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A B S T R A C T

This study presents a comprehensive framework for constitutive modeling of a frame-invariant fractional-order
approach to nonlocal thermoelasticity in solids. For this purpose, thermodynamic and mechanical balance
laws are derived for nonlocal solids modeled using the fractional-order continuum theory. This includes
revisiting the Cauchy’s hypothesis for surface traction vector in order to account for long-range interactions
across the domain of nonlocal solid. Remarkably, it is shown that the fractional-order model allows the
rigorous localized application of thermodynamic balance principles unlike existing integral approaches to
nonlocal elasticity. Further, the mechanical governing equations of motion for the fractional-order solids
obtained here are consistent with existing results from variational principles. These fractional-order governing
equations involve self-adjoint operators and admit unique solutions, in contrast to analogous studies following
the local Cauchy’s hypothesis. To illustrate the efficacy of this framework, case-studies for the linear and
the geometrically nonlinear responses of nonlocal beams subject to combined thermomechanical loads are
considered here. Comparisons with existing integer-order integral nonlocal approaches highlight a consistent
softening response of nonlocal structures predicted by the fractional-order framework, irrespective of the
boundary and thermomechanical loading conditions. This latter aspect addresses an important incongruence
often observed following the strain-based integral approaches to nonlocal elasticity.
1. Introduction

Several theoretical and experimental studies have shown that size-
dependent effects, also referred to as nonlocal effects, are prominent
in the response of complex structures of great relevance for many real-
world applications. These size-dependent effects can be traced back to
medium heterogeneity, existence of surface stresses, presence of ther-
mal loads, and even medium geometry. More specifically, in the case
of micro- and nano-structures, size-dependent effects have been traced
back to the existence of surface and interface stresses due to nonlocal
atomic interactions and Van der Waals forces (Sudak, 2003; Pradhan
nd Murmu, 2009; Wang et al., 2011). In the case of macroscale struc-
ures, nonlocal effects can result from an ensemble of factors including
aterial heterogeneity, interactions between layers (e.g. in FGMs or
omposite media) or unit cells (e.g. in periodic media), and geometric
nhomogeneity (Romanoff et al., 2016; Hollkamp et al., 2019; Patnaik
and Semperlotti, 2020). In other terms, nonlocal governing equations
for macrostructures often result from a process of homogenization of
the initial inhomogeneous system. Further, geometric effects such as
changes in curvature have also been shown to induce nonlocal size-
dependent effects in nano-, micro-, and macro-structures (Sudak, 2003;
Wang et al., 2011).
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The above mentioned complex slender structures have important
applications in engineering and biotechnology. As an example,
macroscale structures made from functionally graded materials (FGM)
or sandwiched designs have been largely used in weight-critical appli-
cations such as aerospace, naval, and automotive systems
(Kouchakzadeh et al., 2010; Marzocca et al., 2011). Similarly, thin
films, carbon nanotubes, monolayer graphene sheets and micro tubules
have far-reaching applications in atomic devices, micro/nano-
electromechanical devices, as well as sensors and biological implants
(Sudak, 2003; Emam, 2013). Independently on the spatial scale, the
key design constraints in the above applications include restrictions
on space and weight. As a result, structural assemblies for lightweight
applications are typically made of a combination of slender components
like beams, plates, and shells. There are several applications where
these structures are subject to large and rapidly varying mechanical
and thermal loads that drive the system into a geometrically nonlinear
regime. A practical example includes the analysis of supersonic or
hypersonic aerospace systems where the combination of large and
quickly varying aero-thermomechanical loads induces highly a non-
linear response (Librescu et al., 2002; Kouchakzadeh et al., 2010;
vailable online 16 February 2021
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Marzocca et al., 2011). Similarly, the ability to account for coupled
thermomechanical nonlinear effects is also critical in applications in-
volving nano- and micro-structures such as, for example, in the design
of biological implants, measurement devices, and sensors (Emam, 2013;
Ebrahimi and Salari, 2015). Despite the undeniable need for proper
theoretical frameworks and computational tools capable of simulating
the thermomechanical response of nonlinear and nonlocal structures,
only a limited amount of studies focusing on geometrically nonlinear
thermomechanical response of nonlocal slender structures are avail-
able in the literature. In the following, we briefly review the main
characteristics of these studies and discuss key limitations.

Seminal works from Kröner (1967) and Eringen and Edelen (1972)
have explored the role of nonlocality in elasticity and laid its theoretical
foundation. The key principle behind nonlocal theories relies on the
idea that all the particles located within a prescribed area, typically
indicated as the horizon of nonlocality, influence one another by means
of long-range cohesive forces. This interaction between particles is
accounted for by using gradient or integral relations for the strain field
within the constitutive equations. These approaches lead to so-called
‘‘weak’’ gradient methods or ‘‘strong’’ integral methods, respectively.
Integral methods (Eringen and Edelen, 1972; Polizzotto, 2001; Barretta
et al., 2018) capture nonlocal effects by re-defining the constitutive
law in the form of a convolution integral of either the strain or the
stress field over the horizon of nonlocality, whereas gradient elasticity
theories (Peerlings et al., 2001; Aifantis, 2003; Sidhardh and Ray,
2018, 2019) account for the nonlocal behavior by introducing strain
or stress gradient dependent terms in the stress–strain constitutive law.
As emphasized earlier, several applications involving nonlocal slender
structures also experience thermal loads and geometric nonlinearities.
Although several studies are available on the topics of geometrically
nonlinear response of nonlocal slender structures (Yang et al., 2010;
Srinivasa and Reddy, 2013; Emam, 2013) and on the thermomechanical
response of nonlocal structures (Polizzotto, 2001; Shen et al., 2010;
Tounsi et al., 2013; Ebrahimi and Salari, 2015), theoretical and nu-
merical methods capable of addressing the combined geometrically
nonlinear thermomechanical response of nonlocal structures have not
been specifically addressed.

As mentioned previously, the classical studies on nonlocal (either
linear or nonlinear) elasticity and nonlocal (linear) thermoelasticity
encounter some key shortcomings. As an example, gradient theories
experience difficulties when enforcing the boundary conditions asso-
ciated with the strain gradient-dependent terms (Peerlings et al., 2001;
Aifantis, 2003). On the other side, the integral methods are better suited
to deal with boundary conditions but they lead to mathematically ill-
posed governing equations. This mathematical ill-posedness leads to
erroneous predictions such as the absence of nonlocal effects or the
occurrence of hardening behavior (not consistent with integral models)
for certain combinations of boundary conditions (Romano et al., 2017).
In this class of problems, the ill-posedness stems from the fact that
the constitutive relation between the bending moment field and the
curvature is a Fredholm integral of the first kind, whose solution does
not generally exists and, if it exists, it is not necessarily unique (Romano
et al., 2017). Additionally, in both these classes of methods, there are
no available explicit relations to estimate the stress at a given point
given the strain at that particular point. This latter aspect prevents
the application of variational principles (Phadikar and Pradhan, 2010;
Anjomshoa, 2013) and has critical implications on the development of a
thermodynamic framework for the classical nonlocal approaches. More
specifically, the modeling of nonlocality through nonlocal stress–strain
constitutive relations allows only for a weak application (in a domain
integral sense) and prevents the localized (point-wise) application of
the thermodynamic balance laws. As discussed in Polizzotto (2001),
the weak application of thermodynamic balance laws, particularly
the second law, leads to inconsistencies in the nonlocal continuum
2

framework. g
In recent years, fractional calculus has emerged as a powerful math-
ematical tool to model a variety of nonlocal and multiscale phenomena.
Fractional derivatives, which are a differ-integral class of operators,
are intrinsically multiscale and provide a natural way to account for
nonlocal effects (Podlubny, 1998). Given the multiscale nature of frac-
tional operators, fractional calculus has found wide-spread applications
in nonlocal elasticity (Cottone et al., 2009; Di Paola and Zingales, 2008;
Carpinteri et al., 2014; Sumelka and Blaszczyk, 2014; Sumelka et al.,
2015; Hollkamp et al., 2019; Patnaik and Semperlotti, 2020; Hollkamp
nd Semperlotti, 2020). In a series of papers, Patnaik and Semperlotti
2020), Patnaik et al. (2020c), Sidhardh et al. (2020b), Patnaik et al.
2020a,b) have shown that a nonlocal continuum approach based
n fractional-order kinematic relations provides an effective way to
ddress the previously mentioned shortcomings of classical approaches
o nonlocal elasticity. In addition, the formulation developed in these
orks is fully frame-invariant. Note that, unlike gradient elasticity
ethods, additional essential boundary conditions are not required
hen using the Caputo definition of the fractional operator (Hollkamp
t al., 2019; Patnaik and Semperlotti, 2020). Further, the nonlocal
odel based on fractional-order kinematic relations allows the ap-
lication of variational principles and leads to well-posed governing
quations that admit unique solutions (Patnaik et al., 2020c,a). Fi-
ally we note that the fractional-order continuum theories are shown
o be effective in developing reduced-order models for inhomoge-
eous systems, particularly periodic structures: periodic bar (Hollkamp
t al., 2019), acoustic black hole structures (Hollkamp and Semperlotti,
020), and grid-stiffened plates (Patnaik and Semperlotti, 2020).
In this study, we build upon the fractional-order nonlocal con-

inuum theory and develop a frame-invariant thermodynamic frame-
ork for the nonlocal solids. The overall goal of this study is two
old. First, to develop a thermodynamic framework for the fractional-
rder continuum formulation. We will show that the fractional-order
ontinuum formulation allows for a rigorous application of all ther-
odynamic principles. More specifically, the use of fractional-order
inematic relations prevents the requirement of additional integral
onstitutive stress–strain relations as seen in classical nonlocal ap-
roaches (see, for example, (Polizzotto, 2001)). In fact, these additional
esiduals due to nonlocal interactions are assimilated within the cor-
esponding fractional-order analogues. The most direct result is that
he formulation does not require additional constraints associated with
he thermodynamic balance laws. It follows that the thermodynamic
alance laws in the fractional-order theory are free from nonlocal
esidual terms, hence greatly simplifying the constitutive modeling of
he nonlocal continuum and enabling a rigorous implementation of
he thermodynamic principles at each point in the solid. The latter
bservation highlights an important benefit and a key motivation to
ursue a fractional-order formulation to nonlocal thermoelasticity as
t sets the fractional approach apart from other classical nonlocal
heories (either integral (Eringen, 1972, 1974) or differential (Eringen,
983)) which typically can only satisfy thermodynamic equilibrium
n a weak (global) sense. Then, by enforcing the mechanical balance
aws, we derive the governing equations of motion for the fractional-
rder nonlocal continuum. In this process, we employ a modification
o Cauchy’s hypothesis for the traction vector in order to include the
ffect of long-range interactions. The thermodynamic framework is also
f critical importance because it allows extending the energy-based
ethodologies typical of classical elasticity theories to the analysis of
onlocal structures. Examples of their applications include the linear
uckling (Sidhardh et al., 2020a) and post-buckling (Sidhardh et al.,
021) response of nonlocal structures that could not be tackled by
tandard integral models of nonlocal elasticity. The second objective
f this study is to highlight the performance of the framework via
specific case-study focusing on a fractional-order Euler–Bernoulli
eam subject to combined thermomechanical loads. For this purpose,
e extend the fractional-order finite element model (f-FEM), origi-
ally developed in Sidhardh et al. (2020b), to accurately solve the

eometrically nonlinear fractional-order thermomechanical equations.
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We note that several fractional-order thermomechanical models
have been previously developed and presented in the literature
(Povstenko, 2004, 2009, 2015; Žecová and Terpák, 2015). However,
hese studies have focused primarily on the use of fractional-order
perators to model complex thermal exchanges. More specifically, time-
ractional operators have been employed to rewrite the heat conduction
quation (Povstenko, 2004; Žecová and Terpák, 2015) in order to
odel dissipative effects associated with the thermal processes. Space-
ractional operators have been used in Povstenko (2009), Vázquez et al.
2011), still within the heat transfer governing equation, to model
nomalous forms of spatial diffusion. We emphasize that, differently
rom the present study, these previous works considered a local form
f the stress–strain constitutive relation. On the contrary, our work
oes not consider fractional heat transfer, hence the heat conduction
quation used in our study matches the classical integer-order form. In
his regard, we merely note that a recent study (Vázquez et al., 2011)
as shown that the use of a space-fractional heat conduction equation
in the current form) leads to inconsistencies in the application of the
econd law of thermodynamics. This latter observation motivated us to
se the classical (integer-order) heat conduction equation in our study.
The remainder of the paper is structured as follows: we begin

ith the development of a constitutive model for the fractional-order
pproach to nonlocal elasticity. This involves the thermodynamic and
echanical balance laws applied to the fractional-order solids. Later,
o highlight the significance of the fractional-order models, we present
he case-study of both a linear and a geometrically nonlinear response
f nonlocal beams subject to combined thermomechanical loads and
olved numerically via finite element techniques.

