 

∂w 0 

∂x 

∂w 0 

∂y 

∂ 2 w 0 

∂ x∂ y 

}
i,k 

(50) 

The elemental degrees of freedom vector for the element �e 
i 

can be obtained similar to Eq. (33) as { U 
e 
i 
} ={{ U 

e 
i, 1 

} , { U 
e 
i, 2 

}{ U 
e 
i, 3 

} , { U 
e 
i, 4 

} }. The transverse displacement at a point x ∈ �e 
i 
can now be interpolated similar to Eq. (34) as: 

w 0 ( x ) = 

{
0 , 0 , H 

(1) 
i 

. . . H 

(4) 
i 

, 0 , 0 , H 

(5) 
i 

. . . H 

(8) 
i 

, 0 , 0 , H 

(9) 
i 

. . . H 

(12) 
i 

, 0 , 0 , H 

(13) 
i 

. . . H 

(16) 
i 

}{ U 
e 
i } (51) 

The interpolating row vector in the above equation is denoted as 

{ 
H 

(w 0 ) 

i 
( x ) 
} 
. Note that the in-plane displacement fields are

still interpolated using C 0 Lagrangian elements. 

Modification #2 : as evident from Eq. (28) , the evaluation of the discretized strain energy of the fractional-order Kirch- 

hoff plate would require the evaluation of the fractional-derivatives of the first integer-order derivatives of the transverse 

displacement, that is D 
α
x 2 

[
D 
1 
x 1 
w 0 

]
, where x 1 and x 2 is either x or y . These approximations can be derived by following the

steps presented in Eqs. (36) –(42) . The FE approximation of D 
α
x 1 

[
D 
1 
x 2 
w 0 

]
is given by: 

D 
α
x 2 

[
D 
1 
x 1 
w 0 ( x ) 

]
= [ ̃  B w 0 , x 1 x 2 ( x )] { U} (52a) 

[ ̃  B w 0 , x 1 x 2 ( x )] = 

∫ x 2 + l B x 2 
x 2 −l A x 2 

K(x 2 , x 
′ 
2 , l A x 2 , l B x 2 , α)[ B w 0 ,x 1 x 2 ( x 

′ )][ ̃  C ( x , x ′ )] d x ′ 2 (52b)

[ B w 0 , x 1 x 2 ( x 
′ )] = 

∂ 2 

∂ x ′ 
2 
∂ x ′ 

1 

[{
H 

(w 0 ) 
p ( x ′ ) 

}]
(52c) 

The subscript p in Eq. (52c) is such that the point x ′ ∈ �e 
p . Similar expressions can be derived for the other fractional-

order derivatives of the transverse displacement field. We do not provide them here for the sake of brevity. 

Modification #3 : the contribution of the transverse shear strains to the stiffness matrix must be removed. More specif- 

ically, this can be obtained by setting [ S S ] = 0 in Eq. (49b) after having carried out the aforementioned modifications. 

Modification #4 : the expressions for the mass matrix and the force vector must be modified according to the interpola- 

tion given in Eq. (51) . We do not provide these expressions explicitly as they can be easily found in classical texts discussing

FE formulations for plates [55] . 

5.3. Numerical integration scheme for the nonlocal matrices 

In the following, we provide the details of the numerical scheme used to integrate the stiffness matrix of the fractional-

order Mindlin plate given in Eq. (49b) . The same procedure directly extends to the evaluation of the stiffness matrix of

the fractional-order Kirchhoff plate. The procedure to numerically evaluate the mass matrix and the force vector follows 

directly from classical FE formulations, hence we do not provide a complete description of all the steps. The evaluation of

the stiffness matrices for the nonlocal system given in Eq. (49b) requires the evaluation of the different nonlocal matrices 

[ ̃  B �] , � ∈ { B, S} given in Eq. (45) . As evident from ( Eqs. 42,43,45 ), this involves a convolution of the integer-order derivatives

with the fractional-order attenuation function over the horizon of nonlocality. Clearly, the FE approximation for fractional- 

order derivatives involves additional integrations over the horizon of nonlocality to account for the nonlocal interactions. 

A numerical procedure to account for these nonlocal interactions was presented in [21,56] . Differently from these studies, 

the attenuation function in the fractional-order model involves an end-point singularity due to the nature of the power- 

law kernel (see Eq. (37b) ). The fractional-order nonlocal interactions as well as the end-point singularity are addressed in 

[50] where a fractional-order FEM has been developed for modeling 1D nonlocal beams. Here below, we briefly review this 

numerical procedure. 

In the following, we describe the procedure to numerical evaluate the contribution due to the bending stress and mo- 

ment resultants in the stiffness matrix [ K] given in Eq. (49b) and denoted as [ K B ] in the following. The same procedure

directly extends to evaluate the contributions of the transverse shear resultants. We adopt an isoparametric formulation and 

introduce a natural coordinate system (ξ , η) to numerically integrate [ K ] . The Jacobian of the transformation (x, y ) → (ξ , η)
B 

13 
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is given as J(ξ , η) . By using the Gauss-Legendre quadrature rule, the matrix [ K B ] is approximated as: 

