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Analysis of the Postbuckling
Response of Nonlocal Plates
Via Fractional-Order Continuum
Theory
We present a comprehensive study on the postbuckling response of nonlocal structures per-
formed by means of a frame-invariant fractional-order continuum theory to model the long-
range (nonlocal) interactions. The use of fractional calculus facilitates an energy-based
approach to nonlocal elasticity that plays a fundamental role in the present study. The
underlying fractional framework enables mathematically, physically, and thermodynami-
cally consistent integral-type constitutive models that, in contrast to the existing integer-
order differential approaches, allow the nonlinear buckling and postbifurcation analyses
of nonlocal structures. Furthermore, we present the first application of the Koiter’s asymp-
totic method to investigate postbifurcation branches of nonlocal structures. Finally, the the-
oretical framework is applied to study the postbuckling behavior of slender nonlocal plates.
Both qualitative and quantitative analyses of the influence that long-range interactions bear
on postbuckling response are undertaken. Numerical studies are carried out using a 2D
fractional-order finite element method (f-FEM) modified to include a combination of the
Newton–Raphson and a path-following arc-length iterative methods to solve the system
of nonlinear algebraic equations that govern the equilibrium beyond the critical points.
The present framework provides a general foundation to investigate the postbuckling
response of potentially any type of nonlocal structure. [DOI: 10.1115/1.4049224]

Keywords: fractional calculus, nonlocal plates, bifurcation analysis, postbuckling, energy
methods, computational mechanics, constitutive modeling of materials, elasticity, structures

1 Introduction
The study of buckling and postbuckling responses of elastic struc-

tures have obvious applications in the domain of structural analysis
and design. Seminal work in the study of postbuckling response of
continuum structures was conducted by Koiter [1]. Later, Budiansky
[2] extended this study to the postbuckling response of elastic struc-
tures. These works generated broad interest in the academic and
research communities involved in the structural design [3]. By
employing models and methodologies derived, either directly or
indirectly, from these seminal works, the postbuckling response of
several structures have been successfully studied [4–8]. These
studies are based on the classical (local) constitutive theories that
involve a point-wise correspondence between the displacement
and the stressfield generated at the point. Although the localized rela-
tions of constitutive theories are still fundamental for most studies on
the behavior of solids, the existence of nonlocal interactions between
distant points in a solid have been established through experimental
investigations. These observations point toward a nonclassical beha-
vior that is not accounted for in classical local elasticity theories.
Some common examples of solids exhibiting nonlocal behavior
include (microscale and nanoscale) structures where size effects
gain prominence [9,10]. In addition, recent experimental observa-
tions point to a more pervasive presence of nonlocal interactions
even in macroscale applications such as sandwich structures, stif-
fened panels, and functionally graded materials [11,12].
Owing to the importance of the applications mentioned earlier,

several theories have been proposed to model the nonlocal effects

in elastic solids. Among the numerous theories existing in the liter-
ature, the strain-based integral constitutive relations for the nonlocal
solids proposed by Kröner [13] and Eringen [14] are likely the most
prominent. In these approaches, nonlocal interactions are intro-
duced in the constitutive law by means of an integral stress-strain
relation defined over an assigned domain of influence. This integral
effectively captures long-range interactions by means of a convolu-
tion of the strain tensor weighted by a proper attenuation function.
While this approach has certain key advantages, primarily in pro-
viding an intuitive representation of the long-range interactions
via convolution integrals, it suffers some key mathematical and
physical inconsistencies. The salient deficiency of integral models
is that it belongs to an ill-posed class of integral equations that do
not admit unique solutions [15–17]. To circumvent the implicit for-
mulations associated with the integral approaches, an equivalent
gradient-based model of nonlocal elasticity was developed [18].
The modeling advantages introduced by these gradient-based
approaches sparked numerous investigations focused on assessing
the effect of long-range interactions on the response of structural
elements [19–21]. The equivalence between the gradient and inte-
gral models is based on certain restrictions like the nonlocal influ-
ence domain being unbounded and on certain choices of the
attenuation kernel. These conditions place physical restrictions
that do not allow the use of gradient models for a general study
on nonlocal elasticity. This is because violation of these restrictions
would present paradoxical observations, such as the vanishing non-
local effects, encountered for certain choices of loading and bound-
ary conditions [15,17]. In the context of stability analysis, the
nonlocal effects are realized by a modification of the system stiff-
ness terms. When employing integral-type nonlocal constitutive
laws, the material stiffness is reduced due to nonlocal interactions
[22,23], whereas differential models cause an increase in the geo-
metric stiffness [18,24]. In either case, both models predict a
lower critical load in nonlocal structures when compared with
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their classical local counterpart [23]. Note that most of the literature
addressing the effects of nonlocal mechanisms on the critical load
has focused on linear buckling. Studies on the critical load in the
case of nonlinear buckling and postbuckling response are almost
entirely based on differential models. Among the existing studies,
nonlocal effects are restricted to carbon nanotubes (CNTs) and gra-
phene. Both classical and modified differential models of nonlocal
elasticity were employed to compare the effects of long-range
interactions on both the hardening and softening response of low-
dimensional structures [25–27]. Additional studies include post-
buckling of nonlocal beam and cylinder models for CNTs [28,29]
and plate and shell models for graphene sheets [30,31]. Nonlocal
effects have also been considered in the study of the postbuckling
response of bio-based protein tubules [32] and in the pull-in insta-
bility of the micro- and nano-electromechanical devices [33,34]. To
the best of author’s knowledge, all the reported studies are based on
the differential models of nonlocal elasticity and conclusively
predict a lower value of critical load across boundary conditions fol-
lowed by a reduction in the postbuckling resistance to deformation.
The lack of similar studies based on integral models of nonlocal

elasticity may be attributed to the relative complexity of the
integral-type constitutive relations, and the unavailability of a con-
sistent and positive semi-definite definition of the deformation
energy density functional within this framework. In fact, it has
been argued that such a functional cannot be defined for the nonlo-
cal solids [16]. Since postbuckling analysis is based on energy
approaches, this latter point presents a significant technical gap
that requires to be addressed. Moreover, it must be noted that the
integral and differential-type constitutive laws discussed earlier
are thermodynamically inconsistent [35]. This is because of the
ad hoc constitutive laws that do not satisfy the thermodynamic
balance in a rigorous manner. More specifically, when nonlocal
solids are modeled via integral or differential approaches, the first
and second law of thermodynamics are only satisfied in a weak
manner (over the nonlocal domain) as opposed to the physically
consistent localized (strong) form [35]. Thus, a consistent energy
formulation may not be developed employing these models. This
consideration extends also to the alternative integral-type two-phase
definition of constitutive law that includes both local and nonlocal
terms in the stress–strain relations. While the two-phase definition
admits unique solutions by virtue of the well posedness of Fred-
holm’s second integral, it does not satisfy the second law of thermo-
dynamics (Clausius–Duhem inequality) in a rigorous manner. This
highlights the limitations of the existing constitutive models for
nonlocal elasticity and their deficiencies in an analysis over post-
buckling studies [36].
Fractional calculus has demonstrated enormous potential for

