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A B S T R A C T   

An efficient product distribution is critical for proper supply chain operations. Many supply chains handle 
perishable products that decay over time. Due to mismanagement of supply chain operations, a significant 
portion of perishable products is wasted, resulting in substantial monetary losses. Cross-docking terminals (CDTs) 
have been widely used in cold supply chains for the product distribution but have not received adequate 
attention in the scientific literature. To improve the efficiency of perishable product distribution, this study 
introduces for the first time a novel mixed-integer mathematical formulation for the truck scheduling optimi
zation at a cold-chain CDT. The model explicitly captures the decay of perishable products throughout the service 
of arriving trucks and accounts for the presence of temperature-controlled storage areas that are specifically 
designated for perishable products. The objective minimizes the total cost incurred during the truck service. 
Considering the complexity of the proposed model, a customized Evolutionary Algorithm is developed to solve it. 
The computational performance of the developed algorithm is assessed throughout the numerical experiments 
based on a detailed comparative analysis against the other metaheuristics. The developed Evolutionary Algo
rithm is found to be the most promising metaheuristic, considering both solution quality and CPU time per
spectives. Furthermore, the proposed algorithm demonstrates an acceptable stability of the solution quality at 
termination. A set of additional sensitivity analyses are performed in order to draw some significant managerial 
implications, which would be of potential interest to the supply chain stakeholders that are involved in the 
distribution of perishable products in cold supply chains.   

1. Introduction 

Supply chain managers all over the world are constantly seeking for 
promising methods to improve the efficiency of product distribution and 
meet some important goals of supply chains, including the following: (1) 
cost minimization; (2) improvement of customer satisfaction; (3) effi
cient utilization of resources; (4) revenue/profit maximization; and (5) 
value creation (Dulebenets, 2018a; Felfel, Ayadi, & Masmoudi, 2016; 
Luo, Yang, & Wang, 2019; Nogueira, Coutinho, Ribeiro, & Ravetti, 
2020). The various procedures used by supply chain stakeholders across 

the world have attracted the interest of researchers over the past two 
decades, aiming to accurately model these procedures and, ultimately, 
enhance the supply chain efficiency. This is primarily due to an increase 
in the volume of freight across various supply chains, alongside the 
complexity involved in the distribution of products (Dulebenets, 2018b; 
Ladier & Alpan, 2016). The supply chain stakeholders are faced with 
numerous challenges and tasks on a regular basis that have to be suc
cessfully addressed to achieve certain common objectives. These chal
lenges include but are not limited to: (1) fierce competition in the 
industry; (2) operating cost reduction; (3) management of product 
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perishability (in case of supply chains with perishable products); (4) 
maintenance of supplier and customer relationships; (5) management of 
the associated uncertainties; and (6) customer empowerment (Dulebe
nets & Ozguven, 2017; Ladier & Alpan, 2016; Margolis, Sullivan, Mason, 
& Magagnotti, 2018; Sreedevi & Saranga, 2017). 

Improvement in the efficiency of product distribution in a supply 
chain invariably leads to a reduction in the operational cost, increased 
revenue, and generally lower price of products for the end customers. 
The cross-docking strategy has been relied on by many stakeholders in 
supply chains to facilitate the product distribution (Ladier & Alpan, 
2016). A typical cross-docking terminal (CDT) has the following features 
and components (see Fig. 1): (1) a set of inbound doors where inbound 
trucks are served; (2) a set of outbound doors where outbound trucks are 
served; (3) a set of sorting/storage areas where products are deconso
lidated, sorted, and consolidated (note that some storage areas can be 
temperature-controlled and designated specifically for perishable 
products); and (4) handling equipment, such as forklifts, conveyor belts, 
or combination of them in some cases. The cross-docking strategy can be 
described as follows. The incoming products are delivered by inbound 
trucks to the CDT from suppliers and manufacturers. The inbound trucks 
are unloaded by handling equipment after their assignment to the 
available inbound doors. The unloaded products are deconsolidated 
first, then sorted, and finally consolidated again in the designated stor
age areas. The products that were consolidated are loaded by handling 
equipment onto the outbound trucks, which deliver these products to 
the end customers (Ladier & Alpan, 2016). 

Due to its proven effectiveness, the cross-docking strategy has been 
heavily deployed by the world largest retailers, such as Walmart, 
COSTCO, Target, and Office Depot. Walmart was the first retailer that 
started using CDTs. Furthermore, shipping companies, such as Federal 
Express (FedEx)1, Express Mail Service (EMS), and United Parcel Service 
(UPS), have been using the cross-docking strategy in their supply chains 
for many years as well (Dulebenets, 2018a). The operations inside CDTs 
are usually planned and executed directly by the CDT operators (Ladier 
& Alpan, 2016). The CDT operators must address certain key decision 
problems to ensure the adequate functionality of CDTs, including the 
following: (1) the CDT shape determination; (2) determination of the 
required number of doors along with the door service mode; (3) the 
problem of truck scheduling (i.e., scheduling of arriving trucks for ser
vice); (4) allocation of the available handling equipment (deployment of 
forklifts or conveyor belts); and (5) storage area allocation. The CDT 
truck scheduling problem is considered as one of the main challenging 
decision problems that are faced by the CDT operators (Ladier & Alpan, 
2016) and will be the main focus of the present study. 

Although a significant number of previous studies addressed the CDT 
truck scheduling problem, cold-chain CDTs handling perishable prod
ucts (i.e., the products that decay over time due to fluctuations in tem
perature, humidity, and pressure throughout the product distribution 
process) have not received adequate attention in the literature (Rahbari, 
Nasiri, Werner, Musavi, & Jolai, 2019). However, cold-chain CDTs have 
been widely used by different supply chain stakeholders for many years. 
For example, FedEx is heavily using cold-chain CDTs to handle health
care products, specialty foods, flowers, seafood, and other perishable 
products (FedEx, 2016). Ineffective management of food supply chains, 
for example, can lead to a significant waste of food products. According 
to Mena, Terry, Williams, and Ellram (2014), approximately 20–30% of 
food products are wasted in supply chains. In the United States alone, 
more than 30% of perishable products, worth almost $50 billion, are 
thrown away every year (Environment, 2020). Such a significant waste 
of products occurs due to mismanagement of supply chain operations. 
To improve the efficiency of supply chains with perishable products, this 
study introduces for the first time a novel mixed-integer mathematical 

formulation for the truck scheduling optimization at a CDT that 
explicitly captures the decay of perishable products throughout the 
service of arriving trucks and accounts for the presence of temperature- 
controlled storage areas that are specifically designated for perishable 
products. 

The objective function of the formulation presented minimizes the 
total cost incurred during the truck service that incorporates the total 
truck waiting cost, the total truck service cost, the total product in
ventory cost, the total truck delayed departure cost, as well as the total 
product decay cost. Considering the computational complexity of the 
model proposed, a customized Evolutionary Algorithm is developed to 
solve it. The computational performance of the developed algorithm is 
assessed throughout the numerical experiments based on a detailed 
comparative analysis against the other metaheuristics. Some significant 
managerial implications, which would be of potential interest to the 
supply chain stakeholders that are involved in the distribution of 
perishable products, are drawn as well. The contributions of this work to 
the CDT truck scheduling literature and the state-of-the-art can be out
lined as follows:  

• A novel mixed-integer mathematical formulation is proposed for the 
truck scheduling optimization at a cold-chain CDT;  

• Unlike the previously conducted CDT truck scheduling studies, the 
proposed model explicitly captures the decay of perishable products 
using an exponential function throughout the service of arriving 
trucks;  

• This study models the temperature-controlled storage areas that are 
designated specifically for perishable products and critical for proper 
operations of cold-chain CDTs;  

• Considering the computational complexity of the proposed model, a 
novel customized metaheuristic is presented to solve the model; 

• A detailed comparative analysis is conducted to assess the compu
tational performance of the metaheuristic developed against the 
alternative exact and approximate optimization methods. 

The remaining sections of this manuscript are further organized in 
the following order. Section 2 provides a concise review of the recent 
studies that are relevant to the problem of truck scheduling at CDTs. 
Section 3 provides a detailed description of the operations of the CDT to 
be modeled in this study. Section 4 presents the proposed mixed-integer 
mathematical formulation for the CDT truck scheduling problem with 
product perishability considerations. Section 5 contains a thorough 
description of the customized Evolutionary Algorithm that was devel
oped as a part of this study to solve the mathematical model proposed. 
Section 6 evaluates the solution algorithm developed in terms of 
different performance metrics and provides some managerial implica
tions. Section 7 concludes with the main findings of the present study 
and proposes some areas to be considered in the future research. 

2. Literature review 

Several previous studies have conducted a detailed review of the 
relevant efforts on the CDT operations. These studies aimed to analyze 
different CDT mathematical models, the effects of the CDT shape se
lection, and various CDT planning levels that ranged from strategic to 
tactical and operational (Agustina, Lee, & Piplani, 2010; Ladier & Alpan, 
2016; Shuib & Fatthi, 2012; Theophilus, Dulebenets, Pasha, Abioye, & 
Kavoosi, 2019; Van Belle, Valckenaers, & Cattrysse, 2012). The focus of 
this section of the manuscript is to present a review of the most recent 
studies that are relevant to the CDT truck scheduling. The studies 
collected were further classified as the general CDT truck scheduling 
studies and the studies specifically focusing on the cold-chain CDT op
erations as well as the product perishability considerations. 

1 Note: the full list of abbreviations that were used in this manuscript is 
provided in Appendix A. 
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2.1. Truck-scheduling at CDTs 

Ahkamiraad and Wang (2018) studied the problem of capacitated 
vehicle routing with multiple CDTs, considering pickups, deliveries, and 
time windows. The objective function of the proposed model minimized 
the transportation and fixed costs. The problem was solved using a 
hybrid algorithm that was inspired by the Evolutionary Algorithm (EA) 
and Particle Swarm Optimization (PSO). Baniamerian, Bashiri, and 
Zabihi (2018) introduced the problem of vehicle routing and scheduling 
at a CDT where customer satisfaction was directly accounted for. A 
mixed-integer linear mathematical formulation was proposed for the 
problem, minimizing the transport cost and the cost of customer time 
window violation. The authors designed a two-phase EA to solve the 
model presented. The obtained results showed that the developed 
mathematical model achieved a customer satisfaction of at least 86.6%, 
unlike the classic model that achieved the maximum satisfaction level of 
33.3%. Heidari, Zegordi, and Tavakkoli-Moghaddam (2018) formulated 
the truck scheduling problem at a CDT that incorporated uncertainty in 
truck arrival times. A bi-level optimization framework was used for the 
problem. Two metaheuristics, Non-Dominated Sorting Genetic Algo
rithm II (NSGA-II) along with Multi-Objective Differential Evolution 
(MODE), were deployed to solve the problem. The NSGA-II and MODE 
were compared against an alternative algorithm (called “GASH”). The 
conducted numerical experiments confirmed the superiority of MODE. 

Molavi, Shahmardan, and Sajadieh (2018) examined the truck 
scheduling problem at a CDT with the scheduled departure times of 
outbound trucks as hard constraints. The authors developed a mixed- 
integer programming model, minimizing the delivery cost and the 
penalty of delayed shipments. The problem was solved using DE, EA, 
PSO, and hybrid metaheuristic. The computational experiments that 
were conducted as a part of that study showed that the hybrid meta
heuristic was superior to the alternative algorithms. Nasiri, Rahbari, 
Werner, and Karimi (2018) presented a mixed-integer linear formula
tion, which incorporated the selection of suppliers and the allocation of 
orders into the vehicle routing problem with CDTs. The objective 
minimized the costs associated with purchasing, cross-docking, trans
portation, and early/tardy delivery. A two-stage solution algorithm was 
deployed to tackle large-scale instances. The experiments showed that 
the transportation and earliness/tardiness costs were the highest cost 

components. Abad, Vahdani, Sharifi, and Etebari (2019) proposed a 
multi-objective optimization model for the split pollution vehicle rout
ing problem with a CDT and fuzzy probabilistic time window con
straints. The first objective function focused on minimization of the total 
cost, whereas the second one focused on minimization of the total fuel 
consumption. The third objective maximized the supplier and customer 
satisfaction. Multi-Objective Grey Wolf Optimizer (MOGWO) and Multi- 
Objective Imperialist Competitive Algorithm (MOICA) were used to 
solve the presented mathematical model. 

Corsten, Becker, and Salewski (2019) proposed a CDT optimization 
model that integrated the scheduling of trucks and workforce for a single 
working day. The objective was to minimize the cost of engaging tem
porary workers throughout the service of trucks. CPLEX was used as a 
solution method. The study considered some workforce coordination 
policies as well as daily working hour regulations. Fathollahi-Fard, 
Ranjbar-Bourani, Cheikhrouhou, and Hajiaghaei-Keshteli (2019) 
applied the Social Engineering Optimizer (SEO) approach to tackle the 
truck scheduling problem at a CDT. The SEO was inspired by social 
engineering theory, which involves attackers targeting defenders using 
certain important information. The results from the performed numer
ical experiments showed that the adopted approach delivered compet
itive results when compared with the existing algorithms. Khorshidian, 
Shirazi, and Ghomi (2019) presented a bi-objective model for the inte
grated transportation planning and truck scheduling problem in a CDT 
system. The objective functions minimized the total cost and the 
makespan. The study proposed a hybrid solution approach that was 
inspired by the augmented e-constraint method (which is generally 
referred to as “AUGMECON2”) and TOPSIS to solve the model. A real- 
life case study was presented to showcase the potential of the devel
oped methodology. 