[ K B ] ≈
N e ∑ 

i =1 

N GP ∑ 

j=1 

ˆ w j J 
i 
[
˜ B B 
(
ξ i, j , ηi, j 

)]T 
[ S B ] 
[
˜ B B 
(
ξ i, j , ηi, j 

)]T 
(53) 

where (ξ i, j , ηi, j ) is the j−th Gauss-Legendre point in the i −th element, ˆ w j is the corresponding weight for numerical inte-

gration, and N GP is the total number of Gauss points chosen for the numerical integration, such that j ∈ { 1 , . . . N GP } . J i is the
Jacobian of the coordinate transformation for the i −th element. The hat symbol on the weight is used to distinguish it from

the transverse displacement. As previously highlighted, the matrices [ ̃  B �] ( � ∈ { B, S} ) involve a convolution integration due
to the fractional-order nonlocality. Note from Eq. (45) that [ ̃  B �] contains the different nonlocal matrices given in Eq. (43) . In

the following we outline the procedure for the evaluation of the matrix [ ̃  B u 0 ,x ( x )] only. The same procedure extends directly

for the evaluation of the remaining matrices in Eq. (45) . [ ̃  B u 0 ,x ( x )] is approximated as: [
˜ B u 0 ,x ( x 

i, j ) 
]

≡
[
˜ B u 0 ,x (x 

i, j , y i, j ) 
]

= 

∫ x i, j + l B x 
x i, j −l A x 

K(x, x ′ , l A , l B , α)[ B u 0 ,x ( x 
′ )][ ̃  C ( x i, j , x ′ )] d x ′ (54) 

where (x i, j , y i, j ) is the Cartesian coordinate of the Gauss point (ξ i, j , ηi, j ) and [ B �(s 1 )] is given in Eq. (39) . Using Eq. (37b) ,

we obtain the following expression for 
[
˜ B u 0 ,x ( x 

i, j ) 
]
: 

[
˜ B u 0 ,x (x 

i, j , y i, j ) 
]

= 

∫ x i, j 
x i, j −l A x 

I L d x ′ + 

∫ x i, j + l B x 
x i, j 

I R d x ′ (55a) 

where, the integrands I L and I R are obtained by substituting the expression for the fractional derivative kernel given in 
Eq. (37b) in the above Eq. (54) as: 

I L = 

1 

2 
(1 − α) l A x 

α−1 | x − x ′ | −α[ B u 0 ,x ( x 
′ )][ ̃  C ( x i, j , x ′ )] (55b) 

I R = 

1 

2 
(1 − α) l B x 

α−1 | x − x ′ | −α[ B u 0 ,x ( x 
′ )][ ̃  C ( x i, j , x ′ )] (55c) 

Note that the terminals of the integrals in Eq. (55a) span over the elements that constitute the nonlocal horizon along

the ˆ x direction: (x i, j − l A x , x 
i, j + l B x ) at x 

i, j . These integrals are evaluated numerically in the following manner: 

∫ x i, j 
x i, j −l A x 

I L d x ′ ≈
∫ x i −N 

in f 
A x 

+1 

x 
i −N 

in f 
A x 

I L d x ′ + . . . 

∫ x i 
x i −1 

I L d x ′ ︸ ︷︷ ︸ 
Gauss-Legendre Quadrature 

+ 

∫ x i, j 
x i 

I L d x ′ ︸ ︷︷ ︸ 
Singularity at x i, j 

(56a) 

∫ x i, j + l B x 
x i, j 

I R d x ′ ≈
∫ x i +1 

x i, j 
I R d x ′ ︸ ︷︷ ︸ 

Singularity at x i, j 

+ 

∫ x i +2 

x i +1 

I R d x ′ . . . + 

∫ x i + N in f B x 

x 
i + N in f 

B x 
−1 
I R d x ′ ︸ ︷︷ ︸ 

Gauss-Legendre Quadrature 

(56b) 

In the above expressions, N 

in f 
A x 

and N 

in f 
B x 

are the number of (complete) elements in the nonlocal horizon to the left and 

right side of the point x along the ˆ x direction, respectively. More specifically, N 

in f 
A x 

= � l A x /l e x � and N 

in f 
B x 

= � l B x /l e x � where l e x is

the dimension of the discretized element along the ˆ x (assuming a uniform discretization along the ˆ x direction). The ceil ( �·� )
and floor ( � ·� ) functions are used to round the number of elements to the greater integer on the left side and the lower

integer on the right side. For points x i, j close to the boundaries �x of the plate ( x = { 0 , L } ), N 

in f 
A x 

and N 

in f 
B x 

are truncated in

order to account for asymmetric horizon lengths. This is essential to satisfy frame-invariance of the formulation as discussed 

in Section 2 . 

As discussed previously, due to the nature of the kernel of the fractional-order derivative, an end-point singularity occurs 

in the integrals at the Gauss point x i, j in the element �e 
i 
. This is evident from the definitions of the left and right integrals

given in Eq. (55) . Following [50] , this end-point singularity is circumvented by an analytical evaluation of these integrals

over the elements containing the singularities. This analytical evaluation can be carried out by using the expression for 

[ ̃  B u 0 ,x ] given in Eq. (42b) . The integrals over the remaining elements (i.e. those without singularities) are evaluated using the

Gauss-Legendre quadrature method. The expression for this integration corresponding to the nonlocal contribution of the 

r−th element in the horizon of nonlocality of the Gauss point x i, j along the ˆ x direction is given as: ∫ x r+1 

x r K(x, x ′ , l A , l B , α)[ B u 0 ,x ( x 
′ )] [ ˜ C �( x i, j , x ′ )] d x ′ = ∑ N GP 

k =1 
ˆ w k J 

r K(x, x ′ , l A , l B , α)[ B u 0 ,x ( x 
r,k )][ ̃  C ( x i, j , x r,k )] 

(57) 

where x r,k is the Cartesian coordinate of the k −th Gauss point in the r−th element along ˆ x , ˆ w k is the corresponding weight,

and J r is the Jacobian of the transformation for r−th element. We highlight that the attenuation kernel K is a function of

the Cartesian coordinates, and therefore global coordinates should be used in its evaluation. 
14 
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Before proceeding further, it is important to analyze the specific nature (either implicit or explicit ) of the 2D f-FEM de-

veloped for the analysis of the linear elastic nonlocal plate. Note that nonlocal approaches, from a theoretical standpoint, 

are implicit in nature. However, their numerical implementation is not necessarily implicit or even semi-implicit in nature. 

