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This study presents a comprehensive framework for constitutive modeling of a frame-invariant fractional-order
approach to nonlocal thermoelasticity in solids. For this purpose, thermodynamic and mechanical balance
laws are derived for nonlocal solids modeled using the fractional-order continuum theory. This includes
revisiting the Cauchy’s hypothesis for surface traction vector in order to account for long-range interactions
across the domain of nonlocal solid. Remarkably, it is shown that the fractional-order model allows the
rigorous localized application of thermodynamic balance principles unlike existing integral approaches to
nonlocal elasticity. Further, the mechanical governing equations of motion for the fractional-order solids
obtained here are consistent with existing results from variational principles. These fractional-order governing
equations involve self-adjoint operators and admit unique solutions, in contrast to analogous studies following
the local Cauchy’s hypothesis. To illustrate the efficacy of this framework, case-studies for the linear and
the geometrically nonlinear responses of nonlocal beams subject to combined thermomechanical loads are
considered here. Comparisons with existing integer-order integral nonlocal approaches highlight a consistent
softening response of nonlocal structures predicted by the fractional-order framework, irrespective of the
boundary and thermomechanical loading conditions. This latter aspect addresses an important incongruence
often observed following the strain-based integral approaches to nonlocal elasticity.

1. Introduction The above mentioned complex slender structures have important
applications in engineering and biotechnology. As an example,
macroscale structures made from functionally graded materials (FGM)
or sandwiched designs have been largely used in weight-critical appli-
cations such as aerospace, naval, and automotive systems

(Kouchakzadeh et al., 2010; Marzocca et al., 2011). Similarly, thin

Several theoretical and experimental studies have shown that size-
dependent effects, also referred to as nonlocal effects, are prominent
in the response of complex structures of great relevance for many real-
world applications. These size-dependent effects can be traced back to
medium heterogeneity, existence of surface stresses, presence of ther-

mal loads, and even medium geometry. More specifically, in the case
of micro- and nano-structures, size-dependent effects have been traced
back to the existence of surface and interface stresses due to nonlocal
atomic interactions and Van der Waals forces (Sudak, 2003; Pradhan
and Murmu, 2009; Wang et al., 2011). In the case of macroscale struc-
tures, nonlocal effects can result from an ensemble of factors including
material heterogeneity, interactions between layers (e.g. in FGMs or
composite media) or unit cells (e.g. in periodic media), and geometric
inhomogeneity (Romanoff et al., 2016; Hollkamp et al., 2019; Patnaik
and Semperlotti, 2020). In other terms, nonlocal governing equations
for macrostructures often result from a process of homogenization of
the initial inhomogeneous system. Further, geometric effects such as
changes in curvature have also been shown to induce nonlocal size-
dependent effects in nano-, micro-, and macro-structures (Sudak, 2003;
Wang et al., 2011).
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films, carbon nanotubes, monolayer graphene sheets and micro tubules
have far-reaching applications in atomic devices, micro/nano-
electromechanical devices, as well as sensors and biological implants
(Sudak, 2003; Emam, 2013). Independently on the spatial scale, the
key design constraints in the above applications include restrictions
on space and weight. As a result, structural assemblies for lightweight
applications are typically made of a combination of slender components
like beams, plates, and shells. There are several applications where
these structures are subject to large and rapidly varying mechanical
and thermal loads that drive the system into a geometrically nonlinear
regime. A practical example includes the analysis of supersonic or
hypersonic aerospace systems where the combination of large and
quickly varying aero-thermomechanical loads induces highly a non-
linear response (Librescu et al., 2002; Kouchakzadeh et al., 2010;
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Marzocca et al., 2011). Similarly, the ability to account for coupled
thermomechanical nonlinear effects is also critical in applications in-
volving nano- and micro-structures such as, for example, in the design
of biological implants, measurement devices, and sensors (Emam, 2013;
Ebrahimi and Salari, 2015). Despite the undeniable need for proper
theoretical frameworks and computational tools capable of simulating
the thermomechanical response of nonlinear and nonlocal structures,
only a limited amount of studies focusing on geometrically nonlinear
thermomechanical response of nonlocal slender structures are avail-
able in the literature. In the following, we briefly review the main
characteristics of these studies and discuss key limitations.

Seminal works from Kroner (1967) and Eringen and Edelen (1972)
have explored the role of nonlocality in elasticity and laid its theoretical
foundation. The key principle behind nonlocal theories relies on the
idea that all the particles located within a prescribed area, typically
indicated as the horizon of nonlocality, influence one another by means
of long-range cohesive forces. This interaction between particles is
accounted for by using gradient or integral relations for the strain field
within the constitutive equations. These approaches lead to so-called
“weak” gradient methods or “strong” integral methods, respectively.
Integral methods (Eringen and Edelen, 1972; Polizzotto, 2001; Barretta
et al., 2018) capture nonlocal effects by re-defining the constitutive
law in the form of a convolution integral of either the strain or the
stress field over the horizon of nonlocality, whereas gradient elasticity
theories (Peerlings et al., 2001; Aifantis, 2003; Sidhardh and Ray,
2018, 2019) account for the nonlocal behavior by introducing strain
or stress gradient dependent terms in the stress—strain constitutive law.
As emphasized earlier, several applications involving nonlocal slender
structures also experience thermal loads and geometric nonlinearities.
Although several studies are available on the topics of geometrically
nonlinear response of nonlocal slender structures (Yang et al., 2010;
Srinivasa and Reddy, 2013; Emam, 2013) and on the thermomechanical
response of nonlocal structures (Polizzotto, 2001; Shen et al., 2010;
Tounsi et al., 2013; Ebrahimi and Salari, 2015), theoretical and nu-
merical methods capable of addressing the combined geometrically
nonlinear thermomechanical response of nonlocal structures have not
been specifically addressed.

As mentioned previously, the classical studies on nonlocal (either
linear or nonlinear) elasticity and nonlocal (linear) thermoelasticity
encounter some key shortcomings. As an example, gradient theories
experience difficulties when enforcing the boundary conditions asso-
ciated with the strain gradient-dependent terms (Peerlings et al., 2001;
Aifantis, 2003). On the other side, the integral methods are better suited
to deal with boundary conditions but they lead to mathematically ill-
posed governing equations. This mathematical ill-posedness leads to
erroneous predictions such as the absence of nonlocal effects or the
occurrence of hardening behavior (not consistent with integral models)
for certain combinations of boundary conditions (Romano et al., 2017).
In this class of problems, the ill-posedness stems from the fact that
the constitutive relation between the bending moment field and the
curvature is a Fredholm integral of the first kind, whose solution does
not generally exists and, if it exists, it is not necessarily unique (Romano
et al., 2017). Additionally, in both these classes of methods, there are
no available explicit relations to estimate the stress at a given point
given the strain at that particular point. This latter aspect prevents
the application of variational principles (Phadikar and Pradhan, 2010;
Anjomshoa, 2013) and has critical implications on the development of a
thermodynamic framework for the classical nonlocal approaches. More
specifically, the modeling of nonlocality through nonlocal stress—strain
constitutive relations allows only for a weak application (in a domain
integral sense) and prevents the localized (point-wise) application of
the thermodynamic balance laws. As discussed in Polizzotto (2001),
the weak application of thermodynamic balance laws, particularly
the second law, leads to inconsistencies in the nonlocal continuum
framework.
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In recent years, fractional calculus has emerged as a powerful math-
ematical tool to model a variety of nonlocal and multiscale phenomena.
Fractional derivatives, which are a differ-integral class of operators,
are intrinsically multiscale and provide a natural way to account for
nonlocal effects (Podlubny, 1998). Given the multiscale nature of frac-
tional operators, fractional calculus has found wide-spread applications
in nonlocal elasticity (Cottone et al., 2009; Di Paola and Zingales, 2008;
Carpinteri et al., 2014; Sumelka and Blaszczyk, 2014; Sumelka et al.,
2015; Hollkamp et al., 2019; Patnaik and Semperlotti, 2020; Hollkamp
and Semperlotti, 2020). In a series of papers, Patnaik and Semperlotti
(2020), Patnaik et al. (2020c), Sidhardh et al. (2020b), Patnaik et al.
(2020a,b) have shown that a nonlocal continuum approach based
on fractional-order kinematic relations provides an effective way to
address the previously mentioned shortcomings of classical approaches
to nonlocal elasticity. In addition, the formulation developed in these
works is fully frame-invariant. Note that, unlike gradient elasticity
methods, additional essential boundary conditions are not required
when using the Caputo definition of the fractional operator (Hollkamp
et al., 2019; Patnaik and Semperlotti, 2020). Further, the nonlocal
model based on fractional-order kinematic relations allows the ap-
plication of variational principles and leads to well-posed governing
equations that admit unique solutions (Patnaik et al., 2020c,a). Fi-
nally we note that the fractional-order continuum theories are shown
to be effective in developing reduced-order models for inhomoge-
neous systems, particularly periodic structures: periodic bar (Hollkamp
et al., 2019), acoustic black hole structures (Hollkamp and Semperlotti,
2020), and grid-stiffened plates (Patnaik and Semperlotti, 2020).