Rijal, Bijvank, and de Koster (2019) studied the integrated problem 
of the CDT truck scheduling and door assignment, considering a mixed 
door service mode. The objective function of the presented mathemat
ical model aimed to minimize the total cost that was incurred during the 
truck service. The problem was solved by an adaptive large neighbor
hood search algorithm that was developed as a part of that study. A set of 
extensive computational experiments demonstrated that simultaneous 
optimization of door assignment and truck scheduling reduced the 
average total cost by 12% as compared to the sequential approach. 
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Tadumadze, Boysen, Emde, and Weidinger (2019) focused on the inte
grated scheduling of workforce and trucks that were arriving in the 
considered planning horizon at a CDT. The objective function of the 
developed model focused on minimization of the total flow time of 
trucks. A number of heuristics were presented to tackle the model pre
sented. The conducted numerical experiments revealed that the inte
grated scheduling of workforce and trucks could improve the CDT 
operations by reducing the truck flow times. Wisittipanich, Irohara, and 
Hengmeechai (2019) investigated the problem of truck scheduling in a 
network of CDTs. The objective was to simultaneously identify the 
schedule of all the inbound and outbound trucks in the network of CDTs, 
aiming to minimize the makespan. LINGO was used to solve the model. 
The numerical experiments demonstrated that optimizing the truck 
schedule at each CDT sequentially was less effective as compared to the 
integrated scheduling of trucks in the CDT network. 

Ardakani, Fei, and Beldar (2020) considered the CDT truck sched
uling problem, assuming that the pre-emption of inbound trucks was 
allowed (i.e., a given inbound truck might vacate the door for service of 
another truck and then return back to that door to complete its service). 
The objective function of the model that was proposed aimed to mini
mize the makespan. Exact and heuristic methods were deployed to 
tackle the problem. The conducted computational experiments clearly 
showed a competitive performance of the proposed heuristic algorithms. 
Shahmardan and Sajadieh (2020) addressed a special case of the truck 
scheduling problem at a CDT, where compound trucks were served. A 
compound truck could be used as an inbound truck and an outbound 
truck. The objective was to identify the best truck and destination 
assignment that minimized the makespan. The model was solved using a 
metaheuristic algorithm that was inspired by Simulated Annealing (SA). 
A set of extensive numerical experiments confirmed that partial 
unloading of compound trucks could be helpful in decreasing the 
makespan and improving the efficiency of the CDT operations. 

2.2. Cold-chain CDT operations and product perishability considerations 

Among the studies on CDT truck scheduling, only a few efforts were 
dedicated to modeling cold-chain CDT operations and product perish
ability. For example, Boysen (2010) addressed the truck scheduling 
problem at a “zero-inventory” CDT in a food supply chain. Based on a 
“zero-inventory” concept, the perishable products unloaded at the CDT 
were transferred directly to the refrigerated outbound trucks without 
any temporary storage. Different objectives were considered in the 
study, including the overall truck flow time minimization, the overall 
truck processing time minimization, and the overall truck tardiness 
minimization. Two methods were used to solve the proposed model, 
which included Dynamic Programming (DP) and SA. Agustina, Lee, and 
Piplani (2014) investigated the problem of truck scheduling and vehicle 
routing at a CDT for perishable product distribution. A mixed-integer 
programming formulation was presented for the problem, and the 
objective function minimized the total cost that included: (1) earliness 
cost; (2) tardiness cost; (3) storage cost; and (4) transportation cost. The 
concept of customer zoning was introduced to decrease the computa
tional complexity of the presented model. The model was further solved 
with an exact optimization approach (i.e., CPLEX). The results from the 
computational experiments showed that the scheduling strategy pro
posed could aid the distribution of perishable products at a minimal cost 
and preserve the product quality. 

Rahbari et al. (2019) studied the problem of vehicle routing and 
scheduling at a CDT with perishable products. A bi-objective mixed- 
integer linear formulation was presented, and the objective function 
minimized the total transportation cost and maximized the weighted 
freshness of transported products. A linear function was used to model 
the product decay over time. Furthermore, two robust optimization 
models were developed to capture uncertainty in product freshness and 
outbound truck travel time. A set of numerical experiments clearly 
showed that the developed methodology was able to drastically reduce 

the decay of perishable products without substantially affecting the total 
transportation cost. Fathollahi-Fard, Ahmadi, and Sajadieh (2020) pro
posed a Modified Red Deer Algorithm (MRDA) to tackle the problem of 
truck scheduling at a CDT with perishable products. A strict deadline 
was imposed for service completion of the outbound trucks that carried 
perishable products. The objective of the presented formulation mini
mized the makespan. The performance of the proposed algorithm was 
assessed using ten problem instances. The performed numerical exper
iments revealed that MRDA was superior to the other metaheuristics, 
including SA, EA, PSO, ICA, and RDA. 

Moreover, there are a lot of studies that modeled perishability of 
products throughout different supply chain operations but did not 
explicitly capture the cross-docking operations. For example, Ahumada 
and Villalobos (2011) proposed an integrated tactical-level planning 
method for the production and distribution of perishable products. The 
objective maximized the total revenue. A linear function was adopted 
for modeling the product decay. The problem was solved to optimality 
using CPLEX. Bilgen and Çelebi (2013) developed a model for the in
tegrated distribution planning and production scheduling in dairy sup
ply chains. The objective aimed to maximize the total benefit, taking 
into account the main cost components of supply chain operations (e.g., 
processing, storage, setup, backlogging, overtime) and shelf life of 
perishable products. A hybrid solution approach, inspired by simulation 
and optimization, was presented to solve the problem. Grunow and 
Piramuthu (2013) modeled the use of the Radio-Frequency Identifica
tion (RFID) technology in highly perishable food supply chains. The 
product decay was emulated using an exponential function. Considering 
product expiry dates and remaining shelf life, certain conditions were 
developed under which RFID could benefit various supply chain stake
holders. Many other studies used exponential functions as well, aiming 
to accurately model the decay of perishable products due to different 
factors throughout the supply chain operations (Piramuthu & Zhou, 
2013; Piramuthu, Farahani, & Grunow, 2013; Rong, Akkerman, & 
Grunow, 2011; Wang & Li, 2012; Yu & Nagurney, 2013). 

2.3. Literature summary, existing gaps, and contributions of this study 

The literature review conducted indicates that the number of studies 
on CDT truck scheduling increases every year. Different models have 
been proposed to improve the effectiveness of CDT operations and truck 
scheduling. However, most of the developed models cannot be applied 
in cold-chain CDTs, which handle perishable products that decay over 
time due to fluctuations in temperature, humidity, and pressure. Only 
Rahbari et al. (2019) explicitly modeled the decay of perishable prod
ucts using a linear function throughout their distribution at the CDT and 
delivery to the end customers. On the other hand, there are a lot of 
studies that modeled perishability of products throughout different 
supply chain operations but did not explicitly capture the cross-docking 
operations. Many of these studies used an exponential function to 
accurately capture the decay of perishable products (Piramuthu & Zhou, 
2013; Piramuthu et al., 2013; Rong et al., 2011; Wang & Li, 2012; Yu & 
Nagurney, 2013). In order to enhance the effectiveness of supply chains 
with perishable products, this study introduces for the first time a novel 
mixed-integer mathematical formulation for the truck scheduling opti
mization at a cold-chain CDT. Unlike the study by Rahbari et al. (2019), 
the proposed model explicitly captures the decay of perishable products 
using an exponential function throughout the service of arriving trucks. 
Moreover, this study models the temperature-controlled storage areas 
that are designated specifically for perishable products. Considering the 
computational complexity of the proposed model, a customized Evolu
tionary Algorithm is designed to tackle the model and demonstrate some 
significant managerial implications. 

3. Problem description 

This section of the manuscript describes in detail the operations of 
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the cold-chain CDT modeled in this study. A description of the main 
notations that will be used throughout the problem description and 
mathematical model development is presented in Table 1. The shape of 
the CDT is assumed to be an I-shape. Several CDT truck scheduling 
studies reported that the CDTs with I-shape have been widely used in 
practice (Dulebenets, 2019a; Ladier & Alpan, 2016; Theophilus et al., 
2019). However, the mathematical model to be presented in this study 
would be applicable to the CDTs of other shapes, such as E, H, L, T, U, X, 
etc. The geometric layout of the CDT is presented in Fig. 2. The rest of 
this section addresses the following aspects of the considered CDT truck 
scheduling problem: (1) truck arrivals; (2) CDT door assignment; (3) 
internal CDT operations; (4) modeling decay of perishable products; (5) 
objective of the CDT operator; and (6) an illustrative example of a truck 
service. 

3.1. Truck arrivals 

The CDT operations begin upon arrival of the assigned trucks. Let 

T = {1, ⋯, w1} be the set of trucks arriving for the service at the 
considered cold-chain CDT. The set of all the arriving trucks consists of 
the set of inbound trucks and the set of outbound trucks. Let Tin =

{
1, ⋯ 

, w2}
, Tin⊆T and Tout =

{
1, ⋯, w3}

, Tout⊆T be the set of inbound trucks 
and the set of outbound trucks, respectively. Therefore, any given truck 
is either an inbound truck or an outbound truck: Tin ∪ Tout = T 
andTin ∩ Tout = ⊘. The truck-to-door assignment is performed by the 
CDT operator. The inbound trucks may arrive either full or partially full. 
On the other hand, the outbound trucks may arrive either empty or 
partially empty. In this study, the arrival time is assumed to follow a pre- 
determined arrival schedule agreed upon by both the CDT operator and 
the corresponding logistics company. Such an assumption has been 
commonly adopted by many of the previous CDT truck scheduling 
studies (Boloori Arabani, Zandieh, & Ghomi, 2012; Dulebenets, 2019a; 
Liao, Egbelu, & Chang, 2013; Miao, Lim, & Ma, 2009). 

Table 1 
The main notations used in this study.  

Model Component Description 

Type Notation 

Sets T = {1, ⋯,w1} set of all the trucks arriving at the CDT  

Tin =
{

1, ⋯, w2}
, Tin⊆T  set of all the arriving inbound trucks  

Tout =
{
1, ⋯, w3}

, Tout⊆T  set of all the arriving outbound trucks  

D = {1, ..., w4} set of all the available CDT doors  

Din =
{

1, ..., w5}
,Din⊆D  set of all the available inbound doors  

Dout =
{
1, ..., w6}

, Dout⊆D  set of all the available outbound doors  

O = {1, ..., w7} set of all the available service orders  

N = {1, ..., w8} set of all the available temporary storage areas  

P = {1, ..., w9} set of all the product types to be handled at the CDT 

Decision 
variables 

xtdo ∈ B∀t ∈ T, d ∈ D, o ∈ O  =1 if truck t is assigned to be served at CDT door d in the oth service order (=0 otherwise)  

Auxiliary 
variables 

TC ∈ R+ the total cost to be incurred by the CDT operator throughout service of the arriving trucks (USD)  

ytdo ∈ R+∀t ∈ T, d ∈ D, o ∈ O  idle time of CDT door d between service of truck t and its preceding truck that was served in the (o − 1)
th service 

order (hours)   

τwt
t ∈ R+∀t ∈ T  waiting time for truck t (hours)   

τst
t ∈ R+∀t ∈ T  service start time for truck t (hours)   

τtst
tdo ∈ R+∀t ∈ T, d ∈ D, o ∈ O  total service time for truck t at CDT door d served in the oth service order (hours)   

τft
t ∈ R+∀t ∈ T  service finish time for truck t (hours)   

τdt
t ∈ R+∀t ∈ T  delayed departure time for truck t (hours)   

τts
t tp ∈ R+∀t ∈ Tin, t ∈ Tout , t ∕= t,p ∈ P  temporary storage time for the product of type p delivered by inbound truck t for outbound truck t (hours)   

τtht
t tp ∈ R+∀t ∈ Tin, t ∈ Tout , t ∕= t,p ∈ P  total handling and transfer time for the product of type p delivered by inbound truck t for outbound truck t (hours)   

Qτ
t tp ∈ R+∀t ∈ Tin, t ∈ Tout , t ∕= t,p ∈ P  quality of the product of type p delivered by inbound truck t for outbound truck t at time τ (%)   

ΔQt tp ∈ R+∀t ∈ Tin, t ∈ Tout , t ∕= t,p ∈

P  
change in quality of the product of type p delivered by inbound truck t for outbound truck t (%)  

Parameters τat
t ∈ R+∀t ∈ T  arrival time of truck t at the CDT (hours)   

τht
t ∈ R+∀t ∈ T  handing time of truck t (hours)   

τsd
t ∈ R+∀t ∈ T  scheduled departure time for truck t from the CDT (hours)   

τtr
dn ∈ R+∀d ∈ D,n ∈ N  transfer time from CDT door d to storage area n (hours)   

ztn ∈ B∀t ∈ T, n ∈ N  =1 if the products carried by truck t are assigned to temporary storage area n (=0 otherwise)   

φt tp ∈ B∀t ∈ Tin, t ∈ Tout , t ∕= t,p ∈ P  =1 if inbound truck t carries the product of type p for outbound truck t (=0 otherwise)   

qt tp ∈ N∀t ∈ Tin , t ∈ Tout , t ∕= t,p ∈ P  quantity of the product of type p delivered by inbound truck t for outbound truck t (product units)   

Q0
t tp ∈ R+∀t ∈ Tin , t ∈ Tout , t ∕= t,p ∈ P  quality of the product of type p delivered by inbound truck t for outbound truck t at time “0” (%)   

λp ∈ R+∀p ∈ P  decay rate of the product of type p (hour−1)   

cwt
t ∈ R+∀t ∈ T  unit waiting cost for truck t (USD/hour)   

ctst
t ∈ R+∀t ∈ T  unit service cost for truck t (USD/hour)   

cts
p ∈ R+∀p ∈ P  unit temporary storage cost for the product of type p (USD/hour)   

cdt
t ∈ R+∀t ∈ T  unit delayed departure cost for truck t (USD/hour)   

cdc
p ∈ R+∀p ∈ P  unit decay cost for the product of type p (USD/% decay)   

M  sufficiently large positive number  
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3.2. CDT door assignment 

There are two door assignment modes in the CDT truck scheduling 
literature (Ladier & Alpan, 2016; Theophilus et al., 2019): (1) the mixed 
door service mode, based on which the same door can either serve in
bound or outbound trucks (i.e., any arriving truck can be served at any 
available door); (2) the segregated door service mode, based on which a 
set of doors are dedicated to serve inbound trucks only (i.e., these doors 
are referred to as “inbound doors”), while the remaining doors are 
dedicated to serve outbound trucks only (i.e., these doors are referred to 
as “outbound doors”). The cold-chain CDT considered in this study is 
assumed to operate in a segregated door service mode (see Fig. 2). Let 
D = {1, ..., w4} be the set of the CDT doors available for service of the 
arriving trucks. Let Din =

{
1, ..., w5}

, Din⊆D and Dout =
{
1, ..., w6}

, Dout⊆ 
D be the set of inbound doors and the set of outbound doors, respec
tively. Each arriving inbound truck has to be scheduled for service at one 
of the available inbound doors in one of the service orders. On the other 
hand, each arriving outbound truck has to be scheduled for service at 
one of the available outbound doors in one of the service orders. Let O =

{1, ..., w7} be the set of all the available service orders. 