addressing areas where integer-order models fall short, such as
the case of modeling of complex phenomena. Limiting the discus-
sion to the current context of structural models, recent develop-
ments include fractional-order constitutive theories of nonlocal
elasticity that can potentially address the aforementioned deficien-
cies [37–41]. Other prominent examples of successful applications
of fractional-order theories are the constitutive modeling of memory
effects in viscoelastic materials [42,43] and nonlocal effects in a
multiscale analysis [38,41,44]. In the case of fractional-order consti-
tutive theories, the differ-integral nature of fractional-order deriva-
tives serves as a suitable alternative to the integro-differential
constitutive relations encountered in nonlocal elasticity. Indeed,
the fractional-order derivatives appearing in the kinematic strain–
displacement relations allow accounting for long-range interactions
within the constitutive model of a nonlocal elastic solid. Successful
applications of this theory to the development of mathematical and
physically consistent models for softening [41] and stiffening [44]
type of nonlocal interactions have also been proposed. The
frame-invariant fractional-order continuum theory based on a phys-
ically consistent definition for position-dependent nonlocal length
scales is particularly effective in allowing a rigorous application
of the thermodynamic principles [36]. This observation is crucial
in developing consistent constitutive laws for nonlocal elasticity

because it allows defining a positive semi-definite functional corre-
sponding to the deformation energy density of a nonlocal solid. It
has been proved that the positive semi-definite form of the deforma-
tion energy density functional leads to self-adjoint linear operators
in the governing equations [45,46]. By employing weak-form
expressions and variational methodologies, finite element techni-
ques suitable for the numerical solution of boundary value problems
based on fractional-order equations have also been developed [45].
Following energy-based methods afforded thanks to the

fractional-order model, softening effects due to nonlocal interac-
tions have been accounted for both the linear and nonlinear
response of beams and plates [45–48]. The large deformation anal-
ysis of the nonlocal solid requiring geometrically nonlinear strain–
displacement relations is particularly insightful within the context of
stability of fractional-order continuum theory. Unlike the integral
and differential models of nonlocal elasticity that modify either
the material or the geometric stiffness term alone, physically the
nonlocal interactions are expected to be realized on both of these
stiffness terms. This is achieved by incorporating the nonlocal inter-
actions at the level of kinematic relations within the constitutive
relations for a nonlocal solid. Thus, the effect of the nonlocal inter-
actions over the critical load is decided by the net result of modifi-
cations to the material and geometric stiffness terms by the
fractional-order derivatives. This observation has been drawn fol-
lowing rigorous parametric studies isolating the nonlocal interac-
tions in each term to identify the net result over the critical load
corresponding to linear buckling [49]. It is imperative that a study
of the postbuckling response of nonlocal structures, which also
depends on both of these stiffness terms, is conducted employing
the mathematically, physically, and thermodynamically consistent
nonlocal model of the fractional-order continuum theory.
With this objective in mind, we study the critical load corre-

sponding to the nonlinear buckling and the subsequent postbuckling
response of nonlocal structures. For this purpose, we build upon the
existing framework for the stability analysis of fractional-order
structures [49]. As mentioned earlier, this study is possible due to
the positive semi-definite deformation energy density functional
made available by the fractional-order formulation of nonlocal elas-
ticity [36,45]. The objective of the current work is twofold. First, the
nonlinear buckling of fractional-order structures is studied by iden-
tifying the singular points of the equilibrium curves. We develop the
nonlinear equations required to obtain the critical load and the asso-
ciated buckling mode following variational principles. Subse-
quently, the postbifurcation analysis in the immediate vicinity of
the singular points is conducted. Second, the developed framework
is employed to perform a numerical study (via fractional-order finite
element method (f-FEM)) and to assess the effect of nonlocal inter-
actions on the postbuckling response of a slender plate.
This article is organized as follows. First, it provides a brief

summary of the fractional-order continuum theory. This is followed
by a summary of the energy-based framework employed for the
identification of critical points of nonlocal structures corresponding
to linear buckling. Then, it presents the derivation of the critical
loads corresponding to singular points of nonlinear equilibrium.
Thereafter, by means of extending the Koiter’s asymptotic
method, the postbuckling response in the immediate vicinity of
the critical points is studied. Finally, an analysis of the postbuckling
behavior of fractional-order Kirchhoff plates is performed. We
provide brief details regarding the 2D f-FEM model developed
for this numerical study over the postbuckling response of nonlocal
structures.

2 Postbuckling Response of Fractional-Order Nonlocal
Structures
In this section, we develop the models required to study the post-

critical response of fractional-order nonlocal structures. To provide
the necessary mathematical background and notation, we briefly
review the basic constitutive relations for the fractional-order
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continuum theory [41,47] and the stability of equilibrium points for
a nonlocal solid evaluated following this theory [49]. We use the
boldface notation to describe tensors (including vectors), while sub-
script indicates the measure number of the component evaluated in
Cartesian coordinates.

2.1 Constitutive Model for Fractional-Order Structures.
This study of the stability of nonlocal structures employs geometri-
cally nonlinear fractional-order relations. The nonlinear strain–
displacement relations are given by [41,47]:

Eα
ij =

1
2
(∇α

ijU + ∇α
jiU

T + ∇α
kjU

T∇α
kiU), i, j, k = 1, 2, 3 (1)

where U(X) is the Lagrangian displacement field. The term ∇αU
denotes a Riesz–Caputo (RC) fractional derivative of order α∈
(0, 1] of the displacement field with respect to the spatial coordi-
nates X ∈ R3. This space-fractional derivative is defined as
follows (no summation over repeated indices) [45]:

∇α
ijU(X) =

1
2
Γ(2 − α)

[
Lα−1Aj

C
XAj

Dα
Xj
Ui − Lα−1Bj

C
Xj
Dα

XBj
Ui

]
(2)

where C
XAj

Dα
Xj
Ui and C

Xj
Dα

XBj
Ui are the left- and right-handed

fractional-order Caputo derivatives of the displacement field
Ui(X) with respect to the coordinate Xj. The terminals of the
Riesz–Caputo fractional-order derivative defined at Xj are XAj and
XBj . These terminals along the Xj–direction are obtained using
position-dependent length scale parameters LAj and LBj as XAj =
Xj − LAj and XBj = Xj + LBj . Thus, the domain (XAj , XBj ) defines
the horizon of nonlocal interactions along j-direction at the point
X. Finally, Γ(·) is the Gamma function, and the term 1/2Γ(2− α)
along with the position-dependent length scales allow the
second-order fractional-order strain tensor to be frame invariant
[41]. The above given RC definition for the fractional derivative
may be recast using the definitions of the Caputo derivatives as
follows:

∇α
ijU(X) =

∫Xj+LBj

Xj−LAj

A(Xj, ξ, α) ∇ijU(ξ) dξ (3)

where A(Xj, ξ, α) is the α-order power-law kernel that serves as the
attenuation function for nonlocal interactions between points X and
ξ. The differ-integral nature of the fractional-derivative evident
from above result introduces the long-range nonlocal interactions
into the constitutive models at the level of the kinematics.
The complete expressions for the nonlinear strain–displacement

relations in Eq. (1) correspond to the Euler–Lagrange strain–
displacement relations. They may be further simplified under the
assumptions of large displacement and moderate rotations, but
small strains, to obtain the fractional-order analogues of the von-
Kármán strain–displacement relations [47,48]. The fractional-order
von-Kármán strain–displacement relations are given as follows:

