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An efficient product distribution is critical for proper supply chain operations. Many supply chains handle
perishable products that decay over time. Due to mismanagement of supply chain operations, a significant
portion of perishable products is wasted, resulting in substantial monetary losses. Cross-docking terminals (CDTs)
have been widely used in cold supply chains for the product distribution but have not received adequate
attention in the scientific literature. To improve the efficiency of perishable product distribution, this study
introduces for the first time a novel mixed-integer mathematical formulation for the truck scheduling optimi-
zation at a cold-chain CDT. The model explicitly captures the decay of perishable products throughout the service
of arriving trucks and accounts for the presence of temperature-controlled storage areas that are specifically
designated for perishable products. The objective minimizes the total cost incurred during the truck service.
Considering the complexity of the proposed model, a customized Evolutionary Algorithm is developed to solve it.
The computational performance of the developed algorithm is assessed throughout the numerical experiments
based on a detailed comparative analysis against the other metaheuristics. The developed Evolutionary Algo-
rithm is found to be the most promising metaheuristic, considering both solution quality and CPU time per-
spectives. Furthermore, the proposed algorithm demonstrates an acceptable stability of the solution quality at
termination. A set of additional sensitivity analyses are performed in order to draw some significant managerial
implications, which would be of potential interest to the supply chain stakeholders that are involved in the
distribution of perishable products in cold supply chains.

1. Introduction

Supply chain managers all over the world are constantly seeking for
promising methods to improve the efficiency of product distribution and
meet some important goals of supply chains, including the following: (1)
cost minimization; (2) improvement of customer satisfaction; (3) effi-
cient utilization of resources; (4) revenue/profit maximization; and (5)
value creation (Dulebenets, 2018a; Felfel, Ayadi, & Masmoudi, 2016;
Luo, Yang, & Wang, 2019; Nogueira, Coutinho, Ribeiro, & Ravetti,
2020). The various procedures used by supply chain stakeholders across
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the world have attracted the interest of researchers over the past two
decades, aiming to accurately model these procedures and, ultimately,
enhance the supply chain efficiency. This is primarily due to an increase
in the volume of freight across various supply chains, alongside the
complexity involved in the distribution of products (Dulebenets, 2018b;
Ladier & Alpan, 2016). The supply chain stakeholders are faced with
numerous challenges and tasks on a regular basis that have to be suc-
cessfully addressed to achieve certain common objectives. These chal-
lenges include but are not limited to: (1) fierce competition in the
industry; (2) operating cost reduction; (3) management of product
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perishability (in case of supply chains with perishable products); (4)
maintenance of supplier and customer relationships; (5) management of
the associated uncertainties; and (6) customer empowerment (Dulebe-
nets & Ozguven, 2017; Ladier & Alpan, 2016; Margolis, Sullivan, Mason,
& Magagnotti, 2018; Sreedevi & Saranga, 2017).

Improvement in the efficiency of product distribution in a supply
chain invariably leads to a reduction in the operational cost, increased
revenue, and generally lower price of products for the end customers.
The cross-docking strategy has been relied on by many stakeholders in
supply chains to facilitate the product distribution (Ladier & Alpan,
2016). A typical cross-docking terminal (CDT) has the following features
and components (see Fig. 1): (1) a set of inbound doors where inbound
trucks are served; (2) a set of outbound doors where outbound trucks are
served; (3) a set of sorting/storage areas where products are deconso-
lidated, sorted, and consolidated (note that some storage areas can be
temperature-controlled and designated specifically for perishable
products); and (4) handling equipment, such as forklifts, conveyor belts,
or combination of them in some cases. The cross-docking strategy can be
described as follows. The incoming products are delivered by inbound
trucks to the CDT from suppliers and manufacturers. The inbound trucks
are unloaded by handling equipment after their assignment to the
available inbound doors. The unloaded products are deconsolidated
first, then sorted, and finally consolidated again in the designated stor-
age areas. The products that were consolidated are loaded by handling
equipment onto the outbound trucks, which deliver these products to
the end customers (Ladier & Alpan, 2016).

Due to its proven effectiveness, the cross-docking strategy has been
heavily deployed by the world largest retailers, such as Walmart,
COSTCO, Target, and Office Depot. Walmart was the first retailer that
started using CDTs. Furthermore, shipping companies, such as Federal
Express (FedEx)', Express Mail Service (EMS), and United Parcel Service
(UPS), have been using the cross-docking strategy in their supply chains
for many years as well (Dulebenets, 2018a). The operations inside CDTs
are usually planned and executed directly by the CDT operators (Ladier
& Alpan, 2016). The CDT operators must address certain key decision
problems to ensure the adequate functionality of CDTs, including the
following: (1) the CDT shape determination; (2) determination of the
required number of doors along with the door service mode; (3) the
problem of truck scheduling (i.e., scheduling of arriving trucks for ser-
vice); (4) allocation of the available handling equipment (deployment of
forklifts or conveyor belts); and (5) storage area allocation. The CDT
truck scheduling problem is considered as one of the main challenging
decision problems that are faced by the CDT operators (Ladier & Alpan,
2016) and will be the main focus of the present study.

Although a significant number of previous studies addressed the CDT
truck scheduling problem, cold-chain CDTs handling perishable prod-
ucts (i.e., the products that decay over time due to fluctuations in tem-
perature, humidity, and pressure throughout the product distribution
process) have not received adequate attention in the literature (Rahbari,
Nasiri, Werner, Musavi, & Jolai, 2019). However, cold-chain CDTs have
been widely used by different supply chain stakeholders for many years.
For example, FedEx is heavily using cold-chain CDTs to handle health-
care products, specialty foods, flowers, seafood, and other perishable
products (FedEx, 2016). Ineffective management of food supply chains,
for example, can lead to a significant waste of food products. According
to Mena, Terry, Williams, and Ellram (2014), approximately 20-30% of
food products are wasted in supply chains. In the United States alone,
more than 30% of perishable products, worth almost $50 billion, are
thrown away every year (Environment, 2020). Such a significant waste
of products occurs due to mismanagement of supply chain operations.
To improve the efficiency of supply chains with perishable products, this
study introduces for the first time a novel mixed-integer mathematical

1 Note: the full list of abbreviations that were used in this manuscript is
provided in Appendix A.
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formulation for the truck scheduling optimization at a CDT that
explicitly captures the decay of perishable products throughout the
service of arriving trucks and accounts for the presence of temperature-
controlled storage areas that are specifically designated for perishable
products.

The objective function of the formulation presented minimizes the
total cost incurred during the truck service that incorporates the total
truck waiting cost, the total truck service cost, the total product in-
ventory cost, the total truck delayed departure cost, as well as the total
product decay cost. Considering the computational complexity of the
model proposed, a customized Evolutionary Algorithm is developed to
solve it. The computational performance of the developed algorithm is
assessed throughout the numerical experiments based on a detailed
comparative analysis against the other metaheuristics. Some significant
managerial implications, which would be of potential interest to the
supply chain stakeholders that are involved in the distribution of
perishable products, are drawn as well. The contributions of this work to
the CDT truck scheduling literature and the state-of-the-art can be out-
lined as follows:

e A novel mixed-integer mathematical formulation is proposed for the

truck scheduling optimization at a cold-chain CDT;

Unlike the previously conducted CDT truck scheduling studies, the

proposed model explicitly captures the decay of perishable products

using an exponential function throughout the service of arriving

trucks;

This study models the temperature-controlled storage areas that are

designated specifically for perishable products and critical for proper

operations of cold-chain CDTs;

Considering the computational complexity of the proposed model, a

novel customized metaheuristic is presented to solve the model;

e A detailed comparative analysis is conducted to assess the compu-
tational performance of the metaheuristic developed against the
alternative exact and approximate optimization methods.

The remaining sections of this manuscript are further organized in
the following order. Section 2 provides a concise review of the recent
studies that are relevant to the problem of truck scheduling at CDTs.
Section 3 provides a detailed description of the operations of the CDT to
be modeled in this study. Section 4 presents the proposed mixed-integer
mathematical formulation for the CDT truck scheduling problem with
product perishability considerations. Section 5 contains a thorough
description of the customized Evolutionary Algorithm that was devel-
oped as a part of this study to solve the mathematical model proposed.
Section 6 evaluates the solution algorithm developed in terms of
different performance metrics and provides some managerial implica-
tions. Section 7 concludes with the main findings of the present study
and proposes some areas to be considered in the future research.

2. Literature review

Several previous studies have conducted a detailed review of the
relevant efforts on the CDT operations. These studies aimed to analyze
different CDT mathematical models, the effects of the CDT shape se-
lection, and various CDT planning levels that ranged from strategic to
tactical and operational (Agustina, Lee, & Piplani, 2010; Ladier & Alpan,
2016; Shuib & Fatthi, 2012; Theophilus, Dulebenets, Pasha, Abioye, &
Kavoosi, 2019; Van Belle, Valckenaers, & Cattrysse, 2012). The focus of
this section of the manuscript is to present a review of the most recent
studies that are relevant to the CDT truck scheduling. The studies
collected were further classified as the general CDT truck scheduling
studies and the studies specifically focusing on the cold-chain CDT op-
erations as well as the product perishability considerations.
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Fig. 1. A supply chain with a CDT.

2.1. Truck-scheduling at CDTs

Ahkamiraad and Wang (2018) studied the problem of capacitated
vehicle routing with multiple CDTs, considering pickups, deliveries, and
time windows. The objective function of the proposed model minimized
the transportation and fixed costs. The problem was solved using a
hybrid algorithm that was inspired by the Evolutionary Algorithm (EA)
and Particle Swarm Optimization (PSO). Baniamerian, Bashiri, and
Zabihi (2018) introduced the problem of vehicle routing and scheduling
at a CDT where customer satisfaction was directly accounted for. A
mixed-integer linear mathematical formulation was proposed for the
problem, minimizing the transport cost and the cost of customer time
window violation. The authors designed a two-phase EA to solve the
model presented. The obtained results showed that the developed
mathematical model achieved a customer satisfaction of at least 86.6%,
unlike the classic model that achieved the maximum satisfaction level of
33.3%. Heidari, Zegordi, and Tavakkoli-Moghaddam (2018) formulated
the truck scheduling problem at a CDT that incorporated uncertainty in
truck arrival times. A bi-level optimization framework was used for the
problem. Two metaheuristics, Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II) along with Multi-Objective Differential Evolution
(MODE), were deployed to solve the problem. The NSGA-II and MODE
were compared against an alternative algorithm (called “GASH™). The
conducted numerical experiments confirmed the superiority of MODE.

Molavi, Shahmardan, and Sajadieh (2018) examined the truck
scheduling problem at a CDT with the scheduled departure times of
outbound trucks as hard constraints. The authors developed a mixed-
integer programming model, minimizing the delivery cost and the
penalty of delayed shipments. The problem was solved using DE, EA,
PSO, and hybrid metaheuristic. The computational experiments that
were conducted as a part of that study showed that the hybrid meta-
heuristic was superior to the alternative algorithms. Nasiri, Rahbari,
Werner, and Karimi (2018) presented a mixed-integer linear formula-
tion, which incorporated the selection of suppliers and the allocation of
orders into the vehicle routing problem with CDTs. The objective
minimized the costs associated with purchasing, cross-docking, trans-
portation, and early/tardy delivery. A two-stage solution algorithm was
deployed to tackle large-scale instances. The experiments showed that
the transportation and earliness/tardiness costs were the highest cost

components. Abad, Vahdani, Sharifi, and Etebari (2019) proposed a
multi-objective optimization model for the split pollution vehicle rout-
ing problem with a CDT and fuzzy probabilistic time window con-
straints. The first objective function focused on minimization of the total
cost, whereas the second one focused on minimization of the total fuel
consumption. The third objective maximized the supplier and customer
satisfaction. Multi-Objective Grey Wolf Optimizer (MOGWO) and Multi-
Objective Imperialist Competitive Algorithm (MOICA) were used to
solve the presented mathematical model.

Corsten, Becker, and Salewski (2019) proposed a CDT optimization
model that integrated the scheduling of trucks and workforce for a single
working day. The objective was to minimize the cost of engaging tem-
porary workers throughout the service of trucks. CPLEX was used as a
solution method. The study considered some workforce coordination
policies as well as daily working hour regulations. Fathollahi-Fard,
Ranjbar-Bourani, Cheikhrouhou, and Hajiaghaei-Keshteli (2019)
applied the Social Engineering Optimizer (SEO) approach to tackle the
truck scheduling problem at a CDT. The SEO was inspired by social
engineering theory, which involves attackers targeting defenders using
certain important information. The results from the performed numer-
ical experiments showed that the adopted approach delivered compet-
itive results when compared with the existing algorithms. Khorshidian,
Shirazi, and Ghomi (2019) presented a bi-objective model for the inte-
grated transportation planning and truck scheduling problem in a CDT
system. The objective functions minimized the total cost and the
makespan. The study proposed a hybrid solution approach that was
inspired by the augmented e-constraint method (which is generally
referred to as “AUGMECON2") and TOPSIS to solve the model. A real-
life case study was presented to showcase the potential of the devel-
oped methodology.

