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Abstract

We study ergodic properties of a class of Markov-modulated general birth—death pro-
cesses under fast regime switching. The first set of results concerns the ergodic properties
of the properly scaled joint Markov process with a parameter that is taken to be large.
Under very weak hypotheses, we show that if the averaged process is exponentially
ergodic for large values of the parameter, then the same applies to the original joint
Markov process. The second set of results concerns steady-state diffusion approxima-
tions, under the assumption that the ‘averaged’ fluid limit exists. Here, we establish
convergence rates for the moments of the approximating diffusion process to those of the
Markov-modulated birth—death process. This is accomplished by comparing the genera-
tor of the approximating diffusion and that of the joint Markov process. We also provide
several examples which demonstrate how the theory can be applied.
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1. Introduction

There has been a considerable amount of research on Markov-modulated birth—death
processes. The rate control problem for Markov-modulated single-server queues has been
addressed in [10, 18, 24], while the scheduling control problem for Markov-modulated crit-
ically loaded multiclass many-server queues has been considered in [3], in which exponential
ergodicity under a static priority rule is also studied. The papers [1, 14] address functional limit
theorems for Markov-modulated Markovian infinite-server queues. See also the work on the
functional limit theorem for Markov-modulated compound Poisson processes in [22]. We refer
the reader to [15, 25] for the study of stability and instability for birth—death processes.
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2 A. ARAPOSTATHIS ET AL

In this paper, we study a class of general birth—death processes with countable state space
and bounded jumps. Meanwhile, the transition rate functions of the birth—death process depend
on an underlying continuous-time Markov process with finite state space. An asymptotic
framework is considered under which the Markov-modulated birth—death process is indexed
by a scaling parameter n, with n getting large. The transition rate matrix of the underlying
Markov process is of order n%, a > 0, and the jump size of the birth—death process shrinks at a
rate of nf with B :=max{l/2, 1 —«/2}. This scaling has been used in [1, 3, 14] for some special
birth—death queueing processes.

In this asymptotic framework, we first provide a sufficient condition for the scaled Markov-
modulated process to be exponentially ergodic. We show that if the ‘averaged’ birth—death
process satisfies a Foster—Lyapunov criterion for a certain class of Lyapunov functions, then
the original Markov-modulated process also has the same property. Next, we study steady-
state approximations of the Markov-modulated process. We construct diffusion models, and
show that their steady-state moments approximate those of the joint Markov process with a
rate n~(/*"*/?)_This problem is motivated by [11], in which steady-state approximations for a
general birth—death process have been considered. However, the problem in this paper is quite
challenging, since we need to consider the variabilities of the underlying Markov process, and
the martingale argument in the above-referenced work cannot be applied. We also present some
examples from queueing systems and show that the assumptions presented are easy to verify.

The aforementioned result of exponential ergodicity is stated in Theorem 2.1. We consider
a large class of scaled Markov-modulated general birth—death processes, whose transition rate
functions have linear growth around some distinguished point. The state processes are also cen-
tered at this point. The increments of the transition rate functions are assumed to have affine
growth. This assumption is relaxed in Corollary 2.1, in which a stronger Foster—Lyapunov
criterion is required instead. The technique of proof for this set of results is inspired by [16],
which studies stochastic differential equations with rapid Markovian switching. We construct a
sequence of Lyapunov functions via Poisson equations associated with the extended generator
of the background Markov process. The technique employed for our results is more involved,
since a class of Markov processes under weak hypotheses is considered, and the scaling param-
eter affects the state and background processes at the same time. In the study of ergodicity of
a Markov-modulated multiclass M /M /n + M queue under a static priory scheduling policy in
[3, Theorem 4], the authors observe an effect of ‘averaged’ Halfin—Whitt regime, and also use
a technique similar in spirit to the method in [16]. In this paper, we consider a more general
model which includes the one in [3, Theorem 4] as a special case. In Example 3.2, we also
show that the result in [3, Theorem 4] holds under some weaker condition, and its proof may
be greatly simplified following the approach in Corollary 2.1. In Corollary 2.2 and Remark 2.4,
we emphasize that the result in this part can be applied in the study of uniformly exponential
ergodicity of Markov-modulated multiclass M /M /n queues with positive safety staffing.