. Constitutive model for fractional-order thermoelasticity

In this section, we develop the constitutive model for fractional-
rder nonlocal thermoelasticity. As discussed earlier, the nonlocal
eam theory presented in this study builds upon the formulation
f a fractional-order nonlocal continuum presented in Patnaik and
emperlotti (2020). This formulation is a generalization of the seminal
orks on fractional-order continuum theories for nonlocal solids devel-
ped in Drapaca and Sivaloganathan (2012), Carpinteri et al. (2014),
umelka and Blaszczyk (2014). In the following, we review the key
ighlights of the continuum theory, and proceed with the development
f constitutive model for nonlocal thermoelasticity.
Note the following notation used throughout the manuscript: (□̇)

enotes the first integer-order derivative with respect to time, comma
otation in the subscript□,𝑗 will be used to denote integer-order spatial
erivative with respect to the coordinate 𝑥𝑗 , and Einstein summation is
mplied for repeated indices.

.1. Fundamentals of the fractional-order nonlocal continuum formulation

Analogous to the classical approach to continuum mechanics, the
esponse of a nonlocal solid can be analyzed by introducing two con-
igurations, namely, the reference (undeformed) and the current (de-
ormed) configurations. The motion of the body from the reference
onfiguration (denoted as 𝑿) to the current configuration (denoted as
) is assumed as:

= 𝜱(𝑿, 𝑡) (1)

uch that 𝜱(𝑿, 𝑡) is a bijective mapping operation. The above mapping
peration is used to model the differential line elements d𝑿̃ and d𝒙̃
n the undeformed and deformed configurations of the nonlocal solid
sing fractional-order operators. The fractional-order deformation gra-
ient tensor

𝛼
𝐅(𝒙,𝑿) defined with respect to nonlocal line elements is

iven by:
𝛼
= d𝒙̃ (2)
3

d𝑿̃
In analogy with classical strain measures, the nonlocal strain can be
defined using the fractional-order differential line elements as d𝒙̃d𝒙̃ −
d𝑿̃d𝑿̃. Following the above definition for fractional-order deformation-
radient tensor, the strain in the nonlocal solid is expressed as:

𝛼
= 1

2

(

𝛼
𝐅
𝑇 𝛼
𝐅 − 𝐈

)

(3)

Extending the above formalism, the Lagrangian strain tensor in the
nonlocal medium is given by (Patnaik and Semperlotti, 2020; Sidhardh
et al., 2020b):
𝛼
𝐄 = 1

2
(

∇𝛼𝐔𝑋 + ∇𝛼𝐔𝑇𝑋
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝝐̃∶ Linear strain

+∇𝛼𝐔𝑇𝑋∇
𝛼𝐔𝑋

)

(4)

where 𝐔(𝑿) = 𝒙(𝑿) −𝑿 denotes the displacement field. The fractional
gradient denoted by ∇𝛼𝐔𝑋 is given as ∇𝛼𝐔𝑋𝑖𝑗 = 𝐷𝛼

𝑋𝑗
𝑈𝑖 and consists of

pace-fractional derivatives. The space-fractional derivative 𝐷𝛼
𝑿𝐔(𝑿, 𝑡)

s taken according to a Riesz–Caputo (RC) definition with order 𝛼 ∈
0, 1) and it is defined on the interval 𝑿 ∈ (𝑿𝐴,𝑿𝐵) ⊆ R3 in the
ollowing manner:

𝛼
𝑿𝐔(𝑿, 𝑡) =

1
2
𝛤 (2 − 𝛼)

[

𝐋𝛼−1𝐴
𝐶
𝑿𝐴
𝐷𝛼

𝑿𝐔(𝑿, 𝑡) − 𝐋𝛼−1𝐵
𝐶
𝑿𝐷

𝛼
𝑿𝐵

𝐔(𝑿, 𝑡)
]

(5)

here 𝛤 (⋅) is the Gamma function, and 𝐶
𝑿𝐴
𝐷𝛼

𝑿𝐔 and
𝐶
𝑿𝐷

𝛼
𝑿𝐵

𝐔 are the left-
nd right-handed Caputo derivatives of 𝐔, respectively. The complete
xpression for the nonlocal strain in Eq. (3) includes nonlinear terms
equired when accounting for large deformations. In this expression,
e also highlight the linear component 𝝐̃ of the fractional-order strain
ensor that will be employed in studies of infinitesimal deformations in
onlocal solids. Unless otherwise specified, fractional-order strains in
onlocal solids will refer to the linear component 𝝐̃. Before proceeding,
t is worth discussing certain implications of this definition of the
ractional-order derivative. The interval of the fractional derivative
𝑿𝐴,𝑿𝐵) defines the horizon of nonlocality (also called attenuation
ange in classical nonlocal elasticity). The length scale parameters
𝛼−1
𝐴 and 𝐋𝛼−1𝐵 ensure the dimensional consistency of the deformation
radient tensor, and along with the term 1

2𝛤 (2−𝛼) ensure the frame in-
variance of the strain–displacement relations (Patnaik and Semperlotti,
2020; Sumelka and Blaszczyk, 2014). These length scales are inde-
pendent parameters, which may or may not be equal to one another,
hence resulting in an asymmetric horizon of nonlocality (𝑿𝐴,𝑿𝐵) at the
point 𝐗. The unequal values for the length scales ensure a truncation
of the nonlocal region of influence for points close to the external
boundaries and discontinuities within the solid. For complete details
the reader should refer to Patnaik and Semperlotti (2020), Patnaik
et al. (2020c). The choice of 𝐋𝐴 = 𝐋𝐵 = 𝑙𝑓 everywhere in the solid,
where 𝑙𝑓 is a constant, identically reduces the above formulation to the
fractional-order kinematic relations proposed in Sumelka and Blaszczyk
(2014).

In this formulation, nonlocality was introduced by using fractional-
order kinematic relations. The fractional-order definition of the strain
has critical implications on the thermodynamic framework for the
fractional-order model of a nonlocal continuum. In the following sec-
tion, we will show that the above approach to nonlocality allows the
first and second law of thermodynamics to be enforced in a strong (lo-
calized) sense. In other terms, the fundamental laws of thermodynamics
can be applied in a strict sense at each point in the nonlocal continuum
as opposed to what happens in classical nonlocal approaches.

2.2. Thermomechanical balance laws for fractional-order thermoelasticity

2.2.1. Thermodynamic balance laws
In this section, we cast the fractional-order nonlocal model pre-

sented above within a thermodynamic framework. Consider a nonlocal
solid 𝛺 that undergoes the arbitrary motion 𝜱 which places a particle

𝑝 ∈ 𝛺 at 𝒚 = 𝜱(𝑝, 𝑡) at time 𝑡. At this instant, the solid occupies a
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domain 𝑡 bounded by a surface 𝜕𝑡. Further, consider a part of the
olid  ∈ 𝛺 that occupies the domain 𝑡 = 𝜱( , 𝑡) and such that point
∈  .
In order to enforce the first law of thermodynamics (i.e. the conser-

ation of energy) over the arbitrary domain 𝑡, we consider the energy
balance applied to the domain 𝑡. Later, we will show that the global
balance laws hold true over any arbitrary domain 𝑡 for the fractional-
order continuum theory. This is unlike classical (integer-order) theories
for nonlocal elasticity that allow the balance law to be applied only
over the entire domain 𝑡, that is in a global (weak) sense. The arbitrary
choice of the domain, made possible by the fractional-order framework,
also allows 𝑡 to be reduced to an infinitesimal domain surrounding the
point 𝑝 so to give the localized version of the thermodynamic law. The
application of the first law of thermodynamics to the domain 𝑡 allows
riting the total energy (𝑡, 𝑡) as the sum of the total internal energy
(𝑡, 𝑡) and the kinetic energy  (𝑡, 𝑡):

(𝑡, 𝑡) = ∫𝑡

1
2
𝜌(𝒙, 𝑡)𝑢̇𝑖(𝒙, 𝑡)𝑢̇𝑖(𝒙, 𝑡) d𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 (𝑡 ,𝑡)

+∫𝑡
𝜌(𝒙, 𝑡)𝑒(𝒙, 𝑡) d𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 (𝑡 ,𝑡)

(6)

here 𝜌 is the mass density in the current configuration, 𝐮̇(= 𝒚̇) is the
spatial velocity of the particle at a generic point 𝑝 defined as the time
derivative of the displacement field. In the above equation, 𝑒(𝒙, 𝑡) is the
nternal energy per unit mass, which is postulated to be a function of
he mechanical and thermal state variables.
Recall that, for the classical (integer-order) local elastic solid, the

nternal energy of a point is a function of the integer-order strain and
ntropy defined at that point. For the nonlocal solid, in addition to the
ocal strain energy, the internal energy at a point must also include
he energy contributions from long-range cohesive forces by other
oints within the solid. Given the fractional-order kinematic relations
escribed in Section 2.1, the contribution of the additional energy from
onlocal interactions is fully captured in the fractional-order strain
̃(𝒙, 𝑡). It is immediate to see that the internal energy density evalu-
ted at a point 𝒙 is a function of the fractional-order strain (𝝐̃(𝒙, 𝑡)).
Consequently, we have the internal energy 𝑒 = 𝑒(𝝐̃, 𝜂̃) corresponding
to the thermoelastic response defined entirely in terms of the state
variables, that are the fractional-order strain 𝝐̃(𝒙, 𝑡) and the entropy per
unit mass 𝜼̃(𝒙, 𝑡). This functional relationship is in sharp contrast with
the thermodynamic framework for classical nonlocal approaches. More
specifically, the thermodynamic framework for classical (integer-order)
nonlocality leads to 𝑒 = 𝑒(𝝐,(𝝐), 𝜂̃) where 𝝐(𝒙, 𝑡) is the local strain
field, and (𝝐) is a linear integral operator which models nonlocality
in the solid (Eringen, 1974; Balta and Şuhubi, 1977; Polizzotto, 2001).
The additional functional relationship via (𝝐) is necessary in these
approaches to account for energy contributions due to nonlocal inter-
actions. To this regard, note that the fractional-order strain 𝝐̃ combines
the local integer-order strain 𝝐 and its integral (𝝐) into a single term
(see Eq. (5)) (Patnaik and Semperlotti, 2020). Indeed, this is precisely
the reason that allows expressing the internal energy density as 𝑒 =
𝑒(𝝐̃, 𝜂̃). It will be shown that the latter observation is significant as it
allows the first law of thermodynamics to be applied in a strict sense
at every point in the domain without additional constraints. For this,
we consider the first law of thermodynamics over the arbitrary domain
𝑡:

̇(𝑡, 𝑡) = ∫𝑡
𝜌(𝒙, 𝑡)𝑏𝑖(𝒙, 𝑡)𝑢̇𝑖(𝒙, 𝑡) d𝑉 + ∫𝜕𝑡

t̃𝑖(𝒙, 𝑡,𝒏)𝑢̇𝑖(𝒙, 𝑡) d𝐴

+ ∫𝑡
𝜌(𝒙, 𝑡)𝑟(𝒙, 𝑡) d𝑉 − ∫𝜕𝑡

ℎ(𝒙, 𝑡,𝒏) d𝐴 (7)

where the first two terms on the right side correspond to the mechanical
power supplied to domain 𝑡 by the body forces 𝐛(𝒙, 𝑡) and the surface
forces applied per unit area 𝐭(𝒙, 𝑡,𝒏), respectively. Here, 𝒏(𝒙, 𝑡) denotes
the outward normal to the surface 𝜕𝑡. Note that the surface forces on
𝜕𝑡 are applied by points external to the domain of interest. These sur-
4

face forces include interactions within the infinitesimal neighborhood, i
as in (classical) local elasticity, and also the long-range interactions of
the nonlocal solid. On the contrary, the body forces 𝐛(𝒙, 𝑡) applied at
every point in the domain by external sources are local as they are
independent of the nonlocal interactions within the solid. Additional
terms in the above equation correspond to the rate of change in thermal
energy of the body due to internal heat generation at the rate of 𝑟(𝒙, 𝑡)
per unit volume, and the heat flux out of the body at the rate of ℎ(𝒙, 𝑡,𝒏)
through the surface 𝜕𝑡. Using Eq. (6), the first law of thermodynamics
can be expressed as:
d
d𝑡 ∫𝑡

𝜌(𝒙, 𝑡)
( 1
2
𝑢̇𝑖(𝒙, 𝑡)𝑢̇𝑖(𝒙, 𝑡) + 𝑒(𝒙, 𝑡)