Rijal, Bijvank, and de Koster (2019) studied the integrated problem
of the CDT truck scheduling and door assignment, considering a mixed
door service mode. The objective function of the presented mathemat-
ical model aimed to minimize the total cost that was incurred during the
truck service. The problem was solved by an adaptive large neighbor-
hood search algorithm that was developed as a part of that study. A set of
extensive computational experiments demonstrated that simultaneous
optimization of door assignment and truck scheduling reduced the
average total cost by 12% as compared to the sequential approach.
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Tadumadze, Boysen, Emde, and Weidinger (2019) focused on the inte-
grated scheduling of workforce and trucks that were arriving in the
considered planning horizon at a CDT. The objective function of the
developed model focused on minimization of the total flow time of
trucks. A number of heuristics were presented to tackle the model pre-
sented. The conducted numerical experiments revealed that the inte-
grated scheduling of workforce and trucks could improve the CDT
operations by reducing the truck flow times. Wisittipanich, Irohara, and
Hengmeechai (2019) investigated the problem of truck scheduling in a
network of CDTs. The objective was to simultaneously identify the
schedule of all the inbound and outbound trucks in the network of CDTs,
aiming to minimize the makespan. LINGO was used to solve the model.
The numerical experiments demonstrated that optimizing the truck
schedule at each CDT sequentially was less effective as compared to the
integrated scheduling of trucks in the CDT network.

Ardakani, Fei, and Beldar (2020) considered the CDT truck sched-
uling problem, assuming that the pre-emption of inbound trucks was
allowed (i.e., a given inbound truck might vacate the door for service of
another truck and then return back to that door to complete its service).
The objective function of the model that was proposed aimed to mini-
mize the makespan. Exact and heuristic methods were deployed to
tackle the problem. The conducted computational experiments clearly
showed a competitive performance of the proposed heuristic algorithms.
Shahmardan and Sajadieh (2020) addressed a special case of the truck
scheduling problem at a CDT, where compound trucks were served. A
compound truck could be used as an inbound truck and an outbound
truck. The objective was to identify the best truck and destination
assignment that minimized the makespan. The model was solved using a
metaheuristic algorithm that was inspired by Simulated Annealing (SA).
A set of extensive numerical experiments confirmed that partial
unloading of compound trucks could be helpful in decreasing the
makespan and improving the efficiency of the CDT operations.

2.2. Cold-chain CDT operations and product perishability considerations

Among the studies on CDT truck scheduling, only a few efforts were
dedicated to modeling cold-chain CDT operations and product perish-
ability. For example, Boysen (2010) addressed the truck scheduling
problem at a “zero-inventory” CDT in a food supply chain. Based on a
“zero-inventory” concept, the perishable products unloaded at the CDT
were transferred directly to the refrigerated outbound trucks without
any temporary storage. Different objectives were considered in the
study, including the overall truck flow time minimization, the overall
truck processing time minimization, and the overall truck tardiness
minimization. Two methods were used to solve the proposed model,
which included Dynamic Programming (DP) and SA. Agustina, Lee, and
Piplani (2014) investigated the problem of truck scheduling and vehicle
routing at a CDT for perishable product distribution. A mixed-integer
programming formulation was presented for the problem, and the
objective function minimized the total cost that included: (1) earliness
cost; (2) tardiness cost; (3) storage cost; and (4) transportation cost. The
concept of customer zoning was introduced to decrease the computa-
tional complexity of the presented model. The model was further solved
with an exact optimization approach (i.e., CPLEX). The results from the
computational experiments showed that the scheduling strategy pro-
posed could aid the distribution of perishable products at a minimal cost
and preserve the product quality.

Rahbari et al. (2019) studied the problem of vehicle routing and
scheduling at a CDT with perishable products. A bi-objective mixed-
integer linear formulation was presented, and the objective function
minimized the total transportation cost and maximized the weighted
freshness of transported products. A linear function was used to model
the product decay over time. Furthermore, two robust optimization
models were developed to capture uncertainty in product freshness and
outbound truck travel time. A set of numerical experiments clearly
showed that the developed methodology was able to drastically reduce
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the decay of perishable products without substantially affecting the total
transportation cost. Fathollahi-Fard, Ahmadi, and Sajadieh (2020) pro-
posed a Modified Red Deer Algorithm (MRDA) to tackle the problem of
truck scheduling at a CDT with perishable products. A strict deadline
was imposed for service completion of the outbound trucks that carried
perishable products. The objective of the presented formulation mini-
mized the makespan. The performance of the proposed algorithm was
assessed using ten problem instances. The performed numerical exper-
iments revealed that MRDA was superior to the other metaheuristics,
including SA, EA, PSO, ICA, and RDA.

Moreover, there are a lot of studies that modeled perishability of
products throughout different supply chain operations but did not
explicitly capture the cross-docking operations. For example, Ahumada
and Villalobos (2011) proposed an integrated tactical-level planning
method for the production and distribution of perishable products. The
objective maximized the total revenue. A linear function was adopted
for modeling the product decay. The problem was solved to optimality
using CPLEX. Bilgen and Celebi (2013) developed a model for the in-
tegrated distribution planning and production scheduling in dairy sup-
ply chains. The objective aimed to maximize the total benefit, taking
into account the main cost components of supply chain operations (e.g.,
processing, storage, setup, backlogging, overtime) and shelf life of
perishable products. A hybrid solution approach, inspired by simulation
and optimization, was presented to solve the problem. Grunow and
Piramuthu (2013) modeled the use of the Radio-Frequency Identifica-
tion (RFID) technology in highly perishable food supply chains. The
product decay was emulated using an exponential function. Considering
product expiry dates and remaining shelf life, certain conditions were
developed under which RFID could benefit various supply chain stake-
holders. Many other studies used exponential functions as well, aiming
to accurately model the decay of perishable products due to different
factors throughout the supply chain operations (Piramuthu & Zhou,
2013; Piramuthu, Farahani, & Grunow, 2013; Rong, Akkerman, &
Grunow, 2011; Wang & Li, 2012; Yu & Nagurney, 2013).

2.3. Literature summary, existing gaps, and contributions of this study

The literature review conducted indicates that the number of studies
on CDT truck scheduling increases every year. Different models have
been proposed to improve the effectiveness of CDT operations and truck
scheduling. However, most of the developed models cannot be applied
in cold-chain CDTs, which handle perishable products that decay over
time due to fluctuations in temperature, humidity, and pressure. Only
Rahbari et al. (2019) explicitly modeled the decay of perishable prod-
ucts using a linear function throughout their distribution at the CDT and
delivery to the end customers. On the other hand, there are a lot of
studies that modeled perishability of products throughout different
supply chain operations but did not explicitly capture the cross-docking
operations. Many of these studies used an exponential function to
accurately capture the decay of perishable products (Piramuthu & Zhou,
2013; Piramuthu et al., 2013; Rong et al., 2011; Wang & Li, 2012; Yu &
Nagurney, 2013). In order to enhance the effectiveness of supply chains
with perishable products, this study introduces for the first time a novel
mixed-integer mathematical formulation for the truck scheduling opti-
mization at a cold-chain CDT. Unlike the study by Rahbari et al. (2019),
the proposed model explicitly captures the decay of perishable products
using an exponential function throughout the service of arriving trucks.
Moreover, this study models the temperature-controlled storage areas
that are designated specifically for perishable products. Considering the
computational complexity of the proposed model, a customized Evolu-
tionary Algorithm is designed to tackle the model and demonstrate some
significant managerial implications.

3. Problem description

This section of the manuscript describes in detail the operations of
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the cold-chain CDT modeled in this study. A description of the main
notations that will be used throughout the problem description and
mathematical model development is presented in Table 1. The shape of
the CDT is assumed to be an I-shape. Several CDT truck scheduling
studies reported that the CDTs with I-shape have been widely used in
practice (Dulebenets, 2019a; Ladier & Alpan, 2016; Theophilus et al.,
2019). However, the mathematical model to be presented in this study
would be applicable to the CDTs of other shapes, such asE, H, L, T, U, X,
etc. The geometric layout of the CDT is presented in Fig. 2. The rest of
this section addresses the following aspects of the considered CDT truck
scheduling problem: (1) truck arrivals; (2) CDT door assignment; (3)
internal CDT operations; (4) modeling decay of perishable products; (5)
objective of the CDT operator; and (6) an illustrative example of a truck
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T={1,--,w'} be the set of trucks arriving for the service at the
considered cold-chain CDT. The set of all the arriving trucks consists of
the set of inbound trucks and the set of outbound trucks. Let T = {1,
w2}, TCT and T = {1,-,w®}, T"*CT be the set of inbound trucks
and the set of outbound trucks, respectively. Therefore, any given truck
is either an inbound truck or an outbound truck: T"U T4 =T
andT™ N T°“ = ©. The truck-to-door assignment is performed by the
CDT operator. The inbound trucks may arrive either full or partially full.
On the other hand, the outbound trucks may arrive either empty or
partially empty. In this study, the arrival time is assumed to follow a pre-
determined arrival schedule agreed upon by both the CDT operator and
the corresponding logistics company. Such an assumption has been
commonly adopted by many of the previous CDT truck scheduling

service.

3.1. Truck arrivals

studies (Boloori Arabani, Zandieh, & Ghomi, 2012; Dulebenets, 2019a;
Liao, Egbelu, & Chang, 2013; Miao, Lim, & Ma, 2009).

The CDT operations begin upon arrival of the assigned trucks. Let

Table 1
The main notations used in this study.

Model Component Description

Type Notation

Sets T ={1,--,w'} set of all the trucks arriving at the CDT
TIn — {1’ "',WZ}Y TiCT set of all the arriving inbound trucks
ToU = {1, w3}, TOUCT set of all the arriving outbound trucks
D ={1,..,w*} set of all the available CDT doors
D ={1,..,w*},D"CD set of all the available inbound doors
Dpeut = {1,...,w°},DCD set of all the available outbound doors
0 ={1,..,w} set of all the available service orders
N =1{1,...w8} set of all the available temporary storage areas
P ={1,..w°} set of all the product types to be handled at the CDT

Decision Xigo EBYtE€ T,deD,0€ 0 =1 if truck t is assigned to be served at CDT door d in the o™ service order (=0 otherwise)

variables
Auxiliary TC € R the total cost to be incurred by the CDT operator throughout service of the arriving trucks (USD)
variables
Yo ER'VtET,deD,0€0 idle time of CDT door d between service of truck t and its preceding truck that was served in the (0 — 1)™ service
order (hours)
e RVt T waiting time for truck t (hours)
T e R*Vte T service start time for truck t (hours)
™ eR'VteT,deD,ocO total service time for truck t at CDT door d served in the o service order (hours)
T{f cER'VtET service finish time for truck t (hours)
e R VEET delayed departure time for truck t (hours)
Tfjp CRVt_ TN tc T t_#tpcP temporary storage time for the product of type p delivered by inbound truck ¢ _ for outbound truck ¢ (hours)
Tih_t?p ERVE_eT"Te T t_#tpeP total handling and transfer time for the product of type p delivered by inbound truck ¢  for outbound truck  (hours)
iip CR'Wt_ €T tc Tt #tpecP  quality of the product of type p delivered by inbound truck ¢ _ for outbound truck t at time 7 (%)

AQ, 3 € R*Vt_e T te T t_#tpec change in quality of the product of type p delivered by inbound truck t - for outbound truck t (%)
P

Parameters e R*Yte T arrival time of truck t at the CDT (hours)

e RVEET

tdeRVteT

75, e R*'vde D,ne N

Zn € BVte T\ne N

P p EBVE_ €T Te Tt £TpeP
qp ENVE_ €T T T t #EpcP
Q?Jp CRVt_cTNtc T t_ #tpecP
Jp ERTVp P

M eR'VEET

cteRVEET

g eR'vpeP

cteRVEET

cgf cR'VpeP

M

handing time of truck t (hours)

scheduled departure time for truck t from the CDT (hours)

transfer time from CDT door d to storage area n (hours)

=1 if the products carried by truck t are assigned to temporary storage area n (=0 otherwise)

=1 if inbound truck ¢ _ carries the product of type p for outbound truck z (=0 otherwise)

quantity of the product of type p delivered by inbound truck ¢t - for outbound truck t (product units)
quality of the product of type p delivered by inbound truck ¢t _ for outbound truck ¢ at time “0” (%)
decay rate of the product of type p (hour™*)

unit waiting cost for truck t (USD/hour)

unit service cost for truck t (USD/hour)

unit temporary storage cost for the product of type p (USD/hour)

unit delayed departure cost for truck ¢t (USD/hour)

unit decay cost for the product of type p (USD/% decay)

sufficiently large positive number
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Fig. 2. The handling processes within a cold-chain CDT.