In this study, we build upon the fractional-order nonlocal con-
tinuum theory and develop a frame-invariant thermodynamic frame-
work for the nonlocal solids. The overall goal of this study is two
fold. First, to develop a thermodynamic framework for the fractional-
order continuum formulation. We will show that the fractional-order
continuum formulation allows for a rigorous application of all ther-
modynamic principles. More specifically, the use of fractional-order
kinematic relations prevents the requirement of additional integral
constitutive stress—strain relations as seen in classical nonlocal ap-
proaches (see, for example, (Polizzotto, 2001)). In fact, these additional
residuals due to nonlocal interactions are assimilated within the cor-
responding fractional-order analogues. The most direct result is that
the formulation does not require additional constraints associated with
the thermodynamic balance laws. It follows that the thermodynamic
balance laws in the fractional-order theory are free from nonlocal
residual terms, hence greatly simplifying the constitutive modeling of
the nonlocal continuum and enabling a rigorous implementation of
the thermodynamic principles at each point in the solid. The latter
observation highlights an important benefit and a key motivation to
pursue a fractional-order formulation to nonlocal thermoelasticity as
it sets the fractional approach apart from other classical nonlocal
theories (either integral (Eringen, 1972, 1974) or differential (Eringen,
1983)) which typically can only satisfy thermodynamic equilibrium
in a weak (global) sense. Then, by enforcing the mechanical balance
laws, we derive the governing equations of motion for the fractional-
order nonlocal continuum. In this process, we employ a modification
to Cauchy’s hypothesis for the traction vector in order to include the
effect of long-range interactions. The thermodynamic framework is also
of critical importance because it allows extending the energy-based
methodologies typical of classical elasticity theories to the analysis of
nonlocal structures. Examples of their applications include the linear
buckling (Sidhardh et al., 2020a) and post-buckling (Sidhardh et al.,
2021) response of nonlocal structures that could not be tackled by
standard integral models of nonlocal elasticity. The second objective
of this study is to highlight the performance of the framework via
a specific case-study focusing on a fractional-order Euler-Bernoulli
beam subject to combined thermomechanical loads. For this purpose,
we extend the fractional-order finite element model (f-FEM), origi-
nally developed in Sidhardh et al. (2020b), to accurately solve the
geometrically nonlinear fractional-order thermomechanical equations.
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We note that several fractional-order thermomechanical models
have been previously developed and presented in the literature
(Povstenko, 2004, 2009, 2015; Zecova and Terpak, 2015). However,
these studies have focused primarily on the use of fractional-order
operators to model complex thermal exchanges. More specifically, time-
fractional operators have been employed to rewrite the heat conduction
equation (Povstenko, 2004; Zecova and Terpak, 2015) in order to
model dissipative effects associated with the thermal processes. Space-
fractional operators have been used in Povstenko (2009), Vazquez et al.
(2011), still within the heat transfer governing equation, to model
anomalous forms of spatial diffusion. We emphasize that, differently
from the present study, these previous works considered a local form
of the stress-strain constitutive relation. On the contrary, our work
does not consider fractional heat transfer, hence the heat conduction
equation used in our study matches the classical integer-order form. In
this regard, we merely note that a recent study (Vazquez et al., 2011)
has shown that the use of a space-fractional heat conduction equation
(in the current form) leads to inconsistencies in the application of the
second law of thermodynamics. This latter observation motivated us to
use the classical (integer-order) heat conduction equation in our study.

The remainder of the paper is structured as follows: we begin
with the development of a constitutive model for the fractional-order
approach to nonlocal elasticity. This involves the thermodynamic and
mechanical balance laws applied to the fractional-order solids. Later,
to highlight the significance of the fractional-order models, we present
the case-study of both a linear and a geometrically nonlinear response
of nonlocal beams subject to combined thermomechanical loads and
solved numerically via finite element techniques.

2. Constitutive model for fractional-order thermoelasticity

In this section, we develop the constitutive model for fractional-
order nonlocal thermoelasticity. As discussed earlier, the nonlocal
beam theory presented in this study builds upon the formulation
of a fractional-order nonlocal continuum presented in Patnaik and
Semperlotti (2020). This formulation is a generalization of the seminal
works on fractional-order continuum theories for nonlocal solids devel-
oped in Drapaca and Sivaloganathan (2012), Carpinteri et al. (2014),
Sumelka and Blaszczyk (2014). In the following, we review the key
highlights of the continuum theory, and proceed with the development
of constitutive model for nonlocal thermoelasticity.

Note the following notation used throughout the manuscript: ([])
denotes the first integer-order derivative with respect to time, comma
notation in the subscript (] ; will be used to denote integer-order spatial
derivative with respect to the coordinate x;, and Einstein summation is
implied for repeated indices.

2.1. Fundamentals of the fractional-order nonlocal continuum formulation

Analogous to the classical approach to continuum mechanics, the
response of a nonlocal solid can be analyzed by introducing two con-
figurations, namely, the reference (undeformed) and the current (de-
formed) configurations. The motion of the body from the reference
configuration (denoted as X) to the current configuration (denoted as
x) is assumed as:

x=®X,1) (@]

such that @(X, 1) is a bijective mapping operation. The above mapping
operation is used to model the differential line elements dX and dx
in the undeformed and deformed configurations of the nonlocal solid
using fractionaal-order operators. The fractional-order deformation gra-

dient tensor F(x, X) defined with respect to nonlocal line elements is
given by:

@ -
F= dx

a5 2
X (2)
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In analogy with classical strain measures, the nonlocal strain can be
defined using the fractional-order differential line elements as dxdx —
dXdX. Following the above definition for fractional-order deformation-
gradient tensor, the strain in the nonlocal solid is expressed as:

a 1 aTa
E=§<F F—I) 3

Extending the above formalism, the Lagrangian strain tensor in the
nonlocal medium is given by (Patnaik and Semperlotti, 2020; Sidhardh
et al., 2020b):

E= (VU + VUL +VeUL vy ) )
&: Linear strain

where U(X) = x(X) — X denotes the displacement field. The fractional

gradient denoted by V*Uy is given as V*U X = = D}, U; and consists of

space-fractional derivatives. The space- fractlonal derlvatlve DS UX, 1)

is taken according to a Riesz—Caputo (RC) definition with order a €

(0,1) and it is defined on the interval X € (X4, Xz) C R? in the
following manner:

DL UX, 1) = -r(z- et § L DXUX. 1) - | g,Dg(BU(X, n )
where I'(-) is the Gamma function, and { D% U and § D%  Uare the left-
and right-handed Caputo derivatives of U respectlvely "The complete
expression for the nonlocal strain in Eq. (3) includes nonlinear terms
required when accounting for large deformations. In this expression,
we also highlight the linear component & of the fractional-order strain
tensor that will be employed in studies of infinitesimal deformations in
nonlocal solids. Unless otherwise specified, fractional-order strains in
nonlocal solids will refer to the linear component é. Before proceeding,
it is worth discussing certain implications of this definition of the
fractional-order derivative. The interval of the fractional derivative
(X 4. X ) defines the horizon of nonlocality (also called attenuation
range in classical nonlocal elasticity). The length scale parameters
Li‘l and L‘l’;l ensure the dimensional consistency of the deformation
gradient tensor, and along with the term %F (2—«a) ensure the frame in-
variance of the strain—-displacement relations (Patnaik and Semperlotti,
2020; Sumelka and Blaszczyk, 2014). These length scales are inde-
pendent parameters, which may or may not be equal to one another,
hence resulting in an asymmetric horizon of nonlocality (X 4, X p) at the
point X. The unequal values for the length scales ensure a truncation
of the nonlocal region of influence for points close to the external
boundaries and discontinuities within the solid. For complete details
the reader should refer to Patnaik and Semperlotti (2020), Patnaik
et al. (2020c). The choice of L, = L = y everywhere in the solid,
where [, is a constant, identically reduces the above formulation to the
fractional-order kinematic relations proposed in Sumelka and Blaszczyk
(2014).

In this formulation, nonlocality was introduced by using fractional-
order kinematic relations. The fractional-order definition of the strain
has critical implications on the thermodynamic framework for the
fractional-order model of a nonlocal continuum. In the following sec-
tion, we will show that the above approach to nonlocality allows the
first and second law of thermodynamics to be enforced in a strong (lo-
calized) sense. In other terms, the fundamental laws of thermodynamics
can be applied in a strict sense at each point in the nonlocal continuum
as opposed to what happens in classical nonlocal approaches.

2.2. Thermomechanical balance laws for fractional-order thermoelasticity

2.2.1. Thermodynamic balance laws

In this section, we cast the fractional-order nonlocal model pre-
sented above within a thermodynamic framework. Consider a nonlocal
solid Q that undergoes the arbitrary motion @ which places a particle
p € Q at y = ®(p,t) at time ¢. At this instant, the solid occupies a
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domain B, bounded by a surface d5,. Further, consider a part of the
solid P € @ that occupies the domain D, = @(P, ) and such that point
peEP.

In order to enforce the first law of thermodynamics (i.e. the conser-
vation of energy) over the arbitrary domain D,, we consider the energy
balance applied to the domain D,. Later, we will show that the global
balance laws hold true over any arbitrary domain D, for the fractional-
order continuum theory. This is unlike classical (integer-order) theories
for nonlocal elasticity that allow the balance law to be applied only
over the entire domain 5, that is in a global (weak) sense. The arbitrary
choice of the domain, made possible by the fractional-order framework,
also allows D, to be reduced to an infinitesimal domain surrounding the
point p so to give the localized version of the thermodynamic law. The
application of the first law of thermodynamics to the domain D, allows
writing the total energy £(D,,r) as the sum of the total internal energy
V'(D,,1) and the kinetic energy 7(D,,1):

D, 1) = / %p(x,t)u,-(x,t)ul-(x,t) av + / p(x, De(x, 1) dV (6)

Dy Dy

T(Dy.) V(D0

where p is the mass density in the current configuration, u(= y) is the
spatial velocity of the particle at a generic point p defined as the time
derivative of the displacement field. In the above equation, e(x,t) is the
internal energy per unit mass, which is postulated to be a function of
the mechanical and thermal state variables.

