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This study presents a framework to perform stability analysis of nonlocal solids whose behavior is described 

according to the fractional-order continuum theory. In this formulation, space fractional-order operators are 

used to capture the nonlocal response of the medium by means of nonlocal kinematic relations. We use the 

geometrically nonlinear fractional-order kinematic relations within an energy based approach to establish the 

Lagrange-Dirichlet stability criteria for nonlocal structures. This energy based approach to nonlocal structural 

stability is possible due to a positive-definite and thermodynamically consistent definition of the deformation 

energy enabled by the fractional-order kinematic formulation. The Rayleigh-Ritz coefficient for critical load is also 

derived for linear buckling conditions. The fractional-order formulation is finally used to determine critical loads 

for buckling of the slender nonlocal beams and plates using a dedicated fractional-order finite element solver. 

Results establish that, in contrast to existing studies, the effect of nonlocal interactions is observed on both the 

material and the geometric stiffness, when using the fractional-order kinematics approach. These observations are 

supported quantitatively via the solution of case studies that focus on the critical buckling response of fractional- 

order nonlocal slender structures, and a direct comparison of the fractional-order approach with classical nonlocal 

approaches. 
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. Introduction 

The stability analysis of structures, particularly the estimation of the

ritical load for buckling, is a canonical problem in structural analysis

nd design. An extensive body of literature is available on this topic

n the general area of classical (local) elasticity, which is built upon

 point-wise correspondence of the kinematic and material variables

ia the constitutive relations. Comprehensive reviews of the stability

f elastic structures following classical elasticity theories can be found

n [1,2] . While this class of so-called local approaches has been, and

till is, a fundamental tool to model the behavior of solids, experimen-

al observations have shown that the nonlocal interactions between ex-

ended areas of the solid (i.e. between distant points) can have a non-

egligible effect on the global response of the medium. These effects,

hich are a macroscopic manifestation of long-distance interactions be-

ween distant points, are not accounted for in classical local theories.

lthough nonlocal effects have been traditionally restricted to the con-

ext of micro- and nano-scale systems [3,4] , examples can be found in

 broader range of applications including macro-scale complex media

uch as sandwich structures, architected materials, as well as function-

lly graded and porous materials [5–8] . 
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During the past several decades, numerous theories have been

roposed to model the effect of the nonlocal interactions in elastic

olids. Prominent theories were proposed by Kron ̎er [9] and Eringen

t al . [10] involving strain-based integral constitutive relations. These

pproaches accounted for the nonlocal interactions within the constitu-

ive relations via a convolution of the local strain with a kernel defined

ver the domain of influence. Other approaches include displacement

ased models implementing a superposition of both local and nonlocal

nteractions [11] . In the context of stability analysis, the critical load

or buckling of the slender structures performed using the strain-based

ntegral formulation [12,13] predicted a consistent reduction of the crit-

cal loads due to the nonlocal effect. While these strain-based integral

ormulations were powerful and somewhat very intuitive, the integral

efinition of the constitutive relation [10] belongs to an ill-posed class

f integral equations involving Fredholm integral equations of the first

ind, which do not admit unique solutions. Successively, gradient based

odels of nonlocal elasticity were developed in order to circumvent

he issues typical of implicit integral formulations [14] . In most cases,

he differential equivalent of the single-phase model [13,15,16] pre-

icted a consistent reduction of the critical loads caused by the non-

ocal effect, however paradoxical observations were noted for certain

hoices of loading and boundary conditions. These observations could

e attributed to the non-self adjoint nature of the linear operators ob-

ained following the differential models for Eringen’s nonlocal elasticity

17,18] . Also, note that the differential models are equivalent to their
il 2021 
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ntegral counterparts only for certain choices of the kernel used in the

onvolution integral and assuming an unbounded medium [19] . To ad-

ress this important issue a two-phase definition (i.e. local/non-local) of

he constitutive relations was proposed. This definition admits unique

olutions and is generally well-posed in nature leading to self-adjoint

inear operators [20] . The critical load analysis performed using this

wo-phase formulation [21] also predicted a consistent reduction of the

ritical loads caused by the nonlocal effects. While the two-phase mod-

ls present unique solutions with a consistent nonlocal nature across

oading and boundary conditions, this characteristic property is lost for

ertain choices of the constitutive parameters. As pointed in [18,20] , the

nherent ill-posedness of the strain-based integral theories of nonlocal

lasticity resurfaces for vanishing values of the local fraction within the

wo-phase nonlocal theory. This places an ad-hoc restriction on the ratio

etween the local and nonlocal components. Further, these strain-driven

ntegral models also do not satisfy the thermodynamic balance laws in

 rigorous manner. More specifically, it has been observed that thermo-

echanical deformation, obtained via this approach, satisfies the sec-

nd law of thermodynamics only in a weak (integral) sense and not in a

trong (localized) manner [20,22,23] . The above observations highlight

hat there are still some important limitations in the existing nonlocal

lasticity theories that affects, although are not limited to, the stability

nalysis of nonlocal structures. 

Recall that, in classical elasticity, the critical load is expressed as the

atio of the material and geometric stiffness associated with the struc-

ure (Rayleigh-Ritz coefficient) [1] . In the presence of long-range inter-

ctions within a nonlocal solid, it is expected that the nonlocal effects

ill be realized upon both of these stiffness terms. However, studies

mploying the Eringen’s strain-integral models of nonlocal elasticity at-

ributed the consistent decrease in the critical load to a reduction of

aterial stiffness caused by nonlocal effects, while the geometric stiff-

ess was essentially unaffected [12,13] . In contrast, the decrease in crit-

cal loads predicted by differential models (for those cases not leading

o paradoxical observations) was attributed to an increase in geomet-

ic stiffness of the structure while the material stiffness was left unaf-

ected [13,15] . A comparison of these contrasting approaches for the

alculation of the critical load of nonlocal structures indicates that the

train-integral model predicts a sharper reduction over its equivalent

ifferential model [24] . Following the above discussion, it is clear that

oth the strain-based integral and differential approaches modify either

he material or the geometric stiffness [24] . However, the physical real-

zation of the nonlocal effects should not be limited to either one of these

tructural stiffness terms. Clearly there is a gap in proper accounting for

he nonlocal effects on the structural stiffness terms, and a clear under-

tanding of this would be required for the stability studies of nonlocal

tructures. 

Recently, the development of fractional-order continuum theories for

onlocal elasticity has offered alternative methodologies that could po-

entially help filling this gap [6,11,25] . In recent years, fractional calcu-

us has garnered increasing attention thanks to its many applications in

iverse domains of science and engineering. Successful applications in

echanics include, to name a few, constitutive modeling of viscoelas-

ic materials to study memory effects [26–28] , nonlocal effects across

ultiple spatial scales [25,29] , dissipation in heat transfer [30] . Numer-

us models for nonlocal elasticity based on fractional calculus have also

een proposed [6,11,25,31] . Fractional-order continuum theories have

uccessfully modeled both softening [32,33] and stiffening [29,34] ef-

ects associated with long-range nonlocal interactions in solids, and in

omplex fluids [8] . Among the aforementioned literature, studies based

n fractional-order kinematic approaches are particularly exciting since

hey have been able to address key limitations of both integral and

radient based approaches to nonlocal elasticity [6,29] . More specifi-

ally, modeling nonlocal interactions at the level of the kinematics in

 frame-invariant and dimensionally consistent manner, allows obtain-

ng localized material constitutive relations free from nonlocal residual

erms. The resulting nonlocal models allowed the rigorous application
2 
f the thermodynamic principles without any physical inconsistency. In

ther terms, the fractional-order kinematic approach allows for a strong

or localized) imposition of the first and second laws of thermodynam-

cs at each point within the continuum [23] . This result is unlike the

lassical nonlocal approaches based on the integral-form of the mate-

ial constitutive relations that, instead, allow only a weak imposition

f the thermodynamic balance laws over the entire domain. Further,

he positive-definite deformation energy density achieved with this def-

nition guarantees the uniqueness of the solution and allows variational

rinciples to be applied for fractional-order continuum theories. This fa-

ilitates the development of finite element based solutions for fractional-

rder models of nonlocal solids [32,33] . By means of this numerical tool,

he effects of long-range interactions modeled using the fractional-order

ontinuum theory have been studied on both the linear and the geomet-

ically nonlinear response of nonlocal beams and plates [32,33,35,36] .

arge deformation analysis of nonlocal structures can be effectively car-

ied out using geometrically nonlinear fractional-order kinematic rela-

ions [33,36] . This framework facilitated by the fractional-order models

rovides the foundation required for an energy-based stability analy-

is of nonlocal structures. So we may conclude that the fractional-order

ormulation provides physically, thermodynamically, and mathemati-

ally consistent models for the softening influence of nonlocal interac-

ions [23,32] . 

Before proceeding further, we provide a comparison of the

ractional-order theories with other existing nonlocal models. The

ractional-order continuum theory for nonlocal solids belongs to a class

f displacement-driven nonlocal models, where differ-integral opera-

ors replace the classical integer-order derivatives within the strain-

isplacement relations. This modification follows from a fractional-

rder definition of the deformation gradient tensor, and allows the con-

titutive models to capture long-range interactions within the nonlocal

olid. The Eringen’s integral theory of nonlocal elasticity [19] is based

n a strain-driven approach to nonlocal elasticity. It is established that,

nlike the fractional-order theory, Eringen’s model does not satisfy the

hermodynamic balance laws in a rigorous manner [20,37] . The ther-

odynamic consistency is crucial to develop well-posed governing equa-

ions. This issue with the Eringen model is inherent in all the theories

erived from it such as the two-phase (local/non-local) theory of elas-

icity [37] , and the nonlocal strain-gradient theory [38] . Further, the

ringen’s differential theories are also derived from these integral the-

ries subject to some conditions on the choice of the kernel [14,39] ,

hich further limits the scope of differential nonlocal theories. Addition-

lly, the differential theories are also not well-posed leading to incon-

istent softening or even paradoxical observation of stiffening influence

y nonlocality [17,40] . All the models discussed above, including the

ractional-order theory, involve only the classical modes of deformation

nd result in a softening influence of nonlocal interactions. On the other

ide, there exist higher-order models [41,42] and higher-grade theories

43] that also include additional modes of deformation and provide a

tiffening influence of the nonlocal interactions [44] . 

In this study, building upon the existing geometrically nonlinear

ractional-order kinematic approach to nonlocal elasticity theory, we

evelop a framework for the stability analysis of nonlocal slender struc-

ures. As will be shown later, the fractional-order kinematic relations

llow the nonlocal effects to be accounted for on both the material

nd the geometric stiffness terms. The objective of the current work

s two-fold. First, the conditions necessary to achieve structural stability

f fractional-order nonlocal solids are derived following an energy ap-

roach. As part of this goal, we extend the classical Lagrange-Dirichlet

heorem for fractional-order continua and apply it to obtain the crit-

cal loads for buckling of nonlocal structures. Note that this energy

ased approach to stability is possible due to the positive-definite de-

ormation energy characteristic of the fractional-order models for non-

ocal elasticity [23,32] . Second, we apply the stability theory to per-

orm a critical load analysis for the linear buckling of fractional-order

eams and plates. For this purpose, we make use of the fractional finite



S. Sidhardh, S. Patnaik and F. Semperlotti International Journal of Mechanical Sciences 201 (2021) 106443 

e  

e  

s  

l

 

m  

l  

f  

r  

u  

u  

s  

i

2

 

f  

o  

t  

p

 

m  

b

E  

w  

s  

e  

∇  

𝐷  

i

𝐷  

w  

a  

C  

t  

f  

t  

t  

t  

a  

s  

c  

t  

s  

t  

t  

c  

fi  

a  

o  

f  

c  

s  

p  

a  

v  

g  

j  

f  

t

 

a  

s  

o

𝐷  

w  

t  

e  

t  

d  

t  

e  

i  

c  

t  

a  

s  

d  

c  

g  

i  

d  

c  

b  

t  

o

 

L  

fi  

d  

a  

f

𝜖  

w  

v  

o  

d  

t  

e  

H  

t

 

d  

a  

m  

e  

c  

r  

t  

a  

s  

n  

t  

r  

m

𝜎

lement model (f-FEM) developed here for a numerical solution of the

igenvalue stability problem and to perform a parametric analysis to as-

ess the effect of the fractional-order nonlocality on the critical buckling

oad. 

In this paper, we begin with an introduction to the constitutive

odeling of the fractional-order theory of nonlocal elasticity in §2 fol-

owed by the development of a framework of stability analysis for the

ractional-order models in §3 . Later, we use this framework in §4 to de-

ive the theoretical and numerical models for nonlocal beams and plates

sing variational principles. Finally, we use a f-FEM approach to eval-

ate the critical loads corresponding to the fractional-order nonlocal

tructures and thereby study the influence of the long-range nonlocal

nteractions on the critical loads in §5 . 

. Constitutive modeling for fractional-order nonlocal elasticity 

In this section, we review the basic constitutive relations for the

ractional-order continuum theory [6,33] . We begin with a brief review

f the fractional-order kinematic relations and of the constitutive rela-

ions for nonlocal solids developed in agreement with thermodynamic

rinciples. 