3.3. Internal CDT operations 

The canonical CDT operations include the following: (1) unloading; 
(2) product transfer; (3) deconsolidation; (4) sorting; (5) storage; (6) 
consolidation; and (7) loading. The unloading operation begins after an 
inbound truck is docked for service. On the contrary, the loading oper
ation begins for an outbound truck after the corresponding inbound 
truck starts unloading the products or directly from the designated 
storage area (in case the assigned products have already been trans
ferred to the designated storage area). Once any given truck (whether 
inbound or outbound) is docked for service, it will remain docked until 
the service is complete. Therefore, pre-emption is not allowed 
throughout the service of trucks. Usually, the products that are trans
ported by the inbound trucks come in standard packaging units (for 
example, standard boxes or pallets). The time required to unload a 
particular inbound truck or load a particular outbound truck is referred 
to as “handling time” and is denoted as τht

t , t ∈ T (hours). The forklift 
operators are used at the considered cold-chain CDT for the product 
handling and transfer. 

The unloaded products are transferred to the temporary storage 

areas that are located between the inbound and outbound doors (see 
Fig. 2). Let N = {1, ..., w8} be the set of available temporary storage 
areas. In addition to the storage of products, each temporary storage 
area also serves as a point for deconsolidation, sorting, and consolida
tion of the products based on the customer preferences. Some products 
can be transferred directly from the inbound trucks to the corresponding 
outbound trucks without temporary storage if these trucks are already 
docked at the cold-chain CDT. The allocation of the available temporary 
storage areas depends on the product type. Let P =

{
1, ..., w9}

be the set 
of products delivered by the inbound trucks. Unlike the previous CDT 
truck scheduling studies, this study categorizes the temporary storage 
areas of the considered CDT into two groups (see Fig. 2): (1) perishable 
storage areas – specifically allocated for the storage of perishable 
products; (2) non-perishable storage areas – specifically allocated for the 
storage of non-perishable products. The temperature-controlled perish
able storage areas are critical for cold-chain CDTs, as in certain cases the 
arrival times of the inbound trucks and the corresponding outbound 
trucks may substantially vary, and temporary storage of perishable 
products would be unavoidable. Without temperature-controlled stor
age areas, the decay rate of perishable products would significantly 
increase. 

The CDT operator generally allocates a sufficient capacity for the 
available storage areas based on the expected amount of trucks that will 
be arriving and the quantity of products to be delivered (Ladier & Alpan, 
2016). Denote τts

t tp, t ∈ Tin, t ∈ Tout , t ∕= t, p ∈ P (hours) as the tempo
rary storage time for a given product of type p delivered by inbound 
truck t for outbound truck t. Let cts

p , p ∈ P (USD/hour) be the unit 
temporary storage cost for the product of type p. It is assumed that the 
temporary storage cost varies based on the product type. Perishable 
products will require temperature-controlled storage areas that are more 
expensive to operate when comparing to the storage areas for non- 
perishable products that do not maintain any specific temperature. 
The service time for a given truck t (τtst

tdo, t ∈ T, d ∈ D, o ∈ O – hours) in
cludes the following two components: (1) truck handing time (τht

t , t ∈ T – 
hours), which is the time required to unload/load the products; and (2) 
transfer time from the assigned CDT door to the designated storage area 
(τtr

dn, d ∈ D, n ∈ N – hours). Let ztn = 1, t ∈ T, n ∈ N if the products carried 
by truck t are assigned to temporary storage area n (=0 otherwise). The 
service time of trucks is affected by the following factors: (1) the number 
of product types; (2) the quantity of each product type; (3) the weight 
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Fig. 2. The handling processes within a cold-chain CDT.  
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and size of the product packaging units; and (4) the distance between the 
designated storage area and the assigned CDT door. In fact, the service 
time of the trucks docked at the doors farther away from the designated 
storage area is expected to be higher as compared to the trucks docked at 
the doors closer to the designated storage area. 

In this study, it is assumed that the service times of trucks are 
deterministic in nature. Such an assumption has been commonly adop
ted by many of the previous CDT truck scheduling studies (Boloori 
Arabani et al., 2012; Dulebenets, 2019a; Liao et al., 2013; Miao et al., 
2009). The service of a given truck incurs the unit service cost calculated 
per hour (ctst

t , t ∈ T – USD/hour). Furthermore, each inbound truck and 
each outbound truck are expected to complete their service at the 
considered cold-chain CDT according to the scheduled departure time 
(τsd

t , t ∈ T – hours). Whenever the service completion of a truck extends 
beyond the deadline, a unit delayed departure cost (cdt

t , t ∈ T – USD/ 
hour) is incurred by the CDT operator. Several previous CDT truck 
scheduling studies discussed the importance of timely truck service and 
application of penalties in any case of the scheduled departure time 
violation (Dulebenets, 2019a; Ladier & Alpan, 2016; Theophilus et al., 
2019). 

3.4. Modeling decay of perishable products 

As discussed earlier (see Section 3.3), once perishable products are 
unloaded from the inbound trucks, they will be transferred to the 
designated temporary storage areas or directly to the corresponding 
outbound trucks if these trucks are already docked at the cold-chain 
CDT. Different types of perishable products will require different types 
of storage areas. For example, certain food products require refrigera
tion and have to be stored under freezing temperatures (−25 ◦C to 
−10 ◦C), while certain types of pharmaceuticals have to be stored under 
cold temperatures (2–8 ◦C). It is assumed that a given perishable product 
deteriorates due to temperature fluctuations that are likely to occur 
throughout the unloading process from the inbound trucks, the transfer 
process between the CDT doors and the designated storage areas, and 
the loading process on the outbound trucks. However, the product 
deterioration substantially slows down when the products are placed in 
the temperature-controlled storage areas and is assumed to be insignif
icant. Furthermore, the product deterioration is assumed to be zero 
while the products are being inside the refrigerated trucks (a.k.a., 
“reefers”) before the truck doors are opened and the loading/unloading 
process begins. Such an assumption can be justified by the fact that the 
refrigerated trucks are designed to maintain a specific temperature 
required for the perishable products they carry. 

An additional cost is associated with the decay of perishable products 
throughout the product handling and transfer. Denote cdc

p , p ∈ P (USD/% 
decay) as the unit decay cost for the product of type p. As discovered 
during the literature review, an exponential function has been widely 
used to model the decay of perishable products (Piramuthu & Zhou, 
2013; Piramuthu et al., 2013; Rong et al., 2011; Wang & Li, 2012; Yu & 
Nagurney, 2013). Hence, this study adopts the following relationship to 
estimate the quality of the product of type p delivered by inbound truck 
t for outbound truck t at time τ based on the notations that were defined 
in Table 1: 

Qτ
t tp = Q0

t tpe−λpτtht
t tp ∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (1) 

The following relationship can be used to calculate the total handling 
and transfer time for the product of type p delivered by inbound truck t
for outbound truck t based on the notations that were defined in Table 1: 

τtht
t tp ≥

(

τht
t +

∑

d∈D

∑

o∈O

∑

n∈N
τtr

dnzt nxt do + τht
t +

∑

d∈D

∑

o∈O

∑

n∈N
τtr

dnztnxtdo

)

φt tp∀t

∈ Tin, t ∈ Tout, t ∕= t, p ∈ P
(2) 

The following relationship can be used to calculate the change in 
quality of the product of type p delivered by inbound truck t for 
outbound truck t based on the notations that were defined in Table 1: 

ΔQt tp = Q0
t tp − Qτ

t tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (3) 

Tracking changes in the perishable product quality throughout the 
cold supply chain operations is critical, as these product quality changes 
will determine the product “shelf life”. The term “shelf life” is widely 
used in the studies dealing with perishable products and represents the 
total number of days remaining for a particular perishable product to be 
of an adequate quality for a given customer (Dulebenets & Ozguven, 
2017; Grunow & Piramuthu, 2013). A proper management of cold-chain 
CDTs will prevent substantial product quality changes, which will ulti
mately increase the product shelf life. 

3.5. Objective of the CDT operator 

In the CDT truck scheduling problem, the cold-chain CDT operator 
has to make certain decisions, considering a number of important 
tradeoffs. The arriving inbound trucks must be scheduled for service at 
the available inbound doors, whereas the outbound trucks must be 
scheduled for service at the available outbound doors. The truck-to-door 
assignment directly affects the product transfer time between the CDT 
doors and the designated temporary storage areas. Increasing product 
transfer time is not desirable as it will further increase the total decay of 
perishable products throughout the service of arriving trucks. Along 
with the product perishability considerations, the cold-chain CDT 
operator has to prevent excessive waiting times of the arriving trucks 
before they could be docked at the CDT doors and reduce potential truck 
delayed departures. In the meantime, the temporary storage time of 
products has to be optimized as well to avoid excessive product in
ventory costs. 

The main objective of the cold-chain CDT operator is to develop such 
a schedule for the arriving trucks that will yield the least total cost to be 
incurred throughout the service of arriving trucks that incorporates the 
following cost components: (i) total truck waiting cost; (ii) total truck 
service cost; (iii) total product inventory cost; (iv) total truck delayed 
departure cost; and (v) total product decay cost. 

3.6. An illustrative example of a truck service 

This section presents an example of the service of inbound and 
outbound trucks at the considered cold-chain CDT (see Fig. 2). This 
example assumes that inbound trucks “1” and “4” deliver perishable 
products that will be loaded on outbound truck “10”. Inbound trucks “1” 
and “4” are assigned for service at inbound doors “1” and “4”, respec
tively. On the other hand, outbound truck “10” is assigned for service at 
outbound door “10”. The CDT operator allocates temperature-controlled 
storage area “1” for the products delivered by inbound trucks “1” and 
“4” (since they are perishable in nature). Storage area “1” is located 
close to outbound door “10” in order to ensure timely loading of 
outbound truck “10”. Selection of the alternative storage area (e.g., 
storage area “2” instead of storage area “1”) may increase the service 
time of outbound truck “10” due to increased travel distance for the 
forklift operators. The provided example exclusively focuses on the 
interaction between inbound trucks “1” and “4” and outbound truck 
“10” for simplicity. However, without loss of generality, more complex 
relationships between trucks can be modeled (e.g., inbound trucks “1”, 
“4”, and “5” deliver perishable products for outbound truck “10”; in
bound truck “1” delivers perishable products not only for outbound 
truck “10” but also for outbound truck “6”). 

4. Mathematical model 

This section of the manuscript provides a mathematical formulation 
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for the CDT truck scheduling problem with product perishability con
siderations (TSPCDT), the adopted linearization techniques, and the 
linearized formulation of the TSPCDT mathematical model. A detailed 
description of the main notations used in the TSPCDT mathematical 
model is presented in Table 1. 

4.1. Model formulation 

The proposed mixed-integer nonlinear programming model for the 
CDT truck scheduling problem with product perishability considerations 
(TSPCDT) can be formulated as follows. 