Recall that, for the classical (integer-order) local elastic solid, the
internal energy of a point is a function of the integer-order strain and
entropy defined at that point. For the nonlocal solid, in addition to the
local strain energy, the internal energy at a point must also include
the energy contributions from long-range cohesive forces by other
points within the solid. Given the fractional-order kinematic relations
described in Section 2.1, the contribution of the additional energy from
nonlocal interactions is fully captured in the fractional-order strain
&(x,1). It is immediate to see that the internal energy density evalu-
ated at a point x is a function of the fractional-order strain (&(x,?)).
Consequently, we have the internal energy e = e(¢,#) corresponding
to the thermoelastic response defined entirely in terms of the state
variables, that are the fractional-order strain &(x,r) and the entropy per
unit mass #(x, ). This functional relationship is in sharp contrast with
the thermodynamic framework for classical nonlocal approaches. More
specifically, the thermodynamic framework for classical (integer-order)
nonlocality leads to e = e(e, R(€),7j) where e(x,t) is the local strain
field, and R(e) is a linear integral operator which models nonlocality
in the solid (Eringen, 1974; Balta and Suhubi, 1977; Polizzotto, 2001).
The additional functional relationship via R(e) is necessary in these
approaches to account for energy contributions due to nonlocal inter-
actions. To this regard, note that the fractional-order strain & combines
the local integer-order strain e and its integral R(e) into a single term
(see Eq. (5)) (Patnaik and Semperlotti, 2020). Indeed, this is precisely
the reason that allows expressing the internal energy density as e =
e(&,7). It will be shown that the latter observation is significant as it
allows the first law of thermodynamics to be applied in a strict sense
at every point in the domain without additional constraints. For this,
we consider the first law of thermodynamics over the arbitrary domain
D;:

S(D,,t) =/ p(x,1)b;(x, )i;(x, 1) dV+/ t;(x, 1, n)i(x, 1) dA

1 {)Dl
+ / p(x,r(x,1) dV — / h(x,t,n) dA 7
D, oD,
where the first two terms on the right side correspond to the mechanical
power supplied to domain D, by the body forces b(x, ) and the surface
forces applied per unit area t(x, t, n), respectively. Here, n(x, ) denotes
the outward normal to the surface dD,. Note that the surface forces on
0D, are applied by points external to the domain of interest. These sur-
face forces include interactions within the infinitesimal neighborhood,
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as in (classical) local elasticity, and also the long-range interactions of
the nonlocal solid. On the contrary, the body forces b(x,) applied at
every point in the domain by external sources are local as they are
independent of the nonlocal interactions within the solid. Additional
terms in the above equation correspond to the rate of change in thermal
energy of the body due to internal heat generation at the rate of r(x,7)
per unit volume, and the heat flux out of the body at the rate of A(x, ¢, n)
through the surface 9D,. Using Eq. (6), the first law of thermodynamics
can be expressed as:

d 1o
al, p(x,t)<§u,-(x,t)u,-(x,t)+e(x,t)) av

= / p(x, )b;(x, )ity (x, 1) AV + / t.(x, 1, iy (x, 1) dA ®)

t t

+ / p(x,Dr(x, 1) dV—/ h(x,t,n) dA
D, oD,

The above equation corresponding to the first thermodynamic balance
law has important implications. Unlike analogous results from classical
models of nonlocal elasticity, the above energy balance law holds true
for arbitrary domain D, within the nonlocal solid. This integral form
over the arbitrary domain D, can be extended to develop the expres-
sions for a localized imposition of the first law of thermodynamics at
any point p € D,, at any arbitrary time . Recall that the internal
energy density of a nonlocal solid must include contributions from long-
range forces. For this purpose, modifications are introduced in classical
integer-order models of nonlocal elasticity via the integral operator
R(e) which restricts a localized imposition of the first thermodynamic
law (Polizzotto, 2001).

Before proceeding further, we briefly discuss key characteristics of
the traction vector t(x, 7, n). The surface traction at a point x is defined
over an imaginary surface normal to the vector n(x,t) and passing
through the point x. This vector captures the forces acting on the
surface due to the interaction of point x with the rest of the solid. Local
elasticity which considers interactions restricted within an infinitesimal
domain surrounding the point, employs the classical Cauchy’s hypoth-
esis to define the traction vector, that is t = n - 6, where o is the
classical stress-tensor defined at the point of interest. In the fractional-
order formulation, suitable modifications to the above definition are
required to account for additional forces acting on the surface due to
long-range interactions. For the fractional-order approach, we present
the following generalization of the Cauchy’s postulate:

The surface traction t(x,t,n) acting on an imaginary surface oD, per-
pendicular to the normal vector n(x,t) and passing through the point x is
given as:

i, t,n)=I% 6(x,1) 9)

where & is the nonlocal stress evaluated at the point x. The integral
operator I ,ll"” defined over the horizon of influence of point x is given
as:

I @) =1 Xll—"(n1 &), + 1 XIZ—"(n2 - 8)6, + l;;"(ng - 8)é3 1o

such that n = n;é; (i = 1,2,3), ¢; are the orthonormal basis vectors.
Further, 1,.“"’(-) is a Riesz-type fractional integral defined as:

_ 1 _ - - -
1y =3re-o [1;;’ i (x,»—/s, I "1) + 10! (x,»I):,szl 1)] an
where ;1 ;/‘“ y and Ii,:jA. x are the left and right fractional in-

tegrals to the order a € (0, 13 of an arbitrary function y, in the ¢
direction. In this study, the definition of the normal vector is restricted
to orthonormal triads of Cartesian coordinates. This is due to the lim-
ited developments in fractional vector calculus, as discussed in Tarasov
(2008), Patnaik et al. (2020d). A detailed discussion on the above
expression for the traction vector in a nonlocal solid is outlined in the
Appendix.

Analogous to classical local elasticity, the traction vector defined
in Eq. (9) is used within the global balance laws (Eq. (8)) to obtain
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the corresponding strong form. Additionally, we define the rate of heat
transfer across the surface as h(x,t,n) = q(x,t) - n, where the vector
field q is referred to as the heat flux out of the body. By substituting
the definitions of the nonlocal traction and the heat flux into Eq. (8),
and then applying the divergence theorem gives:

De . X
/D [pE + p(i; — by)u; —

Here, D - /Dt is the material derivative evaluated in the Eulerian
configuration. By assuming continuous field variables and using the
localization lemma we obtain:

(5 vui) = (or - qf.i)] v =0 12)

De
Dr
The above result clearly illustrates the possibility of enforcing the first
law of thermodynamics (i.e. the energy balance) at any arbitrary point
p € D, of the nonlocal solid. Note that, according to the fractional-
order continuum theory, we do not require additional constraints to
be imposed over the state variables. This is unlike the previous studies
based on integer-order theories of nonlocal elasticity which required
the energy balance to be complemented by an additional condition
on the nonlocal residuals. Thus, a localized imposition of the energy
balance law for nonlocal solids is derived here following the fractional-
order models. In order to simplify the above expression to a more
recognizable form, we use the mechanical balance laws for linear and
angular momentum of the nonlocal solid, derived later in Section 2.2.2
(refer Egs. (20) and (23)). Employing the mechanical balance laws for
the nonlocal solid, and following standard algebraic operations, we
write:

p%f :6[/-5,-/-+pr—q,-,,- Vx € B, (14)
Note that the strain tensor ¢; in the above expression is evaluated
using fractional-order derivatives defined in Eq. (2). We emphasize
again that the above localized form obtained for the fractional-order
approach is in net contrast with classical nonlocal approaches where
the conservation of the first law can only be applied in a weak sense
(see, for example, Polizzotto (2001)).

Next, we apply the second law of thermodynamics to the fractional-
order continuum model. Recall the Clausius-Duhem inequality applied
over the entire solid B, states:

p(x, Dr(x, 1)

d d
= 1)ifi v = = i(x, AV —
T /B’ p(x, Difine (X, 1) 2 /13, p(x, Dif(x, ydV /B, Ton

h(x,t,n(x,1))
———>2dA>0 15
- /,)B, T 2 (1%

P28 4 iy — by — (11:“&..11.) =pr—gq, Vx€D, (13)

n LY i

where T denotes the temperature of the solid, and 7, is the internal
entropy production density. Recall that the localized form of the second
law of thermodynamics states that the internal entropy production
rate is non-negative for all points inside the solid, that is D7, /Dt >
0 V x € B,. Classical approaches to nonlocal thermoelasticity satisfy
this inequality only in a weak sense, that is the integral form given in
the above equation (Eringen and Edelen, 1972; Eringen, 1974; Balta
and Suhubi, 1977). A detailed discussion of the consequent physical
inconsistencies can be found in Polizzotto (2001).

In analogy with the classical approach, we introduce the Legendre
transformation y = e — T'#j, where y denotes the Helmholtz free energy
per unit mass. It follows that y = (& 7T) which is different from
classical nonlocal approaches wherein v = (e, R(e), T) (Polizzotto,
2001). By using the Legendre transformation along with Egs. (14)
and (15), we obtain the following local form of the second law of
thermodynamics for the nonlocal solid:
%:6,-]-5”—;7%—/»17“—7}%20 (16)
Remarkably, the above fractional-order inequality matches, in its func-
tional form, the classical Clausius-Duhem inequality. Eq. (16) also
highlights a clear difference compared with classical nonlocal formu-
lations that require additional terms within the inequality as a result

pT
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of the functional dependence of w on R(e). As discussed in Polizzotto
(2001), these additional terms within the inequality disappear only
when a weak form is considered. However, as mentioned previously,
satisfying the second law of thermodynamics only in a weak sense leads
to nonphysical results.