Analogously to classical elasticity models, the fractional-order geo-

etrically nonlinear Lagrangian strain tensor for nonlocal solids is given

y [6,33] : 

𝛼

 = 

1 
2 
(
∇ 
𝛼U 𝑋 + ∇ 

𝛼U 
𝑇 
𝑋 
+ ∇ 

𝛼U 
𝑇 
𝑋 
∇ 
𝛼U 𝑋 

)
(1)

here U ( X ) is the Lagrangian displacement field. In the above expres-
ion, the fractional-order derivative of the displacement vector U ( X )
valuated with respect to spatial coordinates X ⊆ ℝ 

3 is denoted by

 
𝛼U 𝑋 . The component form for this second-order tensor is ∇ 

𝛼
𝑖𝑗 
U X =

 
𝛼
𝑋 𝑗 
𝑈 𝑖 . The space-fractional derivative 𝐷 

𝛼
X 
U ( X ) to the order 𝛼 ∈ (0 , 1)

s defined as [6] : 

 
𝛼
X 
U ( X ) = 

1 
2 
Γ(2 − 𝛼) 

[
L 𝛼−1 
𝐴 

𝐶 
X 𝐴 
𝐷 
𝛼
X 
U ( X ) − L 𝛼−1 

𝐵 
𝐶 
X 
𝐷 
𝛼
X 𝐵 
U ( X ) 

]
(2)

here Γ( ⋅) is the (complete) Gamma function defined over real numbers,
nd the expressions 𝐶 

X 𝐴 
𝐷 
𝛼
X 
U ( X ) and 𝐶 

X 
𝐷 
𝛼
X 𝐵 
U ( X ) are left- and right-handed

aputo spatial derivatives of the displacement field vector U ( X ) . While
he above expression is a form of the Riesz-Caputo derivative defined

or 𝛼 ∈ (0 , 1) , the fractional-order derivative 𝐷 
𝛼
X 
U ( X ) identically reduces

o the first integer-order derivative when 𝛼 = 1 . We merely note that
he above definition differs from the classical Riesz fractional deriva-

ive defined in [45] . The terminals of the fractional-order RC derivative

re given as X 𝐴 = X − L 𝐴 and X 𝐵 = X + L 𝐵 . Here, L 𝐴 and L 𝐵 are length

cale parameters associated with the fractional-order model for nonlo-

al elasticity. The domain enclosed by the terminals ( X 𝐴 , X 𝐵 ) defines
he horizon of nonlocal influence at the point X . Note that the expres-

ions L 𝛼−1 
𝐴 

and L 𝛼−1 
𝐵 

in the above equation ensure frame-invariance of

he fractional-order continuum theory, and dimensional consistency of

he fractional-order strain. These parameters are defined such that they

an be, if needed, asymmetric (different on either side of a point in a

xed direction), anisotropic (different for different directions), as well

s spatially-variable. This formulation generalizes alternative fractional-

rder continuum formulations [46,47] . More specifically, unlike similar

ractional-order continuum theories, the length scale parameters in the

urrent formulation allow for an appropriate truncation of the length

cales to address asymmetric nonlocal horizons when in presence of

hysical discontinuities in the domain [6] . The parameter 1 
2 Γ(2 − 𝛼)

long with the length scales, in the RC definition, ensures frame in-

ariance of the fractional-order strain. Further discussion regarding the

eometrical meaning of fractional-order kinematic relations and the ob-

ectivity of constitutive relations developed within the framework of

ractional-order continuum theory along with the physical interpreta-

ion of the fractional-order model are available in [6,32] . 
3 
The integro-differential nature of the fractional-order derivative used

bove introduces the effect of nonlocal interactions on the elastic re-

ponse, at the level of kinematics. To illustrate this aspect, the definition

f the RC fractional-derivative given in Eq. (2) can be recast as: 

 
𝛼
X 
[ U ( X ) ] = ∫

X + L 𝐵 

X − L 𝐴 
 ( X , 𝝃, 𝛼) 𝐷 

1 
𝝃
[ U ( 𝝃) ] d 𝝃 (3)

here the kernel  ( X , 𝝃, 𝛼) is the 𝛼-order power-law function connecting

he point under study X and another point 𝝃 within its domain of influ-

nce. The above mathematical statement allows the fractional deriva-

ive 𝐷 
𝛼
X 
[ U ( X ) ] to be interpreted as convolution of (integer) first-order

erivative 𝐷 
1 
X 
[ U ( X ) ] weighted by the power-law kernel  ( X , 𝝃, 𝛼) over

he domain of influence ( X 𝐴 , X 𝐵 ) . The power-law kernel in the above

xpressions may be interpreted as the attenuation function correspond-

ng to fractional-order model of nonlocal elasticity, analogous to the

lassical definition for integer-order nonlocal elasticity [20] . Note also

hat the power-law kernel satisfies the normalization: ∫ X 𝐵 
X 𝐴 

 d 𝝃 = 1 for
ll the points within the solid. This condition allows recovering local re-

ponse conditions under uniform field distributions [22] . The position-

ependent length scales for nonlocal horizon of influence allows this

ondition to be satisfied for points within the solid that are close to the

eometric boundaries (see [6] ). We also note that the geometric def-

nition of the fractional-order strain (and thereby the fractional-order

eformation gradient tensor) may be stated as the parameter defined to

apture the change of the length of an infinitesimal line in the nonlocal

ody. This is done by including the (nonlocal) effects of the points within

he domain of influence ( X 𝐴 , X 𝐵 ) through the differ-integral definition

f the fractional-order derivative. 

The complete nonlinear expressions for the fractional-order Euler-

agrange strain-displacement relations given in Eq. (1) can be simpli-

ed to obtain the fractional-order analogues of the von-Kármán strain-

isplacement relations. For a geometrically nonlinear elastic response

ssuming large displacement, but small numerical values for strains, the

ractional-order von-Kármán strains are [33,36] : 

𝑖̃𝑗 = 

1 
2 

(
𝐷 
𝛼
𝑋 𝑗 
𝑈 𝑖 + 𝐷 

𝛼
𝑋 𝑖 
𝑈 𝑗 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑒 𝑖𝑗 ( u ) 

+ 

1 
2 

(
𝐷 
𝛼
𝑋 𝑖 
𝑈 3 𝐷 

𝛼
𝑋 𝑗 
𝑈 3 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑞 𝑖𝑗 ( u , u ) 

, 𝑖, 𝑗 = 1 , 2 (4)

here 𝑈 𝑘 for 𝑘 = 1 , 2 , 3 are the components of the displacement field
ector. More specifically, 𝑈 3 ( X ) corresponds the transverse component
f the displacement field vector at point X . Similarly, 𝑈 1 and 𝑈 2 are

isplacement components along 𝑥 1 and 𝑥 2 -directions, respectively. The

ransverse strain components (normal 𝜖33 and shear 𝜖31 , 𝜖32 ) are the lin-

arized forms of their respective expressions available from Eq. (1) .

ere, ẽ ( u ) and q̃ ( u , u ) denote the linear and quadratic components of
he von-Kármán strain. 

Modeling nonlocal interactions via the kinematic relations allows the

efinition of localized material constitutive relations to be extended to

 fractional-order continuum theory in a thermodynamically consistent

anner [23] . In other terms, the tensor representing the material prop-

rties of the fractional nonlocal model maintains the same form as the

lassical tensor used in local elasticity. Therefore, the localized mate-

ial constitutive relations provide a one-to-one correspondence between

he fractional-order strain ( ̃𝝐) and the nonlocal stress ( ̃𝝈) evaluated at

 point within the solid, under the assumption of linear material con-

titutive relations. For the general class of hyperelastic solids with a

on-dissipative response, a strictly convex functional  [ u ( x )] referred
o as the deformation energy density can be defined. The constitutive

elations for the fractional-order nonlocal solid, obtained from the ther-

odynamic balance laws, may be written as [23] : 

̃𝑖𝑗 = 

𝜕 ( ̃𝝐) 
𝜕 ̃𝜖𝑖𝑗 

(5) 
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w  is [23] : 

 (6) 

𝐶 ic coefficient tensor. Note that the above expression for potential energy is 

p  for a positive-definite elasticity coefficient tensor. The stability of the elastic 

l onotonicity and positive-definite elasticity coefficient tensor. It is clear that 

t the fractional-order nonlocal solid simply follows from analogous results of 

t tability of the nonlocal solid are also local in nature. Finally, the constitutive 

r

𝜎 (7) 

w é parameters 𝜆 and 𝜇. The conditions for material stability of the isotropic 

n ry of elasticity. This follows from extending the Drucker’s stability postulate 

f al-order materials. 

3

ss of adjacent equilibrium positions are intimately related. Hill showed that 

t r the boundary value problem at this point. This observation allows studying 

t ed form of the nonlinear governing equations. The increments for adjacent 

e e control parameter Λ. This reduces the current analysis to a study of the 
s rol parameter. 

 non-dissipative elastic structures, we conduct the current analysis using the 

s tates that: 

 the norm ||u ||, we define the potential energy functional Π[ u , Λ] . The equilibrium 

p

t ( u 𝑒 , Λ𝑒 ) . 

ich is now extended to the framework of fractional-order continuum theory. 

T nite definition for internal energy density given in Eq. (6) , for the elastic 

d nditions for stability, this can be interpreted as a bounded response of the 

n

ositive-definite nature of the Hessian of the potential energy function, referred 

t nergy function for fractional-order nonlocal solid given in Eq. (6) is strictly 

c , also referred to as the elastic stiffness tensor, is positive-definite. However, 

i lt in a violation of the strong convexity of the tangent stiffness tensor. In the 

f on increasing Λ and identify specific critical value Λ𝑐 for a fractional-order 
s

a domain Ω is expressed in terms of the deformation energy density  ( ̃𝝐( u )) , 
d surface loads f (Λ) applied on the boundary 𝜕Ω𝜎 . The expression for Π[ u , Λ] 
i

Π (8) 

T ows: 

𝛿 (9) 

I deformation energy density in Eq. (6) and of the geometrically nonlinear 

k ve equation ( u 𝑒 , Λ𝑒 ) serve as the equilibrium points for the static response of 

a ibrium state ( u 𝑒 , Λ𝑒 ) is stable if 𝛿2 Π[ u 𝑒 , Λ𝑒 ] > 0 . For this, the second variation 
o s given by: 

𝛿  𝑉 > 0 (10) 

w proposition given above, the critical state may now be identified to be the 

l  definite. Thus, an equilibrium point can be considered the critical point of 

s

∫  0 (11) 

W ponding to the nonlinear buckling of fractional-order nonlocal solids, in this 

s s, we make certain assumptions to obtain the critical loads for linear buckling 

[ ume a proportional loading force ( f (Λ) = Λf 0 , f 0 being a representative force 
v esults in the following linear equation: 

∫ (12) 
here the deformation energy density for a linear elastic nonlocal solid

 ( ̃𝝐) = 

1 
2 
𝜎̃𝑖𝑗 ( ̃𝝐) 𝜖𝑖𝑗 = 

1 
2 
 𝑖𝑗𝑘𝑙 𝜖𝑖𝑗 𝜖𝑘𝑙 

 𝑖𝑗𝑘𝑙 in the above expression is the positive-definite fourth-order elast

ositive-definite (assuming non-zero deformation) and convex in nature

aw (material stability) for linear elastic solids follows from this strict m

he conditions for strong ellipticity of the elastic coefficient tensor for 

he classical theory of elasticity. Therefore, the conditions for material s

elations for the nonlocal stress in an isotropic solid are given as: 

̃𝑖𝑗 ( ̃𝝐) = 𝜆𝛿𝑖𝑗 ̃𝜖𝑘𝑘 + 2 𝜇𝜖𝑖𝑗 
here the material elastic constants, considering isotropy, are the Lam

onlocal solid are 𝜆 + (2∕3) 𝜇 > 0 and 𝜇 > 0 , similarly to the classical theo
or nonlinear constitutive laws [48] to the stability of nonlinear fraction

. Stability analysis of fractional-order nonlocal structures 

As noted by Hill [49] , for an elastic solid the stability and uniquene

he incremental position is stable if a unique solution can be obtained fo

he stability of the adjacent equilibrium position by means of a lineariz

quilibrium positions are characterized by a continuous variation of th

tability of equilibrium positions for a continuous variation of this cont

Although kinetic definitions for stability are more general, assuming

tatic stability criterion based on energy considerations. This criterion s

Given a displacement field u ∈ ℍ , where ℍ is a Hilbert space equipped with

oint ( u 𝑒 , Λ𝑒 ) is considered stable under the following assumptions: 

1. The potential energy functional is differentiable up to the second order a

2. The second variation 𝛿2 Π[ u 𝑒 , Λ𝑒 ] is positive-definite. 

The above proposition is the classical Lagrange-Dirichlet theorem wh

his is possible due to the thermodynamically consistent positive-defi

eformation of a fractional-order nonlocal solid. In terms of kinetic co

onlocal solid subject to perturbations at ( u 𝑒 , Λ𝑒 ) . 
The condition described above for static stability translates into the p

o as the tangent stiffness matrix. As discussed earlier, the deformation e

onvex. This ensures that the Hessian of the deformation energy density

t is worth noting that the increase of the control parameter Λ can resu

ollowing, we study the conditions leading to the onset of instability up

olid. 

The total potential energy Π[ u , Λ] of a nonlocal structure occupying 
efined for nonlocal strains in Eq. (6) , and the work done by external 

s: 

[ u , Λ] = ∫Ω  ( ̃𝝐( u )) d 𝑉 − ∫𝜕Ω𝜎 f (Λ) ⋅ u d 𝐴 

he first variation of the above defined potential energy is given as foll

Π = ∫Ω 𝝈̃ ∶ 
[
ẽ ( 𝛿u ) + q̃ ( u , 𝛿u ) 

]
d 𝑉 − ∫𝜕Ω𝜎 f (Λ) ⋅ 𝛿u d 𝐴 = 0 

n the derivation of the above result, we employ the expressions for 

inematic relations in Eq. (4) . As shown in [32] , the solutions to the abo

 nonlocal solid. According to the Lagrange-Dirichlet theorem, the equil

f the potential energy 𝛿2 Π evaluated at the equilibrium point ( u 𝑒 , Λ𝑒 ) i

2 Π = ∫Ω
[
ẽ ( 𝛿u ) + q̃ 

(
u 𝑒 , 𝛿u 

)]
∶ C ∶ 

[
ẽ ( 𝛿u ) + q̃ 

(
u 𝑒 , 𝛿u 

)]
+ 𝝈̃𝑒 ∶ q̃ ( 𝛿u , 𝛿u )d

here 𝝈̃𝑒 is the equilibrium stress evaluated at ( u 𝑒 , Λ𝑒 ) . Following the 
imit of the stability at which the second variation ceases to be positive

tability ( u 𝑐 , Λ𝑐 ) if: 

Ω
{( ̃e ( 𝛿u ) + q̃ ( u 𝑐 , 𝛿u )) ∶ C ∶ ( ̃e ( 𝛿u ) + q̃ ( u 𝑐 , 𝛿u )) + 𝝈̃(Λ𝑐 ) ∶ q̃ ( 𝛿u , 𝛿u )} d 𝑉 =

hile the above equation may be solved for the critical load ( Λ𝑐 ) corres
tudy, we focus only on linear buckling. Analogous to classical approache

50] . Firstly, in order to linearize the above nonlinear equation, we ass

ector) and a small deformation at the critical point. This assumption r

{ ̃e ( 𝛿u ) ∶ C ∶ ( ̃e ( 𝛿u )) + Λ𝑐 𝝈̃0 ∶ q̃ ( 𝛿u , 𝛿u )} d 𝑉 = 0 

Ω

4 



S. Sidhardh, S. Patnaik and F. Semperlotti International Journal of Mechanical Sciences 201 (2021) 106443 

w f 0 . Finally, the load proportionality factor at the critical point corresponding 

t

Λ (13) 

T itz coefficient for critical buckling load used in classical elasticity. 

teresting observations. The numerator of the above expression corresponds 

t inator is referred to as the stability matrix or the geometric stiffness for the 

n on are a result of the geometrically nonlinear strain-displacement relations. 

T  corresponding to bending compared with axial compression at the critical 

p at the critical point causes transverse bending (or buckling) of the structure, 

a int. In this context, the energy associated to bending is characterized by the 

’ c Stiffness ’ signifies the energy corresponding to axial compression captured 

b  in obtaining the critical load of the nonlocal solid using the fractional-order 

k  the general stiffness term as well as the geometric stiffness term. Following 

o teger-order nonlocal theories that include the nonlocal interactions through 

m ns modeled by the classical integral theories of nonlocal elasticity affect only 

t al to case of local elasticity. The implications of fractional-order kinematics 

i re. 