3.2. CDT door assignment

There are two door assignment modes in the CDT truck scheduling
literature (Ladier & Alpan, 2016; Theophilus et al., 2019): (1) the mixed
door service mode, based on which the same door can either serve in-
bound or outbound trucks (i.e., any arriving truck can be served at any
available door); (2) the segregated door service mode, based on which a
set of doors are dedicated to serve inbound trucks only (i.e., these doors
are referred to as “inbound doors”), while the remaining doors are
dedicated to serve outbound trucks only (i.e., these doors are referred to
as “outbound doors”). The cold-chain CDT considered in this study is
assumed to operate in a segregated door service mode (see Fig. 2). Let
D = {1,...,w*} be the set of the CDT doors available for service of the
arriving trucks. Let D™ = {1,...,w®},D"CD and D** = {1, ...,.w®},D®C
D be the set of inbound doors and the set of outbound doors, respec-
tively. Each arriving inbound truck has to be scheduled for service at one
of the available inbound doors in one of the service orders. On the other
hand, each arriving outbound truck has to be scheduled for service at
one of the available outbound doors in one of the service orders. Let O =
{1,...,w”} be the set of all the available service orders.

3.3. Internal CDT operations

The canonical CDT operations include the following: (1) unloading;
(2) product transfer; (3) deconsolidation; (4) sorting; (5) storage; (6)
consolidation; and (7) loading. The unloading operation begins after an
inbound truck is docked for service. On the contrary, the loading oper-
ation begins for an outbound truck after the corresponding inbound
truck starts unloading the products or directly from the designated
storage area (in case the assigned products have already been trans-
ferred to the designated storage area). Once any given truck (whether
inbound or outbound) is docked for service, it will remain docked until
the service is complete. Therefore, pre-emption is not allowed
throughout the service of trucks. Usually, the products that are trans-
ported by the inbound trucks come in standard packaging units (for
example, standard boxes or pallets). The time required to unload a
particular inbound truck or load a particular outbound truck is referred
to as “handling time” and is denoted as T?t ,t € T (hours). The forklift
operators are used at the considered cold-chain CDT for the product
handling and transfer.

The unloaded products are transferred to the temporary storage

areas that are located between the inbound and outbound doors (see
Fig. 2). Let N={1,...,w®} be the set of available temporary storage
areas. In addition to the storage of products, each temporary storage
area also serves as a point for deconsolidation, sorting, and consolida-
tion of the products based on the customer preferences. Some products
can be transferred directly from the inbound trucks to the corresponding
outbound trucks without temporary storage if these trucks are already
docked at the cold-chain CDT. The allocation of the available temporary
storage areas depends on the product type. Let P = {1,...,w”} be the set
of products delivered by the inbound trucks. Unlike the previous CDT
truck scheduling studies, this study categorizes the temporary storage
areas of the considered CDT into two groups (see Fig. 2): (1) perishable
storage areas — specifically allocated for the storage of perishable
products; (2) non-perishable storage areas — specifically allocated for the
storage of non-perishable products. The temperature-controlled perish-
able storage areas are critical for cold-chain CDTs, as in certain cases the
arrival times of the inbound trucks and the corresponding outbound
trucks may substantially vary, and temporary storage of perishable
products would be unavoidable. Without temperature-controlled stor-
age areas, the decay rate of perishable products would significantly
increase.

The CDT operator generally allocates a sufficient capacity for the
available storage areas based on the expected amount of trucks that will
be arriving and the quantity of products to be delivered (Ladier & Alpan,
2016). Denote 1[“@7 t_e T tec T t_+#t,p c P (hours) as the tempo-

rary storage time for a given product of type p delivered by inbound
truck ¢t for outbound truck t. Let c;,p € P (USD/hour) be the unit
temporary storage cost for the product of type p. It is assumed that the
temporary storage cost varies based on the product type. Perishable
products will require temperature-controlled storage areas that are more
expensive to operate when comparing to the storage areas for non-
perishable products that do not maintain any specific temperature.

The service time for a given truck t (z¥ ,t € T,d € D, 0 € O - hours) in-

cludes the following two components: (1) truck handing time (ri't, teT-
hours), which is the time required to unload/load the products; and (2)
transfer time from the assigned CDT door to the designated storage area
(¢4,,d € D,n € N-hours). Let z,, = 1,t € T,n € N if the products carried
by truck t are assigned to temporary storage area n (=0 otherwise). The
service time of trucks is affected by the following factors: (1) the number
of product types; (2) the quantity of each product type; (3) the weight
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and size of the product packaging units; and (4) the distance between the
designated storage area and the assigned CDT door. In fact, the service
time of the trucks docked at the doors farther away from the designated
storage area is expected to be higher as compared to the trucks docked at
the doors closer to the designated storage area.

In this study, it is assumed that the service times of trucks are
deterministic in nature. Such an assumption has been commonly adop-
ted by many of the previous CDT truck scheduling studies (Boloori
Arabani et al., 2012; Dulebenets, 2019a; Liao et al., 2013; Miao et al.,
2009). The service of a given truck incurs the unit service cost calculated
per hour (¢, t € T — USD/hour). Furthermore, each inbound truck and
each outbound truck are expected to complete their service at the
considered cold-chain CDT according to the scheduled departure time
(734, t € T — hours). Whenever the service completion of a truck extends
beyond the deadline, a unit delayed departure cost (cf‘ ,teT - USD/
hour) is incurred by the CDT operator. Several previous CDT truck
scheduling studies discussed the importance of timely truck service and
application of penalties in any case of the scheduled departure time
violation (Dulebenets, 2019a; Ladier & Alpan, 2016; Theophilus et al.,
2019).

3.4. Modeling decay of perishable products

As discussed earlier (see Section 3.3), once perishable products are
unloaded from the inbound trucks, they will be transferred to the
designated temporary storage areas or directly to the corresponding
outbound trucks if these trucks are already docked at the cold-chain
CDT. Different types of perishable products will require different types
of storage areas. For example, certain food products require refrigera-
tion and have to be stored under freezing temperatures (—25 °C to
—10 °C), while certain types of pharmaceuticals have to be stored under
cold temperatures (2-8 °C). It is assumed that a given perishable product
deteriorates due to temperature fluctuations that are likely to occur
throughout the unloading process from the inbound trucks, the transfer
process between the CDT doors and the designated storage areas, and
the loading process on the outbound trucks. However, the product
deterioration substantially slows down when the products are placed in
the temperature-controlled storage areas and is assumed to be insignif-
icant. Furthermore, the product deterioration is assumed to be zero
while the products are being inside the refrigerated trucks (a.k.a.,
“reefers”) before the truck doors are opened and the loading/unloading
process begins. Such an assumption can be justified by the fact that the
refrigerated trucks are designed to maintain a specific temperature
required for the perishable products they carry.

An additional cost is associated with the decay of perishable products
throughout the product handling and transfer. Denote cgc, p € P(USD/%
decay) as the unit decay cost for the product of type p. As discovered
during the literature review, an exponential function has been widely
used to model the decay of perishable products (Piramuthu & Zhou,
2013; Piramuthu et al., 2013; Rong et al., 2011; Wang & Li, 2012; Yu &
Nagurney, 2013). Hence, this study adopts the following relationship to
estimate the quality of the product of type p delivered by inbound truck
t _ for outbound truck  at time 7 based on the notations that were defined
in Table 1:

~2p

7t in = -
Q ,=0) eVt _eT"TeT" t_#1peP @

The following relationship can be used to calculate the total handling
and transfer time for the product of type p delivered by inbound truck ¢ -
for outbound truck  based on the notations that were defined in Table 1:
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The following relationship can be used to calculate the change in
quality of the product of type p delivered by inbound truck t_ for
outbound truck ¢ based on the notations that were defined in Table 1:
AQ =00, ~Q Vi eT"ieT" i #ipeP 3)

t_p

Tracking changes in the perishable product quality throughout the
cold supply chain operations is critical, as these product quality changes
will determine the product “shelf life”. The term “shelf life” is widely
used in the studies dealing with perishable products and represents the
total number of days remaining for a particular perishable product to be
of an adequate quality for a given customer (Dulebenets & Ozguven,
2017; Grunow & Piramuthu, 2013). A proper management of cold-chain
CDTs will prevent substantial product quality changes, which will ulti-
mately increase the product shelf life.

3.5. Objective of the CDT operator

In the CDT truck scheduling problem, the cold-chain CDT operator
has to make certain decisions, considering a number of important
tradeoffs. The arriving inbound trucks must be scheduled for service at
the available inbound doors, whereas the outbound trucks must be
scheduled for service at the available outbound doors. The truck-to-door
assignment directly affects the product transfer time between the CDT
doors and the designated temporary storage areas. Increasing product
transfer time is not desirable as it will further increase the total decay of
perishable products throughout the service of arriving trucks. Along
with the product perishability considerations, the cold-chain CDT
operator has to prevent excessive waiting times of the arriving trucks
before they could be docked at the CDT doors and reduce potential truck
delayed departures. In the meantime, the temporary storage time of
products has to be optimized as well to avoid excessive product in-
ventory costs.

The main objective of the cold-chain CDT operator is to develop such
a schedule for the arriving trucks that will yield the least total cost to be
incurred throughout the service of arriving trucks that incorporates the
following cost components: (i) total truck waiting cost; (ii) total truck
service cost; (iii) total product inventory cost; (iv) total truck delayed
departure cost; and (v) total product decay cost.

3.6. An illustrative example of a truck service

This section presents an example of the service of inbound and
outbound trucks at the considered cold-chain CDT (see Fig. 2). This
example assumes that inbound trucks “1” and “4” deliver perishable
products that will be loaded on outbound truck “10”. Inbound trucks “1”
and “4” are assigned for service at inbound doors “1” and “4”, respec-
tively. On the other hand, outbound truck “10” is assigned for service at
outbound door “10”. The CDT operator allocates temperature-controlled
storage area “1” for the products delivered by inbound trucks “1” and
“4” (since they are perishable in nature). Storage area “1” is located
close to outbound door “10” in order to ensure timely loading of
outbound truck “10”. Selection of the alternative storage area (e.g.,
storage area “2” instead of storage area “1”) may increase the service
time of outbound truck “10” due to increased travel distance for the
forklift operators. The provided example exclusively focuses on the
interaction between inbound trucks “1” and “4” and outbound truck
“10” for simplicity. However, without loss of generality, more complex
relationships between trucks can be modeled (e.g., inbound trucks “1”,
“4”, and “5” deliver perishable products for outbound truck “10”; in-
bound truck “1” delivers perishable products not only for outbound
truck “10” but also for outbound truck “6”).

4. Mathematical model

This section of the manuscript provides a mathematical formulation
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for the CDT truck scheduling problem with product perishability con-
siderations (TSPCDT), the adopted linearization techniques, and the
linearized formulation of the TSPCDT mathematical model. A detailed
description of the main notations used in the TSPCDT mathematical
model is presented in Table 1.

4.1. Model formulation

The proposed mixed-integer nonlinear programming model for the
CDT truck scheduling problem with product perishability considerations
(TSPCDT) can be formulated as follows.

TSPCDT: CDT Truck Scheduling Problem with Product Perishability
Considerations
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The objective function (4) of the TSPCDT mathematical model fo-
cuses on minimization of the total cost (T'C), associated with the service
of all the arriving trucks at the cold-chain CDT. The main cost compo-
nents are incorporated within the model, including: (i) the total waiting
cost; (ii) the total service cost; (iii) the total product inventory cost; (iv)
the total delayed departure cost; and (v) the total product decay cost.
Constraint set (5) assures that each arriving truck will be assigned for
service in one of the service orders at one of the available doors.
Constraint set (6) assures that no more than one truck can be assigned to
an available door in a given service order. Constraint set (7) guarantees
that no inbound truck will be assigned for service at an outbound door,
while constraint set (8) assures that no outbound truck will be assigned
for service at an inbound door. Constraint set (9) ensures that the service
of a truck starts only after the truck arrives at the cold-chain CDT.
Constraint set (10) indicates that the service of a given truck can start at
a given door only after the completion of service of all the preceding
trucks at the door.