The main result on steady-state approximations is stated in Theorem 2.2. Here, we first
construct ‘averaged’ diffusion models, which capture the variabilities of the state process and
the underlying Markov process at the same time. In these diffusion models, the variabilities
of the state process are asymptotically negligible at a rate n' ~># when « < 1, while the vari-
abilities of the underlying process are asymptotically negligible at a rate n' =% when « > 1
(see Proposition A.1). The gap between the moments of the steady state of the approximating
diffusion models and those of the joint Markov process shrinks at rate of n*/>"'"/2,

The result in Theorem 2.2 extends the results of [11] to Markov-modulated birth—death pro-
cesses. The proofs in [11] rely on the gradient estimates of solutions of a sequence of Poisson
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Ergodicity of a class of Markov processes under fast regime switching 3

equations associated with diffusions and a martingale argument. Under a uniformly exponential
ergodicity assumption for the diffusion models, the gradient estimates we used for the Poisson
equation are the same as those found in [11]. However, the martingale argument is difficult
to apply in obtaining Theorem 2.2. On the other hand, the proof of [3, Lemma 8] concerning
the convergence of mean empirical measures for Markov-modulated multiclass M /M /n + M
queues uses a martingale argument, but considers only compactly supported smooth functions.
The analogous argument cannot be used in this paper, since we need to consider a class of gen-
eral birth—death processes and the Lyapunov functions are unbounded. So we develop a new
approach by exploring the structural relationship between the generator of the joint Markov
process and that of the diffusion models in Lemma 5.1. This is accomplished by matching
the second-order derivatives associated with the covariance of the underlying Markov process
using the solutions of Poisson equations which involve the difference between the coefficients
of the original state process and those of the ‘averaged’ diffusion models. In Lemma 5.2, we
also provide some crucial estimates for the residual terms arising from the difference of the
two generators.

Stability of switching diffusions has been studied extensively. Exponential stability for non-
linear Markovian switching diffusion processes has been studied in [19], while p-stability and
asymptotic stability for regime-switching diffusions have been addressed in [17]. For an under-
lying Markov process with a countable state space, the stability of regime-switching diffusions
has been considered in [23]. In these studies, the state and background Markov processes are
unscaled, and there is no ‘averaged’ system. Under fast regime switching, we observe an ‘aver-
aged’ effect, and study how the ergodic properties of the ‘averaged’ system are related to those
of the original system.

1.1. Organization of the paper

The notation used in this paper is summarized in the next subsection. In Section 2, we
describe the model of Markov-modulated general birth—death processes. We present the results
of exponential ergodicity and steady-state approximations in Sections 2.1 and 2.2, respec-
tively. Section 3 contains some examples from queueing systems. Section 4 is devoted to
the proofs of Theorem 2.1 and Corollaries 2.1 and 2.2. The proofs of Theorem 2.2 and
Corollary 2.2 are given in Section 5. Proposition A.1 concerning the diffusion limit is given in
Appendix A.

1.2. Notation

We let N and Z, denote the set of natural numbers and the set of nonnegative integers,
respectively. Let R¢ denote the set of d-dimensional real vectors, for d € IN. The Euclidean
norm and inner product in R¥ are denoted by | - | and (-, - ), respectively. If a = (a, . . ., ap)
is an ordered n-tuple, then |a] == (3"}, a%)l/z. For x € R, x denotes the transpose of x. We
denote the indicator function of a set A C R by 14. The minimum (maximum) of a, b € R is
denoted by a A b (a Vv b), and a® =0V (£ a). We let e denote the vector in R? with all entries
equal to 1, and e; the vector in RY with the ith entry equal to 1 and all other entries equal
to 0. The closure of a set A C R is denoted by A. The open ball of radius  in R?, centered at
x € R4, is denoted by B, (x).