Thus, it appears that the fractional-order continuum theory for
nonlocal solids allows the thermodynamic balance laws to be applied
in a localized form; a key observation in order to establish the ther-
modynamic consistency of the fractional-order continuum theory and
to derive rigorous constitutive models for the nonlocal solid. Note that
the thermodynamic balance principles for the nonlocal solid have been
presented in the Eulerian setting over the current configuration B, of
the solid at time instant t. However, assuming small deformation, the
above results can be extended for the domain in reference configuration
B,. For a generalized study of large deformations, resulting from both
geometric and material nonlinearities simultaneously, this assumption
will not be valid. In such cases, the Lagrangian analogues for the
governing equations can be derived from the above results (Germain
et al., 1983).

2.2.2. Mechanical balance laws

In the above discussion on thermodynamic balance laws, we have
obtained the energy balance and entropy inequality laws for a
fractional-order nonlocal solid. For the sake of completeness, in the
following we also derive the mechanical balance laws corresponding
to conservation of linear and angular momentum. For this purpose,
we continue the discussion taking the point of view of the current
configuration ;. Similar to the procedure outlined in Section 2.2.1, we
begin with the integral balance laws over an arbitrary domain D, and
derive the localized forms of the governing equations for a point p € D,.
For the domain under consideration, the statement for the balance of
linear momentum is:

E/ p(x,Hu(x, 1) dV=/ p(x,t)b(x,t)dV+/ t(x,t,n)dA (17a)
dr Jp, D, oD,

and the balance of angular momentum in the absence of external
couples is expressed as:

% yXp(x,)a(x, ) dV = / yXp(x,t)b(x, t)dV+/ yxt(x,t,n) dA
DI

D, oD,

(17b)

where the operator X’ denotes the exterior product. First, the above
balance laws are simplified by imposing the classical (integer-order)
result for the conservation of mass (Germain et al., 1983). Thereafter,
by substituting the expression for surface traction t given in Eq. (9) for
the fractional-order solid, we obtain:

/ p(x, i(x, 1) dV = / p(x,Hb(x,)dV +/ I'll’“ -6(x,1) dA (18a)

D, D, oD,

/ yXp(x, t)i(x,1) dV=/ y><p(x,t)b(x,t)dV+/ nyl“’“&(x,t) dA

D, D, oD,
(18b)

where we use: y = u. Using the definition of the Riesz-integral within
the definition of the surface traction and applying the divergence
theorem we obtain Patnaik et al. (2020d):

/ p(x, )il (x, 1) AV = / p(x, b (x, AV + / (1h3,0en) av
D, D, oD, ! i
(19a)

/D €ijky; p(x, Diig(x,1) dV = /D €iji ¥ip(X, Dby (x,)dV
t

t

+/ €k (yjlz;“&mk(x,t)) dv (19b)
oD, m
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Applying the localization lemma to Eq. (19a), we arrive at the following
result:

p(x, )il (x, 1) = p(x, )b;(x,HdV + D 6;;(x,1), Vx € B, (20)

which is the localized linear momentum balance law for fractional-
order solids. Here, D (-) is the Riesz Riemann-Liouville derivative of
order a which is deflned as (Patnaik et al., 2020c¢):

o0y =3re-o |t (Kot ) - (e, 1)) @D

i~lp

where y is an arbitrary function and _RLD" y and RLD" 41, X are the
left- and right-handed Riemann Llouvﬂle derlvatlves of 4 to the order
a, respectively. In the derivation of the localized form of the linear
momentum balance law, given in Eq. (20) from Eq. (19a), we used the
following relation:

«, -4

DYy =
XX dx;

The governing equations of motion derived here using the balance
principles agree very well with the results obtained via variational
principles (Patnaik et al., 2020d). Using the above result for linear
momentum balance and y;; = §; (5; is the Kronecker delta), the
strong form of the angular momentum balance for fractional-order
solids reduces to the symmetry condition of the nonlocal stress tensor:

[I i] ~x ] (22)

6, =6, Vx€DB (23)

It is interesting to note the fractional-order Riesz-type Riemann—
Liouville fractional-order derivative (divergence) of the nonlocal stress
tensor in the elastodynamic equation (Eq. (20)). This result differ from
existing studies on fractional-order continuum theories that employ a
first-order derivative of the nonlocal stress (D1 ;;) tensor in the same
equation (see, for example, Sumelka and Blaszczyk 2014). This differ-
ence arises due to the consideration of long-range interactions within
the expression for traction given in Eq. (9). The additional contributions
to the surface traction at a point in the nonlocal solid follow from
the long-range interactions (see Appendix). Note that the Riesz-type
Riemann-Liouville operator in the mechanical governing equations
given in Eq. (20) is self-adjoint and the system is positive-definite.
This result was established and proved in Patnaik et al. (2020c). These
observations are clearly in contrast with either classical integer-order
approaches to nonlocal elasticity, that have shown it is not possible
to define a self-adjoint quadratic potential energy (Reddy, 2010; Chal-
lamel et al.,, 2014), or some fractional-order models (Sumelka and
Blaszczyk, 2014; Sumelka et al., 2015). Given the self-adjoint and
positive-definite nature of our formulation, the resulting system of
equations is well-posed and admits a unique solution (Patnaik et al.,
2020c). We will show in Section 5 that this well-posedness results in
a consistent softening behavior of the structure with increasing degree
of nonlocality irrespective of the thermomechanical load distributions
and boundary conditions. This result is significant because it bypasses a
key inconsistency observed in classical nonlocal models and associated
with the non self-adjointness of the operators (Reddy, 2010; Challamel
et al., 2014).

2.3. Constitutive framework for fractional-order thermoelasticity

2.3.1. Constitutive modeling

The inequality in Eq. (16) is used to derive the thermodynamically-
consistent constitutive equations for fractional-order nonlocal elas-
ticity. By substituting the expression for the time derivative of the
Helmholtz free energy, the inequality in Eq. (16) is expressed as:

5 N oy \ . oy
PT’hm=<0,~j—P¥U)€ p<n+ﬁ>T T’T>0 (24)

Since the above inequality must hold for all thermoelastic processes as

well as for arbitrary choices of the independent fields ; and T, we
obtain the following constitutive laws:

d
6,-1-:;)6—111, VxeB (25a)

€;j
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dy

i=-50. VxeB, (25b)

Under assumptions of linear elasticity, the above equations are the
fractional analogues for the Duhamel-Neumann’s laws for classical
thermoelasticity. Further, by using the above constitutive relations
within Eq. (16), the inequality reduces to:

T = —Tl% >0, VxeB, (26)

which establishes the second law of thermodynamics for a fractional
order nonlocal solid. The relations in Egs. (25), (26) can be expressed
as:

Theorem. The constitutive relations for fractional-order nonlocal thermoe-
lasticity do not violate the Clausius—Duhem inequality if they are of the form
given in Eq. (25) and subject to Eq. (26).

A few additional comments on this thermodynamic framework are
needed. At a first glance, the form of the stress—strain constitutive rela-
tion in Eq. (25a) might be deceiving as it appears to lead to a classical
constitutive relation. Although this is, formally, a correct statement
it does not entirely capture the nature of Eq. (25a). As highlighted
earlier, nonlocality was modeled using fractional-order kinematic re-
lations given in Eq. (4). Therefore, the stress defined through the
Eq. (25a) is also nonlocal in nature. In addition, this construction of
nonlocality (i.e. based on fractional-order kinematic relations) allows
the application of variational principles, ensures a quadratic form of
the potential energy of the system, and leads to well-posed nonlocal
governing equations (Patnaik et al., 2020c,a).

Note also that, in the above study, we assumed an integer-order
Fourier heat conduction law, that is ¢; = —kT;, where k is the ma-
terial conductivity constant such that k > 0. It is immediate that the
inequality in Eq. (26) obtained from the second law is trivially satisfied
for the integer-order heat conduction law. Finally, following from the
latter remark, a space-fractional thermal conduction law defined as
q; = —kDS 0 was proposed in Povstenko (2009). However, as shown
in Vazquez et al. (2011), the space-fractional heat conduction law
violates the second law of thermodynamics. Thus, we limit the scope
of the current study to fractional-order constitutive modeling for the
mechanical field but integer-order models for the thermal fields.

2.3.2. Linear fractional-order thermoelasticity

In this section, we derive the constitutive relations for linear ther-
moelastic response of fractional-order nonlocal solids. For this purpose,
recalling that the fractional-order nonlocal formulation allows a lo-
calized implementation of the thermodynamic principles, we write
the Helmholtz free energy density for the thermoelastic response fol-
lowing the typical approach for local elasticity (albeit by using the
fractional-order strain). Further, we use the Helmholtz free energy
density to construct the material constitutive relations for nonlocal
thermoelasticity. In this study on linear elastic behavior of nonlocal
solids using fractional-order theories of thermoelasticity, we extend
the linear material constitutive relations to the geometrically nonlinear
response of the fractional-order nonlocal solids (Saint Venant-Kirchhoff
material model). Therefore, assuming small deformations, the distinc-
tion between reference and current configurations for the domain
vanishes. This implies the constitutive relations given in Eq. (25) for
domain 2 hold true in all configurations (B, & B5,).