ϵ̃ij =
1
2
(∇α

ijU + ∇α
jiU

T )︸���������︷︷���������︸
ẽij(U)

+
1
2
(∇α

3jU
T∇α

3iU)︸�������︷︷�������︸
q̃ij(U,U)

, i, j = 1, 2 (4)

where ẽij(u) and q̃ij(u, u) denote the linear and quadratic compo-
nents of the von-Kármán strain defined over displacement field
U(X), respectively. Note that, following the assumptions for the
von-Kármán displacement relations, the quadratic component
includes the fractional-order derivatives of only the transverse dis-
placement field U3(X) with respect to in-plane coordinates. The
transverse strains (normal and shear) are simply the linearized
forms of complete nonlinear strain given in Eq. (1), which is
ẽij(U) (see Eq. (4)). For the complete expressions of the nonlinear
fractional-order von-Kármán strain–displacement relations, the
reader is referred to Ref. [47]. Following this review over the
fractional-order strain–displacement relations for a nonlocal solid,

we will discuss the stress–strain laws corresponding to the current
formulation.
As discussed in Sec. 1, the fractional-order continuum theory

for nonlocal interactions allows localized material constitutive rela-
tions to be defined for a nonlocal solid. This follows from the strong
imposition of the thermodynamic balance laws for a nonlocal solid
with the long-range interactions modeled using the fractional-order
kinematic relations (see Eq. (3)) [36]. To clarify, fractional-order
strain–displacement relations allow the thermodynamic balance
laws to be satisfied at every point in the nonlocal solid. This is
unlike the common weak (integral-form) imposition of the
balance laws over a domain following the existing integer-order
models of nonlocal elasticity [14,35]. Thus, under the assumption
of linear material elasticity with a nondissipative response, the fol-
lowing strictly convex deformation energy density functional
U[u(x)] may be defined for a hyperelastic solid:

U[u(x)] = 1
2
Cijklϵ̃ijϵ̃kl (5)

where Cijkl is a positive definite fourth-order elastic coefficient
tensor. This material tensor for the nonlocal solid is defined analo-
gous to the classical elasticity. Therefore, the fourth-order material
coefficient tensor for an isotropic solid may be expressed in terms of
the Lamé parameters λ and μ. Finally, the localized material consti-
tutive relations corresponding to the nonlocal response of a
fractional-order solid may be written as follows [36]:

σ̃ij =
∂U
∂ϵ̃

= Cijklϵ̃kl (6)

2.2 Critical Points of Stability for Fractional-Order
Structures. We consider a nonlocal structure occupying a
domain Ω and enclosed by the boundary ∂Ω. Furthermore, a con-
tinuous variable Λ is used as the control parameter to characterize
the adjacent states of equilibrium. The total potential energy
Π[u(Λ); Λ] of this nonlocal structure is expressed as follows:

Π[u(Λ)] =
∫
Ω
U[u(Λ)] dV −

∫
∂Ωσ

f(Λ) · u dA (7)

where U[u] is the deformation energy density functional given in
Eq. (5) for the nonlocal solid, and the second integral is the external
work done by a surface force f(Λ) applied on the boundary ∂Ωσ. The
first variation of the aforementioned expression for the potential
energy δΠ[u]=Π,uδu provides governing equations of equilibrium
for the fractional-order structure [45,49]. The configuration given
by the coordinates ue (Λe) is an equilibrium state for the nonlocal
structure if it satisfies the equation δΠ[ue]= 0 given by∫

Ω
σ̃: ẽ(δu) + q̃ ue, δu( )[ ]dV −

∫
∂Ωσ

f(Λe) · δu dA = 0 (8)

for any arbitrary variation δu. In the derivation of the aforemen-
tioned equation, we make use of the expression for the deformation
energy density of a nonlocal solid given in Eq. (5) and the von-
Kármán strain–displacement relations in Eq. (4). Note that the
comma notation in the subscript used earlier indicates a differenti-
ation, but not necessarily to an integer order. For further details
regarding the variational principles and the transversality conditions
for fractional-order systems, the reader can refer to Ref. [50].
To obtain the critical points of stability, the Lagrange–Dirichlet

theorem may be employed for the fractional-order solids [49].
This is not possible for the existing integer-order models of nonlocal
elasticity, whereas the fractional-order continuum theory enables
this via a positive semi-definite deformation energy density. By
extending the energy methodology, the analysis of the postcritical
behavior of fractional-order nonlocal structures may be conducted.
It may be stated that the equilibrium configuration ue(Λe) is stable if
the second-variation δ2Π[ue]=Π,uu(ue)δu1δu2 > 0, where δu1 and
δu2 are independent variations [49]. Before we proceed further,
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some assumptions should be mentioned. Note that these assump-
tions are common to similar studies on bifurcation of elastic
solids using classical elasticity [2]. We assume a small predeforma-
tion at the critical point. By this, we consider an equilibrium curve
C0 for Λ<Λc given by u= u0(Λ), such that u0≪ v. Here, v is the
postbifurcation response of the nonlocal structure. Furthermore,
we assume a proportional loading force (f(Λ)=Λf0, f0 being a
representative force vector) that results in the stress generated to
be given as σ̃(Λ) = Λσ̃0. We identify the critical configuration of
stability uc(Λc) as the solution to the variational equation defined
over δ2Π[uc] as follows:∫
Ω
(ẽ(δu2) + q̃(uc, δu2)):C:(ẽ(Ub) + q̃(uc, Ub)) + Λc σ̃

0:q̃(δu2, Ub)
[ ]

dV = 0 (9)

where Ub= δu1 is the critical mode corresponding to the bifurcation
at uc and Λc is the critical value of the load control parameter. The
configuration (uc, Λc) that is a solution to the aforementioned non-
linear equation provides the singular point of the nonlinear elastic
response of the nonlocal solid. For ease of notation, we express
δ2Π[uc] evaluated at uc(Λc) as δ

2Πc. The aforementioned equation
may be further simplified through linearization to derive the follow-
ing expression for the critical points corresponding to linear buck-
ling of fractional order solids [49]:

Λl
c =min

V
−


Ωẽ(v):C:ẽ(v) dV

Ω σ̃0:q̃(v, v) dV

[ ]
(10)

We point to a simultaneous modification of the standard and geo-
metric stiffness of the nonlocal structure (i.e., the numerator and
denominator in the above expression, respectively) caused by the
long-range interactions. This is because of the fractional-order
derivatives being present in the expressions of both stiffness
terms in the aforementioned result for critical load of nonlocal struc-
ture. Therefore, the effect of the nonlocal interactions on the critical
load Λl

c is not trivial and may either increase or decrease due to
long-range effects. This is in contrast with the observations follow-
ing from existing integer-order nonlocal theories that predict a con-
sistent decrease in the critical load. We clarify this statement by a
comparison of the fractional-order model with the standard integer-
order Eringen’s integral and differential theories of nonlocal elastic-
ity. Following the integral theory [14], the effect of the nonlocal
interactions is captured only within the material stiffness terms.
This causes a reduction of the material stiffness with an increasing
degree of nonlocality. However, the geometric stiffness evaluated
using this theory is identical to the corresponding result following
from classical (local) elasticity [23]. Conversely, the Eringen’s dif-
ferential theory increases the geometric stiffness terms as a conse-
quence of the nonlocal interactions, while leaving the material
stiffness unchanged from classical (local) elasticity predictions
[24]. Please refer to Ref. [49] for a detailed comparison of the crit-
ical buckling load evaluated for a nonlocal solid employing the
fractional-order and integer-order nonlocal continuum theories.
While these observations are drawn for the linear buckling of
fractional-order structures, they are relevant for nonlinear buckling
studied using the nonlinear eigenvalue problem given in Eq. (9).