)

d𝑉

= ∫𝑡
𝜌(𝒙, 𝑡)𝑏𝑖(𝒙, 𝑡)𝑢̇𝑖(𝒙, 𝑡) d𝑉 + ∫𝜕𝑡

t̃𝑖(𝒙, 𝑡,𝒏)𝑢̇𝑖(𝒙, 𝑡) d𝐴

+ ∫𝑡
𝜌(𝒙, 𝑡)𝑟(𝒙, 𝑡) d𝑉 − ∫𝜕𝑡

ℎ(𝒙, 𝑡,𝒏) d𝐴

(8)

he above equation corresponding to the first thermodynamic balance
aw has important implications. Unlike analogous results from classical
odels of nonlocal elasticity, the above energy balance law holds true
or arbitrary domain 𝑡 within the nonlocal solid. This integral form
ver the arbitrary domain 𝑡 can be extended to develop the expres-
ions for a localized imposition of the first law of thermodynamics at
ny point 𝑝 ∈ 𝑡, at any arbitrary time 𝑡. Recall that the internal
nergy density of a nonlocal solid must include contributions from long-
ange forces. For this purpose, modifications are introduced in classical
nteger-order models of nonlocal elasticity via the integral operator
(𝝐) which restricts a localized imposition of the first thermodynamic
aw (Polizzotto, 2001).
Before proceeding further, we briefly discuss key characteristics of

the traction vector 𝐭(𝒙, 𝑡,𝒏). The surface traction at a point 𝒙 is defined
over an imaginary surface normal to the vector 𝒏(𝒙, 𝑡) and passing
through the point 𝒙. This vector captures the forces acting on the
surface due to the interaction of point 𝒙 with the rest of the solid. Local
elasticity which considers interactions restricted within an infinitesimal
domain surrounding the point, employs the classical Cauchy’s hypoth-
esis to define the traction vector, that is 𝐭 = 𝒏 ⋅ 𝝈, where 𝝈 is the
classical stress-tensor defined at the point of interest. In the fractional-
order formulation, suitable modifications to the above definition are
required to account for additional forces acting on the surface due to
long-range interactions. For the fractional-order approach, we present
the following generalization of the Cauchy’s postulate:

The surface traction 𝐭(𝒙, 𝑡,𝒏) acting on an imaginary surface 𝜕𝑡 per-
pendicular to the normal vector 𝒏(𝒙, 𝑡) and passing through the point 𝒙 is
given as:

𝐭(𝒙, 𝑡,𝒏) = 𝑰1−𝛼
𝒏 ⋅ 𝝈̃(𝒙, 𝑡) (9)

where 𝝈̃ is the nonlocal stress evaluated at the point 𝒙. The integral
operator 𝑰1−𝛼

𝒏 defined over the horizon of influence of point 𝒙 is given
as:

𝑰1−𝛼
𝒏 (𝝈̃) = 𝐼1−𝛼𝑥1

(𝑛1 ⋅ 𝝈̃)𝑒1 + 𝐼1−𝛼𝑥2
(𝑛2 ⋅ 𝝈̃)𝑒2 + 𝐼1−𝛼𝑥3

(𝑛3 ⋅ 𝝈̃)𝑒3 (10)

such that 𝒏 = 𝑛𝑖𝑒𝑖 (𝑖 = 1, 2, 3), 𝑒𝑖 are the orthonormal basis vectors.
Further, 𝐼1−𝛼𝑖 (⋅) is a Riesz-type fractional integral defined as:

𝐼1−𝛼𝑥𝑖
𝜒 = 1

2
𝛤 (2 − 𝛼)

[

𝑙𝛼−1𝐵𝑖

(

𝑥𝑖−𝑙𝐵𝑖
𝐼1−𝛼𝑥𝑖

𝜒
)

+ 𝑙𝛼−1𝐴𝑖

(

𝑥𝑖𝐼
1−𝛼
𝑥𝑖+𝑙𝐴𝑖

𝜒
)]

(11)

here 𝑥𝑖−𝑙𝐵𝑖
𝐼1−𝛼𝑥𝑖

𝜒 and 𝑥𝑖𝐼
1−𝛼
𝑥𝑖+𝑙𝐴𝑖

𝜒 are the left and right fractional in-
egrals to the order 𝛼 ∈ (0, 1) of an arbitrary function 𝜒 , in the 𝑒𝑖
irection. In this study, the definition of the normal vector is restricted
o orthonormal triads of Cartesian coordinates. This is due to the lim-
ted developments in fractional vector calculus, as discussed in Tarasov
2008), Patnaik et al. (2020d). A detailed discussion on the above
xpression for the traction vector in a nonlocal solid is outlined in the
ppendix.
Analogous to classical local elasticity, the traction vector defined
n Eq. (9) is used within the global balance laws (Eq. (8)) to obtain
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the corresponding strong form. Additionally, we define the rate of heat
transfer across the surface as ℎ(𝒙, 𝑡,𝒏) = 𝒒(𝒙, 𝑡) ⋅ 𝒏, where the vector
field 𝒒 is referred to as the heat flux out of the body. By substituting
the definitions of the nonlocal traction and the heat flux into Eq. (8),
and then applying the divergence theorem gives:

∫𝑡

[

𝜌𝐷𝑒
𝐷𝑡

+ 𝜌(𝑢̈𝑖 − 𝑏𝑖)𝑢̇𝑖 −
(

𝑰1−𝛼
𝑛𝑖

𝜎̃𝑖𝑗 𝑢̇𝑗
)

,𝑖
−
(

𝜌𝑟 − 𝑞𝑖,𝑖
)

]

d𝑉 = 0 (12)

ere, 𝐷 ⋅ ∕𝐷𝑡 is the material derivative evaluated in the Eulerian
onfiguration. By assuming continuous field variables and using the
ocalization lemma we obtain:
𝐷𝑒
𝐷𝑡

+ 𝜌(𝑢̈𝑖 − 𝑏𝑖)𝑢̇𝑖 −
(

𝑰1−𝛼
𝑛𝑖

𝜎̃𝑖𝑗 𝑢̇𝑗
)

,𝑖
= 𝜌𝑟 − 𝑞𝑖,𝑖 ∀𝒙 ∈ 𝑡 (13)

The above result clearly illustrates the possibility of enforcing the first
law of thermodynamics (i.e. the energy balance) at any arbitrary point
𝑝 ∈ 𝑡 of the nonlocal solid. Note that, according to the fractional-
order continuum theory, we do not require additional constraints to
be imposed over the state variables. This is unlike the previous studies
based on integer-order theories of nonlocal elasticity which required
the energy balance to be complemented by an additional condition
on the nonlocal residuals. Thus, a localized imposition of the energy
balance law for nonlocal solids is derived here following the fractional-
order models. In order to simplify the above expression to a more
recognizable form, we use the mechanical balance laws for linear and
angular momentum of the nonlocal solid, derived later in Section 2.2.2
(refer Eqs. (20) and (23)). Employing the mechanical balance laws for
the nonlocal solid, and following standard algebraic operations, we
write:

𝜌𝐷𝑒
𝐷𝑡

= 𝜎̃𝑖𝑗 ̇̃𝜖𝑖𝑗 + 𝜌𝑟 − 𝑞𝑖,𝑖 ∀𝒙 ∈ 𝑡 (14)

Note that the strain tensor 𝜖𝑖𝑗 in the above expression is evaluated
using fractional-order derivatives defined in Eq. (2). We emphasize
again that the above localized form obtained for the fractional-order
approach is in net contrast with classical nonlocal approaches where
the conservation of the first law can only be applied in a weak sense
(see, for example, Polizzotto (2001)).

Next, we apply the second law of thermodynamics to the fractional-
rder continuum model. Recall the Clausius–Duhem inequality applied
ver the entire solid 𝑡 states:

𝑑
𝑑𝑡 ∫𝑡

𝜌(𝒙, 𝑡)𝜂̃int(𝒙, 𝑡)d𝑉 = 𝑑
𝑑𝑡 ∫𝑡

𝜌(𝒙, 𝑡)𝜂̃(𝒙, 𝑡)d𝑉 − ∫𝑡

𝜌(𝒙, 𝑡)𝑟(𝒙, 𝑡)
𝑇 (𝒙, 𝑡)

+ ∫𝜕𝑡

ℎ(𝒙, 𝑡,𝒏(𝒙, 𝑡))
𝑇 (𝒙, 𝑡)

d𝐴 ≥ 0 (15)

here 𝑇 denotes the temperature of the solid, and 𝜂̃int is the internal
ntropy production density. Recall that the localized form of the second
aw of thermodynamics states that the internal entropy production
ate is non-negative for all points inside the solid, that is 𝐷𝜂̃int∕𝐷𝑡 ≥
∀ 𝒙 ∈ 𝑡. Classical approaches to nonlocal thermoelasticity satisfy
his inequality only in a weak sense, that is the integral form given in
he above equation (Eringen and Edelen, 1972; Eringen, 1974; Balta
nd Şuhubi, 1977). A detailed discussion of the consequent physical
nconsistencies can be found in Polizzotto (2001).
In analogy with the classical approach, we introduce the Legendre

ransformation 𝜓 = 𝑒−𝑇 𝜂̃, where 𝜓 denotes the Helmholtz free energy
er unit mass. It follows that 𝜓 = 𝜓(𝝐̃, 𝑇 ) which is different from
lassical nonlocal approaches wherein 𝜓 = 𝜓(𝝐,(𝝐), 𝑇 ) (Polizzotto,
001). By using the Legendre transformation along with Eqs. (14)
nd (15), we obtain the following local form of the second law of
hermodynamics for the nonlocal solid:

𝑇
𝐷𝜂̃int
𝐷𝑡

= 𝜎̃𝑖𝑗 ̇̃𝜖𝑖𝑗 − 𝜌
𝐷𝜓
𝐷𝑡

− 𝜌𝜂𝑇̇ − 𝑇,𝑖
𝑞𝑖
𝑇

≥ 0 (16)

emarkably, the above fractional-order inequality matches, in its func-
ional form, the classical Clausius–Duhem inequality. Eq. (16) also
ighlights a clear difference compared with classical nonlocal formu-
ations that require additional terms within the inequality as a result
5

of the functional dependence of 𝜓 on (𝝐). As discussed in Polizzotto
2001), these additional terms within the inequality disappear only
hen a weak form is considered. However, as mentioned previously,
atisfying the second law of thermodynamics only in a weak sense leads
o nonphysical results.
Thus, it appears that the fractional-order continuum theory for

onlocal solids allows the thermodynamic balance laws to be applied
n a localized form; a key observation in order to establish the ther-
odynamic consistency of the fractional-order continuum theory and
o derive rigorous constitutive models for the nonlocal solid. Note that
he thermodynamic balance principles for the nonlocal solid have been
resented in the Eulerian setting over the current configuration 𝑡 of
the solid at time instant 𝑡. However, assuming small deformation, the
above results can be extended for the domain in reference configuration
0. For a generalized study of large deformations, resulting from both
geometric and material nonlinearities simultaneously, this assumption
will not be valid. In such cases, the Lagrangian analogues for the
governing equations can be derived from the above results (Germain
et al., 1983).