We can cast the constitutive relations in Eq. (25) in the form:

ow T

. = i=-p' S5, VXKeQ @27

ij Eij,
where the total free energy W = pyy is expressed in terms of the mass
density p, in reference configuration. We write the free energy for an
isotropic material as a series expansion of the fractional-order strain
¢; and the temperature difference 0 = T — T;,, which is the difference
between the temperature T at any point within the continuum and the
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uniform ambient temperature 7, at the reference state. The free energy,
expanded in power series with respect to the strain invariants and the
temperature difference, is given as (Oden, 1969):

W=ay+aJ, +ayJ, +a3ds +a,0+ a5f12 + a6f22 + a7f32 +agd,J,
+agd Ty + aygdods + ay 0 + a5 0,0 + a130,0 + ay, 30 + hoo.t
(28a)

where q, are material constants and

= 1/, . . = -
Ji=¢; J= 5 (e--e-- - e--e,-/-) ;3= det(e,-j) (28b)
are the invariants of the nonlocal strain tensor &. Assuming that the
solid is stress free in the undeformed state and the free energy is
restricted to linear isotropic thermoelasticity (i.e. ignoring the higher

order terms in Eq. (28a)), we obtain the following expression for W:
W:a2f2+a5f12+a”02+a12f]6’ (29)

where the material constants are given as (Kelly, 2020):

0
1 PoC,
5(14‘2#); 011:——L

=-2u; = R
a Hs  as 27,

ap = Gi+2ua,  (30)
The material constants 1 and u are the isothermal Lamé parameters for
the isotropic solid, « is the coefficient of volumetric thermal expansion
and C? is the specific heat at constant strain. The parameters a; and
C? are all defined in the reference state at T;. Thus, the Helmholtz free
energy density (per unit volume) for the thermoelastic response of a
nonlocal isotropic solid is given by (Washizu, 1975; Kelly, 2020):

0

poC,
— BA+ 21y 0 — ;Tb 0? (31
0

1, . o
w= zﬂekke” + ué;;€;

By using the above expression for y together with Eq. (25), the ther-
moelastic constitutive relations relating the different physical quantities
for the isotropic solid are obtained as:

= A6;j € +2u€;; — BA+2p)ay6;;0 (32a)

CO
ii = py A+ 2)agéy + T”e (32b)
0
Using the above results, the Helmholtz free energy in Eq. (31) is recast
in the following manner:

R 1 .
Gij &j—=pofl 0 (33)

W=
2

1
2
3. Thermoelastic Euler-Bernoulli nonlocal beam model

In this section, we use the thermoelastic constitutive relations de-
veloped for the nonlocal solid to analyze the thermoelastic response
of a fractional-order Euler-Bernoulli beam. Building on Patnaik et al.
(2020c), Sidhardh et al. (2020b), we derive the geometrically nonlinear
governing equations and the corresponding boundary conditions for
the thermoelastic boundary value problem (BVP) using variational
principles.

3.1. Geometrically nonlinear constitutive relations

Consider a nonlocal beam subject to distributed transverse mechan-
ical and thermal loads as illustrated in Fig. 1. As indicated in the
schematic, the Cartesian coordinates for the current study are chosen
such that x; = +h/2 coincides with the top and bottom surfaces of
the beam, and x; = 0 and x; = L are the ends of the beam along
the longitudinal direction. The surface x; = 0 coincides with the mid-
plane of the beam and the origin of the reference frame is chosen at
the intersection of the mid-plane with the left-end of the beam.
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X3

Fy(x1) T(x1)

3h/2

Fig. 1. Schematic of an elastic beam subject to distributed transverse mechanical load
F,(x,) and thermal load T'(x)).

The axial and transverse components of the displacement field
u(x;,x3) are denoted by u;(x;,x3) and wu3(x,x3), respectively. These
displacement fields are given by the Euler-Bernoulli theory as:

dwy(xy)

34
dx; (34a)

u (xy,x3) = up(x;) — x3 [

uz(xy, x3) = wy(x)) (34b)

where uy(x;) and wy(x;) are the mid-plane axial and transverse dis-
placements, respectively. For a geometrically nonlinear analysis, as-
suming moderate rotations (10°-15°) but small strains, the fractional-
order Lagrangian strain tensor in Eq. (4) can be further simplified
using von-Karmaén relations. The resulting fractional-order von-Karmén
strain—displacement relations are given as (Sidhardh et al., 2020b):

1 2
€11(x,x3) = DY (%) + 5 [Dx ”3(X|)] (35)

where D“ (-) denotes the fractional-order RC derivative defined in
Eq. (5). Note that é;; here is nonlinear in transverse displacements.
As discussed previously, for the RC derivative used above, the 1D
domain (x4,xp) along the mid-plane of the beam is the horizon of
nonlocal interaction at x(x;,0). The end-points of the nonlocal horizon
x4(x4,,0) and xg(xp ,0) are the terminals of the left- and right-handed
Caputo derivatives within the RC derivative. It follows from Eq. (5)
that /4 = x; —x,, and /p = xp — x, are the length scales along %, to
the left and right hand sides of the point x(x;,0), respectively. For the
Euler-Bernoulli beam displacement field given in Eq. (34), a non-zero
expression for the transverse shear strain would be obtained. However,
for the slender beam assumed here the rigidity to transverse shear
deformation is much higher when compared to its bending rigidity.
Therefore, we neglect the contribution of the transverse shear defor-
mation towards the deformation energy of the fractional-order nonlocal
solid in the subsequent analysis.

By combining the fractional-order nonlinear axial strain in the
above equation along with the Euler-Bernoulli displacement field given
in Eq. (34), the axial strain can be recast as:

€1 (X1, x3) = &(x1) + x3&(x1) (36)

In the above equation, éy(x;) and &(x,) denote the fractional-order axial
and bending strains, respectively. They are expressed in terms of the
mid-plane field variables as:

2
&(x)) = D ug(xy) + % [Dgl wo(xl)] (372)
R(x)) = —D¢, [%] (37b)
1

Note that we make use of the von-Karman definition for geometri-
cally nonlinear strains. Following this approach, large deformations are
considered only in the transverse direction. For studies based on this
definition of geometrically nonlinear strains, the linear elastic consti-
tutive relations developed in Section 2 can still be employed (Ciarlet,
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1980). Therefore, the axial stress in the nonlocal isotropic solid subject
to thermoelastic loads may be written from Eq. (32a) to be:

&110x1,x3) = E(&(1(x1, x3) — agf(xy, x3)) (38)

where E is the Young’s modulus of the isotropic solid and « is the
coefficient of thermal expansion for the isotropic solid, as defined
earlier. Using the above defined fractional-order strain and stress fields,
the deformation energy U of the nonlocal beam is obtained as:

1 - ~
U= 5/ 611 (x1, x3)€p1 (x1, x3)dV (39)
Q

where @ denotes the volume occupied by the beam. The total potential
energy functional of the beam subject to distributed axial (F,(x,;)) and
transverse forces (F,(x,)) acting on the mid-plane, assuming no body
forces, is given by:

L L
Hux)]=U - 4/0 F,(xp)ug(xy)dx; — ,/0 F,(xwg(xq)dx; (40)

v

Work done by axial loads Work done by transverse loads

We now derive the governing equations and the associated boundary
conditions for the thermoelastic response of the nonlocal beam in the
strong form by imposing optimality conditions on the above functional.
While we derived the governing equations for the fractional-order
solid in Section 2.2.2 following the balance principles for intuitive
purposes, here we employ the variational methods due to its ability to
treat geometrically non-linear systems. Before presenting the governing
equations, we highlight that the objective of this study is to evaluate
the elastic response of a 1D beam when subject to combined thermal
and mechanical loads. The thermal load consists of a steady-state
temperature distribution applied along the length of the beam on the
face at x3 = +h/2. Thus, the independent variation of temperature field
6T, and thereby 60, is identically zero.

3.2. Governing equations

The fractional-order governing equations for the thermoelastic re-
sponse of geometrically nonlinear and nonlocal beams are obtained us-
ing variational principles (i.e. by minimizing the total potential energy
given in Eq. (40)). They are given as follows:

DL NG+ F,(x)) =0 Vx; €0.L) (41a)

DL [ D% M|+ D% [N exDE, [wpe)] | + Fix) =0 V¥ x, € 0,1
(41b)

The corresponding essential and natural boundary conditions are ob-
tained as:

N(x) =0 or suy(x;)=0 V x, €{0,L} (42a)

M(x))=0 or 5[D;Iw0(xl)] =0V x €{0.L) (42b)

D}clM(x,)+N(x])Dil [wo(x))] =0 or Swy(x;)=0 Vx; €{0,L} (42¢)

Note that the detailed steps leading to the above fractional-order non-
linear governing equations extend directly from the geometrically non-
linear analysis of fractional-order beams presented in Sidhardh et al.
(2020b), hence they are not provided here. In the above Egs. (41), (42),
D}(] (+) denotes the first integer-order derivative with respect to the axial
variable x,. Note that the fractional derivative Dz] (+) is defined over the
interval (x; —/p, x| +1,) unlike the fractional derivative D¢(-) which is
defined over the interval (x; -/, x;+/p). This change in the terminals of
the interval of the Riesz Riemann-Liouville fractional derivative follows
from the standard integration by parts technique used to simplify the
variational integrals (see Patnaik et al., 2020c). Further, N'(x;) and
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M(x,) are axial and bending stress resultants defined in the following
manner:

b2 rh)2

N(x)) = / / 611 (x1,x3) dxz dx, (43a)
—b/2 J=h)2
b/2 rh/2

Mx)) = / / x3 &1(x1,%3) dxz dx, (43b)
—b/2 J -2

By using the constitutive relations for a homogeneous isotropic solid
given in Eq. (38) along with the above definitions, the stress resultants
are obtained as:

N(x1) = Aj16y(x1) — Np(xy) (44a)

M(x)) = Dy R(x)) — Mp(xy) (44b)

where A,; = Ebh and D, = Ebh’/12 are the axial and bending stiffness
coefficients of the beam, respectively. The thermal resultants Nj(x,)
and M(x,) for the isotropic beam are given as:

h/2
{Ng(x1), Mg(x))} = Ebao/ ) {1, x3} 0(x;,x3) dx3 (45)
—h/2

Note that for a general distribution of material properties across the
thickness of the beam, additional terms due to the bending—extension
coupling would be noted in the Egs. (43), (45). Upon ignoring the non-
linear terms in the governing equations given above, striking similarity
may be noted to the governing equations in Eq. (20) derived using
linear momentum balance law.