2.3 Postbifurcation Analysis of Fractional-Order
Structures. Following the previous study on the identification of
singular points of the fundamental solution of the governing equa-
tions, our next objective is to analyze the nature of the singularity
and develop the models required for the subsequent analysis of
the nonlinear response of fractional-order solids beyond these crit-
ical points. In the domain of classical elasticity, this study of the
postbuckling response is carried out following the energy method-
ology [1]. Here, we make use of the positive semi-definite deforma-
tion energy density (see Eq. (5)) achievable via the fractional-order
derivatives for nonlocal solids. We proceed with a straightforward

extension of the Koiter’s asymptotic method, originally defined
for integer-order models of classical elasticity, to obtain the post-
buckling response of fractional-order nonlocal structures.
Following the Koiter’s asymptotic theory, we express the follow-

ing expansions for equilibrium configuration (u, Λ) adjacent to the
critical point (uc, Λc) in terms of the parameter χ [2]:

Λ − Λc = χΛI +
1
2
χ2ΛII +

1
6
χ3ΛIII . . . ,

u − uc = v = χUb +
1
2
χ2w2 +

1
6
χ3w3︸��������︷︷��������︸

W(χ)

(11)

where v is the postbifurcation response expressed as the difference
between the fundamental curve uc∈C0 (u0) and the bifurcated
curve C1 (u). This difference is expressed in terms of the critical
mode Ub obtained in Eq. (9) and correction factor W defined
such that W⊥Ub. The quantities (Ub, ΛI) and (w2, ΛII) provide
the slope and curvature of the load–displacement equilibrium
curves at the point χ= 0 [51]. As in the case of classical elasticity,
in the immediate vicinity of the critical point, a linear approximation
would suffice. In case the coefficient of the linear approximation
(ΛI) is zero, the higher order terms will be considered. Assuming
the potential energy functional to be continuous in the vicinity of
the above identified critical point, the coefficients of the aforemen-
tioned expansion can be obtained analogous to integer-order models
[1,2]. It must be mentioned that by making use of the Taylor series
expansion about the critical point (uc, Λc), the error in approxima-
tion approaches zero for Λ→Λc. Employing the asymptotic
approach to the potential energy expansion for nonlocal structures,
our objective is twofold: (1) establish the bifurcation of the primary
equilibrium curve at the critical point and (2) discuss the stability of
the bifurcated equilibrium curves beyond the equilibrium. Here, for
the sake of brevity, we shall discuss only the salient conclusions
regarding the influence of the nonlocal interactions drawn from
this mathematical exercise.
At the beginning of the fundamental path C0 (when the control

parameter Λ increases from 0), the second variation of the potential
energy δ2Π is positive. This corresponds to the stability of equilib-
rium positions along this curve. However, for increasing values
of Λ, δ2Π reduces until finally at the critical point Λc we have
δ2Πc= 0. Therefore, assuming the independent variation δu2=Ub

(critical mode shape) in Eq. (9), we obtain [2]:

T =
d
dΛ

δ2Πc =
∫
Ω
σ̃0:q̃(Ub, Ub) dΩ < 0 (12)

Here, T is defined as the transversality rate. A nonzero value of T
points toward angular bifurcation at the critical point [1,2]. Thus,
we establish that the primary nonlinear equilibrium curve C0 under-
goes an angular bifurcation at the critical point (uc, Λc) in a nonlocal
solid. This condition is analogous to the one known in classical
elasticity where angular bifurcation is noted for the nonlinear equi-
librium curves at the critical (singular) point. From the aforemen-
tioned result, we may also conclude that the nonlocal interactions
captured by the fractional-order derivatives do not influence the
nature of the bifurcation. This is because the quadratic term
q̃(v, v) > 0 for nonzero v. This conclusion is necessary to ascertain
the nature of the instability in nonlocal solids at the critical point.
While studies on postcritical response of nonlocal structures are
available in the literature [28,30,31], these works based on the
integer-order models of nonlocal elasticity assume angular bifurca-
tion without any formal proof. Following this discussion, we now
prove the nature of the instability in the presence of nonlocal inter-
actions. This result is possible due to the positive semi-definite qua-
dratic term q̃(v, v) available from the fractional-order kinematic
relations for nonlocal solids. This observation gains further signifi-
cance in the analysis of postbuckling response of complex nonlocal
structures with a priori unknown nature of the instabilities. In accor-
dance with this result, the conditions required for instability in
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nonlocal solids simply follow from classical elasticity [1]. First, the
nonzero quadratic term following from the von-Kármán strain–
displacement relations (geometric nonlinearity) is essential to
ensure a nontrivial result in the aforementioned expression.
Second, a compressive force f0 causing σ̃0 < 0 is also required to
induce an instability within the nonlocal structure.
Analogously to classical elasticity, we continue the aforemen-

tioned discussion of the potential energy to analyze the stability
of the fundamental curve C0 and the bifurcated curve C1 beyond
the critical point. To draw a qualitative conclusion, we look at the
sign of the difference in potential energy between the two configu-
rations on the C0 and C1 curves ΔΠ=Π(u, Λ)−Π(u0, Λ) for a
given value of the load parameter Λ. This result for the nonlocal
structure can be derived following the asymptotic relations given
in Eq. (11) and the transversality rate defined in Eq. (12) to be as
follows:

ΔΠ =
a1χ3ΛIT +O(χ3) if ΛI ≠ 0
a2χ4ΛIIT +O(χ4) if ΛI = 0 and ΛII ≠ 0

⎧⎨
⎩ (13)

where a1 and a2 are positive constants. For T < 0, we have ΔΠ < 0
(see Eq. (12)). Thus, equilibrium configurations (u, Λ) along the
bifurcated curve C1 admit lower potential energy when compared
with the fundamental branch for Λ>Λc. We conclude that the bifur-
cated branch at the critical pointΛc presents stable equilibrium solu-
tions for Λ>Λc.
Increasing the degree of nonlocality would result in lower values

for fractional derivatives. Thus, the numerical values of σ̃0 and q̃ in
Eq. (10) will be reduced for the fractional-order structure. This
would result in lower value of T for fractional-order solids with
the increasing degree of nonlocality. Therefore, we infer from
Eq. (13) that nonlocal effects will reduce the difference in energy
barrier between the fundamental and the bifurcated paths at the
singular points.

3 Postbuckling Analysis of Fractional-Order Kirchhoff
Plates
In this section, we apply the aforementioned formulation to study

the postbuckling response of a nonlocal Kirchhoff plate. We begin
with the derivation of the governing equations of equilibrium for a
fractional-order Kirchhoff plate following variational principles.
We also develop the numerical model for these nonlinear
fractional-order (integro-differential) governing equations employ-
ing the path-following method based on arc-length constraints.