In this regard, the algorithm developed in this study, for the static and free vibration analysis of the linear elastic nonlocal

plate, is fully explicit in nature. More specifically, in the static analysis, the static response of the plate is computed in a

single step: { U} = [ K] −1 { F } and in the free vibration study, the eigenvalues of the matrix [ M] −1 [ K] are computed. This as-

pect becomes evident by considering the Algorithm 1 which summarizes the 2D f-FEM. In the Algorithm 1 , we have also
15 
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Table 1 

Numerical results of the maximum transverse 

displacement predicted by f-FEM results. The re- 

sults are compared with the maximum trans- 

verse displacement obtained by the exact solu- 

tion. Results are compared for different order α

and size of the horizon l f . Note from Eq. (58) 

that we have assumed a displacement which is 

independent of α and l f . To simplify the compar- 

ison of the data, the maximum transverse dis- 

placement was scaled by a factor of 100. 

α l f 100 × w (in m) Error (%) 

f-FEM Exact 

1 - 6.26 6.25 0.16 

0.9 0 . 1 L 6.06 6.25 3.04 

0.9 0 . 2 L 6.50 6.25 4.00 

0.8 0 . 1 L 6.19 6.25 0.96 

0.8 0 . 2 L 6.26 6.25 0.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

highlighted the specific steps wherein the effect of nonlocality is realized ( in an explicit fashion ) on the stiffness matrix of

the nonlocal plate. 

6. Computational aspects: Validation, convergence and cost 

In this section, we analyze important computational aspects of the 2D f-FEM including its validation, convergence and 

computational cost. First, we present the results of a validation and convergence study carried out for the 2D f-FEM, and

then we discuss in detail its computational cost. For the validation and convergence studies, we fixed the in-plane dimen- 

sions of the plate to be L = 1 m and B = 1 m. The thickness of the plate was taken to be 0.1m (= L/ 10) for the fractional-

order Mindlin formulation, and 0.01m (= L/ 100) for the fractional-order Kirchhoff formulation. The material was assumed 

isotropic with an elastic modulus E = 30 GPa and density ρ = 2700 kg/m 
3 for both cases, while a Poisson’s ratio ν = 0 . 3 was

chosen for the fractional-order Mindlin plate and ν = 0 . 25 for the fractional-order Kirchhoff plate. We emphasize that al- 

though the numerical results were obtained for an isotropic plate, the f-FEM formulation developed in Section 5 is applicable

to any type of medium through appropriate changes in the constitutive matrices [ S B ] and [ S S ] defined in Eq. (35) . In the fol-

lowing, we have assumed a symmetric and isotropic horizon of nonlocality for points sufficiently inside the domain of the 

plate, that is l A � = l B � = l f , � ∈ { x, y } . For points located close to a boundary, the length scales are truncated appropriately
as discussed in Section 2 . 

6.1. Validation of FEM model 

We validated the 2D f-FEM by comparing the results of the f-FEM against the exact solution of a fractional-order plate

clamped all around its boundaries and subject to spatially varying loads. More specifically, the following displacement field 

of the mid-plate of the plate is assumed: 

u 0 = 0 v 0 = 0 w 0 = xy (x − 1)(y − 1) θx = xy (x − 1)(y − 1) θy = xy (x − 1)(y − 1) (58)

Note that the above displacement field satisfies the boundary conditions for a plate clamped at its edges. The strong form

of the governing differential equations in Eq. (19) is used to obtain the loads required to satisfy the displacement response

in Eq. (58) . We highlight that the assumed displacement field is independent of the order (α) and of the length scale (l f ) ,

hence resulting in a forcing function which is dependent on the fractional parameters. The obtained closed-form expressions 

of the different force fields are then used within the f-FEM and the corresponding numerical approximation of the trans- 

verse displacement provided by the f-FEM is compared against the exact solution given in Eq. (58) . We merely note that

this strategy is similar to the ones adopted in [50,58] . Different combinations of α and l f were considered. The numerical

results in terms of the maximum transverse displacement of the plate which is obtained at (L/ 2 , B/ 2) are given in Table 1 .

Additionally, we have also provided the plots of the numerically obtained transverse displacement and the exact solution 

for the specific case of α = 0 . 8 and l f = 0 . 1 L in Fig. 3 . As evident from Table 1 , the match is excellent and the error is less

than 4% in all the cases. The study corresponding to α = 1 can be considered as a check on the robustness of the f-FEM. 

6.2. Convergence 

This section presents the results of the sensitivity analysis on the FE mesh size. The convergence of the integer-order FEM

with element discretization, referred to as the h −refinement, is well established in the literature. In this study we noted that,

in addition to the FE mesh size, the convergence of the f-FEM also depends on the fractional-order and on the ratio of the

FE mesh size and the nonlocal length scale. It appears that the convergence of the f-FEM depends on the strength of the
16 
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Fig. 3. Comparison of the transverse displacement of the fractional-order Mindlin plate with α = 0 . 8 and l f = 0 . 1 L clamped at all its edges obtained via 

(a) the 2D f-FEM and (b) the exact solution given in Eq. (58) . As evident from the color maps the match between the numerically obtained solution and 

the exact solution is excellent. 

