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Abstract—For extrusion-based additive manufacturing,
the variation in material deposition can significantly
affect printed material distribution, causing infill nonuni-
formity and defects. These variations are induced by
kinematic variations of the printer extruder. Such infill
nonuniformity is more significant in an application of
collaborative printing systems by which multiple print-
ers’ extrudes co-create the same structure since more
accelerate-decelerate kinematic cycles are involved. There
is a lack of a quantitative understanding of the impact
of printing kinematics on such variations to guide the
printing process control. This article deals with the chal-
lenge by establishing a mathematical model that quan-
tifies the printing width variations along the printing
paths induced by printing speed and acceleration. The
model provides vital information for predicting infill pat-
tern nonuniformity and potentially enables using G-code
adjustment to compensate for the infill errors in future
research. In addition, since the model captures the mech-
anism of kinematics-induced variations, it provides a way
of between-printer knowledge transfer on estimating print-
ing errors. This article further proposes an informative-
prior-based transfer learning algorithm to improve the
quality prediction model for a printer with limited histori-
cal data by leveraging the shared data from interconnected
3-D printers. A case study based on experiments validated
the effectiveness of the proposed methodology.

Note to Practitioners—This article quantitatively studies
the impact of extruder kinematics on geometric varia-
tions and printing quality in extrusion-based 3-D printing
processes. The model can help predict the geometric print-
ing quality and related defects, such as overfill or underfill
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problems given kinematics setup by G-code. This study can
expedite the learning process of printing variations induced
by kinematics for new printers to set up monitoring
and G-code adjustment for process control in the early
stage of production when the data are limited. In the
long run, such between-printer transfer learning has the
potential to enable the transfer learning for interconnected
collaborative 3-D printing systems with improved printing
efficiency and quality.

Index Terms— Additive manufacturing (AM), geometric vari-
ations, printing kinematics, quality control, transfer learning.

I. INTRODUCTION

XTRUSION-BASED additive manufacturing (AM), also

known as fused filament fabrication (FFF) or fused
deposition modeling (FDM), is a cost-effective flexible man-
ufacturing method of building 3-D parts by adding mate-
rials layer-by-layer. However, one key barrier that prevents
extrusion-based AM from being applied to more industrial
applications is the relatively low fabrication quality in dimen-
sional accuracy and mechanical strength.

The quality control can be regarded as one of the major
challenges in FDM processes [1], [2]. The printing quality can
significantly affect the mechanical properties. Poor printing
accuracy can lead to excessive amounts of workload for the
postprocessing of printed parts or assembly failure. In the
emerging applications of FDM [3], the printing accuracy plays
a more important role, such as the printing of tooling and
molds for composite structure forming (e.g., car hood or body
made by carbon fiber composite).

Abundant research has been conducted on the quality
modeling and control of AM. A large body of literature
focused on the quality control for printing that uses laser or
light, e.g., stereolithography (SLA) [4]-[8]. For the product
dimensional accuracy of the extrusion-based AM, several
material-shrinkage models were proposed to characterize
the product geometric deviations for different product
shapes [9], [10]. A neural network model was developed
to study the effect of product shape design parameters on
its dimensional accuracy [11]. In addition, research also
addressed the influence of process parameters on the prod-
uct quality including: 1) dimensional accuracy [12]-[14];
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2) the relationship between process parameters and mechanical
properties, e.g., tensile strength [15]; 3) the surface rough-
ness characterization based on process parameters [16]; and
4) the effect of the in situ process variables on the product
quality [17].

Most of the prior research focused on identifying the rela-
tionship between the process conditions and the overall quality
of the final product. For example, prior studies only concerned
with the geometric quality, such as the external contour of
the printed structure. However, the quality of material filling
in the structure is much less addressed. The variation in
the material filling patterns can significantly contribute to
structural or surface defects such as overfill or that especially
occur near the end segments of each printing line. As shown
in Fig. 1(a), these problems exhibit nonuniform distributions of
filling materials on each layer and can potentially deteriorate
the structural integrity and strength and affect the functional
performance, thus preventing the widespread application.

The nonuniformity in the material distribution that causes
infill defects can be attributed to the variations at two ends
of a printing line deposited onto each layer [see Fig. 1(b)].
The printing line is the building block of the entire structure
made by extrusion-based AM. When multiple printing lines are
deposited side-by-side to create the infill pattern, the filling
defects can be induced by such geometric variations in the
printing lines. The infill defects are particularly evident when
the infill lines reach the shape boundary, where each infill line
stops or starts. The dimensional accuracy of a single-printing
path affects more sophisticated 3-D printing quality control.
The variations of the printing line geometry are mostly caused
by extruder kinematics, including printing speed, acceleration,
and deceleration. The kinematics can impact the material
deposition amount and the width of each printing line as the
extruder moves along the printing path. Such infill defects can
be more significant in the application of collaborative printing
systems, by which multiple printers’ extrudes co-create the
same structure since more accelerate—decelerate kinematic
cycles are involved.
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(a) Kinematics induced quality problems, underfill and overfill defects. (b) Printing errors at the start and stop end of the printed lines.