In the following, we discuss a few characteristics of the thermome-
chanical governing equations given in Eq. (41). First, observe that the
stress resultants given in Eq. (44) introduce the thermoelastic variables
into the governing equations in Eq. (41). In the absence of thermal
loads (0(x;,x3) = 0), the constitutive models reduce to the expressions
derived in Sidhardh et al. (2020b) for the geometrically nonlinear
fractional-order nonlocal beams. Owing to the nonlinear nature of the
structural response, the axial and transverse displacement fields are
coupled unlike what seen in the linear elastic case (Patnaik et al.,
2020c). Second, we emphasize that the fractional-order model for the
linear thermoelastic response of a nonlocal beam can be obtained by
ignoring the nonlinear terms in the constitutive relations developed
above. The linear thermoelastic model of the fractional-order nonlocal
beam will be discussed further in Section 5. Finally, the classical
thermoelastic models are recovered for a = 1.

4. Nonlinear fractional finite element model (f-FEM)

Given the nonlinear and integro-differential nature of the governing
equations, it is unlikely to obtain closed form solutions for the most
general loading and boundary conditions. Therefore, we employ a
fractional-order finite element method to obtain the numerical so-
lution of the nonlinear governing equations. The f-FEM developed
to solve the thermomechanical fractional-order BVP builds upon the
numerical solvers developed for fractional-order models of nonlocal
elasticity (Patnaik et al., 2020c; Sidhardh et al., 2020b). Note that,
although the f-FEM is developed and applied for thermoelastic re-
sponse of fractional-order beams, it can be easily extended to higher
dimensional structures like plates and shells.

Analogously to traditional FEM, the f-FEM is formulated starting
from a discretized form of the total potential energy functional I7[u(x)]
given in Eq. (40). For this purpose, the 1D domain Q = [0,L] of
the beam indicated in Fig. 1 is uniformly discretized into disjoint two
noded elements Qf = (x"l,x'i“) of length /, such that Ui]lfl Q=0, N,
being the total number of discretized elements. It is immediate that
_Qje. NQ; =@V j# k. The unknown field variables uy(x,) and wy(x,) in
Eq. (41) can now be evaluated at any point x; € ¢ by interpolating
the corresponding nodal values for Q¢ as:

{ug(x)} = [LGePHU(x}; {wo(x)} = [HEDH{W,(x1)} (46)
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where {U,(x;)} and {W,(x;)} are the axial and transverse displace-
ment degrees of freedom of the two-noded element Qf. [L(x,)] and
[H(x,)] are the Lagrangian and Hermitian interpolation functions, re-
spectively, chosen to enforce the continuity of the axial and transverse
displacement fields for the Euler-Bernoulli beam theory. In terms of
the above discussed numerical discretization of the nonlocal domain,
the fractional derivatives can be expressed as:

D, [ug(x)] = [B,Gep)HUb; D2 [wolep)] = [BuGep)l W, )i

1 ~ (473)
D2 DL wyx)] = [Bye)1(Wy)

where the matrices [l?D(x,)] corresponding to nonlocal strain—

displacement matrices are given as:

_ x1+lpg 5

[B(x))] =/ A(xy, 51,1451, ) B (s DICH(xq, s1)1dsy (47b)
x=ly

The kernel A(x,,s,,1,.lp,a) in the above equation is:

SA =l o =)™ s € (xy = g,x))

(47¢)
s; € (x1,x1 +1p)

A(xl,sl,lAJB,a)= 1 .
5(1—05)1%7 (sy —x)7

and the matrices [Bo(x,)] (] € {u,w,0)} are the integer-order strain-
displacement matrices given by:

d[H(s)] |
ds;

d[L(s))]

a5, (47d)

[B,(s)] =

5 [Bu(s))] = [By(sy)] =

d2[H(s))]

5i
Complete details of the steps involved in the numerical evaluation
of system matrices following an additional convolution integral in
Eq. (47b) for nonlocal matrices and resolving the singular kernel in
Eq. (47c¢) for fractional-order derivatives are provided in Patnaik et al.
(2020c¢), Sidhardh et al. (2020b).

We use the FE approximations of the different fractional-order
derivatives to obtain the algebraic governing equations corresponding
to the geometrically nonlinear thermoelastic response of the fractional-
order beam. In the interest of a more compact notation, the functional
dependence of the different physical quantities on the spatial variables
will be implied, unless stated to be constant. The first variation of the
potential energy function I7[u] defined in Eq. (40) is obtained as:

L ph/2 L L
61 = b/ / 661y 611dx3dx; —/ F,6wydx; —/ F,éugdx; (48)
o J-np 0 0

By using the strain-displacement relations in Eq. (36) and the stress-
resultants in Eq. (43) we obtain:

ot = [ {22, (ou)] + 4 [ 2] [ %, (5
M [D;'q [Dil (5'”0)” = Fobup — Fidwy } dx (49)

The minimum potential energy principle, 51T = 0, is enforced to obtain
the algebraic equations of equilibrium. More specifically, by using
the numerical approximations developed for the different fractional
derivatives (see Eq. (47)) and then enforcing the minimization of the
total potential energy, we obtain the following system of nonlinear
algebraic equations in globally assembled vectors of nodal displacement
degrees of freedom {U,} and {W,}:

[Ign] [@12]] {{Ug}}={{FA+FA9}} (50)
(K] [Kpl] LW} {Fr + Fr, }
where the different stiffness matrices are given by:

L
[K11]=A A“[l;’u(xl)]T[Eu(xl)]dxl (51a)

L
(K] = % / Any (D2 o)1) BT B (x)] dxy (51b)
0

Nonlinear matrix
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L
(Rort = [ vy (D2 eor1) (B LB, el 510
0 ~
Nonlinear matrix
~ L ~ ~
[K>] :/ D]l[Bg(X1)]T[Bg(X1)] dx;
0
1 [r 2] = e i
+§/0 [A“ (2 1) } BT [By(xldx;  (51d)

Nonlinear matrix

The axial and transverse force vectors due to the mechanical and
thermal loads are given as:

L
{FA}T:/ F,(x LS, (xldx, (52a)
0
L
{FT}T=/0 F,(x IS, (xldx, (52b)
L
{FAQ}T=/O No(xIB,(x1)]dx, (52¢)
L
{FT(;}T=/ Ny(x1) (Dzl[wo(xl)]) [B,,(xy)]dx;
0
L
—/ M(x)[By(x)]dx, (52d)
0

Note that the geometric nonlinearity introduces additional nonlinear
thermomechanical coupled terms. This nonlinear behavior is dependent
on the thermal properties of the beam as evident from the expressions
of the thermal stress resultants given in Eq. (45). In fact, these non-
linear effects are expected to be significant at high temperature. These
additional nonlinear thermomechanical terms can be accounted for in
two ways: approach #1: the terms are treated as an external nonlinear
thermal force; and approach #2: the contribution of these terms is
accounted via the stiffness matrix of the system. The equivalence of the
results obtained through both these approaches and a comparison of
their accuracy and stability is presented in Praveen and Reddy (1998).
In this study, we follow the approach #1 so that the linear analysis of
the nonlinear system, for small displacements, becomes straightforward
without requiring changes to the stiffness matrix.

The algebraic Egs. (50) are solved for the nodal values of the gen-
eralized displacement coordinates for an isotropic beam subject to dis-
tributed thermal and mechanical loads. The solution to these equations
along with Eq. (34) gives the displacement field at any point within
the beam. The geometric nonlinearity in the system is highlighted by
the deformation dependent stiffness terms in Egs. (51b)—(51d). Further,
as previously discussed, the additional nonlinear thermomechanical
terms are introduced into the model as a nonlinear transverse force as
evident from Eq. (52d). Given the nonlinear nature of the FE algebraic
equations, a Newton—-Raphson (NR) iterative numerical scheme was
adopted to obtain the solution of the Eq. (50). Similar to classical
nonlinear models, the NR procedure for the fractional-order nonlinear
equations also requires the evaluation of the tangent stiffness matrix.
The procedure to evaluate the tangent stiffness matrix as well as the
NR scheme can be found in Sidhardh et al. (2020b).

The linear f-FEM for the thermoelastic response of the nonlocal
isotropic beam can be obtained from the above model by ignoring the
contribution of the nonlinear coupling term, that is (Dgl [wy(x1)])? in
the system matrices as well as in the force vectors. Note that the axial
and transverse displacement fields for the linear elastic response due to
thermomechanical loads are decoupled. Finally, the f-FEM reduces to a
local thermoelastic study of beams when the fractional-order is set to
a=1.
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5. Numerical results and discussion

We use the numerical model developed in Section 4 to analyze
both the linear and the geometrically nonlinear thermoelastic response
of fractional-order nonlocal isotropic beams. In order to satisfy the
underlying assumptions of the Euler-Bernoulli beam theory, the beam
is assumed to be slender with an aspect ratio of L/h = 100. In the
following studies, the length of the beam is maintained at L = Im and
the width of the beam is considered to be unity. The beam is assumed
made out of aluminum that is E = 70 GPa and oy = 23 x 107® K™!.
The constitutive parameters of the fractional-order continuum model,
order a and length scales /, and /; are provided wherever necessary.
The length scales /4, and / at a point within the domain of the isotropic
beam are considered equal, that is [, =I5 = [,. However, following the
discussion in Patnaik et al. (2020c), these length scales are truncated for
points close to geometric boundaries of the beam. The variable nature
of the nonlocal length scales is demonstrated in the schematic given in
Fig. 2.

