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A B S T R A C T

This study presents a comprehensive frame-invariant fractional-order framework for the geometrically non-
linear bending and postbuckling analysis of nonlocal plates subject to combined thermal and mechanical
loads. The fractional-order kinematic framework, unlike classical nonlocal formulations based on integer-
order mechanics, is positive-definite and thermodynamically consistent. The positive-definite nature enables
the application of variational principles to derive well-posed thermomechanical governing equations. A direct
advantage of these theoretical advancements is reflected in the ability of the fractional-order approach to
enable an energy-based asymptotic method obtained by extending the classical (local) Koiter’s approach. This
method allows the analytical assessment of the impact of nonlocal interactions on the nature of the bifurcation
and post-critical response of slender structures when subject to compressive loads. Further, the positive-definite
nature of the fractional-order approach allows the development of an accurate fractional-order finite element
method enabling the simulation of nonlocal structures subject to any combination of thermomechanical loads
and boundary conditions. The above stated advantages are particularly important for a comprehensive and
consistent analysis of nonlocal structures in the postbuckling regime. The theoretical framework is used to
provide analytical and numerical insights on the effect of combined thermal and mechanical loads on the
nonlinear response of nonlocal plates. Numerical results also demonstrate the high-level consistency of the
framework when applied to the nonlinear thermoelastic analysis of nonlocal plates under different loading
and boundary conditions.
1. Introduction

The study of the response and the stability of structures subject
to complex thermal and mechanical loads is a fundamental com-
ponent of structural design and analysis in the most diverse field
of engineering, biotechnology, and even medicine. Specific applica-
tions include, as an example, the design and analysis of lightweight
aerospace and naval systems, sensors, biological implants and micro/
nano-electromechanical devices [1–5]. Typically, these systems are
made of a combination of different slender structures and are subject
to thermomechanical loads that can drive them into a geometrically
nonlinear regime. Aerospace applications provide several practical ex-
amples where the combination of mechanical loads with the large and
quickly varying aerodynamic and thermal loads can induce a strongly
nonlinear response [2,6]. Similar examples can also be found in the
design of micro/nano-electromechanical devices [7–10]. Experimental
investigations have shown that, irrespective of the spatial scale, these
slender structures tend to exhibit nonlocal (or size-dependent) effects
in addition to the geometric nonlinearity. In fact, selected geometric
designs have been connected to the occurrence of size effects in
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several classes of structures [4,5,11,12]. Broadly speaking, in the case
of macrostructures, nonlocal effects originate from material hetero-
geneities [3,13,14] and even intentionally nonlocal designs [4,12].
While interactions between the dissimilar material cells (e.g. periodic
media) or layers (e.g. functionally graded materials) occur naturally
in heterogeneous materials [3,13,14], these are induced artificially via
specially designed short and/or long range connectors in the intentional
nonlocal designs [4,12]. Although material heterogeneity and geomet-
ric effects also induce nonlocal effects in micro- and nano-structures,
their contributions are less pronounced when compared to those from
Van der Waals or nonlocal atomic interactions [10,11,15]. A detailed
review on the origin, applications and modeling of nonlocal effects can
be found in this recent study [16].

In the above mentioned applications, accuracy of predictions has
critical impacts on the field deployment of these systems. The degree
of accuracy of these predictions is strongly affected by the ability to
model and account for both nonlinear and nonlocal effects in presence
of thermomechanical loads, as well as for their complex interplay.
The literature suggests that, despite the profound need for advanced
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theories (and the corresponding numerical solvers) capable of modeling
and simulating the nonlinear thermoelastic stability and response of
higher-dimensional nonlocal structures, only a handful of studies are
available [9,17–21]. None of these studies are based on the classical
integral-based approach to nonlocal elasticity developed in [22]. Al-
though few studies start from an integral approach, they evolve rapidly
towards a simplified differential model using special exponential ker-
nels [20,23]. As shown in [24,25], the differential models resulting
from the use of special exponential kernels in the classical integral
formulations are mathematically ill-posed (that is, the solution might
not exist or it could exist but not being unique), resulting in inaccurate
(often referred to as ‘‘paradoxical’’) predictions. The ill-posedness is a
direct result of the inability of the model to achieve a positive-definite
deformation energy [24]. Additionally, differential formulations face
some difficulties when employed in dynamic analysis. As discussed
in detail in [26], gradient based approaches require additional ac-
celeration gradient terms in the constitutive formulation to ensure
both well-posedness and causality. The above discussed limitations
combined with the associated computational complexity and with the
intrinsic thermodynamic inconsistency of the formulation [27,28] also
prevents development of an energy-based approach for the nonlinear
thermoelastic analysis of nonlocal structures. The lack of an energy-
based approach prevents the development of finite element models to
numerically simulate the nonlinear systems under the most general
combination of external loads. In fact the necessity of finite element
based solvers follows also from the unparalleled flexibility of finite
element solvers in treating integral boundary conditions, typical of
nonlocal models [24,25,29,30]. Additionally, the development of fi-
nite element based solvers for postbuckling analysis (both mechanical
and thermomechanical) is essential. Indeed, the lack of an energy-
based approach also prevents the application of analytical methods
(particularly, asymptotic techniques [31,32]) to determine the effect
of nonlocality, and of thermal and mechanical loads on the nature of
both bifurcation and post-critical response. In this study, we address
the above discussed conceptual and practical limitations of the classical
nonlocal approaches by leveraging a fractional calculus based formula-
tion. We will analyze the specific advantages of the proposed approach
and illustrate how the proposed method is highly suitable for nonlinear
thermomechanical analysis of slender nonlocal structures.

Fractional calculus is rapidly emerging as a powerful mathematical
tool that is particularly well-suited to model complex phenomena char-
acterized by nonlocal effects. The differ-integral definition of fractional
operators provides a natural way to account for nonlocal effects, as first
highlighted in the seminal work on fractional-order continuum mechan-
ics by Lazopoulos [33]. This initial study was rapidly followed by many
other researchers that developed a variety of fractional-order-based
approaches to nonlocal elasticity. These different approaches differenti-
ated from each other either based on the rationale for the introduction
of the fractional-order operator within the classical continuum mechan-
ics formulation or on the process adopted to develop the fractional-
order equilibrium equations describing the nonlocal continua. Con-
cerning the former difference, the majority of the early formulations
were based on fractional-order stress–strain relations [5,33–36] while
more recent formulations adopt fractional-order strain–displacement
(kinematic) relations [14,37–41]. Further, the different methods devel-
oped the fractional-order equilibrium equations for nonlocal continuum
either by employing a Newtonian equilibrium approach [5,33–38] or
by means of variational principles [39,41].

While each fractional-order nonlocal continuum model presents
interesting insights into the response of nonlocal solids, the model
based on fractional-order kinematics and formulated using variational
principles leads to a frame-invariant formulation having significant the-
oretical and practical advantages over existing integer-order nonlocal
models [39–43]. First, the fractional-order kinematic approach guaran-
tees a positive-definite deformation energy density. Consequently, the
nonlocal (fractional-order) governing equations derived from the defor-

mation energy, via variational minimization of the system’s energy, are
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well-posed in nature and lead to consistent predictions free from bound-
ary effects. This result is in sharp contrast to the integer-order strain
driven approaches which do not guarantee a positive-definite deforma-
tion energy and lead to ill-posed formulations that could potentially
lead to inaccurate predictions [24,25]. Although the ill-posed nature of
the strain-driven integral approach was addressed via a stress-driven
approach [25], the stress-driven approach relies on analytical methods
for a simulation of the nonlocal response [25,30] . This aspect limits
the application of the stress-driven approach particularly when ap-
proaching higher dimensional (2D or 3D) nonlocal structures and finite
displacement (nonlinear) analyses. On the contrary, the fractional-
order kinematic approach is amenable to finite element simulations and
enables a direct incorporation of finite (nonlinear) displacements [42,
43], thanks to the positive-definite nature of the formulation. In addi-
tion to the mathematical well-posedness, the fractional-order kinematic
approach is thermodynamically consistent. The fractional-order kine-
matic relations allow a point-wise enforcement of both the first and the
second thermodynamic balance laws within the domain of the nonlocal
solid. This observation is in sharp contrast to the classical integral
approaches that allow the thermodynamic balance laws to be satisfied
only in an integral (i.e. weak) sense, hence leading to physical incon-
sistencies [28]. The mathematical and thermodynamic consistency of
the fractional-order formulation allows using asymptotic techniques,
rooted in an energy-based approach, to analytically examine the nature
of both bifurcation and post-critical response, as well as the impact of
different fractional-order constitutive parameters on the same aspects.
In view of the above discussion, and of the fact that the fractional-
order kinematic approach leads to frame invariance, well-posedness,
thermodynamic consistency, ability to incorporate nonlinear effects and
to admit finite element techniques, it appears that this approach holds
a significant potential to study the nonlinear stability and response of
slender nonlocal structures subject to thermomechanical loads.