Limited research is available to model the geometric vari-
ation of the printing line. Prior research papers [18] had
discussed the dimensional error of a single-printing path
caused by the start/stop of the nozzle. In the start/stop phases,
there might be material overflow or underflow caused by
the uncoordinated motion between the liquefier head and the
filament roller. Bouhal er al. [19] proposed a methodology
combining the tool-path tracking strategy and the look-ahead
trajectory planning algorithm to improve the printing quality
of the 2-D plane by considering not only the contour error
induced by the positioning error but also the area of the
overfill/underfill induced by the inconsistent flow rates at the
start/stop points in the extrusion subsystem. Bellini ef al. [20]
studied the dynamics of the liquefier and established flow
control strategies to improve the printing consistency during
the printing acceleration/deceleration phases. Ravi et al. [21]
analyzed the effect of temperature and nozzle-bed distance on
the deposition width. Qin er al. [22] proposed a speed control
algorithm and combined the Hbot kinematic system to increase
the smoothness of the feed rates, which reflects the machine’s
speed fluctuation (acceleration/deceleration) in the tool path of
the curve and corner point under the extrusion-based printing.
Santana et al. [23] demonstrated that the machine repeatability
is highly affected by various printing speeds and extrusion
temperatures. Comminal er al. [24] also built a numerical
model to analyze the deposition flow under different printing
parameters.

A major challenge to the training of quality prediction mod-
els is the limited samples or data. Recent research developed
small-sample modeling or the transfer learning methods by
leveraging the knowledge from other data sources. The devi-
ation error of the 2-D printing shape is usually decomposed
into shape-independent error (SIE) and shape-specific error
(SSE). Cheng et al. [25], [26] modeled the two types of errors
and combined not only the parameter-based transfer learning
for SIE but also the feature-based transfer learning for SSE
to estimate the in-plane freeform shape accuracy. By SSE
modeling, even the multiple distinct shapes can still jointly
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estimate the shape deviation from the similar local features.
Sabbaghi er al. [27] also introduced Bayesian modeling to
approximate the global-and-local in-plane shape error from
the polygon based on the limited cylinder shape data in
AM. It is also not necessary that transfer learning needs
to be implemented under the same experimental conditions.
The recent AM transfer learning study proposed the effect
equivalence framework to characterize the discrepancy
between two different processes [28] or materials [29] and esti-
mated the total equivalent amount of the lurking variables by
the Bayesian method. The estimated total equivalent amount
will be transferred as an input in the error compensation
modeling.

When a new printer is engaged in printing, there is limited
time or cost for a new printer to fabricate products under
different kinematics or G-codes. Leveraging the experiences
and knowledge from an existing printer with more historical
quality data can be an effective solution to supplement the
information. Although the existing printer with rich histor-
ical data can have different kinematics characteristics, size,
or weight from the new printers, the impact of process setup
on printing line quality can still be similar, thereby creating an
opportunity of between-printer transfer learning. Nevertheless,
applying state-of-the-art transfer learning for AM to capture
how extruder kinematics impact printing quality has the fol-
lowing limitations.

The related studies on transfer learning and the shape
error modeling based on small samples in AM all focused
on the shape variation/deviation versus nominal shapes on
computer-aided design (CAD) models. Based on this line of
methodology, the shape errors can be compensated for by
adjusting the CAD model to offset the observed or predicted
errors. However, the impact of printing process conditions,
such as extruder’s kinematic characteristics (speed and acceler-
ation) and printing temperature, on shape errors is usually not
considered in these models. These conditions are usually set up
in the G-codes for the printing process. Although the transfer
learning approach [29] associates the lurking differences with
the effect of the thermal conductivity in the distortion mod-
eling, the adjustment still relies on the offline adjustment of
CAD models. State-of-the-art shape error transfer learning did
not reveal the process—quality relationship, which is necessary
for near real-time process control by adjusting G-codes in
future research. In addition, date-driven transfer learning algo-
rithms originally developed in computer science (as reviewed
in [30]) fall short of capturing interpretable between-printer
relatedness or similarity by exploring the similar covariance
structure of the model parameters for the between-printer data.

In summary, the literature review identified the follow-
ing research gaps, including 1) very limited research that
addressed the material filling defects induced by geometric
variations in printing lines for extrusion-based printing; 2) a
lack of quantitative models to estimate/predict printing line
variations given the printer’s kinematics setup specified by
G-code; 3) a lack of methods to establish such a prediction
model with good accuracy for extrusion-based printing based
on limited historical data; and 4) a lack of methods to quantify
the between-printer relatedness or similarity in an interpretable

way to enable the knowledge transfer from data-rich printer
to new similar-but-nonidentical printers for the fast training of
process control strategies. The transfer learning between the
data-rich and new printers is outlined in Fig. 2.