2.2.2. Mechanical balance laws
In the above discussion on thermodynamic balance laws, we have

obtained the energy balance and entropy inequality laws for a
fractional-order nonlocal solid. For the sake of completeness, in the
following we also derive the mechanical balance laws corresponding
to conservation of linear and angular momentum. For this purpose,
we continue the discussion taking the point of view of the current
configuration 𝑡. Similar to the procedure outlined in Section 2.2.1, we
begin with the integral balance laws over an arbitrary domain 𝑡 and
derive the localized forms of the governing equations for a point 𝑝 ∈ 𝑡.
or the domain under consideration, the statement for the balance of
inear momentum is:
d
d𝑡 ∫𝑡

𝜌(𝒙, 𝑡)𝐮̇(𝒙, 𝑡) d𝑉 = ∫𝑡
𝜌(𝒙, 𝑡)𝐛(𝒙, 𝑡)d𝑉 + ∫𝜕𝑡

𝐭(𝒙, 𝑡,𝒏) d𝐴 (17a)

nd the balance of angular momentum in the absence of external
ouples is expressed as:

d
d𝑡 ∫𝑡

𝒚×𝜌(𝒙, 𝑡)𝐮̇(𝒙, 𝑡) d𝑉 = ∫𝑡
𝒚×𝜌(𝒙, 𝑡)𝐛(𝒙, 𝑡)d𝑉 +∫𝜕𝑡

𝒚× 𝐭(𝒙, 𝑡,𝒏) d𝐴

(17b)

here the operator ′×′ denotes the exterior product. First, the above
alance laws are simplified by imposing the classical (integer-order)
esult for the conservation of mass (Germain et al., 1983). Thereafter,
y substituting the expression for surface traction 𝐭 given in Eq. (9) for
the fractional-order solid, we obtain:

∫𝑡
𝜌(𝒙, 𝑡)𝐮̈(𝒙, 𝑡) d𝑉 = ∫𝑡

𝜌(𝒙, 𝑡)𝐛(𝒙, 𝑡)d𝑉 + ∫𝜕𝑡
𝑰1−𝛼
𝒏 ⋅ 𝝈̃(𝒙, 𝑡) d𝐴 (18a)

∫𝑡
𝒚×𝜌(𝒙, 𝑡)𝐮̈(𝒙, 𝑡) d𝑉 = ∫𝑡

𝒚×𝜌(𝒙, 𝑡)𝐛(𝒙, 𝑡)d𝑉 +∫𝜕𝑡
𝒚×𝑰1−𝛼

𝒏 ⋅𝝈̃(𝒙, 𝑡) d𝐴

(18b)

where we use: 𝒚̇ = 𝐮̇. Using the definition of the Riesz-integral within
the definition of the surface traction and applying the divergence
theorem we obtain Patnaik et al. (2020d):

∫𝑡
𝜌(𝒙, 𝑡)𝑢̈𝑗 (𝒙, 𝑡) d𝑉 = ∫𝑡

𝜌(𝒙, 𝑡)𝑏𝑗 (𝒙, 𝑡)d𝑉 + ∫𝜕𝑡

(

𝐼1−𝛼𝑛𝑖
𝜎̃𝑖𝑗 (𝒙, 𝑡)

)

,𝑖
d𝑉

(19a)

∫𝑡
𝜀𝑖𝑗𝑘𝑦𝑗 𝜌(𝒙, 𝑡)𝑢̈𝑘(𝒙, 𝑡) d𝑉 = ∫𝑡

𝜀𝑖𝑗𝑘 𝑦𝑗𝜌(𝒙, 𝑡)𝑏𝑘(𝒙, 𝑡)d𝑉

+ 𝜀𝑖𝑗𝑘
(

𝑦𝑗𝑰1−𝛼
𝑛 𝜎̃𝑚𝑘(𝒙, 𝑡)

)

d𝑉 (19b)
∫𝜕𝑡 𝑚 ,𝑚
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Applying the localization lemma to Eq. (19a), we arrive at the following
result:

𝜌(𝒙, 𝑡)𝑢̈𝑗 (𝒙, 𝑡) = 𝜌(𝒙, 𝑡)𝑏𝑗 (𝒙, 𝑡)d𝑉 +D𝛼
𝑥𝑖
𝜎̃𝑖𝑗 (𝒙, 𝑡), ∀𝒙 ∈ 𝑡 (20)

which is the localized linear momentum balance law for fractional-
order solids. Here, D𝛼

𝑥𝑖
(⋅) is the Riesz Riemann–Liouville derivative of

rder 𝛼 which is defined as (Patnaik et al., 2020c):
𝛼
𝑥𝑖
𝜒 = 1

2
𝛤 (2 − 𝛼)

[

𝑙𝛼−1𝐵

(

𝑅𝐿
𝑥𝑖−𝑙𝐵

𝐷𝛼
𝑥𝑖
𝜒
)

− 𝑙𝛼−1𝐴

(

𝑅𝐿
𝑥𝑖
𝐷𝛼
𝑥𝑖+𝑙𝐴

𝜒
)]

(21)

here 𝜒 is an arbitrary function and 𝑅𝐿
𝑥𝑖−𝑙𝐵

𝐷𝛼
𝑥𝑖
𝜒 and 𝑅𝐿

𝑥𝑖
𝐷𝛼
𝑥𝑖+𝑙𝐴

𝜒 are the
eft- and right-handed Riemann Liouville derivatives of 𝜒 to the order
, respectively. In the derivation of the localized form of the linear
omentum balance law, given in Eq. (20) from Eq. (19a), we used the
ollowing relation:
𝛼
𝑥𝑖
𝜒 = d

d𝑥𝑖

[

𝐼1−𝛼𝑖 𝜒
]

(22)

he governing equations of motion derived here using the balance
rinciples agree very well with the results obtained via variational
rinciples (Patnaik et al., 2020d). Using the above result for linear
omentum balance and 𝑦𝑖,𝑗 = 𝛿𝑖𝑗 (𝛿𝑖𝑗 is the Krönecker delta), the
trong form of the angular momentum balance for fractional-order
olids reduces to the symmetry condition of the nonlocal stress tensor:

𝜎̃𝑖𝑗 = 𝜎̃𝑗𝑖, ∀𝒙 ∈ 𝑡 (23)

It is interesting to note the fractional-order Riesz-type Riemann–
iouville fractional-order derivative (divergence) of the nonlocal stress
ensor in the elastodynamic equation (Eq. (20)). This result differ from
xisting studies on fractional-order continuum theories that employ a
irst-order derivative of the nonlocal stress (𝐷1

𝑥𝑖
𝜎̃𝑖𝑗) tensor in the same

quation (see, for example, Sumelka and Blaszczyk, 2014). This differ-
nce arises due to the consideration of long-range interactions within
he expression for traction given in Eq. (9). The additional contributions
o the surface traction at a point in the nonlocal solid follow from
he long-range interactions (see Appendix). Note that the Riesz-type
iemann–Liouville operator in the mechanical governing equations
iven in Eq. (20) is self-adjoint and the system is positive-definite.
his result was established and proved in Patnaik et al. (2020c). These
observations are clearly in contrast with either classical integer-order
approaches to nonlocal elasticity, that have shown it is not possible
to define a self-adjoint quadratic potential energy (Reddy, 2010; Chal-
lamel et al., 2014), or some fractional-order models (Sumelka and
Blaszczyk, 2014; Sumelka et al., 2015). Given the self-adjoint and
positive-definite nature of our formulation, the resulting system of
equations is well-posed and admits a unique solution (Patnaik et al.,
2020c). We will show in Section 5 that this well-posedness results in
consistent softening behavior of the structure with increasing degree
f nonlocality irrespective of the thermomechanical load distributions
nd boundary conditions. This result is significant because it bypasses a
ey inconsistency observed in classical nonlocal models and associated
ith the non self-adjointness of the operators (Reddy, 2010; Challamel
t al., 2014).

.3. Constitutive framework for fractional-order thermoelasticity

.3.1. Constitutive modeling
The inequality in Eq. (16) is used to derive the thermodynamically-

onsistent constitutive equations for fractional-order nonlocal elas-
icity. By substituting the expression for the time derivative of the
elmholtz free energy, the inequality in Eq. (16) is expressed as:

𝑇 ̇̃𝜂int =
(

𝜎̃𝑖𝑗 − 𝜌
𝜕𝜓
𝜕𝜖𝑖𝑗

)

̇̃𝜖𝑖𝑗 − 𝜌
(

𝜂 +
𝜕𝜓
𝜕𝑇

)

𝑇̇ − 𝑇,𝑖
𝑞𝑖
𝑇

≥ 0 (24)

ince the above inequality must hold for all thermoelastic processes as
ell as for arbitrary choices of the independent fields ̇̃𝜖𝑖𝑗 and 𝑇̇ , we
btain the following constitutive laws:

𝜎̃𝑖𝑗 = 𝜌
𝜕𝜓

, ∀ 𝒙 ∈ 𝑡 (25a)
6

𝜕 ̇̃𝜖𝑖𝑗
𝜂̃ = −
𝜕𝜓
𝜕𝑇

, ∀ 𝒙 ∈ 𝑡 (25b)

Under assumptions of linear elasticity, the above equations are the
fractional analogues for the Duhamel–Neumann’s laws for classical
thermoelasticity. Further, by using the above constitutive relations
within Eq. (16), the inequality reduces to:

𝜌𝑇 ̇̃𝜂int = −𝑇,𝑖
𝑞𝑖
𝑇

≥ 0, ∀ 𝒙 ∈ 𝑡 (26)

which establishes the second law of thermodynamics for a fractional
order nonlocal solid. The relations in Eqs. (25), (26) can be expressed
s:

heorem. The constitutive relations for fractional-order nonlocal thermoe-
asticity do not violate the Clausius–Duhem inequality if they are of the form
iven in Eq. (25) and subject to Eq. (26).

A few additional comments on this thermodynamic framework are
eeded. At a first glance, the form of the stress–strain constitutive rela-
ion in Eq. (25a) might be deceiving as it appears to lead to a classical
onstitutive relation. Although this is, formally, a correct statement
t does not entirely capture the nature of Eq. (25a). As highlighted
arlier, nonlocality was modeled using fractional-order kinematic re-
ations given in Eq. (4). Therefore, the stress defined through the
q. (25a) is also nonlocal in nature. In addition, this construction of
onlocality (i.e. based on fractional-order kinematic relations) allows
he application of variational principles, ensures a quadratic form of
he potential energy of the system, and leads to well-posed nonlocal
overning equations (Patnaik et al., 2020c,a).
Note also that, in the above study, we assumed an integer-order

ourier heat conduction law, that is 𝑞𝑖 = −𝑘𝑇,𝑖, where 𝑘 is the ma-
erial conductivity constant such that 𝑘 > 0. It is immediate that the
nequality in Eq. (26) obtained from the second law is trivially satisfied
for the integer-order heat conduction law. Finally, following from the
latter remark, a space-fractional thermal conduction law defined as
𝑞𝑖 = −𝑘𝐷𝛼

𝑋𝑖
𝜃 was proposed in Povstenko (2009). However, as shown

in Vázquez et al. (2011), the space-fractional heat conduction law
violates the second law of thermodynamics. Thus, we limit the scope
of the current study to fractional-order constitutive modeling for the
mechanical field but integer-order models for the thermal fields.

2.3.2. Linear fractional-order thermoelasticity
In this section, we derive the constitutive relations for linear ther-

moelastic response of fractional-order nonlocal solids. For this purpose,
recalling that the fractional-order nonlocal formulation allows a lo-
calized implementation of the thermodynamic principles, we write
the Helmholtz free energy density for the thermoelastic response fol-
lowing the typical approach for local elasticity (albeit by using the
fractional-order strain). Further, we use the Helmholtz free energy
density to construct the material constitutive relations for nonlocal
thermoelasticity. In this study on linear elastic behavior of nonlocal
solids using fractional-order theories of thermoelasticity, we extend
the linear material constitutive relations to the geometrically nonlinear
response of the fractional-order nonlocal solids (Saint Venant-Kirchhoff
material model). Therefore, assuming small deformations, the distinc-
tion between reference and current configurations for the domain 𝛺
vanishes. This implies the constitutive relations given in Eq. (25) for
domain 𝛺 hold true in all configurations (0 & 𝑡).

We can cast the constitutive relations in Eq. (25) in the form:

𝜎̃𝑖𝑗 =
𝜕
𝜕𝜖𝑖𝑗

, 𝜂̃ = −𝜌−10
𝜕
𝜕𝑇

, ∀𝑿 ∈ 𝛺 (27)

where the total free energy  = 𝜌0𝜓 is expressed in terms of the mass
density 𝜌0 in reference configuration. We write the free energy for an
isotropic material as a series expansion of the fractional-order strain
𝜖𝑖𝑗 and the temperature difference 𝜃 = 𝑇 − 𝑇0, which is the difference
between the temperature 𝑇 at any point within the continuum and the
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uniform ambient temperature 𝑇0 at the reference state. The free energy,
expanded in power series with respect to the strain invariants and the
temperature difference, is given as (Oden, 1969):

 = 𝑎0 + 𝑎1𝐽1 + 𝑎2𝐽2 + 𝑎3𝐽3 + 𝑎4𝜃 + 𝑎5𝐽 2
1 + 𝑎6𝐽 2

2 + 𝑎7𝐽 2
3 + 𝑎8𝐽1𝐽2

+ 𝑎9𝐽1𝐽3 + 𝑎10𝐽2𝐽3 + 𝑎11𝜃2 + 𝑎12𝐽1𝜃 + 𝑎13𝐽2𝜃 + 𝑎14𝐽3𝜃 + h.o.t

(28a)

where 𝑎𝑘 are material constants and

𝐽1 = 𝜖𝑖𝑖; 𝐽2 =
1
2
(

𝜖𝑖𝑖𝜖𝑗𝑗 − 𝜖𝑖𝑗𝜖𝑖𝑗
)

; 𝐽3 = det(𝜖𝑖𝑗 ) (28b)

re the invariants of the nonlocal strain tensor 𝝐̃. Assuming that the
olid is stress free in the undeformed state and the free energy is
estricted to linear isotropic thermoelasticity (i.e. ignoring the higher
rder terms in Eq. (28a)), we obtain the following expression for  :