4

ical loads of nonlocal beams and plates modeled according to the fractional- 

o  a general solid, we begin with geometrically nonlinear kinematic (strain- 

d . Finally, in order to obtain the critical load for linear buckling, we linearize 

t

4

are chosen such that 𝐿 ∕ ℎ > 50 . The width of the beam is denoted by 𝑏 . As 

s ned along the length of the beam, and the surface 𝑥 3 = 0 coincides with the 
m m, while 𝑥 3 = ± ℎ ∕2 are the top and bottom surfaces. 

ent theory is considered here: 

𝑢 (14) 

w defined at a point 𝑋 0 ( 𝑥 1 ) on the reference plane 𝑥 3 = 0 . They correspond to 
t ctional dependence on the axial coordinate 𝑥 1 is implied and not mentioned 

f ically nonlinear strains evaluated using the von-Kármán kinematic (strain- 

d

𝜖 (15) 

w 𝑥 1 − 𝑙 𝐴 𝐷 
𝛼
𝑥 1 + 𝑙 𝐵 

in the 𝑥 1 direction. Using Eq. (7) , the axial stress in the nonlocal 

b

𝜎 (16) 

w erse shear stresses may be neglected under the slender beam assumption. As 

s equations of equilibrium of the nonlocal beam may be derived following the 

p s [33] : 
here 𝝈̃0 is the stress generated in the solid by the representative force 

o the linear buckling of nonlocal elastic solids is given by: 

𝑐 = min u 

[ 

− 

∫Ω ẽ ( u ) ∶ C ∶ ẽ ( u ) d 𝑉 
∫Ω 𝝈̃0 ∶ q̃ ( u , u ) d 𝑉 

] 

he above expression is the fractional-order analogue of the Rayleigh-R

The expression of the critical buckling load in Eq. (13) allows for in

o the general (or material) stiffness of the structure, while the denom

onlocal structure. These geometric stiffness terms in the above equati

he jump into buckled state follows from the lower strain energy state

oint [51] . Therefore, the additional energy from external compression 

s opposed to the axial response obtained until reaching the critical po

 Material Stiffness ’ which includes the curvature ( 𝐷 
2 
𝑥 1 
𝑤 0 ) . The ’ Geometri

y ( 𝐷 
1 
𝑥 1 
𝑤 0 ) 2 (von-Kármán nonlinear term in axial strain 𝜖11 ). Note that,

inematic approach, the influence of the nonlocality is realized on both

ur discussion in the introduction, we note that this is unlike classical in

aterial constitutive relations alone. Due to this, the nonlocal interactio

he general stiffness while the geometric stiffness terms remain identic

n the geometric stiffness have not been previously noted in the literatu

. Buckling of fractional-order slender nonlocal structures 

In this section, we apply the above formulation to determine the crit

rder continuum theory. Following the procedure discussed in §3 for

isplacement) relations to derive the governing equations of equilibrium

he system equations to setup the eigenvalue problem. 

.1. Euler-Bernoulli beams 

In this study, slender beams with geometric length 𝐿 and height ℎ 

hown in the schematic in Fig. 1 , the Cartesian coordinate axis 𝑥 1 is alig

id-plane. Thus, 𝑥 1 = 0 and 𝑥 1 = 𝐿 are the longitudinal ends of the bea

For the slender beam, the following Euler-Bernoulli beam displacem

 1 ( 𝑥 1 , 𝑥 3 ) = 𝑢 0 ( 𝑥 1 ) − 𝑥 3 
d 𝑤 0 ( 𝑥 1 ) 
d 𝑥 1 

, 𝑢 3 ( 𝑥 1 , 𝑥 3 ) = 𝑤 0 ( 𝑥 1 ) 

here, 𝑢 0 ( 𝑥 1 ) and 𝑤 0 ( 𝑥 1 ) are the generalized displacement coordinates 
he axial and transverse displacement fields at 𝑋 0 ( 𝑥 1 ) . Hereafter, the fun
or the sake of brevity. In the following, the fractional-order geometr

isplacement) relations in Eq. (4) are: 

̃11 = 𝐷 
𝛼
𝑥 1 
𝑢 0 − 𝑥 3 𝐷 

𝛼
𝑥 1 

[ 
d 𝑤 0 
d 𝑥 1 

] 
+ 

1 
2 

(
𝐷 
𝛼
𝑥 1 
𝑤 0 

)2 

here 𝐷 
𝛼
𝑥 1 
□ is a concise notation for the RC fractional-order derivative 

eam is obtained as: 

̃11 ( 𝑥 1 ) = 𝐸 ̃𝜖11 ( 𝑥 1 ) 

here 𝐸 is the Young’s modulus for the isotropic solid. Non-zero transv

hown in Eq. (8) , the nonlinear fractional-order governing differential 

rinciple of minimum potential energy: 𝛿Π = 0 . They are given as follow
Fig. 1. Schematic of the isotropic beam illustrating the Cartesian coordinate axes and a few geometric parameters. 
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𝔇 (17a) 

𝐷 (17b) 

w l beam. The essential and natural boundary conditions for the current study 

a

𝑁 (18a) 

𝑀 (18b) 

𝐷 (18c) 

w  surface loads along 𝑥 1 at the free end. In Eqs. (17) and (18) , 𝑁 11 ( 𝑥 1 ) and 
𝑀 ding of the nonlocal beam. They are defined as follows: 

𝑁 (19a) 

𝑀 (19b) 

g Reisz-Riemann Liouville (R-RL) fractional derivative: 

𝔇 (20) 

w y be noted that the above expression is a Riemann Liouville analogue of the 

p . (2) . In the above expression, the terms 𝑅𝐿 
𝑥 1 − 𝑙 𝐵 

𝐷 
𝛼
𝑥 1 
𝑓 ( 𝑥 1 ) and 𝑅𝐿 𝑥 1 

𝐷 
𝛼
𝑥 1 + 𝑙 𝐴 

𝑓 ( 𝑥 1 ) 
a he order 𝛼 evaluated using Riemann Liouville formalism, respectively. The 

f e axial coordinate ( 𝑥 1 ) over the interval ( 𝑥 1 − 𝑙 𝐵 , 𝑥 1 + 𝑙 𝐴 ) . This is unlike the 
R ) . 

ns follows from the convexity of the deformation energy density used in their 

d efinite definition of the deformation energy density given in Eq. (6) and the 

s nsistent softening of the structure upon inclusion of the nonlocal interactions 

[

ad for linear buckling, we linearize the nonlinear fractional-order governing 

e ng and small deformations at the critical point as discussed in §3 . Considering 

t
 
) = 0 ), the linearized fractional-order governing equations of equilibrium for 

t ined as: 

𝔇 (21a) 

𝐷 (21b) 

w  onset of buckling. In the derivation of the above equations, it is assumed 

t earized fractional-order governing equation for the axial response given in 

E l boundary conditions in Eq. (18a) , we obtain the in-plane stress resultants 

𝑁 ppendix A.1 . From the above equations, it is clear that the elastic response 

i  with solving the linearized governing equation for the transverse direction 

g et of buckling in a nonlocal beam subject to compressive axial force 𝑁 0 . The 

s  

 fractional-order governing equations is not a trivial task and typically not 

p od developed in [32] . Using the method of weighted residuals, the following 

m ations in Eq. (21b) : 

∫ (22) 

w  the weight function. Employing integration by-parts in the above expressions 

w n [32] : 

∫ (23) 

U d in the above equation, we arrive at the following set of algebraic equations: 

[ (24a) 

w

[ (24b) 
 
𝛼
𝑥 1 
𝑁 11 ( 𝑥 1 ) + 𝐹 1 ( 𝑥 1 ) = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 ( 𝑥 1 ) 

]
+ 𝔇 

𝛼
𝑥 1 

[
𝑁 11 ( 𝑥 1 ) 𝐷 

𝛼
𝑥 1 

[
𝑤 0 

]]
+ 𝐹 3 ( 𝑥 1 ) = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

here 𝐹 1 ( 𝑥 1 ) and 𝐹 3 ( 𝑥 1 ) are the distributed forces acting on the nonloca
re: 

 11 ( 𝑥 1 = 𝐿 ) = − 𝑁 0 and 𝛿𝑢 0 ( 𝑥 1 = 0) = 0 

 11 ( 𝑥 1 ) = 0 or 𝛿
[
𝐷 

1 
𝑥 1 
𝑤 0 

]
= 0 ∀ 𝑥 1 ∈ {0 , 𝐿 } 

 
1 
𝑥 1 
𝑀 11 ( 𝑥 1 ) + 𝑁 11 ( 𝑥 1 ) 𝐷 

1 
𝑥 1 

[
𝑤 0 

]
= 0 or 𝛿𝑤 0 = 0 ∀ 𝑥 1 ∈ {0 , 𝐿 } 

here 𝑁 0 ( > 0) is the magnitude of the externally applied compressive
 11 ( 𝑥 1 ) are the stress resultants associated with axial extension and ben

 11 ( 𝑥 1 ) = ∫
𝑏 ∕2 

− 𝑏 ∕2 ∫
ℎ ∕2 

− ℎ ∕2 
𝜎̃11 ( 𝑥 1 , 𝑥 3 ) d 𝑥 3 d 𝑥 2 

 11 ( 𝑥 1 ) = ∫
𝑏 ∕2 

− 𝑏 ∕2 ∫
ℎ ∕2 

− ℎ ∕2 
𝑥 3 𝜎̃11 ( 𝑥 1 , 𝑥 3 ) d 𝑥 3 d 𝑥 2 

The expression 𝔇 
𝛼
𝑥 1 
( ⋅) that appears in Eq. (18) denotes the followin

 
𝛼
𝑥 1 
( ⋅) 𝑓 ( 𝑥 1 ) = 

1 
2 
Γ(2 − 𝛼) 

[
𝑙 𝛼−1 
𝐵 

(
𝑅𝐿 
𝑥 1 − 𝑙 𝐵 

𝐷 
𝛼
𝑥 1 
𝑓 ( 𝑥 1 ) 

)
− 𝑙 𝛼−1 

𝐴 

(
𝑅𝐿 
𝑥 1 
𝐷 
𝛼
𝑥 1 + 𝑙 𝐴 

𝑓 ( 𝑥 1 ) 
)]

here 𝛼 is the fractional-order, and 𝑓 ( 𝑥 1 ) is an arbitrary function. It ma
reviously encountered Caputo-based Reisz fractional derivative in Eq

re the left- and right-handed fractional-order derivatives of 𝑓 ( 𝑥 1 ) to t
ractional-order R-RL derivative 𝔇 

𝛼
𝑥 1 
( ⋅) is carried out with respect to th

C fractional derivative 𝐷 
𝛼
𝑥 ( ⋅) defined over the interval ( 𝑥 1 − 𝑙 𝐴 , 𝑥 1 + 𝑙 𝐵 

The self-adjoint nature of the linear operators in the governing equatio

erivation. The proof of this property is provided in [32] . The positive-d

elf-adjoint fractional operators in the governing equations result in a co

32,33] . 

For the current study, concerning the identification of the critical lo

quations given in Eq. (18) , under the assumptions of proportional loadi

he case without externally applied distributed loads (i.e. 𝐹 1 ( 𝑥 1 ) = 𝐹 3 ( 𝑥 1
he Euler-Bernoulli nonlocal beam before the onset of buckling are obta

 
𝛼
𝑥 1 
𝑁 11 ( 𝑥 1 ) = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 ( 𝑥 1 ) 

]
+ 𝑁 0 𝔇 

𝛼
𝑥 1 

(
𝐷 
𝛼
𝑥 1 

[
𝑤 0 

])
= 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

here the constant 𝑁 0 is the in-plane stress-resultant along 𝑥 1 at the

hat the beam is straight ( 𝑤 0 ( 𝑥 1 ) = 0 ) before buckling. Solving the lin
q. (21a) and subject to uniform edge loading 𝑁 0 expressed via natura

 0 = − 𝑁 0 . A detailed derivation of the above results in provided in A

n the 𝑥 1 and 𝑥 3 − directions are decoupled. Therefore, we only proceed

iven in Eq. (21b) . This is the eigenvalue problem that governs the ons

mallest value of the 𝑁 0 for which instability sets in is the critical load.

Obtaining analytical solutions to the eigenvalue problem involving

ossible. Thus, we employ a numerical solution based on the f-FEM meth

athematical expression is equivalent to the governing differential equ

𝐿 

0 

(
𝐷 

1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 ( 𝑥 1 ) 

]
− 𝑁 0 𝔇 

𝛼
𝑥 1 

[
𝐷 
𝛼
𝑥 1 
𝑤 0 

])
𝛿𝑤 0 d 𝑥 1 = 0 

here a variation of the transverse displacement field 𝛿𝑤 0 is chosen to be

e derive the following weak-form equivalent of the governing equatio

𝐿 

0 

𝐸ℎ 3 

12 

( 

𝐷 
𝛼
𝑥 1 

[ 
d 𝑤 0 
d 𝑥 1 

] ) 2 
d 𝑥 1 − 𝑁 0 ∫

𝐿 

0 

(
𝐷 
𝛼
𝑥 1 
𝑤 0 

)2 
d 𝑥 1 = 0 

sing a finite element approximation for the transverse displacement fiel

 𝐾 
𝑏 
𝑇 
]{Δ𝑏 } = {0} 

here 

 𝐾 
𝑏 
𝑇 
] = ∫

𝐿 

0 

𝐸ℎ 3 

12 
[ ̃𝐵 , 11 ] 𝑇 [ ̃𝐵 , 11 ] d 𝑥 1 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[ 𝐾 𝑏 ]∶ Material stiffness 

− 𝑁 0 ∫
𝐿 

0 
[ ̃𝐵 , 1 ] 𝑇 [ ̃𝐵 , 1 ] d 𝑥 1 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[ 𝐺 𝑏 ]∶ Geometric stiffness 
6 
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Fig. 2. Schematic of the isotropic plate depicting the Cartesian coordinate axes and relevant geometric parameters. 

i atrices [ ̃𝐵 , 1 ] and [ ̃𝐵 , 11 ] used in the above equation are fractional-order in 
n t from the expression of the geometric stiffness matrix in Eq. (24b) that the 

m ach effects a change in the geometric stiffness of the solid in addition to the 

m -order approaches to nonlocal elasticity where the geometric stiffness matrix 

i the following approximation for the transverse displacement field: 

{ (24c) 

w nctions, and: 

{ (24d) 

i  for the 𝑁 𝑒 − noded element. 