TSPCDT: CDT Truck Scheduling Problem with Product Perishability 
Considerations 

minTC=[

(
∑

t∈T
τwt

t cwt
t

)

+

(
∑

t∈T

∑

d∈D

∑

o∈O
τtst

tdoctst
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P
τts

t tpqt tpcts
p

⎞

⎟
⎠

+

(
∑

t∈T
τdt

t cdt
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P
ΔQt tpqt tpcdc

p

⎞

⎟
⎠]

(4) 

Subject to: 
∑

d∈D

∑

o∈O
xtdo = 1∀t ∈ T (5)  

∑

t∈T
xtdo ≤ 1∀d ∈ D, o ∈ O (6)  

∑

d∈Dout

∑

o∈O
xtdo = 0∀t ∈ Tin (7)  

∑

d∈Din

∑

o∈O
xtdo = 0∀t ∈ Tout (8)  

∑

t*∈T:t*∕=t

∑

o*∈O:o*<o

(τtst
t*do* + yt*do* ) + ytdo ≥ τat

t xtdo∀t ∈ T, d ∈ D, o ∈ O (9)  

τst
t ≥

∑

t*∈T:t*∕=t

∑

o*∈O:o*<o

(
τtst

t*do* + yt*do*

)
+ ytdo − M(1 − xtdo)∀t ∈ T, d ∈ D, o ∈ O

(10)  

τst
t ≥ τst

t φt tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (11)  

τtst
tdo = [τht

t +
∑

n∈N

(
τtr

dnztn
)
]xtdo∀t ∈ T, d ∈ D, o ∈ O (12)  

τft
t = τst

t +
∑

d∈D

∑

o∈O
τtst

tdo∀t ∈ T (13)  

τwt
t ≥ τst

t − τat
t ∀t ∈ T (14)  

τdt
t ≥ τft

t − τsd
t ∀t ∈ T (15)  

τtht
t tp ≥

(

τht
t +

∑

d∈D

∑

o∈O

∑

n∈N
τtr

dnzt nxt do + τht
t +

∑

d∈D

∑

o∈O

∑

n∈N
τtr

dnztnxtdo

)

φt tp∀t

∈ Tin, t ∈ Tout, t ∕= t, p ∈ P
(16)  

τts
t tp ≥

(

τft
t − τst

t

)

φt tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (17)  

Qτ
t tp = Q0

t tpe−λpτtht
t tp ∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (18)  

ΔQt tp =

(

Q0
t tp − Qτ

t tp

)

φt tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (19)  

xtdo, ztn, φt tp ∈ B∀t ∈ T, t ∈ Tin, t ∈ Tout, t ∕= t, d ∈ D, o ∈ O, p ∈ P, n ∈ N
(20)  

TC, ytdo, τwt
t , τst

t , τtst
tdo, τft

t , τdt
t , τts

t tp, τtht
t tp, Qτ

t tp, ΔQt tp, τat
t , τht

t , τsd
t , τtr

dn, Q0
t tp, λp,

cwt
t , ctst

t , cts
p , cdt

t , cdc
p , M ∈ R+∀t ∈ T, t ∈ Tin, t ∈ Tout, t ∕= t, d ∈ D, o ∈ O,

p ∈ P, n ∈ N (21)  

qt tp ∈ N∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (22) 

The objective function (4) of the TSPCDT mathematical model fo
cuses on minimization of the total cost (TC), associated with the service 
of all the arriving trucks at the cold-chain CDT. The main cost compo
nents are incorporated within the model, including: (i) the total waiting 
cost; (ii) the total service cost; (iii) the total product inventory cost; (iv) 
the total delayed departure cost; and (v) the total product decay cost. 
Constraint set (5) assures that each arriving truck will be assigned for 
service in one of the service orders at one of the available doors. 
Constraint set (6) assures that no more than one truck can be assigned to 
an available door in a given service order. Constraint set (7) guarantees 
that no inbound truck will be assigned for service at an outbound door, 
while constraint set (8) assures that no outbound truck will be assigned 
for service at an inbound door. Constraint set (9) ensures that the service 
of a truck starts only after the truck arrives at the cold-chain CDT. 
Constraint set (10) indicates that the service of a given truck can start at 
a given door only after the completion of service of all the preceding 
trucks at the door. 

Constraint set (11) guarantees that the service of a given outbound 
truck may begin after the beginning of service of any inbound truck that 
delivers the products for that outbound truck. Constraint set (12) esti
mates the total service time for each arriving truck based on the truck 
handling time (i.e., unloading or loading) and the product transfer time 
to the assigned temporary storage area. Constraint sets (13) through 
(15) compute the service finish time, waiting time, and delayed depar
ture time of each arriving truck at the cold-chain CDT. Constraint set 
(16) computes the total handling and transfer time for each product type 
delivered by a given inbound truck for a certain outbound truck. 
Constraint set (17) computes the temporary storage time for each 
product type delivered by a given inbound truck for a certain outbound 
truck. Constraint set (18) estimates the quality of each product type at 
time τ. Constraint set (19) computes the change in quality of each 
product type delivered by a given inbound truck for a certain outbound 
truck. Constraint sets (20) through (22) show the nature of the model 
parameters and variables. 

4.2. Linearization techniques 

TSPCDT is a nonlinear mathematical model due to constraint set (18) 
that estimates the quality of the product of type p delivered by inbound 
truck t for outbound truck t at time τ. The exponential function is ex
pected to improve the accuracy of the product decay modeling but in
troduces a high degree of nonlinearity in the model. The linearization of 
the nonlinear model components is expected to reduce its computational 
complexity (Pasha et al., 2020). There are a number of approaches used 
in the literature to approximate nonlinear functions that include the 
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following (Dulebenets, 2019b; Wang, Meng, & Liu, 2013): (1) static 
outer approximation method; (2) dynamic outer approximation method; 
(3) static secant approximation method; (4) dynamic secant approxi
mation method; (5) enumeration method; (6) discretization method; 
and others. This study will rely on the static secant approximation 
method for linearizing the product decay function due to its reported 
effectiveness (Wang et al., 2013). 

Let A0
s , s ∈ S be the piecewise static secant approximation of the 

product decay function, where S = {1, ..., w10} is a set of linear secant- 

based segments in the approximation. Denote An
p

(

τtht
t tp

)

=
ΔQt tp

Q0
t tp

=
Q0

t tp − Qτ
t tp

Q0
t tp

=

Q0
t tp − Q0

t tp
e−λpτtht

t tp

Q0
t tp

= 1 − e−λpτtht
t tp ∀t ∈ Tin, t

∈ Tout , t ∕= t, p ∈ P 

as a nonlinear decay function for the product of type p delivered by 
inbound truck t for outbound truck t. Then, An

p(τtht
t tp) can be linearized 

for each product type p using its piecewise linear secant approximation 
A0

ps(τtht
t tp). Some illustrative examples of the linear approximations for a 

given product decay function are presented in Fig. 3. In the considered 
examples, the product decay rate was assumed to be λ = 0.029 hour−1, 
whereas the total handling and transfer time was assumed to vary from 
0 h to ≈350 h. It can be noticed that an increase in the number of linear 
secant segments enhances the approximation accuracy but may also 
increase the CPU time due to an increase in the number of variables in 
the model. 

4.3. Linearized model 

Let d0
t tps = 1, t ∈ Tin, t ∈ Tout , t ∕= t, p ∈ P, s ∈ S if linear secant 

segment s is selected to approximate the function of decay for the 
product of type p delivered by inbound truck t for outbound truck t. 
Denote str0

ps, p ∈ P, s ∈ S (hours) and en0
ps, p ∈ P, s ∈ S (hours) as the 

handling and transfer time values for the product of type p at the 
beginning and at the end of linear secant segment s, respectively. Let 
Slp0

ps, p ∈ P, s ∈ S (% decay/hour) and Inc0
ps, p ∈ P, s ∈ S (% decay) be the 

slope and the intercept of linear secant segment s for the product of type 
p, respectively. Then, the original nonlinear TSPCDT mathematical 
model can be reformulated as a linear problem (TSPCDTL) as follows. 

TSPCDTL: Linearized CDT Truck Scheduling Problem with Product 
Perishability Considerations 

minTC = [

(
∑

t∈T
τwt

t cwt
t

)

+

(
∑

t∈T

∑

d∈D

∑

o∈O
τtst

tdoctst
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P
τts

t tpqt tpcts
p

⎞

⎟
⎠ +

(
∑

t∈T
τdt

t cdt
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P

∑

s∈S
A0

ps(τtht
t tp)qt tpcdc

p

⎞

⎟
⎠]

(23) 

Subject to: 
Constraint sets (5)-(17), (20)-(22) 

∑

s∈S
d0

t tps = 1∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P (24)  

str0
psd

0
t tps ≤ τtht

t tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P, s ∈ S (25)  

en0
ps + M(1 − d0

t tps) ≥ τtht
t tp∀t ∈ Tin, t ∈ Tout, t ∕= t, p ∈ P, s ∈ S (26)  

A0
ps

(

τtht
t tp

)

≥ Slp0
psτ

tht
t tp

+ Inc0
ps − M(1 − d0

t tps)∀t ∈ Tin, t ∈ Tout, t ∕= t, p

∈ P, s ∈ S
(27) 

In the reformulated TSPCDTL mathematical model, the objective 
function (23) focuses on minimization of the total cost (TC), associated 
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with the service of all the arriving trucks at the cold-chain CDT. 
Constraint set (24) assures that only one linear secant segment will be 
chosen to approximate the function of decay for the product of type p 
delivered by inbound truck t for outbound truck t. Constraint sets (25) 
and (26) define the range of the total handling and transfer time values 
when linear secant segment s is chosen to approximate the function of 
decay for the product of type p. Constraint set (27) estimates the 
approximated decay value for the product of type p. After imple
mentation of the adopted linearization techniques, the TSPCDTL 
mathematical model can be solved using the existing mixed-integer 
programming optimization approaches (e.g., CPLEX, MOSEK, GUR
OBI). However, exact optimization approaches may require a substantial 
amount of CPU time to handle large-scale problem instances, and the 
development of approximate solution approaches will be necessary. 

5. Solution algorithm 

The mathematical formulation of the CDT truck scheduling problem 
with product perishability considerations (TSPCDT) can be viewed as a 
special case of the unrelated machine scheduling problem. In the unre
lated machine scheduling problem, the decision maker has to assign the 
arriving jobs for processing on the available machines that have various 
speeds, and the processing time of a given job is affected by the job 
properties as well as the machine assigned (Pinedo, 2016). Similarly, the 
TSPCDT mathematical model assigns the arriving trucks (that can be 
viewed as “jobs”) for service at the available doors (that can be viewed 
as “machines”) and accounts for the changes in the service time of in
bound and outbound trucks at the considered cold-chain CDT depending 
on the door assignment (see Section 3.3 for more details). The unrelated 
machine scheduling problems are recognized as NP-hard problems in a 
strong sense (Pinedo, 2016). The non-linear term represented by 
constraint set (18) that is used for the product decay estimations within 
the TSPCDT mathematical model is expected to increase the computa
tional complexity even further. 

Small-scale instances of TSPCDT and TSPCDTL can be solved to 
global optimality; however, approximate solution approaches would be 
necessary to tackle large-scale instances. This study will use a custom
ized EA-based algorithm as the main solution approach for TSPCDT, 
since the EA-based algorithms were found to be effective for optimizing 
the cross-docking operations (Ladier & Alpan, 2016; Theophilus et al., 
2019). However, the other metaheuristics will be considered as well 
throughout the numerical experiments to evaluate the computational 
efficiency of the developed EA. Note that metaheuristics can solve 
TSPCDT directly without application of linearization techniques. How
ever, the exact mixed-integer linear programming optimization ap
proaches can be applied for TSPCDTL only. 

EAs can be considered as an adaptation of the theory of genetics and 
natural selection initially proposed by Charles Darwin (Darwin, 1859). 
EAs rely on the principle of “survival of the fittest” to search for prom
ising solutions (i.e., the solutions with higher fitness values are given 
preference throughout the search process). Algorithm 1 presents the 
main steps used in the proposed EA. In step 0, the required data struc
tures are initialized. The population of chromosomes (i.e., candidate 
solutions) is initialized in step 1 using the First Come First Served policy 
with truck sequence considerations (FCFS-TSC). The fitness values of the 
initial chromosomes are computed in step 2. Then, the algorithm checks 
the termination criterion and moves to steps 3–7 in case the criterion is 
not met. In step 3, the parent selection is conducted. In steps 4 and 5, the 
EA algorithm applies the crossover operator and mutation operator in 
order to generate and mutate the offspring, respectively. In step 6, the 
fitness values of the offspring chromosomes are evaluated. In step 7, the 
survivors for the next generation are selected. Once the termination 
criterion is achieved, the algorithm returns the final population that 
contains the best solution discovered for the TSPCDT mathematical 
model. Unlike the canonical EAs that rely on the binary chromosome 
representation, the proposed EA adopts the integer chromosome 

representation, which would be more suitable for the considered deci
sion problem. Furthermore, unlike the canonical EAs that rely on the 
random chromosome initialization, the proposed EA deploys a problem- 
specific local search heuristic for the chromosome initialization (i.e., the 
FCFS-TSC heuristic). The next sections of this manuscript will provide 
more details regarding the aforementioned EA procedures. 

Algorithm 1. (Evolutionary Algorithm (EA))  

EA
(
PsizeEA, Tsize, Tsel, pc, pm, InputData

)

in: PsizeEA – EA population size; Tsize – tournament size;  
Tsel – number of individuals selected in each tournament; pc – crossover probability;  
pm – mutation probability; InputData – TSPCDT input data  

out: EAPop – final EA population  
0: Initialization of data structures 
1: EAPop←FCFS −TSC

(
PsizeEA, InputData

)
◃Initialization of chromosomes/ 

population  
2: FitVals←Fitness(EAPop, InputData) ◃Computation of fitness values  

While termination criterion is not met → go to steps 3-7, else → terminate 
3: Parents←Tournament(EAPop, FitVals, Tsize, Tsel) ◃Parent selection  
4: Offspring←CrossoverPMX(Parents, pc) ◃Crossover operations  
5: EAPop←MutationINV(Offspring, pm) ◃Mutation operations  
6: FitVals←Fitness(EAPop, InputData) ◃Computation of fitness values  
7: EAPop←RWS(EAPop,FitVals)◃Survivor selection  

8: return EAPop    

5.1. Solution representation 

The candidate solutions to the TSPCDT mathematical model are 
encoded into the chromosomes in the proposed EA algorithm. The 
chromosomes are assumed to have the integer representation. The 
chromosomes contain the information regarding the assignment of 
trucks to the cold-chain CDT doors along with the service order of trucks 
at each cold-chain CDT door. Fig. 4 provides an illustrative example of a 
chromosome, where the considered cold-chain CDT has three doors. 
Door “1” is assumed to be inbound, while doors “2” and “3” serve as 
outbound doors. Based on the illustrative example, inbound trucks “3”, 
“1”, “2”, and “5” will be served at door “1”. Truck “3” will be served first, 
followed by trucks “1” and “2”. On the other hand, truck “5” will be 
served last at inbound door “1”. Similarly, outbound trucks “7”, “9”, and 
“5” will be served at outbound door “2”, whereas outbound trucks “4” 
and “6” will be served at outbound door “3”. The term “gene” will be 
used to represent distinct components of every chromosome, while gene 
locations will be referred to as “loci” (singular – “locus”). In the example 
presented (see Fig. 4), the genes with inbound truck “3” and inbound 
door “1” are placed in locus “1”. 

