International Journal of Mechanical Sciences 201 (2021) 106443

Contents lists available at ScienceDirect

Mechanicat
Sciences

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

Fractional-order structural stability: Formulation and application to the N

Check for

critical load of nonlocal slender structures s

Sai Sidhardh, Sansit Patnaik, Fabio Semperlotti*

School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA

ARTICLE INFO ABSTRACT

Keywords:

Fractional calculus
Nonlocal elasticity
Stability

Energy methods
Critical buckling load

This study presents a framework to perform stability analysis of nonlocal solids whose behavior is described
according to the fractional-order continuum theory. In this formulation, space fractional-order operators are
used to capture the nonlocal response of the medium by means of nonlocal kinematic relations. We use the
geometrically nonlinear fractional-order kinematic relations within an energy based approach to establish the
Lagrange-Dirichlet stability criteria for nonlocal structures. This energy based approach to nonlocal structural
stability is possible due to a positive-definite and thermodynamically consistent definition of the deformation
energy enabled by the fractional-order kinematic formulation. The Rayleigh-Ritz coefficient for critical load is also
derived for linear buckling conditions. The fractional-order formulation is finally used to determine critical loads
for buckling of the slender nonlocal beams and plates using a dedicated fractional-order finite element solver.
Results establish that, in contrast to existing studies, the effect of nonlocal interactions is observed on both the
material and the geometric stiffness, when using the fractional-order kinematics approach. These observations are
supported quantitatively via the solution of case studies that focus on the critical buckling response of fractional-
order nonlocal slender structures, and a direct comparison of the fractional-order approach with classical nonlocal

approaches.

1. Introduction

The stability analysis of structures, particularly the estimation of the
critical load for buckling, is a canonical problem in structural analysis
and design. An extensive body of literature is available on this topic
in the general area of classical (local) elasticity, which is built upon
a point-wise correspondence of the kinematic and material variables
via the constitutive relations. Comprehensive reviews of the stability
of elastic structures following classical elasticity theories can be found
in [1,2]. While this class of so-called local approaches has been, and
still is, a fundamental tool to model the behavior of solids, experimen-
tal observations have shown that the nonlocal interactions between ex-
tended areas of the solid (i.e. between distant points) can have a non-
negligible effect on the global response of the medium. These effects,
which are a macroscopic manifestation of long-distance interactions be-
tween distant points, are not accounted for in classical local theories.
Although nonlocal effects have been traditionally restricted to the con-
text of micro- and nano-scale systems [3,4], examples can be found in
a broader range of applications including macro-scale complex media
such as sandwich structures, architected materials, as well as function-
ally graded and porous materials [5-8].
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During the past several decades, numerous theories have been
proposed to model the effect of the nonlocal interactions in elastic
solids. Prominent theories were proposed by Kroner [9] and Eringen
et al. [10] involving strain-based integral constitutive relations. These
approaches accounted for the nonlocal interactions within the constitu-
tive relations via a convolution of the local strain with a kernel defined
over the domain of influence. Other approaches include displacement
based models implementing a superposition of both local and nonlocal
interactions [11]. In the context of stability analysis, the critical load
for buckling of the slender structures performed using the strain-based
integral formulation [12,13] predicted a consistent reduction of the crit-
ical loads due to the nonlocal effect. While these strain-based integral
formulations were powerful and somewhat very intuitive, the integral
definition of the constitutive relation [10] belongs to an ill-posed class
of integral equations involving Fredholm integral equations of the first
kind, which do not admit unique solutions. Successively, gradient based
models of nonlocal elasticity were developed in order to circumvent
the issues typical of implicit integral formulations [14]. In most cases,
the differential equivalent of the single-phase model [13,15,16] pre-
dicted a consistent reduction of the critical loads caused by the non-
local effect, however paradoxical observations were noted for certain
choices of loading and boundary conditions. These observations could
be attributed to the non-self adjoint nature of the linear operators ob-
tained following the differential models for Eringen’s nonlocal elasticity
[17,18]. Also, note that the differential models are equivalent to their
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integral counterparts only for certain choices of the kernel used in the
convolution integral and assuming an unbounded medium [19]. To ad-
dress this important issue a two-phase definition (i.e. local/non-local) of
the constitutive relations was proposed. This definition admits unique
solutions and is generally well-posed in nature leading to self-adjoint
linear operators [20]. The critical load analysis performed using this
two-phase formulation [21] also predicted a consistent reduction of the
critical loads caused by the nonlocal effects. While the two-phase mod-
els present unique solutions with a consistent nonlocal nature across
loading and boundary conditions, this characteristic property is lost for
certain choices of the constitutive parameters. As pointed in [18,20], the
inherent ill-posedness of the strain-based integral theories of nonlocal
elasticity resurfaces for vanishing values of the local fraction within the
two-phase nonlocal theory. This places an ad-hoc restriction on the ratio
between the local and nonlocal components. Further, these strain-driven
integral models also do not satisfy the thermodynamic balance laws in
a rigorous manner. More specifically, it has been observed that thermo-
mechanical deformation, obtained via this approach, satisfies the sec-
ond law of thermodynamics only in a weak (integral) sense and not in a
strong (localized) manner [20,22,23]. The above observations highlight
that there are still some important limitations in the existing nonlocal
elasticity theories that affects, although are not limited to, the stability
analysis of nonlocal structures.

Recall that, in classical elasticity, the critical load is expressed as the
ratio of the material and geometric stiffness associated with the struc-
ture (Rayleigh-Ritz coefficient) [1]. In the presence of long-range inter-
actions within a nonlocal solid, it is expected that the nonlocal effects
will be realized upon both of these stiffness terms. However, studies
employing the Eringen’s strain-integral models of nonlocal elasticity at-
tributed the consistent decrease in the critical load to a reduction of
material stiffness caused by nonlocal effects, while the geometric stiff-
ness was essentially unaffected [12,13]. In contrast, the decrease in crit-
ical loads predicted by differential models (for those cases not leading
to paradoxical observations) was attributed to an increase in geomet-
ric stiffness of the structure while the material stiffness was left unaf-
fected [13,15]. A comparison of these contrasting approaches for the
calculation of the critical load of nonlocal structures indicates that the
strain-integral model predicts a sharper reduction over its equivalent
differential model [24]. Following the above discussion, it is clear that
both the strain-based integral and differential approaches modify either
the material or the geometric stiffness [24]. However, the physical real-
ization of the nonlocal effects should not be limited to either one of these
structural stiffness terms. Clearly there is a gap in proper accounting for
the nonlocal effects on the structural stiffness terms, and a clear under-
standing of this would be required for the stability studies of nonlocal
structures.

Recently, the development of fractional-order continuum theories for
nonlocal elasticity has offered alternative methodologies that could po-
tentially help filling this gap [6,11,25]. In recent years, fractional calcu-
lus has garnered increasing attention thanks to its many applications in
diverse domains of science and engineering. Successful applications in
mechanics include, to name a few, constitutive modeling of viscoelas-
tic materials to study memory effects [26-28], nonlocal effects across
multiple spatial scales [25,29], dissipation in heat transfer [30]. Numer-
ous models for nonlocal elasticity based on fractional calculus have also
been proposed [6,11,25,31]. Fractional-order continuum theories have
successfully modeled both softening [32,33] and stiffening [29,34] ef-
fects associated with long-range nonlocal interactions in solids, and in
complex fluids [8]. Among the aforementioned literature, studies based
on fractional-order kinematic approaches are particularly exciting since
they have been able to address key limitations of both integral and
gradient based approaches to nonlocal elasticity [6,29]. More specifi-
cally, modeling nonlocal interactions at the level of the kinematics in
a frame-invariant and dimensionally consistent manner, allows obtain-
ing localized material constitutive relations free from nonlocal residual
terms. The resulting nonlocal models allowed the rigorous application
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of the thermodynamic principles without any physical inconsistency. In
other terms, the fractional-order kinematic approach allows for a strong
(or localized) imposition of the first and second laws of thermodynam-
ics at each point within the continuum [23]. This result is unlike the
classical nonlocal approaches based on the integral-form of the mate-
rial constitutive relations that, instead, allow only a weak imposition
of the thermodynamic balance laws over the entire domain. Further,
the positive-definite deformation energy density achieved with this def-
inition guarantees the uniqueness of the solution and allows variational
principles to be applied for fractional-order continuum theories. This fa-
cilitates the development of finite element based solutions for fractional-
order models of nonlocal solids [32,33]. By means of this numerical tool,
the effects of long-range interactions modeled using the fractional-order
continuum theory have been studied on both the linear and the geomet-
rically nonlinear response of nonlocal beams and plates [32,33,35,36].
Large deformation analysis of nonlocal structures can be effectively car-
ried out using geometrically nonlinear fractional-order kinematic rela-
tions [33,36]. This framework facilitated by the fractional-order models
provides the foundation required for an energy-based stability analy-
sis of nonlocal structures. So we may conclude that the fractional-order
formulation provides physically, thermodynamically, and mathemati-
cally consistent models for the softening influence of nonlocal interac-
tions[23,32].

Before proceeding further, we provide a comparison of the
fractional-order theories with other existing nonlocal models. The
fractional-order continuum theory for nonlocal solids belongs to a class
of displacement-driven nonlocal models, where differ-integral opera-
tors replace the classical integer-order derivatives within the strain-
displacement relations. This modification follows from a fractional-
order definition of the deformation gradient tensor, and allows the con-
stitutive models to capture long-range interactions within the nonlocal
solid. The Eringen’s integral theory of nonlocal elasticity [19] is based
on a strain-driven approach to nonlocal elasticity. It is established that,
unlike the fractional-order theory, Eringen’s model does not satisfy the
thermodynamic balance laws in a rigorous manner [20,37]. The ther-
modynamic consistency is crucial to develop well-posed governing equa-
tions. This issue with the Eringen model is inherent in all the theories
derived from it such as the two-phase (local/non-local) theory of elas-
ticity [37], and the nonlocal strain-gradient theory [38]. Further, the
Eringen’s differential theories are also derived from these integral the-
ories subject to some conditions on the choice of the kernel [14,39],
which further limits the scope of differential nonlocal theories. Addition-
ally, the differential theories are also not well-posed leading to incon-
sistent softening or even paradoxical observation of stiffening influence
by nonlocality [17,40]. All the models discussed above, including the
fractional-order theory, involve only the classical modes of deformation
and result in a softening influence of nonlocal interactions. On the other
side, there exist higher-order models [41,42] and higher-grade theories
[43] that also include additional modes of deformation and provide a
stiffening influence of the nonlocal interactions [44].