Constraint set (11) guarantees that the service of a given outbound
truck may begin after the beginning of service of any inbound truck that
delivers the products for that outbound truck. Constraint set (12) esti-
mates the total service time for each arriving truck based on the truck
handling time (i.e., unloading or loading) and the product transfer time
to the assigned temporary storage area. Constraint sets (13) through
(15) compute the service finish time, waiting time, and delayed depar-
ture time of each arriving truck at the cold-chain CDT. Constraint set
(16) computes the total handling and transfer time for each product type
delivered by a given inbound truck for a certain outbound truck.
Constraint set (17) computes the temporary storage time for each
product type delivered by a given inbound truck for a certain outbound
truck. Constraint set (18) estimates the quality of each product type at
time 7. Constraint set (19) computes the change in quality of each
product type delivered by a given inbound truck for a certain outbound
truck. Constraint sets (20) through (22) show the nature of the model
parameters and variables.

4.2. Linearization techniques

TSPCDT is a nonlinear mathematical model due to constraint set (18)
that estimates the quality of the product of type p delivered by inbound
truck t _ for outbound truck ¢ at time 7. The exponential function is ex-
pected to improve the accuracy of the product decay modeling but in-
troduces a high degree of nonlinearity in the model. The linearization of
the nonlinear model components is expected to reduce its computational
complexity (Pasha et al., 2020). There are a number of approaches used
in the literature to approximate nonlinear functions that include the
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following (Dulebenets, 2019b; Wang, Meng, & Liu, 2013): (1) static
outer approximation method; (2) dynamic outer approximation method;
(3) static secant approximation method; (4) dynamic secant approxi-
mation method; (5) enumeration method; (6) discretization method;
and others. This study will rely on the static secant approximation
method for linearizing the product decay function due to its reported
effectiveness (Wang et al., 2013).

Let A%,s € S be the piecewise static secant approximation of the

product decay function, where S = {1,...,w!} is a set of linear secant-

based segments in the approximation. Denote A} (r;htf )
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0 0 ™
AQ < —QT Qt_Epi _€ - gt L
=—r= @ L = o =1-—¢ vt e Tt
Q Q Q.
t_tp t_tp t_tp

eT™ t_#tpeP

as a nonlinear decay function for the product of type p delivered by

inbound truck ¢ - for outbound truck t. Then, A} (rf‘fip) can be linearized

for each product type p using its piecewise linear secant approximation
Ags( Ttht. ) Some illustrative examples of the linear approximations for a
given product decay function are presented in Fig. 3. In the considered
examples, the product decay rate was assumed to be 2 = 0.029 hour !,
whereas the total handling and transfer time was assumed to vary from
0 h to ~350 h. It can be noticed that an increase in the number of linear
secant segments enhances the approximation accuracy but may also
increase the CPU time due to an increase in the number of variables in
the model.

4.3. Linearized model

Let d° [pstt_eI"i",EeT""t,t_#f,peP,seS if linear secant

segment s is selected to approximate the function of decay for the
product of type p delivered by inbound truck ¢ _ for outbound truck t.
Denote str° ps:D € P,s €S (hours) and enps,p € P,s €S (hours) as the
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handling and transfer time values for the product of type p at the
beginning and at the end of linear secant segment s, respectively. Let
Slpps,p € P,s € S (% decay/hour) and Inc 87p € P,s € S (% decay) be the
slope and the intercept of linear secant segment s for the product of type
p, respectively. Then, the original nonlinear TSPCDT mathematical
model can be reformulated as a linear problem (TSPCDTL) as follows.

TSPCDTL: Linearized CDT Truck Scheduling Problem with Product
Perishability Considerations
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In the reformulated TSPCDTL mathematical model, the objective
function (23) focuses on minimization of the total cost (T'C), associated

Product decay function plot using 4 segments
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Fig. 3. Examples of the product decay function linearization.
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with the service of all the arriving trucks at the cold-chain CDT.
Constraint set (24) assures that only one linear secant segment will be
chosen to approximate the function of decay for the product of type p
delivered by inbound truck ¢ _ for outbound truck t. Constraint sets (25)
and (26) define the range of the total handling and transfer time values
when linear secant segment s is chosen to approximate the function of
decay for the product of type p. Constraint set (27) estimates the
approximated decay value for the product of type p. After imple-
mentation of the adopted linearization techniques, the TSPCDTL
mathematical model can be solved using the existing mixed-integer
programming optimization approaches (e.g., CPLEX, MOSEK, GUR-
OBI). However, exact optimization approaches may require a substantial
amount of CPU time to handle large-scale problem instances, and the
development of approximate solution approaches will be necessary.

5. Solution algorithm

The mathematical formulation of the CDT truck scheduling problem
with product perishability considerations (TSPCDT) can be viewed as a
special case of the unrelated machine scheduling problem. In the unre-
lated machine scheduling problem, the decision maker has to assign the
arriving jobs for processing on the available machines that have various
speeds, and the processing time of a given job is affected by the job
properties as well as the machine assigned (Pinedo, 2016). Similarly, the
TSPCDT mathematical model assigns the arriving trucks (that can be
viewed as “jobs”) for service at the available doors (that can be viewed
as “machines”) and accounts for the changes in the service time of in-
bound and outbound trucks at the considered cold-chain CDT depending
on the door assignment (see Section 3.3 for more details). The unrelated
machine scheduling problems are recognized as NP-hard problems in a
strong sense (Pinedo, 2016). The non-linear term represented by
constraint set (18) that is used for the product decay estimations within
the TSPCDT mathematical model is expected to increase the computa-
tional complexity even further.

Small-scale instances of TSPCDT and TSPCDTL can be solved to
global optimality; however, approximate solution approaches would be
necessary to tackle large-scale instances. This study will use a custom-
ized EA-based algorithm as the main solution approach for TSPCDT,
since the EA-based algorithms were found to be effective for optimizing
the cross-docking operations (Ladier & Alpan, 2016; Theophilus et al.,
2019). However, the other metaheuristics will be considered as well
throughout the numerical experiments to evaluate the computational
efficiency of the developed EA. Note that metaheuristics can solve
TSPCDT directly without application of linearization techniques. How-
ever, the exact mixed-integer linear programming optimization ap-
proaches can be applied for TSPCDTL only.

EAs can be considered as an adaptation of the theory of genetics and
natural selection initially proposed by Charles Darwin (Darwin, 1859).
EAs rely on the principle of “survival of the fittest” to search for prom-
ising solutions (i.e., the solutions with higher fitness values are given
preference throughout the search process). Algorithm 1 presents the
main steps used in the proposed EA. In step 0, the required data struc-
tures are initialized. The population of chromosomes (i.e., candidate
solutions) is initialized in step 1 using the First Come First Served policy
with truck sequence considerations (FCFS-TSC). The fitness values of the
initial chromosomes are computed in step 2. Then, the algorithm checks
the termination criterion and moves to steps 3-7 in case the criterion is
not met. In step 3, the parent selection is conducted. In steps 4 and 5, the
EA algorithm applies the crossover operator and mutation operator in
order to generate and mutate the offspring, respectively. In step 6, the
fitness values of the offspring chromosomes are evaluated. In step 7, the
survivors for the next generation are selected. Once the termination
criterion is achieved, the algorithm returns the final population that
contains the best solution discovered for the TSPCDT mathematical
model. Unlike the canonical EAs that rely on the binary chromosome
representation, the proposed EA adopts the integer chromosome
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representation, which would be more suitable for the considered deci-
sion problem. Furthermore, unlike the canonical EAs that rely on the
random chromosome initialization, the proposed EA deploys a problem-
specific local search heuristic for the chromosome initialization (i.e., the
FCFS-TSC heuristic). The next sections of this manuscript will provide
more details regarding the aforementioned EA procedures.

Algorithm 1. (Evolutionary Algorithm (EA))

EA (Psize™  Tsize, Tsel,p¢,p™, InputData)
in: Psize™ — EA population size; Tsize — tournament size;
Tsel - number of individuals selected in each tournament; p¢ — crossover probability;
p™ — mutation probability; InputData — TSPCDT input data
out: EAPop - final EA population
0: Initialization of data structures
1: EAPop<FCFS -TSC (PsizeEA . InputData) <Initialization of chromosomes/
population
2:  FitVals<Fitness(EAPop, InputData) <Computation of fitness values
While termination criterion is not met — go to steps 3-7, else — terminate
3:  Parents—Tournament(EAPop, FitVals, Tsize, Tsel) <Parent selection
Offspring<—CrossoverPMX (Parents, p°) <Crossover operations
EAPop<—MutationINV (Offspring, p™) <Mutation operations
FitVals<—Fitness(EAPop, InputData) <Computation of fitness values
1 EAPop—RWS(EAPop, FitVals)<Survivor selection
8: return EAPop

N a R

5.1. Solution representation

The candidate solutions to the TSPCDT mathematical model are
encoded into the chromosomes in the proposed EA algorithm. The
chromosomes are assumed to have the integer representation. The
chromosomes contain the information regarding the assignment of
trucks to the cold-chain CDT doors along with the service order of trucks
at each cold-chain CDT door. Fig. 4 provides an illustrative example of a
chromosome, where the considered cold-chain CDT has three doors.
Door “1” is assumed to be inbound, while doors “2” and “3” serve as
outbound doors. Based on the illustrative example, inbound trucks “3”,
“17,“2”, and “5” will be served at door “1”. Truck “3” will be served first,
followed by trucks “1” and “2”. On the other hand, truck “5” will be
served last at inbound door “1”. Similarly, outbound trucks “7”, “9”, and
“5” will be served at outbound door “2”, whereas outbound trucks “4”
and “6” will be served at outbound door “3”. The term “gene” will be
used to represent distinct components of every chromosome, while gene
locations will be referred to as “loci” (singular — “locus”). In the example
presented (see Fig. 4), the genes with inbound truck “3” and inbound
door “1” are placed in locus “1”.

5.2. Initialization of the EA population
The canonical FCFS strategy and its variations have been widely
deployed in the EA literature and the freight terminal operations studies

(Dulebenets, 2019a; Kavoosi et al., 2020). This study uses a modified
FCFS strategy to initialize the chromosomes and population, named as

Inbound Trucks Outbound Trucks

Trucks = |3 | 1|2|5[7][9(5(|4|6
Doors— |1 |1|1(1[2|2[2[3]|3

\ JL )

Inbound Door  Outbound Doors

Fig. 4. Solution representation.
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the First Come First Served policy with truck sequence considerations
(FCFS-TSC). Unlike the canonical FCFS strategy, FCFS-TSC assures that a
given outbound truck will be served after the inbound truck delivering
the products for that outbound truck (i.e., truck sequence requirements
are directly accounted for). The main steps used in FCFS-TSC are pre-
sented in Algorithm 2.

Algorithm 2. (First Come First Served Policy with Truck Sequence Con-
siderations (FCFS-TSC))

FCFS —TSC(T, T", T ,D,0,N, 7%, 7" 17 2)

in: T = {1,..,w'} —set of trucks; T" = {1,..,w?} — set of inbound trucks; T = {1, ..,
w3} — set of outbound trucks;
D ={1,.,w*} —set of doors; O = {1,..,w”} — set of service orders; N = {1,..., w8} —
set of storage areas;
7% — arrival time of trucks; " — handing time of trucks; ¢ — transfer time between
doors and storage areas;
2 — product-to-storage area assignment

out: x — initial truck-to-door-to-service order assignment

(=]

LT | —w?; | T4 | —w?; |24V | —w?; x| —w! wh w7 ot <w!; |of | <w! <Initialization
: T —Order(T™", %) <Sorting inbound trucks in the order of their arrival

: TOS —Order(T°,7) <Sorting outbound trucks in the order of their arrival

: TS« TS U T <Combining the sorted inbound and outbound trucks
:fort=1:|T% do

: de<argmin(74V) <Identification of the first available door

o«argmin(x,q,) <Selection of the earliest truck service order

Xdo<—1 <Assignment of the truck in the earliest service order

7t —max(r%,74") <Computing the truck service start time

W 2 NTH N

T8 it +5° (15 2m) <Computing the truck total service time

t t | ptst
T{ T+

<Computing the truck service finish time
74V o' qUpdating the door availability

t—t+1

13: end for

14: return x

In step 0, the required data structures are initialized. In steps 1-3, the
inbound trucks and outbound trucks are sorted based on their times of
arrival, and the sorted sets of trucks are combined. The main loop of
FCFS-TSC starts in step 4. In step 5, the first available CDT door is
selected (either inbound or outbound door depending on the truck type).
In step 6, the earliest order of truck service is identified. In step 7, the
next truck in the combined set of all the trucks is selected for service at
the first door available in the earliest order of service. Then, the start
time of truck service is computed in step 8. In step 9, the total service
time of the truck is computed as the summation of the total handling
time and the total product transfer time. In step 10, the finish time of
truck service is computed. In step 11, FCFS-TSC updates the CDT door
availability. FCFS-TSC exits the loop after the last truck has been
assigned for service at the cold-chain CDT. In step 14, FCFS-TSC returns
the truck-to-door-to-service order assignment. Note that half of the EA
population will be created using FCFS-TSC, while the remaining half will
be created randomly to increase the EA population diversity.