To deal with research gaps (1) and (2), this article quan-
titatively studies the impact of extruder kinematics on the
geometric variation of the printing line by developing a piece-
wise data model driven by engineering knowledge to quantify
the changing trend of the linewidth. To tackle research gap
(3), this article employs the data shared between two similar-
but-nonidentical printers to allow for the between-printing
knowledge sharing that supplements information to improve
the modeling accuracy. Such a data sharing scenario com-
monly exists in an interconnected collaborative AM process,
by which 3-D printers can exchange quality data via networks
to enhance the final product quality. The idea of multiprinter
co-printing has also been materialized by using multiple
mobile printers to co-create the same structure [31]. The
operation of cooperative 3-D or swarm 3-D printing involving
printing path planning or the real-time path monitoring highly
requires data sharing between printers by interacting with the
host in a client-server pattern [32] to prevent printing arm
from collisions. To deal with (4), this article explored the
potential between-printers similarity and proposed a shared
covariance-based (as an informative prior) parameter esti-
mation method to improve the accuracy of the parameter
estimation for a printer that lacks sufficient data. The outcome
of this article can provide valuable information to improve
the building quality and offer opportunities to implement
automatic process control or error compensations by adjusting
G-codes for quality improvement.

This article is organized as follows. Following Section I,
Section II conducts modeling of the impacts of extruder
kinematics as specified in printer G-codes on the printing
line variations based on experiments. By using the model,
this section develops a transfer learning algorithm to improve
the modeling accuracy by exploring the between-printers
similarity. Section III demonstrates the effectiveness of the
proposed method by experimental data and discusses the
potential applications of the proposed model. This article is
summarized in Section IV, and future work is outlined in
Section V.

II. IMPROVED MODELING OF KINEMATICS-INDUCED
PRINTING LINE VARIATIONS THROUGH
BETWEEN-PRINTER TRANSFER LEARNING

This section first conducts modeling of the impact of
kinematic characteristics of the extruder on the width variation
of each printing line (see Section II-A). The model serves as
a common basis for establishing the between-printer transfer
learning about similar variation patterns and improve the
modeling accuracy (see Section II-B).

A. Kinematic-Based Printing Linewidth Model of a Single
3-D Printer

For material-extrusion-based AM, G-codes are used to
control the movement of the nozzle (extruder or liquefier
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— G-code 1
G-code 1
Transfer
— G-code2 learning
G-code 2
— G-code M
Printer 1 with multiple experimental runs Printer 2 with limited experimental runs
Fig. 2. Transfer learning from a data-rich printer to a similar-but-nonidentical printer with limited data.

head), including jerk, acceleration, and feed. We conducted
experiments of a straight-line printing with certain accel-
eration and feed specified in the G-code. As can be seen
in Fig. 1, the start/stop errors are obvious, and its linewidth
measurements (captured by a camera) are shown in Fig. 3(a).
Also, we can find that the linewidth is closely related to the
kinematic status of the nozzle head [see Fig. 3(b)]. Therefore,
a model characterizing the relationship between the linewidth
and the kinematic parameters, i.e., feed, acceleration, and jerk,
can be built. For the simplicity of the model’s architecture,
the (printing linewidth versus printing length) and (feed versus
printing length) are converted to (printing linewidth versus
printing time) and (feed versus printing time), respectively.
In Fig. 3, the linewidth and feed speed are plotted against both
printing length [see Fig. 3(a) and (b)] and nominal printing
time [see Fig. 3(c) and (d)]. The printing time in Fig. 3
is the nominal time that can be calculated based on the
printing length, jerk, nominal acceleration, and nominal feed
that specified in the G-code. However, in the real printing
process, the real-time acceleration and feed would have a
certain amount of deviations compared with the nominal
values specified in the G-code. By considering such deviations,
the real acceleration and feed used in the model are assumed
to be within a prespecified range as follows:

a = rqap
F=rgF
09 <r, <1.1
09 <rrp<1.1 )

where a is the actual acceleration, F is the real target feed
speed, ap is the nominal acceleration, F{ is the nominal target
feed speed, and r, and rp are scaling factors that decide the
deviations between real values and specified nominal values.
The deviations are usually caused by the printer’s internal
system errors and material properties. The values of r, and rp
can be determined via exhaustive grid research. Based on the
engineering knowledge and experience, the deviations usually
cannot exceed 10% of its nominal target values for the printer
with good quality. Therefore, the two parameters were set in
the range of 0.9-1.1 for the printer’s kinematics. It should

be noted that setting a range for these parameters is optional,
and the purpose is to narrow the search space to improve the
search efficiency. If the quality of the 3-D printers is poor,
the range can also be set wider, which will slow the search
for prediction model parameters.

By considering that the movement of the printing nozzle
usually contains three phases, i.e., accelerating phase, constant
speed phase, and decelerating phase, a piecewise model was
proposed to characterize the effect of kinematic parameters on
printing line quality based on the observations of the experi-
mental relationship of linewidth and printing speed (examples
shown in Figs. 3 and 4). For a straight-line printing process,
five phases (segmentations) are partitioned as follows (also see
Fig. 4).