In this study, building upon the existing geometrically nonlinear
fractional-order kinematic approach to nonlocal elasticity theory, we
develop a framework for the stability analysis of nonlocal slender struc-
tures. As will be shown later, the fractional-order kinematic relations
allow the nonlocal effects to be accounted for on both the material
and the geometric stiffness terms. The objective of the current work
is two-fold. First, the conditions necessary to achieve structural stability
of fractional-order nonlocal solids are derived following an energy ap-
proach. As part of this goal, we extend the classical Lagrange-Dirichlet
theorem for fractional-order continua and apply it to obtain the crit-
ical loads for buckling of nonlocal structures. Note that this energy
based approach to stability is possible due to the positive-definite de-
formation energy characteristic of the fractional-order models for non-
local elasticity [23,32]. Second, we apply the stability theory to per-
form a critical load analysis for the linear buckling of fractional-order
beams and plates. For this purpose, we make use of the fractional finite
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element model (f-FEM) developed here for a numerical solution of the
eigenvalue stability problem and to perform a parametric analysis to as-
sess the effect of the fractional-order nonlocality on the critical buckling
load.

In this paper, we begin with an introduction to the constitutive
modeling of the fractional-order theory of nonlocal elasticity in §2 fol-
lowed by the development of a framework of stability analysis for the
fractional-order models in §3. Later, we use this framework in §4 to de-
rive the theoretical and numerical models for nonlocal beams and plates
using variational principles. Finally, we use a f-FEM approach to eval-
uate the critical loads corresponding to the fractional-order nonlocal
structures and thereby study the influence of the long-range nonlocal
interactions on the critical loads in §5.

2. Constitutive modeling for fractional-order nonlocal elasticity

In this section, we review the basic constitutive relations for the
fractional-order continuum theory [6,33]. We begin with a brief review
of the fractional-order kinematic relations and of the constitutive rela-
tions for nonlocal solids developed in agreement with thermodynamic
principles.

Analogously to classical elasticity models, the fractional-order geo-
metrically nonlinear Lagrangian strain tensor for nonlocal solids is given
by [6,33]:

a
1
E= 5(VF*UX+V"U§+V“U§V“UX) €]

where U(X) is the Lagrangian displacement field. In the above expres-
sion, the fractional-order derivative of the displacement vector U(X)
evaluated with respect to spatial coordinates X C R? is denoted by
V®Uy. The component form for this second-order tensor is V; Ux =
D’;’(j U;. The space-fractional derivative DFUX) to the order « € (0,1)

is defined as [6]:
a 1 a— o a— a
DRU) = 3T - a) [Le-! gA DEUX) — L~ ngBU(X)] )

where I'(-) is the (complete) Gamma function defined over real numbers,
and the expressions gA DU(X) and gD;’(B U(X) are left- and right-handed
Caputo spatial derivatives of the displacement field vector U(X). While
the above expression is a form of the Riesz-Caputo derivative defined
for a € (0, 1), the fractional-order derivative DZUX) identically reduces
to the first integer-order derivative when « = 1. We merely note that
the above definition differs from the classical Riesz fractional deriva-
tive defined in [45]. The terminals of the fractional-order RC derivative
are given as X, = X - L, and X3 = X + L. Here, L, and Ly are length
scale parameters associated with the fractional-order model for nonlo-
cal elasticity. The domain enclosed by the terminals (X,,Xp) defines
the horizon of nonlocal influence at the point X. Note that the expres-
sions L‘;‘l and L’XB‘1 in the above equation ensure frame-invariance of
the fractional-order continuum theory, and dimensional consistency of
the fractional-order strain. These parameters are defined such that they
can be, if needed, asymmetric (different on either side of a point in a
fixed direction), anisotropic (different for different directions), as well
as spatially-variable. This formulation generalizes alternative fractional-
order continuum formulations [46,47]. More specifically, unlike similar
fractional-order continuum theories, the length scale parameters in the
current formulation allow for an appropriate truncation of the length
scales to address asymmetric nonlocal horizons when in presence of
physical discontinuities in the domain [6]. The parameter %F(Z— a)
along with the length scales, in the RC definition, ensures frame in-
variance of the fractional-order strain. Further discussion regarding the
geometrical meaning of fractional-order kinematic relations and the ob-
jectivity of constitutive relations developed within the framework of
fractional-order continuum theory along with the physical interpreta-
tion of the fractional-order model are available in [6,32].
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The integro-differential nature of the fractional-order derivative used
above introduces the effect of nonlocal interactions on the elastic re-
sponse, at the level of kinematics. To illustrate this aspect, the definition
of the RC fractional-derivative given in Eq. (2) can be recast as:

X+Lp

DRUX)] = / AX. &, a) Dé [U1d¢ 3

X-L,

where the kernel A(X, &, a) is the a-order power-law function connecting
the point under study X and another point & within its domain of influ-
ence. The above mathematical statement allows the fractional deriva-
tive D[U(X)] to be interpreted as convolution of (integer) first-order
derivative D)l( [UX)] weighted by the power-law kernel A(X, &, @) over
the domain of influence (X,,Xp). The power-law kernel in the above
expressions may be interpreted as the attenuation function correspond-
ing to fractional-order model of nonlocal elasticity, analogous to the
classical definition for integer-order nonlocal elasticity [20]. Note also
that the power-law kernel satisfies the normalization: /X)iB AdE =1 for
all the points within the solid. This condition allows recovering local re-
sponse conditions under uniform field distributions [22]. The position-
dependent length scales for nonlocal horizon of influence allows this
condition to be satisfied for points within the solid that are close to the
geometric boundaries (see [6]). We also note that the geometric def-
inition of the fractional-order strain (and thereby the fractional-order
deformation gradient tensor) may be stated as the parameter defined to
capture the change of the length of an infinitesimal line in the nonlocal
body. This is done by including the (nonlocal) effects of the points within
the domain of influence (X,,Xp) through the differ-integral definition
of the fractional-order derivative.

The complete nonlinear expressions for the fractional-order Euler-
Lagrange strain-displacement relations given in Eq. (1) can be simpli-
fied to obtain the fractional-order analogues of the von-Karman strain-
displacement relations. For a geometrically nonlinear elastic response
assuming large displacement, but small numerical values for strains, the
fractional-order von-Karmaén strains are [33,36]:

1 1

&y = 5 (D5 Ui+ Dy Uy )+ 3 (D5 Us Dy U ). ij=1.2 @

é[j (w) ‘i[j (u,u)

where U, for k =1,2,3 are the components of the displacement field
vector. More specifically, U;(X) corresponds the transverse component
of the displacement field vector at point X. Similarly, U, and U, are
displacement components along x; and x,-directions, respectively. The
transverse strain components (normal é&;; and shear &, €;,) are the lin-
earized forms of their respective expressions available from Eq. (1).
Here, é(u) and q(u, u) denote the linear and quadratic components of
the von-Kérman strain.

Modeling nonlocal interactions via the kinematic relations allows the
definition of localized material constitutive relations to be extended to
a fractional-order continuum theory in a thermodynamically consistent
manner [23]. In other terms, the tensor representing the material prop-
erties of the fractional nonlocal model maintains the same form as the
classical tensor used in local elasticity. Therefore, the localized mate-
rial constitutive relations provide a one-to-one correspondence between
the fractional-order strain (¢) and the nonlocal stress (&) evaluated at
a point within the solid, under the assumption of linear material con-
stitutive relations. For the general class of hyperelastic solids with a
non-dissipative response, a strictly convex functional U’ [u(x)] referred
to as the deformation energy density can be defined. The constitutive
relations for the fractional-order nonlocal solid, obtained from the ther-
modynamic balance laws, may be written as [23]:

UG )

&0
Y 0&;;
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where the deformation energy density for a linear elastic nonlocal solid is [23]:

V(@) = 36,0 &= 3 Cu & & ©
C;;i in the above expression is the positive-definite fourth-order elastic coefficient tensor. Note that the above expression for potential energy is
positive-definite (assuming non-zero deformation) and convex in nature for a positive-definite elasticity coefficient tensor. The stability of the elastic
law (material stability) for linear elastic solids follows from this strict monotonicity and positive-definite elasticity coefficient tensor. It is clear that
the conditions for strong ellipticity of the elastic coefficient tensor for the fractional-order nonlocal solid simply follows from analogous results of
the classical theory of elasticity. Therefore, the conditions for material stability of the nonlocal solid are also local in nature. Finally, the constitutive
relations for the nonlocal stress in an isotropic solid are given as:

5,(8) = 16,8, +2ué; ©)
where the material elastic constants, considering isotropy, are the Lamé parameters A and u. The conditions for material stability of the isotropic

nonlocal solid are A + (2/3)u > 0 and u > 0, similarly to the classical theory of elasticity. This follows from extending the Drucker’s stability postulate
for nonlinear constitutive laws [48] to the stability of nonlinear fractional-order materials.

3. Stability analysis of fractional-order nonlocal structures

As noted by Hill [49], for an elastic solid the stability and uniqueness of adjacent equilibrium positions are intimately related. Hill showed that
the incremental position is stable if a unique solution can be obtained for the boundary value problem at this point. This observation allows studying
the stability of the adjacent equilibrium position by means of a linearized form of the nonlinear governing equations. The increments for adjacent
equilibrium positions are characterized by a continuous variation of the control parameter A. This reduces the current analysis to a study of the
stability of equilibrium positions for a continuous variation of this control parameter.

Although kinetic definitions for stability are more general, assuming non-dissipative elastic structures, we conduct the current analysis using the
static stability criterion based on energy considerations. This criterion states that:

Given a displacement field u € H, where H is a Hilbert space equipped with the norm ||u||, we define the potential energy functional I1[u, A]. The equilibrium
point (u,,A,) is considered stable under the following assumptions:

1. The potential energy functional is differentiable up to the second order at (u,, A,).
2. The second variation 5*I1[u,, A,] is positive-definite.