= 𝑎2𝐽2 + 𝑎5𝐽 2
1 + 𝑎11𝜃2 + 𝑎12𝐽1𝜃 (29)

here the material constants are given as (Kelly, 2020):

2 = −2𝜇; 𝑎5 =
1
2
(𝜆 + 2𝜇) ; 𝑎11 = −

𝜌0𝐶0
𝑣

2𝑇0
; 𝑎12 = (3𝜆 + 2𝜇)𝛼0 (30)

The material constants 𝜆 and 𝜇 are the isothermal Lamé parameters for
the isotropic solid, 𝛼0 is the coefficient of volumetric thermal expansion
and 𝐶0

𝑣 is the specific heat at constant strain. The parameters 𝛼0 and
0
𝑣 are all defined in the reference state at 𝑇0. Thus, the Helmholtz free
nergy density (per unit volume) for the thermoelastic response of a
onlocal isotropic solid is given by (Washizu, 1975; Kelly, 2020):

 = 1
2
𝜆𝜖𝑘𝑘𝜖𝑙𝑙 + 𝜇𝜖𝑖𝑗𝜖𝑖𝑗 − (3𝜆 + 2𝜇)𝛼0𝜖𝑘𝑘𝜃 −

𝜌0𝐶0
𝑣

2𝑇0
𝜃2 (31)

By using the above expression for 𝜓 together with Eq. (25), the ther-
oelastic constitutive relations relating the different physical quantities
or the isotropic solid are obtained as:

̃ 𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜖𝑘𝑘 + 2𝜇𝜖𝑖𝑗 − (3𝜆 + 2𝜇)𝛼0𝛿𝑖𝑗𝜃 (32a)

𝜂̃ = 𝜌−10 (3𝜆 + 2𝜇)𝛼0𝜖𝑘𝑘 +
𝐶0
𝑣
𝑇0
𝜃 (32b)

sing the above results, the Helmholtz free energy in Eq. (31) is recast
in the following manner:

 = 1
2
𝜎̃𝑖𝑗 𝜖𝑖𝑗 −

1
2
𝜌0 𝜂̃ 𝜃 (33)

. Thermoelastic Euler–Bernoulli nonlocal beam model

In this section, we use the thermoelastic constitutive relations de-
eloped for the nonlocal solid to analyze the thermoelastic response
f a fractional-order Euler–Bernoulli beam. Building on Patnaik et al.
2020c), Sidhardh et al. (2020b), we derive the geometrically nonlinear
overning equations and the corresponding boundary conditions for
he thermoelastic boundary value problem (BVP) using variational
rinciples.

.1. Geometrically nonlinear constitutive relations

Consider a nonlocal beam subject to distributed transverse mechan-
cal and thermal loads as illustrated in Fig. 1. As indicated in the
chematic, the Cartesian coordinates for the current study are chosen
uch that 𝑥3 = ±ℎ∕2 coincides with the top and bottom surfaces of
he beam, and 𝑥1 = 0 and 𝑥1 = 𝐿 are the ends of the beam along
he longitudinal direction. The surface 𝑥3 = 0 coincides with the mid-
lane of the beam and the origin of the reference frame is chosen at
he intersection of the mid-plane with the left-end of the beam.
7

Fig. 1. Schematic of an elastic beam subject to distributed transverse mechanical load
𝐹𝑡(𝑥1) and thermal load 𝑇 (𝑥1).

The axial and transverse components of the displacement field
𝐮(𝑥1, 𝑥3) are denoted by 𝑢1(𝑥1, 𝑥3) and 𝑢3(𝑥1, 𝑥3), respectively. These
displacement fields are given by the Euler–Bernoulli theory as:

𝑢1(𝑥1, 𝑥3) = 𝑢0(𝑥1) − 𝑥3

[

d𝑤0(𝑥1)
d𝑥1

]

(34a)

𝑢3(𝑥1, 𝑥3) = 𝑤0(𝑥1) (34b)

here 𝑢0(𝑥1) and 𝑤0(𝑥1) are the mid-plane axial and transverse dis-
lacements, respectively. For a geometrically nonlinear analysis, as-
uming moderate rotations (10◦–15◦) but small strains, the fractional-
rder Lagrangian strain tensor in Eq. (4) can be further simplified
sing von-Kármán relations. The resulting fractional-order von-Kármán
train–displacement relations are given as (Sidhardh et al., 2020b):

𝜖11(𝑥1, 𝑥3) = 𝐷𝛼
𝑥1
𝑢1(𝑥1) +

1
2

[

𝐷𝛼
𝑥1
𝑢3(𝑥1)

]2
(35)

here 𝐷𝛼
𝑥1
(⋅) denotes the fractional-order RC derivative defined in

q. (5). Note that 𝜖11 here is nonlinear in transverse displacements.
s discussed previously, for the RC derivative used above, the 1D
omain (𝒙𝐴,𝒙𝐵) along the mid-plane of the beam is the horizon of
nonlocal interaction at 𝒙(𝑥1, 0). The end-points of the nonlocal horizon
𝒙𝐴(𝑥𝐴1

, 0) and 𝒙𝐵(𝑥𝐵1
, 0) are the terminals of the left- and right-handed

Caputo derivatives within the RC derivative. It follows from Eq. (5)
hat 𝑙𝐴 = 𝑥1 − 𝑥𝐴1

and 𝑙𝐵 = 𝑥𝐵1
− 𝑥1 are the length scales along 𝒙̂1 to

he left and right hand sides of the point 𝒙(𝑥1, 0), respectively. For the
uler–Bernoulli beam displacement field given in Eq. (34), a non-zero
expression for the transverse shear strain would be obtained. However,
for the slender beam assumed here the rigidity to transverse shear
deformation is much higher when compared to its bending rigidity.
Therefore, we neglect the contribution of the transverse shear defor-
mation towards the deformation energy of the fractional-order nonlocal
solid in the subsequent analysis.

By combining the fractional-order nonlinear axial strain in the
above equation along with the Euler–Bernoulli displacement field given
in Eq. (34), the axial strain can be recast as:

𝜖11(𝑥1, 𝑥3) = 𝜖0(𝑥1) + 𝑥3𝜅̃(𝑥1) (36)

In the above equation, 𝜖0(𝑥1) and 𝜅̃(𝑥1) denote the fractional-order axial
and bending strains, respectively. They are expressed in terms of the
mid-plane field variables as:

𝜖0(𝑥1) = 𝐷𝛼
𝑥1
𝑢0(𝑥1) +

1
2

[

𝐷𝛼
𝑥1
𝑤0(𝑥1)

]2
(37a)

𝜅̃(𝑥1) = −𝐷𝛼
𝑥1

[

d𝑤0(𝑥1)
d𝑥1

]

(37b)

Note that we make use of the von-Kármán definition for geometri-
cally nonlinear strains. Following this approach, large deformations are
considered only in the transverse direction. For studies based on this
definition of geometrically nonlinear strains, the linear elastic consti-

tutive relations developed in Section 2 can still be employed (Ciarlet,
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1980). Therefore, the axial stress in the nonlocal isotropic solid subject
to thermoelastic loads may be written from Eq. (32a) to be:

𝜎̃11(𝑥1, 𝑥3) = 𝐸
(

𝜖11(𝑥1, 𝑥3) − 𝛼0𝜃(𝑥1, 𝑥3)
)

(38)

where 𝐸 is the Young’s modulus of the isotropic solid and 𝛼0 is the
oefficient of thermal expansion for the isotropic solid, as defined
arlier. Using the above defined fractional-order strain and stress fields,
he deformation energy  of the nonlocal beam is obtained as:

= 1
2 ∫𝛺

𝜎̃11(𝑥1, 𝑥3)𝜖11(𝑥1, 𝑥3)d𝑉 (39)

here 𝛺 denotes the volume occupied by the beam. The total potential
nergy functional of the beam subject to distributed axial (𝐹𝑎(𝑥1)) and
ransverse forces (𝐹𝑡(𝑥1)) acting on the mid-plane, assuming no body
orces, is given by:

[𝐮(𝒙)] =  − ∫

𝐿

0
𝐹𝑎(𝑥1)𝑢0(𝑥1)d𝑥1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Work done by axial loads

− ∫

𝐿

0
𝐹𝑡(𝑥1)𝑤0(𝑥1)d𝑥1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Work done by transverse loads

(40)

We now derive the governing equations and the associated boundary
conditions for the thermoelastic response of the nonlocal beam in the
strong form by imposing optimality conditions on the above functional.
While we derived the governing equations for the fractional-order
solid in Section 2.2.2 following the balance principles for intuitive
urposes, here we employ the variational methods due to its ability to
reat geometrically non-linear systems. Before presenting the governing
quations, we highlight that the objective of this study is to evaluate
he elastic response of a 1D beam when subject to combined thermal
nd mechanical loads. The thermal load consists of a steady-state
emperature distribution applied along the length of the beam on the
ace at 𝑥3 = ±ℎ∕2. Thus, the independent variation of temperature field
𝑇 , and thereby 𝛿𝜃, is identically zero.

.2. Governing equations

The fractional-order governing equations for the thermoelastic re-
ponse of geometrically nonlinear and nonlocal beams are obtained us-
ng variational principles (i.e. by minimizing the total potential energy
iven in Eq. (40)). They are given as follows:
𝛼
𝑥1
 (𝑥1) + 𝐹𝑎(𝑥1) = 0 ∀ 𝑥1 ∈ (0, 𝐿) (41a)

1
𝑥1

[

D𝛼
𝑥1
(𝑥1)

]

+D𝛼
𝑥1

[

 (𝑥1)𝐷𝛼
𝑥1

[

𝑤0(𝑥1)
]

]

+ 𝐹𝑡(𝑥1) = 0 ∀ 𝑥1 ∈ (0, 𝐿)

(41b)

he corresponding essential and natural boundary conditions are ob-
ained as:

(𝑥1) = 0 or 𝛿𝑢0(𝑥1) = 0 ∀ 𝑥1 ∈ {0, 𝐿} (42a)

(𝑥1) = 0 or 𝛿
[

𝐷1
𝑥1
𝑤0(𝑥1)

]

= 0 ∀ 𝑥1 ∈ {0, 𝐿} (42b)

𝐷1
𝑥1
(𝑥1)+ (𝑥1)𝐷1

𝑥1

[

𝑤0(𝑥1)
]

= 0 or 𝛿𝑤0(𝑥1) = 0 ∀ 𝑥1 ∈ {0, 𝐿} (42c)

Note that the detailed steps leading to the above fractional-order non-
linear governing equations extend directly from the geometrically non-
linear analysis of fractional-order beams presented in Sidhardh et al.
(2020b), hence they are not provided here. In the above Eqs. (41), (42),
𝐷1
𝑥1
(⋅) denotes the first integer-order derivative with respect to the axial

variable 𝑥1. Note that the fractional derivative D𝛼
𝑥1
(⋅) is defined over the

interval (𝑥1 − 𝑙𝐵 , 𝑥1 + 𝑙𝐴) unlike the fractional derivative 𝐷𝛼
𝑥(⋅) which is

defined over the interval (𝑥1−𝑙𝐴, 𝑥1+𝑙𝐵). This change in the terminals of
the interval of the Riesz Riemann–Liouville fractional derivative follows
from the standard integration by parts technique used to simplify the
variational integrals (see Patnaik et al., 2020c). Further,  (𝑥 ) and
8

1 {
(𝑥1) are axial and bending stress resultants defined in the following
manner:

 (𝑥1) = ∫

𝑏∕2

−𝑏∕2 ∫

ℎ∕2

−ℎ∕2
𝜎̃11(𝑥1, 𝑥3) d𝑥3 d𝑥2 (43a)

(𝑥1) = ∫

𝑏∕2

−𝑏∕2 ∫

ℎ∕2

−ℎ∕2
𝑥3 𝜎̃11(𝑥1, 𝑥3) d𝑥3 d𝑥2 (43b)

By using the constitutive relations for a homogeneous isotropic solid
given in Eq. (38) along with the above definitions, the stress resultants
are obtained as:

 (𝑥1) = 𝐴11𝜖0(𝑥1) −𝑁𝜃(𝑥1) (44a)

(𝑥1) = 𝐷11𝜅̃(𝑥1) −𝑀𝜃(𝑥1) (44b)

here 𝐴11 = 𝐸𝑏ℎ and 𝐷11 = 𝐸𝑏ℎ3∕12 are the axial and bending stiffness
oefficients of the beam, respectively. The thermal resultants 𝑁𝜃(𝑥1)
and 𝑀𝜃(𝑥1) for the isotropic beam are given as:

{

𝑁𝜃(𝑥1),𝑀𝜃(𝑥1)
}

= 𝐸𝑏𝛼0 ∫

ℎ∕2

−ℎ∕2
{1, 𝑥3} 𝜃(𝑥1, 𝑥3) d𝑥3 (45)

ote that for a general distribution of material properties across the
hickness of the beam, additional terms due to the bending–extension
oupling would be noted in the Eqs. (43), (45). Upon ignoring the non-
inear terms in the governing equations given above, striking similarity
ay be noted to the governing equations in Eq. (20) derived using
inear momentum balance law.
In the following, we discuss a few characteristics of the thermome-

hanical governing equations given in Eq. (41). First, observe that the
tress resultants given in Eq. (44) introduce the thermoelastic variables
nto the governing equations in Eq. (41). In the absence of thermal
oads (𝜃(𝑥1, 𝑥3) = 0), the constitutive models reduce to the expressions
erived in Sidhardh et al. (2020b) for the geometrically nonlinear
ractional-order nonlocal beams. Owing to the nonlinear nature of the
tructural response, the axial and transverse displacement fields are
oupled unlike what seen in the linear elastic case (Patnaik et al.,
020c). Second, we emphasize that the fractional-order model for the
inear thermoelastic response of a nonlocal beam can be obtained by
gnoring the nonlinear terms in the constitutive relations developed
bove. The linear thermoelastic model of the fractional-order nonlocal
eam will be discussed further in Section 5. Finally, the classical
hermoelastic models are recovered for 𝛼 = 1.