3.1 Basic Formulation for Fractional-Order Kirchhoff
Plates. In this study, a homogeneous, isotropic elastic flat plate is
considered. The in-plane dimensions of the plate are a× b, and
the thickness is denoted by h. The schematic of the plate in
Fig. 1(a) indicates the Cartesian coordinates chosen for the

current study. As shown in this figure, x3= 0 is the mid-plane and
x3=±h/2 denote the top and bottom surface of the flat plate. As
indicated in the schematic, the vertical free surfaces of the plate
coincide with x1= 0, a and x2= 0, b. Following the slender assump-
tions of the Kirchhoff plate theory, the height of the plate is chosen
such that h< a/50. Under this assumption, the components of the
displacement field distribution u(X) at a point X(x1, x2, x3)∈Ω
according to the Kirchhoff plate theory are given by

u1(X) = u0(X0) − x3
∂w0(X0)
∂x1

,

u2(X) = v0(X0) − x3
∂w0(X0)
∂x2

, u3(X) = w0(X0)
(14)

where u0(X0), v0(X0), and w0(X0) are the generalized displacement
coordinates corresponding to the displacements at the point X0(x1,
x2) on the reference plane x3= 0. The fractional-order geometri-
cally nonlinear strains evaluated using the von-Kármán strain–
displacement relations in Eq. (4) are now given as follows:

{ϵ̃} = {ϵ̃t} + {ϵ̃nl} − x3{ϵ̃b} (15a)

where

{ϵ̃}T = [ϵ̃11 ϵ̃22 γ̃12] (15b)

and the in-plane linear and nonlinear components of the strain,
denoted by {ϵ̃t}

T and {ϵ̃nl}
T , are, respectively,

{ϵ̃t} =
Dα

x1
u0

Dα
x2v0

(Dα
x2
u0 + Dα

x1
v0)

⎧⎨
⎩

⎫⎬
⎭ {ϵ̃nl} =

1
2

Dα
x1
w0

( )2
1
2

Dα
x2
w0

( )2
Dα

x1
w0Dα

x2
w0

( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15c)

and the generalized strain vector corresponding to bending response
is

{ϵ̃b} =

Dα
x1

∂w0

∂x1

( )

Dα
x2

∂w0

∂x2

( )

Dα
x2

∂w0

∂x1

( )
+ Dα

x1

∂w0

∂x2

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15d)

For the sake of brevity, theRC fractional derivative of orderα∈ (0, 1)
along the x1– and x2–directions are denoted by Dα

x1
≡ x1−LA1D

α
x1+LB1

and Dα
x2
≡ x2−LA2D

α
x2+LB2

. The length scales LAi and LBi (i= 1, 2) in

the aforementioned expressions indicate the nonlocal horizon of
influence in xi-direction at the point of interest X0(x1, x2). The RC
derivatives model long-range interactions at the point X0(x1, x2)
over the domains (x1 − LA1 , x1 + LB1 ) and (x2 − LA2 , x2 + LB2 ).
As discussed in Sec. 2.1, the stress–strain constitutive relations

for the fractional-order solid follow the local material elasticity

(a) (b)

Fig. 1 (a) Schematic of the isotropic plate illustrating the Cartesian coordinate axes and the relevant geometric
parameters. (b) Uniform in-plane loads applied on the edges of the plate. The eccentric load F3 is also indicated.
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law. Therefore, employing the generalized Hooke’s law for an iso-
tropic solid, the constitutive relations are written in the matrix form
as follows [52]:

σ̃11
σ̃22
σ̃12

⎧⎨
⎩

⎫⎬
⎭ =

C11 C12 0
C12 C11 0
0 0 C44

⎡
⎣

⎤
⎦ ϵ̃11

ϵ̃22
γ̃12

⎧⎨
⎩

⎫⎬
⎭ (16a)

The elastic constants for the isotropic plate expressed under plane
stress assumptions are as follows:

C11 =
E

1 − ν2
, C12 =

Eν

1 − ν2
and C44 =

E

2 1 + ν( ) (16b)

where E is the Young’s modulus and ν is the Poisson’s ratio for the
isotropic solid.
Following the Kirchhoff plate theory, we note that the in-plane

stiffness of the plate is much larger than the bending stiffness
[52]. This results in transverse displacements, perpendicular to the
mid-plane, being considerably larger when compared with the
in-plane displacements. Furthermore, transverse shear rigidity of
the slender plate is at least an order of magnitude higher than the
bending rigidity. Therefore, the contribution of nonzero transverse
shear strains to the deformation energy density of the fractional-
order Kirchhoff plate may be neglected [45,48].
The deformation energy W of the nonlocal Kirchhoff plate eval-

uated from the deformation energy density U given in Eq. (5) is
expressed as follows:

W =
1
2

∫a
0

∫b
0

∫h/2
−h/2

{ϵ̃}T{σ̃} dx3dx2dx1 (17)

In the current study, to induce buckling, we consider an external
load to be applied in the plane of the flat plate. The uniform
in-plane compressive loads F1=±F1e1 and F2=±F2e2 are
applied at the free-edges x1= 0, a and x2= 0, b as indicated in the
schematic shown in Fig. 1(b). In keeping with our discussion in
Sec. 2, these loads are expressed in terms of a control parameter
Λ and unit forces F0

i = 1ei (i= 1, 2). In addition to these in-plane
loads, we also apply an additional load F3=F3e3 transverse to the
mid-plane of the plate. This load is applied to activate the stable
branch of the postbuckling nonlinear response path at the critical
point [53,54]. The details of the eccentric load will be provided in
the following. Note that the eccentric load (F3) serves a role
similar to that of the geometric imperfections used in post-buckling
analysis [55,56]. Furthermore, the distribution of this transverse
load is chosen to yield the mode shapes corresponding to linear
buckling modes [1,2].
Finally, the total potential energy of the fractional-order nonlocal

plate subject to the earlier described external loads may be written
from Eq. (7) to be as follows:

Π =W −
∫a
0
F2 · u|x2=0 + F2 · u|x2=b
[ ]

dx1

−
∫b
0
F1 · u|x1=0 + F1 · u|x1=a
[ ]

dx2 −
∫a
0

∫b
0

F3 · udx2dx1 (18)

The algebraic equations of equilibrium can now be derived follow-
ing the minimum potential energy principle δΠ= 0.