1) Phase 1 (pl, Pre-Action Phase): The nozzle begins
moving, and the linewidth decreases.

2) Phase 2 (p2, Warm-Up Phase I): The nozzle continues
accelerating, and the linewidth starts to increase.

3) Phase 3 (p3, Warm-Up Phase II): The nozzle reaches
specified feed, and the linewidth keeps increasing.

4) Phase 4 (p4, Steady Phase): The linewidth reaches
nominal width and remains constant, and the nozzle
remains constant speed.

5) Phase 5 (p5, Slow-Down Phase): The nozzle starts to
decelerate, and the printing linewidth starts to increase.

Compared with the partitions made in [20], the above
partitioning separates the warm-up phase into two phases
because the time when the printing feed (speed) first reaches its
steady state is sometimes ahead of the time when the printing
linewidth first reaches a steady state. The breakpoints of the
above phases are important for model formulation. To decide
the positions of the breakpoints and investigate the relationship
of the breakpoints, linewidth, and kinematic parameters, nine
experiments with different combinations of nominal acceler-
ation and nominal feed were conducted, as shown in Table I
(the jerk is a fixed value of 8 mm/s).

Based on the experiment results, the following conclusions
on breakpoints can be drawn.

1) Breakpoint 1 (bpl) is the point where linewidth reaches
its minimum value and starts increasing. The time
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0.6 According to the conclusions, bp2, bp3, bp4, and bp5 can be
0.4 analytically determined by the nozzle motion state, i.e., analyz-
0.2 . . . . ing the transition points of feed accelerate-constant-decelerate
00 02 04 06 08 10 and the linewidth status, i.e., inferring the time when reaches
T(s) its nominal linewidth. However, bp1 needs to be decided based
on nozzle acceleration. The following model (2) can be used
Fig. 4. Five phases of straight-line printing. to characterize the relationship between bpl and acceleration

with parameters ¢y, ¢i, and c;:
position of the point is related to the nozzle acceleration
that is shown in Fig. 5.

2) Breakpoint 2 (bp2) is the point where the acceleration The fitted results are shown in Fig. 5. It is worth noting

bpl =co + c1a®. 2)

phase stops. that other models can also describe the relationships between
3) Breakpoint 3 (bp3) is the point where linewidth first bpl and acceleration. The proposed model in this section only
reaches the nominal width. shows one feasible option. After deciding the breakpoints,
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Fig. 5. Breakpointl (bpl) versus acceleration.

the models for every phase (segmentations) were proposed as
follows:

w(t)

f 1

av(t) + as tet

LVt —bphov(t)a + w(bpl) + ea,
= 17/t —bp2)o(t) + w(bp2) + e3,

c+eq,

P log(%) + w(bp4) + es,

if 0 <t <bpl

if bpl <t < bp2
if bp2 <t <bp3
if bp3 <t < bp4

if bpd <t

3)

where w(t) is the linewidth at printing time 7, v(¢) represents
the actual nozzle travel speed at time ¢, a and F are the
actual acceleration and the actual target feed speed, respec-
tively [calculated via (1)], {a1, a2, S, 7,c, p} are unknown
parameters, and {e, 2, e3, e, es} are independent and iden-
tically distributed random errors with the normal distribution
of N ~ (0, c?).

Equation (3) is an empirical model based on the experiment
results to simplify the model format. It is worth noting that
the model in each piece is essentially a linear model in
terms of the certain transformation of ¢, v(¢), a, and F (e.g.,
(t — bp2)o(r)"/* in segment p3). To estimate the parameters
{ar, a2, B, 7, c, p}, the maximum log-likelihood estimation or
least-squares estimation can be employed for every phase.
To simplify the proposed model, we use {6;};—|. ¢ to represent
the six parameters {a;, a2, f8, 7, ¢, p}. Thus, the format of the
proposed model can be written as w(t) = X;0;,+w(bp;_)+e;,
where ¢; is a noise term, if bp;_; <t < bp;.

To summarize, the model construction consists of the fol-
lowing procedures.

1) Conduct printing experiments with different specified
acceleration and feed in G-code and measure the printing
linewidth for data collection.

2) Select a pair of values for r, and rr from a specified
grid as the example shown in (1) to calculate the actual
acceleration and target feed speed.

3) Identify the breakpoints based on the linewidth measure-
ments and the kinematic analysis [by using the actual
acceleration and target feed speed obtained in step (1)]
of the nozzle.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

4) Decide the relationship of bp1l-acceleration based on the
identified bpl data and the actual acceleration obtained
in step (1), i.e., estimate the parameters {co,c;,c2}
of (2).

5) Based on the identified breakpoints, partition the exper-
imental data into five data sets.

6) Train the piecewise model for every partitioned data sets,
i.e., estimate the parameters {ai, as, f,7,c, p} of (3)
and calculate the sum of fitting errors [root-mean-square
error (RMSE)].

7) Try a different pair of values of r, and rr and repeat
the procedures above until exploring the possible pairs
of candidate values of r, and rr from the specified grid.