4

 shown in the schematic given in Fig. 2 , the length and breadth of the plate 

a 50 . Further, for the Cartesian coordinate system considered here (see Fig. 2 ), 

𝑥 e with the transverse free faces of the plate. We consider the displacement 

fi

𝑢
 
( X 0 ) (25) 

w dinates evaluated at a point X 0 ( 𝑥 1 , 𝑥 2 ) = X ( 𝑥 1 , 𝑥 2 , 0) (on the reference plane 
𝑥 r strains evaluated following the von-Kármán strain-displacement relations 

g

𝜖 (26a) 

𝜖 (26b) 

𝛾
 
𝐷 
𝛼
𝑥 2 
𝑤 0 

)
(26c) 

ractional derivatives along 𝑥 1 and 𝑥 2 . The domains ( 𝑥 1 − 𝑙 𝐴 1 , 𝑥 1 + 𝑙 𝐵 1 ) and 
(  2 ) along the 𝑥 1 and 𝑥 2 − directions. The length scales 𝑙 𝐴 𝑖 and 𝑙 𝐵 𝑖 ( 𝑖 = 1 , 2 ) are 
t tresses in the isotropic plate are obtained as: 

𝜎 (27a) 

𝜎 (27b) 

𝜎 (27c) 

w opic solid. 

lli beam, the fractional-order governing differential equations of equilibrium 

o inimum potential energy. They are given as [36] : 

𝔇 (28a) 

𝔇 (28b) 

𝐷 𝑁 12 𝐷 
𝛼
𝑥 2 
𝑤 0 ) + 𝔇 

𝛼
𝑥 2 
( 𝑁 12 𝐷 

𝛼
𝑥 1 
𝑤 0 + 𝑁 22 𝐷 

𝛼
𝑥 2 
𝑤 0 ) + 𝐹 3 = 0 (28c) 
s the tangent stiffness matrix. The strain-displacement approximation m

ature and their expressions are provided in Appendix A.2 . It is eviden

odeling of nonlocal response via the fractional-order kinematic appro

aterial stiffness, as also discussed in §3 . This is unlike classical integer

s still local in nature. Note that, in the above derivation, we employed 

 𝑤 0 ( 𝑥 1 )} = [ ( 𝑥 1 )]{Δ𝑏 𝑒 ( 𝑥 1 )} 

here [ ( 𝑥 1 )] are the one-dimensional 𝐶 1 ( ermite) approximation fu
Δ𝑏 𝑒 } 

𝑇 = 

[ 
𝑤 
𝑖 
0 

d 𝑤 0 
d 𝑥 1 

𝑖 ] ||||𝑁 𝑒 𝑖 =1 

s the element nodal vector of the generalized displacement coordinates

.2. Kirchhoff plates 

The methodology outlined above is now extended to a thin plate. As

re 𝑎 and 𝑏, respectively, and the thickness ℎ is chosen such that ℎ < 𝑎 ∕
 3 = 0 is the mid-plane for the plate, and 𝑥 1 = 0 , 𝑎 and 𝑥 2 = 0 , 𝑏 coincid
eld distribution according to the Kirchhoff plate theory: 

 1 ( X ) = 𝑢 0 ( X 0 ) − 𝑥 3 
𝜕𝑤 0 ( X 0 ) 
𝜕𝑥 1 

, 𝑢 2 ( X ) = 𝑣 0 ( X 0 ) − 𝑥 3 
𝜕𝑤 0 ( X 0 ) 
𝜕𝑥 2 

, 𝑢 3 ( X ) = 𝑤 0

here 𝑢 0 ( X 0 ) , 𝑣 0 ( X 0 ) , and 𝑤 0 ( X 0 ) are the generalized displacement coor
 3 = 0 ). The expressions for the fractional-order geometrically nonlinea
iven in Eq. (4) are: 

̃11 = 𝐷 
𝛼
𝑥 1 
𝑢 0 − 𝑥 3 𝐷 

𝛼
𝑥 1 

[ 
𝜕𝑤 0 
𝜕𝑥 1 

] 
+ 

1 
2 

(
𝐷 
𝛼
𝑥 1 
𝑤 0 

)2 

̃22 = 𝐷 
𝛼
𝑥 2 
𝑣 0 − 𝑥 3 𝐷 

𝛼
𝑥 2 

[ 
𝜕𝑤 0 
𝜕𝑥 2 

] 
+ 

1 
2 

(
𝐷 
𝛼
𝑥 2 
𝑤 0 

)2 

̃12 = 2 ̃𝜖12 = 

(
𝐷 
𝛼
𝑥 1 
𝑣 0 + 𝐷 

𝛼
𝑥 2 
𝑢 0 

)
− 𝑥 3 

( 

𝐷 
𝛼
𝑥 1 

[ 
𝜕𝑤 0 
𝜕𝑥 1 

] 
+ 𝐷 

𝛼
𝑥 2 

[ 
𝜕𝑤 0 
𝜕𝑥 2 

] ) 

+ 

(
𝐷 
𝛼
𝑥 1 
𝑤 0

Here, 𝐷 
𝛼
𝑥 1 

≡ 𝑥 1 − 𝑙 𝐴 1 
𝐷 
𝛼
𝑥 1 + 𝑙 𝐵 1 

and 𝐷 
𝛼
𝑥 2 

≡ 𝑥 2 − 𝑙 𝐴 2 
𝐷 
𝛼
𝑥 2 + 𝑙 𝐵 2 

denote the RC f

 𝑥 2 − 𝑙 𝐴 2 , 𝑥 2 + 𝑙 𝐵 2 ) provide the horizon of influence for the point X 0 ( 𝑥 1 , 𝑥
he nonlocal length scales in 𝑥 𝑖 − direction. Using Eq. (7) , the nonlocal s

̃11 = 

𝐸 

1 − 𝜈2 

(
𝜖11 + 𝜈𝜖22 

)
̃22 = 

𝐸 

1 − 𝜈2 

(
𝜈𝜖11 + 𝜖22 

)
̃12 = 

𝐸 

2(1 + 𝜈) 
𝛾̃12 

here 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio of the isotr

As mentioned previously in the case of fractional-order Euler-Bernou

f the nonlocal Kirchhoff plate are derived following the principle of m

 
𝛼
𝑥 1 
𝑁 11 + 𝔇 

𝛼
𝑥 2 
𝑁 12 + 𝐹 1 = 0 

 
𝛼
𝑥 1 
𝑁 12 + 𝔇 

𝛼
𝑥 2 
𝑁 22 + 𝐹 2 = 0 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 + 𝔇 

𝛼
𝑥 2 
𝑀 12 

]
+ 𝐷 

1 
𝑥 2 

[
𝔇 
𝛼
𝑥 1 
𝑀 12 + 𝔇 

𝛼
𝑥 2 
𝑀 22 

]
+ 𝔇 

𝛼
𝑥 1 
( 𝑁 11 𝐷 

𝛼
𝑥 1 
𝑤 0 + 
7 
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w and 𝑀 □ are, respectively, the stress resultants associated with in-plane and 

b  using the nonlocal stresses given in Eq. (27) as follows: 

𝑁 (29) 

w rning equations given above are: 

∀
 𝑁 12 𝐷 

1 
𝑥 2 
𝑤 0 = 0 (30a) 

∀
 

𝑤 0 + 𝑁 22 𝐷 
1 
𝑥 2 
𝑤 0 = 0 (30b) 

w niform compressive surface loads at the free ends in the 𝑥 1 and 𝑥 2 − directions, 

r ions are the R-RL fractional-order derivative with respect to 𝑥 1 and 𝑥 2 . The 

e ctional derivative given in Eq. (20) . 

 fractional-order nonlinear governing equations of equilibrium are linearized 

f ed for analysis of beams in §4.1 . The linearized governing equations for the 

K ed distributed loads to be absent, are: 

𝔇 (31a) 

𝔇 (31b) 

𝐷  𝑁 12 𝔇 
𝛼
𝑥 1 
[ 𝐷 

𝛼
𝑥 2 
𝑤 0 ] + 𝑁 12 𝔇 

𝛼
𝑥 2 
[ 𝐷 

𝛼
𝑥 1 
𝑤 0 ] + 𝑁 22 𝔇 

𝛼
𝑥 2 
[ 𝐷 

𝛼
𝑥 2 
𝑤 0 ] = 0 (31c) 

w g. We assume two separate cases: (1) uniaxial compression where the plate 

i sverse faces at 𝑥 1 = 0 and 𝑥 1 = 𝑎 ; (2) biaxial compression where the plate is 

s  of external shear loads, the linearized fractional-order governing differential 

e plate is given as: 

𝐷  2 𝔇 
𝛼
𝑥 2 
[ 𝐷 

𝛼
𝑥 2 
𝑤 0 ] = 0 (32) 

T e reduced to uniaxial compression by setting, as an example, 𝑁 2 = 0 . Note 
t  to the magnitude of the uniform edge loads 𝑁 1 and 𝑁 2 , respectively. This 

f ) subject to boundary conditions given in Eq. (30) . 

 employ the method of weighted residuals to express the following mathe- 

m ion in Eq. (32) : 

∫
 1 
𝑤 0 ] − 𝑁 2 𝔇 

𝛼
𝑥 2 
[ 𝐷 

𝛼
𝑥 2 
𝑤 0 ] 

)
𝛿𝑤 0 d 𝑥 2 d 𝑥 1 = 0 (33) 

I n for Eq. (32) , and finite element approximations for the displacement field 

v

[ (34a) 

w

[ (34b) 

H

[
 
] + 𝜈 [ ̃𝐵 , 11 ]) 

)
+ 

𝐸ℎ 3 

24(1 + 𝜈) 
(
[ ̃𝐵 , 12 ] + [ ̃𝐵 , 21 ] 

)𝑇 ([ ̃𝐵 , 12 ] + [ ̃𝐵 , 21 ] 
)
d 𝑥 1 d 𝑥 2 

(34c) 

a

[  2 (34d) 

a compression along 𝑥 1 and 𝑥 2 directions, respectively. Note the effect of the 

f  fractional-order strain-displacement approximation matrices [ ̃𝐵 , □] . In the 
d ollowing approximation for the transverse displacement field: 

{ (34e) 

w  functions. The element nodal vector is expressed as: 

{ (34f) 

a d element. 
here 𝐹 𝑖 ( 𝑖 = {1 , 2 , 3} ) are externally applied distributed forces, and 𝑁 □
ending response of the mid-plane evaluated at X 0 . They are evaluated

 𝑖𝑗 = ∫
ℎ ∕2 

− ℎ ∕2 
𝜎̃𝑖𝑗 d 𝑥 3 , 𝑀 𝑖𝑗 = ∫

ℎ ∕2 

− ℎ ∕2 
𝑥 3 𝜎̃𝑖𝑗 d 𝑥 3 

here 𝑖, 𝑗 ∈ {1 , 2} . The boundary conditions necessary to solve the gove

𝑥 2 ∣ 𝑥 1 = {0 , 𝑎 } ∶ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝛿𝑢 0 = 0 or 𝑁 11 = − 𝑁 1 
𝛿𝑣 0 = 0 or 𝑁 12 = 0 
𝛿𝑤 0 = 0 or 𝐷 

1 
𝑥 1 
𝑀 11 + 2 𝐷 

1 
𝑥 2 
𝑀 12 + 𝑁 11 𝐷 

1 
𝑥 1 
𝑤 0 +

𝛿𝐷 
1 
𝑥 1 
𝑤 0 = 0 or 𝑀 11 = 0 

𝑥 1 ∣ 𝑥 2 = {0 , 𝑏 } ∶ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝛿𝑢 0 = 0 or 𝑁 12 = 0 
𝛿𝑣 0 = 0 or 𝑁 22 = − 𝑁 2 
𝛿𝑤 0 = 0 or 𝐷 

1 
𝑥 2 
𝑀 22 + 2 𝐷 

1 
𝑥 1 
𝑀 12 + 𝑁 12 𝐷 

1 
𝑥 1

𝛿𝐷 
1 
𝑥 2 
𝑤 0 = 0 or 𝑀 22 = 0 

here 𝑁 1 ( > 0) and 𝑁 2 ( > 0) are the magnitudes of the externally applied u
espectively. Recall that the terms 𝔇 

𝛼
𝑥 1 
( ⋅) and 𝔇 

𝛼
𝑥 2 
( ⋅) in the above equat

xpressions for these derivatives follow from the definition for R-RL fra

In order to obtain the critical load for linear buckling, the above given

ollowing the methodology outlined in §3 for general solids and employ

irchhoff plates before the onset of buckling, assuming externally appli

 
𝛼
𝑥 1 
𝑁 11 + 𝔇 

𝛼
𝑥 2 
𝑁 12 = 0 

 
𝛼
𝑥 1 
𝑁 12 + 𝔇 

𝛼
𝑥 2 
𝑁 22 = 0 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 + 𝔇 

𝛼
𝑥 2 
𝑀 12 

]
+ 𝐷 

1 
𝑥 2 

[
𝔇 
𝛼
𝑥 1 
𝑀 12 + 𝔇 

𝛼
𝑥 2 
𝑀 22 

]
+ 𝑁 11 𝔇 

𝛼
𝑥 1 
[ 𝐷 

𝛼
𝑥 1 
𝑤 0 ] +

here 𝑁 □ are the in-plane stress-resultants before the onset of bucklin

s subject to externally applied distributed surface loads 𝑁 1 on the tran

ubject to 𝑁 1 on faces 𝑥 1 = 0 , 𝑎 and 𝑁 2 on faces 𝑥 2 = 0 , 𝑏 . In the absence
quation corresponding to the transverse displacement of the nonlocal 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 + 𝔇 

𝛼
𝑥 2 
𝑀 12 

]
+ 𝐷 

1 
𝑥 2 

[
𝔇 
𝛼
𝑥 1 
𝑀 12 + 𝔇 

𝛼
𝑥 2 
𝑀 22 

]
− 𝑁 1 𝔇 

𝛼
𝑥 1 
[ 𝐷 

𝛼
𝑥 1 
𝑤 0 ] − 𝑁

he above equation corresponds to the biaxial compression, and may b

hat the in-plane stress resultants 𝑁 11 and 𝑁 22 in Eq. (31c) are equal

ollows from solving the in-plane governing equations given in Eq. (31

As in the previously encountered case of fractional-order beams, we

atical statement as equivalent to the fractional-order governing equat

𝑎 

0 ∫ 𝑏 0 

(
𝐷 

1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 11 + 𝔇 

𝛼
𝑥 2 
𝑀 12 

]
+ 𝐷 

1 
𝑥 2 

[
𝔇 
𝛼
𝑥 1 
𝑀 12 + 𝔇 

𝛼
𝑥 2 
𝑀 22 

]
− 𝑁 1 𝔇 

𝛼
𝑥 1 
[ 𝐷 

𝛼
𝑥

ntegral operations to reduce the above statement into the weak equatio

ariables gives the following algebraic equations of equilibrium: 

 𝐾 
𝑝 

𝑇 
]{Δ𝑝 } = {0} 

here the tangent stiffness matrix [ 𝐾 
𝑝 

𝑇 
] is given as 

 𝐾 
𝑝 

𝑇 
] = [ 𝐾 

𝑝 ] − 𝑁 1 [ 𝐺 
𝑝 

1 ] − 𝑁 2 [ 𝐺 
𝑝 

2 ] 

ere, [ 𝐾 
𝑝 ] is the bending stiffness matrix 

 𝐾 
𝑝 ] = ∫

𝑎 

0 ∫
𝑏 

0 

𝐸ℎ 3 

12(1 − 𝜈2 ) 
(
[ ̃𝐵 , 11 ] 𝑇 ([ ̃𝐵 , 11 ] + 𝜈 [ ̃𝐵 , 22 ]) + [ ̃𝐵 , 22 ] 𝑇 ([ ̃𝐵 , 22

nd 

 𝐺 
𝑝 

1 ] = ∫
𝑎 

0 ∫
𝑏 

0 
[ ̃𝐵 , 1 ] 𝑇 [ ̃𝐵 , 1 ] d 𝑥 1 d 𝑥 2 [ 𝐺 

𝑝 

2 ] = ∫
𝑎 

0 ∫
𝑏 

0 
[ ̃𝐵 , 2 ] 𝑇 [ ̃𝐵 , 2 ] d 𝑥 1 d 𝑥

re the geometric stiffness matrices of the nonlocal Kirchhoff plate for 

ractional-order nonlocality on the geometric stiffness matrices via the

erivation of the algebraic equations of equilibrium, we employed the f

 𝑤 0 ( 𝑥 1 , 𝑥 2 )} = [ ( 𝑥 1 , 𝑥 2 )]{Δ𝑝 𝑒 ( 𝑥 1 , 𝑥 2 )} 

here [ ( 𝑥 1 , 𝑥 2 )] are the two-dimensional 𝐶 1 ( ermite) approximation
Δ𝑝 𝑒 } 

𝑇 = 

[ 

𝑤 
𝑖 
0 

𝜕𝑤 0 
𝜕𝑥 1 

𝑖 𝜕𝑤 0 
𝜕𝑥 2 

𝑖 𝜕 2 𝑤 0 
𝜕 𝑥 1 𝜕 𝑥 2 

𝑖 
] ||||𝑁 𝑒 𝑖 =1 

nd includes the generalized displacement coordinates for the 𝑁 − node
𝑒 

8 
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5

dy the effect of long-range interactions, modeled via fractional-order contin- 

u ly, the f-FEM models for the Euler-Bernoulli nonlocal beam in Eq. (24) and 

t to study the influence of the fractional-order and the nonlocal length scales. 