3.2 Numerical Modeling. In this section, we develop the
numerical models required for approximate solutions to the post-
buckling response of fractional-order Kirchhoff plates. We
employ the nonlinear f-FEM [47,48] for numerical approximations
of the fractional-order derivatives present in the current formulation.
The 2D domain Ω= [0, a] × [0, b] of the plate is divided into Ne

uniform finite elements denoted by Ωi
e, such that ∪Ne

i=1 Ω
i
e = Ω

and Ω j
e ∩ Ωk

e =∅ ∀ j ≠ k. In the current study, the unknown gener-
alized displacement coordinates are given by

{U(X0)}
T = [u0(x1, x2) v0(x1, x2) w0(x1, x2)] (19)

The aforementioned vector at any point X0(x1, x2) ∈ Ω p
e on the

reference plane is evaluated by an interpolation using corresponding
nodal values of the four-noded elementΩ p

e . According to the Kirch-
hoff displacement theory and the f-FEM modeling approach, we
employ (linear) Lagrange approximations for the in-plane displace-
ment field variables and (cubic) Hermite approximation functions
for the transverse displacement function. The generalized displace-
ment coordinate vector {U} may be expressed in terms of the cor-
responding nodal coordinates as follows:

{U(x1, x2)} = [N̂ (x1, x2)]{Δ p
e (x1, x2)} (20a)

where the vector of nodal values for the generalized displacement
coordinates is given as follows:

{Δ p
e (x1, x2)}

T = ui0 vi0 wi
0

dwi
0

dx1

dwi
0

dx2

d2wi
0

dx1dx2

[ ]∣∣∣∣4
i=1

(20b)

and the matrix [N̂ ] is the shape function matrix formed by an appro-
priate assembly of the Lagrange and Hermite shape functions. The
aforementioned interpolations for the displacements are utilized in
Eq. (15) to derive the numerical approximations for the geometri-
cally nonlinear fractional-order strains expressed in terms of the
nodal values of the generalized displacement coordinates. As
shown in Eq. (3), the long-range nonlocal interactions are captured
by the fractional derivatives through an additional integration
defined within the strain–displacement relations. This will require
the nonlocal strain–displacement matrices [B̃] to connect nodal dis-
placements values across the nonlocal domain. For complete details
regarding the f-FEM procedure employed for this purpose, the
reader is referred to Ref. [46].
With the nonlocal strains available from the f-FEM, numerical

approximations for the potential energy of the Kirchhoff plate
given in Eq. (18) are derived. Finally, applying the principle of
minimum potential energy δΠ= 0, the algebraic equations of equi-
librium are given as follows:

[KS]{Δ} = {F} (21)

where the expressions for the system stiffness matrix [KS], the
global assembly of the nodal displacement coordinates {Δ}, and
the force matrices {F} are available elsewhere [48]. Note that the
stiffness matrix in the aforementioned expression is nonlinear and
depends on the configuration of the deformed system.
The nonlinear set of algebraic equations in Eq. (21) are solved

using an incremental-iterative Newton–Raphson method. In addi-
tion, a path-following method based on arc-length constraint is
employed to trace the nonlinear equilibrium path through the
limit point. This approach involves the Newton–Raphson iterative
scheme for fractional-order systems discussed in Refs. [47,48] to
be extended by including the arc-length iterative algorithm
[57,58]. The externally applied forces being constant in magnitude
and direction, we express the force matrix as follows:

{F} = Λ{F0} (22)

where {F0} is the representative force vector and Λ is an additional
variable that serves as the load control parameter. The nonlinear
algebraic equations given in Eq. (21) can be recast as follows:

{R({Δ}, Λ)} = [KS]{Δ} − Λ{F0} = 0 (23)

where {R} is the vector of residual nodal forces for the
fractional-order structure as defined in Refs. [47,48]. Based on
the Newton–Raphson method, the increment (δ{Δ}, δΛ) in
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equilibrium position is governed by the following equation:

[KT ]δ{Δ} = δΛ{F0} − {R} (24a)

where [KT] is the tangential stiffness matrix. An additional con-
straint over the increments δ{Δ} and δΛ:

G(δ{Δ}, δΛ) = 0 (24b)

follows from the arc-length continuation method. The above set of
equations complete the incremental-iterative numerical scheme
employed to determine the nonlinear load–deflection path. Note
that the specific cases of δΛ= 0 and δ{Δ}= 0 correspond to
load–control and displacement–control increments, respectively.

4 Results and Discussion
In this section, we report the numerical results for the models

developed in Sec. 3 and provide a quantitative assessment of the effect
of nonlocal interactions over the postbuckling response of Kirchhoff
plates. More specifically, the effect of the fractional order and of the
nonlocal length scales on the nonlinear load–displacement curves
will be specifically addressed. In all simulations,we choose an isotro-
pic solid with Young’s modulus E= 1.09 MPa and the Poisson’s
ratio ν= 1/3 [48]. The Young’s modulus chosen here applies to a
class of soft materials that exhibit large deformations, which is essen-
tial for the intended study. However, note that the framework devel-
oped here is not specific to this particular choice of material
properties.
The constitutive parameters corresponding to fractional-order

continuum theory, which are the fractional-order α and the nonlocal
length scale lf, are not fixed a priori. They will be varied to identify
the effects of these individual parameters on the postbuckling
response. Therefore, their value will be provided wherever required.
The nonlocal length scales for the isotropic solid are chosen such
that for points sufficiently away from the boundaries we have
LA1 = LB1 = LA2 = LB2 = lf . This symmetry is broken for points
close to the boundaries of the plate. As illustrated in Fig. 2, for
points whose distance from the boundary (in a given direction) is
smaller than lf, we truncate the nonlocal length scale at the physical
boundaries of the plate. Concerning the numerical simulations
carried out here below, we consider a square plate with in-plane
dimensions a= b= 1 m. The thickness of the plate is chosen to be
h= a/120 consistently with the assumptions for the Kirchhoff
plate displacement theory.
Numerical results will be presented for a nonlocal plate subject to

uniformly distributed uniaxial compressive load F1 applied at the

edges x1= 0, a. As discussed in Sec. 3, we also apply a uniformly
distributed transverse load to activate the stable branch of the post-
buckling path at the critical point. Furthermore, the numerical
results for two choices of boundary conditions will be analyzed.
In the first case, all the edges of the plate are simply supported.
The unloaded edges in this case are free to move laterally along
the plane of the plate. This choice referred to as the SSSS-01 is
given by [56,59]:

x1 = 0, a (S1: loaded edge): v0 = w0 =
∂w0

∂x2
= 0

x2 = 0, b (S: unloaded edge): w0 =
∂w0

∂x1
= 0

(25a)

Next, the loaded edges are considered to be clamped, while the
unloaded edges remain simply supported (with unconstrained
lateral movement). This condition will be referred to as CSCS-01
is given by [56,59]:

x1 = 0, a (C1: loaded edge): v0 = w0 =
∂w0

∂x1
=
∂w0

∂x2
= 0

x2 = 0, b (S: unloaded edge): w0 =
∂w0

∂x1
= 0

(25b)

Schematic illustrations of the aforementioned boundary conditions
and distributed forces are shown in Fig. 3. Note that for both types
of boundary conditions, the unloaded edges are free to move later-
ally in the plane of the plate. This allows a free expansion of the
plate in the lateral directions (v0≠ 0) when subject to compressive
forces on the two edges x2= 0, b. Also, in both cases, the plates
are loaded on a movable edge (u0, ∂w0/∂x1≠ 0). We further reiterate
that the framework is general, but we restricted the numerical inves-
tigations to the above standard choices of boundary conditions
[56,59]. All the numerical results reported here are nondimensiona-
lized as follows:

F1 = F1 ×
a2

π2Eh3
, F3 = F3 ×

a4

Eh4
, w =

max w0( )
h

(26)

Note that nondimensional load factor F1 is analogous to the load
control parameter Λ discussed in Sec. 3.