. Nonlinear fractional finite element model (f-FEM)

Given the nonlinear and integro-differential nature of the governing
quations, it is unlikely to obtain closed form solutions for the most
eneral loading and boundary conditions. Therefore, we employ a
ractional-order finite element method to obtain the numerical so-
ution of the nonlinear governing equations. The f-FEM developed
o solve the thermomechanical fractional-order BVP builds upon the
umerical solvers developed for fractional-order models of nonlocal
lasticity (Patnaik et al., 2020c; Sidhardh et al., 2020b). Note that,
lthough the f-FEM is developed and applied for thermoelastic re-
ponse of fractional-order beams, it can be easily extended to higher
imensional structures like plates and shells.
Analogously to traditional FEM, the f-FEM is formulated starting

rom a discretized form of the total potential energy functional 𝛱[𝐮(𝒙)]
iven in Eq. (40). For this purpose, the 1D domain 𝛺 = [0, 𝐿] of
he beam indicated in Fig. 1 is uniformly discretized into disjoint two
noded elements 𝛺𝑒

𝑖 = (𝑥𝑖1, 𝑥
𝑖+1
1 ) of length 𝑙𝑒 such that ∪

𝑁𝑒
𝑖=1𝛺

𝑒
𝑖 = 𝛺, 𝑁𝑒

being the total number of discretized elements. It is immediate that
𝛺𝑒
𝑗 ∩𝛺

𝑒
𝑘 = ∅ ∀ 𝑗 ≠ 𝑘. The unknown field variables 𝑢0(𝑥1) and 𝑤0(𝑥1) in

Eq. (41) can now be evaluated at any point 𝑥1 ∈ 𝛺𝑒
𝑖 by interpolating

he corresponding nodal values for 𝛺𝑒
𝑖 as:
𝑢0(𝑥1)} = [(𝑥1)]{𝑈𝑒(𝑥1)}; {𝑤0(𝑥1)} = [(𝑥1)]{𝑊𝑒(𝑥1)} (46)
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where {𝑈𝑒(𝑥1)} and {𝑊𝑒(𝑥1)} are the axial and transverse displace-
ent degrees of freedom of the two-noded element 𝛺𝑒

𝑖 . [(𝑥1)] and
(𝑥1)] are the Lagrangian and Hermitian interpolation functions, re-
pectively, chosen to enforce the continuity of the axial and transverse
isplacement fields for the Euler–Bernoulli beam theory. In terms of
he above discussed numerical discretization of the nonlocal domain,
he fractional derivatives can be expressed as:

𝐷𝛼
𝑥1

[

𝑢0(𝑥1)
]

= [𝐵̃𝑢(𝑥1)]{𝑈𝑔}; 𝐷𝛼
𝑥1

[

𝑤0(𝑥1)
]

= [𝐵̃𝑤(𝑥1)]{𝑊𝑔};

𝐷𝛼
𝑥1

[

𝐷1
𝑥1
𝑤0(𝑥1)

]

= [𝐵̃𝜃(𝑥1)]{𝑊𝑔}
(47a)

where the matrices [𝐵̃□(𝑥1)] corresponding to nonlocal strain–
displacement matrices are given as:

[𝐵̃□(𝑥1)] = ∫

𝑥1+𝑙𝐵

𝑥1−𝑙𝐴
(𝑥1, 𝑠1, 𝑙𝐴, 𝑙𝐵 , 𝛼)[𝐵□(𝑠1)][ ̃□(𝑥1, 𝑠1)]d𝑠1 (47b)

The kernel (𝑥1, 𝑠1, 𝑙𝐴, 𝑙𝐵 , 𝛼) in the above equation is:

(𝑥1, 𝑠1, 𝑙𝐴, 𝑙𝐵 , 𝛼) =

⎧

⎪

⎨

⎪

⎩

1
2 (1 − 𝛼)𝑙

𝛼−1
𝐴 (𝑥1 − 𝑠1)−𝛼 𝑠1 ∈ (𝑥1 − 𝑙𝐴, 𝑥1)

1
2 (1 − 𝛼)𝑙

𝛼−1
𝐵 (𝑠1 − 𝑥1)−𝛼 𝑠1 ∈ (𝑥1, 𝑥1 + 𝑙𝐵)

(47c)

and the matrices [𝐵□(𝑥1)] □ ∈ {𝑢,𝑤, 𝜃} are the integer-order strain–
displacement matrices given by:

[𝐵𝑢(𝑠1)] =
d[(𝑠1)]

d𝑠1
; [𝐵𝑤(𝑠1)] =

d[(𝑠1)]
d𝑠1

; [𝐵𝜃(𝑠1)] =
d2[(𝑠1)]

d𝑠21
(47d)

Complete details of the steps involved in the numerical evaluation
of system matrices following an additional convolution integral in
Eq. (47b) for nonlocal matrices and resolving the singular kernel in
Eq. (47c) for fractional-order derivatives are provided in Patnaik et al.
(2020c), Sidhardh et al. (2020b).

We use the FE approximations of the different fractional-order
derivatives to obtain the algebraic governing equations corresponding
to the geometrically nonlinear thermoelastic response of the fractional-
order beam. In the interest of a more compact notation, the functional
dependence of the different physical quantities on the spatial variables
will be implied, unless stated to be constant. The first variation of the
potential energy function 𝛱[𝐮] defined in Eq. (40) is obtained as:

𝛿𝛱 = 𝑏∫

𝐿

0 ∫

ℎ∕2

−ℎ∕2
𝛿𝜖11 𝜎̃11d𝑥3d𝑥1 − ∫

𝐿

0
𝐹𝑡𝛿𝑤0d𝑥1 − ∫

𝐿

0
𝐹𝑎𝛿𝑢0d𝑥1 (48)

y using the strain–displacement relations in Eq. (36) and the stress-
esultants in Eq. (43) we obtain:

𝛿𝛱 = ∫

𝐿

0

{


[

𝐷𝛼
𝑥1

(

𝛿𝑢0
)

]

+
[

𝐷𝛼
𝑥1
𝑤0

] [

𝐷𝛼
𝑥1

(

𝛿𝑤0
)

]

−
[

𝐷𝛼
𝑥1

[

𝐷1
𝑥1

(

𝛿𝑤0
)

]]

− 𝐹𝑎𝛿𝑢0 − 𝐹𝑡𝛿𝑤0

}

d𝑥1 (49)

The minimum potential energy principle, 𝛿𝛱 = 0, is enforced to obtain
the algebraic equations of equilibrium. More specifically, by using
the numerical approximations developed for the different fractional
derivatives (see Eq. (47)) and then enforcing the minimization of the
total potential energy, we obtain the following system of nonlinear
algebraic equations in globally assembled vectors of nodal displacement
degrees of freedom {𝑈𝑔} and {𝑊𝑔}:
[

[𝐾̃11] [𝐾̃12]
[𝐾̃21] [𝐾̃22]

]{

{𝑈𝑔}
{𝑊𝑔}

}

=
{

{𝐹𝐴 + 𝐹𝐴𝜃 }
{𝐹𝑇 + 𝐹𝑇𝜃 }

}

(50)

where the different stiffness matrices are given by:

[𝐾̃11] = ∫

𝐿

0
𝐴11[𝐵̃𝑢(𝑥1)]𝑇 [𝐵̃𝑢(𝑥1)]d𝑥1 (51a)

[𝐾̃12] =
1
2 ∫

𝐿

0
𝐴11

(

𝐷𝛼
𝑥1
[𝑤0(𝑥1)]

)

[𝐵̃𝑢(𝑥1)]𝑇 [𝐵̃𝑤(𝑥1)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

d𝑥1 (51b)
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Nonlinear matrix
𝐾̃21] = ∫

𝐿

0
𝐴11

(

𝐷𝛼
𝑥1
[𝑤0(𝑥1)]

)

[𝐵̃𝑤(𝑥1)]𝑇 [𝐵̃𝑢(𝑥1)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nonlinear matrix

d𝑥1 (51c)

𝐾̃22] = ∫

𝐿

0
𝐷11[𝐵̃𝜃(𝑥1)]𝑇 [𝐵̃𝜃(𝑥1)] d𝑥1

+ 1
2 ∫

𝐿

0

[

𝐴11

(

𝐷𝛼
𝑥1
[𝑤0(𝑥1)]

)2
]

[𝐵̃𝑤(𝑥1)]𝑇 [𝐵̃𝑤(𝑥1)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Nonlinear matrix

d𝑥1 (51d)

he axial and transverse force vectors due to the mechanical and
hermal loads are given as:

𝐹𝐴}𝑇 = ∫

𝐿

0
𝐹𝑎(𝑥1)[𝑆𝑢(𝑥1)]d𝑥1 (52a)

𝐹𝑇 }𝑇 = ∫

𝐿

0
𝐹𝑡(𝑥1)[𝑆𝑤(𝑥1)]d𝑥1 (52b)

𝐹𝐴𝜃 }
𝑇 = ∫

𝐿

0
𝑁𝜃(𝑥1)[𝐵𝑢(𝑥1)]d𝑥1 (52c)

𝐹𝑇𝜃 }
𝑇 = ∫

𝐿

0
𝑁𝜃(𝑥1)

(

𝐷𝛼
𝑥1
[𝑤0(𝑥1)]

)

[𝐵𝑤(𝑥1)]d𝑥1

− ∫

𝐿

0
𝑀𝜃(𝑥1)[𝐵𝜃(𝑥1)]d𝑥1 (52d)

ote that the geometric nonlinearity introduces additional nonlinear
hermomechanical coupled terms. This nonlinear behavior is dependent
n the thermal properties of the beam as evident from the expressions
f the thermal stress resultants given in Eq. (45). In fact, these non-
inear effects are expected to be significant at high temperature. These
dditional nonlinear thermomechanical terms can be accounted for in
wo ways: approach #1: the terms are treated as an external nonlinear
thermal force; and approach #2: the contribution of these terms is
accounted via the stiffness matrix of the system. The equivalence of the
results obtained through both these approaches and a comparison of
their accuracy and stability is presented in Praveen and Reddy (1998).
In this study, we follow the approach #1 so that the linear analysis of
the nonlinear system, for small displacements, becomes straightforward
without requiring changes to the stiffness matrix.