For a domain D C R, the space CK(D) (C*°(D)) denotes the class of functions whose partial
derivatives up to order k (of any order) exist and are continuous, and C’;(D) stands for the
functions in C¥(D) whose partial derivatives up to order k are continuous and bounded. The
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4 A. ARAPOSTATHIS ET AL

space CK1(D) is the class of functions whose partial derivatives up to order k are Lipschitz
continuous. We let

V2f(x) — V2
Fhap= sup |V2f(x) — V()]

x,yeD,x#y lx — yl

for a domain D c R? and fe C>1(D). For a nonnegative function f € C(Rd), we use O(f) to
denote the space of functions g € C(R?) such that SUP,cRrd llj‘;(;.‘())‘c) < 00. By a slight abuse of
notation, we also let &(f) denote a generic member of this space. Given any Polish space X,
we let P(X) denote the space of probability measures on X, endowed with the Prokhorov
metric. For © € P(X) and a Borel measurable map f: X — R, we often use the simplified

notation u(f) = [ f dp.

2. Model and results

Let O =1qjl; jexs with 7= {1, ..., k.}, be an irreducible stochastic rate matrix, and let
o= {m, ..., )} 2.1)

denote its (unique) invariant probability distribution. We fix a constant & > 0. For each n € N,
let J* denote the finite-state irreducible continuous-time Markov chain with state space . and
transition rate matrix n%Q. In addition, for each n € IN and k € %, let X" C R be a countable
set with no accumulation points in RY, and let R = [rZ(x, y)]x yex” be a stochastic rate matrix
which gives rise to a non-explosive, irreducible, continuous-time Markov chain.

The transition matrices {R}} satisfy the following structural assumptions.

Hypothesis 2.1. There exist positive constants mgy, No, and Cy such that the following hold for
allxe 2", neN, and ke .

(@) Bounded jumps. It holds that rj/(x, x + z) = 0 for |z| > my.
(b) Finitely many jumps. The cardinality of the set

Z'(x)={ze RY: ri(x, x +2) > 0}

does not exceed Ny.
(¢) Incremental affine growth. It holds that
|rZ(x, x+z2) -, x +z)| < Co(na/2 + |x —x’|).

(d) There exists some distinguished element xI} € R such that

R x+2) < G+ x — 2.

Hypothesis 2.1 is assumed throughout the paper without further mention. We refer the
reader to Examples 3.1 to 3.3 for examples of verification of the conditions in Parts
(c) and (d).

Remark 2.1. The element x”! € X" in Part (d) plays an important role in the analysis. For
queueing models, x” may be chosen as the steady state of the ‘average’ fluid; refer to solutions
of (2.20) below.
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Ergodicity of a class of Markov processes under fast regime switching 5

Consider the stochastic rate matrix S" on X" x .# whose elements are defined by

rix,y) ifi=j,
Sn((xv l)a (ya.])) = naqij ifx:y,
0 otherwise,

for x, y € X" and i, j € /Z This defines a non-explosive, irreducible Markov chain (X", J"),
where J" is as described in the preceding paragraph.
In order to simplify some algebraic expressions, we often use the notation

7i(x, 2) = ri(x, x + 2).

Definition 2.1. Let § := max{l/2, 1 — «/2} be fixed. With x/} as in Hypothesis 2.1(d), we define
the scaled process
~ X" —xI
X" = £,
P

The state space of X" is given by
X' = ) xe XM,
where & = #(x) :== n#(x — x) for x € R%.
Naturally, (X", J") is a Markov process, and its extended generator is given by
G =LfG 0+ QG k), G heX x A 2.2)
for f € Cp(RY x ¥), where

LG b = Y ROPR+L (G +n Pz k) —f& b)),

€2 (x)
(2.3)
QG k) =) nque(fG, O —f & 0) =D nquef &, ©).
let tex

One can clearly see that Z nf and .Z]'f are well defined for f € Cp(RY), by viewing f as a
function on R? x .#which is constant with respect to its second argument.
Throughout the paper, x and & are generic elements of X" (or R¢) and X", respectively.