Table 2 

Convergence of the f-FEM for a CCCC-Mindlin plate for various frac- 

tional parameters. 

l f N x × N y w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 4 × 4 1.5645 1.7214 1.8549 1.9793 

8 × 8 1.6226 1.8164 1.9924 2.1668 

10 × 10 1.6299 1.8350 2.0226 2.2092 

12 × 12 1.6339 1.8480 2.0445 2.2400 

16 × 16 1.6379 1.8659 2.0753 2.2832 

l f = 0 . 4 L 4 × 4 1.3715 1.8071 2.3811 3.1851 

8 × 8 1.5645 2.0525 2.6554 3.3890 

10 × 10 1.5836 2.0788 2.6856 3.4102 

12 × 12 1.6071 2.1118 2.7252 3.4427 

16 × 16 1.6226 2.1384 2.7611 3.4776 

l f = 0 . 5 L 4 × 4 1.2578 1.7969 2.6313 4.0621 

8 × 8 1.5238 2.1893 3.2054 4.9160 

10 × 10 1.5645 2.2486 3.2874 5.0246 

12 × 12 1.5876 2.2835 3.3362 5.0887 

16 × 16 1.6113 2.3227 3.3935 5.1657 

 

 

 

 

 

 

 

 

nonlocal interactions across the nonlocal horizon. Therefore, sufficient number of elements N x × N y ≡ (l f /l e x × l f /l e y ) should

be available in the nonlocal horizon to accurately represent the fractional-order nonlocal interactions. l e x and l e y denote 

the size of the FE mesh in the ˆ x and ˆ y directions, respectively. Additionally, mesh refinement across the domain of the 

plate would increase the spatial resolution, hence decreasing inconsistencies due to the truncation of the nonlocal horizon. 

This approach would provide a better numerical approximation for the nonlocal matrices [ ̃  B �] in ( Eqs. 55,56 ). Therefore,

convergence of the f-FEM is expected when the number of elements in the nonlocal horizon N x × N y , referred to as the

ǣdynamic rate of convergence ǥ [50,57] , is sufficient to accurately capture the fractional-order nonlocal interactions. 

In the context of the current study, we establish the convergence of the f-FEM for both the fractional-order Mindlin

and Kirchhoff plates. The fractional-order plates are clamped on their edges (denoted as CCCC) and under the effect of a 

uniformly distributed transverse load (UDTL) F z . Results are presented in Table 2 and Table 3 for different combinations of

α and l f . More specifically, the maximum transverse displacement (w 0 (L/ 2 , B/ 2)) is compared (moving from top to bottom

within a column) for a given fractional-order (α) and length scale (l f ) . The maximum displacement in the Tables 2,3 is

non-dimensionalized in the following manner: 

w = w 0 ( L/ 2 , B/ 2 ) 

[
100 Eh 3 

F z L 4 

]
(59) 

It was found that, targeting an error threshold less than 2% between successive refinements, the dynamic rate of conver- 

gence is N x × N y = 12 × 12 for the fractional-order Mindlin plate and N x × N y = 10 × 10 for the fractional-order Kirchhoff

plate. We highlight here that the same condition on the dynamic rate of convergence was also observed for plates simply
17 
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Table 3 

Convergence of the f-FEM for a CCCC-Kirchhoff plate for various frac- 

tional parameters. 

l f N x × N y w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 4 × 4 1.4235 1.5102 1.5860 1.6603 

8 × 8 1.4235 1.5129 1.5916 1.6689 

10 × 10 1.4235 1.5135 1.5929 1.6709 

12 × 12 1.4235 1.5140 1.5939 1.6273 

l f = 0 . 4 L 4 × 4 1.4235 1.7262 2.0782 2.5063 

8 × 8 1.4235 1.7102 2.0320 2.4078 

10 × 10 1.4235 1.6982 2.0135 2.3790 

12 × 12 1.4235 1.7055 2.0185 2.3788 

l f = 0 . 5 L 4 × 4 1.4236 1.8189 2.3280 3.0251 

8 × 8 1.4235 1.8072 2.2952 2.9598 

10 × 10 1.4235 1.8047 2.2878 2.9446 

12 × 12 1.4235 1.8030 2.2828 2.9340 

Fig. 4. Structure of the transverse stiffness matrix of a Kirchoff plate for (a) α = 1 , l f → 0 , (b) α < 1 , l f = 0 . 2 L, and (c) α < 1 , l f = 0 . 4 L . The black regions 

indicate a zero entry while the white regions indicate the non-zero elements in the stiffness matrix. Note the increasing bandwidth and loss of sparse 

nature for nonlocal stiffness matrix with introduction of nonlocality and further increase in the length of the horizon of nonlocality. 

 

 

 

 

 

 

 

 

 

 

 

supported on all edges (denoted as SSSS) and subject to a UDTL. These results were not provided here for the sake of brevity.

Since the convergence in the displacements is less than 2% for the aforementioned mesh of N x × N y , in the following we

use this mesh discretization in order to carry out the static and dynamic FE simulations. 

6.3. Computational cost 

As highlighted explicitly in the Algorithm 1 , nonlocal effects in the finite element approach are accounted for via ad-

ditional terms within the stiffness matrix that lead to greater computational costs in the simulation of nonlocal systems 

versus local ones. In this section, we discuss the added computational cost with specific reference to nonlocal plates. We 

first illustrate how the introduction of nonlocality leads to non-sparse stiffness matrices and then discuss the computational 

complexity of the 2D f-FEM. 