The present study has two major objectives. First, we develop
a fractional calculus based framework to analyze the geometrically
nonlinear thermoelastic stability and response of nonlocal plates. For
this purpose, we extend the fractional-order geometrically nonlinear
formulation proposed in [42] and the fractional-order thermoelastic
constitutive modeling proposed in [43] to account for the postbuckling
and nonlinear bending response of nonlocal plates subject to thermo-
mechanical loads. For the postbuckling analysis, we also make use of
the stability studies of fractional-order nonlocal structures conducted
in [44] and of Koiter’s asymptotic method [31,32] to provide some
analytical insights on the nature of the bifurcation at the critical point
and the stability of the bifurcated curves. In fact, the current study
also extends the purely mechanical postbuckling analysis of nonlo-
cal structures conducted in [45] to shear deformable plates subject
to combined thermomechanical loads. In this regard, note that the
fractional-order model proposed in this study is based on the classical
(local) Mindlin plate formulation. This selection makes the current
study more general and complete since the Kirchhoff plate formulation
studied in [45] can be recovered as a special case from the formulation
presented in this study. Second, we use the fractional-order finite
element method (f-FEM) developed in [41,42] to numerically solve
the nonlinear thermoelastic model. We analyze the effect of different
thermal and mechanical loading conditions, and of the fractional-order
constitutive parameters on the postbuckling and nonlinear bending
response of the nonlocal plates.

2. Fractional-order thermoelastic formulation of nonlocal solids

The nonlinear thermomechanical formulation presented in this sec-
tion builds upon the fractional-order nonlocal continuum formulation
developed in a series of previous studies [14,40–42]. The thermo-
dynamic consistency of the fractional-order nonlocal continuum was
analyzed in [43] and the linear stability analysis of nonlocal structures,

modeled by the fractional-order approach, was presented in [44]. In
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this section, we build upon these thermoelastic and stability studies,
to formulate a comprehensive thermoelastic formulation to analyze
the nonlinear bending and postbuckling response of nonlocal struc-
tures subject to combined thermomechanical loads. We will first recall
(briefly) the thermomechanical constitutive model of nonlocal solids
and then extend this framework to analyze the stability of nonlocal
structures modeled via the fractional-order approach. More specifically,
we will analyze the effect of thermomechanical loads on both critical
points and post-critical response of the nonlocal solids.

2.1. Thermoelastic constitutive modeling

According to the fractional-order kinematic approach, the strain
in the nonlocal medium is defined using a fractional-order analogue
of the classical (local) deformation gradient tensor. The geometrically
nonlinear Eulerian strain tensor obtained by this approach is given
as [14,40]:

𝜀 = 1
2
(

∇𝛼𝑥𝒖 + ∇𝛼𝑥𝒖
𝑇 + ∇𝛼𝑥𝒖∇

𝛼
𝑥𝒖

𝑇 ) (1)

where 𝒖(𝒙) is the displacement field. The fractional-order gradient of
the displacement field in deformed coordinates 𝒙, denoted by ∇𝛼𝑥𝒖, is
defined as ∇𝛼𝑥𝒖 = 𝐷𝛼

𝑥𝑗
𝑢𝑖. The term 𝐷𝛼

𝑥𝑗
𝑢𝑖 is a space-fractional Riesz–

aputo (RC) derivative with the fractional-order 𝛼 ∈ (0, 1] and interval
𝑗 ∈ (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ), and is defined as [14]:

𝛼
𝑥𝑗
𝑢𝑖(𝒙, 𝑡) =

1
2
𝛤 (2 − 𝛼)

[

𝑙𝛼−1𝐴𝑗

(

𝐶
𝑥𝐴𝑗

𝐷𝛼
𝑥𝑗
𝑢𝑖(𝒙, 𝑡)

)

− 𝑙𝛼−1𝐵𝑗

(

𝐶
𝑥𝑗
𝐷𝛼
𝑥𝐵𝑗
𝑢𝑖(𝒙, 𝑡)

)]

(2)

here 𝛤 (⋅) is the Gamma function. 𝐶
𝑥𝐴𝑗

𝐷𝛼
𝑥𝑗
𝑢𝑗 and 𝐶

𝑥𝑗
𝐷𝛼
𝑥𝐵𝑗
𝑢𝑗 are the

eft- and right-handed fractional-order Caputo derivatives of 𝑢𝑗 , re-
spectively. As evident from the above equation, the fractional-order
formulation introduces two parameters: the fractional-order and the
interval of the RC derivative. Although it appears from Eq. (2) that the
length-scales (𝑙𝐴𝑗 and 𝑙𝐵𝑗 ) are additional parameters, they are directly
related to the interval of the RC derivative. A brief discussion on
the physical significance of these different fractional-order constitutive
parameters is provided in the following:

• Role of the fractional-order 𝛼: The RC derivative consists of a
power-law kernel 𝜅(𝑥𝑗 , 𝑥′𝑗 ) = 1∕|𝑥𝑗 − 𝑥′𝑗 |

𝛼 with support being
equal to the interval of the derivative (𝑥𝐴𝑗 , 𝑥𝐵𝑗 ). This power-
law kernel models the strength of interaction between particles
separated by a distance, but contained within that interval. The
fractional-order 𝛼 ∈ (0, 1] is the exponent of the power-law
kernel and determines the spatial rate of decay of the nonlocal
interactions.

• Role of the interval of the RC derivative: The interval of the left-
and right-handed derivatives correspond to the support of the
power-law kernel of each derivative, and hence it determines
the distance beyond which two particles no longer interact via
long-range forces. Physically, this represents the horizon of non-
locality.

• Role of the length-scales: The length-scales serve a dual purpose;
they ensure that the formulation is dimensionally consistent, and
more importantly, frame-invariant. For this latter purpose, it is
required that 𝑙𝐴𝑗 = 𝑥𝑗 − 𝑥𝐴𝑗 and 𝑙𝐵𝑗 = 𝑥𝐵𝑗 − 𝑥𝑗 [14]. Note that
𝑥𝐵𝑗 − 𝑥𝐴𝑗 = 𝑙𝐴𝑗 + 𝑙𝐵𝑗 . It immediately follows that the length
scales determine the dimensions of the horizon of nonlocality on
either side of a point 𝒙 along a given direction. In general, the
length scales 𝑙𝐴𝑗 and 𝑙𝐵𝑗 are independent parameters such that
𝑙𝐴𝑗 ≠ 𝑙𝐵𝑗 suggesting that the formulation can model an asymmetric
horizon (see Fig. 1). This capability is particularly relevant for ma-
terial boundaries and even interfaces between different materials,
where it enables an exact treatment of frame-invariance. From a

more physical perspective, the asymmetry in the horizon that is
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achieved via a truncation of the length scales (or equivalently, a
truncation of the horizon of nonlocality), allows accounting for
the long-range interactions (at an atomistic or molecular level)
that are broken due to the presence of material and/or geometric
discontinuities [46].

For better visualization, we have illustrated the two different fractional-
order constitutive parameters in Fig. 1. A more detailed mathematical
treatment of the above aspects can be found in [14].