The above proposition is the classical Lagrange-Dirichlet theorem which is now extended to the framework of fractional-order continuum theory.
This is possible due to the thermodynamically consistent positive-definite definition for internal energy density given in Eq. (6), for the elastic
deformation of a fractional-order nonlocal solid. In terms of kinetic conditions for stability, this can be interpreted as a bounded response of the
nonlocal solid subject to perturbations at (u,, A,).

The condition described above for static stability translates into the positive-definite nature of the Hessian of the potential energy function, referred
to as the tangent stiffness matrix. As discussed earlier, the deformation energy function for fractional-order nonlocal solid given in Eq. (6) is strictly
convex. This ensures that the Hessian of the deformation energy density, also referred to as the elastic stiffness tensor, is positive-definite. However,
it is worth noting that the increase of the control parameter A can result in a violation of the strong convexity of the tangent stiffness tensor. In the
following, we study the conditions leading to the onset of instability upon increasing A and identify specific critical value A, for a fractional-order
solid.

The total potential energy I1[u, A] of a nonlocal structure occupying a domain Q is expressed in terms of the deformation energy density U"(é(u)),
defined for nonlocal strains in Eq. (6), and the work done by external surface loads f(A) applied on the boundary 0Q°. The expression for I1[u, A]
is:

M[u, A] = / V(&) dV — / f(A) -udA )
Q Qe
The first variation of the above defined potential energy is given as follows:
M = / & : [e(6w) + G(u, 6w)] dV - / f(A)-sudA=0 ©)
Q 0Q0

In the derivation of the above result, we employ the expressions for deformation energy density in Eq. (6) and of the geometrically nonlinear
kinematic relations in Eq. (4). As shown in [32], the solutions to the above equation (u,, A,) serve as the equilibrium points for the static response of
a nonlocal solid. According to the Lagrange-Dirichlet theorem, the equilibrium state (u,, A,) is stable if 5°II[u,, A,] > 0. For this, the second variation
of the potential energy 611 evaluated at the equilibrium point (u,, A,) is given by:

811 =/ [e@w) + G(u,,6u)] : C: [&6w) + q(u,,su)] + 6, : Gdu,suydV >0 (10)
Q

where &, is the equilibrium stress evaluated at (u,, A,). Following the proposition given above, the critical state may now be identified to be the
limit of the stability at which the second variation ceases to be positive definite. Thus, an equilibrium point can be considered the critical point of
stability (u,, A,) if:

/{(é(&u) +q(u.,6u)) : C: (&(6u)+ q(u,,é6u)) +6(A,) : q(éu,6u)} dV =0 11
Q

While the above equation may be solved for the critical load (A,) corresponding to the nonlinear buckling of fractional-order nonlocal solids, in this
study, we focus only on linear buckling. Analogous to classical approaches, we make certain assumptions to obtain the critical loads for linear buckling
[50]. Firstly, in order to linearize the above nonlinear equation, we assume a proportional loading force (f(A) = Af’, f° being a representative force
vector) and a small deformation at the critical point. This assumption results in the following linear equation:

/ (&(5u) : C : (B(6W) + A, 6° : §6u,sw)} dv =0 (12)
Q
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where &9 is the stress generated in the solid by the representative force f°. Finally, the load proportionality factor at the critical point corresponding
to the linear buckling of nonlocal elastic solids is given by:

Jo &) : C: &) dV
Jo8° 1 qu,w) dv

A, = min, (13)

The above expression is the fractional-order analogue of the Rayleigh-Ritz coefficient for critical buckling load used in classical elasticity.

The expression of the critical buckling load in Eq. (13) allows for interesting observations. The numerator of the above expression corresponds
to the general (or material) stiffness of the structure, while the denominator is referred to as the stability matrix or the geometric stiffness for the
nonlocal structure. These geometric stiffness terms in the above equation are a result of the geometrically nonlinear strain-displacement relations.
The jump into buckled state follows from the lower strain energy state corresponding to bending compared with axial compression at the critical
point [51]. Therefore, the additional energy from external compression at the critical point causes transverse bending (or buckling) of the structure,
as opposed to the axial response obtained until reaching the critical point. In this context, the energy associated to bending is characterized by the
’Material Stiffness’ which includes the curvature (D)z{l wy). The ’Geometric Stiffness’ signifies the energy corresponding to axial compression captured
by (D}(1 wy)? (von-Karman nonlinear term in axial strain ¢,,). Note that, in obtaining the critical load of the nonlocal solid using the fractional-order
kinematic approach, the influence of the nonlocality is realized on both the general stiffness term as well as the geometric stiffness term. Following
our discussion in the introduction, we note that this is unlike classical integer-order nonlocal theories that include the nonlocal interactions through
material constitutive relations alone. Due to this, the nonlocal interactions modeled by the classical integral theories of nonlocal elasticity affect only
the general stiffness while the geometric stiffness terms remain identical to case of local elasticity. The implications of fractional-order kinematics
in the geometric stiffness have not been previously noted in the literature.

4. Buckling of fractional-order slender nonlocal structures

In this section, we apply the above formulation to determine the critical loads of nonlocal beams and plates modeled according to the fractional-
order continuum theory. Following the procedure discussed in §3 for a general solid, we begin with geometrically nonlinear kinematic (strain-
displacement) relations to derive the governing equations of equilibrium. Finally, in order to obtain the critical load for linear buckling, we linearize
the system equations to setup the eigenvalue problem.

4.1. Euler-Bernoulli beams

In this study, slender beams with geometric length L and height 4 are chosen such that L/h > 50. The width of the beam is denoted by b. As
shown in the schematic in Fig. 1, the Cartesian coordinate axis x, is aligned along the length of the beam, and the surface x; = 0 coincides with the
mid-plane. Thus, x; = 0 and x; = L are the longitudinal ends of the beam, while x; = +h/2 are the top and bottom surfaces.

For the slender beam, the following Euler-Bernoulli beam displacement theory is considered here:

dwg(x)
ul(xl,x3):u0(x1)—x3T, uz(xy, x3) = wy(x) (14)
1
where, u((x,) and w(x,) are the generalized displacement coordinates defined at a point X(x;) on the reference plane x; = 0. They correspond to
the axial and transverse displacement fields at X,,(x;). Hereafter, the functional dependence on the axial coordinate x, is implied and not mentioned
for the sake of brevity. In the following, the fractional-order geometrically nonlinear strains evaluated using the von-Karmén kinematic (strain-

displacement) relations in Eq. (4) are:

B dw, 1 2
&, = D% uy —x3 D, [E + 5(1);;1 wo) (15)

where ijl [1is a concise notation for the RC fractional-order derivative D 5 in the x; direction. Using Eq. (7), the axial stress in the nonlocal

Xi=la " x +1
beam is obtained as:

611(x1) = Eép(xy) (16)

where E is the Young’s modulus for the isotropic solid. Non-zero transverse shear stresses may be neglected under the slender beam assumption. As
shown in Eq. (8), the nonlinear fractional-order governing differential equations of equilibrium of the nonlocal beam may be derived following the
principle of minimum potential energy: 6I1 = 0. They are given as follows [33]:

f<—>{
|

T

Fig. 1. Schematic of the isotropic beam illustrating the Cartesian coordinate axes and a few geometric parameters.
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D¢ Ny (xp) + Fi(x) =0 Vx; €0, L) (17a)
DY [ M| + D2 [Ny e D2, [wg] | + Fyxi) =0 ¥ x, € 0.1) (17b)

where F;(x) and F;(x,) are the distributed forces acting on the nonlocal beam. The essential and natural boundary conditions for the current study
are:

Ny(x; = L)= =N, and Suy(x; =0) =0 (18a)
M, (x;)=0 or 5[1)}‘1“;0] =0V x, €{0.L} (18b)
D}qMH(xI)Jr Nll(xl)Di] [wo] =0 or swy=0 Vx; €{0,L} (18¢)

where N,(> 0) is the magnitude of the externally applied compressive surface loads along x, at the free end. In Eqs. (17) and (18), N;;(x;) and
M (x,) are the stress resultants associated with axial extension and bending of the nonlocal beam. They are defined as follows:

b/2 )2
N]l(xl):/ / 611(xy, x3) dxz dx, (19a)
-b/2 J-h/2
b/2 rh/2
My (x)) = / / x3 671 (x, x3) dx3 dx; (19b)
-b/2 J-h/2
The expression @zl (+) that appears in Eq. (18) denotes the following Reisz-Riemann Liouville (R-RL) fractional derivative:
a (. _l _ a—1 [ RL o _ja—1(RL pa
DY, O (xy) = 21"(2 |y 5,2y D, SO0 ) = 75 Dy S D) (20

where «a is the fractional-order, and f(x,) is an arbitrary function. It may be noted that the above expression is a Riemann Liouville analogue of the
previously encountered Caputo-based Reisz fractional derivative in Eq. (2). In the above expression, the terms flﬁ s Dy f(x1) and flL Djl +, f(xp)
are the left- and right-handed fractional-order derivatives of f(x;) to the order a evaluated using Riemann Liouville formalism, respectively. The
fractional-order R-RL derivative D¢ (-) is carried out with respect to the axial coordinate (x;) over the interval (x; — I, x; + ). This is unlike the
RC fractional derivative D}(-) defined over the interval (x; —I4,x; + ).

The self-adjoint nature of the linear operators in the governing equations follows from the convexity of the deformation energy density used in their
derivation. The proof of this property is provided in [32]. The positive-definite definition of the deformation energy density given in Eq. (6) and the
self-adjoint fractional operators in the governing equations result in a consistent softening of the structure upon inclusion of the nonlocal interactions
[32,33].