6.3.1. Non-sparse stiffness matrix 

The addition of nonlocal interactions to a local system reduces the sparsity of the stiffness matrix and, in some regard,

enriches its content. The degree of enrichment (or non-sparseness) of the stiffness matrix increases as a function of the size

of the nonlocal horizon. These aspects are established by considering the transverse stiffness matrix of a Kirchhoff plate for 

three different cases: (a) local (α = 1 , l f → 0) , (b) nonlocal (α < 1 , l f = 0 . 2 L ) , and (c) nonlocal (α < 1 , l f = 0 . 4 L ) . In the

above cases, α and l f are the fractional model parameters characterizing the strength of interactions and the length of the 

nonlocal horizon [10] , and L is the length (and width) of the square-shaped Kirchoff plate. Note that the specific value of

the fractional-order α (for a given l f ) does not change the basic structure of the stiffness matrix, as this parameter only

indicates the strength of the nonlocal interactions [50] . 

The nature of the stiffness matrices obtained for the three cases are presented in Fig. 4 . All the cells with non-zero

contributions are colored white while the remaining cells are colored black. As evident from Fig. 4 a, the sparse nature of

the stiffness matrix observed for the case (a) ( α = 1 . 0 ) is similar to that obtained via local FEM. The sparse nature indicates
18 
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that the contribution of a node to the stiffness of the plate is determined only by the nodes of the elements enclosing it. In

clear contrast to this observation, an increase in the bandwidth and a consequent loss in the sparse nature of the stiffness

matrix is observed for the nonlocal structures in Figs. 4 b, 4 c. This indicates that the contribution of a node to the stiffness

of the plate is determined both by the nodes of the elements enclosing it as well as by the nodes of the elements lying

within its horizon of nonlocality. In this regard, the influence of the length-scale parameter l f is evident from an increase

in the bandwidth of the stiffness matrices with an increase in l f . This is expected since an increase in the length-scale

parameter extends the horizon of nonlocality at a point. We emphasize that the above conclusions also hold true for the

stiffness matrix of a Mindlin plate. 

6.3.2. Computational complexity 

The computational cost of simulating nonlocal systems is naturally higher, when compared to that of local systems, pri- 

marily due to the increased computations required in the evaluation of the stiffness matrix (as highlighted in Algorithm 1 ).

In the following, we quantify this additional cost by estimating the number of Floating Point Operations (FLOPs) required 

to evaluate the stiffness matrix. The number of FLOPs is then compared with that of a local system. We focus only on the

FLOPs involved in computing the stiffness matrix, because the computation of the mass matrix and the force vectors for 

nonlocal systems follows the same procedure and involves the same number of FLOPs as in a classical system. Also in this

analysis, we consider only the Mindlin plate. We emphasize that the order of the number of FLOPs used to compute the

stiffness matrix is the same for either a Mindlin or a Kirchhoff plate if the same number of degrees of freedom is used. 

The computation of the stiffness matrix involves two major steps: (1) the evaluation of the displacement derivative 

matrices ( Eq. (54) ), and (2) the use of the displacement derivative matrices to obtain the stiffness matrix ( Eq. (53) ). We

begin with the computational cost involved in the numerical evaluation of the nonlocal displacement derivative matrices 

[ ̃  B �, �] given in Eq. (54) . This procedure involves the numerical estimation of an integral over different elements located

within the horizon of nonlocality of a Gauss point (x i, j , y i, j ) . The procedure to numerically estimate this integral over one

element located in the horizon of nonlocality of (x i, j , y i, j ) (using Gauss quadrature rule) is given in Eq. (57) . The computation

cost of the steps involved within this integral ( Eq. (57) ) is estimated in the following: ∫ x r+1 

x r K(x, x ′ , l A , l B , α)[ B u 0 ,x ( x 
′ )] [ ˜ C �( x i, j , x ′ )] d x ′ = ∑ N GP 

k =1 
ˆ w k J 

r K(x, x ′ , l A , l B , α) [ B u 0 ,x ( x 
r,k )][ ̃  C ( x i, j , x r,k )] ︸ ︷︷ ︸ 
2 ×E DOF ×G DOF ︸ ︷︷ ︸ 

G DOF 

(60) 

The total computational cost of the numerical integration given above is ≈ N GP × (G DOF + 2 × E DOF × G DOF ) FLOPs, where E DOF 
is the number of degrees of freedom of an element used to discretize the plate (see Eq. (33) ) and G DOF is the number of

degrees of freedom of the entire plate. The definitions for the remaining terms are available in Section 5.1 of the manuscript.

Repeating this step over each of the N x = N 

in f 
A x 

+ N 

in f 
B x 

elements within the nonlocal domain of the selected Gauss point de-

mands a computational cost of ≈ N x × N GP × (G DOF + 2 × E DOF × G DOF ) FLOPs. Recall that we refer to the parameter N x as

the ’dynamic rate of convergence’ associated with the convergence of the f-FEM (see Section 6.2 ). This cost is due to the

evaluation of the specific component of the nonlocal displacement derivative matrix: [ B u 0 ,x ( x 
′ )] . Identical cost is incurred

for the numerical evaluation of [ B u 0 ,y ( x 
′ )] components of the matrix. Thus, the total computational cost of numerical steps

involved in evaluating [ ̃  B B ] is C 1 = (N x + N y ) × N GP × (G DOF + 2 × E DOF × G DOF ) . The above additional steps in the computa-

tional scheme is a feature of the nonlocal elasticity and it is absent in the analysis of local elastic plates. The above result is

then utilised to evaluate the nonlocal stiffness matrix following the steps given in Eq. (53) : 