The fractional-order approach presents a net departure from classi-
cal approaches to nonlocal elasticity. Contrary to classical approaches
that model nonlocality via stress–strain constitutive relations, the
fractional-order approach adopts a kinematic route to capturing the
effect of the nonlocality. In the fractional-order kinematic approach,
nonlocality is modeled via fractional-order strain–displacement rela-
tions (see Eq. (1)). This starting point has significant implications on
the resulting theory. Apart from ensuring a positive-definite, stable
and well-posed formulation, the fractional-order kinematic relations
guarantee a strong (localized) imposition of the first and second laws
of thermodynamics at each point within the continuum [39,43]. This
thermodynamic consistency of the fractional-order approach allows
the derivation of localized material constitutive relations from the
thermodynamic balance laws [43]:

𝜎𝑖𝑗 =
𝜕𝜓
𝜕𝜀

(3a)

= −
𝜕𝜓(𝜀, 𝜃)
𝜕𝜃

(3b)

where 𝜎𝑖𝑗 is the stress tensor, 𝜓 is the Helmholtz free energy, and 𝜂
is the entropy of the nonlocal solid. Recall that the Helmholtz free
energy 𝜓(𝜺, 𝜃) is a function of the following independent variables:
(1) the fractional-order strain 𝜺, and (2) the temperature difference
𝜃 = 𝑇 −𝑇0, where 𝑇 and 𝑇0 are the temperature field distribution within
the solid and the ambient temperature, respectively. The Helmholtz free
energy in isotropic nonlocal solids, modeled using the fractional-order
approach, is derived from first principles in [43] as:

𝜓(𝜺, 𝜃) = 1
2
𝜆𝜀𝑘𝑘𝜀𝑙𝑙 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 − (3𝜆 + 2𝜇)𝛼0𝜀𝑘𝑘𝜃 −

𝐶0
𝑣

2𝑇0
𝜃2 (4)

where 𝜆 and 𝜇 are the Lamé parameters, 𝐶0
𝑣 is the specific heat at

constant strain, and 𝛼0 is the coefficient of thermal expansion. All the
above defined material properties are defined at ambient temperature
𝑇0. By substituting the expression for the Helmholtz free energy in
Eq. (3), the constitutive relations for an isotropic nonlocal elastic solid
are obtained as:

𝜎𝑖𝑗 (𝜀, 𝜃) = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 − (3𝜆 + 2𝜇)𝛼0𝛿𝑖𝑗𝜃 (5a)

(𝜀, 𝜃) = (3𝜆 + 2𝜇)𝛼0𝜀𝑘𝑘 +
𝐶0
𝑣
𝑇0
𝜃 (5b)

We highlight that, although the focus of this study is on modeling
an isotropic nonlocal solid, the formulation presented is general and
any type of solid (e.g. orthotropic or anisotropic) can be modeled via
appropriate changes in the above constitutive equations.

2.2. Thermomechanical postbuckling of nonlocal structures

The stability analysis of a given structure involves the application
of the Lagrange–Dirichlet theorem which involves a minimization of
the total potential energy of the structure. The classical integer-order
theories of nonlocal elasticity do not allow the direct application of
the Lagrange–Dirichlet theorem since they do not ensure a positive-
definite deformation energy (or a positive semi-definite potential en-
ergy) [24,25,39]. This characteristic highlights a practical advantage of
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Fig. 1. Schematic illustration of the physical significance of the fractional-order parameters: (a) the fractional-order 𝛼, and (b) the length scales. The fractional-order 𝛼 in (a),
hich is obtained as the slope of the logarithm of the power-law kernel of the fractional derivative: 𝜅(𝑥, 𝑥′) = 1∕|𝑥 − 𝑥′|𝛼 , determines the strength of the nonlocal interaction
etween a fixed point 𝑥 and points in its horizon of nonlocality. The length scales in (b) illustrate the horizon of nonlocality at different points in the 2D domain. Note that the
orizon of nonlocality at the point 𝒙2 is equal to 𝑙𝑓 on either sides in the 𝑥̂ direction. On the contrary, the horizon of nonlocality at 𝒙1 and 𝒙3 is truncated (𝑙

†
𝑓 < 𝑙𝑓 ) on the left

nd right sides, respectively.
w
b
c

he fractional-order approach which guarantees a positive-definite de-
ormation energy and therefore allows the application of the Lagrange–
irichlet theorem [39,41]. The total potential energy of a nonlocal solid
s given as [39]:

[𝒖(𝛬)] = 1
2 ∫𝛺𝑠

𝝈 ∶ 𝜺d𝑉 − ∫𝛺𝑠
𝑭 (𝛬) ⋅ 𝒖d𝑉 (6)

where 𝛺𝑠 denotes the domain of the nonlocal solid, and d𝑉 denotes
he differential volume. Further, 𝑭 (𝛬) is an external force applied on
the solid and 𝛬 is a continuous variable which is used as the control
parameter to characterize the adjacent states of equilibrium. While this
parameter-controlled force vector has clear physical interpretations for
purely mechanical loads, an analogous interpretation also holds for
thermal loads. Recall that, in order to generate instability, in-plane
stresses are required within the slender structure [32]. This is achieved,
for example, via in-plane (or surface) loads in purely mechanical anal-
ysis [45]. However, even in the absence of external mechanical loads,
in-plane stresses can be generated by thermal loads. Analogous to
mechanical loads, a control parameter (such as, for example, 𝜃 or the
gradient of 𝜃) can be defined. In this regard, note that the thermal field
variable, that is 𝜃, is captured in the nonlocal stress 𝝈 via Eq. (13). In
fact, the thermal and mechanical loads can also be combined, allowing
for the definition of more general control parameters. In conclusion,
we note that irrespective of the nature of the loading (thermal and/or
mechanical) these instability-inducing control factors can be combined
within the parameter-controlled force vector in order to analyze the
stability of any given structure [18,19,47].

Recall that the equilibrium equations describing a given structure
are obtained from the first variation of the potential energy in the
direction of 𝒖, that is, 𝛿𝛱[𝐮(𝛬)],𝑢 = 𝛱,𝑢𝛿𝒖. More specifically, for an
equilibrium state 𝒖𝑒(𝛬𝑒), we have [44]:

∫𝛺𝑠
𝝈 ∶

[

𝜺(𝑙)(𝛿𝒖) + 𝜺(𝑛)
(

𝒖𝑒, 𝛿𝒖
)]

d𝑉 − ∫𝜕𝛺𝑠
𝑭 (𝛬𝑒) ⋅ 𝛿𝒖d𝐴 = 0 (7)

for any arbitrary variation 𝛿𝒖. In the above equation, 𝜺(𝑙) = 1∕2(∇𝛼𝑥𝒖 +
∇𝛼𝑥𝒖

𝑇 ) denotes the linear part of the nonlocal strains and 𝜺(𝑛) =
1∕2(∇𝛼𝑥𝒖∇

𝛼
𝑥𝒖

𝑇 ) denotes the geometrically nonlinear part of the nonlocal
trains. At a first glance, thermal field variables appear to be absent
n the Eq. (7). However, one should recall that the thermal load is
aptured within the nonlocal stress via Eq. (13). Further, in the above
equation as well as in the subsequent discussion, we have assumed
that the temperature distribution across the nonlocal solid is available
a priori, that is as an input to the problem. This implies that the
independent variation of the temperature field 𝛿𝜃 = 0. Therefore, the
application of variational principles leads to an independent variation
of the displacement field alone.

The equilibrium configuration 𝒖𝑒(𝛬𝑒) described via Eq. (7) is stable
iff the second-variation 𝛿2𝛱[𝒖𝑒(𝛬𝑒)] = 𝛱,𝑢𝑢𝛿𝒖1𝛿𝒖2 > 0, where 𝛿𝐮1 and
𝛿𝐮 are independent variations. The critical configuration of stability
2

4

that is 𝒖𝑐 (𝛬𝑐 ), can now be obtained as the solution to the following
variational equation 𝛿2𝛱[𝒖𝑐] = 0 [44]:

∫𝛺

[[

𝜺(𝑙)(𝛿𝒖𝟐) + 𝜺(𝑛)
(

𝒖𝑐 , 𝛿𝒖2
)]

∶ 𝐂 ∶
[

𝜺(𝑙)(𝒖𝑏) + 𝜺(𝑛)
(

𝒖𝑐 , 𝒖𝑏
)]

+𝛬𝑐𝝈0 ∶ 𝜺(𝑛)
(

𝛿𝒖2, 𝒖𝑏
)]

d𝑉 = 0 (8)

where 𝒖𝑏 = 𝛿𝒖1 is the critical mode corresponding to the bifurcation
at 𝒖𝑐 . In deriving the above expression, a proportional loading force
(𝑭 (𝛬) = 𝛬𝑭 0, with 𝑭 0 being a representative force vector) is assumed;
the resulting state of stress is 𝝈(𝛬) = 𝛬𝝈0. We merely note that the
above assumption of a proportional stress corresponding to a propor-
tional loading force holds true for purely mechanical, purely thermal,
and combined thermomechanical loads (all controlled via the same
parameter 𝛬). To account for combined thermal and mechanical loads
subject to separate load control parameters, some additional terms
would appear in the variational Eq. (8). In the following, we do not
consider this latter case since it adds to the complexity of the equations
without affecting the generality of the conclusions. Note that these are
common assumptions in classical stability analysis [32]. Further details
including the derivation of the above expression and of the linearized
critical points (for a purely mechanical case) can be found in [44]. We
do not discuss the latter aspect, since we solve the fully nonlinear gov-
erning equations while the response evolves towards the postbuckling
regime, by adopting an energy-based approach. While the energy-based
approach allows the numerical simulation of the postbuckling response,
some qualitative insights on the postbuckling response of the nonlocal
solid is necessary. For this purpose we extend Koiter’s asymptotic
method [31], initially formulated for the postbuckling response of
classical (local) structures, to the fractional-order formulation.