For the current study, concerning the identification of the critical load for linear buckling, we linearize the nonlinear fractional-order governing
equations given in Eq. (18), under the assumptions of proportional loading and small deformations at the critical point as discussed in §3. Considering
the case without externally applied distributed loads (i.e. F,(x;) = F;(x;) = 0), the linearized fractional-order governing equations of equilibrium for
the Euler-Bernoulli nonlocal beam before the onset of buckling are obtained as:

DI Nyj(x)) =0 Vx; €(0,L) (21a)

D! [s)le“(xl)] + N (D2 [wo] ) =0 ¥ x, € 0.1) 21b)

where the constant N, is the in-plane stress-resultant along x, at the onset of buckling. In the derivation of the above equations, it is assumed
that the beam is straight (wy(x,) = 0) before buckling. Solving the linearized fractional-order governing equation for the axial response given in
Eq. (21a) and subject to uniform edge loading N expressed via natural boundary conditions in Eq. (18a), we obtain the in-plane stress resultants
Ny = —N,. A detailed derivation of the above results in provided in Appendix A.1. From the above equations, it is clear that the elastic response
in the x; and x;—directions are decoupled. Therefore, we only proceed with solving the linearized governing equation for the transverse direction
given in Eq. (21b). This is the eigenvalue problem that governs the onset of buckling in a nonlocal beam subject to compressive axial force N. The
smallest value of the N, for which instability sets in is the critical load.

Obtaining analytical solutions to the eigenvalue problem involving fractional-order governing equations is not a trivial task and typically not
possible. Thus, we employ a numerical solution based on the f-FEM method developed in [32]. Using the method of weighted residuals, the following
mathematical expression is equivalent to the governing differential equations in Eq. (21b):

/OL (o, [i‘)iIM“(xl)] - NgD, [Dgl wo]) Sty dx; = 0 22)

where a variation of the transverse displacement field 5wy, is chosen to be the weight function. Employing integration by-parts in the above expressions
we derive the following weak-form equivalent of the governing equation [32]:

L 3 2 L 2
Eh « | dwo 3 . _
/o 12 (DX’ [dxl ]) i No/o (Dxl wo) dx =0 23)

Using a finite element approximation for the transverse displacement field in the above equation, we arrive at the following set of algebraic equations:

[K21{A} = {0} (24a)
where
LER . L .
[K;] = /0 T[BH,II]T[BH,II] dx; —No/o [BH,I]T[BH,I] dx, (24b)
[Kb]: Material stiffness [Gb): Geometric stiffness
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xo

| Z1

Fig. 2. Schematic of the isotropic plate depicting the Cartesian coordinate axes and relevant geometric parameters.

is the tangent stiffness matrix. The strain-displacement approximation matrices [By, ;] and [B;, |,] used in the above equation are fractional-order in
nature and their expressions are provided in Appendix A.2. It is evident from the expression of the geometric stiffness matrix in Eq. (24b) that the
modeling of nonlocal response via the fractional-order kinematic approach effects a change in the geometric stiffness of the solid in addition to the
material stiffness, as also discussed in §3. This is unlike classical integer-order approaches to nonlocal elasticity where the geometric stiffness matrix
is still local in nature. Note that, in the above derivation, we employed the following approximation for the transverse displacement field:

{wo(x))} = [HG)I{AL(x))} (24¢)
where [H(x,)] are the one-dimensional C! (Hermite) approximation functions, and:
o dwy 7| Ne
b\T _ i 0
{ahT = [wo o } . (24d)

is the element nodal vector of the generalized displacement coordinates for the N,—noded element.

4.2. Kirchhoff plates

The methodology outlined above is now extended to a thin plate. As shown in the schematic given in Fig. 2, the length and breadth of the plate
are a and b, respectively, and the thickness # is chosen such that 4 < a/50. Further, for the Cartesian coordinate system considered here (see Fig. 2),
x3 = 0 is the mid-plane for the plate, and x; = 0,4 and x, = 0, b coincide with the transverse free faces of the plate. We consider the displacement
field distribution according to the Kirchhoff plate theory:

wy(Xo) dwy(Xo)

4 (X) = ug(Xg) = x3 — = 1p(X) = vp(Xo) ~ x5 Q0 X0) %) = wp(Xy) (25)
X1 0x,

where uy(X,), v9(Xp), and wy(X,) are the generalized displacement coordinates evaluated at a point X;(x;, x,) = X(x|, x,,0) (on the reference plane

x3 = 0). The expressions for the fractional-order geometrically nonlinear strains evaluated following the von-Karman strain-displacement relations

given in Eq. (4) are:

_ ow, 1 2
&y = Diluo _X3D:1 [E] + §<Dzlw0> (26a)
~ ow, 1 2
&, = D vy~ x; D%, [()—xz] +5(D%,w) (26b)
P ~ a a s awo a 6w0 a a
Fip = 261, = (DX] vy + szuo) - Df |2+ D (=2 ) + (Dxl woD?, wo) (26¢)
X1 10X
Here, D} = =1y, Dgl"'lE] and DS = o=l Df:z +g, denote the RC fractional derivatives along x; and x,. The domains (x; —1/,,,x, +/5) and

(x3 = 14,5 %, + 1)) provide the horizon of influence for the point X,(x;, x,) along the x; and x,—directions. The length scales /,, and I (i = 1,2) are
the nonlocal length scales in x;—direction. Using Eq. (7), the nonlocal stresses in the isotropic plate are obtained as:

61 = T— (6“ + vezz) (27a)
tn=1"7 (véy +éx) (27b)
_ E .

TP LAE 27e)

where E is the Young’s modulus and v is the Poisson’s ratio of the isotropic solid.
As mentioned previously in the case of fractional-order Euler-Bernoulli beam, the fractional-order governing differential equations of equilibrium
of the nonlocal Kirchhoff plate are derived following the principle of minimum potential energy. They are given as [36]:

DY Ny + DL Ny + F =0 (282)
D Npp + DY Nyp+ Fy =0 (28b)
D! [@gl My, + 98, Mlz] + D! [@gl My + 9%, M22] + D (Nyy DS wy + Nyp D2, wg) + D (N Dty + Ny D2 wg) + F5 = 0 (28¢)

7
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where F; (i = {1,2,3}) are externally applied distributed forces, and N5 and M are, respectively, the stress resultants associated with in-plane and
bending response of the mid-plane evaluated at X,,. They are evaluated using the nonlocal stresses given in Eq. (27) as follows:

h/2 h/2

N,.j =/ &ij dx;, Mij =/ X3 &ij dxs (29)
—h/2 —h/2

where i, j € {1,2}. The boundary conditions necessary to solve the governing equations given above are:

oug =0 or N;;=-N,
v P L Jovy =0 or N;,;,=0 30
X lx =10.a} D95 =0 or DL M +2D! My, + Ny D wy+ NyyDL wy =0 (302)

6D;lw0 =0 or M, =0

ouy =0 or N;,=0
v, |2, = {0.5) : ovy =0 or Ny, =-N, (306)
XX =00 16w, =0 or D, My +2D} My + N,D} wy+ NyD, wy =0

8D wy=0 or My=0

where N, (> 0) and N, (> 0) are the magnitudes of the externally applied uniform compressive surface loads at the free ends in the x; and x,—directions,
respectively. Recall that the terms @‘;l (-) and ®§2(~) in the above equations are the R-RL fractional-order derivative with respect to x; and x,. The
expressions for these derivatives follow from the definition for R-RL fractional derivative given in Eq. (20).

In order to obtain the critical load for linear buckling, the above given fractional-order nonlinear governing equations of equilibrium are linearized
following the methodology outlined in §3 for general solids and employed for analysis of beams in §4.1. The linearized governing equations for the
Kirchhoff plates before the onset of buckling, assuming externally applied distributed loads to be absent, are:

D Ny + DL Np =0 Gla)
D Npp + DY Ny =0 G1b)
D! 2 My, + @gzMu] + D! [gg] M+ M22] + N D (DX wg] + N oD [DF wg] + N D [DE w] + NoyD [DY o] =0 Glo)

where ND are the in-plane stress-resultants before the onset of buckling. We assume two separate cases: (1) uniaxial compression where the plate
is subject to externally applied distributed surface loads N, on the transverse faces at x; = 0 and x; = a; (2) biaxial compression where the plate is
subject to N, on faces x; = 0,a and N, on faces x, = 0, b. In the absence of external shear loads, the linearized fractional-order governing differential
equation corresponding to the transverse displacement of the nonlocal plate is given as:

DI [ My, + D% M| + DL D2 My + D, M| = Ny D IDE, 0] = Ny, 1D wg] = 0 (32)

The above equation corresponds to the biaxial compression, and may be reduced to uniaxial compression by setting, as an example, N, = 0. Note
that the in-plane stress resultants N,, and N, in Eq. (31c) are equal to the magnitude of the uniform edge loads N, and N,, respectively. This
follows from solving the in-plane governing equations given in Eq. (31) subject to boundary conditions given in Eq. (30).

As in the previously encountered case of fractional-order beams, we employ the method of weighted residuals to express the following mathe-
matical statement as equivalent to the fractional-order governing equation in Eq. (32):

i (o) [@g] My, + @glez] +D], [@g] My, + D2 M22] = Ny D D2 wgl = Ny, 1D wl ) Suwy dxy dx; =0 (33)

Integral operations to reduce the above statement into the weak equation for Eq. (32), and finite element approximations for the displacement field
variables gives the following algebraic equations of equilibrium:

[K7p~]{A”} = {0} (34a)
where the tangent stiffness matrix [K7] is given as
[K}1=[KP] = N{[G}]1 - N,[G}] (34b)
Here, [K”] is the bending stiffness matrix

@t gpd _ . S . ER® _ T, - .
[KP]= /0 /0 m([BH,u] By ]+ [Byon) + [Byy o) ([Byy o] + v [By 1)) + m([BH,IZ] +[By111)" ([By10] + [By 1) dx; dx,

(34c)

and

a b 5 5 a b 5 5
[Gf] = A /0 [BHJ]T[BH’I] dxldxz [Gg] = A /0 [BH’Z]T[BH’Z] dxldxz (34d)

are the geometric stiffness matrices of the nonlocal Kirchhoff plate for compression along x; and x, directions, respectively. Note the effect of the
fractional-order nonlocality on the geometric stiffness matrices via the fractional-order strain-displacement approximation matrices [EHD]. In the
derivation of the algebraic equations of equilibrium, we employed the following approximation for the transverse displacement field:

{wo(x1, %)} = [H(xp, x)[{AL(xy, x,) } (34¢)
where [H(x;, x,)] are the two-dimensional C! (Hermite) approximation functions. The element nodal vector is expressed as:

owy'  dwy' 0w, i] N

e

(34f)

0x, 0x, 0x10xy | |i=1

a7 = [

and includes the generalized displacement coordinates for the N,—noded element.
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5. Results and discussion