T  𝐸 = 30 MPa and 𝜈 = 0 . 3 . The nonlocal horizon is assumed to be symmetric 
f r terms, the length scales on both sides of the point of interest are assumed 

t  for a plate it means 𝑙 𝐴 1 = 𝑙 𝐵 1 = 𝑙 𝐴 2 = 𝑙 𝐵 2 = 𝑙 𝑓 . Clearly, the symmetry of the 

n m the boundary (in a given direction) is smaller than 𝑙 𝑓 . In this latter case, 

a in the schematic of Fig. 3 . This asymmetry in the length scales, for points 

c itions of the length scales 𝑙 𝐴 and 𝑙 𝐵 in Eq. (2) . This aspect generalizes the 

f 1] . In the subsequent studies, we carry out numerical analyses and provide 

t ters. Note that the choice of the fractional-order 𝛼 is always chosen to be 

g ocal elastic behavior caused by excessive softening when 𝛼 < 0 . 5 [32,33] . A 
d is available in [32] . 

5

nt theory, we choose a thin beam with aspect ratio 𝐿 ∕ ℎ = 100 for the current 
s orted here were non-dimensionalized as follows [50] : 

𝑁 (35) 

B  remark on the convergence of the discretized numerical model. As discussed 

i ation of the convolution integral corresponding to the nonlocal interactions. 

T convergence ’, defined as  
𝑖𝑛𝑓 = 𝑙 𝑓 ∕ 𝑙 𝑒 , where 𝑙 𝑒 is the size of the uniform FE 

m d for different choices of 𝛼 and 𝑙 𝑓 is reported in Table 1 . The study illustrates 

t fferences of < 1% between successive refinements of the FE mesh. Following 

t s section. 

F

Q

. Results and discussion 

We report here the results of numerical simulations conducted to stu

um theory, over the critical load of slender structures. More specifical

he Kirchhoff nonlocal plate in Eq. (34) are solved for the critical load 

he material properties of the isotropic solid are considered as follows:

or all those points that are sufficiently far from the boundaries. In othe

o be equal. For a beam this condition translates to 𝑙 𝐴 = 𝑙 𝐵 = 𝑙 𝑓 , while

onlocal horizons is broken when considering points whose distance fro

ppropriate truncation of the length scales is performed as indicated 

lose to the external boundaries, is achieved via the independent defin

ractional-order continuum theory with respect to other formulations [3

he results for different choices of fractional-order constitutive parame

reater than 0.5. This choice follows from a loss of consistency in nonl

etailed explanation of this behavior along with the physical rationale 

.1. Beams 

In line with the assumptions for the Euler-Bernoulli beam displaceme

tudy. The width of the beam was chosen as 2 × ℎ . The critical loads rep

 0 = 𝑁 0 ×
𝐿 
2 

𝜋2 𝐸𝐼 

efore presenting the results for the critical loads, we make an important

n [52] , numerical convergence of the f-FEM requires accurate approxim

his is ensured by considering a suitable choice of the ’ dynamic rate of 

esh. For this purpose, the convergence study of the 1D f-FEM conducte

he excellent convergence of the normalized eigenvalues that achieve di

hese results, we used 𝑁 
𝑖𝑛𝑓 = 24 for all the simulations presented in thi
ig. 3. Illustration of position dependent length scales for three different points (P,Q, and R) in the isotropic domain. Note the symmetry in length scales for a point 

 sufficiently within the plate, unlike points P and R that are close to the boundaries. 

Table 1 

1D f-FEMl mesh convergence study. Non-dimensional critical load of a doubly 

clamped beam for different values of the constitutive parameters 𝛼 and 𝑙 𝑓 . In all 

cases, 𝑁 
𝑖𝑛𝑓 = 24 guarantees a difference between successive refinements within 1%. 

Fractional Horizon 

Length, 𝑙 𝑓 𝑁 
𝑖𝑛𝑓 

fractional-order, 𝛼

𝛼 = 1 . 0 𝛼 = 0 . 9 𝛼 = 0 . 8 𝛼 = 0 . 7 

𝑙 𝑓 = 0 . 2 𝐿 12 4 3.9574 3.9374 3.9200 

18 4 3.9529 3.9291 3.9072 

24 4 3.9514 3.9251 3.8979 

30 4 3.9506 3.9224 3.8908 

𝑙 𝑓 = 0 . 6 𝐿 12 4 3.7216 3.3789 2.8594 

24 4 3.7238 3.3840 2.8777 

36 4 3.7246 3.3871 2.8817 

48 4 3.7250 3.3882 2.8817 

𝑙 𝑓 = 𝐿 12 4 3.8460 3.6969 3.4806 

24 4 3.8484 3.7116 3.5216 

36 4 3.8497 3.7182 3.5389 

30 4 3.8504 3.7215 3.5466 

9 
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Table 2 

Critical loads for beams subject to various boundary conditions. Results are non-dimensionalized following Eq. (35) and 

compared to study the effect of fractional theory constitutive parameters. Recall that SS stands for simply supported, CC 

for doubly clamped and CF for cantilever beam (one end clamped and other end free). 

SS CC CF 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 4 𝐿 1.000 1.017 0.998 0.927 4.000 3.745 3.469 3.120 0.250 0.259 0.282 0.315 

𝑙 𝑓 = 0 . 6 𝐿 1.000 1.069 1.095 1.046 4.000 3.720 3.376 2.877 0.250 0.261 0.289 0.330 

𝑙 𝑓 = 0 . 8 𝐿 1.000 1.118 1.200 1.208 4.000 3.815 3.598 3.242 0.250 0.260 0.287 0.320 

𝑙 𝑓 = 𝐿 1.000 1.140 1.255 1.319 4.000 3.848 3.712 3.522 0.250 0.259 0.282 0.305 

rted (SS), doubly clamped (CC), and cantilever (CF) boundary conditions at 

𝑥 rs ( 𝛼 and 𝑙 𝑓 ). A non-monotonic variation of the critical load with increasing 

d  evident from the table. This observation is unlike the monotonous reduction 

i der nonlocal theories [12,13,21,24] . This difference is a direct result of the 

e er discussed in the following. 

ces representing the material stiffness [ 𝐾 
𝑏 ] and the geometric stiffness [ 𝐺 

𝑏 ] . 
T eferred to as the material nonlocality . This implies the influence of long-range 

i rmation) of the nonlocal solid. Similarly, we denote the nonlocal effects on 

t in §3 , contrary to the classical or the integer-order approaches to nonlocal 

e -order kinematic relations affects both the material and geometric stiffness 

t terms are reduced. The decrease in material stiffness (often referred to as 

s ady documented in [32,33] , and is in agreement with studies on classical 

s he geometric stiffness due to fractional-order kinematics was not reported 

i with regards to the fractional-order studies [32,33,35,36] , the effect of the 

n e of the nature of the problems (static and free vibration response) treated 

i the slender structures in this study and the other fractional-order studies in 

[  (repeated below), the reducing material stiffness (numerator) would result 

i nominator) would result in increasing critical load. It follows that the effect 

o onic due to an interplay between these contrasting effects, resulting from a 

s

Λ (36) 

 that isolates the effects of nonlocal interactions, modeled by the fractional- 

d goal is achieved by conducting parametric studies designed to intentionally 

s  the geometric stiffness term. 

ss matrix of the fractional-order structure (available from the weak model) 

ially modified to match its local elastic counterpart. More specifically, the 

metric stiffness matrix are replaced by their integer-order counterparts. This 

y via the material stiffness matrix. 

(37a) 

ffness of the fractional-order structure (available from the weak model) is 

the fractional-order terms within the material stiffness are replaced by their 

e material stiffness is artificially suppressed. This case study allows focusing 

(37b) 

ying fractional-order derivatives and derived using f-FEM in Appendix A.2 , 

a nteger-order derivatives as shown in [53] . It is clear that the stiffness terms 

e For the case of isolated material nonlocality with geometric stiffness terms 

b er derivatives is expected to lead to lower values of critical load. In contrast, 

f rms being local, increasing the nonlocal effects would reduce the geometric 

s ply follow from the Rayleigh-Ritz expression in Eq. (13) . In obtaining the 

a  𝑙 𝑓 . 

n Table 3 for the doubly clamped beam, and Table 4 for the simply-supported 

b e critical load decreases monotonically as the degree of nonlocality increases, 

i ad is observed to decrease for reducing values of the fractional-order 𝛼 and 

i r isolated geometric nonlocality ( [ 𝐾 
𝑏 ] : Local & [ 𝐺 

𝑏 ] : Nonlocal), the critical 
l  immediately follows that, when nonlocality is considered simultaneously in 
The critical loads of fractional-order beams subject to simply suppo

 1 = 0 , 𝐿 are tabulated in Table 2 for various fractional-order paramete

egree of nonlocality, obtained by reducing 𝛼 and increasing 𝑙 𝑓 , is clearly

n critical load noted from similar studies based on classical integer-or

ffect of the nonlocal response on the geometric stiffness and it is furth

Recall that the eigenvalue problem in Eq. (24b) involves two matri

he effect of nonlocal interactions on the material stiffness term will be r

nteractions on the structural rigidity (i.e. the propensity to oppose defo

he geometric stiffness term as the geometric nonlocality . As discussed 

lasticity, the critical load of a nonlocal solid evaluated via fractional

erms. With the increasing degree of nonlocality, both these stiffness 

oftening effect) as a result of the fractional-order kinematics was alre

train-based integral models of nonlocal elasticity. The reduction of t

n either the fractional- or integer-order studies. We merely note that, 

onlocality on the geometric stiffness was not reported simply becaus

n the same studies. Recall however that, the constitutive modeling of 

32,33,35,36] is still the same. In this regard, as evident from Eq. (13)

n decreasing the critical load, and the reducing geometric stiffness (de

f an increasing degree of nonlocality on the critical load is non-monot

imultaneous decrease in the material and geometric stiffness. 

𝑐 = min u 

[ 

− 

∫Ω ẽ ( u ) ∶ C ∶ ẽ ( u ) d 𝑉 
∫Ω 𝝈̃0 ∶ q̃ ( u , u ) d 𝑉 

] 

To better illustrate the above aspects, we present a numerical study

erivatives, on each of these stiffness terms of the nonlocal solid. This 

uppress the effect of nonlocal interactions either on the material or on

1. Isolated Material Nonlocality : For this case-study, the material stiffne

is left unchanged. However, the geometric stiffness matrix is artific

fractional-order derivatives present within the expression of the geo

formulation accounts for the effects of the nonlocal interactions onl

[ 𝐾 
𝑏 ] = ∫

𝐿 

0 

𝐸ℎ 3 

12 
[ ̃𝐵 , 11 ] 𝑇 [ ̃𝐵 , 11 ] d 𝑥 1 , [ 𝐺 

𝑏 ] = ∫
𝐿 

0 
[ 𝐵 , 1 ] 𝑇 [ 𝐵 , 1 ] d 𝑥 1 

2. Isolated Geometric Nonlocality : In this case-study, the geometric sti

unchanged, hence incorporating the effect of nonlocality. However, 

integer-order counterpart. Therefore, the effect of nonlocality on th

on the effect of nonlocality via the geometric stiffness matrix. 

[ 𝐾 
𝑏 ] = ∫

𝐿 

0 

𝐸ℎ 3 

12 
[ 𝐵 , 11 ] 𝑇 [ 𝐵 , 11 ] d 𝑥 1 , [ 𝐺 

𝑏 ] = ∫
𝐿 

0 
[ ̃𝐵 , 1 ] 𝑇 [ ̃𝐵 , 1 ] d 𝑥 1 

Note that [ ̃𝐵 □] are the nonlocal strain-displacement matrices emplo
nd the matrices [ 𝐵 □] are their local elastic analogue evaluated using i
valuated using integer-order matrices corresponds to local elasticity. 

eing local, the softening effect introduced in [ 𝐾 
𝑏 ] by the fractional-ord

or the case of isolated geometric nonlocality with material stiffness te

tiffness, hence it will increase the critical load. These observations sim

bove results we assumed a constant length scale throughout: 𝑙 𝐴 = 𝑙 𝐵 =
The results for the above described parametric studies are presented i

eam. For isolated material nonlocality ( [ 𝐾 
𝑏 ] : Nonlocal & [ 𝐺 

𝑏 ] : Local), th
rrespective of the boundary condition. More specifically, the critical lo

ncreasing values of the horizon of nonlocal influence 𝑙 𝑓 . Similarly, fo

oad is observed to increase with an increasing degree of nonlocality. It
10 
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Table 3 

Critical loads for a double clamped (CC) beam. Results are non-dimensionalized fol- 

lowing Eq. (35) and compared to study the effect of fractional theory constitutive 

parameters. Results are presented by artificially separating either the material or the 

geometric effects of nonlocality to track their individual effects on the critical load. 

Material Nonlocality Geometric Nonlocality 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 2 𝐿 4.000 3.471 3.014 2.600 4.000 4.282 4.555 4.821 

𝑙 𝑓 = 0 . 4 𝐿 4.000 2.912 2.124 1.551 4.000 4.893 5.930 7.130 

𝑙 𝑓 = 0 . 6 𝐿 4.000 2.559 1.610 0.990 4.000 5.537 7.676 10.682 

𝑙 𝑓 = 0 . 8 𝐿 4.000 2.411 1.421 0.810 4.000 5.986 9.068 13.999 

𝑙 𝑓 = 𝐿 4.000 2.330 1.335 0.748 4.000 6.274 9.978 16.223 

Table 4 

Critical loads for a simply-supported (SS) beam. Results are non-dimensionalized fol- 

lowing Eq. (35) and compared to study the effect of fractional theory constitutive 

parameters. Results are presented by artificially separating either the material or the 

geometric effects of nonlocality to track their individual effects on the critical load. 