A perturbation around the critical configuration (𝒖𝑐 , 𝛬𝑐 ) can be
expressed using Koiter’s method as [31,32]:

𝛬 − 𝛬𝑐 = 𝜒𝛬1 +
1
2
𝜒2𝛬2 +

1
6
𝜒3𝛬3 + ℎ.𝑜.𝑡 (9a)

𝒖 − 𝒖𝑐 = 𝒖̃ = 𝜒𝒖𝑏 +
1
2
𝜒2𝒘2 +

1
6
𝜒3𝒘3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W(𝜒)

+ℎ.𝑜.𝑡 (9b)

here 𝜒 is a parameter within the expansion, and 𝒖̃ is the difference
etween the fundamental curve 𝐶0 (for 𝛬 < 𝛬𝑐) and the bifurcated
urve 𝐶∗

0 (for 𝛬 ≥ 𝛬𝑐). As evident from Eqs. (9), Koiter’s method allows
us to express this difference in terms of the critical mode 𝒖𝑏 obtained in
Eq. (8) and a correction factorW defined such thatW ⟂ 𝒖𝑏. Further, the
set of expansion coefficients {𝒖𝑏, 𝛬1} and {𝒘2, 𝛬2} are physically inter-
preted as the slope and curvature of the load–displacement equilibrium
curves at the point 𝜒 = 0, respectively [32]. Along the fundamental
path 𝐶0, 𝛿2𝛱 is positive indicating a stable equilibrium. With increase
in the value of 𝛬 along the forward direction of 𝐶0, 𝛿2𝛱 reduces and
finally at the critical point 𝛬𝑐 we have 𝛿2𝛱𝑐 = 0. By assuming the
independent variation 𝛿𝒖2 = 𝒖̃ in Eq. (8) we obtain that [32]:

 =
d[𝛿2𝛱𝑐 ] = 𝝈0 ∶ 𝜺(𝑛)(𝒖̃, 𝒖̃)d𝛺 (10)
d𝛬 ∫𝛺



S. Patnaik, S. Sidhardh and F. Semperlotti Thin-Walled Structures 164 (2021) 107809

f
t

𝛥

t
c
c

𝑥

d
r
d

𝜀

where  is the transversality rate. Further, the perturbation (or, dif-
erence) in the potential energy between the two configurations on
he fundamental curve 𝐶0 and the bifurcated curve 𝐶∗

0 , for a given
value of 𝛬, can be expressed using the asymptotic expansion and the
transversality rate in Eqs. (9), (10) as [48]:

𝛱 = 𝛱(𝐶∗
0 ) −𝛱(𝐶0) =

⎧

⎪

⎨

⎪

⎩

1
6
𝛬1𝜒3 + (𝜒3) + ℎ.𝑜.𝑡 if 𝛬1 ≠ 0
1
24
𝛬2𝜒4 + (𝜒4) if 𝛬1 = 0 and 𝛬2 ≠ 0

(11)

The expressions for the transversality rate in Eq. (10) and the potential
energy difference in Eq. (11) lead to the following important observa-
ions on the nature of the bifurcation, the stability of the bifurcated
urves of the nonlocal structure, and the effect of the fractional-order
onstitutive parameters:

• For 𝛬 > 0, the term 𝜺(𝑛)(𝒖̃, 𝒖̃) is quadratic and nonzero. Further,
𝝈0 is either positive or negative (or equivalently, tensile or com-
pressive) depending on the nature of the force vector 𝑭 0 or the
thermal load. Hence, it follows from Eq. (10) that  ≠ 0. As es-
tablished in literature, a nonzero value of  indicates an angular
bifurcation at the critical point [31,32]. It immediately follows
that the fundamental equilibrium curve 𝐶0, obtained via the
fractional-order approach, undergoes an angular bifurcation at
the critical point. Note that the angular bifurcation phenomenon
occurs irrespective of the specific values of the fractional-order
constitutive parameters and is also consistent with classical (local)
studies [32]. We merely note that this angular bifurcation is as-
sumed in studies conducted on postbuckling response of nonlocal
structures via integer-order models without any formal proof [7,9,
47]. It is noteworthy that the energy-based approach, afforded by
the positive-definite fractional-order formulation, allows reaching
a concrete proof of angular bifurcation at the critical point (as
shown above).

• Note from Eq. (8) that the critical point corresponds to a negative
value for 𝝈0 [32,44]. In other terms, a compressive force 𝑭 0
or a thermal load causing 𝝈0 < 0 is required to induce an
instability within the nonlocal structure, consistent with classical
formulations as well as experimental evidence. Consequently, it
follows from Eq. (10) that  < 0.

• For  < 0, it follows from Eq. (11) that 𝛥𝛱 < 0. Thus,
equilibrium configurations along the bifurcated curve 𝐶∗

0 admit
lower potential energy than the fundamental branch for 𝛬 > 𝛬𝑐 . It
follows that the bifurcated branch at the critical point 𝛬𝑐 presents
stable equilibrium solutions for 𝛬 > 𝛬𝑐 . We note that numerical
simulations via the energy approach are expected to yield only
the stable branches.

• Although the degree of nonlocality (that is, the specific values
of the fractional-order constitutive parameters) has no effect on
the nature of the bifurcation, it does affect the shape of the
bifurcated curve. In this regard, note that a decrease in the
value of the fractional-order and/or an increase in the value of
the length-scales (physically indicating an increase in the degree
of nonlocality) would result in lower values of the fractional
derivatives, hence indicating a softening effect [39,41]. It follows
that the numerical values of 𝝈0 and 𝜺(𝑛)(𝒖̃, 𝒖̃) in Eq. (10) will be
reduced resulting in a lower value of  with increasing degree
of nonlocality [44]. It immediately follows from Eq. (11) that
an increasing degree of nonlocality reduces the difference in the
energy barrier between the fundamental and the bifurcated paths
(for the same control parameter 𝛬), beyond the critical point. This
indicates a higher degree of instability in the nonlocal structure as
a result of the softening effects. We will demonstrate this aspect
numerically in Section 4.
5

Fig. 2. Schematic of a rectangular plate indicating the basic geometric parameters
along with the chosen Cartesian reference frame.

3. Thermoelastic fractional-order Mindlin theory of plates

The fractional-order nonlocal continuum formulation described in
Section 2 was used to analyze the response of nonlocal plates via a
fractional-order Mindlin formulation in [41,42]. Note that the study
conducted in [41] focused on the linear response, while the study
conducted in [42] focused on the nonlinear response. In the present
study, we leverage the nonlinear formulation presented in [42] and the
concepts of fractional-order thermoelasticity reviewed in Section 2.1,
to develop a comprehensive nonlinear thermoelastic formulation that
enables the analysis of combined thermomechanical loads on the non-
linear bending and postbuckling response of nonlocal plates.

A schematic of the undeformed rectangular plate along with the
chosen Cartesian reference frame is illustrated in Fig. 2. The length,
width, and thickness of the plate are given as 𝐿, 𝐵 and ℎ, respectively.
The mid-plane of the plate, identified as 𝑧 = 0, is denoted as 𝛺 and its
edges are denoted as {𝜕𝛺𝑥, 𝜕𝛺𝑦}. According to the Mindlin plate theory,
the in-plane components (𝑢(𝒙, 𝑡) and 𝑣(𝒙, 𝑡)) and transverse component
(𝑤(𝒙, 𝑡)) of the displacement field at a spatial location 𝒙(𝑥, 𝑦, 𝑧) are
related to the displacements of the mid-plane 𝛺 in the following
manner [49]:

𝑢(𝒙, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡) (12a)

𝑣(𝒙, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡) (12b)

𝑤(𝒙, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (12c)

where 𝑢0, 𝑣0, and 𝑤0 denote the displacements at the mid-plane of the
plate along the 𝑥̂, 𝑦̂, and 𝑧̂ directions. 𝜃𝑥 and 𝜃𝑦 denote the rotations
of the transverse normal at the mid-plane of the plate, about the 𝑦̂ and
̂ axes, respectively. In the following, for a compact notation, we will
not specify the functional dependence of the displacement fields on the
spatial and temporal variables.