We report here the results of numerical simulations conducted to study the effect of long-range interactions, modeled via fractional-order contin-
uum theory, over the critical load of slender structures. More specifically, the f-FEM models for the Euler-Bernoulli nonlocal beam in Eq. (24) and
the Kirchhoff nonlocal plate in Eq. (34) are solved for the critical load to study the influence of the fractional-order and the nonlocal length scales.
The material properties of the isotropic solid are considered as follows: E = 30 MPa and v = 0.3. The nonlocal horizon is assumed to be symmetric
for all those points that are sufficiently far from the boundaries. In other terms, the length scales on both sides of the point of interest are assumed
to be equal. For a beam this condition translates to [, =/ = [, while for a plate it means [, =lp =14, =15 =1I;. Clearly, the symmetry of the
nonlocal horizons is broken when considering points whose distance from the boundary (in a given direction) is smaller than /. In this latter case,
appropriate truncation of the length scales is performed as indicated in the schematic of Fig. 3. This asymmetry in the length scales, for points
close to the external boundaries, is achieved via the independent definitions of the length scales /, and / in Eq. (2). This aspect generalizes the
fractional-order continuum theory with respect to other formulations [31]. In the subsequent studies, we carry out numerical analyses and provide
the results for different choices of fractional-order constitutive parameters. Note that the choice of the fractional-order « is always chosen to be
greater than 0.5. This choice follows from a loss of consistency in nonlocal elastic behavior caused by excessive softening when « < 0.5 [32,33]. A
detailed explanation of this behavior along with the physical rationale is available in [32].

5.1. Beams

In line with the assumptions for the Euler-Bernoulli beam displacement theory, we choose a thin beam with aspect ratio L/h = 100 for the current

study. The width of the beam was chosen as 2 x h. The critical loads reported here were non-dimensionalized as follows [50]:
12

2El
Before presenting the results for the critical loads, we make an important remark on the convergence of the discretized numerical model. As discussed
in [52], numerical convergence of the f-FEM requires accurate approximation of the convolution integral corresponding to the nonlocal interactions.
This is ensured by considering a suitable choice of the ’dynamic rate of convergence’, defined as N/ =1 /1., where [, is the size of the uniform FE
mesh. For this purpose, the convergence study of the 1D f-FEM conducted for different choices of « and / f' is reported in Table 1. The study illustrates
the excellent convergence of the normalized eigenvalues that achieve differences of <1% between successive refinements of the FE mesh. Following
these results, we used N/ = 24 for all the simulations presented in this section.

N, = N, (35)

A 2
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[}
1
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Fig. 3. Illustration of position dependent length scales for three different points (P,Q, and R) in the isotropic domain. Note the symmetry in length scales for a point
Q sufficiently within the plate, unlike points P and R that are close to the boundaries.

Table 1

1D f-FEMI mesh convergence study. Non-dimensional critical load of a doubly
clamped beam for different values of the constitutive parameters « and /,. In all
cases, N/ = 24 guarantees a difference between successive refinements within 1%.

Fractional Horizon fractional-order, a
Length, /, Ninf
a=10 a=09 a=028 a=0.7
I, =02L 12 4 3.9574 3.9374 3.9200
18 4 3.9529 3.9291 3.9072
24 4 3.9514 3.9251 3.8979
30 4 3.9506 3.9224 3.8908
I, =06L 12 4 3.7216 3.3789 2.8594
24 4 3.7238 3.3840 2.8777
36 4 3.7246 3.3871 2.8817
48 4 3.7250 3.3882 2.8817
I;=L 12 4 3.8460 3.6969 3.4806
24 4 3.8484 3.7116 3.5216
36 4 3.8497 3.7182 3.5389
30 4 3.8504 3.7215 3.5466
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Table 2

Critical loads for beams subject to various boundary conditions. Results are non-dimensionalized following Eq. (35) and
compared to study the effect of fractional theory constitutive parameters. Recall that SS stands for simply supported, CC
for doubly clamped and CF for cantilever beam (one end clamped and other end free).

SS CcC CF

a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7

l,=04L 1.000 1017 0998 0927 4.000 3.745 3469 3.120 0250 0259 0282 0315
l,=06L 1.000 1069 1095 1.046 4.000 3.720 3376 2.877 0.250 0.261 0.289  0.330
l,=08L 1.000 1.118 1.200 1.208 4.000 3.815 3.598 3.242 0250 0.260 0.287 0.320
I, = 1.000 1.140 1.255 1.319 4.000 3.848 3.712 3.522 0250 0.259 0.282  0.305

The critical loads of fractional-order beams subject to simply supported (SS), doubly clamped (CC), and cantilever (CF) boundary conditions at
x; =0, L are tabulated in Table 2 for various fractional-order parameters (« and /). A non-monotonic variation of the critical load with increasing
degree of nonlocality, obtained by reducing a and increasing /, is clearly evident from the table. This observation is unlike the monotonous reduction
in critical load noted from similar studies based on classical integer-order nonlocal theories [12,13,21,24]. This difference is a direct result of the
effect of the nonlocal response on the geometric stiffness and it is further discussed in the following.

Recall that the eigenvalue problem in Eq. (24b) involves two matrices representing the material stiffness [K”] and the geometric stiffness [G"].
The effect of nonlocal interactions on the material stiffness term will be referred to as the material nonlocality. This implies the influence of long-range
interactions on the structural rigidity (i.e. the propensity to oppose deformation) of the nonlocal solid. Similarly, we denote the nonlocal effects on
the geometric stiffness term as the geometric nonlocality. As discussed in §3, contrary to the classical or the integer-order approaches to nonlocal
elasticity, the critical load of a nonlocal solid evaluated via fractional-order kinematic relations affects both the material and geometric stiffness
terms. With the increasing degree of nonlocality, both these stiffness terms are reduced. The decrease in material stiffness (often referred to as
softening effect) as a result of the fractional-order kinematics was already documented in [32,33], and is in agreement with studies on classical
strain-based integral models of nonlocal elasticity. The reduction of the geometric stiffness due to fractional-order kinematics was not reported
in either the fractional- or integer-order studies. We merely note that, with regards to the fractional-order studies [32,33,35,36], the effect of the
nonlocality on the geometric stiffness was not reported simply because of the nature of the problems (static and free vibration response) treated
in the same studies. Recall however that, the constitutive modeling of the slender structures in this study and the other fractional-order studies in
[32,33,35,36] is still the same. In this regard, as evident from Eq. (13) (repeated below), the reducing material stiffness (numerator) would result
in decreasing the critical load, and the reducing geometric stiffness (denominator) would result in increasing critical load. It follows that the effect
of an increasing degree of nonlocality on the critical load is non-monotonic due to an interplay between these contrasting effects, resulting from a
simultaneous decrease in the material and geometric stiffness.

Jo &) : C: &u) dV
Jo 8% q,w) av

A, =min, [— (36)

To better illustrate the above aspects, we present a numerical study that isolates the effects of nonlocal interactions, modeled by the fractional-
derivatives, on each of these stiffness terms of the nonlocal solid. This goal is achieved by conducting parametric studies designed to intentionally
suppress the effect of nonlocal interactions either on the material or on the geometric stiffness term.

1. Isolated Material Nonlocality: For this case-study, the material stiffness matrix of the fractional-order structure (available from the weak model)
is left unchanged. However, the geometric stiffness matrix is artificially modified to match its local elastic counterpart. More specifically, the
fractional-order derivatives present within the expression of the geometric stiffness matrix are replaced by their integer-order counterparts. This
formulation accounts for the effects of the nonlocal interactions only via the material stiffness matrix.

s [FER & ros P T
LK™ = 7 Bl Byl dx,. [G71= | By 1" [By, ] dx, G7)
0 0

2. Isolated Geometric Nonlocality: In this case-study, the geometric stiffness of the fractional-order structure (available from the weak model) is
unchanged, hence incorporating the effect of nonlocality. However, the fractional-order terms within the material stiffness are replaced by their
integer-order counterpart. Therefore, the effect of nonlocality on the material stiffness is artificially suppressed. This case study allows focusing
on the effect of nonlocality via the geometric stiffness matrix.

L ER - -

(K’ = /0 T3 Bl Byl dxp, 1G] = /0 [By1 1" By 1] dx, (37b)

Note that [B] are the nonlocal strain-displacement matrices employing fractional-order derivatives and derived using f-FEM in Appendix A.2,
and the matrices [ B] are their local elastic analogue evaluated using integer-order derivatives as shown in [53]. It is clear that the stiffness terms
evaluated using integer-order matrices corresponds to local elasticity. For the case of isolated material nonlocality with geometric stiffness terms
being local, the softening effect introduced in [K*] by the fractional-order derivatives is expected to lead to lower values of critical load. In contrast,
for the case of isolated geometric nonlocality with material stiffness terms being local, increasing the nonlocal effects would reduce the geometric
stiffness, hence it will increase the critical load. These observations simply follow from the Rayleigh-Ritz expression in Eq. (13). In obtaining the
above results we assumed a constant length scale throughout: [, =15 =1,.

The results for the above described parametric studies are presented in Table 3 for the doubly clamped beam, and Table 4 for the simply-supported
beam. For isolated material nonlocality ([K?]: Nonlocal & [G”]: Local), the critical load decreases monotonically as the degree of nonlocality increases,
irrespective of the boundary condition. More specifically, the critical load is observed to decrease for reducing values of the fractional-order « and
increasing values of the horizon of nonlocal influence / Iz Similarly, for isolated geometric nonlocality ([K®]: Local & [G®]: Nonlocal), the critical
load is observed to increase with an increasing degree of nonlocality. It immediately follows that, when nonlocality is considered simultaneously in

10
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Table 3

Critical loads for a double clamped (CC) beam. Results are non-dimensionalized fol-
lowing Eq. (35) and compared to study the effect of fractional theory constitutive
parameters. Results are presented by artificially separating either the material or the
geometric effects of nonlocality to track their individual effects on the critical load.