5.2. Initialization of the EA population 

The canonical FCFS strategy and its variations have been widely 
deployed in the EA literature and the freight terminal operations studies 
(Dulebenets, 2019a; Kavoosi et al., 2020). This study uses a modified 
FCFS strategy to initialize the chromosomes and population, named as 

Fig. 4. Solution representation.  
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the First Come First Served policy with truck sequence considerations 
(FCFS-TSC). Unlike the canonical FCFS strategy, FCFS-TSC assures that a 
given outbound truck will be served after the inbound truck delivering 
the products for that outbound truck (i.e., truck sequence requirements 
are directly accounted for). The main steps used in FCFS-TSC are pre
sented in Algorithm 2. 

Algorithm 2. (First Come First Served Policy with Truck Sequence Con
siderations (FCFS-TSC))  

FCFS −TSC(T,Tin, Tout , D,O,N, τat , τht , τtr, z)

in: T = {1, .., w1} – set of trucks; Tin = {1, .., w2} – set of inbound trucks; Tout = {1, ..,

w3} – set of outbound trucks;  
D = {1, .., w4} – set of doors; O = {1, .., w7} – set of service orders; N = {1, ..., w8} – 
set of storage areas;  
τat – arrival time of trucks; τht – handing time of trucks; τtr – transfer time between 
doors and storage areas;  
z – product-to-storage area assignment  

out: x – initial truck-to-door-to-service order assignment  
0: |Tin

⃒
⃒←w2; |Tout

⃒
⃒←w3;

⃒
⃒τAV

⃒
⃒←w4; |x|←w1.w4.w7; |τst

⃒
⃒←w1; |τft

⃒
⃒←w1 ◃Initialization  

1: TIS←Order(Tin, τat) ◃Sorting inbound trucks in the order of their arrival  
2: TOS←Order(Tout , τat) ◃Sorting outbound trucks in the order of their arrival  
3: TS←TIS ∪ TOS ◃Combining the sorted inbound and outbound trucks  
4: for t = 1 : |TS| do  
5: d←argmin(τAV

d ) ◃Identification of the first available door  
6: o←argmin(xtdo) ◃Selection of the earliest truck service order  
7: xtdo←1 ◃Assignment of the truck in the earliest service order  
8: τst

t ←max(τat
t , τAV

d ) ◃Computing the truck service start time  
9: τtst

tdo←τht
t +

∑
n∈N

(
τtr

dnztn
)

◃Computing the truck total service time  

10: τft
t ←τst

t +τtst
tdo ◃Computing the truck service finish time  

11: τAV
d ←τft

t ◃Updating the door availability  
12: t←t + 1  
13: end for 
14: return x   

In step 0, the required data structures are initialized. In steps 1–3, the 
inbound trucks and outbound trucks are sorted based on their times of 
arrival, and the sorted sets of trucks are combined. The main loop of 
FCFS-TSC starts in step 4. In step 5, the first available CDT door is 
selected (either inbound or outbound door depending on the truck type). 
In step 6, the earliest order of truck service is identified. In step 7, the 
next truck in the combined set of all the trucks is selected for service at 
the first door available in the earliest order of service. Then, the start 
time of truck service is computed in step 8. In step 9, the total service 
time of the truck is computed as the summation of the total handling 
time and the total product transfer time. In step 10, the finish time of 
truck service is computed. In step 11, FCFS-TSC updates the CDT door 
availability. FCFS-TSC exits the loop after the last truck has been 
assigned for service at the cold-chain CDT. In step 14, FCFS-TSC returns 
the truck-to-door-to-service order assignment. Note that half of the EA 
population will be created using FCFS-TSC, while the remaining half will 
be created randomly to increase the EA population diversity. 

5.3. Solution fitness estimations 

Once the initial population is generated, the developed EA will start 
estimating fitness of each population chromosome. The mathematical 
function presented in equation (28) is used to compute the fitness values 
of the available chromosomes in the EA population. The function con
tains a penalty term (Ψ) to reduce the presence of infeasible chromo
somes. The infeasibility may be caused by the crossover and mutation 
operators (see Section 5.5 for more details) due to violation of the truck 
sequence requirements (e.g., a given outbound truck will be served 
before the inbound truck delivering the products for that outbound 
truck, thereby contradicting realistic practices of cross-docking). The 
value of the penalty term will be set during the parameter tuning 
analysis (see Section 6.1 for more details). 

minTC = Ψ[

(
∑

t∈T
τwt

t cwt
t

)

+

(
∑

t∈T

∑

d∈D

∑

o∈O
τtst

tdoctst
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P
τts

t tpqt tpcts
p

⎞

⎟
⎠ +

(
∑

t∈T
τdt

t cdt
t

)

+

⎛

⎜
⎝

∑

t ∈Tin

∑

t∈Tout

∑

p∈P
ΔQt tpqt tpcdc

p

⎞

⎟
⎠]

(28)  

5.4. Parent selection 

After entering its main loop, the developed EA implements the parent 
selection mechanism to choose the chromosomes that will undergo 
crossover and mutation. The tournament selection operator is used in 
this study for the selection of parents. The main steps performed by the 
tournament selection operator are presented in Algorithm 3. In step 0, 
the tournament selection operator starts the process by initializing the 
required data structure. The main loop executed by the tournament 
selection operator starts in step 1. In step 2, the chromosomes are 
randomly selected to participate in the tournament. In steps 3 through 8, 
a total of Tsel chromosomes that have the highest fitness are selected 
from the tournament and appended to the data structure that contains 
the parent chromosomes. The tournaments are continuously launched 
until the required number of parents are selected. In step 11, the tour
nament selection operator returns the data structure with the selected 
parent chromosomes. 

Algorithm 3. (Tournament Selection (Tournament))  

Tournament(EAPop,FitVals,Tsize, Tsel)
in: EAPop – EA population in a given generation; FitVals – fitness of EA chromosomes 

in a given generation;  
Tsize – tournament size; Tsel – number of individuals selected in each tournament  

out: Parents – parent chromosomes in a given generation  
0: Parents←⊘ ◃Initialization  
1: for i = 1 : (|EAPop|/Tsel)
2: [Tour, FitValsTour

]←Rand(EAPop, FitVals, Tsize) ◃Select chromosomes for the 
tournament  
3: for j = 1 : Tsel  
4: k*←argmin(FitValsTour

) ◃Fittest chromosome search  
5: Parents←Parents ∪ {Tourk* } ◃Fittest chromosome selection as a parent  
6: Tour←Tour −{Tourk* } ◃Fittest chromosome removal from the tournament  
7: j←j + 1  
8: end 
9: i←i + 1  
10: end 
11: return Parents    

5.5. Crossover and mutation operations 

After selecting the parent chromosomes, the proposed EA deploys the 
crossover operator and mutation operator in order to generate and 
mutate the offspring, respectively. The crossover operator enables the 
EA algorithm with exploration of the promising search space domains. 
Selection of the appropriate crossover operator depends on the adopted 
chromosome representation (Eiben & Smith, 2015). The proposed EA 
deploys the Partially Mapped Crossover (PMX) that has been widely 
used in the studies that deployed EAs for the chromosomes with an 
integer representation (as the one that was adopted in this study – see 
Fig. 4). Fig. 5 provides an illustrative example of applying the PMX 
operator on two parent chromosomes. 

In the first step, the PMX operator selects a random segment from 
parent chromosome “1”, and the genes are directly copied to offspring 
“1” in the corresponding loci. In the example presented (see Fig. 5), the 
genes with trucks “2”, “3”, “6”, “5”, and “8” are copied from parent 
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chromosome “1” to offspring “1”. In the second step, the loci in parent 
chromosome “2” that correspond to the selected loci in parent chro
mosome “1” (i.e., loci “3” through “7”) are checked for the genes that 
have not been copied to offspring “1”. The example presented shows that 
the gene with truck “7” has not been copied. Therefore, the PMX oper
ator performs partial mapping for the gene with truck “7” to determine 
the appropriate locus for that gene in offspring “1”. Truck “7” occupies 
locus “4” in parent chromosome “2”, while the same locus is occupied by 
truck “3” in parent chromosome “1”. Truck “3” can be found in locus “3” 
of parent chromosome “2”. Therefore, locus “3” of parent chromosome 
“1” is checked. Truck “2” occupies locus “3” in parent chromosome “1” 
and can be found in locus “2” of parent chromosome “2”. Since locus “2” 
in offspring “1” was not occupied by any gene before parting mapping, 
the gene with truck “7” will be moved to locus “2”. In the last step, the 
missing genes (i.e., the genes that contain trucks “9”, “1”, and “4”) will 
be copied to offspring “1” in their respective loci. 

The mutation operator enables the EA algorithm with exploitation of 
the promising search space domains. The proposed EA deploys the 
inversion mutation operator to perform mutation of the produced 
offspring chromosomes. Fig. 6 provides an illustrative example of 
applying the inversion mutation on the offspring chromosome. A portion 
of the chromosome is randomly selected, and the corresponding genes in 
the selected segment are inverted. In the example presented (see Fig. 6), 
the genes with trucks “2” and “5” exchange their positions, whereas the 
genes with trucks “3” and “6” exchange their positions as well. After 
performing the inversion mutation, the genes that represent the trucks 
will be sorted by their assigned doors to prevent disruption in the truck 
service orders (i.e., the genes with trucks “3” and “2” should be placed 
next to the genes with trucks “9” and “7” as all of these trucks are 
assigned for service at door “1”). 

5.6. Survivor selection 

After generating and mutating the offspring chromosomes, the 
developed EA evaluates their fitness and applies the survivor selection 
operator to choose the offspring chromosomes that will be further 
assigned to the following generation. The roulette wheel selection 
operator is used in this study for the selection of survivors. The main 
steps performed by the roulette wheel selection operator are presented 
in Algorithm 4. In step 0, the roulette wheel selection operator initializes 
the required data structures. In steps 1–4, the fitness function value is 
adjusted for each chromosome in the EA population (since TSPCDT has 
a minimization objective). In step 5, the adjusted fitness values are 
normalized such that the summation of fitness values of the available 
population chromosomes is equal to one. Another loop executed by the 
roulette wheel selection operator starts in step 6. In step 7, a random 
number (Val) between 0.00 and 1.00 is generated. Then, the chromo
some with a normalized fitness value, which is closer to the random 
number generated, is selected to become the next generation 

Fig. 5. Partially-mapped crossover example.  

Fig. 6. Inversion mutation example.  
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chromosome in step 9. This procedure continues until the required 
number of offspring are selected. In step 12, the roulette wheel selection 
operator returns the data structure with the selected offspring chromo
somes that will be further assigned to the following generation. 

Algorithm 4. (Roulette Wheel Selection (RWS))  

RWS(EAPop,FitVals)
in: EAPop – EA population in a given generation; FitVals – fitness of EA chromosomes 

in a given generation  
out: Offspring– offspring chromosomes to be transferred to the next generation  

0: Offspring←⊘;|FitValsaux|←|FitVals| ◃Initialization  
1: for i = 1 : |EAPop| do  
2: FitValsaux

i ←1/FitValsi ◃Adjusting the chromosome fitness  
3: i←i + 1  
4: end for 
5: FitValsaux←Normalize(FitValsaux

) ◃Normalizing the adjusted fitness values  
6: for i = 1 : |EAPop| do  
7: Val←Rand(0.00; 1.00) ◃Generate a random number between 0.00 and 1.00  
8: j←f ind(FitValsaux

−Val > 0) ◃Select the chromosome based on step 7  
9: Offspring←Offspring ∪ {EAPopj} ◃Append the selected offspring  
10: i←i + 1  
11: end for 
12: returnOffspring   

The proposed EA also uses the elitism strategy. The elitism strategy 
involves the storage and transfer of the fittest individual to the next 
generation before the parent selection, crossover, mutation, and survi
vor selection are applied to the chromosomes. Such a strategy allows 
preserving the fittest individual from one generation to another and 
preventing solution quality retrogression due to application of stochastic 
operators throughout the EA evolution (i.e., parent selection, crossover, 
mutation, and survivor selection). 

5.7. EA termination 

The developed EA terminates when one of the following conditions is 
satisfied: (a) no improvements in the solution quality have been iden
tified after a specific number of generations; (b) the maximum number 
of generations has been reached. Such termination conditions were 
found to be popular in the EA literature (Eiben & Smith, 2015). 