By using the displacement field in Eq. (12), and then assuming
moderate rotations of the transverse normals (10◦ − 15◦) and small
isplacement gradients, the nonlinear von-Kármán strain–displacement
elations for the plate can be derived from the Eulerian strain tensor
efinition in Eq. (1) as [42]:

𝑥𝑥 = 𝐷𝛼
𝑥𝑢0 +

1
2
(𝐷𝛼

𝑥𝑤0)2 − 𝑧𝐷𝛼
𝑥𝜃𝑥 (13a)

𝜀𝑦𝑦 = 𝐷𝛼
𝑦𝑣0 +

1
2
(𝐷𝛼

𝑦𝑤0)2 − 𝑧𝐷𝛼
𝑦𝜃𝑦 (13b)

𝛾𝑥𝑦 = 𝐷𝛼
𝑦𝑢0 +𝐷

𝛼
𝑥𝑣0 +𝐷

𝛼
𝑥𝑤0𝐷

𝛼
𝑦𝑤0 − 𝑧(𝐷𝛼

𝑦𝜃𝑥 +𝐷
𝛼
𝑥𝜃𝑦) (13c)

𝛾 = 𝐷𝛼𝑤 − 𝜃 (13d)
𝑥𝑧 𝑥 0 𝑥
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𝛾𝑦𝑧 = 𝐷𝛼
𝑦𝑤0 − 𝜃𝑦 (13e)

t follows from Eq. (12c) that the transverse strain 𝜀𝑧𝑧 = 0, which
s consistent with the first-order local shear deformation theory [49].
ote that, unlike the in-plane strains, the transverse shear strains do
ot show a nonlocal dependence on the rotations of the mid-plane of
he plate. This is a direct consequence of the fact that, in the Mindlin
ormulation, the displacement degrees of freedom ({𝑢0, 𝑣0, 𝑤0, 𝜃𝑥, 𝜃𝑦})
are assumed to be constant across the thickness of the plate and the
response of the plate is solely described by the mid-plane of the plate
(see Eq. (12)). From a physical perspective, the effect of the nonlocal
interactions across the thickness of the slender plate are negligible
when compared to the nonlocal interactions across its plane. Using
the fractional-order nonlinear strains in Eq. (13), the nonlocal stresses
generated in an isotropic plate due to thermomechanical loads are
obtained from Eq. (5) as:

𝜎𝑥𝑥 = 𝐸
1 − 𝜈2

[

𝜀𝑥𝑥 + 𝜈𝜀𝑦𝑦 − (1 + 𝜈)𝛼0𝜃
]

(14a)

𝑦𝑦 =
𝐸

1 − 𝜈2
[

𝜈𝜀𝑥𝑥 + 𝜀𝑦𝑦 − (1 + 𝜈)𝛼0𝜃
]

(14b)

𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑧} = 𝐸
2(1 + 𝜈)

{𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧} (14c)

here 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio of the
sotropic solid.
By using the above defined stress and strain fields, induced in the

onlocal plate due to the thermomechanical loads, the deformation
nergy U, the work done by external forces V, and the kinetic energy
of the plate are obtained as:

= ∫𝛺 ∫

ℎ
2

− ℎ
2

[

𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜎𝑦𝑦𝜖𝑦𝑦 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛾𝑦𝑧
]

d𝑧d𝛺 (15a)

V = ∫𝛺

[

𝐹𝑥𝑢0 + 𝐹𝑦𝑣0 + 𝐹𝑧𝑤0 +𝑀𝜃𝑥𝜃𝑥 +𝑀𝜃𝑦𝜃𝑦
]

d𝛺

+ ∫𝜕𝛺𝑥∪𝜕𝛺𝑦

[

𝐹𝑥𝑢0 + 𝐹𝑦𝑣0 + 𝐹𝑧𝑤0 + 𝑀̂𝜃𝑥𝜃𝑥 + 𝑀̂𝜃𝑦𝜃𝑦
]

d𝜕𝛺 (15b)

T = ∫𝛺 ∫

ℎ
2

− ℎ
2

𝜌
[(

𝑢̇0 − 𝑧𝜃̇𝑥
)(

𝑢̇0 − 𝑧𝜃̇𝑥
)

+
(

𝑣̇0 − 𝑧𝜃̇𝑦
)(

𝑣̇0 − 𝑧𝜃̇𝑦
)

+ 𝑤̇0𝑤̇0
]

d𝑧d𝛺 (15c)

where 𝜌 denotes the mass density of the plate. Note that d𝛺 = d𝑥d𝑦
for a rectangular plate. {𝐹𝑥, 𝐹𝑦, 𝐹𝑧} are the loads applied externally in
the 𝑥̂, 𝑦̂, and 𝑧̂ directions, respectively on the mid-plane of the plate.
{𝑀𝜃𝑥 ,𝑀𝜃𝑦} are the moments applied about the 𝑦̂ and 𝑥̂ axes, respec-
tively on the mid-plane of the plate. Similarly, {𝐹𝑥, 𝐹𝑦, 𝐹𝑧, 𝑀̂𝜃𝑥 , 𝑀̂𝜃𝑦}
denote the external loads and moments applied on the boundaries of
the plate. The strong-form of the governing equations can now be
derived by using the extended Hamilton’s principle:

∫

𝑡2

𝑡1
(𝛿U − 𝛿V − 𝛿T) d𝑡 = 0 (16)

The simplification of Eq. (16) follows standard principles of fractional
ariational calculus. In the following, we directly report the strong-
orm of the geometrically nonlinear thermoelastic governing equations
nd refer the interested reader to [39,42,43] for the details of the
ariational simplifications.
The governing equations for the thermoelastic response of the non-

ocal plate are:

𝛼𝑁 +D𝛼𝑁 + 𝐹 = 𝜌ℎ
𝜕2𝑢0 (17a)
𝑥 𝑥𝑥 𝑦 𝑥𝑦 𝑥 𝜕𝑡2

6

D𝛼
𝑥𝑁𝑥𝑦 +D𝛼

𝑦𝑁𝑦𝑦 + 𝐹𝑦 = 𝜌ℎ
𝜕2𝑣0
𝜕𝑡2

(17b)

𝛼
𝑥(𝑄𝑥𝑧 +𝑁𝑥𝑥𝐷

𝛼
𝑥𝑤0 +𝑁𝑥𝑦𝐷

𝛼
𝑦𝑤0)

+D𝛼
𝑦 (𝑄𝑦𝑧 +𝑁𝑥𝑦𝐷

𝛼
𝑥𝑤0 +𝑁𝑦𝑦𝐷

𝛼
𝑦𝑤0) + 𝐹𝑧 = 𝜌ℎ

𝜕2𝑤0

𝜕𝑡2
(17c)

D𝛼
𝑥𝑀𝑥𝑥 +D𝛼

𝑦𝑀𝑥𝑦 −𝑄𝑥𝑧 +𝑀𝜃𝑥 =
𝜌ℎ3

12
𝜕2𝜃𝑥
𝜕𝑡2

(17d)

D𝛼
𝑥𝑀𝑥𝑦 +D𝛼

𝑦𝑀𝑦𝑦 −𝑄𝑦𝑧 +𝑀𝜃𝑦 =
𝜌ℎ3

12
𝜕2𝜃𝑦
𝜕𝑡2

(17e)

here {𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦} are the in-plane stress resultants, {𝑄𝑥𝑧, 𝑄𝑦𝑧}
are the transverse shear stress resultants, and {𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦} are the
moment resultants. The Dirichlet boundary conditions are obtained as:

𝛿𝑢0 = 0, 𝛿𝑣0 = 0, 𝛿𝑤0 = 0, 𝛿𝜃𝑥 = 0, 𝛿𝜃𝑦 = 0 ∀ 𝜕𝛺𝑥 ∪ 𝜕𝛺𝑦 (18a)

and the Neumann boundary conditions are obtained as:

𝐼1−𝛼𝑥 𝑁𝑥𝑥 = 𝐹𝑥, 𝐼
1−𝛼
𝑥 𝑁𝑥𝑦 = 𝑇𝐹𝑦, 𝐼

1−𝛼
𝑥 (𝑄𝑥𝑧 +𝑥𝑥) = 𝐹𝑧,

𝐼1−𝛼𝑥 𝑀𝑥𝑥 = 𝑀̂𝜃𝑥 , 𝐼
1−𝛼
𝑥 𝑀𝑥𝑦 = 𝑀̂𝜃𝑦 ∀ 𝜕𝛺𝑥 (18b)