[ K B ] ≈
N e ∑ 

i =1 

N GP ∑ 

j=1 

ˆ w j J 
i 
[
˜ B B 
(
ξ i, j , ηi, j 

)]T 
[ S B ] 
[
˜ B B 
(
ξ i, j , ηi, j 

)]T ︸ ︷︷ ︸ 
C 1 ︸ ︷︷ ︸ 

2 ×36 ×G DOF ︸ ︷︷ ︸ 
2 ×6 ×(G DOF ) 

2 ︸ ︷︷ ︸ 
(G DOF ) 

2 

(61) 

Thus, the total cost of above step is: ≈ N e × N GP × (G 
2 
DOF + 2 × 6 × G 

2 
DOF + (N x + N y ) × N GP × (G DOF + 2 × E DOF × G DOF )) FLOPs.

Repeating the exercise for the shear components, the computation cost involved in numerical estimation of [ K S ] is

≈ N e × N GP × (G 
2 
DOF 

+ 2 × 4 × G 
2 
DOF 

+ (N x + N y ) × N GP × (G DOF + 2 × E DOF × G DOF )) FLOPs. Note that O (N e ) ≈ O (G DOF ) . Hence,

the dominant terms in the final result are: ≈ O(N 
2 
GP × (N x + N y ) × (G DOF ) 

3 ) FLOPs. In comparison, the computational cost of

the numerical evaluation of the stiffness matrix corresponding to a local elastic plate is given as ≈ O(N GP × (G DOF ) 
3 ) FLOPs.

Note that for a sufficiently large G DOF , such that G DOF ≥ N 
2 
GP 

, the number of FLOPs required to obtain the nonlocal and local

stiffness matrices are of O((N x + N y ) × (G DOF ) 
3 ) and O(G DOF ) 

3 , respectively. 

As evident from a direct comparison of the order of FLOPs, the added computational cost in nonlocal systems is due

to the N x + N y number of elements in the nonlocal horizon of a given point. Note that the computational cost incurred

in obtaining the stiffness matrices for both the local and nonlocal system varies as the cubic power of G . In order to
DOF 
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Fig. 5. Time taken to numerically obtain the stiffness matrix of a nonlocal (α < 1 , l f = 0 . 5 L ) and a local Mindlin plate for varying number of global 

degrees of freedom. The slope of the linearly fitted line on the log (T S ) − log (G DOF ) dataset were obtained as 3.01 and 3.21 for the nonlocal and local cases, 

respectively, which are close to the theoretical prediction of 3. Note also that the time taken to obtain the nonlocal stiffness matrix is much higher than 

that of the local stiffness matrix. 

Table 4 

Comparison of the effect of the fractional model parame- 

ters on the static response of a CCCC-Mindlin plate sub- 

jected to a UDTL. Results are presented in terms of the 

non-dimensionalized maximum transverse displacement. 

l f w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 1.6071 1.8480 2.0445 2.2400 

l f = 0 . 3 L 1.6071 1.9554 2.2787 2.5372 

l f = 0 . 4 L 1.6071 2.1118 2.7252 3.4427 

l f = 0 . 5 L 1.6071 2.2835 3.3362 5.0887 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

validate the above conclusions, we obtain the time taken to compute the stiffness matrix of a nonlocal and a local Mindlin

plate using the 2D f-FEM and the standard local FEM, respectively, for varying number of global degrees of freedom. The

results of this study are summarized in Fig. 5 where the logarithm of the computational time ( log (T S )) is plotted against

the logarithm of the number of global degrees of freedom ( log (G DOF )) . In obtaining these results the length-scale of the

nonlocal system was fixed at l f = 0 . 5 L and the order was α < 1 . All the simulations were run on a personal computer

equipped with an Intel(R) Core(TM) i7-1065G7 processor and 8.00 GB RAM. As expected, the slope of the linearly fitted lines

in the log (T S ) − log (G DOF ) dataset were obtained as 3.01 and 3.21 for the nonlocal and local cases, respectively. Further, it is

evident from Fig. 5 that the time taken to compute the nonlocal stiffness matrix is higher than the time taken to compute

the local stiffness matrix. 

7. Static response of the fractional-Order plates 

Having established the accuracy and consistency of the 2D f-FEM, the f-FEM was used to analyze the static response of

the fractional-order nonlocal plates. More specifically, we analyzed the effect of the fractional model parameters α and l f 
on the response of the fractional-order plates. The dimensions and material properties of the plates were the same used 

in Section 6 . Consider a fractional-order Mindlin plate subject to a UDTL. The response of the plate was analyzed for two

different kinds of boundary conditions (CCCC and SSSS) and for different combinations of the fractional model parameters. 

Note that several boundary conditions exist in the literature to describe simply supported plates [55] . In this study, we

have enforced { u 0 , v 0 , w 0 } = 0 at all the edges in order to obtain the response of SSSS plates. The results of this study

are summarized in Table 4 and Table 5 in terms of the non-dimensionalized maximum transverse displacement which is 

obtained at the center of the plate. We analyzed also the static response of a fractional-order Kirchhoff plate subjected to 

a UDTL under the same two boundary conditions (CCCC and SSSS). The results are presented in Table 6 and Table 7 . The

results corresponding to the classical integer-order plate models (i.e. α = 1 ) presented in Tables 6,7 match well with the

results given in [55] . The displacement obtained in each case is non-dimensionalized as given in Eq. (59) . 