6. Numerical experiments 

In this section of the manuscript, the conducted numerical experi
ments are described in detail. The main objective of the numerical ex
periments was to evaluate the computational performance of the 
developed EA metaheuristic against the other metaheuristics that have 
been often used for optimizing different cross-docking operations. The 
EA metaheuristic was compared against the following alternative algo
rithms: (a) Variable Neighborhood Search (i.e., VNS); (b) Tabu Search (i. 
e., TS); and (c) Simulated Annealing (i.e., SA). A detailed description of 
the VNS metaheuristic can be found in Hansen and Mladenović (2001), 
while Liao et al. (2013) provides a thorough description of the TS and SA 
metaheuristics. Unlike the canonical SA that works with a current so
lution and its one neighbor in each iteration, the developed SA was 
designed to generate multiple neighbors of a current solution (the 
number of neighbors was determined during the SA parameter tuning) 
in each iteration to improve the SA explorative capabilities. The EA, 
VNS, TS, and SA metaheuristics were encoded using MATLAB version 
2016a. On the other hand, the TSPCDTL mathematical model was 
encoded using the General Algebraic Modeling System (GAMS) version 
24.8. CPLEX was set as a mixed-integer linear programming optimiza
tion solver in GAMS. All the numerical experiments were executed on a 
DELL workstation that has an Intel Core i7-7700 k processor, 32 GB 
RAM, and Microsoft Windows 10 Operating System. 

The scope of the numerical experiments includes the following steps: 
(1) selection of parameters for the TSPCDT mathematical model and the 

considered metaheuristics; (2) comparative analysis of the considered 
metaheuristics against exact optimization; (3) detailed evaluation of the 
considered metaheuristics in terms of various performance metrics; and 
(4) analysis of managerial implications using the most effective meta
heuristic algorithm (identified in step 3). The next sections of this 
manuscript elaborate on each one of the analysis steps. 

6.1. Parameter selection 

6.1.1. TCPCDT mathematical model 
The parameter values for the TSPCDT were set based on the previous 

CDT truck scheduling studies (Boloori Arabani et al., 2012; Dulebenets, 
2019a; Liao et al., 2013; Theophilus et al., 2019) and are presented in 
Table 2. The arrival times of trucks at the considered cold-chain CDT, 
previously negotiated between the corresponding logistics companies 
and the CDT operator, were modeled based on an exponential distri
bution with an average inter-arrival time of 5 min or ≈0.083 h (i.e., 
ED[0.083]). The handling time of trucks, which refers to either unloading 
of inbound trucks or loading of outbound trucks, was assumed to vary 
from 10 min (or ≈0.167 h) to 26.667 min (or ≈0.444 h): τht

t = UD[0.167;

0.444]∀t ∈ T (hours). Note that term UD[Var1; Var2] represents the 
generation of pseudorandom numbers uniformly distributed between 
Var1 and Var2. The scheduled departure time of each truck was set based 

Table 2 
The TSPCDT parameter data.  

Parameter Selected Value 

Number of trucks: |T| (trucks)  Value varies depending on the 
problem instance 

Number of doors: |D| (doors)  Value varies depending on the 
problem instance 

Number of available service orders: |O|

(orders)  
|O| = |T|

Number of available temporary storage 
areas: |N| (storage areas)  

5 

Number of product types to be handled: |P|

(product types)  
10 

Average inter-arrival time of trucks: Δτat 

(hours)  
Δτat = ED[0.083]

Arrival time of truckt: τat
t , t ∈ T (hours)  τat

t+1 = τat
t + Δτat∀t ∈ T  

Handing time of truck t: τht
t , t ∈ T (hours)  τht

t = UD[0.167; 0.444]∀t ∈ T  

Scheduled departure time for truck t: τsd
t , t ∈

T (hours)  
τsd

t = τat
t + min

(
τtst

tdo
)
∙UD[1.000;

1.200]∀t ∈ T  
Transfer time from door d to storage area n: 

τtr
dn, d ∈ D, n ∈ N (hours)  

τtr
dn = UD[1.250; 2.333]∀d ∈ D,n ∈ N  

Temporary storage area assignment:ztn, t ∈

T, n ∈ N  
ztn = round(UD[0; 1])∀t ∈ T, n ∈ N  

Product-to-truck assignment:φt tp , t ∈ Tin,

t ∈ Tout , t ∕= t, p ∈ P  
φt tp = round(UD[0; 1])∀t ∈ Tin, t ∈

Tout , p ∈ P  

Product quantity: qt tp , t ∈ Tin , t ∈ Tout ,

t ∕= t, p ∈ P (product units)  
qt tp = round(UD[30; 40])∀t ∈ Tin,

t ∈ Tout ,p ∈ P  

Product quality at time “0”: Q0
t tp , t ∈ Tin,

t ∈ Tout , t ∕= t, p ∈ P (%)  

Q0
t tp = 100∀t ∈ Tin, t ∈ Tout ,p ∈ P  

Decay rate of product type p: λp, p ∈ P 
(hour−1)  

λp = UD[0.010; 0.030]∀p ∈ P  

Unit waiting cost for truck t: cwt
t , t ∈ T (USD/ 

hour)  
cwt

t = UD[100; 200]∀t ∈ T  

Unit service cost for truck t: ctst
t , t ∈ T (USD/ 

hour)  
ctst

t = UD[150; 300]∀t ∈ T  

Unit temporary storage cost for product type 
p: cts

p , p ∈ P (USD/hour)  
cts

p = UD[50; 100]∀p ∈ P  

Unit delayed departure cost for truck t: cdt
t ,

t ∈ T (USD/hour)  
cdt

t = UD[350; 700]∀t ∈ T  

Unit decay cost for product type p: cdc
p , p ∈ P 

(USD/% decay)  
cdc

p = UD[100; 150]∀p ∈ P  

Sufficiently large positive number:M  10,000  
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on its time of arrival and the time required completing its service: 
τsd

t = τat
t +min

(
τtst

tdo
)
∙UD[1.000; 1.200]∀t ∈ T (hours). The time required 

to transfer the products that were delivered by a given inbound truck 
from a given CDT door to one of the storage areas (τtr

dn,d ∈ D,n ∈ N) was 
assumed to vary from 75 min (or ≈1.250 h) to 140 min (or ≈2.333 h). 
The considered cold-chain CDT was assumed to have 5 temporary 
storage areas (|N| = 5). The quantity of a given product type transported 
by a given inbound truck for a given outbound truck (qt tp, t ∈ Tin, t ∈

Tout , p ∈ P) was assumed to vary from 30 product units to 40 product 
units. 

The inbound trucks were assumed to deliver ten different product 
types (|P| = 10). The quality of all the products delivered to the 
considered cold-chain CDT at time “0” (Q0

t tp, t ∈ Tin, t ∈ Tout , t ∕= t,
p ∈ P) was assumed to be 100%. Furthermore, the decay rate of a given 
product type (λp, p ∈ P) ranged between 0.010 h−1 and 0.030 h−1. The 
unit truck waiting cost (cwt

t , t ∈ T) varied from 100 USD/hour to 200 
USD/hour, whereas the unit truck service cost (ctst

t , t ∈ T) varied from 
150 USD/hour to 300 USD/hour. On the other hand, the unit temporary 
product storage cost (cts

p , p ∈ P) ranged between 50 USD/hour and 100 
USD/hour, while the unit truck delayed departure cost (cdt

t ,t ∈ T) ranged 
between 350 USD/hour and 700 USD/hour. As for the unit product 
decay cost (cdc

p ,p ∈ P), it was assumed to vary from 100 USD/% decay to 
150 USD/% decay. This study considered two groups of problem in
stances based on their scale. The first group included 30 small-scale 
problem instances with the number of CDT doors ranging between 2 
and 4 and the number of trucks ranging between 6 and 15. The second 
group included 30 large-scale problem instances with the number of 
CDT doors ranging between 4 and 8 and the number of trucks ranging 
between 84 and 120. 

6.1.2. Metaheuristics 
In this study, the parameter tuning analysis had to be performed for a 

total of four metaheuristics (EA, VNS, TS, and SA). The main objective of 
the parameter tuning was to determine the most appropriate combina
tion of parameter values to enhance the performance of each meta
heuristic. The proposed EA has a total of six parameters: (1) population 
size; (2) penalty for infeasible solutions; (3) tournament size; (4) number 
of individuals selected in each tournament; (5) crossover probability; 
and (6) mutation probability. The selection of EA parameter values was 
conducted based on the evaluation of each parameter combination with 
respect to the tradeoff between the objective function value and the CPU 
time (e.g., increasing population size may enhance the explorative ca
pabilities of the algorithm and improve the objective function values at 
termination but will require more CPU time). The EA parameter tuning 
was conducted for the three large-scale problem instances selected at 
random, assuming that each parameter has three candidate values (see 
Table 3). Furthermore, ten EA replications were executed throughout 
the course of the conducted analysis for each parameter combination to 
accurately estimate the average values of objective function as well as 
the average CPU time. Therefore, EA was launched for a total of (3 
candidate values) (6 parameters) ∙ (3 problem instances) ∙ (10 replications 
for each combination) = 21,870 times throughout the analysis. The re
sults from the performed EA parameter tuning are reported in Table 3. 

A similar analysis was also conducted for the VNS, TS, and SA met
aheuristics in order to identify the appropriate parameter values for 
these algorithms. Based on preliminary EA runs, the maximum number 
of generations was set to 3000 generations, while the maximum number 
of generations without objective function improvements was set to 2500 
generations. Similarly, the maximum number of iterations was set to 
3000 iterations for VNS, TS, and SA, while the maximum number of 
iterations without objective function improvements was set to 2500 it
erations for all the other metaheuristics considered. 

6.2. Comparative analysis against exact optimization 

As a part of the numerical experiments, a supplementary computa
tional analysis was performed to examine the accuracy of the solutions 
of the considered metaheuristics. The solutions returned by the meta
heuristics were compared with the solutions obtained by CPLEX for all 
the generated small-scale problem instances, where the number of CDT 
doors ranged between 2 and 4 (an increment of 1 CDT door was adop
ted) and the number of trucks ranged between 6 and 15 (an increment of 
1 truck was adopted). Note that CPLEX was applied to the linearized 
version of the TSPCDT mathematical model (i.e., TSPCDTL) to over
come the increasing complexity of the model due to additional nonlinear 
terms (see Section 4.3). A total of ten linear secant segments were used 
to approximate the function of decay for each product type, as piecewise 
functions with ten linear secant segments demonstrated high approxi
mation accuracy (see Fig. 3) and required a reasonable CPU time. The 
target optimality gap of CPLEX was set to 0.5%, and its CPU time limit 
was restricted to 1 h (i.e., 3600 sec). The results from the detailed 
comparative analysis of the considered metaheuristics against CPLEX 
are reported in Table 4, which contains the following information for 
every small-scale problem instance: (i) the problem instance number; 
(ii) the number of doors – |D|; (iii) the number of trucks – |T|; (iv) the TC 
value of the optimal truck schedule obtained by CPLEX; (v) the CPU time 
for CPLEX; (vi) the TC value of the truck schedule obtained by each 
metaheuristic (average over ten replications); (vii) the CPU time for 
each metaheuristic (average over ten replications). 

The analysis results demonstrated that CPLEX was very sensitive to 
increasing problem size even after linearizing the original TSPCDT 
mathematical model. In particular, the small-scale problem instances 

Table 3 
Selected values of the parameters of metaheuristics.  

Algorithm Parameter Candidate 
values 

Selected 
value 

EA Population size (PsizeEA)  [30; 40; 50] 50 

EA Penalty (Ψ)  [4.00; 6.00; 
8.00] 

4.00 

EA Tournament size (Tsize)  [8; 10; 13] 13 
EA Number of individuals selected in 

each tournament (Tsel)  
[4; 5; 7] 7 

EA Crossover probability (pc)  [0.30; 0.50; 
0.70] 

0.30 

EA Mutation probability (pm)  [0.01; 0.02; 
0.05] 

0.01 

VNS Neighborhood size (PsizeVNS)  [30; 40; 50] 50 

VNS Penalty (Ψ)  [4.00; 6.00; 
8.00] 

4.00 

VNS Exchange probability (pex)*  [0.01; 0.02; 
0.05] 

0.01 

TS Number of solutions evaluated 
during local search (PsizeTS)  

[30; 40; 50] 40 

TS Penalty (Ψ)  [4.00; 6.00; 
8.00] 

4.00 

TS Exchange probability (pex)*  [0.01; 0.02; 
0.05] 

0.02 

TS Size of the Tabu list (Tabumax) – % 
of PsizeTS  

[0.10; 0.15; 
0.20] 

0.20 

SA Number of solutions evaluated 
during local search (PsizeSA)  

[30; 40; 50] 50 

SA Penalty (Ψ)  [4.00; 6.00; 
8.00] 

4.00 

SA Exchange probability (pex)*  [0.01; 0.02; 
0.05] 

0.01 

SA Initial temperature (τ0)  [1,502; 1,602; 
1,702] 

1,602 

SA Temperature interval (dτ)  [0.3; 0.4; 0.5] 0.5  

* Exchange probability refers to the probability of inverting a set of consec
utive trucks in the current solution when generating the neighbor solutions 
during local search. 
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Table 4 
CPLEX vs. considered metaheuristics for small-scale problem instances.  