𝐼1−𝛼𝑦 𝑁𝑥𝑦 = 𝐹𝑥, 𝐼
1−𝛼
𝑦 𝑁𝑦𝑦 = 𝐹𝑦, 𝐼

1−𝛼
𝑦 (𝑄𝑦𝑧 +𝑦𝑦) = 𝐹𝑧,

𝐼1−𝛼𝑦 𝑀𝑥𝑦 = 𝑀̂𝜃𝑥 , 𝐼
1−𝛼
𝑦 𝑀𝑦𝑦 = 𝑀̂𝜃𝑦 ∀ 𝜕𝛺𝑦 (18c)

where 𝑥𝑥 = 𝑁𝑥𝑥𝐷𝛼
𝑥𝑤0 + 𝑁𝑥𝑦𝐷𝛼

𝑦𝑤0 and 𝑦𝑦 = 𝑁𝑥𝑦𝐷𝛼
𝑥𝑤0 + 𝑁𝑦𝑦𝐷𝛼

𝑦𝑤0.
The different stress and moment resultants in the above governing
equations are defined analogously to the classical (local) formulation
as:

{𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦, 𝑄𝑥𝑧, 𝑄𝑦𝑧} = ∫

ℎ
2

− ℎ
2

{ 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑥𝑦, 𝐾𝑠𝜎𝑥𝑧, 𝐾𝑠𝜎𝑦𝑧}d𝑧 (19a)

{𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦} = ∫

ℎ
2

− ℎ
2

{−𝑧 𝜎𝑥𝑥 ,−𝑧 𝜎𝑦𝑦 ,−𝑧𝜎𝑥𝑦}d𝑧 (19b)

where 𝐾𝑠 is the shear correction factor. As evident from Eq. (14), the
hermal effects are accounted for via the stress and moment resultants.
or further clarity, we have encircled these terms in the above equation.
inally, the Riesz fractional integral 𝐼1−𝛼𝑥𝑗

(⋅) in the governing equations
is defined as:

𝐼1−𝛼𝑥𝑗
𝜓 = 1

2
𝛤 (2 − 𝛼)

[

𝑙𝛼−1𝐵𝑥

(

𝑥−𝑙𝐵𝑥
𝐼1−𝛼𝑥 𝜓

)

− 𝑙𝛼−1𝐴𝑥

(

𝑥𝐼
1−𝛼
𝑥+𝑙𝐴𝑥

𝜓
)]

(20)

here 𝑥−𝑙𝐵𝑥
𝐼1−𝛼𝑥 𝜓 and 𝑥𝐼1−𝛼𝑥+𝑙𝐴𝑥

𝜓 are the left-handed and right-handed
iesz integrals to the order 𝛼 of an arbitrary function 𝜓 , respectively.
he fractional-order derivative D𝛼(⋅) is the first-order derivative of the
iesz integral:

𝛼
𝑥𝑗
𝜓 = 𝐷1

𝑥

[

𝐼1−𝛼𝑥𝑗
𝜓
]

(21)

ote that D𝛼
𝑥𝑗
(⋅) and 𝐼1−𝛼𝑥𝑗

(⋅) are defined above the interval (𝑥𝑗 −
𝐵𝑗 , 𝑥𝑗 + 𝑙𝐴𝑗 ) unlike the RC fractional derivative 𝐷

𝛼
𝑥(⋅) in Eq. (2) which

s defined over (𝑥𝑗 − 𝑙𝐴𝑗 , 𝑥+ 𝑙𝐵𝑗 ). This is a direct result of the variational
implifications [39,50].
The nonlinear thermomechanical governing equations given in

q. (17) deserve some additional remarks. As highlighted in Eq. (19),
he presence of the thermal field variables in the expressions for stress
esultants introduces the thermal field variables into the governing
quations. Absence of the external thermal field (𝜃(𝒙) = 0) reduces
the model to a purely mechanical geometrically nonlinear model as
presented in [42,45]. Further, note that the nonlinear nature of the

model developed in this study is clearly evident from the transverse
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governing equation (Eq. (17c)). The in-plane stress resultants in the
transverse governing equations introduces the coupling of axial and
transverse field variables. Ignoring the nonlinear terms in the transverse
governing equation provides the linear thermoelastic fractional-order
model for nonlocal plates. Finally, for 𝛼 = 1.0, the classical (local)
thermoelastic Mindlin plate model is recovered.

4. Results and discussion

In this section, we analyze the effect of thermal loads on the static
ostbuckling and nonlinear bending response of the nonlocal plate.
n all simulations, we consider an isotropic Aluminum plate having
oung’s modulus 𝐸 = 70 GPa, Poisson’s ratio 𝜈 = 1∕3, and coefficient
f thermal expansion 𝛼0 = 2.3 × 10−5 K−1 [49]. Further, we consider a
quare plate having dimensions 𝐿 = 𝐵 = 1 m and thickness ℎ = 𝐿∕25.
he fractional parameters (i.e. the order 𝛼 and the nonlocal length
cales) are not fixed a priori and are used as free parameters to study
he effect on the plate’s response. We have assumed an isotropic and
ymmetric horizon of nonlocality such that 𝑙𝐴𝑗 = 𝑙𝐵𝑗 = 𝑙𝑓 for points
ufficiently far from the boundaries. Recall from Section 2 that this
ymmetry is broken for points close to the plate boundaries (see Fig. 1).
Before proceeding to present the numerical results, we discuss

ome details of the numerical technique adopted to simulate the
ractional-order thermomechanical formulation. The nonlocal and non-
inear thermoelastic governing equations are numerically solved using
he fractional-order finite element method (f-FEM) developed in [39,
1]. The f-FEM converts the nonlinear fractional-order governing equa-
ions into a set of nonlinear algebraic equations that are solved using
n incremental-iterative Newton–Raphson method. We set a tolerance
f 10−4 × ℎ for the L2 norm of the difference between displacements
btained in successive iterations. For tracing the nonlinear equilibrium
ath in both the postbuckling and bending analyses, we used an
rc-length continuation method. This algorithm is discussed in detail
n [42,45] and, for the sake of brevity, details are not repeated here.
he bending and shear stiffness matrices are integrated using the
auss quadrature numerical integration, with 2 × 2 and 1 × 1 Gauss
uadrature points, respectively. This choice of the reduced-order Gauss
uadrature integration for the shear stiffness matrices is to avoid the
hear locking effects in the numerical simulation of Mindlin plates [49].
o ensure that the results obtained are fully converged upon refinement
f the mesh, we set the dynamic rate of convergence as𝑥×𝑦 = (𝑙𝑓∕𝑙𝑒𝑥×
𝑓∕𝑙𝑒𝑦 ) = 12 × 12 (𝑙𝑒𝑥 × 𝑙𝑒𝑦 denotes the size of a mesh element). This
uarantees that the L1 norm of the difference between displacements
btained from successive refinements in the mesh, is less than 2% [41].
Additionally, we have made the following assumptions in simu-

ating the thermomechanical response of the nonlocal plates. First,
e assumed that the mechanical constants of the nonlocal plate are
sothermal, that is they do not vary with the externally applied thermal
ield. While the latter assumption can be circumvented via appropriate
hanges in the constitutive equations (see, for example, [51]), this
tudy focuses primarily on the effects of the thermal loads and of
he fractional-order constitutive parameters on the postbuckling and
onlinear bending response of nonlocal plates. Next, we assumed an
xternal thermal field without analyzing the nature of the heat con-
uction problem or even its source. In other terms, we do not solve
he heat conduction equation to obtain the temperature field within
he nonlocal plate. We merely note that the heat conduction problem
ithin the nonlocal solid could be considered either in integer- or
ractional-order form, depending on the specific details of the heat
ransfer process [44,52]. While there is an extensive literature on the
ignificance and application of classical integer-order heat conduction
ormulation, spatial and/or temporal fractional-order heat conduction
ormulations have been developed and analyzed fairly recently [52].
ime-fractional heat conduction models capture heat conduction in
issipative systems [52]. On the other hand, space-fractional heat con-
uction allows the modeling of anomalously diffusive heat transfer in
7

ystems that are potentially conservative such as, for example, fractals
nd porous media [52,53]. Note that the elastodynamic formulation
n [52] is based on integer-order (classical) continuum relations. Hence,
t appears that there is an opportunity to couple the fractional-order
eat conduction formulations [52] with the fractional-order elastody-
amic formulation presented in this study, to develop and analyze a
ully fractional thermoelastic formulation. Notably, a key challenge to
he development of the latter comprehensive formulation is the fact
hat a direct replacement of the classical integer-order derivatives in
he heat conduction equation with fractional derivatives violates the
econd law of thermodynamics [54].