As evident from the Tables 4 –7 , the maximum transverse displacement of the plates increases with a decreasing value of

the fractional-order α as well as with an increasing value of the length scale l f . It follows that the stiffness of the fractional-
20 
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Table 5 

Comparison of the effect of the fractional model pa- 

rameters on the static response (in terms of the non- 

dimensionalized maximum displacement) of a SSSS- 

Mindlin plate subjected to a UDTL. 

l f w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 4.6401 5.1533 5.5759 5.9310 

l f = 0 . 3 L 4.6401 5.3579 6.0026 6.5009 

l f = 0 . 4 L 4.6401 5.6047 6.6445 7.6796 

l f = 0 . 5 L 4.6401 5.9198 7.6192 9.9868 

Table 6 

Comparison of the effect of the fractional model pa- 

rameters on the static response (in terms of the non- 

dimensionalized maximum displacement) of a CCCC- 

Kirchhoff plate subjected to a UDTL. 

l f w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 1.4235 1.5135 1.5929 1.6709 

l f = 0 . 3 L 1.4235 1.6047 1.7772 1.9380 

l f = 0 . 4 L 1.4235 1.6982 2.0135 2.3790 

l f = 0 . 5 L 1.4235 1.8047 2.2878 2.9446 

Table 7 

Comparison of the effect of the fractional model pa- 

rameters on the static response (in terms of the non- 

dimensionalized maximum displacement) of a SSSS- 

Kirchhoff plate subjected to a UDTL. 

l f w 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 4.5701 4.6151 4.6419 4.6610 

l f = 0 . 3 L 4.5701 4.7068 4.8252 4.8768 

l f = 0 . 4 L 4.5701 4.8249 5.0927 5.3828 

l f = 0 . 5 L 4.5701 4.9480 5.4094 6.0180 

 

 

 

 

 

 

 

 

order plates decreases due to the increasing degree of nonlocality achieved via either reducing α or increasing l f . Note that

this stiffness reduction occurs regardless of the nature of the boundary conditions. This consistency is the direct result 

of the fractional-order kinematic approach to nonlocality which leads to a well-posed, self-adjoint and positive-definite 

system accepting a unique solution [50] . On the contrary, recall that the classical integral approaches are not positive-

definite and self-adjoint, and the strain-driven approaches particularly, are mathematically ill-posed in nature [23,38,52] . 

More specifically, the constitutive relation between the bending field and the curvature is a Fredholm integral of the first 

kind whose solution does not generally exist and, if it exists, it is not necessarily unique [23,38] . This leads to inaccurate

(paradoxical) predictions either of hardening or of absence of nonlocal interactions for certain combinations of boundary 

conditions [53] . Note that this does not mean that hardening effects are paradoxical from a physical perspective and in

an absolute sense. Rather, hardening effects are not expected in classical strain-driven integral approaches and hence these 

predictions are inaccurate and paradoxical. 

8. Free vibration response of fractional-Order plates 

This section presents the effect of nonlocality on the natural frequency of vibration of fractional-order plates. The natural 

frequencies are obtained by solving the eigenvalue problem: 

[ M] −1 [ K] { U } = ω 
2 
0 { U } (62) 

which was obtained by assuming a periodic solution { U} = { U } e −iω 0 t to the homogeneous part of the algebraic FE Eq. (48) .

In the above assumed solution, i = 

√ −1 , ω 0 denotes the natural frequency of vibration, and U is the amplitude of the

harmonic oscillation. Similar to Section 7 , we have obtained the natural frequencies of both the fractional-order Mindlin 

and Kirchhoff plates for different combinations of the fractional model parameters α and l f . Also in this case, two types

of boundary conditions (CCCC and SSSS) were considered for both plates. Results are presented in Tables 8 –11 in terms

of the fundamental frequency of transverse vibration. The fundamental frequencies have been non-dimensionalized in the 

following manner: 
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Table 8 

Comparison of the effect of the fractional model param- 

eters on the fundamental frequency of the transverse vi- 

bration of a Mindlin plate clamped on all edges. 

l f ω 0 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 9.8540 9.2083 8.6610 8.1801 

l f = 0 . 3 L 9.8540 8.9162 8.0603 7.2857 

l f = 0 . 4 L 9.8540 8.6172 7.4342 6.3439 

l f = 0 . 5 L 9.8540 8.3622 6.8856 5.5204 

Table 9 

Comparison of the effect of the fractional model param- 

eters on the fundamental frequency of the transverse vi- 

bration of a Mindlin plate simply supported on all edges. 

l f ω 0 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 5.7788 5.4588 5.2210 5.0368 

l f = 0 . 3 L 5.7788 5.3664 5.0286 4.7443 

l f = 0 . 4 L 5.7788 5.2581 4.7980 4.3866 

l f = 0 . 5 L 5.7788 5.1487 4.5570 3.9966 

Table 10 

Comparison of the effect of the fractional model param- 

eters on the fundamental frequency of the transverse vi- 

bration of a Kirchhoff plate clamped on all edges. 

l f ω 0 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 3.6457 3.5176 3.4090 3.3077 

l f = 0 . 3 L 3.6457 3.4123 3.2115 3.0277 

l f = 0 . 4 L 3.6457 3.3157 3.0288 2.7659 

l f = 0 . 5 L 3.6457 3.2389 2.8812 2.5483 

Table 11 

Comparison of the effect of the fractional model param- 

eters on the fundamental frequency of the transverse vi- 

bration of a Kirchhoff plate simply supported on all edges. 