5.3. Solution fitness estimations

Once the initial population is generated, the developed EA will start
estimating fitness of each population chromosome. The mathematical
function presented in equation (28) is used to compute the fitness values
of the available chromosomes in the EA population. The function con-
tains a penalty term (¥) to reduce the presence of infeasible chromo-
somes. The infeasibility may be caused by the crossover and mutation
operators (see Section 5.5 for more details) due to violation of the truck
sequence requirements (e.g., a given outbound truck will be served
before the inbound truck delivering the products for that outbound
truck, thereby contradicting realistic practices of cross-docking). The
value of the penalty term will be set during the parameter tuning
analysis (see Section 6.1 for more details).
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5.4. Parent selection

After entering its main loop, the developed EA implements the parent
selection mechanism to choose the chromosomes that will undergo
crossover and mutation. The tournament selection operator is used in
this study for the selection of parents. The main steps performed by the
tournament selection operator are presented in Algorithm 3. In step O,
the tournament selection operator starts the process by initializing the
required data structure. The main loop executed by the tournament
selection operator starts in step 1. In step 2, the chromosomes are
randomly selected to participate in the tournament. In steps 3 through 8,
a total of Tsel chromosomes that have the highest fitness are selected
from the tournament and appended to the data structure that contains
the parent chromosomes. The tournaments are continuously launched
until the required number of parents are selected. In step 11, the tour-
nament selection operator returns the data structure with the selected
parent chromosomes.

Algorithm 3. (Tournament Selection (Tournament))

Tournament(EAPop, FitVals, Tsize, Tsel)
in: EAPop — EA population in a given generation; FitVals - fitness of EA chromosomes
in a given generation;
Tsize — tournament size; Tsel — number of individuals selected in each tournament
out: Parents — parent chromosomes in a given generation
0: Parents«—© <Initialization
1: fori = 1: (|EAPop|/Tsel)
2:  [Tour,FitVals™"|—Rand(EAPop, FitVals, Tsize) <Select chromosomes for the
tournament
3: forj =1:Tsel
4 k" —argmin(FitVals™") <Fittest chromosome search
5 Parents<—Parents U { Toury- } <Fittest chromosome selection as a parent
6: Tour«<Tour —{Tour;- } <Fittest chromosome removal from the tournament
7 jeji+1
8: end
9 iei+1
10: end
11: return Parents

5.5. Crossover and mutation operations

After selecting the parent chromosomes, the proposed EA deploys the
crossover operator and mutation operator in order to generate and
mutate the offspring, respectively. The crossover operator enables the
EA algorithm with exploration of the promising search space domains.
Selection of the appropriate crossover operator depends on the adopted
chromosome representation (Eiben & Smith, 2015). The proposed EA
deploys the Partially Mapped Crossover (PMX) that has been widely
used in the studies that deployed EAs for the chromosomes with an
integer representation (as the one that was adopted in this study — see
Fig. 4). Fig. 5 provides an illustrative example of applying the PMX
operator on two parent chromosomes.

In the first step, the PMX operator selects a random segment from
parent chromosome “1”, and the genes are directly copied to offspring
“1” in the corresponding loci. In the example presented (see Fig. 5), the
genes with trucks “2”, “3”, “6”, “5”, and “8” are copied from parent
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Random Segment Selection
Parent 1

Trucks —» |7 [9)2|3 (6|58

Doors— [ 1 [1}1[(1({2(2[2]3 |3

Parent 2

Offspring 1
Trucks — 2(3/6|5]|8

Trucks —» |92 |3 |7(8|5|6|1

Doors— [ 1|1 |1 [1|2]2(|2]|3]|3
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Doors — 111(2(2]|2

Partial Mapping and Final Offspring Generation

Parent 1
Trucks —» | 79123 (6|58
Doors— [1 |11 [1]2|2(2}3]|3

Parent 2 P

Trucks > | 912 |3|7|8(5|6]|1]4
Doors— L1 |1}1 212]131]3

Offspring 1
Trucks - |9 712 |3 |6|5]|8

Doors— 11|11 [1(2]2]|2]3]3

Fig. 5. Partially-mapped crossover example.

chromosome “1” to offspring “1”. In the second step, the loci in parent
chromosome “2” that correspond to the selected loci in parent chro-
mosome “1” (i.e., loci “3” through “7”) are checked for the genes that
have not been copied to offspring “1”. The example presented shows that
the gene with truck “7” has not been copied. Therefore, the PMX oper-
ator performs partial mapping for the gene with truck “7” to determine
the appropriate locus for that gene in offspring “1”. Truck “7” occupies
locus “4” in parent chromosome “2”, while the same locus is occupied by
truck “3” in parent chromosome “1”. Truck “3” can be found in locus “3”
of parent chromosome “2”. Therefore, locus “3” of parent chromosome
“1” is checked. Truck “2” occupies locus “3” in parent chromosome “1”
and can be found in locus “2” of parent chromosome “2”. Since locus “2”
in offspring “1” was not occupied by any gene before parting mapping,
the gene with truck “7” will be moved to locus “2”. In the last step, the
missing genes (i.e., the genes that contain trucks “9”, “1”, and “4”) will
be copied to offspring “1” in their respective loci.

Trucks > |9 |7|2|3[6[5]8
Doors— |1 [1}1[1]|2[2}2|3|3

After Inversion Mutation before Sorting
Trucks — |9 | 75|63 |2]|8|4
Doors— |1 [1]2|2|1|1]2(3|3

After Inversion Mutation & Sorting
Trucks — |97 |3[2|5(6|8|4]|2
Doors— |1 [1[1|1]2({2]2(3|3

Fig. 6. Inversion mutation example.

The mutation operator enables the EA algorithm with exploitation of
the promising search space domains. The proposed EA deploys the
inversion mutation operator to perform mutation of the produced
offspring chromosomes. Fig. 6 provides an illustrative example of
applying the inversion mutation on the offspring chromosome. A portion
of the chromosome is randomly selected, and the corresponding genes in
the selected segment are inverted. In the example presented (see Fig. 6),
the genes with trucks “2” and “5” exchange their positions, whereas the
genes with trucks “3” and “6” exchange their positions as well. After
performing the inversion mutation, the genes that represent the trucks
will be sorted by their assigned doors to prevent disruption in the truck
service orders (i.e., the genes with trucks “3” and “2” should be placed
next to the genes with trucks “9” and “7” as all of these trucks are
assigned for service at door “17).

5.6. Survivor selection

After generating and mutating the offspring chromosomes, the
developed EA evaluates their fitness and applies the survivor selection
operator to choose the offspring chromosomes that will be further
assigned to the following generation. The roulette wheel selection
operator is used in this study for the selection of survivors. The main
steps performed by the roulette wheel selection operator are presented
in Algorithm 4. In step 0, the roulette wheel selection operator initializes
the required data structures. In steps 1-4, the fitness function value is
adjusted for each chromosome in the EA population (since TSPCDT has
a minimization objective). In step 5, the adjusted fitness values are
normalized such that the summation of fitness values of the available
population chromosomes is equal to one. Another loop executed by the
roulette wheel selection operator starts in step 6. In step 7, a random
number (Val) between 0.00 and 1.00 is generated. Then, the chromo-
some with a normalized fitness value, which is closer to the random
number generated, is selected to become the next generation

12
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chromosome in step 9. This procedure continues until the required
number of offspring are selected. In step 12, the roulette wheel selection
operator returns the data structure with the selected offspring chromo-
somes that will be further assigned to the following generation.

Algorithm 4. (Roulette Wheel Selection (RWS))

RWS(EAPop, FitVals)
in: EAPop — EA population in a given generation; FitVals — fitness of EA chromosomes
in a given generation
out: Offspring— offspring chromosomes to be transferred to the next generation
0: Offspring< ©;|FitVals™> |« |FitVals| <Initialization
1: fori=1: |[EAPop| do
2:  FitVals{"* <1 /FitVals; <Adjusting the chromosome fitness
3 i+ 1
4: end for
5: FitVals™™ «Normalize(FitVals™™) <Normalizing the adjusted fitness values
6: fori=1: |EAPop| do
7:  Val—Rand(0.00;1.00) <Generate a random number between 0.00 and 1.00
8:  j<find(FitVals™™ —Val > 0) <Select the chromosome based on step 7
9:  Offspring<Offspring U {EAPop;} <Append the selected offspring
10: i«i+1
11: end for
12: returnOffspring

The proposed EA also uses the elitism strategy. The elitism strategy
involves the storage and transfer of the fittest individual to the next
generation before the parent selection, crossover, mutation, and survi-
vor selection are applied to the chromosomes. Such a strategy allows
preserving the fittest individual from one generation to another and
preventing solution quality retrogression due to application of stochastic
operators throughout the EA evolution (i.e., parent selection, crossover,
mutation, and survivor selection).

5.7. EA termination

The developed EA terminates when one of the following conditions is
satisfied: (a) no improvements in the solution quality have been iden-
tified after a specific number of generations; (b) the maximum number
of generations has been reached. Such termination conditions were
found to be popular in the EA literature (Eiben & Smith, 2015).

6. Numerical experiments

In this section of the manuscript, the conducted numerical experi-
ments are described in detail. The main objective of the numerical ex-
periments was to evaluate the computational performance of the
developed EA metaheuristic against the other metaheuristics that have
been often used for optimizing different cross-docking operations. The
EA metaheuristic was compared against the following alternative algo-
rithms: (a) Variable Neighborhood Search (i.e., VNS); (b) Tabu Search (i.
e., TS); and (c) Simulated Annealing (i.e., SA). A detailed description of
the VNS metaheuristic can be found in Hansen and Mladenovic (2001),
while Liao et al. (2013) provides a thorough description of the TS and SA
metaheuristics. Unlike the canonical SA that works with a current so-
lution and its one neighbor in each iteration, the developed SA was
designed to generate multiple neighbors of a current solution (the
number of neighbors was determined during the SA parameter tuning)
in each iteration to improve the SA explorative capabilities. The EA,
VNS, TS, and SA metaheuristics were encoded using MATLAB version
2016a. On the other hand, the TSPCDTL mathematical model was
encoded using the General Algebraic Modeling System (GAMS) version
24.8. CPLEX was set as a mixed-integer linear programming optimiza-
tion solver in GAMS. All the numerical experiments were executed on a
DELL workstation that has an Intel Core i7-7700 k processor, 32 GB
RAM, and Microsoft Windows 10 Operating System.

The scope of the numerical experiments includes the following steps:
(1) selection of parameters for the TSPCDT mathematical model and the

13

Computers & Industrial Engineering 156 (2021) 107240

Table 2
The TSPCDT parameter data.