.1. Postbuckling response

We analyzed the postbuckling response of the nonlocal plate subject
o different combinations of thermal and axially compressive loads,
s well as different values of the fractional parameters. We highlight
hat, while the framework presented is general, we have restricted
he numerical investigations to some standard choices of loading and
oundary conditions. The nonlocal plate was subjected to a uniformly
istributed (uniaxial) compressive load 𝑃 at the boundaries 𝑥̂ = {0, 𝐿}.
dditionally, a uniformly distributed transverse load 𝑞0 was applied
n the plate to activate the stable branch of the bifurcated postbuck-
ing response at the critical point [32]. This transverse load plays a
ole analogous to the geometric imperfections used in postbuckling
nalysis [55]. The additional load provides a first-order contribution
o deformation energy, and does not affect the post-buckling response
hich is a second-order response. Further, the plate was subject to a
teady state uniform temperature distribution across the thickness, that
s, 𝜃(𝒙) = 𝜃0 (in K) [47]. Recall that 𝜃(𝒙) indicates the temperature per-
urbation, that is above the reference temperature. Finally, we consider
wo sets of boundary conditions. In each case all the edges of the plate
re either simply supported (denoted as SSSS-01) or clamped (denoted
s CCCC-01). The loaded edges in each case are allowed to move in
he direction of the uniaxial compressive forces. Mathematically, these
onditions are given by [32,47]:

SSS-01 ∶
{

𝑥̂ = {0, 𝐿} ∶ 𝑣0 = 𝑤0 = 𝜃𝑦 = 0
𝑦̂ = {0, 𝐵} ∶ 𝑢0 = 𝑤0 = 𝜃𝑥 = 0

(22a)

CCC-01 ∶
{

𝑥̂ = {0, 𝐿} ∶ 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0
𝑦̂ = {0, 𝐵} ∶ 𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0

(22b)

The above described loading conditions are simulated using the
onlinear f-FEM [42] and the results obtained are reported in Fig. 3
n terms of the following non-dimensionalized variables:

𝑃 = 𝑃 × 𝐿2

𝜋2𝐸ℎ3
(23a)

𝑤 = max(𝑤0) ×
1
ℎ

(23b)

The transverse load 𝑞0 (mimicking the imperfection) is taken as 𝑞0 =
0.1𝐸(ℎ∕𝐿)4 which is insignificant (to the (3)) when compared to
the compressive axial loads. In Fig. 3, we have compared the post-
buckling response of the plates for different values of the loading
conditions and fractional-order constitutive parameters. In regards to
the fractional-order constitutive parameters, we varied the fractional-
order 𝛼 ∈ [0.7, 1] while fixing the length scale as 𝑙𝑓 = 0.5𝐿 in
Fig. 3a.1, b.1. In Fig. 3a.2, b.2, we fixed the order as 𝛼 = 0.9 and
varied the length scale 𝑙𝑓 ∈ [0.3𝐿, 0.5𝐿]. Further, the different color-
coded surfaces correspond to different values of the thermal load 𝜃0. To
improve the visualization of the postbuckling curves, we have projected
selected lines from these surfaces onto the 𝑤−𝑃 plane. These projected
curves correspond to the thermomechanical postbuckling response of
the nonlocal plate for a fixed value of 𝜃0 and a selected combination
of 𝛼 and 𝑙 . Before proceeding further, we emphasize that the specific
𝑓
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Fig. 3. Postbuckling response measured in terms of the maximum transverse displacement (which can occur at different physical points) of the nonlocal plate subject to combined
thermal and axial loads. The plate is (a) simply supported at all its edges (SSSS-01) and (b) clamped at all its edges (CCCC-01). The response is parameterized (a.1,b.1) for different
values of the fractional-order 𝛼 for a fixed length scale 𝑙𝑓 = 0.5𝐿, and (a.2,b.2) for different the length scale 𝑙𝑓 values and a fixed fractional-order 𝛼 = 0.9. With respect to the
equilibrium curves projected on the plane 𝑤 − 𝑃 , the legend reports the values of the order and of the thermal load for (a.1,b.1), and the values of the length scale and of the
thermal load for (a.2,b.2). Further, the markers in some of the equilibrium curves are only used to facilitate the distinction between different curves. They do not indicate the
successive values of 𝑃 used within the numerical simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
numerical values of the different parameters do not affect the generality
of the conclusions presented below. However, some caution is required
in selecting the value of the fractional-order 𝛼. As reported in several
studies, there exists a critical value for the fractional-order (𝛼𝑐) below
which the fractional-order model of nonlocality breaks down [38–40].
We found that the critical value is 𝛼𝑐 ≈ 0.4, similar to [40]. Notably,
this critical value also depends on the relative ratio: 𝑙𝑓∕𝐿, that is
the size of the horizon of nonlocality relative to the characteristic
dimension of the structure. It was noted that, for 𝑙𝑓∕𝐿 close to 1,
the critical value of 𝛼 increases to 𝛼𝑐 ≈ 0.3. While the fractional-
order model is mathematically (and numerically) still consistent, from a
physical perspective, for small values of 𝛼, the material exhibits a large
degree of softening that leads to physically inconsistent results. Detailed
qualitative discussions on this aspect can be found in [38–40].

A detailed analysis of the numerical results in Fig. 3 leads to the
following conclusions:

• An increase in the degree of nonlocality (by reducing the order
𝛼 and/or increasing the length scale 𝑙 ), for a fixed loading
𝑓

8

condition, leads to a consistent softening of the structure irrespec-
tive of the choice of boundary conditions. In other terms, the
postbuckling stability of the structure reduces with an increase
in the degree of nonlocality. This conclusion emerges in Fig. 3 by
following the response 𝑤 for either decreasing 𝛼 or increasing 𝑙𝑓
for a fixed 𝜃0 and 𝑃 .

• Increasing the thermal load, for a fixed combination of 𝛼, 𝑙𝑓 ,
and 𝑃 , leads to a consistent softening of the structure. In other
terms, an increase in the temperature of the plate reduces its
structural stability which is consistent with classical predictions
and experimental evidence [1,2,18,47]. This conclusion emerges
by following the 𝑤 axis across the different isothermal surfaces.

For a more complete analysis, we also present the postbuckled
shapes of the plates subjected to the different loading conditions.
We consider the postbuckled shape of the mid-plane of the simply
supported plates, for increasing values of the axial compression load 𝑃
and different thermal loads 𝜃 ∈ {0, 200} K. These results are presented
in Fig. 4. In each case, the nonlocal response obtained for a plate with
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Fig. 4. The postbuckled shape of the midplane of a simply supported plate is presented for increasing axial load 𝑃 and two values of the thermal load 𝜃 ∈ {0, 200}K. The direction
of the axial compressive load is indicated for the first case. The rectangle at the bottom of each plot corresponds to the undeformed midplane of the plate. For each combination
of {𝑃 , 𝜃}, we have compared the local response (obtained for 𝛼 = 1) against a nonlocal response (obtained for 𝛼 = 0.8 and 𝑙𝑓 = 0.5𝐿). Note that the transition from the first mode
of buckling to a higher mode occurs for a lower load in case of the nonlocal plate due to its lower stiffness (when compared to a local plate) [41,42].
Fig. 5. The postbuckled shape of the midplane of a simply supported plate is presented for a local and a nonlocal (𝛼 = 0.8, 𝑙𝑓 = 0.5𝐿) plate subject to increasing axial loads. The
direction of the axial compressive load is indicated for the first case. The rectangle at the bottom of each plot corresponds to the undeformed midplane of the plate. For each case,
we have compared the response at two thermal loads: 𝜃 ∈ {0, 200}K. As evident, increase in the thermal load results in an enhanced softening of the structure. It also appears that
the assumed range of thermal loads do not affect the particular mode of postbuckling, for a fixed axial load and a fixed degree of nonlocality.
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the fractional parameters 𝛼 = 0.8 and 𝑙𝑓 = 0.5𝐿 is compared with
the response of the corresponding local plate. We do not present the
specific values of the transverse displacement since they marginally
affect the overall conclusions. In addition to the consistent softening of
the plate, visible by the larger transverse deformation of the nonlocal
plate, some additional interesting observations follow from the results
in Fig. 4. It appears that, both the local and the nonlocal plates grad-
ually shift to a higher mode of buckling with the increasing axial load
𝑃 . The appearance of the higher order mode leads to a transition in the
material point having maximum displacement, that is, from the center
of the plate to two symmetrical points lying along the direction of the
axial forces. For better visualization, we have indicated this transition
by the double-headed red and white arrows. The shift in the mode of
buckling occurs for a lower value of 𝑃 for the nonlocal plate, when
ompared to the local plate. This is a direct result of the lower stiffness
f the nonlocal plate. Further, we analyzed the effect of the thermal
oad on the deformed shape of the SSSS-01 plate, for a fixed degree of
onlocality. These results are presented in Fig. 5 and they establish that
n increase in the thermal load results in an increased softening of the
tructure. It also appears that the given range of thermal loads do not
ffect the particular mode of postbuckling, for a fixed axial load and a
ixed degree of nonlocality.
The consistent softening response predicted by the fractional-order