8) Select the estimation of {r,,rr}, {co,ci,c2} and
{ai, a2, B, 7,c, p} that has the minimum fitting RMSE
as the final optimal model estimation.

For the incoming/new printing processes, the linewidth
prediction is made as follows.

1) Calculate the actual acceleration and the actual target
feed speed via (1) using the estimated optimal {r,, rr}.

2) Calculate the bpl using (2) with the estimated optimal
{co, c1, c2}.

3) Obtain the values of bp2 and bp4 through kinematic
analysis.

4) Make piecewise predictions using (3) with the estimate
optimal {a, az, B, y,c, p}.

5) Stop estimating p3 when it reaches the target printing
linewidth. The cutoff point is bp3.

6) The final prediction is made by connecting pl, p2, p3,
p4, and p5 together.

Special cases include the following. First, the printing length
might be too short for the nozzle to reach the target feed speed.
The movement of the extruder will only have acceleration and
deceleration phases, which makes the bp2 and bp4 overlap.
In this case, the number of model partitions can be reduced,
i.e., only pl, p2, and p5 are considered. Second, the estimated
value of bpl is bigger than that of bp2, i.e., bp2 is in front
of bpl. In this case, p2 can be ignored, simplifying (1) to a
four-piece model.

The primary purpose of developing the kinematics-quality
model is to provide an engineering-driven method to char-
acterize the between-printer relatedness for transfer learn-
ing. Traditional data-driven transfer learning usually adopts
a high-level abstract data structure, such as kernels or com-
mon neural network layers, to capture the shared knowledge
between different data sources. The data-driven approach has
two disadvantages: 1) the between-printer relatedness lacks
engineering interpretation and 2) data-driven approaches usu-
ally involve a large number of hard-to-explain model para-
meters, increasing the model complexity for learning. The
engineering-driven model reveals the engineering mechanism
regarding the similar impacts of kinematics effects on printed
quality among multiple extrusion-based printers. The derived
piecewise model is guided by kinematics and has a concise
model structure with fewer model parameters, greatly facili-
tating transfer learning.
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Algorithm 1 Estimate Parameter Covariance

Input: K number of experiment samples D =
{Di, Dy, ..., Dk } R

Output: Covariance estimation X;; of two parameters 6
and 0;

Procedures:

for D, in D do

Estimate parameter Hi(k) and Hj(k) independently using
maximum log-likelihood estimation or least-squares
estimation.

end for

A

Zi,j _ ﬁ z[i(j](@(k) _ (:)2(9(10 _ (:))T
where Q(k) = [ei(k)7 ka)]T, 6=z Yo, e®
return X; ;

B. Modeling of a Data-Lacking 3-D Printer With Informative
Priors Based on Transfer Learning

To obtain a parameter estimation for the linewidth predic-
tion model [see (3)], a sufficient amount of historical data
are necessary. However, for a new 3-D printer or a new
printing process, there are usually only a limited amount
of data, which may not be sufficient to train the model
accurately. To address the problem, this section presents a
transfer learning method that transfers useful information from
the data-rich 3-D printing process to the new data-lacking
printing process, by which the modeling accuracy is greatly
improved.

To achieve the knowledge transfer, some commonality
among different printing processes must be discovered or
assumed. For the proposed model [see (3)] since the different
phases are from the same printing, it is reasonable to assume
the parameters {a, as, S, 7, ¢, p} of different phases are not
independent, i.e., {ay, 02,8, y,¢c,p} =60 ~ N(u, X). Based
on the observations between model coefficients, a further
assumption is made that different printers or printing processes
share similar parameter covariance structure. Without loss of
generality, we assume that printer 1 is the source that contains
rich data and printer 2 is the target that lacks data, e.g.,
OM ~ N, 2M) and 0P ~ N(0, ?), where TV =4z @
and ¢ is a scaling parameter referred to [33]. With the shared
covariance structure as prior information (similar ideas of con-
struction informative covariance priors can be found in [33]),
the estimation is expected to be more accurate for certain
parameters compared to the estimation made independently.

The covariance among the parameters for a single-printing
process or 3-D printer can be estimated by using Algorithm 1.
The estimated covariance will be used as the prior information
for the parameter estimation of a new printing process.

With the informative priors on the parameters of different
phases, the model estimation of different phases for a new
printing process can be determined jointly via maximum a
posterior (MAP) estimation. The covariance structure of all
parameters {0;};—; ¢ can be denoted as ®® and also captured
by @@ ~ N(0, £?). The model parameters of these printers

can be jointly estimated as follows:

6 1y@ _ x@0@ _ @ pp |2
00 — are minz ” i i Vi - w'” (bp; 1)“2
O

i=1 i

+1021%, @

where || ||2¥ stands for the weighted norm squared, e.g.,

||x||2Q = x’ Qx. It should be noted that the first term is
estimated by the data from printer 2 (target printer) and the
information from source printer(s) is provided in the second
term with an appropriate selection of norm and X that con-
tributes to the learning for printer 2.