Parameter

Selected Value

Number of trucks: |T| (trucks)
Number of doors: |D| (doors)

Number of available service orders: |O|
(orders)

Number of available temporary storage
areas: |N| (storage areas)

Number of product types to be handled: |P|
(product types)

Average inter-arrival time of trucks: Ar%
(hours)

Arrival time of truckt: %, t € T (hours)

Handing time of truck t: 7, t € T (hours)

Scheduled departure time for truck t: 7%, t €
T (hours)

Transfer time from door d to storage area n:
74,,d € D,n € N (hours)

Temporary storage area assignment:zp,t €
T,neN

Product-to-truck assignment:, ,,t- € ™",
teTt_#tpeP
Product quantity: g, 3,,t- € T",t € T,
t_ #t,p € P (product units)
3 2 «n. N0 in
Product quality at time “0™: Qupit_ eTm,

Value varies depending on the
problem instance

Value varies depending on the
problem instance

[o] =|T|

10
Ar® = ED[0.083)]

it = 4+ AVte T

ot = UD[0.167;0.444)Vt € T
75 = 7 4 min(&%)) - UD[1.000;
1.200)vt € T

70 = UD[1.250;2.333]vd € D,n € N

2m = round(UD[0;1])Vte T,n e N

@ = round(UD[0; 1))Vt € T, T €
T peP

q, 3 = round(UD[30;40])Vt_ € T™,
teT™peP

Qg,fp =100Vt € T" tc T pecP

Te T ¢t £EpeP (%)

Decay rate of product type p: 4,,p € P 4 = UD[0.010;0.030]vp € P

(hour™ 1)

Unit waiting cost for truck t: ¢*,t € T(USD/ ¢} = UD[100;200]vt € T
hour)

Unit service cost for truck t: ¢, t € T (USD/ ¢ = UD[150;300}vt € T
hour)

Unit temporary storage cost for product type
p: ¢;.p € P (USD/hour)

¢ = UD[50;100]vp € P

Unit delayed departure cost for truck t: ¢, ¢ = UD[350;700]Vt € T
t € T (USD/hour)

Unit decay cost for product type p: cgﬂ peP
(USD/% decay)

Sufficiently large positive number:M

¢k = UD[100;150)vp € P

10,000

considered metaheuristics; (2) comparative analysis of the considered
metaheuristics against exact optimization; (3) detailed evaluation of the
considered metaheuristics in terms of various performance metrics; and
(4) analysis of managerial implications using the most effective meta-
heuristic algorithm (identified in step 3). The next sections of this
manuscript elaborate on each one of the analysis steps.

6.1. Parameter selection

6.1.1. TCPCDT mathematical model

The parameter values for the TSPCDT were set based on the previous
CDT truck scheduling studies (Boloori Arabani et al., 2012; Dulebenets,
2019a; Liao et al., 2013; Theophilus et al., 2019) and are presented in
Table 2. The arrival times of trucks at the considered cold-chain CDT,
previously negotiated between the corresponding logistics companies
and the CDT operator, were modeled based on an exponential distri-
bution with an average inter-arrival time of 5 min or ~0.083 h (i.e.,
EDI[0.083]). The handling time of trucks, which refers to either unloading
of inbound trucks or loading of outbound trucks, was assumed to vary
from 10 min (or ~0.167 h) to 26.667 min (or ~0.444 h): 1{“ = UD[0.167;
0.444]vt € T (hours). Note that term UD[Vary;Vars] represents the
generation of pseudorandom numbers uniformly distributed between
Var, and Var,. The scheduled departure time of each truck was set based
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on its time of arrival and the time required completing its service:

w58 = 7' +min (75 ) - UD[1.000; 1.200]v¢ € T (hours). The time required
to transfer the products that were delivered by a given inbound truck
from a given CDT door to one of the storage areas (rf{n,d € D,n € N) was
assumed to vary from 75 min (or ~1.250 h) to 140 min (or ~2.333 h).
The considered cold-chain CDT was assumed to have 5 temporary
storage areas (|[N| = 5). The quantity of a given product type transported
by a given inbound truck for a given outbound truck (g, 3.t- € Tt e
T p € P) was assumed to vary from 30 product units to 40 product
units.

The inbound trucks were assumed to deliver ten different product
types (|[P| = 10). The quality of all the products delivered to the
considered cold-chain CDT at time “0” (Q?jp, t_eTntc T t_#F%,

D € P) was assumed to be 100%. Furthermore, the decay rate of a given
product type (J,,p € P) ranged between 0.010 h~! and 0.030 h™. The
unit truck waiting cost (c!*, t € T) varied from 100 USD/hour to 200
USD/hour, whereas the unit truck service cost (i, t € T) varied from
150 USD/hour to 300 USD/hour. On the other hand, the unit temporary
product storage cost (c;,p € P) ranged between 50 USD/hour and 100

USD/hour, while the unit truck delayed departure cost (c&,t € T) ranged
between 350 USD/hour and 700 USD/hour. As for the unit product
decay cost (cf,’C ,P € P), it was assumed to vary from 100 USD/% decay to
150 USD/% decay. This study considered two groups of problem in-
stances based on their scale. The first group included 30 small-scale
problem instances with the number of CDT doors ranging between 2
and 4 and the number of trucks ranging between 6 and 15. The second
group included 30 large-scale problem instances with the number of
CDT doors ranging between 4 and 8 and the number of trucks ranging
between 84 and 120.

6.1.2. Metaheuristics

In this study, the parameter tuning analysis had to be performed for a
total of four metaheuristics (EA, VNS, TS, and SA). The main objective of
the parameter tuning was to determine the most appropriate combina-
tion of parameter values to enhance the performance of each meta-
heuristic. The proposed EA has a total of six parameters: (1) population
size; (2) penalty for infeasible solutions; (3) tournament size; (4) number
of individuals selected in each tournament; (5) crossover probability;
and (6) mutation probability. The selection of EA parameter values was
conducted based on the evaluation of each parameter combination with
respect to the tradeoff between the objective function value and the CPU
time (e.g., increasing population size may enhance the explorative ca-
pabilities of the algorithm and improve the objective function values at
termination but will require more CPU time). The EA parameter tuning
was conducted for the three large-scale problem instances selected at
random, assuming that each parameter has three candidate values (see
Table 3). Furthermore, ten EA replications were executed throughout
the course of the conducted analysis for each parameter combination to
accurately estimate the average values of objective function as well as
the average CPU time. Therefore, EA was launched for a total of (3
candidate values) (© parameters) _ (g problem instances) - (10 replications
for each combination) = 21,870 times throughout the analysis. The re-
sults from the performed EA parameter tuning are reported in Table 3.

A similar analysis was also conducted for the VNS, TS, and SA met-
aheuristics in order to identify the appropriate parameter values for
these algorithms. Based on preliminary EA runs, the maximum number
of generations was set to 3000 generations, while the maximum number
of generations without objective function improvements was set to 2500
generations. Similarly, the maximum number of iterations was set to
3000 iterations for VNS, TS, and SA, while the maximum number of
iterations without objective function improvements was set to 2500 it-
erations for all the other metaheuristics considered.
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Table 3
Selected values of the parameters of metaheuristics.
Algorithm  Parameter Candidate Selected
values value
EA Population size (Psize™) [30; 40; 50] 50
EA Penalty (¥) [4.00; 6.00; 4.00
8.00]
EA Tournament size (Tsize) [8;10; 13] 13
EA Number of individuals selected in [4; 5; 7] 7
each tournament (Tsel)
EA Crossover probability (p€) [0.30; 0.50; 0.30
0.70]
EA Mutation probability (p™) [0.01; 0.02; 0.01
0.05]
VNS Neighborhood size (Psize"™) [30; 40; 50] 50
VNS Penalty (¥) [4.00; 6.00; 4.00
8.00]
VNS Exchange probability (p™)* [0.01; 0.02; 0.01
0.05]
TS Number of solutions evaluated [30; 40; 50] 40
during local search (Psize™)
TS Penalty (¥) [4.00; 6.00; 4.00
8.00]
TS Exchange probability (p®)* [0.01; 0.02; 0.02
0.05]
TS Size of the Tabu list (Tabu™™) - % [0.10; 0.15; 0.20
of Psize™ 0.20]
SA Number of solutions evaluated [30; 40; 50] 50
during local search (Psize*")
SA Penalty (¥) [4.00; 6.00; 4.00
8.00]
SA Exchange probability (p)* [0.01; 0.02; 0.01
0.05]
SA Initial temperature (¢°) [1,502; 1,602; 1,602
1,702]
SA Temperature interval (dr) [0.3; 0.4; 0.5] 0.5

" Exchange probability refers to the probability of inverting a set of consec-
utive trucks in the current solution when generating the neighbor solutions
during local search.

6.2. Comparative analysis against exact optimization

As a part of the numerical experiments, a supplementary computa-
tional analysis was performed to examine the accuracy of the solutions
of the considered metaheuristics. The solutions returned by the meta-
heuristics were compared with the solutions obtained by CPLEX for all
the generated small-scale problem instances, where the number of CDT
doors ranged between 2 and 4 (an increment of 1 CDT door was adop-
ted) and the number of trucks ranged between 6 and 15 (an increment of
1 truck was adopted). Note that CPLEX was applied to the linearized
version of the TSPCDT mathematical model (i.e., TSPCDTL) to over-
come the increasing complexity of the model due to additional nonlinear
terms (see Section 4.3). A total of ten linear secant segments were used
to approximate the function of decay for each product type, as piecewise
functions with ten linear secant segments demonstrated high approxi-
mation accuracy (see Fig. 3) and required a reasonable CPU time. The
target optimality gap of CPLEX was set to 0.5%, and its CPU time limit
was restricted to 1 h (i.e., 3600 sec). The results from the detailed
comparative analysis of the considered metaheuristics against CPLEX
are reported in Table 4, which contains the following information for
every small-scale problem instance: (i) the problem instance number;
(ii) the number of doors — |D|; (iii) the number of trucks — |T|; (iv) the TC
value of the optimal truck schedule obtained by CPLEX; (v) the CPU time
for CPLEX; (vi) the TC value of the truck schedule obtained by each
metaheuristic (average over ten replications); (vii) the CPU time for
each metaheuristic (average over ten replications).

The analysis results demonstrated that CPLEX was very sensitive to
increasing problem size even after linearizing the original TSPCDT
mathematical model. In particular, the small-scale problem instances
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Table 4
CPLEX vs. considered metaheuristics for small-scale problem instances.

Instance D| |T| CPLEX EA VNS TS SA

TC(USD) CPU (sec) TC(USD) CPU (sec) TC(USD) CPU (sec) TC(USD) CPU (sec) TC(USD) CPU (sec)

1 2 6 17,792.8 7.34 17,792.8 15.86 17,792.8 10.71 17,792.8 9.48 17,792.8 12.27
2 2 7 21,691.9 80.39 21,691.9 15.95 21,691.9 12.16 21,691.9 10.21 21,691.9 14.12
3 2 8 25,150.1 326.19 25,150.1 17.83 25,150.1 12.54 25,150.1 11.18 25,150.1 13.50
4 2 9 33,977.1 3,604.30 33,640.7 16.90 33,640.7 13.28 33,640.7 10.64 33,640.7 14.17
5 2 10 35,100.1 3,602.50 34,482.9 17.02 34,482.9 14.64 34,482.9 11.38 34,482.9 14.76
6 2 11 45,833.5 3,602.52 44,287.9 18.10 44,287.9 15.15 44,287.9 11.57 44,287.9 15.08
7 2 12 53,645.1 3,603.44 51,586.8 20.47 53,006.0 17.23 52,837.9 14.00 53,242.4 17.30
8 2 13 64,710.0 3,602.49 61,752.0 22.25 62,274.1 17.66 62,127.7 14.60 64,475.0 19.43
9 2 14 77,202.2 3,602.91 71,782.6 21.09 74,443.0 18.53 72,116.6 15.59 74,724.9 20.07
10 2 15 98,720.3 3,602.45 90,304.0 23.39 92,598.1 19.61 90,457.7 15.44 92,692.0 21.02
11 3 6 13,248.7 14.58 13,248.7 14.57 13,248.7 11.36 13,248.7 11.12 13,248.7 12.49
12 3 7 16,082.8 55.34 16,082.8 16.00 16,082.8 11.55 16,082.8 10.69 16,082.8 13.27
13 3 8 19,063.7 3,009.34 19,063.7 16.23 19,063.7 12.08 19,063.7 10.76 19,063.7 14.20
14 3 9 22,825.4 3,602.42 22,563.7 17.04 22,563.7 13.41 22,563.7 11.46 22,563.7 14.44
15 3 10 26,976.1 3,602.53 26,410.9 15.59 26,410.9 13.58 26,410.9 11.66 26,410.9 15.37
16 3 11 32,104.3 3,604.24 30,937.9 17.22 31,241.9 14.90 30,957.9 12.39 31,565.1 15.70
17 3 12 44,327.3 3,603.56 42,516.1 19.83 44,112.4 17.15 42,644.0 14.41 44,162.8 18.21
18 3 13 50,911.4 3,604.26 48,097.7 20.76 48,575.9 16.76 48,312.3 15.05 48,851.2 19.02
19 3 14 57,099.5 3,603.09 53,022.1 21.35 53,577.8 17.48 53,099.1 15.03 54,522.1 19.72
20 3 15 73,675.0 3,602.69 66,421.7 22.49 68,558.9 19.15 68,359.0 16.57 68,921.7 20.99
21 4 6 12,025.6 43.20 12,025.6 13.32 12,025.6 10.77 12,025.6 11.34 12,025.6 11.53
22 4 7 14,359.9 370.89 14,359.9 14.21 14,359.9 13.04 14,359.9 11.56 14,359.9 12.42
23 4 8 16,494.3 3,161.14 16,494.3 15.02 16,494.3 13.37 16,494.3 12.55 16,494.3 13.88
24 4 9 19,636.0 3,604.63 19,326.8 16.46 19,326.8 13.89 19,326.8 11.70 19,326.8 13.76
25 4 10 20,877.1 3,604.78 20,393.7 15.94 20,393.7 14.14 20,393.7 11.94 20,393.7 14.44
26 4 11 25,760.9 3,604.44 24,815.4 16.60 25,018.5 13.95 24,735.4 12.40 25,253.8 15.27
27 4 12 34,076.6 3,603.32 32,665.4 18.55 33,391.2 16.44 32,983.6 13.62 33,855.8 18.11
28 4 13 41,191.8 3,603.11 38,378.6 19.17 38,596.6 17.44 38,378.6 14.19 40,356.4 18.84
29 4 14 47,862.6 3,602.82 43,906.6 19.88 43,996.8 17.12 43,473.7 15.48 44,628.2 19.39
30 4 15 60,974.2 3,602.75 54,783.6 21.62 56,632.6 19.48 56,083.9 17.44 56,929.5 21.15
Average: 37,446.5 2,757.92 35,599.6 18.02 36,101.3 14.95 35,786.1 12.85 36,373.3 16.13

*Bold font is used for the best objective function values achieved.