l f ω 0 

α = 1 . 0 α = 0 . 9 α = 0 . 8 α = 0 . 7 

l f = 0 . 2 L 1.9998 1.9865 1.9765 1.9676 

l f = 0 . 3 L 1.9998 1.9681 1.9384 1.9081 

l f = 0 . 4 L 1.9998 1.9465 1.8923 1.8342 

l f = 0 . 5 L 1.9998 1.9257 1.8463 1.7564 

 

 

 

 

ω 0 = ω 0 

[
L 2 

h 

√ 

ρ

E 

]
(for Mindlin plate) (63a) 

ω 0 = ω 0 

[ (
B 

π

)2 √ 

ρh 

D 11 

] 

(for Kirchhoff plate) (63b) 

As evident from Tables 8-11 , the introduction of the fractional-order nonlocality leads to a decrease in the fundamental

frequency of vibration. This result is a direct consequence of the fact that the effective stiffness of the structure decreases

due to the nonlocality, as established in Section 7 . More specifically, the fundamental frequency of vibration decreases upon 

increasing the degree of nonlocality, that is either by reducing α or by increasing l f . This reduction in the fundamental

frequency due to the nonlocality is consistent with studies conducted in literature by using classical approaches to nonlocal 

elasticity [59,60] . Note that, when using the fractional-order formulation, the decrease in the fundamental frequency occurs 

regardless of the nature of the boundary conditions. 

We also analyzed the effect of the fractional-order nonlocality as well as of the fractional model parameters on the 

higher order frequencies. We considered two specific cases: (#1) we fixed the length-scale at l f = 0 . 5 L and obtained the
22 
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Table 12 

Comparison of the effect of the fractional-order on the first eight frequencies of vibration of a Mindlin 

plate clamped on all edges. The length scale is fixed at l f = 0 . 5 L . 

α ω 0 ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 

α = 0 . 7 5.5204 7.8808 10.1654 11.9102 12.0238 13.9883 17.2615 17.3539 

α = 0 . 8 6.8856 10.9440 14.7220 16.8717 17.0305 20.2794 24.7794 25.2272 

α = 0 . 9 8.3622 14.6749 20.2387 23.4535 23.6739 28.3423 34.6228 35.5065 

α = 1 9.8540 18.8806 26.4485 31.3387 31.6403 37.8018 46.4625 47.7089 

Table 13 

Comparison of the effect of the length scale on the first eight frequencies of vibration of a Mindlin plate 

clamped on all edges. The fractional-order is fixed at α = 0 . 8 . 

l f ω 0 ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 

l f = 0 . 4 L 7.4342 11.7452 15.8992 16.8007 16.9583 20.6869 24.3174 25.0889 

l f = 0 . 3 L 8.0603 13.3021 18.3123 18.4040 18.5473 23.2114 24.2828 27.8966 

l f = 0 . 2 L 8.6610 15.2968 21.3305 22.4971 22.6767 28.1549 29.2432 34.3695 

α = 1 9.8540 18.8806 26.4485 31.3387 31.6403 37.8018 46.4625 47.7089 

 

 

 

 

 

 

 

 

 

first eight natural frequencies of transverse vibration for a CCCC-Mindlin plate for different values of α; and (#2) we fixed

the fractional-order at α = 0 . 8 and obtained the first eight natural frequencies of transverse vibration of a CCCC-Mindlin

plate for different values of l f . The results corresponding to the cases #1 and #2 are presented in Table 12 and Table 13 ,

respectively. In both cases, the frequency values corresponding to the classical local plate (i.e. α = 1 ) are also presented to

provide a reference to estimate the effect of the fractional-order nonlocality. As evident from the Tables 12,13 , the fractional-

order nonlocality has a stronger effect on the higher vibration modes when compared to the fundamental mode. This can be

attributed to the more complex spatial distribution of the strain field produced by the shorter wavelengths associated with 

higher frequency modes. We emphasize that similar trends were also observed for simply supported Mindlin plates as well 

as Kirchhoff plates. This observation is consistent with the results from classical approaches to the modeling of transverse 

vibration of nonlocal plates [5] . 

9. Conclusions 

This paper presented a fractional-order nonlocal plate theory based on a frame-invariant and dimensionally consistent 

fractional-order nonlocal continuum theory. Nonlocality was accounted for by using fractional-order kinematic relations. 

This approach lead to an explicit relationship between the nonlocal stresses and strains thereby enabling the application of 

variational principles in order to derive the strong form of the governing equations. The proposed approach also resulted 

in a self-adjoint and positive definite system which guarantees a unique solution. These latter properties allowed the refor- 

mulation of the governing equations in finite element form, which is very convenient to achieve numerical solutions. The 

fractional-order finite element model (f-FEM) was developed by using the Hamilton’s principle, hence following an energy 

minimization strategy which, in this case, was applied on a global scale due to the nonlocal nature of the system. This

approach resulted in pre-assembled global system matrices. The proposed f-FEM approach was validated with benchmark 

problems drawn from both fractional-order equations and nonlocal elasticity. Then, the model was applied to study both the 

static and the free vibration dynamic response of fractional-order nonlocal plates, in either Mindlin or Kirchhoff formulation. 

It was observed that the nonlocality results in a softening of the structure leading to larger transverse displacements and 

lower frequency of vibration. The results were shown to be independent of the nature of both the loading and the boundary

conditions, hence relieving some typical inconsistencies emerging in classical nonlocal theories when dealing combinations 

of boundary conditions. In conclusion, the results presented in this study illustrated several unique features of fractional 

calculus for the modeling of nonlocal structures and suggested that this mathematical tool could play a critical role in the

development of advanced simulation techniques for complex systems. 
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