4.1 Validation. Before proceeding with the analysis of the
postbuckling behavior, we inspect the efficacy of the numerical
model that was developed. Specifically, we establish the conver-
gence of the 2D f-FEM and then validate the numerical model by
comparison with existing results available in the literature.
To establish the convergence of the 2D f-FEM, we compare the

postbuckling responses obtained from successive refinements of the
finite element mesh. As seen in other studies on nonlocal elasticity,
the numerical approximation of the system matrices includes an
additional integration [60]. In the case of the fractional-order
strain–displacement relations employed here, this is the convolution
integral present in the definition of the nonlocal strain (see Eq. (3)).
The accuracy of the numerical approximation of this convolution
integral is controlled by the “dynamic rate of convergence,”
which is defined as N = lf /le. For the 2D f-FEM with convolution
integrals defined in both the x1 and x2-directions, we have two
parameters in N i (i= 1, 2) that control the element discretization
in the xi-direction. The nonlinear load–displacement curves corre-
sponding to different choices of this parameter are compared for
the SSSS-01 plate in Fig. 4(a). From these results, we conclude
that an excellent convergence of the postbuckling curves to
within 1% difference is achieved for successive refinements
beyond N 1 ×N 2 = 12 × 12. A similar conclusion may be drawn
for the convergence of the postbuckling curves for CSCS-01 plate
from Fig. 4(b). On the basis of previous convergence results, we
useN 1 ×N 2 = 12 × 12 for all the numerical simulations presented
in the following section.

Fig. 2 Position-dependent length scales indicated for three
points (P, Q, and R) in the domain of the isotropic plate. The
asymmetry in the length scales is evident for points P and R,
which are close to the boundaries.
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Next we validate the postbuckling behavior obtained from the
current model when using α= 1.0 (i.e., the local case) with the cor-
responding results in the literature on classical isotropic plates. The
efficacy of the 2D f-FEM as a numerical tool for fractional-order
plates was established in our previous studies [46,48], so we vali-
date the numerical method and the efficacy of the arc-length con-
straints directly on a study of postbuckling response. Note that,
for the choice of α= 1.0, the fractional-order continuum theory
identically reduces to classical elasticity theory [41,45]. The post-
buckling curves for the isotropic square plate with α= 1.0 and
subject to SSSS-01 boundary conditions are shown in Fig. 5(a).
In this figure, the nonlinear load–displacement curves are compared
for different amplitudes of the eccentric load F3. We validate these
curves with the corresponding result available from the classical
theory [56].
A similar exercise is carried on for the validation of the postbuck-

ling curves for the CSCS-01 plate. The results presented in Fig. 5(b)
show a comparison of the postbuckling response for the integer-
order (α= 1.0) CSCS-01 plate with similar results available in the
literature following the classical theory of elasticity [55]. The
direct comparison of the numerical results with those available in
the literature for both boundary conditions shows a very good
agreement. This convergence is clearly evident for load–displace-
ment curves in the postcritical regime of the elastic response with
the increasing load factor. In these results, we note that the load–
displacement curves evaluated at α= 1.0 converge to the

corresponding analytical results from classical elasticity. While
this convergence is excellent for points away from the critical
(turning) points, slight differences are noted for points in the neigh-
borhood of critical points. This difference can be attributed to the
sensitivity of the plate to imperfections resulting in lower values
of the critical load for the imperfect structure. Unlike the current
study where we consider an eccentric load F3, Yamaki [55]
studied the bifurcation of a perfect structure subject to in-plane
loads. Therefore, the case considered in the present study of a crit-
ical load of an isotropic plate subject to eccentric load is lower when
compared to that of the perfect plate [55]. Moreover, this difference
increases with an increase in the amplitude of F3. Therefore, the
lower load factor for critical (turning) points of plates subject to
eccentric loads is in accordance with the theoretical predictions.
Furthermore, as expected, this difference caused by imperfections
vanishes for load–displacement curves away from the critical
point. In conclusion, we establish a successful convergence of the
numerical method and can proceed to use it for the study of the post-
buckling response of fractional-order isotropic plates.

4.2 Postbuckling Response of Fractional-Order Plates. In
this section, we study the effect of nonlocal interactions on the post-
buckling response of fractional-order plates. Specifically, we intend
to analyze the effect of the fractional-order constitutive parameters:
fractional-order α, and nonlocal length scale lf on (1) the critical

(a) (b)

Fig. 3 Schematic illustration of the movable boundary conditions described in Eq. (25) for
the (a) SSSS-01 and (b) CSCS-01 plates. Note that S1 and C1 are, respectively, the loaded
simply supported and clamped edges.

(a) (b)

Fig. 4 Convergence of postbuckling response with mesh refinement for a fractional-order plate with α=0.7 and
lf/L=0.5 (F3 = 0.25): (a) SSSS-01 plate and (b) CSCS-01 plate
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point (turning point or bifurcation point) and (2) on both the post-
buckling response and the postcritical stiffness of the structure.
This analysis provides an understanding of the effects of the nonlo-
cal behavior on the postbuckling response of thin plates. Note that
either an increase in the nonlocal length scale lf or a reduction of the
fractional-order α correspond to higher degree of nonlocality.
The nonlinear load–displacement curves of the isotropic nonlocal

plate subject to uniaxial compression F1 and an eccentric load F3 for
different values of the fractional-order α are compared in Fig. 6. The
response for the SSSS-01 plate and CSCS-01 plate are presented in
Figs. 6(a) and 6(b), respectively. These figures underline a softening
response of the plate, beyond the critical point (turning point), when
subject to an increasing degree of nonlocality (i.e., a progressive
reduction of the fraction-order α). This observation is valid for
both types of boundary conditions being considered. This observed

softening in the postbuckling nonlinear response is consistent with
the behavior expected from integral-type nonlocal constitutive rela-
tions [14], particularly the fractional-order continuum theories
employed [39–41].
Unlike the previous comment on the effect of the nonlocality on

the postbuckling response, contrasting observations can be drawn
when focusing on the effect on the critical load (bifurcation point
of the nonlinear load–displacement curves). In the case of the
SSSS-01 beam depicted in Fig. 6(a), a marginal increase in the crit-
ical load is observed following the increasing degree of nonlocality.
At the same time, a reduction in the critical load is noted with the
reducing fractional-order α for the CSCS-01 plate. These observa-
tions for the two case studies are in complete agreement with
the study on linear buckling of fractional-order structures [49].
The fractional-order strain–displacement relations introduce

(a) (b)

Fig. 5 Postbuckling response for a fractional-order plate with α= 1.0 compared with [55,56]. Convergence in postbuckling
paths noted for different amplitudes F3 of the transverse (eccentric) forces. (a) SSSS-01 plate and (b) CSCS-01 plate.