2.1. Exponential ergodicity

In this subsection, we provide a sufficient condition for the joint process (X", J") to be expo-
nentially ergodic. We refer the reader to [20] for the definition of exponential ergodicity and
the relevant Foster—Lyapunov criteria. We introduce the following operator, which corresponds
to the generator of the ‘averaged’ process.

Definition 2.2. Let
Pl 2) = ) w2,
ke X

with 7 as in (2.1), and
Qf” = UXG.%H Uke%%”(x). (24)
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6 A. ARAPOSTATHIS ET AL

We define Z": Co(RY x ) > Cp(RY x #) by

e =Y PP+l o(fG+n P —fG b)), GReX' x A (25)
ey
for f € Cp(RY x ).

In the following theorem, we show that if 7" satisfies a Foster—Lyapunov inequality with
a suitable Lyapunov function, then the original joint process X", J" is exponentially ergodic.
The proof is given in Section 4.

A function f: RY R+ is called norm-like if f(x) — oo as |x| — oo; see, for example, [20,
Section 1.3].

Theorem 2.1. Suppose that there exist a sequence of nonnegative norm-like functions {V" €
C(Rd): ne NN}, ng €N, and some positive constants gy, C, C1, Cy, not depending on n,
such that

(1+xD) V'(x+y) = V)| < Clyl(14 V" (),
(14 1P V' +y+2) = V' +y) 2.6)
“V'x+2)+V'@)| < Clyllzl(1+V'(x)),
for anyy, z € Bo(go) \ {0}, x e RY, and n € IN, and
V'R < C -GV VieX', VYnsno. 2.7)
Then there exist functions ]7" S C(Rd x &) and positive constants 61, 62, and n1 € IN such
that, for all n > ny, we have
1 - 3 1 ~
V'@ -1) = V'E R = VB +5 0 VG eX" x %, (2.8)
and o N R
LV k) < Cl—CV'"G k) Y& keX' x # Vn>n. (2.9)

As a consequence, X", J") is exponentially ergodic for all n > ny, and its invariant probability
distributions are tight.

Remark 2.2. It follows from the proof of Theorem 2.1 that C, can be selected arbitrarily close
to C», so the rates of convergence of the ‘averaged’ system and the Markov-modulated one
become asymptotically close.

Remark 2.3. A sufficient condition for a function V" € C2!(R?) to satisfy (2.6) is

1 n
IVV"'(x)| < 1+ V) and
1+ o0
14+ V(x) '
2ym n d
VAV W+ V'], 18,00 = “Trnp VxeRY,

for some fixed positive constants € and c.

In the next corollary, we relax the incremental growth hypothesis in Hypothesis 2.1(c). The
proof is contained in Section 4. In Example 3.2, we show that this result can be applied in the
study of exponential ergodicity for Markov-modulated M /M /n + M queues.
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Ergodicity of a class of Markov processes under fast regime switching 7

We replace Hypothesis 2.1(c) by the following weaker assumption.

Assumption 2.1 Suppose that Parts (a), (b), and (d) of Hypothesis 2.1 are satisfied, and 7}! can
be decomposed into

) =, D)+ Yr(x, 2, xeX", ze (),

where ¢} (x, 2) and Y} (x, z), k € %, are locally bounded functions on X" x Z". In addition,
using without loss of generality the same constant, there exist §1, 62 € [0, 1] such that

e, ) — Yo, 2l < Co(n? +|x—yI"")  Vke Vx,yeX", VzeZ", (2.11)
and
Wi 2l < Co(n'P + x—x1?)  Vke Vx)eX" x 27, (2.12)

with xI} € R? as in Hypothesis 2.1(d), and for n € IN.
Corollary 2.1. Grant Assumption 2.1. Let G : Cp(RY x #) > Cp(RY x K#) be defined by