The algebraic Eqs. (50) are solved for the nodal values of the gen-
ralized displacement coordinates for an isotropic beam subject to dis-
ributed thermal and mechanical loads. The solution to these equations
long with Eq. (34) gives the displacement field at any point within
he beam. The geometric nonlinearity in the system is highlighted by
he deformation dependent stiffness terms in Eqs. (51b)–(51d). Further,
s previously discussed, the additional nonlinear thermomechanical
erms are introduced into the model as a nonlinear transverse force as
vident from Eq. (52d). Given the nonlinear nature of the FE algebraic
quations, a Newton–Raphson (NR) iterative numerical scheme was
dopted to obtain the solution of the Eq. (50). Similar to classical
onlinear models, the NR procedure for the fractional-order nonlinear
quations also requires the evaluation of the tangent stiffness matrix.
he procedure to evaluate the tangent stiffness matrix as well as the
R scheme can be found in Sidhardh et al. (2020b).
The linear f-FEM for the thermoelastic response of the nonlocal

sotropic beam can be obtained from the above model by ignoring the
ontribution of the nonlinear coupling term, that is (𝐷𝛼

𝑥1
[𝑤0(𝑥1)])2 in

he system matrices as well as in the force vectors. Note that the axial
nd transverse displacement fields for the linear elastic response due to
hermomechanical loads are decoupled. Finally, the f-FEM reduces to a
ocal thermoelastic study of beams when the fractional-order is set to
= 1.
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5. Numerical results and discussion

We use the numerical model developed in Section 4 to analyze
both the linear and the geometrically nonlinear thermoelastic response
of fractional-order nonlocal isotropic beams. In order to satisfy the
underlying assumptions of the Euler–Bernoulli beam theory, the beam
is assumed to be slender with an aspect ratio of 𝐿∕ℎ = 100. In the
following studies, the length of the beam is maintained at 𝐿 = 1m and
the width of the beam is considered to be unity. The beam is assumed
made out of aluminum that is 𝐸 = 70 GPa and 𝛼0 = 23 × 10−6 K−1.
The constitutive parameters of the fractional-order continuum model,
order 𝛼 and length scales 𝑙𝐴 and 𝑙𝐵 are provided wherever necessary.
The length scales 𝑙𝐴 and 𝑙𝐵 at a point within the domain of the isotropic
beam are considered equal, that is 𝑙𝐴 = 𝑙𝐵 = 𝑙𝑓 . However, following the
discussion in Patnaik et al. (2020c), these length scales are truncated for
points close to geometric boundaries of the beam. The variable nature
of the nonlocal length scales is demonstrated in the schematic given in
Fig. 2.

We analyzed numerically the effect of the fractional parameters
𝛼 and 𝑙𝑓 on the response of the beam subject to different loading
and boundary conditions. Both the linear and nonlinear cases are
considered.

Before presenting the results, we make a few remarks concerning
the validation and convergence of the f-FEM. In this regard, the f-FEM
procedure has already been validated for linear BVPs in Patnaik and
Semperlotti (2020) and for nonlinear BVPs in Sidhardh et al. (2020b).
Further, as discussed in Patnaik and Semperlotti (2020), Sidhardh et al.
(2020b), the convergence of the f-FEM with finer element discretization
is controlled by the ‘‘dynamic rate of convergence’’ defined as: 𝑁𝑖𝑛𝑓 (=
𝑙𝑓∕𝑙𝑒), where 𝑙𝑒 is the length of the discretized element. This parameter
was shown to be dependent on the fractional model parameters 𝛼 and 𝑙𝑓
that determine the strength of the nonlocal interactions between distant
elements (Patnaik and Semperlotti, 2020; Sidhardh et al., 2020b).
Following these convergence studies, the mesh discretization 𝑁𝑖𝑛𝑓 = 10
was chosen. This choice allows for sufficient number of elements to
be included in the horizon of nonlocality at any point, in order to
accurately capture the nonlocal interactions (Patnaik and Semperlotti,
2020; Sidhardh et al., 2020b).

Linear thermoelastic response: we considered a simply supported
beam subject to a uniformly distributed transverse load (UDTL) of
magnitude 𝑞0 (in N/m) and to the following thermal load :

𝜃(𝑥1, 𝑥3) = 𝜃1

(

1 +
2𝑥3
ℎ

)

(53)

ote that the above distribution is obtained from solving the Fourier’s
onduction law corresponding to uniform temperatures being applied
t the top and bottom surfaces (𝑥3 = ±ℎ∕2) of the isotropic beam.
ere, the bottom surface of the beam is maintained at the ambient
emperature 𝑇0. It follows, from Eq. (53), that the temperature of the
op surface is 𝑇1(= 𝑇0 + 2𝜃1). The nonlocal elastic response to these
hermomechanical loads for different values of fractional constitutive
arameters 𝛼 and 𝑙𝑓 are compared in Fig. 3. The transverse displace-
ent along the length of the simply supported beam was explored for
ifferent values of 𝛼 while maintaining 𝑙𝑓 constant (Fig. 3(a)). Simi-
arly, the transverse displacement was evaluated for different values of
𝑓 while maintaining 𝛼 constant (Fig. 3(b)). The increase in transverse
isplacement with the increasing degree of nonlocality, achieved either
y reducing 𝛼 (see Fig. 3(a)) or by increasing 𝑙𝑓 (see Fig. 3(b)), points
owards the reduction of the stiffness of the fractional-order beam. We
mphasize that the consistent softening of the structure with increasing
egree of nonlocality was also observed for beams subject to different
oading and boundary conditions. In order to facilitate the analysis of
he thermoelastic response of the nonlocal beam, we have provided,
s a reference, the transverse displacement of the local beam (𝛼 = 1)
or two different cases: (a) absence of thermal load, i.e. 𝜃1 = 0; and
10

b) linear thermal load given in Eq. (53). From Fig. 3, note that the
onlocal results converge to the local results for 𝛼 approaching 1 and
𝑙𝑓∕𝐿 ≪ 1.

Extending these studies, the normal axial stress 𝜎11 and the
fractional-order axial normal strain 𝜖11 are studied in Figs. 4 and
. Here, the normal axial stress 𝜎11 is normalized as follows (Khod-
bakhshi and Reddy, 2015):

𝜎11(𝐿∕2, 𝑥3) =
1
𝑞0

( ℎ
𝐿

)2
𝜎̃11(𝐿∕2, 𝑥3) (54)

In Fig. 4, (marginally) higher values of 𝜎̄11 are noted corresponding
o an increasing degree of nonlocality. More specifically, an increase
n the values of the normalized stress are noted for lower values of
he fractional-order 𝛼 in Fig. 4(a), and higher value of the nonlocal
ength scale 𝑙𝑓 in Fig. 4(b). These observations point to a consistent
eduction in the stiffness of the fractional-order nonlocal structures,
hich agrees with the previously noted higher values for the transverse
isplacement 𝑤̄ when compared against the response of a local beam
see Fig. 3). Finally, note the constant value of shift in stress profiles at
id-surface caused by the application of the thermal load. Additional
esults corresponding to the nonlocal axial strain 𝜖11 along the length
f the beam are presented in Fig. 5.
In the following, we compare the predictions of the fractional-order

pproach to nonlocal thermoelasticity with classical integer-order non-
ocal theories available in the literature. More specifically, we compare
he predictions of the fractional-order model with the stress-driven
ntegral model presented in Barretta et al. (2018). For this purpose,
e consider the axial displacement of a doubly-clamped beam subject
o the following thermal load in the absence of any mechanical load:

(𝑥1, 𝑥3) = 𝜃1
(

1 −
𝑥1
𝐿

) 𝑥1
𝐿

(55)

The axial displacement of the doubly-clamped beam, obtained via
the fractional-order model, is presented in Fig. 6(a) for different val-
ues of the fractional-order 𝛼. As evident from Fig. 6(a), a consistent
softening behavior is obtained when considering increasing degree
of nonlocality in the fractional model and a constant thermal load.
This observation also complements the results obtained in previous
studies on fractional-order nonlocal elasticity involving only mechan-
ical loads (Patnaik et al., 2020c). On the contrary, the stress-driven
integral approach does not predict either a consistent stiffening or
softening response of the same beam for different values of the nonlocal
constitutive parameters. In fact, by increasing the degree of nonlocality
the beam initially softens and then stiffens, hence leading the authors
to label the system as being ‘unpredictable’. This result in Barretta
et al. (2018) obtained via the stress-driven integral models for nonlocal
thermoelasticity also contrasts with the consistent stiffening predicted
by the same model for purely mechanical loads in Romano et al. (2017).
Recall that the fractional-order continuum theories are successful in
capturing the softening effects of nonlocal interactions similar to the
Eringen’s integral theories. The above discussion also highlights an
important advantage of the fractional-order approaches to nonlocal
elasticity, that is the consistency of the predicted response even in a
multi-physics scenario.

Further, as evident from Figs 3, 6, the fractional-order model pre-
dicts a reduction in the stiffness of the structure irrespective of the
nature of the boundary conditions. This is evident from the consistent
softening response shown by the cantilever beams subject to thermal
loads given in Eq. (55) as depicted in Fig. 6(b). This observation of
consistent softening agrees with the previously studied cases of the
doubly clamped and simply supported beams. This is contrary to differ-
ential models for nonlocal thermoelasticity, which predict a stiffening
response for the cantilever beam and a softening response for other
boundary conditions (Zenkour, 2017). As discussed in the introduction,
the absence of such paradoxical results in the fractional-order approach
to nonlocal elasticity adopted here follows from the positive-definite
deformation energy density and self-adjoint nature of the fractional-

order nonlocal governing equations (Patnaik et al., 2020c,a). Finally,
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Fig. 2. Schematic illustration of the variable nature of the nonlocal length scales for different points along the length of the beam. The length scale on the left side of the point
P, 𝑙𝑃𝐴 is truncated such that 𝑙𝑃𝐴 < 𝑙

𝑄
𝐴 . Similarly, 𝑙

𝑅
𝐵 < 𝑙

𝑄
𝐵 .
Fig. 3. Transverse displacement corresponding to the linear response of a simply supported beam for 𝑞0 = 104 N∕m and 𝜃1 = 10 K. The plot is parameterized for different values
f the fractional model parameters.
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e make an important remark concerning the physically acceptable
ange for the order 𝛼. As demonstrated above, the degree of nonlo-
ality increases with decreasing 𝛼 leading to a consistent softening of
he structure. However, as shown in Sumelka and Blaszczyk (2014),
Sumelka et al. (2015), results for very low values of 𝛼 (≈ 0.2, which
indicates a very strong nonlocality in the fractional sense) lead to
non-physical solutions. This is also illustrated in the response of fully
clamped and cantilever beams subject to thermal loads in Fig. 6. Hence,
there exists a limit on the order of the RC fractional derivative (Sumelka
et al., 2015). In other terms, it can be concluded that the fractional-
calculus based continuum models break down for values of 𝛼 close to
the lower integer limit. We emphasize that this breakdown is not a
characteristic of the f-FEM technique as the same observation is also
noted when using finite difference methods to obtain the numerical
solutions (see, for example, Sumelka and Blaszczyk, 2014; Sumelka
et al., 2015). A detailed discussion supported by a possible physical
explanation for this loss of consistency in elastic response with reducing
fractional order is available in Patnaik et al. (2020c).

onlinear thermoelastic response: in this case, the beam was sub-
ected to a UDTL of magnitude 𝑞0 (in N/m) and a uniform thermal field
(𝑥1, 𝑥3) = 𝜃0 (in K) above reference temperature. First, we considered
beam clamped at both ends and subject to the thermomechanical

oads described above. The transverse displacement of the beam for a
ixed UDTL and varying magnitude of the thermal load was obtained
nd compared for different values of 𝛼 and 𝑙 . The magnitude of the
11

𝑓

DTL was fixed at 𝑞0 = 5 × 104 N∕m and the value of the uniform
hermal field 𝜃0 was varied in order to analyze the effect of the thermal
oad on the response of the beam. Additionally, in order to analyze the
ffect of the fractional model parameters on the response of the beam,
he transverse displacement of the beam was compared for different
alues of 𝛼 and 𝑙𝑓 . The results of this study are presented in Fig. 7
n terms of the thermal load versus displacement. The displacement
alues presented in Fig. 7 correspond to the maximum displacement
f the mid-plane of the beams, obtained at 𝑥1 = 𝐿∕2. The effect of the
ractional-order 𝛼 with 𝑙𝑓 being held constant is compared in Fig. 7(a).
he effect of 𝑙𝑓 for fixed 𝛼 is presented in Fig. 7(b). The result for
he local case (𝛼 = 1) is provided in both cases as a reference. As
vident from Fig. 7, the nonlocal beam exhibits consistent softening
ith increasing thermal loads and increasing degree of nonlocality.
s observed earlier, the thermoelastic response of the nonlocal beam
onverges to the corresponding local elastic response for 𝛼 approaching
and 𝑙𝑓∕𝐿 ≪ 1.
Finally, the study was repeated for a beam pinned at both ends. The

ffect of the fractional model parameters over the geometrically nonlin-
ar response of the pinned–pinned beam subject to thermomechanical
oads is presented in Fig. 8. Observations analogous to those drawn for
he clamped–clamped beam can be noted for this case. Remarkably,
he fractional-order approach to the modeling of nonlocal elasticity
xhibits good consistency across a variety of boundary and loading
onditions for both the linear and geometrically nonlinear responses.
his behavior differs sharply from the paradoxical results reported



European Journal of Mechanics / A Solids 88 (2021) 104238S. Sidhardh et al.

6

o
o

Fig. 4. Normalized values of normal axial stress 𝜎11 across the thickness corresponding to the linear response of a simply supported beam for 𝑞0 = 104 N∕m and 𝜃1 = 10 K. The
plot is parameterized for different values of the fractional model parameters.
Fig. 5. Normal axial strain 𝜎11 corresponding to the linear response of a simply supported beam for 𝑞0 = 104 N∕m and 𝜃1 = 10 K. The plot is parameterized for different values of
the fractional model parameters.
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in the literature for either gradient or integral based approaches to
nonlocal elasticity (Challamel and Wang, 2008; Romano et al., 2017).