Table 5
Comparative analysis of the considered metaheuristics for large-scale problem instances.
Instance |D| |T] EA VNS TS SA
TC(10° USD) CPU (sec) TC(10® USD) CPU (sec) TC(10° USD) CPU (sec) TC(10° USD) CPU (sec)

31 4 84 1,268.34 98.03 1,603.14 96.31 1,553.21 80.44 2,251.24 99.98
32 4 88 1,435.39 108.18 1,687.45 101.50 1,676.15 87.12 2,644.48 105.09
33 4 92 1,582.43 117.81 2,259.87 107.86 2,008.82 92.01 3,078.55 110.47
34 4 96 1,718.32 126.29 2,696.11 118.95 2,221.14 97.49 3,364.65 114.31
35 4 100 1,898.07 137.66 3,090.78 124.12 2,775.18 99.87 3,831.24 122.62
36 4 104 2,253.20 156.52 3,433.42 135.01 2,395.98 103.19 4,644.62 137.02
37 4 108 2,448.96 147.43 3,716.47 139.07 2,663.28 109.05 5,030.33 144.92
38 4 112 2,667.63 151.99 4,335.81 151.27 2,755.23 114.46 5,504.95 151.38
39 4 116 2,919.21 152.70 4,975.67 161.70 3,053.66 121.97 5,987.11 158.87
40 4 120 3,108.67 160.36 5,331.87 166.81 3,464.04 131.60 6,593.46 166.59
41 6 84 880.66 97.90 1,040.02 97.69 1,023.11 81.67 1,620.83 101.44
42 6 88 1,022.12 105.39 1,343.31 104.68 1,153.38 86.37 1,912.59 110.78
43 6 92 1,142.79 111.60 1,526.22 110.50 1,351.95 92.29 2,196.78 112.60
44 6 96 1,214.00 117.86 1,645.67 118.39 1,405.21 97.37 2,460.04 118.91
45 6 100 1,334.10 129.62 1,964.91 132.00 1,508.63 101.32 2,787.06 126.50
46 6 104 1,662.72 131.82 2,337.82 139.14 1,678.72 103.54 3,227.21 133.63
47 6 108 1,831.01 139.34 2,375.70 145.21 1,891.55 109.18 3,503.90 149.24
48 6 112 1,934.07 146.19 2,648.32 147.88 1,962.68 114.69 3,750.66 156.42
49 6 116 2,151.45 152.67 3,162.15 158.72 2,258.25 120.53 4,133.25 164.27
50 6 120 2,407.47 160.49 3,486.78 162.40 2,410.51 127.98 4,586.20 172.42
51 8 84 707.44 100.70 806.08 96.23 782.38 77.01 1,308.67 100.37
52 8 88 801.59 105.92 994.87 109.97 878.31 82.66 1,536.22 110.74
53 8 92 913.88 111.66 1,115.40 121.52 1,058.02 87.37 1,732.87 119.17
54 8 96 963.86 124.40 1,259.69 134.66 1,102.81 95.07 1,940.31 121.34
55 8 100 1,090.57 132.20 1,590.59 140.93 1,323.82 98.36 2,171.83 131.98
56 8 104 1,396.17 140.02 1,672.85 145.87 1,397.78 103.88 2,478.61 136.33
57 8 108 1,527.76 144.06 1,689.21 153.05 1,469.99 109.81 2,709.95 137.39
58 8 112 1,643.97 151.14 2,077.30 162.90 1,633.94 115.14 2,926.57 154.69
59 8 116 1,816.76 158.00 2,362.89 173.51 1,836.52 121.58 3,217.98 152.02
60 8 120 1,972.21 165.50 2,517.34 173.36 1,936.66 127.45 3,485.67 159.63
Average: 1,657.16 132.78 2,358.26 134.37 1,821.03 103.02 3,220.59 132.70

*Bold font is used for the best objective function values achieved.
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with 9 trucks and more could not be solved to global optimality within
the imposed CPU time limit. Such a finding proves a high computational
complexity of the studied CDT truck scheduling problem and highlights
the need for application of metaheuristics. Furthermore, it can be
observed that all the considered metaheuristics were able to achieve the
optimal solutions provided by CPLEX for problem instances 1, 2, 3, 11,
12,13, 21, 22, and 23 and required much smaller CPU time as compared
to CPLEX. In particular, the EA, VNS, TS, and SA metaheuristics required
on average 18.02 sec, 14.95 sec, 12.85 sec, and 16.13 sec, respectively,
over the generated small-scale problem instances. The average values of
the objective function comprised 35,599.6 USD, 36,101.3 USD, 35,786.1
USD, and 36,373.3 USD for the EA, VNS, TS, and SA metaheuristics,
respectively. Therefore, the developed EA typically yielded higher
quality solutions for the generated small-scale problem instances.
However, the difference among the objective function values that were
returned by the considered metaheuristics was not substantial as the
analyzed problem instances were small-scale (the number of CDT doors
did not exceed 4, while the number of trucks did not exceed 15).

6.3. Detailed evaluation of the metaheuristics

As a part of the numerical experiments, a set of supplementary
computational analyses were performed to evaluate the considered
metaheuristics in terms of different performance metrics for all the
generated large-scale problem instances, where the number of CDT
doors ranged between 4 and 8 (an increment of 2 CDT doors was
adopted) and the number of trucks ranged between 84 and 120 (an
increment of 4 trucks was adopted). First, the objective function and
CPU time values that were returned by the considered metaheuristics
were compared. Second, the stability of the objective function at
termination along with the required CPU time was assessed for each
metaheuristic considered. Third, a detailed investigation of the
convergence patterns was performed for each metaheuristic considered.
The next sections of this manuscript elaborate more on each one of the
conducted analyses.

6.3.1. Objective function and CPU time values

The analysis of the objective function and CPU time values is a
critical step in evaluating the computational performance of each met-
aheuristic. Ideally, an efficient metaheuristic algorithm returns good-
quality solutions that have desirable values of the objective function
within a reasonable CPU time (unlike CPLEX that can produce good-
quality or even optimal solutions but will incur a prohibitively large
CPU time). The results from the detailed comparative analysis of the
considered metaheuristics in terms of the objective function and CPU
time values are reported in Table 5, which contains the following in-
formation for every large-scale problem instance: (i) the problem
instance number; (ii) the number of doors - |DJ; (iii) the number of trucks
— |T|; (iv) the TC value of the truck schedule obtained by each meta-
heuristic (average over ten replications); (v) the CPU time for each
metaheuristic (average over ten replications).

The analysis results demonstrated that the average values of the
objective function comprised 1657.16 - 10 USD, 2358.26 - 10° USD,
1821.03 - 10% USD, and 3220.59 - 10° USD for the EA, VNS, TS, and SA
metaheuristics, respectively. Therefore, EA was typically able to obtain
the best objective function values. Such a performance of EA can be
explained by the fact that EA is recognized as a population-based met-
aheuristic that has a high capability of exploring the solution search
space for promising domains and good-quality solutions. On the con-
trary, the VNS, TS and SA metaheuristics are recognized as single-
solution-based metaheuristics that primarily rely on local search and
are limited to a certain extent in their capabilities of exploring the so-
lution search space for promising domains and good-quality solutions.
Throughout the analysis, the statistical significance in the difference
among the average objective function values that were returned by EA
and the other considered metaheuristics was assessed. The assessment

16

Computers & Industrial Engineering 156 (2021) 107240

was performed by means of a paired z-test. In particular, a total of three
types of a paired z-test were conducted for each large-scale problem
instance: (a) “EA vs. VNS”; (b) “EA vs. TS”; and (c) “EA vs. SA”. The null
hypothesis (Hp) of each z-test assumed that there was no substantial
difference among the average objective function values of EA and the
other metaheuristics. The alternate hypothesis (H,), on the other hand,
assumed that there was a substantial difference among the average
objective function values of metaheuristics.

The z-statistic was computed as follows for each paired z-test: z =

T — T . . .
mean(TCn)-mean(TC1) - where mean(TC,) is the average of the objective
(std(TCm))2 +(srd(TCEA])2
B T S

function values obtained by metaheuristic m; mean(TCga) is the average
of the objective function values obtained by EA; std(TC,) is the objective
function standard deviation for metaheuristic m; std(TCgs) is the
objective function standard deviation for EA; and n = 2 as two algo-
rithms with ten replications each were compared during each z-test.
Based on the outcomes from the performed paired z-tests, the average
values of the z-statistic over all the generated large-scale problem in-
stances comprised 30.61, 5.36, and 46.08 for the “EA vs. VNS”, “EA vs.
TS”, and “EA vs. SA” tests, respectively. Therefore, the null hypothesis
can be rejected at 0.01% significance level with a critical z-value of
3.819, and the objective function values of EA are statistically superior
as compared to the ones obtained by the other metaheuristics. In terms
of the CPU time values, the EA, VNS, TS, and SA metaheuristics required
on average 132.78 sec, 134.37 sec, 103.02 sec, and 132.70 sec,
respectively, over the generated large-scale problem instances. The
maximum CPU time required by any of the considered metaheuristics
did not exceed 180 sec (or 3 min) over all the generated large-scale
problem instances. Such a CPU time can be viewed as reasonable, tak-
ing into account the fact that the large-scale problem instances with up
to 8 CDT doors and 120 trucks were evaluated throughout the numerical
experiments.

6.3.2. Objective function and CPU time variations

The considered metaheuristics rely on a variety of stochastic oper-
ators (e.g., the developed EA deploys the crossover operator and mu-
tation operator in order to generate and mutate the offspring). The
stochastic operators allow metaheuristics effectively changing the cur-
rent solutions in order to identify more promising solutions. In the
meantime, application of stochastic operators also leads to the variations
in the values of objective function at termination. Furthermore, execu-
tion of the same metaheuristic for the same problem instance on a given
CPU may require different computational times. The latter phenomenon
can be caused by the additional procedures a given CPU may run during
the metaheuristic execution (e.g., basic software updates, antivirus scan,
hardware scan). Significant variations in the objective function values
and the CPU time are not desirable.

As a part of the numerical experiments, a supplementary computa-
tional analysis was performed to examine the variations in the values of
objective function and the CPU time for the considered metaheuristics.
The coefficients of variation values for the objective function and the
CPU time were computed for every metaheuristic and every large-scale
problem instance over ten replications performed. The results from the
conducted analysis are reported in Fig. 7. The analysis results demon-
strated that the coefficient of variation of the objective function values
that were returned by the considered metaheuristics did not exceed
2.82% for the generated large-scale problem instances. Moreover, the
coefficient of variation of the CPU time required by the considered
metaheuristics did not exceed 5.91% for the generated large-scale
problem instances. Hence, the considered metaheuristics can be recog-
nized as reliable algorithms in terms of both objective function and CPU
time values.