Material Nonlocality Geometric Nonlocality 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 2 𝐿 1.000 0.978 0.958 0.939 1.000 1.095 1.183 1.263 

𝑙 𝑓 = 0 . 4 𝐿 1.000 0.937 0.877 0.815 1.000 1.220 1.464 1.735 

𝑙 𝑓 = 0 . 6 𝐿 1.000 0.887 0.776 0.653 1.000 1.362 1.841 2.481 

𝑙 𝑓 = 0 . 8 𝐿 1.000 0.840 0.689 0.536 1.000 1.482 2.201 3.304 

𝑙 𝑓 = 𝐿 1.000 0.803 0.630 0.469 1.000 1.568 2.478 3.986 

b et effect of these competing terms. This analysis explains the non-monotonic 

v

rametric studies in Tables 3 and 4 . It is clear from the table that non-locality 

i load for a CC beam. We clarify that, while contrasting effects are noted for 

t ystem stiffness matrices is independent of the boundary conditions. Both the 

m ic reduction with an increasing degree of nonlocality. This is established from 

t ffect between the reduction of the geometric and the material stiffness that 

d  load. Therefore, the net effect of nonlocality may result in either higher or 

l  of the individual stiffness terms due to nonlocality. As observed in previous 

w ral approaches [13] , the decrease in material stiffness of a SS beam, due to 

n is suggests that the reduction in the material stiffness matrix [ 𝐾 
𝑏 ] due to the 

f bsequently dominated, by the simultaneous decrease in geometric stiffness 

m onlocal SS beam compared to a local elastic beam. Contrarily, the softening 

e neous softening of the geometric stiffness, therefore resulting in marginally 

l

rresponding to the critical load of the beam and calculated by either integer- 

[ t changes are noted in the curvature of buckling mode shapes for nonlocal 

b nlocality, such as for 𝛼 = 0 . 7 and 𝑙 𝑓 ∕ 𝐿 = 1 . These results highlight that the 
i minimal effects on the buckling mode shape. 

5

 selected a square plate with 𝑎 = 𝑏 and an aspect ratio 𝑎 ∕ ℎ = 100 to perform 

t ed and validated in [35] . Both a state of uniaxial compression 𝑁 1 = 𝑁 0 and 

o ds were non-dimensionalized as follows [50] : 

𝑁 (38) 

A s the accurate evaluation of convolution integrals, along both the 𝑥 1 and 𝑥 2 
d ence is required in both directions. For this purpose, we define  

𝑖𝑛𝑓 

1 = 𝑙 𝑓 ∕ 𝑙 𝑒 1 
a sions of the uniform FE mesh along 𝑥 1 and 𝑥 2 directions, respectively. The 

c for various choices of the fractional theory constitutive parameters in Table 5 

f  along the 𝑥 1 direction. Excellent convergence of the normalized critical loads 

i f the mesh. Following this convergence study, we used 𝑁 
𝑖𝑛𝑓 

1 ×𝑁 
𝑖𝑛𝑓 

2 = 8 × 8 
f

y on the critical load was studied for two different cases of external loading: 

( l loads applied along 𝑥 and 𝑥 . The critical loads for uniaxial (along 𝑥 ) 
oth these stiffness terms, the critical load ( Table 2 ) is the result of the n

ariation of the critical load with an increasing degree nonlocality. 

Additional observations may be drawn from Table 2 following the pa

ncreases the critical load for a SS beam while it decreases the critical 

he two different boundary conditions, the effect of nonlocality on the s

aterial stiffness [ 𝐾] and the geometric stiffness [ 𝐺] undergo a monoton
he parametric studies in Tables 3 and 4 . It is indeed the antagonistic e

etermines the overall effect of the nonlocal interactions on the critical

ower critical load for the structure depending on the relative reductions

orks using fractional-order approaches [32,33] and strain-driven integ

onlocal elasticity, is less pronounced when compared to a CC beam. Th

ractional-order parameters (i.e. to the nonlocal effect) is offset, and su

atrix [ 𝐺 
𝑏 ] (see Eq. (24) ).This explains the higher critical load for a n

ffect on the material stiffness for the CC beam outweighs the simulta

ower values of the critical load (compared to the local elastic beam). 

Before proceeding further, we present the transverse mode shapes co

1] or fractional-order approaches are compared in Fig. 4 . While sligh

eams, this effect is marginal even for very a pronounced degree of no

nclusion of the nonlocal effects via fractional-order modeling presents 

.2. Plates 

Consistently with the assumptions for the Kirchhoff plate theory, we

he current study. The 2D f-FEM model used in this section was develop

f biaxial compression 𝑁 2 = 𝑁 1 = 𝑁 0 were investigated. The critical loa

 0 = 𝑁 0 ×
𝑏 2 

𝜋2 𝐷 

, 𝐷 = 

𝐸ℎ 3 

12(1 − 𝜈2 ) 

ccurate evaluation of the system matrices following 2D f-FEM require

irections. Thus, an appropriate choice for the dynamic rates of converg

nd  
𝑖𝑛𝑓 

2 = 𝑙 𝑓 ∕ 𝑙 𝑒 2 where 𝑙 𝑒 1 and 𝑙 𝑒 2 are the discretized element dimen
onvergence of the 2D discretized mesh used in this study is established 

or a simply supported (SSSS) plate subject to a uniaxial compressive load

s achieved, with differences of < 1% between successive refinements o

or the all the subsequent analyses. 

As previously mentioned, the effect of the fractional-order nonlocalit

1) uniaxial compression along 𝑥 ; (2) biaxial compression with equa
1 1 2 1 

11 
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Fig. 4. Comparison of the buckling mode shapes obtained from either classical or fractional-order beam theory under different boundary conditions. 

Table 5 

2D f-FEM mesh convergence study. Non-dimensional critical load of a SSSS plate for 

different values of constitutive parameters 𝛼 and 𝑙 𝑓 . In all cases, 𝑁 
𝑖𝑛𝑓 = 8 guarantees 

a difference within 1% between successive refinements. 

Fractional Horizon 

Length, 𝑙 𝑓 𝑁 
𝑖𝑛𝑓 

1 ×𝑁 
𝑖𝑛𝑓 

2 

fractional-order, 𝛼

𝛼 = 1 . 0 𝛼 = 0 . 9 𝛼 = 0 . 8 𝛼 = 0 . 7 

𝑙 𝑓 = 0 . 5 𝑎 4 × 4 4 4.120 4.183 4.178 

6 × 6 4 4.099 4.148 4.138 

8 × 8 4 4.089 4.131 4.118 

10 × 10 4 4.083 4.121 4.107 

𝑙 𝑓 = 𝑎 4 × 4 4 4.258 4.445 4.545 

6 × 6 4 4.258 4.452 4.563 

8 × 8 4 4.259 4.456 4.573 

10 × 10 4 4.259 4.460 4.577 

Table 6 

Critical loads for plate subject to uniaxial compression and various boundary conditions. Results are non-dimensionalized 

following Eq. (38) and compared to study the effect of the different fractional theory constitutive parameters. Recall that 

SSSS stands for simply supported; CCCC for fully clamped; and CFCF for plate clamped on two opposite edges and free on 

the other two. 

SSSS CCCC CFCF 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 4 𝑎 4 4.109 4.190 4.233 10.076 9.874 9.637 9.334 3.920 3.717 3.504 3.265 

𝑙 𝑓 = 0 . 6 𝑎 4 4.146 4.234 4.247 10.076 9.834 9.544 9.162 3.920 3.731 3.531 3.307 

𝑙 𝑓 = 0 . 8 𝑎 4 4.238 4.417 4.517 10.076 10.017 10.005 10.023 3.920 3.815 3.728 3.650 

𝑙 𝑓 = 𝑎 4 4.259 4.456 4.573 10.076 9.981 9.950 9.965 3.920 3.816 3.741 3.684 

c vailable in the Table 6 . Additionally, the critical buckling loads for biaxial 

c respond to the following sets of boundary conditions [50] : 

S

C

C

(39) 

w (25) . 

al-order plates show a non-monotonic variation with increasing degree of 

n udies based on classical integer-order nonlocal theories, it does agree with 

t sion in §5.1 , this difference is a direct result of the simultaneous effect of 

t the fractional-order plate. The increasing degree of nonlocality results in a 
ompression of plates, evaluated for selected values of 𝛼 and 𝑙 𝑓 , are a

ompression of plates are provided in Table 7 . The tabulated results cor

imply supported (SSSS): 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 1 = 0 , 𝑎 ∶ 𝑤 0 = 

𝜕𝑤 0 
𝜕𝑥 2 

= 0 

𝑥 2 = 0 , 𝑏 ∶ 𝑤 0 = 

𝜕𝑤 0 
𝜕𝑥 1 

= 0 

lamped (CCCC): 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 1 = 0 , 𝑎 ∶ 𝑤 0 = 

𝜕𝑤 0 
𝜕𝑥 1 

= 

𝜕𝑤 0 
𝜕𝑥 2 

= 0 

𝑥 2 = 0 , 𝑏 ∶ 𝑤 0 = 

𝜕𝑤 0 
𝜕𝑥 1 

= 

𝜕𝑤 0 
𝜕𝑥 2 

= 0 

lamped-Free (CFCF): 𝑥 1 = 0 , 𝑎 ∶ 𝑤 0 = 

𝜕𝑤 0 
𝜕𝑥 1 

= 

𝜕𝑤 0 
𝜕𝑥 2 

= 0 

here 𝑤 0 is the generalized displacement coordinate introduced in Eq. 

As evident from the Tables 6 and 7 , the critical loads of fraction

onlocality. While this observation deviates from the conclusions of st

he results reported in §5.1 for nonlocal beams. Similar to the discus

he nonlocal response on both the geometric and material stiffness of 
12 
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Table 7 

Critical loads for plate subject to biaxial compression and various boundary conditions. 

Results are non-dimensionalized following Eq. (38) and compared to study the effect of 

the different fractional theory constitutive parameters. Recall that SSSS stands for simply 

supported and CCCC for fully clamped. 

SSSS CCCC 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 4 𝑎 2 2.055 2.098 2.125 5.304 5.112 4.917 4.706 

𝑙 𝑓 = 0 . 6 𝑎 2 2.074 2.120 2.136 5.304 5.086 4.862 4.613 

𝑙 𝑓 = 0 . 8 𝑎 2 2.119 2.210 2.266 5.304 5.212 5.146 5.099 

𝑙 𝑓 = 𝑎 2 2.129 2.230 2.293 5.304 5.196 5.123 5.075 

Table 8 

Critical loads for a fully clamped (CCCC) plate subject to biaxial compression. Results are 

non-dimensionalized following Eq. (38) and compared to study the effect of the different 

fractional theory constitutive parameters. Results are presented by artificially separating 

either the material or the geometric effects of nonlocality to track their individual effects 

on the critical load. 

Material Nonlocality Geometric Nonlocality 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 4 𝑎 5.304 3.763 2.650 1.845 5.304 6.880 8.909 11.538 

𝑙 𝑓 = 0 . 6 𝑎 5.304 3.437 2.197 1.378 5.304 7.583 10.901 15.832 

𝑙 𝑓 = 0 . 8 𝑎 5.304 3.265 1.987 1.188 5.304 8.098 12.496 19.635 

𝑙 𝑓 = 𝑎 5.304 3.123 1.817 1.039 5.304 8.467 13.663 22.448 

Table 9 

Critical loads for a simply-supported (SSSS) plate subject to biaxial compression. Results are 

non-dimensionalized following Eq. (38) and compared to study the effect of the different 

fractional theory constitutive parameters. Results are presented by artificially separating 

either the material or the geometric effects of nonlocality to track their individual effects 

on the critical load. 

Material Nonlocality Geometric Nonlocality 

𝛼 1.0 0.9 0.8 0.7 1.0 0.9 0.8 0.7 

𝑙 𝑓 = 0 . 4 𝑎 2.000 1.732 1.512 1.310 2.000 2.561 3.246 4.089 

𝑙 𝑓 = 0 . 6 𝑎 2.000 1.593 1.274 0.999 2.000 2.826 3.981 5.618 

𝑙 𝑓 = 0 . 8 𝑎 2.000 1.496 1.119 0.821 2.000 3.055 4.694 7.317 

𝑙 𝑓 = 𝑎 2.000 1.430 1.024 0.718 2.000 3.195 5.132 8.365 

c  in Eq. (34c) . More specifically, either reducing the numerical values of the 

f uence 𝑙 𝑓 results in reduced values of [ 𝐾 
𝑝 ] and [ 𝐺 

𝑝 ] . In agreement with the 
R al reductions in these stiffness terms have a competing effect on the critical 

l asting effect of reductions in material and geometric stiffness terms over the 

c the effect of nonlocal interactions either on the material or on the geometric 

s

mpression of the plates are provided in the Tables 8 and 9 . More specifically, 

t ated for the individual cases of isolated material and geometric nonlocality, 

a t to simply-supported boundary conditions and results are listed in Table 9 . 

I termines a monotonic reduction of the system stiffness (both material and 

g ducing the material and the geometric stiffness terms have an antagonistic 

e .e. reduced material stiffness; constant geometric stiffness), the critical load 

m trast, for the case of isolated geometric nonlocality (i.e. reducing geometric 

s reases with an increasing degree of nonlocality. Particularly interesting is the 

p (integer-order/strain-driven) models of nonlocal elasticity. Both these cases 

m  an increasing degree of nonlocality. Thus, we observe a decreasing critical 

l odels in the literature [12,13] . We will discuss this aspect in detail in §5.3 

CCC plate is lower than its local elastic analogue, while for the nonlocal SSSS 

p e contrasting observations can be explained by considering the pronounced 

i s subject to stiffer boundary conditions [35,36] . More specifically, a stronger 

r when compared to the simply supported (SSSS) plate. As discussed previously 

i l stiffness for SSSS plates is further dominated by the simultaneous decrease 

i material and geometric stiffness terms is an increase in the critical load for 

S s for the clamped plate ensures lower critical load for CCCC fractional-order 

p

onsistent reduction of the system stiffness matrices [ 𝐾 
𝑝 ] and [ 𝐺 

𝑝 ] given
ractional-order 𝛼 or increasing the size of the domain of nonlocal infl

ayleigh-Ritz expression for critical load given in Eq. (13) , the individu

oad for buckling of the nonlocal structure. To better illustrate the contr

ritical load, we conduct parametric studies that intentionally suppress 

tiffness term, similar to that conducted for beams. 