We analyzed numerically the effect of the fractional parameters
a and /, on the response of the beam subject to different loading
and boundary conditions. Both the linear and nonlinear cases are
considered.

Before presenting the results, we make a few remarks concerning
the validation and convergence of the f-FEM. In this regard, the {-FEM
procedure has already been validated for linear BVPs in Patnaik and
Semperlotti (2020) and for nonlinear BVPs in Sidhardh et al. (2020Db).
Further, as discussed in Patnaik and Semperlotti (2020), Sidhardh et al.
(2020b), the convergence of the f-FEM with finer element discretization
is controlled by the “dynamic rate of convergence” defined as: N, (=
I7/1,), where [, is the length of the discretized element. This parameter
was shown to be dependent on the fractional model parameters « and /
that determine the strength of the nonlocal interactions between distant
elements (Patnaik and Semperlotti, 2020; Sidhardh et al., 2020b).
Following these convergence studies, the mesh discretization N,,, = 10
was chosen. This choice allows for sufficient number of elements to
be included in the horizon of nonlocality at any point, in order to
accurately capture the nonlocal interactions (Patnaik and Semperlotti,
2020; Sidhardh et al., 2020b).

Linear thermoelastic response: we considered a simply supported
beam subject to a uniformly distributed transverse load (UDTL) of
magnitude g, (in N/m) and to the following thermal load :

2x3
H(XI,X3)=91 1+T

Note that the above distribution is obtained from solving the Fourier’s
conduction law corresponding to uniform temperatures being applied
at the top and bottom surfaces (x; = +h/2) of the isotropic beam.
Here, the bottom surface of the beam is maintained at the ambient
temperature Tj,. It follows, from Eq. (53), that the temperature of the
top surface is Tj(= T + 260;). The nonlocal elastic response to these
thermomechanical loads for different values of fractional constitutive
parameters « and /, are compared in Fig. 3. The transverse displace-
ment along the length of the simply supported beam was explored for
different values of @ while maintaining /  constant (Fig. 3(a)). Simi-
larly, the transverse displacement was evaluated for different values of
Iy while maintaining « constant (Fig. 3(b)). The increase in transverse
displacement with the increasing degree of nonlocality, achieved either
by reducing a (see Fig. 3(a)) or by increasing / 1 (see Fig. 3(b)), points
towards the reduction of the stiffness of the fractional-order beam. We
emphasize that the consistent softening of the structure with increasing
degree of nonlocality was also observed for beams subject to different
loading and boundary conditions. In order to facilitate the analysis of
the thermoelastic response of the nonlocal beam, we have provided,
as a reference, the transverse displacement of the local beam (a = 1)
for two different cases: (a) absence of thermal load, i.e. §; = 0; and
(b) linear thermal load given in Eq. (53). From Fig. 3, note that the

(53)
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nonlocal results converge to the local results for a approaching 1 and
l//L<1.

Extending these studies, the normal axial stress o), and the
fractional-order axial normal strain e,; are studied in Figs. 4 and
5. Here, the normal axial stress o, is normalized as follows (Khod-
abakhshi and Reddy, 2015):

_ L (h\2,
UI](L/Z’x3)=_<_) 611(L/2,x3) (G

g \ L

In Fig. 4, (marginally) higher values of &,, are noted corresponding
to an increasing degree of nonlocality. More specifically, an increase
in the values of the normalized stress are noted for lower values of
the fractional-order a in Fig. 4(a), and higher value of the nonlocal
length scale / + in Fig. 4(b). These observations point to a consistent
reduction in the stiffness of the fractional-order nonlocal structures,
which agrees with the previously noted higher values for the transverse
displacement v when compared against the response of a local beam
(see Fig. 3). Finally, note the constant value of shift in stress profiles at
mid-surface caused by the application of the thermal load. Additional
results corresponding to the nonlocal axial strain ¢, along the length
of the beam are presented in Fig. 5.

In the following, we compare the predictions of the fractional-order
approach to nonlocal thermoelasticity with classical integer-order non-
local theories available in the literature. More specifically, we compare
the predictions of the fractional-order model with the stress-driven
integral model presented in Barretta et al. (2018). For this purpose,
we consider the axial displacement of a doubly-clamped beam subject
to the following thermal load in the absence of any mechanical load:

X1\ X1
- f) i
The axial displacement of the doubly-clamped beam, obtained via
the fractional-order model, is presented in Fig. 6(a) for different val-
ues of the fractional-order a. As evident from Fig. 6(a), a consistent
softening behavior is obtained when considering increasing degree
of nonlocality in the fractional model and a constant thermal load.
This observation also complements the results obtained in previous
studies on fractional-order nonlocal elasticity involving only mechan-
ical loads (Patnaik et al., 2020c). On the contrary, the stress-driven
integral approach does not predict either a consistent stiffening or
softening response of the same beam for different values of the nonlocal
constitutive parameters. In fact, by increasing the degree of nonlocality
the beam initially softens and then stiffens, hence leading the authors
to label the system as being ‘unpredictable’. This result in Barretta
et al. (2018) obtained via the stress-driven integral models for nonlocal
thermoelasticity also contrasts with the consistent stiffening predicted
by the same model for purely mechanical loads in Romano et al. (2017).
Recall that the fractional-order continuum theories are successful in
capturing the softening effects of nonlocal interactions similar to the
Eringen’s integral theories. The above discussion also highlights an
important advantage of the fractional-order approaches to nonlocal
elasticity, that is the consistency of the predicted response even in a
multi-physics scenario.

Further, as evident from Figs 3, 6, the fractional-order model pre-
dicts a reduction in the stiffness of the structure irrespective of the
nature of the boundary conditions. This is evident from the consistent
softening response shown by the cantilever beams subject to thermal
loads given in Eq. (55) as depicted in Fig. 6(b). This observation of
consistent softening agrees with the previously studied cases of the
doubly clamped and simply supported beams. This is contrary to differ-
ential models for nonlocal thermoelasticity, which predict a stiffening
response for the cantilever beam and a softening response for other
boundary conditions (Zenkour, 2017). As discussed in the introduction,
the absence of such paradoxical results in the fractional-order approach
to nonlocal elasticity adopted here follows from the positive-definite
deformation energy density and self-adjoint nature of the fractional-
order nonlocal governing equations (Patnaik et al., 2020c,a). Finally,

0(x;.x3) = 6, (1 (55)
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Fig. 3. Transverse displacement corresponding to the linear response of a simply supported beam for g, = 10* N/m and 6, = 10 K. The plot is parameterized for different values

of the fractional model parameters.

we make an important remark concerning the physically acceptable
range for the order a. As demonstrated above, the degree of nonlo-
cality increases with decreasing a leading to a consistent softening of
the structure. However, as shown in Sumelka and Blaszczyk (2014),
Sumelka et al. (2015), results for very low values of « (~ 0.2, which
indicates a very strong nonlocality in the fractional sense) lead to
non-physical solutions. This is also illustrated in the response of fully
clamped and cantilever beams subject to thermal loads in Fig. 6. Hence,
there exists a limit on the order of the RC fractional derivative (Sumelka
et al., 2015). In other terms, it can be concluded that the fractional-
calculus based continuum models break down for values of « close to
the lower integer limit. We emphasize that this breakdown is not a
characteristic of the f-FEM technique as the same observation is also
noted when using finite difference methods to obtain the numerical
solutions (see, for example, Sumelka and Blaszczyk, 2014; Sumelka
et al., 2015). A detailed discussion supported by a possible physical
explanation for this loss of consistency in elastic response with reducing
fractional order is available in Patnaik et al. (2020c¢).

Nonlinear thermoelastic response: in this case, the beam was sub-
jected to a UDTL of magnitude ¢, (in N/m) and a uniform thermal field
0(x,x3) = 6, (in K) above reference temperature. First, we considered
a beam clamped at both ends and subject to the thermomechanical
loads described above. The transverse displacement of the beam for a
fixed UDTL and varying magnitude of the thermal load was obtained
and compared for different values of « and /,. The magnitude of the

11

UDTL was fixed at g, = 5 x 10* N/m and the value of the uniform
thermal field 6, was varied in order to analyze the effect of the thermal
load on the response of the beam. Additionally, in order to analyze the
effect of the fractional model parameters on the response of the beam,
the transverse displacement of the beam was compared for different
values of « and /,. The results of this study are presented in Fig. 7
in terms of the thermal load versus displacement. The displacement
values presented in Fig. 7 correspond to the maximum displacement
of the mid-plane of the beams, obtained at x; = L/2. The effect of the
fractional-order « with /, being held constant is compared in Fig. 7(a).
The effect of | 7 for fixed « is presented in Fig. 7(b). The result for
the local case (a 1) is provided in both cases as a reference. As
evident from Fig. 7, the nonlocal beam exhibits consistent softening
with increasing thermal loads and increasing degree of nonlocality.
As observed earlier, the thermoelastic response of the nonlocal beam
converges to the corresponding local elastic response for a approaching
land /,/L < 1.

Finally, the study was repeated for a beam pinned at both ends. The
effect of the fractional model parameters over the geometrically nonlin-
ear response of the pinned—pinned beam subject to thermomechanical
loads is presented in Fig. 8. Observations analogous to those drawn for
the clamped-clamped beam can be noted for this case. Remarkably,
the fractional-order approach to the modeling of nonlocal elasticity
exhibits good consistency across a variety of boundary and loading
conditions for both the linear and geometrically nonlinear responses.
This behavior differs sharply from the paradoxical results reported
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in the literature for either gradient or integral based approaches to
nonlocal elasticity (Challamel and Wang, 2008; Romano et al., 2017).