Instance |D| |T| CPLEX EA VNS TS SA 

TC(USD)  CPU (sec) TC(USD)  CPU (sec) TC(USD)  CPU (sec) TC(USD)  CPU (sec) TC(USD)  CPU (sec) 

1 2 6 17,792.8 7.34 17,792.8 15.86 17,792.8 10.71 17,792.8 9.48 17,792.8 12.27 
2 2 7 21,691.9 80.39 21,691.9 15.95 21,691.9 12.16 21,691.9 10.21 21,691.9 14.12 
3 2 8 25,150.1 326.19 25,150.1 17.83 25,150.1 12.54 25,150.1 11.18 25,150.1 13.50 
4 2 9 33,977.1 3,604.30 33,640.7 16.90 33,640.7 13.28 33,640.7 10.64 33,640.7 14.17 
5 2 10 35,100.1 3,602.50 34,482.9 17.02 34,482.9 14.64 34,482.9 11.38 34,482.9 14.76 
6 2 11 45,833.5 3,602.52 44,287.9 18.10 44,287.9 15.15 44,287.9 11.57 44,287.9 15.08 
7 2 12 53,645.1 3,603.44 51,586.8 20.47 53,006.0 17.23 52,837.9 14.00 53,242.4 17.30 
8 2 13 64,710.0 3,602.49 61,752.0 22.25 62,274.1 17.66 62,127.7 14.60 64,475.0 19.43 
9 2 14 77,202.2 3,602.91 71,782.6 21.09 74,443.0 18.53 72,116.6 15.59 74,724.9 20.07 
10 2 15 98,720.3 3,602.45 90,304.0 23.39 92,598.1 19.61 90,457.7 15.44 92,692.0 21.02 
11 3 6 13,248.7 14.58 13,248.7 14.57 13,248.7 11.36 13,248.7 11.12 13,248.7 12.49 
12 3 7 16,082.8 55.34 16,082.8 16.00 16,082.8 11.55 16,082.8 10.69 16,082.8 13.27 
13 3 8 19,063.7 3,009.34 19,063.7 16.23 19,063.7 12.08 19,063.7 10.76 19,063.7 14.20 
14 3 9 22,825.4 3,602.42 22,563.7 17.04 22,563.7 13.41 22,563.7 11.46 22,563.7 14.44 
15 3 10 26,976.1 3,602.53 26,410.9 15.59 26,410.9 13.58 26,410.9 11.66 26,410.9 15.37 
16 3 11 32,104.3 3,604.24 30,937.9 17.22 31,241.9 14.90 30,957.9 12.39 31,565.1 15.70 
17 3 12 44,327.3 3,603.56 42,516.1 19.83 44,112.4 17.15 42,644.0 14.41 44,162.8 18.21 
18 3 13 50,911.4 3,604.26 48,097.7 20.76 48,575.9 16.76 48,312.3 15.05 48,851.2 19.02 
19 3 14 57,099.5 3,603.09 53,022.1 21.35 53,577.8 17.48 53,099.1 15.03 54,522.1 19.72 
20 3 15 73,675.0 3,602.69 66,421.7 22.49 68,558.9 19.15 68,359.0 16.57 68,921.7 20.99 
21 4 6 12,025.6 43.20 12,025.6 13.32 12,025.6 10.77 12,025.6 11.34 12,025.6 11.53 
22 4 7 14,359.9 370.89 14,359.9 14.21 14,359.9 13.04 14,359.9 11.56 14,359.9 12.42 
23 4 8 16,494.3 3,161.14 16,494.3 15.02 16,494.3 13.37 16,494.3 12.55 16,494.3 13.88 
24 4 9 19,636.0 3,604.63 19,326.8 16.46 19,326.8 13.89 19,326.8 11.70 19,326.8 13.76 
25 4 10 20,877.1 3,604.78 20,393.7 15.94 20,393.7 14.14 20,393.7 11.94 20,393.7 14.44 
26 4 11 25,760.9 3,604.44 24,815.4 16.60 25,018.5 13.95 24,735.4 12.40 25,253.8 15.27 
27 4 12 34,076.6 3,603.32 32,665.4 18.55 33,391.2 16.44 32,983.6 13.62 33,855.8 18.11 
28 4 13 41,191.8 3,603.11 38,378.6 19.17 38,596.6 17.44 38,378.6 14.19 40,356.4 18.84 
29 4 14 47,862.6 3,602.82 43,906.6 19.88 43,996.8 17.12 43,473.7 15.48 44,628.2 19.39 
30 4 15 60,974.2 3,602.75 54,783.6 21.62 56,632.6 19.48 56,083.9 17.44 56,929.5 21.15 
Average:   37,446.5 2,757.92 35,599.6 18.02 36,101.3 14.95 35,786.1 12.85 36,373.3 16.13 

*Bold font is used for the best objective function values achieved. 

Table 5 
Comparative analysis of the considered metaheuristics for large-scale problem instances.  

Instance |D| |T| EA VNS TS SA 

TC(103 USD)  CPU (sec) TC(103 USD)  CPU (sec) TC(103 USD)  CPU (sec) TC(103 USD)  CPU (sec) 

31 4 84 1,268.34 98.03 1,603.14 96.31 1,553.21 80.44 2,251.24 99.98 
32 4 88 1,435.39 108.18 1,687.45 101.50 1,676.15 87.12 2,644.48 105.09 
33 4 92 1,582.43 117.81 2,259.87 107.86 2,008.82 92.01 3,078.55 110.47 
34 4 96 1,718.32 126.29 2,696.11 118.95 2,221.14 97.49 3,364.65 114.31 
35 4 100 1,898.07 137.66 3,090.78 124.12 2,775.18 99.87 3,831.24 122.62 
36 4 104 2,253.20 156.52 3,433.42 135.01 2,395.98 103.19 4,644.62 137.02 
37 4 108 2,448.96 147.43 3,716.47 139.07 2,663.28 109.05 5,030.33 144.92 
38 4 112 2,667.63 151.99 4,335.81 151.27 2,755.23 114.46 5,504.95 151.38 
39 4 116 2,919.21 152.70 4,975.67 161.70 3,053.66 121.97 5,987.11 158.87 
40 4 120 3,108.67 160.36 5,331.87 166.81 3,464.04 131.60 6,593.46 166.59 
41 6 84 880.66 97.90 1,040.02 97.69 1,023.11 81.67 1,620.83 101.44 
42 6 88 1,022.12 105.39 1,343.31 104.68 1,153.38 86.37 1,912.59 110.78 
43 6 92 1,142.79 111.60 1,526.22 110.50 1,351.95 92.29 2,196.78 112.60 
44 6 96 1,214.00 117.86 1,645.67 118.39 1,405.21 97.37 2,460.04 118.91 
45 6 100 1,334.10 129.62 1,964.91 132.00 1,508.63 101.32 2,787.06 126.50 
46 6 104 1,662.72 131.82 2,337.82 139.14 1,678.72 103.54 3,227.21 133.63 
47 6 108 1,831.01 139.34 2,375.70 145.21 1,891.55 109.18 3,503.90 149.24 
48 6 112 1,934.07 146.19 2,648.32 147.88 1,962.68 114.69 3,750.66 156.42 
49 6 116 2,151.45 152.67 3,162.15 158.72 2,258.25 120.53 4,133.25 164.27 
50 6 120 2,407.47 160.49 3,486.78 162.40 2,410.51 127.98 4,586.20 172.42 
51 8 84 707.44 100.70 806.08 96.23 782.38 77.01 1,308.67 100.37 
52 8 88 801.59 105.92 994.87 109.97 878.31 82.66 1,536.22 110.74 
53 8 92 913.88 111.66 1,115.40 121.52 1,058.02 87.37 1,732.87 119.17 
54 8 96 963.86 124.40 1,259.69 134.66 1,102.81 95.07 1,940.31 121.34 
55 8 100 1,090.57 132.20 1,590.59 140.93 1,323.82 98.36 2,171.83 131.98 
56 8 104 1,396.17 140.02 1,672.85 145.87 1,397.78 103.88 2,478.61 136.33 
57 8 108 1,527.76 144.06 1,689.21 153.05 1,469.99 109.81 2,709.95 137.39 
58 8 112 1,643.97 151.14 2,077.30 162.90 1,633.94 115.14 2,926.57 154.69 
59 8 116 1,816.76 158.00 2,362.89 173.51 1,836.52 121.58 3,217.98 152.02 
60 8 120 1,972.21 165.50 2,517.34 173.36 1,936.66 127.45 3,485.67 159.63 
Average:  1,657.16 132.78 2,358.26 134.37 1,821.03 103.02 3,220.59 132.70 

*Bold font is used for the best objective function values achieved. 
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with 9 trucks and more could not be solved to global optimality within 
the imposed CPU time limit. Such a finding proves a high computational 
complexity of the studied CDT truck scheduling problem and highlights 
the need for application of metaheuristics. Furthermore, it can be 
observed that all the considered metaheuristics were able to achieve the 
optimal solutions provided by CPLEX for problem instances 1, 2, 3, 11, 
12, 13, 21, 22, and 23 and required much smaller CPU time as compared 
to CPLEX. In particular, the EA, VNS, TS, and SA metaheuristics required 
on average 18.02 sec, 14.95 sec, 12.85 sec, and 16.13 sec, respectively, 
over the generated small-scale problem instances. The average values of 
the objective function comprised 35,599.6 USD, 36,101.3 USD, 35,786.1 
USD, and 36,373.3 USD for the EA, VNS, TS, and SA metaheuristics, 
respectively. Therefore, the developed EA typically yielded higher 
quality solutions for the generated small-scale problem instances. 
However, the difference among the objective function values that were 
returned by the considered metaheuristics was not substantial as the 
analyzed problem instances were small-scale (the number of CDT doors 
did not exceed 4, while the number of trucks did not exceed 15). 

6.3. Detailed evaluation of the metaheuristics 

As a part of the numerical experiments, a set of supplementary 
computational analyses were performed to evaluate the considered 
metaheuristics in terms of different performance metrics for all the 
generated large-scale problem instances, where the number of CDT 
doors ranged between 4 and 8 (an increment of 2 CDT doors was 
adopted) and the number of trucks ranged between 84 and 120 (an 
increment of 4 trucks was adopted). First, the objective function and 
CPU time values that were returned by the considered metaheuristics 
were compared. Second, the stability of the objective function at 
termination along with the required CPU time was assessed for each 
metaheuristic considered. Third, a detailed investigation of the 
convergence patterns was performed for each metaheuristic considered. 
The next sections of this manuscript elaborate more on each one of the 
conducted analyses. 

6.3.1. Objective function and CPU time values 
The analysis of the objective function and CPU time values is a 

critical step in evaluating the computational performance of each met
aheuristic. Ideally, an efficient metaheuristic algorithm returns good- 
quality solutions that have desirable values of the objective function 
within a reasonable CPU time (unlike CPLEX that can produce good- 
quality or even optimal solutions but will incur a prohibitively large 
CPU time). The results from the detailed comparative analysis of the 
considered metaheuristics in terms of the objective function and CPU 
time values are reported in Table 5, which contains the following in
formation for every large-scale problem instance: (i) the problem 
instance number; (ii) the number of doors – |D|; (iii) the number of trucks 
– |T|; (iv) the TC value of the truck schedule obtained by each meta
heuristic (average over ten replications); (v) the CPU time for each 
metaheuristic (average over ten replications). 

The analysis results demonstrated that the average values of the 
objective function comprised 1657.16 ∙ 103 USD, 2358.26 ∙ 103 USD, 
1821.03 ∙ 103 USD, and 3220.59 ∙ 103 USD for the EA, VNS, TS, and SA 
metaheuristics, respectively. Therefore, EA was typically able to obtain 
the best objective function values. Such a performance of EA can be 
explained by the fact that EA is recognized as a population-based met
aheuristic that has a high capability of exploring the solution search 
space for promising domains and good-quality solutions. On the con
trary, the VNS, TS and SA metaheuristics are recognized as single- 
solution-based metaheuristics that primarily rely on local search and 
are limited to a certain extent in their capabilities of exploring the so
lution search space for promising domains and good-quality solutions. 
Throughout the analysis, the statistical significance in the difference 
among the average objective function values that were returned by EA 
and the other considered metaheuristics was assessed. The assessment 

was performed by means of a paired z-test. In particular, a total of three 
types of a paired z-test were conducted for each large-scale problem 
instance: (a) “EA vs. VNS”; (b) “EA vs. TS”; and (c) “EA vs. SA”. The null 
hypothesis (H0) of each z-test assumed that there was no substantial 
difference among the average objective function values of EA and the 
other metaheuristics. The alternate hypothesis (Ha), on the other hand, 
assumed that there was a substantial difference among the average 
objective function values of metaheuristics. 

The z-statistic was computed as follows for each paired z-test: z =
mean(TCm)−mean(TCEA)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(std(TCm ))2
n +

(std(TCEA ))2
n

√ , where mean(TCm) is the average of the objective 

function values obtained by metaheuristic m; mean(TCEA) is the average 
of the objective function values obtained by EA; std(TCm) is the objective 
function standard deviation for metaheuristic m; std(TCEA) is the 
objective function standard deviation for EA; and n = 2 as two algo
rithms with ten replications each were compared during each z-test. 
Based on the outcomes from the performed paired z-tests, the average 
values of the z-statistic over all the generated large-scale problem in
stances comprised 30.61, 5.36, and 46.08 for the “EA vs. VNS”, “EA vs. 
TS”, and “EA vs. SA” tests, respectively. Therefore, the null hypothesis 
can be rejected at 0.01% significance level with a critical z-value of 
3.819, and the objective function values of EA are statistically superior 
as compared to the ones obtained by the other metaheuristics. In terms 
of the CPU time values, the EA, VNS, TS, and SA metaheuristics required 
on average 132.78 sec, 134.37 sec, 103.02 sec, and 132.70 sec, 
respectively, over the generated large-scale problem instances. The 
maximum CPU time required by any of the considered metaheuristics 
did not exceed 180 sec (or 3 min) over all the generated large-scale 
problem instances. Such a CPU time can be viewed as reasonable, tak
ing into account the fact that the large-scale problem instances with up 
to 8 CDT doors and 120 trucks were evaluated throughout the numerical 
experiments. 