The results of these parametric studies for buckling due to biaxial co

he critical loads for biaxial compression of a fully clamped plate, evalu

re provided in Table 8 . Similar studies were repeated for a plate subjec

n both cases mentioned above, an increasing degree of nonlocality de

eometric). However, as also noted previously in the case of beams, re

ffect on the critical load. In the case of isolated material nonlocality (i

onotonically reduces with an increasing degree of nonlocality. In con

tiffness; constant material stiffness), the critical load monotonically inc

arallel between the case of isolated material nonlocality and classical 

odify only the material stiffness that undergoes a reduction following

oad which agrees with similar observations drawn following classical m

Further, we note from Table 6 that the critical load for the nonlocal C

late the critical load is higher compared to the local elastic case. Thes

nfluence of nonlocal effects on decreasing the material stiffness for plate

eduction is noted in the material stiffness of fully clamped (CCCC) plate 

n the case of fractional-order SS beams, the weak reduction in materia

n geometric stiffness. Thus, the net result of nonlocal interactions on 

SSS plates. In contrast to this, the marked decrease in material stiffnes

lates. 
13 
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Fig. 5. Buckling mode shapes for biaxial compression obtained from either classical or fractional-order plate theory under different boundary conditions. 

 at 𝑥 2 = 𝑏 ∕2 corresponding to the critical load of the beams modeled via both 
i llustrated in Fig. 5 . In this figure, the effects of the nonlocal interactions are 

n al buckling load. This observation is clearly in agreement with the previous 

s  weak changes in curvature of the normalized modes for critical buckling of 

t  with high degree of nonlocality ( 𝛼 = 0 . 7 and 𝑙 𝑓 ∕ 𝑎 = 1 . 0 ). 

5

n the critical load when accounted for by either fractional-order or integer- 

o

parison of the critical load evaluated following fractional-order theory with 

t sed in [54] . The latter choice is motivated by several studies in the literature 

t  it [12,13,24,55] to study nonlocal effects on the critical load. The nonlocal 

c f the second kind [20] : 

𝝈 (40) 

w strain-displacement relations. Also, 𝛿( X , 𝝃) is the Dirac-delta defined at X , 
 tive material constants that satisfy: 𝜒1 + 𝜒2 = 1 . Eringen’s integral nonlocal 
m btained for appropriate choices of 𝜒1 and 𝜒2 [20] . A detailed discussion on 

t teger-order models of linear nonlocal elasticity is provided in [32] . In [32] , 

t tegral Eringen model assuming suitable choices of the attenuation function 

a r the linear kinematic relations. For the geometrically nonlinear models of 

n der kinematic relations in Eq. (1) cannot be deduced from Eringen’s model 

i differences in critical load observed when using the fractional-order and the 

c

oulli beam. The weak statement for the transverse equilibrium equation for 

t  by: 

∫ (41) 

w

[ (42) 

[ rly, the expressions for these matrices derived following the integer-order 

n

[  ∫
𝐿 

0 

(
𝐷 

1 
𝑥 1 
𝑤 0 

)2 
d 𝑥 1 (43) 

A  model to the single-phase Eringen’s model [12] . For the sake of comparison, 

w ed assuming local elasticity [56] : 

[ (44) 
Finally, we compare the transverse mode shape along the length ( 𝑥 1 )

nteger-order [1] and fractional-order approaches. This comparison is i

oted to be marginal on the mode shape of plate corresponding to critic

tudy over fractional-order beams in Fig. 4 . This is substantiated by the

he nonlocal plate when compared with local analogues even for a case

.3. Comparison with existing integer-order nonlocal theories 

In this section, we compare the effects of the nonlocal interactions o

rder theories of nonlocal elasticity. 

Eringen’s integral theory of nonlocal elasticity : We begin with a com

hat from the integer-order two-phase (i.e. local/nonlocal) model propo

hat are based on this theory [21] or on simplified models derived from

onstitutive relations take the following form of a Fredholm equation o

̃ ( X ) = ∫Ω  𝑒 ( X , 𝝃) C ∶ 𝝐( 𝝃) d 𝝃,  𝑒 = 𝜒1 𝛿( X , 𝝃) + 𝜒2  𝑒 ( X , 𝝃) 

here 𝝐 is the local strain evaluated using the classical integer-order 

 𝑒 ( X , 𝝃) and  𝑒 ( X , 𝝃) are the attenuation functions, 𝜒1 and 𝜒2 are posi
odel, corresponding to a Fredholm equation of the first kind, can be o

he comparison of the constitutive laws for the fractional-order and in

he linear fractional-order continuum theory was obtained from the in

nd the domain of influence. However, this equivalence holds only fo

onlocal elasticity, the constitutive models that follow the fractional-or

n an analogous manner. This observation is relevant to understand the 

lassical integer-order theories of nonlocal elasticity [12,13,21,24] . 

To elaborate further, we focus on the case of the nonlocal Euler-Bern

he fractional-order nonlocal beam, that follows from Eq. (22) , is given

𝐿 

0 
𝛿{Δ𝑏 } 𝑇 

(
[ 𝐾 

𝑏 ] − 𝑁 0 [ 𝐺 
𝑏 ] 
)
{Δ𝑏 } d 𝑥 1 = {0} 

here 

 𝐾 
𝑏 ] = ∫

𝐿 

0 

𝐸ℎ 3 

12 

(
𝐷 
𝛼
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)2 
d 𝑥 1 , [ 𝐺 

𝑏 ] = ∫
𝐿 

0 

(
𝐷 
𝛼
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)2 
d 𝑥 1 

 𝐾 
𝑏 ] and [ 𝐺 

𝑏 ] are the material and geometric stiffness matrices. Simila
onlocal constitutive relations given in Eq. (40) would be [13,24] : 

 𝐾 
𝑏 ] = ∫

𝐿 

0 ∫
𝐿 

0 

𝐸ℎ 3 

12 
 ( 𝑥 1 , 𝑥 ′1 ) 

(
𝐷 

2 
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)(
𝐷 

2 
𝑥 1 
𝑤 0 ( 𝑥 ′1 ) 

)
d 𝑥 1 d 𝑥 ′1 , [ 𝐺 

𝑏 ] =

ppropriate choices for the material constants 𝜒1 and 𝜒2 can reduce this

e also provide below the expressions for the stiffness matrices evaluat

 𝐾 
𝑏 ] = ∫

𝐿 
𝐸ℎ 3 

12 

(
𝐷 

2 
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)2 
d 𝑥 1 , [ 𝐺 

𝑏 ] = ∫
𝐿 (
𝐷 

1 
𝑥 1 
𝑤 0 

)2 
d 𝑥 1 
0 0 

14 
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Table 10 

Non-dimensionalized critical load for Euler-Bernoulli nonlocal beam subject to different 

boundary conditions following Eringen’s integral theory of nonlocal elasticity. Following 

[55] , we choose 𝐿 = 10 nm and ℎ = 𝐿 ∕100 (remaining parameters are retained from current 

study). Note the excellent agreement between the results from literature [55] and f-FEM 

modified in terms of the exponential kernel employed in [55] . 

SS CF 

𝜅 (in nm) Current [55] Current [55] 

0 (Local) 9.8696 9.8696 2.4670 2.4670 

0.05 9.8671 9.8672 2.4472 2.4428 

0.5 9.6329 9.6319 2.2308 2.2259 

1 8.9864 8.9830 2.0050 2.0008 

2 7.0828 7.0761 1.6178 1.6156 

F  expressions for both the material and geometric stiffness matrices in the 

f e the nonlocal interactions across the domain. The numerical values of these 

f g an increase in the degree of nonlocality. More specifically, reducing the 

f ase in the softening influence of nonlocal interactions. This softening effect 

i and 9 . In the case of Eringen’s integral models, the stiffness matrix [ 𝐾 
𝑏 ] in 

E es reduction with increasing degree of nonlocality. However, the geometric 

s  remains identical to its local form in Eq. (44) . This observation is also noted 

i of nonlocality, while [ 𝐺 
𝑏 ] remains constant, explains the lower critical load 

f tion is akin to our parametric studies on fractional-order beams and plates 

o

e Eringen’s integral nonlocal theory is similar to the case of isolated material 

n ical method. We compare the critical loads for the nonlocal beam based on 

t stitutive relations for the integral theory of nonlocal elasticity are given in 

E

 (45) 

i ith dimensions of length. We evaluate the critical loads from the fractional 

fi g the application of f-FEM to Eringen’s theory can be found in our previous 

w the relations given in Eq. (35) . A comparison of the non-dimensionalized 

c re is provided in Table 10 . The difference between the present results and 

t merical approach employed in this study. Note the monotonic reduction in 

c ree of nonlocality. This observation is to be expected, and further highlights 

t aterial nonlocality. 

n’s differential model of nonlocal elasticity. Continuing with the example of 

a uated using the differential model of nonlocal elasticity are [57] : 

[  

 1 
𝑤 0 

)2 
] 
d 𝑥 1 (46) 

w  expressions with Eq. (44) , we note that the differential model predicts a 

m tions. However, the material stiffness is unchanged. More specifically, the 

m f nonlocal elasticity is identical to the classical local elasticity case given in 

E d only by a modification of the geometric stiffness matrix. This is unlike the 

p n both the stiffness matrices following fractional-order continuum theories 

(  
𝑏 ] with increasing degree of nonlocality, while [ 𝐾 

𝑏 ] remains constant. This 
e ’s differential models [15,24] . 

6

form stability analysis of nonlocal solids. Thanks to the thermodynamically 

c  afforded by the fractional-order formulation, we can apply energy methods 

t nonlinear models of nonlocal elasticity, available within the framework of 

f local solids. As part of this approach, a general stability analysis is carried 

o rem. The resulting approach allows studying scale effects, nonlocality, and 

h lizing the approach to the case of linear buckling, we derive the critical load 

o the capability of fractional-order models to account for the nonlocal effects 

o l integer-order models of nonlocal elasticity, where the nonlocal effects are 

r ount of the effects of nonlocal interactions on the stability of structures is 

r te this observation in a more quantitative manner, the stability analysis was 

p nvalue problems were solved. 
rom Eq. (42) , we note that fractional derivatives are present in the

ractional-order theory. It is clear that these fractional derivatives captur

ractional derivatives, and thereby the stiffness terms, reduce followin

ractional-order 𝛼 and increasing the length scale 𝑙 𝑓 results in an incre

s evident from the results of the parametric studies in Tables 3, 4, 8 

q. (43) includes nonlocal interactions across the domain and undergo

tiffness [ 𝐺 
𝑏 ] in this equation is unchanged by nonlocal interactions, and

n [12] . The decreasing values of stiffness [ 𝐾 
𝑏 ] with increasing degree 

or nonlocal solids predicted by Eringen’s theory [12,21] . This observa

ver isolated material nonlocality (see Eq. (37a) ). 

We provide some numerical results to better illustrate the fact that th

onlocality. This observation also supports the validation of the numer

he commonly employed exponential attenuation kernel [55] . The con

q. (40) , where we consider 𝜒1 = 0; 𝜒2 = 1 and [55] : 

 𝑒 ( 𝑥 1 , 𝑠 1 , 𝜅) = 

1 
2 𝜅

exp − 

|𝑥 1 − 𝑠 1 |
𝜅

s the exponential attenuation function, where 𝜅 is a material constant w

nite element model for isolated material nonlocality. Details regardin

ork [32] . The numerical results are non-dimensionalized following 

ritical loads for SS and CF beams with results available in the literatu

hose presented in [55] is ≪ 1% , hence serving as validation of the nu

ritical loads with an increasing 𝜅, which denotes an increase in the deg

he similarity between Eringen’s theory and the case-study on isolated m

Finally, we also compare the fractional-order model with the Eringe

 Euler-Bernoulli beam, the corresponding nonlocal stiffness terms eval

 𝐾 
𝑏 ] = ∫

𝐿 

0 

𝐸ℎ 3 

12 

(
𝐷 

2 
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)2 
d 𝑥 1 , [ 𝐺 

𝑏 ] = ∫
𝐿 

0 

[ 
𝑙 2 𝑒 

(
𝐷 

2 
𝑥 1 
𝑤 0 ( 𝑥 1 ) 

)2 
+ 

(
𝐷 

1
𝑥

here 𝑙 𝑒 is the characteristic length scale [14] . Comparing the above

odification in the geometric stiffness caused by the nonlocal interac

aterial stiffness evaluated following the Eringen’s differential model o

q. (44) . Therefore, the nonlocal effects on the critical load are realize

revious observation of the effect of nonlocal elasticity being realized o

see Eq. (42) ). From Eq. (46) , we note increasing values of stiffness [ 𝐺
xplains the lower critical load for nonlocal solids predicted by Eringen

. Conclusions 

This work extends the fractional-order continuum framework to per

onsistent and positive-definite form of the deformation energy density

o perform the stability analysis. We reiterate that the geometrically 

ractional calculus, allow the stability analysis to be conducted for non

ut for fractional-order solids by employing the Lagrange-Dirichlet theo

eterogeneity on the stability of complex solids and interfaces. By specia

f nonlocal solids following Rayleigh-Ritz formalism. Our results show 

n the material and geometric stiffness terms. This is unlike the classica

estricted to only one of the stiffness terms. Thus, a more accurate acc

ealized by using the current fractional-order theory. In order to illustra

erformed for fractional-order beams and plates, and the resulting eige
15 
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A

 governing equations of equilibrium employed here. More specifically, the 

l s will be derived from the nonlinear governing equations given in Eq. (17) . 

T  for the sake of brevity. However, it may be extended with relative ease to 

K

 critical point; and (ii) at the onset of buckling. Now, the field distributions 

i g to response before the onset of the buckling, denoted by superscript □𝑖 ; 

a  . Note that, the response at the elastic state (i), before the onset of buckling, 

m xpress the stress resultants for the elastic state (ii) as: 

𝑁 (46) 

w onding to elastic response before the onset of buckling, and 𝑁 
𝑏 
11 and 𝑀 

𝑏 
11 , 

r uckling. Assuming the beam remains straight (no initial curvature) before 

b by the buckling response to be 𝑤 0 = 𝑤 
𝑏 
0 . Here, distributed body forces 𝐹 𝑘 

( e nonlinear governing equations given in Eq. (17) . At the onset of buckling, 

b

𝑤 (47) 

S (17) gives the governing equations for the elastic state at (i) as follows: 

𝔇 (48a) 

𝐷 (48b) 

ler-Bernoulli beams [32] . Subsequently, at the onset of buckling, the above 

d all deformations at the onset of buckling 𝑤 
𝑏 
0 ≠ 0 , we substitute Eq. (46) into 

t rations employing the results from Eq. (48) for the adjacent elastic state (i), 

w

𝔇 (49a) 

𝐷 (49b) 

w  Note that the above expressions are identical to the linearized governing 

e

A

odel of nonlocal elasticity employs the fractional-order strain displacement 

m l derivative given in Eq. (2) applied to the 1D and 2D Hermitian interpola- 

t al approximation of the 2D fractional derivatives 𝐷 
𝛼
𝑥 1 
[d 𝑤 0 ( 𝑥 1 , 𝑥 2 )∕d 𝑥 2 ] and 

𝐷 an be found in [32,35] . Finite element approximations for all the 1D and 2D 

f  the definition given in Eq. (2) , the above mentioned fractional derivatives 

c

𝐷
 
𝐷 

1 
𝑟 

[
𝜕𝑤 0 ( 𝑟,𝑥 2 ) 
𝜕𝑥 2 

]
( 𝑟 − 𝑥 1 ) 𝛼

d 𝑟 
⎤ ⎥ ⎥ ⎥ ⎦ (50a) 
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1. Linearization of the nonlinear fractional-order governing equations 

This section details the derivation of the linearized fractional-order

inearized governing equations in Eq. (21) for the Euler-Bernoulli beam

his discussion is limited to the fractional-order Euler-Bernoulli beams

irchhoff plates ( Eq. (31) ). 