6. Conclusions

This study established the thermodynamic framework for fractional-
order models of nonlocal thermoelasticity. One of the most significant
outcome of this formulation is the ability to rigorously enforce, in

(b) €11 vs .

10 K. The plot is parameterized for different values of

a point-wise manner, the thermodynamic balance laws in a nonlocal
medium. This result stands in stark contrast with respect to traditional
integer-order methods that can satisfy the thermodynamic laws only in
a (weak) integral sense. An important consequence of this property of
the fractional-order framework is the substantial simplification of the
formulation of the free energy density and of the resulting constitutive
models of nonlocal thermoelasticity. The thermodynamically-consistent
fractional-order continuum theory is well suited to develop accurate

12
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of the fractional-order nonlocal parameters.

models to capture nonlocal interactions, heterogeneity, and scale effects
in complex elastic solids operating in a thermomechanical environ-
ment. Additionally, the mechanical balance laws are also derived from
balance principles. This approach to the development of the governing
equations involved a modified Cauchy’s lemma for surface tractions
in order to include additional forces due to nonlocal effects. The re-
sulting mechanical governing equations are consistent with self-adjoint
linear operators admitting unique solutions. This is also an important
difference of the present framework in comparison to existing integer-
and fractional-order approaches for nonlocal solids available in the
literature.

13

The efficacy of the fractional-order modeling approach was illus-
trated by applying the framework to the analysis of the static response
of a nonlocal Euler-Bernoulli beam subject to combined thermome-
chanical loads. Numerical results, obtained using the fractional finite
element method, highlighted the extremely robust nature of the frac-
tional models by illustrating the consistency of the predicted nonlocal
response across different thermomechanical loads and boundary con-
ditions. A comparison with the existing integer-order nonlocal models
was also provided in order to illustrate the advantages offered by the
fractional-order theory of nonlocal thermoelasticity.
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Appendix. Traction in nonlocal solids

In this appendix, we discuss the physical significance of the modi-
fied fractional-order expression of the Cauchy’s lemma, given in Eq. (9),
for the traction acting on a surface within the nonlocal solid. We will
also provide a comparison of the fractional-order definition with the
existing models, from both a physical and a mathematical standpoint.

A schematic of the nonlocal solid £ in the current configuration 53,
at the instant of time ¢, is given in Fig. 9. In the following, we will focus
on the forces acting on an arbitrary part of the body that occupies an
infinitesimal domain D, with surface 0D, separating it from the rest of
the solid (external to D,), as highlighted in Fig. 9. Due to the restrictions
of fractional vector calculus, we limit the geometry of this arbitrary
domain to a regular cuboid (Tarasov, 2008; Patnaik et al., 2020d).
Note that there are no a priori assumptions on either the size of the
domain D, or the length of the nonlocal horizon at the point of interest
p(x,t). The domain D, is assumed to be located sufficiently away from
the boundaries to avoid boundary effects. The traction t(x,7,n) acting
on surface 9D, is applied by the entire solid minus the domain D,.
In the framework of classical elasticity, this is purely restricted to an
interaction of the infinitesimal domain surrounding D,, evident from
the Cauchy’s lemma: t(x,,n) = n-o(x,t). However, when considering a
nonlocal elastic medium, additional forces (resulting from the nonlocal
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interactions) must be included. Further discussions will be restricted
to interactions on the planes perpendicular to x, direction, but they
can be easily extended to the other dimensions. The unit normal vector
for the chosen imaginary surface is given by n = +é,, é, being unit
vector along x, —direction. Following the power-law attenuation models
for the nonlocal interactions, considered previously in Carpinteri et al.
(2014), we can express the forces acting on the point p(x,7) normal to
the surfaces 0DF and 0DF (see Fig. 9) as follows:

X ©
flLdAl = (K'a/ = <Ka/
—c0 X

where k, is a material constant with units [L]*"!, dA, is the area of
the face normal to x,, and superscripts ()% and ()R are used to denote
traction acting due to interaction with points located to the left and
right of p along x, direction. The above choice of spatially-decaying
power-law kernel to model long-range cohesive forces follows from
similar studies on nonlocal elasticity (Carpinteri et al., 2014; Patnaik
et al.,, 2020d). From the schematic given in Fig. 9, it is clear that the
forces flLdAl and ffdAl are oriented along the —é, and ¢, directions,
respectively. So, the net force acting on the imaginary surface along

x,—direction can be expressed as:
ta, = (& - ) aa,
) ([ )

=Kgy ad§ - adf dA
[(/ €~ xi] o 6= 1

In order to express the above result in a more intuitive manner, we
make use of the previous definition of normal vector perpendicular to
imaginary surface with area dA,. The non-zero component of the unit
normal vector n is: n; —1 for the left-, and n, 1 for the right-
side of the imaginary surface (see the schematic given in Fig. 9 for the
definition of coordinate axes). Following the above sign convention, we

recast the above equation as :

fdA, = 2x, [1 </oo d§+/xl _mou d§>] dA,
2 X1 —00 |§ - X |

Riesz Integral

It immediately follows that the above expression can be recast using
the Riesz integrals I'-%(-) (Podlubny, 1998). Using the definition of

&1, (®) )
———dé | dA,,
A

6115
1€ —x;1*

i d.f) dA,

(56)

611($) 7)

n6y

1§ —x1”

(58)
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Fig. 9. Traction at x € D, along normal to surface dA; within a nonlocal solid 3,. Note the contributions from long-range forces across the nonlocal domain (x; —/,,x; +1,) are
highlighted for a representative case. The interaction zone defined here for the nonlocal solid identically reduces to an infinitesimal domain for the case of local elasticity..

the Riesz integral, we rewrite the total traction acting on the surface
perpendicular to normal n; due to normal forces along the normal as
follows:

t = 25,1} (5y) (59)

Thus, the traction acting on a surface in the nonlocal solid can be ex-
pressed as a Riesz-integral operator applied over the individual traction
forces due to long-range interactions. For a finite solid, we cast the
above expression in the form of a Riesz-type integral as:

tntm = 2rC-a (15 (o, 1m0 ) +15 (o1, n-o)] 60
as also given in Eq. (9)).

Physical implications: Physically, the integral operators can be inter-
preted as a summation of the traction forces applied on the surface at
the point p due to long-range interactions with the individual points
located within its horizon of influence. Moreover, the power-law kernel
serves as the weight function to define the strength of these interac-
tions. Ignoring the nonlocal effects, either by reducing the horizon of
influence to an infinitesimal domain or by setting a = 1, eliminates the
additional contributions reducing the above expression to the Cauchy’s
hypothesis for classical (local) elastic solids. Note that the fractional-
order definition of the traction satisfies the Newton’s third law that is,
t(x,7,n) = —t(x,t,—n), indicating also the physical consistency of the
definition.

The suggested generalization of the Cauchy’s postulate in Eq. (9) of-
fers a clear interpretation of the surface forces encountered in
fractional-order continuum theory following variational principles (Pat-
naik et al.,, 2020c). While similar works have been reported and
undertaken for nonlocal interactions studied via the N-generalized
continuum theory in Dell’Isola et al. (2012, 2015, 2016), studies
concerning the nonlocal theory in general, and the fractional-order
continuum theory in particular, are restricted to the classical Cauchy
postulate (Sumelka and Blaszczyk, 2014; Sumelka et al., 2015). There-
fore, we propose the modified expression in Eq. (9) to generalize the
classical Cauchy “postulate” for fractional-order continuum theories. In
other terms, this can be postulated as the Cauchy’s force balance argu-
ment for a-generalized continua where « is a fraction. Eq. (9) presents
the contact surface force for « € (0,1] by including the additional
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force contributions exerted on this surface from the long-range nonlocal
interactions.

Finally, we discuss some important remarks concerning the general-
ization of integer-order strain-displacement relations by their
fractional-order analogues. In contrast to the microcontinuum (Maugin,
1993; Toupin, 1962; Eringen, 1999) and gradient elasticity (Mindlin,
1964) theories that introduce nonlocal effects using additional kine-
matic descriptors (see Section 1), the fractional-order formulation
presented in this study models the effect of nonlocality via a differ-
integral (fractional-order) kinematic relation without using any addi-
tional kinematic descriptors. Therefore, the work conjugates obtained
via variational principles include only the contact forces over unit
area. Specifically, the work-conjugate for the fractional-order strain in
Eq. (3) is the second-order tensor designated as the nonlocal stress
6 given in Eq. (32). This is unlike the additional contact forces per
unit line and concentrated point forces observed for generalized Nth
order continuum theories (Dell’Isola et al., 2012) or the couple stresses
noted for micropolar theories (Toupin, 1962). Therefore, it is clear that
the contact surface interaction in this approach is only the traction
applied per unit surface, and no additional contact interactions in
the form of edge and wedge forces are seen due to the absence
of additional kinematic descriptors. Inclusion of additional kinematic
descriptors within this fractional-order approach naturally leads to
additional non-classical contact forces as has been shown in Patnaik
et al. (2020d).

Mathematical justification: In contrast with the existing studies on non-
local elasticity, based on integer-order models (Eringen and Edelen,
1972) or even some existing studies using fractional-order models
(Sumelka and Blaszczyk, 2014; Sumelka et al., 2015), we consider the
contribution of long-range interactions through modified expression
for the traction vector. This is required to maintain mathematical
consistency of the constitutive modeling for fractional-order solids. It
can be shown that the mechanical balance law (Eq. (20)), derived
following the modified Cauchy’s hypothesis, is self-adjoint. Further, the
above described modification to Cauchy’s hypothesis also provides a
positive-definite deformation energy density. Detailed proofs for the
above statements can be found in Patnaik et al. (2020c,a). The above
observations are lacking from the existing studies, mentioned above,
based on the local Cauchy’s theorem for nonlocal solids.
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