ormulation is a significant result when compared to the often in-
oherent predictions of classical (integer-order) strain-driven integral
pproaches. More specifically, the results obtained from the fractional-
rder approach are free from the typically troubling behavior like
ardening of the structure and even the absence of nonlocal effects
9

oted via strain-driven methods, under selected loading conditions [24,
5]. To clarify this point: hardening effects in nonlocal structures are
onsistent with the physics of the problem but should not be predicted
ollowing classical strain-driven integral approaches. It is worth noting
hat the inconsistency resulting from mathematical ill-posedness of the
train-driven approach was addressed via the stress-driven nonlocal
pproach [25]. However, stress-driven approach exhibits some impor-
ant challenges connected to numerical implementation and thermal
nalysis. Recall from Section 1 that the stress-driven approach only ad-
mits analytical solution techniques [25,30]. While this approach offers
interesting analytical insights, it prevents the application of the stress-
driven formulation to the analysis of complex geometry (even plates)
subject to general loading conditions. In fact, it appears that the stress-
driven approach has not yet been applied to analyze geometrically
nonlinear response of nonlocal structures. Further, under combined
thermomechanical loads the stress-driven approach predicts an initial
softening and a gradual switch to stiffening with increasing degree of
nonlocality [30]. On the contrary, the fractional-order model presents
consistent predictions under combined thermomechanical loads, as
evident from the results presented above.

Due to these complexities associated with either strain- or stress-
driven integral approaches, previous studies on the postbuckling anal-
ysis of nonlocal structures have invariably relied on gradient-based
approaches to nonlocality. The above discussion also suggests that
the fractional-order approach (which bears some resemblance to the
integral approaches) presents a promising alternative to the analysis
of postbuckling of nonlocal structures. Notably, gradient-based ap-
proaches result in consistent thermomechanical predictions [7,8,19].
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Fig. 6. Nonlinear bending response measured in terms of the non-dimensionalized displacement at the center point of the nonlocal plate subject to combined transverse and
thermal loads. The plate is (a) simply supported at all its edges (SSSS-02) and (b) clamped at all its edges (CCCC-02). The response is parameterized (a.1,b.1) for different values
of the fractional-order 𝛼 for a fixed length scale 𝑙𝑓 = 0.5𝐿, and (a.2,b.2) for different length scale 𝑙𝑓 values and a fixed fractional-order 𝛼 = 0.9. With respect to the equilibrium
curves projected on the plane 𝑤 − 𝑃 , the legend reports the values of the order and of the thermal load for (a.1,b.1), and the values of the length scale and of the thermal load
for (a.2,b.2). Further, the markers in some of the equilibrium curves are only used to facilitate the distinction between different curves. They do not indicate the successive values
of 𝑃 used within the numerical simulation.
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However, some difficulties arise while extending gradient-based ap-
proaches to dynamic analysis. As discussed in detail in [26], gradient
based approaches require additional acceleration gradient terms in
the constitutive formulation to ensure both well-posedness and causal-
ity. Remarkably, a recent extension of the fractional-order continuum
approach demonstrated how both the integral and the gradient formu-
lations can be unified into a stable, well-posed, and causal framework
without requiring additional acceleration gradient terms [50]. This was
achieved via a multifractional (or multifractal) extension of the defor-
mation energy in Eq. (6) [50]. Hence, it appears that the application
f the unified fractional-order approach [50] to the postbuckling of
onlocal structures is a promising extension of the current study.

.2. Bending response

The nonlinear and nonlocal formulation was also applied to analyze
he nonlinear bending response of the nonlocal plate. The effects of
ifferent combinations of thermal and transverse mechanical loads as
ell as different fractional parameters are investigated, similar to the
pproach followed in Section 4.1. For the specific numerical analyses,
10
the plate was subject to a uniformly distributed transverse load 𝑃 and a
niform temperature distribution 𝜃(𝒙) = 𝜃0 (in K). No axial forces were
pplied in this study. The simply supported (denoted as SSSS-02) and
lamped (denoted as CCCC-02) boundary conditions were used. Unlike
or the postbuckling analysis (see Eq. (22)), in this case the boundaries
o not allow for any in-plane displacement. Mathematically, these
onditions are given as [49]:

SSS-02 ∶
{

𝑥̂ = {0, 𝐿} ∶ 𝑢0 = 𝑣0 = 𝑤0 = 0
𝑦̂ = {0, 𝐵} ∶ 𝑢0 = 𝑣0 = 𝑤0 = 0

(24a)

CCC-02 ∶
{

𝑥̂ = {0, 𝐿} ∶ 𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0
𝑦̂ = {0, 𝐵} ∶ 𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0

(24b)

nce again, the solution was obtained using the nonlinear f-FEM and
he results are reported in Fig. 6. The transverse load 𝑃 and the
ransverse displacement are non-dimensionalized using Eq. (23). In
ig. 6, we have compared the nonlinear bending response of the
lates for different boundary conditions and different values of the
ractional-order constitutive parameters. In Fig. 6a.1, b.1, we varied
he fractional order 𝛼 ∈ [0.7, 1] while fixing the length scale 𝑙 = 0.5𝐿.
𝑓
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Fig. 7. The deformed shape of the mid-plane of a local and a nonlocal (𝛼 = 0.8, 𝑙𝑓 = 0.5𝐿) plate subject to a transverse load 𝑃 = 1, different thermal loads 𝜃 ∈ {0, 200} K, and
ifferent boundary conditions. The rectangle at the bottom of each plot corresponds to the undeformed mid-plane of the plate.
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n Fig. 6a.2, b.2, we fixed the order as 𝛼 = 0.9 and varied the length
cale 𝑙𝑓 ∈ [0.4𝐿, 0.6𝐿]. Similar to the results presented in Section 4.1,
he iso-surfaces in these figures correspond to different values of the
hermal load 𝜃0. Selected lines from these iso-surfaces were projected
nto the 𝑤 − 𝑃 plane to facilitate the visualization. These projected
curves correspond to the bending response of the nonlocal plate for a
fixed value of the thermal load 𝜃0 and a selected combination of 𝛼 and
𝑓 . Additionally, we have presented the deformed shape of the plates
or selected cases in Fig. 7.
As evident from Figs. 6, 7, the conclusions drawn for the thermome-

hanical postbuckling response directly extend to the nonlinear bending
esponse. Key conclusions include the consistent softening response
f the nonlocal structure with either increasing degree of nonlocality
r increasing thermal load, irrespective of the loading conditions. We
ighlight that a sharp change in the curvature noted for the higher
hermal loads is due to the selection of specific values of the transverse
oad. More specifically, the transverse load corresponding to the point
f inflection, is the load applied immediately after 𝑃 = 0. While the
curves (and the corresponding iso-surfaces) can be made smoother by
using a finer discretization of the load increments, the general nature
of the response and the overall conclusions would not be altered.

5. Conclusions

This study presented a fractional order formulation capable of cap-
turing the effect of nonlocality on the nonlinear thermoelastic response
of thin plate structures. Particular emphasis was given to the devel-
opment of a mathematically and physically consistent formulation.
The positive-definite nature of the fractional-order nonlocal continuum
formulation combined with its thermodynamic consistency enabled
the use of an energy-based method. The combination of these factors
yielded a powerful approach to address key challenges in the appli-
cation of existing classical (integer-order) nonlocal formulations. First,
in the case of postbuckling analyses, the fractional formulation allowed
for an extension of the classical Koiter’s asymptotic approach to analyze
the impact of nonlocal interactions on the nature of bifurcation and
post-critical response of thin plates. Second, it enabled the development
of an accurate finite element formulation to simulate the nonlinear
system subject to any combination of thermomechanical load and
boundary conditions. Noteworthy is the fact that, the mathematical
well-posedness of the fractional-order formulation (a direct result of its
positive-definite nature) ensures predictions of the response of the non-
local structures that are consistent and free from paradoxical boundary
and loading effects. Results established that nonlocal structures exhibit
a consistent softening behavior following the increasing degree of
nonlocality and the magnitude of thermal loads. This effect translates
into lower stability when subject to axially compressive loads and into
higher displacements when subject to transverse bending loads. The
mathematical well-posed nature, the thermodynamic consistency, and
the ability to integrate nonlinear displacements combined with the
possibility to employ a finite element method to achieve a numerical
solution provide significant advancements to the state of the art of non-
linear thermoelastic analysis of slender structures. Results also suggest
11
that fractional order formulations of structural elements can provide
a powerful and reliable foundation for the simulation of structures
subject to complex loading and response conditions.
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