6.3.2. Objective function and CPU time variations 
The considered metaheuristics rely on a variety of stochastic oper

ators (e.g., the developed EA deploys the crossover operator and mu
tation operator in order to generate and mutate the offspring). The 
stochastic operators allow metaheuristics effectively changing the cur
rent solutions in order to identify more promising solutions. In the 
meantime, application of stochastic operators also leads to the variations 
in the values of objective function at termination. Furthermore, execu
tion of the same metaheuristic for the same problem instance on a given 
CPU may require different computational times. The latter phenomenon 
can be caused by the additional procedures a given CPU may run during 
the metaheuristic execution (e.g., basic software updates, antivirus scan, 
hardware scan). Significant variations in the objective function values 
and the CPU time are not desirable. 

As a part of the numerical experiments, a supplementary computa
tional analysis was performed to examine the variations in the values of 
objective function and the CPU time for the considered metaheuristics. 
The coefficients of variation values for the objective function and the 
CPU time were computed for every metaheuristic and every large-scale 
problem instance over ten replications performed. The results from the 
conducted analysis are reported in Fig. 7. The analysis results demon
strated that the coefficient of variation of the objective function values 
that were returned by the considered metaheuristics did not exceed 
2.82% for the generated large-scale problem instances. Moreover, the 
coefficient of variation of the CPU time required by the considered 
metaheuristics did not exceed 5.91% for the generated large-scale 
problem instances. Hence, the considered metaheuristics can be recog
nized as reliable algorithms in terms of both objective function and CPU 
time values. 

6.3.3. Algorithmic convergence patterns 
The analysis of the algorithmic convergence patterns is another 
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critical step in evaluating the efficiency of each metaheuristic. In 
particular, the convergence pattern analysis allows determining how 
efficiently each metaheuristic discovers the promising search space 
domains and superior solutions from one generation (or iteration) to 
another. As a part of the numerical experiments, the convergence pat
terns were thoroughly analyzed for every metaheuristic considered and 
every large-scale problem instance generated. The results from the 
conducted analysis are reported in Fig. 8 for large-scale problem in
stances 51 through 60. The selected problem instances represent a 
portion of the large-scale problem instances with the largest number of 
CDT doors and trucks. However, similar tendencies were noticed for the 
remainder of the problem instances. 

The analysis results demonstrated that EA was able to achieve good- 
quality solutions more quickly when comparing to VNS, TS, and SA. 
Such a performance of EA can be explicated by the fact that EA is a 
population-based metaheuristic and has a high capability of exploring 
the solution search space for promising domains and good-quality so
lutions. On the contrary, the VNS, TS and SA metaheuristics are single- 
solution-based metaheuristics that primarily rely on local search and are 
limited to a certain extent in their explorative and exploitative capa
bilities. Nevertheless, TS was able to show quite a competitive perfor
mance for a number of large-scale problem instances (i.e., problem 
instances 56 through 60). Hence, introduction of the Tabu list in TS was 
found to be favorable for the search process, as the additional re
strictions were imposed for revisiting the same solutions. Such re
strictions prompted TS discovering new promising search space domains 
rather than evaluating the same solutions near local optima. 

6.4. Managerial implications 

As a part of the numerical experiments, a set of supplementary 
sensitivity analyses were performed to draw some managerial implica
tions using the proposed TSPCDT mathematical model and the most 
promising metaheuristic. Based on a set of detailed comparative ana
lyses that were performed in Sections 6.3.1, 6.3.2 and 6.3.3 of the 
manuscript, the developed EA was found to be the most promising 
metaheuristic as it demonstrated the best tradeoff between the solution 
quality at convergence and the required CPU time. Hence, the developed 
EA will be further deployed to conduct the sensitivity analyses and draw 
some managerial implications. In particular, the sensitivity of the truck 
scheduling decisions to the following attributes will be analyzed: (a) the 
product decay rate; (b) the unit product temporary storage cost; and (c) 
the CDT door availability and truck arrival patterns. The next sections of 
this manuscript elaborate more on each one of the conducted sensitivity 
analyses. 

6.4.1. Sensitivity of the truck scheduling decisions to the product decay rate 
A total of ten product decay rate scenarios were created by increasing 

the base product decay rate value, which was estimated using uniform 
distribution UD[0.010; 0.030], by 20% from one scenario to another (i.e., 
the product decay rate in scenario “1” was generated as 
UD[0.010; 0.030], while the product decay rate in scenario “10” was 
generated as UD[0.052; 0.155]). The remaining TSPCDT parameters 
were assumed to be the same as specified in Section 6.1.1. The results 
from the conducted sensitivity analysis are reported in Fig. 9, which 
shows the changes in the total truck waiting time, the total product 
storage time, as well as the total truck delayed departure time for the 
considered product decay rate scenarios. 
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Fig. 7. The coefficient of variation of the objective function and CPU time values for the considered metaheuristics.  
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It can be observed that an increase in the product decay rate caused a 
reduction in the total truck waiting time as well as the total truck 
delayed departure time, aiming to load the arriving outbound trucks 
with perishable products in a timely manner, so that they could deliver 
these products to the designated end customers. However, in certain 
cases, the perishable products had to be stored in temporary storage 
areas for a longer time period (see Fig. 9) due to the differences in the 
service start times of the inbound trucks and the corresponding 
outbound trucks. Nevertheless, since this study modeled temperature- 
controlled temporary storage areas for perishable products, the total 
product decay was not substantially affected by increasing the total 
product storage time. Furthermore, an increase in the product decay rate 
caused an increase in the total cost, associated with the service of all the 
arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective), from 
1972.21 ∙ 103 USD in scenario “1” to 2085.51 ∙ 103 USD in scenario 
“10”. 

6.4.2. Sensitivity of the truck scheduling decisions to the unit product 
temporary storage cost 

A total of ten unit product temporary storage cost scenarios were 
created by increasing the base unit product temporary storage cost 
value, which was estimated using uniform distribution 
UD[25.66; 51.32], by 10% from one scenario to another (i.e., the unit 
product temporary storage cost in scenario “1” was generated as 
UD[25.66; 51.32], while the unit product temporary storage cost in 
scenario “10” was generated as UD[60.50; 121.00]). The remaining 
TSPCDT parameters were assumed to be the same as specified in Section 
6.1.1. The results from the conducted sensitivity analysis are reported in 
Fig. 10, which shows the changes in the total truck waiting time, the 
total product storage time, as well as the total truck delayed departure 
time for the considered unit product temporary storage cost scenarios. 

It can be observed that an increase in the unit product temporary 
storage cost caused a reduction in the total product storage time, aiming 
to decrease the total product inventory cost. In the meantime, the 
arriving outbound trucks had to wait for the service start of the 

Fig. 8. The convergence patterns for the considered metaheuristics (problem instances 51–60).  
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corresponding inbound trucks, so that the delivered perishable products 
could be directly transferred from the inbound doors to the outbound 
doors with no (or minimum) temporary storage. The latter generally 
caused an increase in the total truck waiting time along with the total 
truck delayed departure time (see Fig. 10) from one scenario to another. 
Furthermore, an increase in the unit product temporary storage cost 
caused an increase in the total cost, associated with the service of all the 
arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective), from 
1484.41 ∙ 103 USD in scenario “1” to 2204.59 ∙ 103 USD in scenario 
“10”. 

6.4.3. Sensitivity of the truck scheduling decisions to the CDT door 
availability and truck arrival patterns 

As a part of the numerical experiments, the developed EA was 
executed for different large-scale problem instances, where the number 
of CDT doors ranged between 4 and 8 (an increment of 2 CDT doors was 
adopted) and the number of trucks ranged between 84 and 120 (an 
increment of 4 trucks was adopted). The CDT door availability (i.e., 
capacity of the considered cold-chain CDT) and the truck arrival pat
terns directly influence the truck scheduling decisions. Fig. 11 shows the 
changes in the total truck waiting time, the total product storage time, as 
well as the total truck delayed departure time for the considered CDT 
door availability and truck arrival pattern scenarios. It can be observed 
that the total truck waiting time could be reduced from 3074.6 h to 

Fig. 9. Sensitivity of the total truck waiting time, total product storage time, and total truck delayed departure time to the product decay rate.  

Fig. 10. Sensitivity of the total truck waiting time, total product storage time, and total truck delayed departure time to the unit product temporary storage cost.  
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1437.4 h by increasing the CDT door availability from 4 doors to 8 doors 
for the case with 120 trucks arriving for service at the considered cold- 
chain CDT. Similarly, the total truck delayed departure time could be 
reduced by more than 45% after increasing the CDT door availability 
from 4 doors to 8 doors for the case with 120 trucks arriving for service 
at the considered cold-chain CDT. The total product storage time was 
mostly affected by the number of arriving trucks (see Fig. 11). 
Furthermore, an increase in the CDT door availability from 4 doors to 8 
doors caused a reduction in the total cost, associated with the service of 
120 arriving trucks at the cold-chain CDT (i.e., the TSPCDT objective), 
from 3108.67 ∙ 103 USD to 1972.21 ∙ 103 USD. 

7. Conclusions and future research needs 

The supply chain operations directly depend on the efficiency of the 
product distribution. Many supply chains handle perishable products 
that decay over time due to fluctuations in temperature, humidity, and 
pressure throughout the product distribution process. As a result of 
mismanagement of supply chain operations, a significant portion of 
perishable products is wasted, resulting in substantial monetary losses. 
Cross-docking terminals (CDTs) have been widely used in cold supply 
chains for the product distribution but have not received adequate 
attention in the scientific literature. In order to improve the effectiveness 
of the perishable product distribution, this study proposed a novel 
mixed-integer mathematical formulation for the truck scheduling 
problem at a cold-chain CDT. The model explicitly captured the decay of 
perishable products throughout the service of arriving trucks and 
accounted for the presence of temperature-controlled storage areas that 
were specifically designated for perishable products. The objective of 
the presented model focused on minimization of the total cost incurred 
during the truck service. Considering the computational complexity of 
the proposed model, a customized Evolutionary Algorithm (EA) was 
designed to solve it. 

The computational performance of EA was assessed throughout the 
numerical experiments based on a detailed comparative analysis against 
the other metaheuristics, including the following: (1) Variable 

Neighborhood Search (i.e., VNS); (2) Tabu Search (i.e., TS); and (3) 
Simulated Annealing (i.e., SA). The developed EA was found to be the 
most promising metaheuristic, considering both solution quality and 
CPU time perspectives. Furthermore, the proposed EA algorithm 
demonstrated an acceptable level of stability of the solution quality at 
convergence and the required CPU time as well. A set of sensitivity 
analyses, conducted throughout the numerical experiments, revealed 
that the truck scheduling decisions could be substantially affected by the 
decay rate of perishable products, the unit temporary storage cost of 
perishable products, the CDT door availability, and the truck arrival 
patterns. The proposed mixed-integer programming model, the devel
oped metaheuristic, and the conducted sensitivity analyses would be of 
potential interest to the supply chain stakeholders that are heavily 
involved in the distribution of perishable products in cold supply chains 
and aim to improve their operations. 

Throughout this study, a number of simplifying assumptions were 
made that could be further addressed as a part of the future research. 
First, uncertainty in the arrival times as well as the handling times of the 
inbound and outbound trucks could be incorporated in the developed 
mathematical model. Second, the limitations in the capacity of the 
temporary storage areas at the considered cold-chain CDT could be 
accounted for. Third, a multi-objective framework capturing conflicting 
objectives of the cold-chain CDT operator could be developed (e.g., 
reduce the total truck delayed departure time vs. reduce the number of 
forklift operators deployed at the considered cold-chain CDT). Fourth, 
the developed EA could be compared against some other metaheuristics 
that were previously used in the CDT truck scheduling literature and 
other studies (e.g., Differential Evolution, Imperialist Competitive Al
gorithm, Grey Wolf Optimizer, Particle Swarm Optimization, and Red 
Deer Algorithm) (Ayough, Zandieh, & Farhadi, 2020; Hussain, Salleh, 
Cheng, & Shi, 2019). Finally, some additional hybridization techniques 
could be incorporated within the developed EA (e.g., application of 
custom local search heuristics after performing the crossover and mu
tation operations in order to enhance the fitness of the produced and 
mutated offspring). 
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Appendix A. Full list of abbreviations that were used in the manuscript  

AUGMECON2 Augmented Epsilon-Constraint Method 
CDT Cross-Docking Terminal 
DE Differential Evolution 
DP Dynamic Programming 
EA Evolutionary Algorithm 
EMS Express Mail Service 
FedEx Federal Express 
ICA Imperialist Competitive Algorithm 
MODE Multi-Objective Differential Evolution 
MOGWO Multi-Objective Grey Wolf Optimizer 
MOICA Multi-Objective Imperialist Competitive Algorithm 
MRDA Modified Red Deer Algorithm 
NSGA-II Non-Dominated Sorting Genetic Algorithm II 
PSO Particle Swarm Optimization 
RDA Red Deer Algorithm 
RFID Radio-Frequency Identification 
SA Simulated Annealing 
SEO Social Engineering Optimizer 
TOPSIS Technique of Order Preference Similarity to the Ideal Solution 
TSPCDT CDT Truck Scheduling Problem with Product Perishability Considerations 
TSPCDTL Linearized CDT Truck Scheduling Problem with Product Perishability Considerations 
UPS United Parcel Service  
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