6.3.3. Algorithmic convergence patterns
The analysis of the algorithmic convergence patterns is another



O. Theophilus et al.

Computers & Industrial Engineering 156 (2021) 107240

T 3.5% T———— ——— — . . .
T m EA 4 VNS TS X% SA ]
2 30% [ -
* '
= 25% | 2 -
) x & x ¢ * ¢+ |
= * - *
220%F o ¥ $,.7me *«* & *“ e
k] * x LI *
& " e . %, *]
> 0o | * A L 2 " 4
2 1.5% A *‘ AN
c F = ¢ L] x 4 ]
. Y LR M
210%r "9 g um — - ik T
% J
8 0.5% 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1
30 35 40 45 50 55 60
Problem Instance
Sl0s e —— _____ _____ P ———
0 - ® EA V¥ VNS TS * SA i
_g 7.0% I .
2 6.0% | -
S U . .
S 5.0% [ -
T40%F @ ¥ v .
| v ° \ 4 vY * * ]
S 3.0% i % v v vvUVY PY R % Xy
S20% ¥ ¥ e L v,
g v Y 'x ¥ Y gvy v o _
g 1.0% Cx ‘*¥** 0% o¥gxi¥ sleen : ]
00.0%- L o r’?.. P |.. .*.'I .'.*. 1 .*. .ﬁ*-
30 35 40 45 50 55 60

Problem Instance

Fig. 7. The coefficient of variation of the objective function and CPU time values for the considered metaheuristics.

critical step in evaluating the efficiency of each metaheuristic. In
particular, the convergence pattern analysis allows determining how
efficiently each metaheuristic discovers the promising search space
domains and superior solutions from one generation (or iteration) to
another. As a part of the numerical experiments, the convergence pat-
terns were thoroughly analyzed for every metaheuristic considered and
every large-scale problem instance generated. The results from the
conducted analysis are reported in Fig. 8 for large-scale problem in-
stances 51 through 60. The selected problem instances represent a
portion of the large-scale problem instances with the largest number of
CDT doors and trucks. However, similar tendencies were noticed for the
remainder of the problem instances.

The analysis results demonstrated that EA was able to achieve good-
quality solutions more quickly when comparing to VNS, TS, and SA.
Such a performance of EA can be explicated by the fact that EA is a
population-based metaheuristic and has a high capability of exploring
the solution search space for promising domains and good-quality so-
lutions. On the contrary, the VNS, TS and SA metaheuristics are single-
solution-based metaheuristics that primarily rely on local search and are
limited to a certain extent in their explorative and exploitative capa-
bilities. Nevertheless, TS was able to show quite a competitive perfor-
mance for a number of large-scale problem instances (i.e., problem
instances 56 through 60). Hence, introduction of the Tabu list in TS was
found to be favorable for the search process, as the additional re-
strictions were imposed for revisiting the same solutions. Such re-
strictions prompted TS discovering new promising search space domains
rather than evaluating the same solutions near local optima.
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6.4. Managerial implications

As a part of the numerical experiments, a set of supplementary
sensitivity analyses were performed to draw some managerial implica-
tions using the proposed TSPCDT mathematical model and the most
promising metaheuristic. Based on a set of detailed comparative ana-
lyses that were performed in Sections 6.3.1, 6.3.2 and 6.3.3 of the
manuscript, the developed EA was found to be the most promising
metaheuristic as it demonstrated the best tradeoff between the solution
quality at convergence and the required CPU time. Hence, the developed
EA will be further deployed to conduct the sensitivity analyses and draw
some managerial implications. In particular, the sensitivity of the truck
scheduling decisions to the following attributes will be analyzed: (a) the
product decay rate; (b) the unit product temporary storage cost; and (c)
the CDT door availability and truck arrival patterns. The next sections of
this manuscript elaborate more on each one of the conducted sensitivity
analyses.

6.4.1. Sensitivity of the truck scheduling decisions to the product decay rate

A total of ten product decay rate scenarios were created by increasing
the base product decay rate value, which was estimated using uniform
distribution UD[0.010; 0.030], by 20% from one scenario to another (i.e.,
the product decay rate in scenario “1” was generated as
UD[0.010;0.030], while the product decay rate in scenario “10” was
generated as UD[0.052;0.155]). The remaining TSPCDT parameters
were assumed to be the same as specified in Section 6.1.1. The results
from the conducted sensitivity analysis are reported in Fig. 9, which
shows the changes in the total truck waiting time, the total product
storage time, as well as the total truck delayed departure time for the
considered product decay rate scenarios.
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Fig. 8. The convergence patterns for the considered metaheuristics (problem instances 51-60).

It can be observed that an increase in the product decay rate caused a
reduction in the total truck waiting time as well as the total truck
delayed departure time, aiming to load the arriving outbound trucks
with perishable products in a timely manner, so that they could deliver
these products to the designated end customers. However, in certain
cases, the perishable products had to be stored in temporary storage
areas for a longer time period (see Fig. 9) due to the differences in the
service start times of the inbound trucks and the corresponding
outbound trucks. Nevertheless, since this study modeled temperature-
controlled temporary storage areas for perishable products, the total
product decay was not substantially affected by increasing the total
product storage time. Furthermore, an increase in the product decay rate
caused an increase in the total cost, associated with the service of all the
arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective), from
1972.21 - 10% USD in scenario “1” to 2085.51 - 10% USD in scenario
“10”.
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6.4.2. Sensitivity of the truck scheduling decisions to the unit product
temporary storage cost

A total of ten unit product temporary storage cost scenarios were
created by increasing the base unit product temporary storage cost
value, which was estimated wusing uniform distribution
UD[25.66;51.32], by 10% from one scenario to another (i.e., the unit
product temporary storage cost in scenario “1” was generated as
UD[25.66;51.32], while the unit product temporary storage cost in
scenario “10” was generated as UD[60.50;121.00]). The remaining
TSPCDT parameters were assumed to be the same as specified in Section
6.1.1. The results from the conducted sensitivity analysis are reported in
Fig. 10, which shows the changes in the total truck waiting time, the
total product storage time, as well as the total truck delayed departure
time for the considered unit product temporary storage cost scenarios.

It can be observed that an increase in the unit product temporary
storage cost caused a reduction in the total product storage time, aiming
to decrease the total product inventory cost. In the meantime, the
arriving outbound trucks had to wait for the service start of the
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Fig. 9. Sensitivity of the total truck waiting time, total product storage time, and total truck delayed departure time to the product decay rate.
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Fig. 10. Sensitivity of the total truck waiting time, total product storage time, and total truck delayed departure time to the unit product temporary storage cost.

corresponding inbound trucks, so that the delivered perishable products
could be directly transferred from the inbound doors to the outbound
doors with no (or minimum) temporary storage. The latter generally
caused an increase in the total truck waiting time along with the total
truck delayed departure time (see Fig. 10) from one scenario to another.
Furthermore, an increase in the unit product temporary storage cost
caused an increase in the total cost, associated with the service of all the
arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective), from
1484.41 - 10° USD in scenario “1” to 2204.59 - 10° USD in scenario
“10”.
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6.4.3. Sensitivity of the truck scheduling decisions to the CDT door
availability and truck arrival patterns

As a part of the numerical experiments, the developed EA was
executed for different large-scale problem instances, where the number
of CDT doors ranged between 4 and 8 (an increment of 2 CDT doors was
adopted) and the number of trucks ranged between 84 and 120 (an
increment of 4 trucks was adopted). The CDT door availability (i.e.,
capacity of the considered cold-chain CDT) and the truck arrival pat-
terns directly influence the truck scheduling decisions. Fig. 11 shows the
changes in the total truck waiting time, the total product storage time, as
well as the total truck delayed departure time for the considered CDT
door availability and truck arrival pattern scenarios. It can be observed
that the total truck waiting time could be reduced from 3074.6 h to
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Fig. 11. Sensitivity of the total truck waiting time, total product storage time, and total truck delayed departure time to the CDT door availability and truck

arrival patterns.

1437.4 h by increasing the CDT door availability from 4 doors to 8 doors
for the case with 120 trucks arriving for service at the considered cold-
chain CDT. Similarly, the total truck delayed departure time could be
reduced by more than 45% after increasing the CDT door availability
from 4 doors to 8 doors for the case with 120 trucks arriving for service
at the considered cold-chain CDT. The total product storage time was
mostly affected by the number of arriving trucks (see Fig. 11).
Furthermore, an increase in the CDT door availability from 4 doors to 8
doors caused a reduction in the total cost, associated with the service of
120 arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective),
from 3108.67 - 10% USD to 1972.21 - 10% USD.

7. Conclusions and future research needs

The supply chain operations directly depend on the efficiency of the
product distribution. Many supply chains handle perishable products
that decay over time due to fluctuations in temperature, humidity, and
pressure throughout the product distribution process. As a result of
mismanagement of supply chain operations, a significant portion of
perishable products is wasted, resulting in substantial monetary losses.
Cross-docking terminals (CDTs) have been widely used in cold supply
chains for the product distribution but have not received adequate
attention in the scientific literature. In order to improve the effectiveness
of the perishable product distribution, this study proposed a novel
mixed-integer mathematical formulation for the truck scheduling
problem at a cold-chain CDT. The model explicitly captured the decay of
perishable products throughout the service of arriving trucks and
accounted for the presence of temperature-controlled storage areas that
were specifically designated for perishable products. The objective of
the presented model focused on minimization of the total cost incurred
during the truck service. Considering the computational complexity of
the proposed model, a customized Evolutionary Algorithm (EA) was
designed to solve it.

The computational performance of EA was assessed throughout the
numerical experiments based on a detailed comparative analysis against
the other metaheuristics, including the following: (1) Variable
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Neighborhood Search (i.e., VNS); (2) Tabu Search (i.e., TS); and (3)
Simulated Annealing (i.e., SA). The developed EA was found to be the
most promising metaheuristic, considering both solution quality and
CPU time perspectives. Furthermore, the proposed EA algorithm
demonstrated an acceptable level of stability of the solution quality at
convergence and the required CPU time as well. A set of sensitivity
analyses, conducted throughout the numerical experiments, revealed
that the truck scheduling decisions could be substantially affected by the
decay rate of perishable products, the unit temporary storage cost of
perishable products, the CDT door availability, and the truck arrival
patterns. The proposed mixed-integer programming model, the devel-
oped metaheuristic, and the conducted sensitivity analyses would be of
potential interest to the supply chain stakeholders that are heavily
involved in the distribution of perishable products in cold supply chains
and aim to improve their operations.

Throughout this study, a number of simplifying assumptions were
made that could be further addressed as a part of the future research.
First, uncertainty in the arrival times as well as the handling times of the
inbound and outbound trucks could be incorporated in the developed
mathematical model. Second, the limitations in the capacity of the
temporary storage areas at the considered cold-chain CDT could be
accounted for. Third, a multi-objective framework capturing conflicting
objectives of the cold-chain CDT operator could be developed (e.g.,
reduce the total truck delayed departure time vs. reduce the number of
forklift operators deployed at the considered cold-chain CDT). Fourth,
the developed EA could be compared against some other metaheuristics
that were previously used in the CDT truck scheduling literature and
other studies (e.g., Differential Evolution, Imperialist Competitive Al-
gorithm, Grey Wolf Optimizer, Particle Swarm Optimization, and Red
Deer Algorithm) (Ayough, Zandieh, & Farhadi, 2020; Hussain, Salleh,
Cheng, & Shi, 2019). Finally, some additional hybridization techniques
could be incorporated within the developed EA (e.g., application of
custom local search heuristics after performing the crossover and mu-
tation operations in order to enhance the fitness of the produced and
mutated offspring).
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Appendix A. Full list of abbreviations that were used in the manuscript

Technique of Order Preference Similarity to the Ideal Solution
CDT Truck Scheduling Problem with Product Perishability Considerations
Linearized CDT Truck Scheduling Problem with Product Perishability Considerations

AUGMECON2 Augmented Epsilon-Constraint Method
CDT Cross-Docking Terminal

DE Differential Evolution

DP Dynamic Programming

EA Evolutionary Algorithm

EMS Express Mail Service

FedEx Federal Express

ICA Imperialist Competitive Algorithm
MODE Multi-Objective Differential Evolution
MOGWO Multi-Objective Grey Wolf Optimizer
MOICA Multi-Objective Imperialist Competitive Algorithm
MRDA Modified Red Deer Algorithm

NSGA-II Non-Dominated Sorting Genetic Algorithm II
PSO Particle Swarm Optimization

RDA Red Deer Algorithm

RFID Radio-Frequency Identification

SA Simulated Annealing

SEO Social Engineering Optimizer

TOPSIS

TSPCDT

TSPCDTL

UPS United Parcel Service
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