(a) (b)

Fig. 6 Postbuckling load–displacement curves of square nonlocal plates compared for the influence of fractional order,
α. (F3 = 0.25). (a) SSSS-01 plate and (b) CSCS-01 plate.
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fractional-order derivatives into the expressions of both the material
and the geometric stiffness. This is clear from Eq. (10) for linear
buckling where the fractional-order nonlocal terms ẽ and q̃ are
present in both the numerator (material stiffness) and the denomina-
tor (geometric stiffness). An increase in the degree of nonlocality
reduces the numerical values of the fractional derivatives. Thus,
an increasing degree of nonlocality would result in lower material
and geometric stiffness terms of the nonlocal structure. While a
reduction in the material stiffness would reduce the critical load, a
similar reduction in the geometric stiffness leads to higher values
of the critical load. A comprehensive account of these effects,
including detailed parametric studies on the effect of each stiffness
term, is available in Ref. [49]. Thus, we conclude that the effect of
the nonlocal interactions on the critical load is dictated by the net
result of the contrasting effects caused by the reduction of individ-
ual stiffness terms. This observation, drawn in the context of the
linear buckling analysis of nonlocal structures, is also applicable
to the current discussion on nonlinear buckling. Based on the eigen-
problem for nonlinear buckling of fractional-order plates given in
Eq. (9), similar conclusions may be drawn over the effect of
fractional-order derivatives on the nonlinear material and geometric
stiffness terms. Therefore, the effect of the nonlocal interactions on
the nonlinear buckling load depends on the net result of the
fractional-order terms within the two nonlinear stiffness terms.
It is known that the slope of the load–displacement curves indi-

cate the stiffness of the structure [2]. On the basis of the results pre-
sented in Fig. 6, we note a significant reduction in the slope of the
nonlinear load–displacement curves for response beyond the critical
point. This observation for α= 1.0 is corroborated by the existing
literature on postbuckling behavior based on the classical theory
of elasticity. In case of fractional values for α, the slope of the
load–displacement curves corresponding to nonlocal elasticity is
“flatter” when compared with the local analogs. This behavior con-
firms the lower stiffness value of nonlocal structures beyond the
critical point. From the postbuckling nonlinear load–displacement
curves, we also note that the influence of nonlocal elasticity
increases by moving farther into the postbuckling regime. This is
an important observation that points toward reduced resistance to
deformation for nonlocal structures in a deep postbuckling regime.
The effect of the nonlocal length scale lf on the postbuckling

response of fractional-order isotropic plates is explored in Fig. 7.
This behavior is shown in Fig. 7(a) for the SSSS-01 plate and in
Fig. 7(b) for the CSCS-01 plate. Similar to the aforementioned

discussion regarding the effect of the fractional-order α, a softening
behavior in the postbuckled regime is noted for increasing the
values of the nonlocal length scale, lf. This observation is consistent
for both boundary conditions chosen for this study. Furthermore, in
agreement with the aforementioned results, contrasting observa-
tions are noted in terms of the effect of nonlocality on the critical
load. For the SSSS-01 plate (Fig. 7(a)), the critical load increases
with an increasing degree of nonlocality (higher lf). However, the
critical load of the CSCS-01 plate (Fig. 7(b)) reduces for higher
values of the length scale lf. These contrasting observations are con-
sistent with the previous discussion on the influence of the
fractional-order α on the critical load, as well as with previous
work on linear buckling load of fractional-order plates [49].
Finally, we intend to undertake an analysis of the effect of non-

local interactions on the sensitivity to imperfections of the plates. A
detailed analysis can be proposed following the Koiter’s asymptotic
approach previously carried out in Sec. 2.3 by including additional
deformation energy terms corresponding to (geometric or load)
imperfections in Eq. (7). However, for the sake of brevity, we
present a quantitative analysis through the case study considered
above. As discussed earlier, the transverse load F3 acting on the
top surface of the plate amounts to a load imperfection on the iso-
tropic plate subject to uniaxial compressive loads F1 applied the
edges of the plate. Note that the role of the eccentric force F3 is
to activate the stable branch of the load–displacement equilibrium
curve beyond the critical point. This is because the fundamental
curve C0 is no longer stable for equilibrium points beyond the crit-
ical point (see Sec. 2.3). Another approach in terms of geometric
imperfection can be similarly envisioned. The distribution of F3 is
motivated by the requirement to activate the transverse displace-
ment mode corresponding to primary mode of buckling [49]. A con-
sequence of the imperfection would be to reduce the critical load
corresponding to nonlinear buckling, commonly referred to as the
imperfection sensitivity [2,56]. To compare this effect for nonlocal
structures, we present the load–displacement curves of the
CSCS-01 fractional-order plate for different amplitudes of the trans-
verse force F3 in Fig. 8. Irrespective of the amplitude of the trans-
verse force, the postbuckling curves converge for load factor Λ
away from the critical point. However, a lower nondimensionalized
critical load (turning point) is noted for the increasing amplitude of
F3 over the plate. This points to the imperfection sensitivity of the
nonlocal plate. In this figure, we also compare the effect of nonlocal
elasticity over the imperfection sensitivity for two different sets of

(a) (b)

Fig. 7 Postbuckling load–displacement curves of square nonlocal plates compared for the influence of length scale, lf.
(F3 = 0.25). (a) SSSS-01 plate and (b) CSCS-01 plate.
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fractional-order constitutive parameters. Any perceptible change
in the critical load is not evident from the comparison between
Figs. 8(a) and 8(b) for different choices of fractional-order and non-
local length scales. Therefore, we conclude that postbuckling
response of nonlocal plates exhibits imperfection sensitivity,
which, however, is not influenced by the nonlocal interactions.

5 Conclusions
This article presented the theoretical approach and a numerical

methodology for the analysis of the postbuckling elastic response
of fractional-order structures. The approach is enabled by the ther-
modynamically consistent and positive semi-definite form of the
deformation energy density that can be achieved via the
fractional-order continuum theory for nonlocal structures. Further,
geometrically nonlinear models of fractional-order strain–displace-
ment relations are integrated in the formulation to enable the stabi-
lity and postcritical response analyses. This theoretical approach
opens the way to using energy methods to identify critical points
of nonlinear equilibrium. In addition, it allows considering the influ-
ence of nonlocal interactions on both the material and the geometric
stiffness terms. The possibility of using energy-based methods,
afforded by the fractional formulation, allowed the application of
Koiter’s asymptotic approach to ascertain the nature of the singula-
rities exhibited by the nonlinear and nonlocal elastic response.
Based on the fractional-order nonlinear stability theory, quantitative
and qualitative studies were performed to understand the response
of fractional-order (nonlocal) Kirchhoff plates in a postbuckling
regime. The fractional-order finite element method (f-FEM) was
extended to include an incremental-iterative solver and a path-
following method to solve the nonlinear system of algebraic equa-
tions necessary to obtain the nonlinear equilibrium load–displace-
ment curves. The effect of the nonlocal interactions on the
nonlinear critical load is not trivial due to a simultaneous reduction
of the material and geometric stiffness terms caused by the
fractional-order kinematic relations. A reduction of the postbuck-
ling stiffness due to the nonlocal interactions is noted, and it is asso-
ciated with a softening response when compared with the local
elastic analogs. Finally, it is established in literature that the
frame-invariant fractional-order continuum theory serves as a math-
ematically, physically, and thermodynamically consistent alterna-
tive to the existing integer-order theories of nonlocal elasticity.
Moreover, energy methods available for the fractional-order

theory make it suitable to developing models that provide a better
account of the scale-dependent effects on the stability and postbuck-
ling response of complex structures. Following this, the current
study opens an opportunity to perform stability of sandwich com-
posites, layered and porous media, and biological materials like
tissues and bones.
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