. Conclusions

This study established the thermodynamic framework for fractional-
rder models of nonlocal thermoelasticity. One of the most significant
utcome of this formulation is the ability to rigorously enforce, in
12

f

point-wise manner, the thermodynamic balance laws in a nonlocal
edium. This result stands in stark contrast with respect to traditional
nteger-order methods that can satisfy the thermodynamic laws only in
(weak) integral sense. An important consequence of this property of
he fractional-order framework is the substantial simplification of the
ormulation of the free energy density and of the resulting constitutive
odels of nonlocal thermoelasticity. The thermodynamically-consistent
ractional-order continuum theory is well suited to develop accurate
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Fig. 6. Axial displacement corresponding to the linear response of beams subject to (a) clamped–clamped (b) clamped–free (cantilever), boundary conditions for 𝑞0 = 0 N∕m and
a thermal load 𝜃1 = 100 K. The plot is parameterized for different values of the fractional order with a fixed length scale 𝑙𝑓 = 𝐿∕5.
Fig. 7. Transverse displacement at the mid-point of a clamped–clamped beam subject to 𝑞0 = 5 × 104 N∕m and thermal load 𝜃0. The curves are parameterized for different values
of the fractional-order nonlocal parameters.
models to capture nonlocal interactions, heterogeneity, and scale effects
in complex elastic solids operating in a thermomechanical environ-
ment. Additionally, the mechanical balance laws are also derived from
balance principles. This approach to the development of the governing
equations involved a modified Cauchy’s lemma for surface tractions
in order to include additional forces due to nonlocal effects. The re-
sulting mechanical governing equations are consistent with self-adjoint
linear operators admitting unique solutions. This is also an important
difference of the present framework in comparison to existing integer-
and fractional-order approaches for nonlocal solids available in the
literature.
13
The efficacy of the fractional-order modeling approach was illus-
trated by applying the framework to the analysis of the static response
of a nonlocal Euler–Bernoulli beam subject to combined thermome-
chanical loads. Numerical results, obtained using the fractional finite
element method, highlighted the extremely robust nature of the frac-
tional models by illustrating the consistency of the predicted nonlocal
response across different thermomechanical loads and boundary con-
ditions. A comparison with the existing integer-order nonlocal models
was also provided in order to illustrate the advantages offered by the
fractional-order theory of nonlocal thermoelasticity.
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Appendix. Traction in nonlocal solids

In this appendix, we discuss the physical significance of the modi-
fied fractional-order expression of the Cauchy’s lemma, given in Eq. (9),
for the traction acting on a surface within the nonlocal solid. We will
also provide a comparison of the fractional-order definition with the
existing models, from both a physical and a mathematical standpoint.

A schematic of the nonlocal solid 𝛺 in the current configuration 𝑡,
t the instant of time 𝑡, is given in Fig. 9. In the following, we will focus
n the forces acting on an arbitrary part of the body that occupies an
nfinitesimal domain 𝑡 with surface 𝜕𝑡 separating it from the rest of
he solid (external to 𝑡), as highlighted in Fig. 9. Due to the restrictions
f fractional vector calculus, we limit the geometry of this arbitrary
omain to a regular cuboid (Tarasov, 2008; Patnaik et al., 2020d).
ote that there are no a priori assumptions on either the size of the
omain 𝑡 or the length of the nonlocal horizon at the point of interest
(𝒙, 𝑡). The domain 𝑡 is assumed to be located sufficiently away from
he boundaries to avoid boundary effects. The traction 𝐭(𝒙, 𝑡,𝒏) acting
n surface 𝜕𝑡 is applied by the entire solid minus the domain 𝑡.
n the framework of classical elasticity, this is purely restricted to an
nteraction of the infinitesimal domain surrounding 𝑡, evident from
he Cauchy’s lemma: 𝐭(𝒙, 𝑡,𝒏) = 𝒏 ⋅𝝈(𝒙, 𝑡). However, when considering a
14

onlocal elastic medium, additional forces (resulting from the nonlocal
nteractions) must be included. Further discussions will be restricted
o interactions on the planes perpendicular to 𝑥1 direction, but they
can be easily extended to the other dimensions. The unit normal vector
for the chosen imaginary surface is given by 𝒏 = ±𝑒1, 𝑒1 being unit
vector along 𝑥1−direction. Following the power-law attenuation models
for the nonlocal interactions, considered previously in Carpinteri et al.
(2014), we can express the forces acting on the point 𝒑(𝒙, 𝑡) normal to
the surfaces 𝜕𝐿

𝑡 and 𝜕𝐿
𝑡 (see Fig. 9) as follows:

t̃𝐿1 d𝐴1 =
(

𝜅𝛼 ∫

𝑥1

−∞

𝜎̃11(𝜉)
|𝜉 − 𝑥1|

𝛼 d𝜉
)

d𝐴1, t̃𝑅1 =
(

𝜅𝛼 ∫

∞

𝑥1

𝜎̃11(𝜉)
|𝜉 − 𝑥1|

𝛼 d𝜉
)

d𝐴1

(56)

where 𝜅𝛼 is a material constant with units [𝐋]𝛼−1, d𝐴1 is the area of
the face normal to 𝑥1, and superscripts (⋅)𝐿 and (⋅)𝑅 are used to denote
traction acting due to interaction with points located to the left and
right of 𝒑 along 𝑥1 direction. The above choice of spatially-decaying
power-law kernel to model long-range cohesive forces follows from
similar studies on nonlocal elasticity (Carpinteri et al., 2014; Patnaik
t al., 2020d). From the schematic given in Fig. 9, it is clear that the
orces t̃𝐿1 d𝐴1 and t̃

𝑅
1 d𝐴1 are oriented along the −𝑒1 and 𝑒1 directions,

espectively. So, the net force acting on the imaginary surface along
1−direction can be expressed as:

̃d𝐴1 =
(

t̃𝑅1 − t̃𝐿1
)

d𝐴1

= 𝜅𝛼

[(

∫

∞

𝑥1

𝜎̃11(𝜉)
|𝜉 − 𝑥1|

𝛼 d𝜉
)

−
(

∫

𝑥1

−∞

𝜎̃11(𝜉)
|𝜉 − 𝑥1|

𝛼 d𝜉
)]

d𝐴1 (57)

In order to express the above result in a more intuitive manner, we
make use of the previous definition of normal vector perpendicular to
imaginary surface with area d𝐴1. The non-zero component of the unit
normal vector 𝒏 is: 𝑛1 = −1 for the left-, and 𝑛1 = 1 for the right-
side of the imaginary surface (see the schematic given in Fig. 9 for the
definition of coordinate axes). Following the above sign convention, we
recast the above equation as :

t̃d𝐴1 = 2𝜅𝛼

[

1
2

(

∫

∞

𝑥1

𝑛1𝜎̃11
|𝜉 − 𝑥1|

𝛼 d𝜉 + ∫

𝑥1

−∞

𝑛1𝜎̃11
|𝜉 − 𝑥1|

𝛼 d𝜉
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Riesz Integral

d𝐴1 (58)

It immediately follows that the above expression can be recast using
the Riesz integrals 𝐼1−𝛼(⋅) (Podlubny, 1998). Using the definition of
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Fig. 9. Traction at 𝒙 ∈ 𝑡 along normal to surface 𝑑𝐴1 within a nonlocal solid 𝑡. Note the contributions from long-range forces across the nonlocal domain (𝑥1 − 𝑙𝑓 , 𝑥1 + 𝑙𝑓 ) are
highlighted for a representative case. The interaction zone defined here for the nonlocal solid identically reduces to an infinitesimal domain for the case of local elasticity..
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the Riesz integral, we rewrite the total traction acting on the surface
perpendicular to normal 𝒏1 due to normal forces along the normal as
follows:

t̃1 = 2𝜅𝛼𝐼1−𝛼𝑥1
(𝑛1𝜎̃11) (59)

Thus, the traction acting on a surface in the nonlocal solid can be ex-
pressed as a Riesz-integral operator applied over the individual traction
forces due to long-range interactions. For a finite solid, we cast the
above expression in the form of a Riesz-type integral as:

𝐭(𝒙, 𝑡,𝒏) = 1
2
𝛤 (2 − 𝛼)

[

𝑙𝛼−1𝐵𝑖

(

𝑥𝑖−𝑙𝐵𝑖
𝐼1−𝛼𝑥𝑖

𝒏 ⋅ 𝝈
)

+ 𝑙𝛼−1𝐴𝑖

(

𝑥𝑖𝐼
1−𝛼
𝑥𝑖+𝑙𝐴𝑖

𝒏 ⋅ 𝝈
)]

(60)

as also given in Eq. (9)).

Physical implications: Physically, the integral operators can be inter-
preted as a summation of the traction forces applied on the surface at
the point 𝒑 due to long-range interactions with the individual points
located within its horizon of influence. Moreover, the power-law kernel
serves as the weight function to define the strength of these interac-
tions. Ignoring the nonlocal effects, either by reducing the horizon of
influence to an infinitesimal domain or by setting 𝛼 = 1, eliminates the
dditional contributions reducing the above expression to the Cauchy’s
ypothesis for classical (local) elastic solids. Note that the fractional-
rder definition of the traction satisfies the Newton’s third law that is,
̃(𝐱, 𝑡,𝒏) = −𝐭(𝐱, 𝑡,−𝒏), indicating also the physical consistency of the
efinition.
The suggested generalization of the Cauchy’s postulate in Eq. (9) of-

ers a clear interpretation of the surface forces encountered in
ractional-order continuum theory following variational principles (Pat-
aik et al., 2020c). While similar works have been reported and
ndertaken for nonlocal interactions studied via the 𝑁-generalized
ontinuum theory in Dell’Isola et al. (2012, 2015, 2016), studies
oncerning the nonlocal theory in general, and the fractional-order
ontinuum theory in particular, are restricted to the classical Cauchy
ostulate (Sumelka and Blaszczyk, 2014; Sumelka et al., 2015). There-
ore, we propose the modified expression in Eq. (9) to generalize the
lassical Cauchy ‘‘postulate’’ for fractional-order continuum theories. In
ther terms, this can be postulated as the Cauchy’s force balance argu-
ent for 𝛼-generalized continua where 𝛼 is a fraction. Eq. (9) presents
he contact surface force for 𝛼 ∈ (0, 1] by including the additional
15
orce contributions exerted on this surface from the long-range nonlocal
nteractions.
Finally, we discuss some important remarks concerning the general-

zation of integer-order strain–displacement relations by their
ractional-order analogues. In contrast to the microcontinuum (Maugin,
993; Toupin, 1962; Eringen, 1999) and gradient elasticity (Mindlin,
1964) theories that introduce nonlocal effects using additional kine-
matic descriptors (see Section 1), the fractional-order formulation
presented in this study models the effect of nonlocality via a differ-
integral (fractional-order) kinematic relation without using any addi-
tional kinematic descriptors. Therefore, the work conjugates obtained
via variational principles include only the contact forces over unit
area. Specifically, the work-conjugate for the fractional-order strain in
Eq. (3) is the second-order tensor designated as the nonlocal stress
̃ given in Eq. (32). This is unlike the additional contact forces per
unit line and concentrated point forces observed for generalized 𝑁th
order continuum theories (Dell’Isola et al., 2012) or the couple stresses
noted for micropolar theories (Toupin, 1962). Therefore, it is clear that
the contact surface interaction in this approach is only the traction
applied per unit surface, and no additional contact interactions in
the form of edge and wedge forces are seen due to the absence
of additional kinematic descriptors. Inclusion of additional kinematic
descriptors within this fractional-order approach naturally leads to
additional non-classical contact forces as has been shown in Patnaik
et al. (2020d).

Mathematical justification: In contrast with the existing studies on non-
local elasticity, based on integer-order models (Eringen and Edelen,
972) or even some existing studies using fractional-order models
Sumelka and Blaszczyk, 2014; Sumelka et al., 2015), we consider the
ontribution of long-range interactions through modified expression
or the traction vector. This is required to maintain mathematical
onsistency of the constitutive modeling for fractional-order solids. It
an be shown that the mechanical balance law (Eq. (20)), derived
ollowing the modified Cauchy’s hypothesis, is self-adjoint. Further, the
bove described modification to Cauchy’s hypothesis also provides a
ositive-definite deformation energy density. Detailed proofs for the
bove statements can be found in Patnaik et al. (2020c,a). The above
observations are lacking from the existing studies, mentioned above,
based on the local Cauchy’s theorem for nonlocal solids.
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