The solution to (4) can be obtained analytically. For exam-
ple, if the scaling parameter g is selected to be 1 after
numerical exploration, then (4) can be written as

6
oY = arg minz H Yi(z) — sz’ei@ —w® (bpi,l)“j
i=1

+2021L,  5)

where 4 can be regarded as a tuning parameter, which deter-
mines how fast to move the process variables from starting
point to the endpoint on the task. However, the range of
choosing A should be specified by the user. Plenty of trials
should be run to narrow the range and to obtain the A for the
most fitting model. One special case is that when w® (bp;_)
is the constant around some breakpoints, and there are only
two segments p3 and p5 concerned, the solution to (5) can be
simplified to

T T _
0% = (XX + XX 4 15!
T T
x (ng) Y3(2) +X§2) Yj(Z)). (6)

To summarize, the proposed informative prior-based transfer
learning method has the following two key aspects.

1) The model parameters of different phases in the
linewidth model are not independent. For example,
the parameters may exhibit a multivariate normal dis-
tribution, i.e., {ay, a2, f,7,c, p} =0 ~ N(u, 2).

2) The covariance structure of the parameters is similar
across different 3-D printers, which is the driving fac-
tor for transfer learning. For example, the covariance
structures obtained from two 3-D printers may show the
relationship of 0 ~ N (0, ZM) and @ ~ N(0, @),
where T = ¢X® and g is a scaling parameter.

Even if the piecewise kinematics-quality model is not the

primary goal of this article, there is a lack of research that
proposed a quantitative way of capturing kinematics condi-
tions impact printing error. Only qualitative descriptions on
such kinematics-induced printing error are available [18]-[20].
In addition, existing research on kinematic error modeling
or calibration in FDM/FFF mostly focuses on the kinematic
chain modeling in mechanical components, including the
geometrical errors such as axis alignment, axis straightness,
yaw, pitch, and roll [34] or machine errors such as zero error
of the cable length and error of end-effector position [35].
However, these studies did not model the printing effect
of the extruder kinematics affected by the parameters (e.g.,
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TABLE 11
PREDICTION RMSEs FOR ALL THE EXPERIMENTS

Sample | 1 2 3 4 5 6 7 8 9
RMSE 068 .042 .034 .047 047 055 041 .045 .030
(a) (b)
16 1.6
1wl e True width 14 FRRUTIE True width
12 Predicted WIdtI] 1.2 ‘ Predicted width
.10 101, J
Width | e o 1 Width : s ¥
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0.4
0.2 0.2
0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
T(s) T(s)

Fig. 6.

Predicted width versus measurement values. Sample 9 at a speed (a) 50 mm/s has the smallest RMSE and sample 1 and (b) 150 mm/s has the largest

RMSE. The printing times are different because the speed settings in the G-code are not the same.

printing speed/acceleration) from the G-code. This relationship
can directly reveal the impact of G-code on printing quality,
thereby enabling quality control by adjusting G-code by future
research.

III. CASE STUDIES

The case study involves two extrusion-based 3-D print-
ers, and each printer creates printing lines given different
kinematics setups, as outlined in Table I. The quality data
(printing linewidth) were obtained by processing the data from
2-D images captured by a high-resolution camera. The quality
prediction model for estimating the printing linewidth variation
and printed material distribution nonuniformity will be trained
for one of the printers in case study A. In case study B, printer
2 is introduced, and it is assumed that many experimental data
under the conditions in Table I are missing for this printer.
Case B demonstrates how the between-printer transfer learning
can help improve the modeling accuracy for the printer lacking
sufficient data.

A. Case A: Printing Width Modeling for a Single-Printing
Process

To test the performance of the model, we split the experi-
ment data (see Table I) into the training and testing data. The
split involves using eight experiment samples as the training
data and the remaining 1 experiment sample as the testing data.
This process is repeated nine times until each of all samples
has been used as the testing data for once. The RMSE is used
as the metric to evaluate the prediction performance. Table II
summarizes the RMSE for all the nine cases. Fig. 6 shows the
prediction results with the minimum and maximum RMSE.
Based on the results, it can be concluded that the model
can accurately capture the relationship between kinematic
parameters and printing linewidth for quality prediction.

The printed lines are building elements for each layer in the
printed structure. Although multiple printed lines often overlap
to ensure the density of the printed block in some scenarios,
the nonuniformity in the overlapped area still contributes
to infill defects, mechanical strength problems, and surface
height variation (surface shape and roughness). The infill
nonuniformity can be estimated by applying the proposed
model to multiple lines printed side-by-side. Fig. 7 shows
the capability of the model estimating the printed material
distribution nonuniformity. It can be seen that the model
estimation can effectively capture the between-line gaps or
void defects as well as nonuniform material overlap near the
two ends of multiple infill lines.