Material Nonlocality Geometric Nonlocality

a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7

l,=02L 4.000 3.471 3.014 2.600 4.000 4.282 4.555 4.821
l,=04L 4000 2912 2124 1.551 4.000 4.893 5930 7.130
l,=06L 4000 2559 1.610 0990 4000 5537 7.676 10.682
I,=08L 4000 2411 1.421 0.810 4.000 5986  9.068 13.999
ly=L 4.000 2330 1.335 0.748 4.000 6.274 9.978 16.223

Table 4

Critical loads for a simply-supported (SS) beam. Results are non-dimensionalized fol-
lowing Eq. (35) and compared to study the effect of fractional theory constitutive
parameters. Results are presented by artificially separating either the material or the
geometric effects of nonlocality to track their individual effects on the critical load.

Material Nonlocality Geometric Nonlocality

a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7

l,=02L 1.000 0978 0958 0939 1.000 1.095 1.183 1.263
I, =04L 1000 0937 0.877 0815 1.000 1.220 1464 1.735
l,=06L 1.000 0.887 0776  0.653 1.000 1.362 1.841 2.481
l,=08L 1.000 0.840 0689 0536 1.000 1482 2201 3.304
lp= 1.000 0803 0.630 0469 1.000 1.568 2.478 3.986

both these stiffness terms, the critical load (Table 2) is the result of the net effect of these competing terms. This analysis explains the non-monotonic
variation of the critical load with an increasing degree nonlocality.

Additional observations may be drawn from Table 2 following the parametric studies in Tables 3 and 4. It is clear from the table that non-locality
increases the critical load for a SS beam while it decreases the critical load for a CC beam. We clarify that, while contrasting effects are noted for
the two different boundary conditions, the effect of nonlocality on the system stiffness matrices is independent of the boundary conditions. Both the
material stiffness [K] and the geometric stiffness [G] undergo a monotonic reduction with an increasing degree of nonlocality. This is established from
the parametric studies in Tables 3 and 4. It is indeed the antagonistic effect between the reduction of the geometric and the material stiffness that
determines the overall effect of the nonlocal interactions on the critical load. Therefore, the net effect of nonlocality may result in either higher or
lower critical load for the structure depending on the relative reductions of the individual stiffness terms due to nonlocality. As observed in previous
works using fractional-order approaches [32,33] and strain-driven integral approaches [13], the decrease in material stiffness of a SS beam, due to
nonlocal elasticity, is less pronounced when compared to a CC beam. This suggests that the reduction in the material stiffness matrix [K®] due to the
fractional-order parameters (i.e. to the nonlocal effect) is offset, and subsequently dominated, by the simultaneous decrease in geometric stiffness
matrix [G’] (see Eq. (24)).This explains the higher critical load for a nonlocal SS beam compared to a local elastic beam. Contrarily, the softening
effect on the material stiffness for the CC beam outweighs the simultaneous softening of the geometric stiffness, therefore resulting in marginally
lower values of the critical load (compared to the local elastic beam).

Before proceeding further, we present the transverse mode shapes corresponding to the critical load of the beam and calculated by either integer-
[1] or fractional-order approaches are compared in Fig. 4. While slight changes are noted in the curvature of buckling mode shapes for nonlocal
beams, this effect is marginal even for very a pronounced degree of nonlocality, such as for « = 0.7 and /,/L = 1. These results highlight that the
inclusion of the nonlocal effects via fractional-order modeling presents minimal effects on the buckling mode shape.

5.2. Plates

Consistently with the assumptions for the Kirchhoff plate theory, we selected a square plate with a = b and an aspect ratio a/h = 100 to perform
the current study. The 2D f-FEM model used in this section was developed and validated in [35]. Both a state of uniaxial compression N; = N, and
of biaxial compression N, = N; = N, were investigated. The critical loads were non-dimensionalized as follows [50]:

2 3
b D En

N.=N, X —, =" 38
0= 12(1 - v2) 38)

72D
Accurate evaluation of the system matrices following 2D f-FEM requires the accurate evaluation of convolution integrals, along both the x; and x,
directions. Thus, an appropriate choice for the dynamic rates of convergence is required in both directions. For this purpose, we define N’ l' Moo 7/le,
and /\/'2"'/ =1s/l,, where l, and /,, are the discretized element dimensions of the uniform FE mesh along x, and x, directions, respectively. The
convergence of the 2D discretized mesh used in this study is established for various choices of the fractional theory constitutive parameters in Table 5
for a simply supported (SSSS) plate subject to a uniaxial compressive load along the x; direction. Excellent convergence of the normalized critical loads
is achieved, with differences of <1% between successive refinements of the mesh. Following this convergence study, we used N {"f X Né"/ =8x8
for the all the subsequent analyses.
As previously mentioned, the effect of the fractional-order nonlocality on the critical load was studied for two different cases of external loading:
(1) uniaxial compression along x;; (2) biaxial compression with equal loads applied along x; and x,. The critical loads for uniaxial (along x;)
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Fig. 4. Comparison of the buckling mode shapes obtained from either classical or fractional-order beam theory under different boundary conditions.

Table 5

2D f-FEM mesh convergence study. Non-dimensional critical load of a SSSS plate for
different values of constitutive parameters « and / .. In all cases, N/ = 8 guarantees
a difference within 1% between successive refinements.

Fractional Horizon fractional-order, a

inf inf
Length, N XN a=10 =09 «=08 a=07
I, =05a 4x4 4 4120 4183 4178
6x6 4 4099 4148  4.138
8x8 4 4089 4131 4118
10% 10 4 4083 4121 4.107
I, =a 4x4 4 4258 4445 4545
6%6 4 4258 4452 4563
8x8 4 4.259 4.456 4573
10x 10 4 4259 4460 4577

Table 6

Critical loads for plate subject to uniaxial compression and various boundary conditions. Results are non-dimensionalized
following Eq. (38) and compared to study the effect of the different fractional theory constitutive parameters. Recall that
SSSS stands for simply supported; CCCC for fully clamped; and CFCF for plate clamped on two opposite edges and free on
the other two.

SSSS Ccce CFCF
a 1.0 09 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7
l;=04a 4 4109 4190 4.233 10.076 9.874 9.637 9.334 3.920 3.717 3504  3.265
l;=06a 4 4.146  4.234  4.247 10.076  9.834 9.544 9.162 3920 3.731 3.531 3.307
l;=08a 4 4.238 4417 4517 10.076  10.017 10.005 10.023 3.920 3.815 3.728 3.650
I;=a 4 4.259 4456  4.573 10.076  9.981 9.950 9.965 3.920 3816 3.741 3.684

compression of plates, evaluated for selected values of a and /,, are available in the Table 6. Additionally, the critical buckling loads for biaxial
compression of plates are provided in Table 7. The tabulated results correspond to the following sets of boundary conditions [50]:

. dwg
x;=0,a: wy=-—"=0
. 1 0= o,
Simply supported (SSSS): 5
x,=0,b: wy= Lo —
2 0 ox,
owy _ 0 (39)
x; =0,a: w0=%?=xwf=0
Clamped (CCCQC): ow o
x2=0,b: wO:W?:WE:O
Clamped-Free (CFCF): x;=0,a: wy= % = %;’ =0
1

where wy, is the generalized displacement coordinate introduced in Eq. (25).

As evident from the Tables 6 and 7, the critical loads of fractional-order plates show a non-monotonic variation with increasing degree of
nonlocality. While this observation deviates from the conclusions of studies based on classical integer-order nonlocal theories, it does agree with
the results reported in §5.1 for nonlocal beams. Similar to the discussion in §5.1, this difference is a direct result of the simultaneous effect of
the nonlocal response on both the geometric and material stiffness of the fractional-order plate. The increasing degree of nonlocality results in a
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Table 7

Critical loads for plate subject to biaxial compression and various boundary conditions.
Results are non-dimensionalized following Eq. (38) and compared to study the effect of
the different fractional theory constitutive parameters. Recall that SSSS stands for simply
supported and CCCC for fully clamped.

SSSS CCcccC
a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7
I, =04a 2 2.055 2.098 2.125 5.304 5.112 4917 4.706
I, =0.6a 2 2.074 2.120 2.136 5.304 5.086 4.862 4.613
I, =08a 2 2.119 2.210 2.266 5.304 5.212 5.146 5.099
I;=a 2 2.129 2.230 2.293 5.304 5.196 5.123 5.075
Table 8

Critical loads for a fully clamped (CCCC) plate subject to biaxial compression. Results are
non-dimensionalized following Eq. (38) and compared to study the effect of the different
fractional theory constitutive parameters. Results are presented by artificially separating
either the material or the geometric effects of nonlocality to track their individual effects
on the critical load.

Material Nonlocality Geometric Nonlocality

a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7

I, =04a 5.304 3.763 2.650 1.845 5.304 6.880 8.909 11.538
I, =0.6a 5304 3.437 2.197 1.378 5304 7.583 10.901 15.832
I, =08a 5.304 3.265 1.987 1.188 5.304 8.098 12.496 19.635
ly=a 5.304 3.123 1.817 1.039 5.304 8.467 13.663 22.448

Table 9

Critical loads for a simply-supported (SSSS) plate subject to biaxial compression. Results are
non-dimensionalized following Eq. (38) and compared to study the effect of the different
fractional theory constitutive parameters. Results are presented by artificially separating
either the material or the geometric effects of nonlocality to track their individual effects
on the critical load.

Material Nonlocality Geometric Nonlocality

a 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7

I, =04a 2.000 1.732 1.512 1.310 2.000 2.561 3.246 4.089
I, =0.6a 2.000 1.593 1.274 0.999 2.000 2.826 3.981 5.618
I, =08a 2.000 1.496 1.119 0.821 2.000 3.055 4.694 7.317
Ip=a 2.000 1.430 1.024 0.718 2.000 3.195 5.132 8.365

consistent reduction of the system stiffness matrices [K”] and [G?] given in Eq. (34c). More specifically, either reducing the numerical values of the
fractional-order « or increasing the size of the domain of nonlocal influence / 7 results in reduced values of [K?] and [G?]. In agreement with the
Rayleigh-Ritz expression for critical load given in Eq. (13), the individual reductions in these stiffness terms have a competing effect on the critical
load for buckling of the nonlocal structure. To better illustrate the contrasting effect of reductions in material and geometric stiffness terms over the
critical load, we conduct parametric studies that intentionally suppress the effect of nonlocal interactions either on the material or on the geometric
stiffness term, similar to that conducted for beams.