We consider two adjacent elastic states in equilibrium: (i) before the

n Eq. (17) may be expressed as: 1) an initial component correspondin

nd 2) an additional component caused by the buckling, denoted by □𝑏

ay be considered to be geometrically linear [58] . Following this, we e

 11 = 𝑁 
𝑖 
11 + 𝑁 

𝑏 
11 , 𝑀 11 = 𝑀 

𝑖 
11 + 𝑀 

𝑏 
11 

here 𝑁 
𝑖 
11 and 𝑀 

𝑖 
11 are the axial and bending stress resultants corresp

espectively, correspond to the additional components generated by b

uckling ( 𝑤 
𝑖 
0 = 0 ), we may write the transverse displacement caused 

 𝑘 = 1 , 2 , 3 ) being absent, we employ the above definitions to linearize th
ut before the critical point (elastic state (i)), we have: 

 0 = 0 , 𝑁 11 = 𝑁 
𝑖 
11 , 𝑀 11 = 𝑀 

𝑖 
11 

ubstituting the above expressions into the nonlinear equations in Eq. 

 
𝛼
𝑥 1 
𝑁 
𝑖 
11 = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 

𝑖 
11 

]
= 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

These equations agree with results for linear elastic response of Eu

erived linear governing equations are no longer applicable. Assuming sm

he nonlinear equations in Eq. (17) . Following some mathematical ope

e arrive at: 

 
𝛼
𝑥 1 
𝑁 
𝑏 
11 = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

 
1 
𝑥 1 

[
𝔇 
𝛼
𝑥 1 
𝑀 

𝑏 
11 

]
+ 𝑁 

𝑖 
11 𝔇 

𝛼
𝑥 1 
𝐷 
𝛼
𝑥 1 
[ 𝑤 

𝑏 ] = 0 ∀ 𝑥 1 ∈ (0 , 𝐿 ) 

hich are governing equations corresponding to the elastic state (ii).

quations given in Eq. (21) . 

2. Fractional finite element model 

The finite element model developed above for the fractional-order m

atrices [ ̃𝐵 □] . These matrices are developed based on the RC fractiona
ion functions. As an example, we provide brief details for the numeric

 
𝛼
𝑥 2 
[d 𝑤 0 ( 𝑥 1 , 𝑥 2 )∕d 𝑥 1 ] in this section; a complete account of the method c

ractional derivatives can be obtained by following this procedure. From

an be written as: 

 
𝛼
𝑥 1 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑦 1 ) 

𝜕𝑥 2 

] 
= 

1 
2 
(1 − 𝛼) 

⎡ ⎢ ⎢ ⎢ ⎣ 𝑙 
𝛼−1 
𝐴 1 ∫

𝑥 1 

𝑥 1 − 𝑙 𝐴 1 

𝐷 
1 
𝑟 

[
𝜕𝑤 0 ( 𝑟,𝑥 2 ) 
𝜕𝑥 2 

]
( 𝑥 1 − 𝑟 ) 𝛼

d 𝑟 + 𝑙 𝛼−1 
𝐵 1 ∫

𝑥 1 + 𝑙 𝐵 1

𝑥 1 
16 
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𝐷
 
𝐷 

1 
𝑠 

[
𝜕𝑤 0 ( 𝑥 1 ,𝑠 ) 
𝜕𝑥 1 

]
( 𝑠 − 𝑥 2 ) 𝛼

d 𝑠 
⎤ ⎥ ⎥ ⎥ ⎦ (50b) 

w vely. The above expressions can be recast as: 

𝐷 (51a) 

𝐷 (51b) 

w s the fractional-order ( 𝛼) power-law function connecting the point of interest 

X  As discussed previously, this domain of influence for the fractional-order 

d and 𝑥 2 − directions are given by ( 𝑥 − 𝑙 𝐴 1 ( X ) , 𝑥 + 𝑙 𝐵 1 ( X )) and ( 𝑥 2 − 𝑙 𝐴 2 ( X ) , 𝑥 2 + 

𝑙 onal derivative to be interpreted as a convolution of integer-order derivatives 

(  domain of influence. Therefore, it may be stated that the fractional-order 

c on over distance. It follows from Eq. (50) that: 

 (52a) 

 (52b) 

 2 ) at which the derivative is evaluated and the dummy point X 𝑑 ( 𝑟, 𝑠 ) within 
t

  𝜕𝑥 1 
]
within the convolution for fractional-order derivatives are expressed 

f nt coordinates as: 

𝐷 𝑠 )]{Δ𝑝 𝑒 ( 𝑥 1 , 𝑠 )} (53a) 

w ment matrices defined analogously to classical elasticity [53] . These matrices 

a

[ (53b) 

ution-based finite element approximations for fractional-order derivatives: 

𝐷 d 𝑟 (54a) 

𝐷 }d 𝑠 (54b) 

es, must include the contribution of other elements within the domain of 

i is domain to be associated with the corresponding (discretized finite) element 

a he fractional-order strain-displacement matrices [ ̃𝐵 □] before evaluating the 
g nodal vectors corresponding to each element using appropriate connectivity 

m ble for beams [32] and plates [35] . The fractional derivatives in Eq. (50) , 

r lows: 

𝐷 𝑥 2 )]{Δ𝑝 } (55a) 

w

[ (55b) 

[ (55c) 

w  points X ( 𝑥 1 , 𝑥 2 ) and X 𝑑 ( 𝑟, 𝑠 ) . This matrix is non-zero only if the point ( 𝑟, 𝑠 ) 
i y, the above procedure for the chosen example may be extended to other 

d

rices includes successive steps of numerical integration. The first step of the 

n of influence in order to evaluate the nonlocal strain-displacement matrices, 

a tiffness matrices given in Eqs. (24) and (34) which involves a numerical 

i  of the numerical integration procedure to evaluate the system matrices for 

t

 
𝛼
𝑥 2 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑦 1 ) 

𝜕𝑥 1 

] 
= 

1 
2 
(1 − 𝛼) 

⎡ ⎢ ⎢ ⎢ ⎣ 𝑙 
𝛼−1 
𝐴 2 ∫

𝑥 2 

𝑥 2 − 𝑙 𝐴 2 

𝐷 
1 
𝑠 

[
𝜕𝑤 0 ( 𝑥 1 ,𝑠 ) 
𝜕𝑥 1 

]
( 𝑥 2 − 𝑠 ) 𝛼

d 𝑠 + 𝑙 𝛼−1 
𝐵 2 ∫

𝑥 2 + 𝑙 𝐵 2

𝑥 2 

here 𝑟 and 𝑠 are dummy variables in the 𝑥 1 and 𝑥 2 directions, respecti

 
𝛼
𝑥 1 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 2 

] 
= ∫

𝑥 1 + 𝑙 𝐵 1 

𝑥 1 − 𝑙 𝐴 1 

 1 ( X 0 , X 𝑑 , 𝑙 𝐴 1 , 𝑙 𝐵 1 , 𝛼) 𝐷 
1 
𝑟 

[ 
𝜕 𝑤 0 ( 𝑟, 𝑥 2 ) 
𝜕 𝑥 2 

] 
d 𝑟 

 
𝛼
𝑥 2 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 1 

] 
= ∫

𝑥 2 + 𝑙 𝐵 2 

𝑥 2 − 𝑙 𝐴 2 

 2 ( X 0 , X 𝑑 , 𝑙 𝐴 2 , 𝑙 𝐵 2 , 𝛼) 𝐷 
1 
𝑠 

[ 
𝜕 𝑤 0 ( 𝑥 1 , 𝑠 ) 
𝜕 𝑥 1 

] 
d 𝑠 

here the kernel  □( X 0 , X 𝑑 , 𝑙 𝐴 , 𝑙 𝐵 , 𝛼) ( □ = 1 , 2 ), seen earlier in Eq. (3) , i
 0 ( 𝑥 1 , 𝑥 2 ) and a dummy point X 𝑑 ( 𝑟, 𝑠 ) within its domain of influence.
erivative is position-dependent. The nonlocal horizons along the 𝑥 1 − 

 𝐵 2 
( X )) , respectively. The above mathematical statement allows the fracti

from classical elasticity models) using the power-law kernel over the

ontinuum theory serves as a nonlocal model with power-law attenuati

 1 ( X 0 , X 𝑑 , 𝑙 𝐴 1 , 𝑙 𝐵 1 , 𝛼) = 

{ 1 
2 (1 − 𝛼) 𝑙 𝛼−1 

𝐴 1 
( 𝑥 1 − 𝑟 ) − 𝛼 𝑟 ∈ ( 𝑥 1 − 𝑙 𝐴 1 , 𝑥 1 ) 

1 
2 (1 − 𝛼) 𝑙 𝛼−1 

𝐵 1 
( 𝑟 − 𝑥 1 ) − 𝛼 𝑟 ∈ ( 𝑥 1 , 𝑥 1 + 𝑙 𝐵 1 ) 

 2 ( X 0 , X 𝑑 , 𝑙 𝐴 2 , 𝑙 𝐵 2 , 𝛼) = 

{ 1 
2 (1 − 𝛼) 𝑙 𝛼−1 

𝐴 2 
( 𝑥 2 − 𝑠 ) − 𝛼 𝑠 ∈ ( 𝑥 2 − 𝑙 𝐴 2 , 𝑥 2 ) 

1 
2 (1 − 𝛼) 𝑙 𝛼−1 

𝐵 2 
( 𝑠 − 𝑥 2 ) − 𝛼 𝑠 ∈ ( 𝑥 2 , 𝑥 2 + 𝑙 𝐵 2 ) 

The above kernels depend on the relative distance between X 0 ( 𝑥 1 , 𝑥
he fractional domain of influence and along a given direction. 

The integer-order derivatives 𝐷 
1 
𝑟 

[
𝜕𝑤 0 ( 𝑟, 𝑥 2 ) ∕ 𝜕𝑥 2 

]
and 𝐷 

1 
𝑠 

[
𝜕𝑤 0 ( 𝑥 1 , 𝑠 )∕

ollowing the finite element approximations for generalized displaceme

 
1 
𝑟 

[ 
𝜕𝑤 0 ( 𝑟, 𝑥 2 ) 
𝜕𝑥 2 

] 
= [ 𝐵 , 21 ( 𝑟, 𝑥 2 )]{Δ𝑝 𝑒 ( 𝑟, 𝑥 2 )} , 𝐷 

2 
𝑠 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑠 ) 
𝜕𝑥 1 

] 
= [ 𝐵 , 12 ( 𝑥 1 , 

here [ 𝐵 , 21 ( 𝑟, 𝑥 2 )] and [ 𝐵 , 12 ( 𝑥 1 , 𝑠 )] are the integer-order strain-displace
re defined over the 2D Hermite shape functions as: 

 𝐵 , 21 ( 𝑟, 𝑥 2 )] = 

𝜕 

𝜕𝑟 

( 

𝜕 [ ( 𝑟, 𝑥 2 )] 
𝜕𝑥 2 

) 

, [ 𝐵 , 12 ( 𝑥 1 , 𝑠 )] = 

𝜕 

𝜕𝑠 

( 

𝜕 [ ( 𝑥 1 , 𝑠 )] 
𝜕𝑥 1 

) 

Finally, substitution of the above results in Eq. (51) gives the convol

 
𝛼
𝑥 1 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 2 

] 
= ∫

𝑥 1 + 𝑙 𝐵 1 

𝑥 1 − 𝑙 𝐴 1 

 1 ( X 0 , X 𝑑 , 𝑙 𝐴 1 , 𝑙 𝐵 1 , 𝛼)[ 𝐵 , 21 ( 𝑟, 𝑥 2 )]{Δ𝑝 𝑒 ( 𝑟, 𝑥 2 )}

 
𝛼
𝑥 2 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 1 

] 
= ∫

𝑥 2 + 𝑙 𝐵 2 

𝑥 2 − 𝑙 𝐴 2 

 2 ( X 0 , X 𝑑 , 𝑙 𝐴 2 , 𝑙 𝐵 2 , 𝛼)[ 𝐵 , 12 ( 𝑥 1 , 𝑠 )]{Δ𝑝 𝑒 ( 𝑥 1 , 𝑠 )

The nonlocal interactions, characterized by the fractional derivativ

nfluence. This would require the contributions from specific points in th

nd thereby the nodes of this element. For this purpose, we assemble t

lobal stiffness matrix. Such an approach also requires the assembly of 

atrices. A detailed discussion on these connectivity matrices is availa

ewritten in terms of the global vectors of nodal displacements, is as fol

 
𝛼
𝑥 1 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 2 

] 
= [ ̃𝐵 , 21 ( 𝑥 1 , 𝑥 2 )]{Δ𝑝 } 𝐷 

𝛼
𝑥 2 

[ 
𝜕𝑤 0 ( 𝑥 1 , 𝑥 2 ) 

𝜕𝑥 1 

] 
= [ ̃𝐵 , 12 ( 𝑥 1 , 

here: 

 ̃𝐵 , 21 ( 𝑥 1 , 𝑥 2 )] = ∫
𝑥 1 + 𝑙 𝐵 1 

𝑥 1 − 𝑙 𝐴 1 

 1 ( X 0 , X 𝑑 , 𝑙 𝐴 1 , 𝑙 𝐵 1 , 𝛼)[ 𝐵 , 21 ( 𝑟, 𝑥 2 )][ ̃ ( X 0 , X 𝑑 )]d 𝑟 

 ̃𝐵 , 12 ( 𝑥 1 , 𝑥 2 )] = ∫
𝑥 2 + 𝑙 𝐵 2 

𝑥 2 − 𝑙 𝐴 2 

 2 ( X 0 , X 𝑑 , 𝑙 𝐴 2 , 𝑙 𝐵 2 , 𝛼)[ 𝐵 , 12 ( 𝑥 1 , 𝑠 )][ ̃ ( X 0 , X 𝑑 )]d 𝑠 

here [ ̃ ( X 0 , X 𝑑 )] is the connectivity matrix for elements enclosing the
s within the domain of influence for ( 𝑥 1 , 𝑥 2 ) . As mentioned previousl
erivatives of the 1D and 2D Hermitian interpolation functions. 

The numerical procedure for the evaluation of these numerical mat

umerical integration is performed over each point within the domain 

s shown in Eq. (55) . This result is then utilized to determine the s

ntegration to be carried over the entire solid. The complete description

he fractional-order nonlocal structure can be found in [32,35] . 
17 
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