B. Case B: Transfer Learning for a Data-Limited Printing
Process

This study used common printer models, Lulzbot Taz 5 and
Lulzbot Taz 6, based on Bowden extruders as an example
to demonstrate the proposed transfer learning method. The
printer Lulzbot Taz 5 serves as a data-rich source printer,
whereas Lulzbot Taz 6 is the data-limited target printer in
case study B. It should be noted that the methodology is still
applicable to the transfer learning between different types of
extrusion-based printer models. The same nine experiments,
as shown in Table I, were conducted on LulzBot Taz 6.
An example of one single-line printed linewidth is shown
in Fig. 8, and other printing experiments exhibit similar
changing patterns. It can be seen that the new printing
process does not have the pl phase as the previous printing
process. The difference is caused by various factors, such
as hardware/software upgrade on a different machine. How-
ever, this missing segment pl does not affect the knowledge
transfer regarding the correlation between other segments
that both source and target printers have. The reason is that
the correlation between two printing phases is independent
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(a) Estimated single-printed line. (b) Estimated multiple printed lines printed side-by-side at the two ends.
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Examples of printed linewidth from the target printer. (a) Printing results at a high printing speed of 150 mm/s. (b) Printing results at a low printing

speed of 50 mm/s. The printing times are different because the speed settings in the G-code are not the same.

of other phases, as determined by extruder kinematics. The
proposed model is still valid after removing the p1 part. As the
pl part is removed from the model, the breakpoint bp1 can be
ignored.

To test the performance of the proposed informative
prior-based transfer learning method, the following procedures
were implemented.

1) Estimate the covariance of the parameters {f, 7y, c, p}
using Algorithm 1 and the data from a data-rich printing
process, i.e., the data from Case A.

2) Use the MAP method [see (4) and (5)] to estimate the
parameters of the data-lacking printing process.

The data from Case A showed a significant positive covari-
ance between y and p. Therefore, the estimation of y and p
can be made jointly as (6).

Additional experimental data were obtained under nine
different experimental conditions (G-codes) from the new
printer. A subset of the data was added to the training data
set in conjunction with the data in Case A. The remainder
of the data from the new printer serves as the testing data.
A cross-validation strategy is adopted to evaluate the perfor-
mance of the transfer learning algorithm. For example, when
the sample size in the training data from the new printer
is one, the data obtained under one experimental condition
(out of nine conditions) are chosen as the training data. The
other eight experiments would be employed as the testing
data. After exploiting all the possible training—testing combi-
nations and collecting all the RSMEs from the measurements,
the interquartile ranges of all RSMEs can be obtained for

transfer learning and single-printer learning, respectively. All
prediction RMSEs corresponding to the different sample sizes
of training data from the target printer 2 are summarized
in Fig. 9. Based on both the box plot [see Fig. 9(a)] and the
median RMSE improvement percentage by transfer learning
[see Fig. 9(b)] versus training sample size, it can be seen
that the transfer learning leveraging source printer 1 can
significantly improve the prediction accuracy, especially when
the training sample size on printer 2 is very small.

C. Remark: Effectiveness of the Proposed Learning Method

Printing material, temperature, speed, and directions will
jointly affect the transfer learning results by a complex mech-
anism. Though the mechanism is out of the scope of this
study and the results can be significantly different, there
are some general guidelines about the applicability of the
proposed transfer learning method for the combined effects
on the final quality. When the target printer is run at a higher
printing speed and heated materials have a higher viscosity,
a printed line exhibits a more significant pattern of piecewise
thickening—thinning effect near the two ends of the line. If the
pattern is more significant on the target printer, the learning
results have better accuracy (lower RMSE) compared with
single-printer learning. On the other hand, if the printing
is performed at a very slow speed and material solidifies
slow, the printed line tends to be more uniform, closer to
the nominal geometry. The expected learning improvement
is much limited. Such a difference is highlighted in Fig. 8.
Therefore, the kinematics-based transfer learning has the great
potential of improving prediction accuracy even if the target
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Fig. 9. Printing quality improvement using transfer learning. (a) Box plot of the prediction RMSE versus different sample sizes with/without transfer learning.
(b) Median RMSE improvement percentage by transfer learning compared to without transfer learning versus different sample sizes in the training data.

and source printers use different materials and setup as long
as two printers exhibit a significant piecewise pattern.

If multiple printing processes with different materials
and setups are available, a printer screening and selection
procedure can be adopted to identify, among candidates,
the printer(s) that lead to the most significant RMSE reduction
compared with single-printer learning. This data-driven printer
selection can mitigate the potential negative knowledge trans-
fer between printers with very different setups.

IV. CONCLUSION

In an extrusion-based AM process, the kinematic character-
istics of a 3-D printer’s extruder, such as acceleration and feed,
can significantly impact the filling pattern of deposited materi-
als, creating structural or surface defects, e.g., overfill/underfill
problems. The defects of the material filling patterns can
be caused by the geometric variations of each printing line.
There is very limited research that quantitatively estimates
the geometric variation of printing lines induced by extruder
kinematics. The nonuniform material distribution is more
commonly observed in interconnected collaborative printing
systems since extruders make more start-to-end cycles. This
article presents an initial step in addressing the material filling
quality problem at two ends of each infill line by studying the
effect of kinematic parameters on the geometric variations of
each printing line. The main contributions of this article are
twofold.