The results of these parametric studies for buckling due to biaxial compression of the plates are provided in the Tables 8 and 9. More specifically,
the critical loads for biaxial compression of a fully clamped plate, evaluated for the individual cases of isolated material and geometric nonlocality,
are provided in Table 8. Similar studies were repeated for a plate subject to simply-supported boundary conditions and results are listed in Table 9.
In both cases mentioned above, an increasing degree of nonlocality determines a monotonic reduction of the system stiffness (both material and
geometric). However, as also noted previously in the case of beams, reducing the material and the geometric stiffness terms have an antagonistic
effect on the critical load. In the case of isolated material nonlocality (i.e. reduced material stiffness; constant geometric stiffness), the critical load
monotonically reduces with an increasing degree of nonlocality. In contrast, for the case of isolated geometric nonlocality (i.e. reducing geometric
stiffness; constant material stiffness), the critical load monotonically increases with an increasing degree of nonlocality. Particularly interesting is the
parallel between the case of isolated material nonlocality and classical (integer-order/strain-driven) models of nonlocal elasticity. Both these cases
modify only the material stiffness that undergoes a reduction following an increasing degree of nonlocality. Thus, we observe a decreasing critical
load which agrees with similar observations drawn following classical models in the literature [12,13]. We will discuss this aspect in detail in §5.3

Further, we note from Table 6 that the critical load for the nonlocal CCCC plate is lower than its local elastic analogue, while for the nonlocal SSSS
plate the critical load is higher compared to the local elastic case. These contrasting observations can be explained by considering the pronounced
influence of nonlocal effects on decreasing the material stiffness for plates subject to stiffer boundary conditions [35,36]. More specifically, a stronger
reduction is noted in the material stiffness of fully clamped (CCCC) plate when compared to the simply supported (SSSS) plate. As discussed previously
in the case of fractional-order SS beams, the weak reduction in material stiffness for SSSS plates is further dominated by the simultaneous decrease
in geometric stiffness. Thus, the net result of nonlocal interactions on material and geometric stiffness terms is an increase in the critical load for
SSSS plates. In contrast to this, the marked decrease in material stiffness for the clamped plate ensures lower critical load for CCCC fractional-order
plates.
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Fig. 5. Buckling mode shapes for biaxial compression obtained from either classical or fractional-order plate theory under different boundary conditions.

Finally, we compare the transverse mode shape along the length (x,) at x, = b/2 corresponding to the critical load of the beams modeled via both
integer-order [1] and fractional-order approaches. This comparison is illustrated in Fig. 5. In this figure, the effects of the nonlocal interactions are
noted to be marginal on the mode shape of plate corresponding to critical buckling load. This observation is clearly in agreement with the previous
study over fractional-order beams in Fig. 4. This is substantiated by the weak changes in curvature of the normalized modes for critical buckling of
the nonlocal plate when compared with local analogues even for a case with high degree of nonlocality (¢ = 0.7 and /,/a = 1.0).

5.3. Comparison with existing integer-order nonlocal theories

In this section, we compare the effects of the nonlocal interactions on the critical load when accounted for by either fractional-order or integer-
order theories of nonlocal elasticity.

Eringen’s integral theory of nonlocal elasticity : We begin with a comparison of the critical load evaluated following fractional-order theory with
that from the integer-order two-phase (i.e. local/nonlocal) model proposed in [54]. The latter choice is motivated by several studies in the literature
that are based on this theory [21] or on simplified models derived from it [12,13,24,55] to study nonlocal effects on the critical load. The nonlocal
constitutive relations take the following form of a Fredholm equation of the second kind [20]:

6(X) =/Q A X8 C:e@) dE A, = 116K, 8) + 1A X, E) (40)

where e is the local strain evaluated using the classical integer-order strain-displacement relations. Also, §(X, &) is the Dirac-delta defined at X,
A,(X, &) and A,(X, &) are the attenuation functions, y, and y, are positive material constants that satisfy: y; + y, = 1. Eringen’s integral nonlocal
model, corresponding to a Fredholm equation of the first kind, can be obtained for appropriate choices of y, and y, [20]. A detailed discussion on
the comparison of the constitutive laws for the fractional-order and integer-order models of linear nonlocal elasticity is provided in [32]. In [32],
the linear fractional-order continuum theory was obtained from the integral Eringen model assuming suitable choices of the attenuation function
and the domain of influence. However, this equivalence holds only for the linear kinematic relations. For the geometrically nonlinear models of
nonlocal elasticity, the constitutive models that follow the fractional-order kinematic relations in Eq. (1) cannot be deduced from Eringen’s model
in an analogous manner. This observation is relevant to understand the differences in critical load observed when using the fractional-order and the
classical integer-order theories of nonlocal elasticity [12,13,21,24].

To elaborate further, we focus on the case of the nonlocal Euler-Bernoulli beam. The weak statement for the transverse equilibrium equation for
the fractional-order nonlocal beam, that follows from Eq. (22), is given by:

L
/ S{APYT([K®] = No[GP1){A®} dx, = {0} @1
0
where
b L gnd 2 5 L 2
[K]:/() F<Dilwo(x1)> dxy, [G]=/0 (Djlwo(x1)> dx 42)

[K?] and [G”] are the material and geometric stiffness matrices. Similarly, the expressions for these matrices derived following the integer-order
nonlocal constitutive relations given in Eq. (40) would be [13,24]:

L oL opps L )
K= [ [ B (0 o)) (02, ot} axias. 1671 = [ (Dl ) )

Appropriate choices for the material constants y; and y, can reduce this model to the single-phase Eringen’s model [12]. For the sake of comparison,
we also provide below the expressions for the stiffness matrices evaluated assuming local elasticity [56]:

L g3 2 L 2
[1<b]=/0 W(Dilwo(xl)) dxy, [Gb]z/0 (Di,wo) dx,; (44)
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Table 10

Non-dimensionalized critical load for Euler-Bernoulli nonlocal beam subject to different
boundary conditions following Eringen’s integral theory of nonlocal elasticity. Following
[55], we choose L = 10nm and A = L/100 (remaining parameters are retained from current
study). Note the excellent agreement between the results from literature [55] and f-FEM
modified in terms of the exponential kernel employed in [55].

SS CF
x (in nm) Current [55] Current [55]
0 (Local) 9.8696 9.8696 2.4670 2.4670
0.05 9.8671 9.8672 2.4472 2.4428
0.5 9.6329 9.6319 2.2308 2.2259
1 8.9864 8.9830 2.0050 2.0008
2 7.0828 7.0761 1.6178 1.6156

From Eq. (42), we note that fractional derivatives are present in the expressions for both the material and geometric stiffness matrices in the
fractional-order theory. It is clear that these fractional derivatives capture the nonlocal interactions across the domain. The numerical values of these
fractional derivatives, and thereby the stiffness terms, reduce following an increase in the degree of nonlocality. More specifically, reducing the
fractional-order « and increasing the length scale /, results in an increase in the softening influence of nonlocal interactions. This softening effect
is evident from the results of the parametric studies in Tables 3, 4, 8 and 9. In the case of Eringen’s integral models, the stiffness matrix [K’] in
Eq. (43) includes nonlocal interactions across the domain and undergoes reduction with increasing degree of nonlocality. However, the geometric
stiffness [G?] in this equation is unchanged by nonlocal interactions, and remains identical to its local form in Eq. (44). This observation is also noted
in [12]. The decreasing values of stiffness [K?] with increasing degree of nonlocality, while [G®] remains constant, explains the lower critical load
for nonlocal solids predicted by Eringen’s theory [12,21]. This observation is akin to our parametric studies on fractional-order beams and plates
over isolated material nonlocality (see Eq. (37a)).

We provide some numerical results to better illustrate the fact that the Eringen’s integral nonlocal theory is similar to the case of isolated material
nonlocality. This observation also supports the validation of the numerical method. We compare the critical loads for the nonlocal beam based on
the commonly employed exponential attenuation kernel [55]. The constitutive relations for the integral theory of nonlocal elasticity are given in
Eq. (40), where we consider y; =0; y, =1 and [55]:

|x; — 51
K

A (xp.50.6) = % exp— @5)
is the exponential attenuation function, where « is a material constant with dimensions of length. We evaluate the critical loads from the fractional
finite element model for isolated material nonlocality. Details regarding the application of f-FEM to Eringen’s theory can be found in our previous
work [32]. The numerical results are non-dimensionalized following the relations given in Eq. (35). A comparison of the non-dimensionalized
critical loads for SS and CF beams with results available in the literature is provided in Table 10. The difference between the present results and
those presented in [55] is < 1%, hence serving as validation of the numerical approach employed in this study. Note the monotonic reduction in
critical loads with an increasing «, which denotes an increase in the degree of nonlocality. This observation is to be expected, and further highlights
the similarity between Eringen’s theory and the case-study on isolated material nonlocality.

Finally, we also compare the fractional-order model with the Eringen’s differential model of nonlocal elasticity. Continuing with the example of
a Euler-Bernoulli beam, the corresponding nonlocal stiffness terms evaluated using the differential model of nonlocal elasticity are [57]:

b YER 2 b a2 2 1 2
(Kb = /0 T(Dxlwo(xl)) dx;, [G"] = /0 [le <Dxl wo(x1)> n (Dxlw()) ] dx, (46)
where I, is the characteristic length scale [14]. Comparing the above expressions with Eq. (44), we note that the differential model predicts a
modification in the geometric stiffness caused by the nonlocal interactions. However, the material stiffness is unchanged. More specifically, the
material stiffness evaluated following the Eringen’s differential model of nonlocal elasticity is identical to the classical local elasticity case given in
Eq. (44). Therefore, the nonlocal effects on the critical load are realized only by a modification of the geometric stiffness matrix. This is unlike the
previous observation of the effect of nonlocal elasticity being realized on both the stiffness matrices following fractional-order continuum theories
(see Eq. (42)). From Eq. (46), we note increasing values of stiffness [G?] with increasing degree of nonlocality, while [K?] remains constant. This
explains the lower critical load for nonlocal solids predicted by Eringen’s differential models [15,24].

6. Conclusions

This work extends the fractional-order continuum framework to perform stability analysis of nonlocal solids. Thanks to the thermodynamically
consistent and positive-definite form of the deformation energy density afforded by the fractional-order formulation, we can apply energy methods
to perform the stability analysis. We reiterate that the geometrically nonlinear models of nonlocal elasticity, available within the framework of
fractional calculus, allow the stability analysis to be conducted for nonlocal solids. As part of this approach, a general stability analysis is carried
out for fractional-order solids by employing the Lagrange-Dirichlet theorem. The resulting approach allows studying scale effects, nonlocality, and
heterogeneity on the stability of complex solids and interfaces. By specializing the approach to the case of linear buckling, we derive the critical load
of nonlocal solids following Rayleigh-Ritz formalism. Our results show the capability of fractional-order models to account for the nonlocal effects
on the material and geometric stiffness terms. This is unlike the classical integer-order models of nonlocal elasticity, where the nonlocal effects are
restricted to only one of the stiffness terms. Thus, a more accurate account of the effects of nonlocal interactions on the stability of structures is
realized by using the current fractional-order theory. In order to illustrate this observation in a more quantitative manner, the stability analysis was
performed for fractional-order beams and plates, and the resulting eigenvalue problems were solved.
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Appendix. A
Al. Linearization of the nonlinear fractional-order governing equations

This section details the derivation of the linearized fractional-order governing equations of equilibrium employed here. More specifically, the
linearized governing equations in Eq. (21) for the Euler-Bernoulli beams will be derived from the nonlinear governing equations given in Eq. (17).
This discussion is limited to the fractional-order Euler-Bernoulli beams for the sake of brevity. However, it may be extended with relative ease to
Kirchhoff plates (Eq. (31)).

We consider two adjacent elastic states in equilibrium: (i) before the critical point; and (ii) at the onset of buckling. Now, the field distributions
in Eq. (17) may be expressed as: 1) an initial component corresponding to response before the onset of the buckling, denoted by superscript [7;
and 2) an additional component caused by the buckling, denoted by [1°. Note that, the response at the elastic state (i), before the onset of buckling,
may be considered to be geometrically linear [58]. Following this, we express the stress resultants for the elastic state (ii) as:

Ny =N+ NP, My =M+ M (46)
where N{, and M|, are the axial and bending stress resultants corresponding to elastic response before the onset of buckling, and N’ f’l and M lbl,
respectively, correspond to the additional components generated by buckling. Assuming the beam remains straight (no initial curvature) before
buckling (wé) =0), we may write the transverse displacement caused by the buckling response to be w, = w(’;. Here, distributed body forces F,
(k = 1,2,3) being absent, we employ the above definitions to linearize the nonlinear governing equations given in Eq. (17). At the onset of buckling,

but before the critical point (elastic state (i)), we have:

wy=0, N, =N, M, =M, 47

Substituting the above expressions into the nonlinear equations in Eq. (17) gives the governing equations for the elastic state at (i) as follows:

DY Nj; =0 Vx €0L) (482)

D! o Ml | =0 vx € 0.1) (48b)

These equations agree with results for linear elastic response of Euler-Bernoulli beams [32]. Subsequently, at the onset of buckling, the above
derived linear governing equations are no longer applicable. Assuming small deformations at the onset of buckling w(’; # 0, we substitute Eq. (46) into
the nonlinear equations in Eq. (17). Following some mathematical operations employing the results from Eq. (48) for the adjacent elastic state (i),

we arrive at:

DY NJ,; =0 Vx; €0,L) (492)

D!, [, M ] 4 1,22, 08, 1041 =0 ¥ x, € 0.1) (4on

which are governing equations corresponding to the elastic state (ii). Note that the above expressions are identical to the linearized governing
equations given in Eq. (21).

A2. Fractional finite element model

The finite element model developed above for the fractional-order model of nonlocal elasticity employs the fractional-order strain displacement
matrices [ B]. These matrices are developed based on the RC fractional derivative given in Eq. (2) applied to the 1D and 2D Hermitian interpola-
tion functions. As an example, we provide brief details for the numerical approximation of the 2D fractional derivatives D [dwy(x;,x,)/dx,] and
Df{’2 [dwy(xy.x,)/dx,] in this section; a complete account of the method can be found in [32,35]. Finite element approximations for all the 1D and 2D
fractional derivatives can be obtained by following this procedure. From the definition given in Eq. (2), the above mentioned fractional derivatives
can be written as:

D! [Mo(nm +, D! [Mo(r,m]
owp(xy, X1 ] *1+ip Pl
DZ [ o0(x; J’])] _ l(l —a) laA_I/ r Xy dr+l"é_1/ 1 r X2 dr (50a)
! 0xy 2 L A S O LS (r—xp)*
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D! [(’M’U(XM)] ) [dwo(xl,s)]
dwy(xy, *2 Xy +lg v
YN [AISIEET] N VPR lj—l/ L S ds+1;;—1/ LI A (50b)
x2 0x, 2 > Sy, (xy — 8) 2 Jx, (s = xp)*

where r and s are dummy variables in the x; and x, directions, respectively. The above expressions can be recast as:

owy(xy,Xy) /Xl”Bl 1 [9wo(r, x5)
pr |20 A (X, Xy 14,1 @) D} | =222 d 31
X [ axz X]"Al I(XO d>*A;> "By a) r 6}62 r ( a)
dwy(xy,X,) X2+lpy L [owo(x1, )
D | ——= | = Ar(Xg. X, 14 1p ) D[ —=1] d 51b
xz[ ()X| ~/xz—1A2 2(X() d>'Ay> "By @) s axl $ ( )

where the kernel Ao Xy, 14,15, @) (O = 1,2), seen earlier in Eq. (3), is the fractional-order (a) power-law function connecting the point of interest
Xo(x1,x,) and a dummy point X;(r, s) within its domain of influence. As discussed previously, this domain of influence for the fractional-order
derivative is position-dependent. The nonlocal horizons along the x,— and x,—directions are given by (x — I, (X),x + /5 (X)) and (x; = 14,(X), x; +
1, (X)), respectively. The above mathematical statement allows the fractional derivative to be interpreted as a convolution of integer-order derivatives
(from classical elasticity models) using the power-law kernel over the domain of influence. Therefore, it may be stated that the fractional-order
continuum theory serves as a nonlocal model with power-law attenuation over distance. It follows from Eq. (50) that:

1 -1 —a
=)l (x;—r) re(x; =1, ,xp)

A (X Xglg g ) =1 1 o . : (52a)
E(l—oc)lBl (r—x) r€(xp,x; +1Ip)
1 -1 —a
S(I=a)l5 (xy = 5) SE€(xy—1y,x)

Ay(Xo Xy Ly lg, @) = ® » ’ (52b)
5(1—(1)132 (s —xp) se(xz,x2+132)

The above kernels depend on the relative distance between X, (x,, x,) at which the derivative is evaluated and the dummy point X, (r, s) within
the fractional domain of influence and along a given direction.

The integer-order derivatives D! [dw;(r,x,)/dx,] and D![dw(x,,s)/dx,| within the convolution for fractional-order derivatives are expressed
following the finite element approximations for generalized displacement coordinates as:

dwy(r, x,)
pl| =2
r[ 0xy

dwy(xy, s)

]=[BH'Zl(r,xz)]{Af(r,xz)}, Df[ ox

] = [By 120, )H{AD(x, 9)} (53a)

where [By, 5, (r, x,)] and [ By, 15(x;, )] are the integer-order strain-displacement matrices defined analogously to classical elasticity [53]. These matrices
are defined over the 2D Hermite shape functions as:

0 [ O[H(r,xy)] 9 [ O[H(x, )]
[By21(r. x0)] = 0_<T22> [By 12(x1,9)] = a(d—x:>

-
Finally, substitution of the above results in Eq. (51) gives the convolution-based finite element approximations for fractional-order derivatives:

(53b)

Owy(xy, x5) X1+lp
— . | = B s s , & r,Xx r,Xx r a
DY o A (X0, X451 4,5 g, OBy 01 (r, x)1{AD(r, xp) }d (54a)
2 xl—lAl
owy(x1,x7) X2+lp,
—| = Xyl g, X1, 8 xy,5)}ds
Dy Ay (X, XLy g, DBy 12(x1, HHAL(xy, 5)}d (54b)
2 0x; =L, 2

The nonlocal interactions, characterized by the fractional derivatives, must include the contribution of other elements within the domain of
influence. This would require the contributions from specific points in this domain to be associated with the corresponding (discretized finite) element
and thereby the nodes of this element. For this purpose, we assemble the fractional-order strain-displacement matrices [ED] before evaluating the
global stiffness matrix. Such an approach also requires the assembly of nodal vectors corresponding to each element using appropriate connectivity
matrices. A detailed discussion on these connectivity matrices is available for beams [32] and plates [35]. The fractional derivatives in Eq. (50),
rewritten in terms of the global vectors of nodal displacements, is as follows:

o [9Wolx1,X7) A o [0wo(xy, x5) -
Dxl[ Oaxlz 2 ] = [Byy01(x1, xp)1{ AP} sz[. Oaxl1 2 ] = [Byy (), x2)1{ AP} S5
where:
- x1+lp )
[BH,zl(xl,xz)J=/ Ay (Ko Xy La, > 1g, s @By 01 (r x)IIC (XK, X p)1dr (55b)
xl—lAl
- x)+lp )
[By12(x1, Xp)] = / 1 Ay (X, X s L ay» 1, DBy 12(x1, HCXp, X4)1ds 550
X214,

where [C(X,,X,)] is the connectivity matrix for elements enclosing the points X(x,, x,) and X,(r, s). This matrix is non-zero only if the point (r, 5)
is within the domain of influence for (x;, x,). As mentioned previously, the above procedure for the chosen example may be extended to other
derivatives of the 1D and 2D Hermitian interpolation functions.

The numerical procedure for the evaluation of these numerical matrices includes successive steps of numerical integration. The first step of the
numerical integration is performed over each point within the domain of influence in order to evaluate the nonlocal strain-displacement matrices,
as shown in Eq. (55). This result is then utilized to determine the stiffness matrices given in Eqs. (24) and (34) which involves a numerical
integration to be carried over the entire solid. The complete description of the numerical integration procedure to evaluate the system matrices for
the fractional-order nonlocal structure can be found in [32,35].
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