1) Quantitative Understanding of the Impact of Kine-
matics on Printing Quality: A data model based on
a five-segment piecewise function guided by extruder
kinematics was proposed to estimate the width of each
printing line along the printing path given the kinematics
setup as specified by a G-code. The model quanti-
tatively reveals that the printing linewidth decreases
as the extruder accelerates while increasing when the
extruder reaches a constant speed. The linewidth fur-
ther increases when the extruder decelerates when it
approaches the end of a straight-line path or before the
printing path direction changes. The single-line printing
can contribute to the estimation of the printed material
distribution of multiple infill lines and resultant infill
defects.

2) Interpretable Between-Printer Transfer Learning for
Quick Training of the Quality Model for Process Con-
trol: The training of the established model parameters
requires sufficient historical data; however, it can be
time-consuming and costly to test the printing quality
for many kinematics setups (G-code) in real-world pro-
duction. This article employs the proposed model struc-
ture to explore the similar variation patterns between
two similar-but-nonidentical printers with historical data.
Also, the proposed transfer learning method is not lim-
ited to specific printer models. Based on the similarity
in the covariance structure among the model parameters,
a between-printer transfer learning algorithm is devel-
oped to supplement among interconnected printers (e.g.,
from one data-rich printer to another with limited data)
to improve the learning accuracy of model parameters
via MAP estimation. Compared with traditional transfer
learning that used a generic kernel or norm function to
capture the relatedness among multiple data sources, this
study provides an interpretable way of characterizing
between-printer relatedness as the similar impacts of
extruder kinematics on printing line geometric varia-
tions. Thus, the method can simplify the model struc-
tures to facilitate learning compared with data-driven
transfer learning.

3) Reduction of Calibration and Ramp-Up for Flexible Pro-
duction: The proposed between-printer transfer learning
can effectively reduce the printer calibration efforts
and process ramp-up when a (new) printer is engaged
with a new printing task by leveraging other printers’
experiences. This method can reduce the testing effort
for a target printer to understand how printing conditions
specified in G-code can affect printing quality when new
material and process setup is adopted by new printing
tasks. Therefore, between-printer transfer learning is
very suitable for the scalable production of a high variety
of parts in small batches with frequent printing task
changes.

The effectiveness of the method was demonstrated by exper-
imental studies using two extrusion-based 3-D printers. The
results indicated that: 1) the model has shown its capability in
making informative predictions of printing line variation and
nonuniform material distribution of multiple infill lines and
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2) the transfer learning can improve the modeling accuracy.
The case studies show that when the sample size is only 1-2,
the prediction by single-printer learning is significantly worse
than the transfer learning approach by up to 24%. When the
sample size grows larger, the performance of model training
with and without using the transfer learning algorithm is
close.

The proposed approach is limited to the quality prediction
for straight-line printing errors induced by kinematics. In addi-
tion, the method requires source printers to have relatively
sufficient data to compute an estimate of the covariance
structure. Thus, the method performs better for transfer learn-
ing from data-rich source printer(s) to a data-limited target
printer.

V. FUTURE WORK

Future research and applications include the following.

1) Printing Quality Control for Mass Personalization: The
value of this article lies in the reduction of potential
calibration efforts for a reconfigurable printing system
that deals with a high variety of products in different
shapes/sizes with different materials. When printing
a new product with different materials and geometry
or a new printer is engaged in collaborative print-
ing tasks, the printer must be calibrated/recalibrated
to reduce the printing errors. Such calibrations for
different printing tasks require frequent trial-and-error
tests under different kinematics setups, thus signif-
icantly jeopardizing the printing efficiency and pro-
longing the ramp-up time for new printing task. The
small-batch production of a high variety of parts is most
important for the future manufacturing of personalized
products.

2) Co-Learning Among Multiple Data-Limited Printers:
The between-printer transfer learning strategy in this
article can be extended to the multiprinter co-learning
in future research. However, two major challenges could
be concerned: 1) the learning-useless source printers
might lower the learning performance once they are
involved. 2) The covariance may not be reliable or deriv-
able when multiple printers are available, each carrying
very limited data. Thus, developing a printing process
selection algorithm is necessary for the target printer
to efficiently improve the effectiveness of knowledge
transfer. Furthermore, the shared parameter covariance
structure can be learned jointly by multiple data-limited
printers. Such a co-learning strategy to be developed in
the future does not necessarily require a data-rich printer
and can allow for joint training of the quality prediction
model based on common covariance structures.

3) Reducing Infill Defects by Adjusting G-Codes: The
model prediction in this research can be employed to
evaluate the material filling quality in the final product
and guide the planning of G-code by varying the feed
and extrusion rate to offset potential printing errors. The
outcome of this research can improve the efficiency
of collaborative AM for high-efficient production for
customization.
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