GifG. k) = D (S0P + 2L )+ " Pr+ 2L, D) (fG+n Pz ) —fG k) (213)

7e"

for (x, k) € X' x Handf € C,(RY x X)), and with X! as in Assumption 2.1, where Y'(x, 2) =
Y ke TV (X, 2). Suppose that (2.6) holds with the second inequality replaced by

(L+ ") [V (x+y+2) = V' +y) = V(x4 2) + V'] < Clyllzl (1 + V")),

where 8, is as in Assumption 2.1, and there exist ny € N and some positive constants Cy and
Cy such that

GIV'R) < Cl—CV'R) VG KeX xH Vn>n. (2.14)

Then the results in (2.8) and (2.9) hold.

In the following corollary, we show that under some stronger assumptions on the transi-
tion rate functions and the scaling parameters, (2.6) can be weakened. The proof is given in
Section 4.

Corollary 2.2. Grant parts (a) and (b) of Hypothesis 2.1, and suppose that r}} satisfies
}r;;(x, x+z2) -, +z)| < Co(l +x =X A n) (2.15)

and
L X +2) < Con. (2.16)

If in the assumptions of Theorem 2.1 we replace (2.6) by

A

V' +y) = V') < Chl(1+ VW), 217
V'(x+y+2) = V'@ +y) = V'@ +2+ V@) < Chllzl (1 +)V"w), '
then, provided B and o satisfy 28 + o > 2, the conclusions of the theorem still hold.

Note that (2.17) is satisfied for exponential functions.
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8 A. ARAPOSTATHIS ET AL

Remark 2.4. The transition rates of multiclass M /M /n queues, that is, the model in Example
3.2 with no abandonment (y;(k) = 0), satisfy (2.15) and (2.16). Uniform exponential ergodic-
ity of this model (with spare capacity, or equivalently, positive safety staffing) is established
in [4] using exponential Lyapunov functions. Thus, we may use exponential Lyapunov func-
tions in (2.7), and take advantage of the results in [4] to establish exponential ergodicity of
Markov-modulated multiclass M /M /n queues with positive safety staffing using the Lyapunov
functions in [4]. We leave it to the reader to verify that for @ > 1, we can in fact establish
uniform exponential ergodicity over all work-conserving scheduling policies. For o < 1 the
discontinuities allowed in the policies need to be restricted.

Extending this to the classes of multiclass multi-pool models studied in [12] is also possible.

2.2. Steady-state approximations

Here, we use a function £'(x, k) for (x, z) € R x R? and k € .# which interpolates the
transition rates in the sense that

Ex, k)=ri(x,x+z2) ifx,x+zeX".
Recall the definition of 27" in (2.4). It is clear that for z ¢ 2" we may let £ = 0. Thus
2" ={ze R?: 3x, k such that §'(x, k) > 0}.
This of course also implies that
E'xr, k)=0 if |z| > mg (2.18)

by Hypothesis 2.1(a).
We let #:={1, ..., d}, and define

E'x k) = ) zEx k),

eZ"
(2.19)
Choe k) = ) zzgl k), ije s,
2"
for (x, k) € RY x .
We impose the following structural assumptions on the function &".
Assumption 2.2 The following hold.
(i) The cardinality of the set {z € R¢: &'(x, k) > 0} does not exceed IVO.
(ii) For each n € IN, there exists x]} € R satisfying
> mEL k) =0. (2.20)

ket

(iii) The function &' is uniformly Lipschitz continuous in its first argument; that is, there
exists some positive constant C such that

&0 (x, k) — &7 (v, k)| < Clx—yl  Yke X Vx,yeRe, Vze 2", (2.21)
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Ergodicity of a class of Markov processes under fast regime switching 9

for all n € IN. In addition, using without loss of generality the same constant, we assume
that ~
max gl (X, k) < Cn Vke #, VneN. (2.22)
zeR¢

(iv) The matrix I'"(x]}, k) is positive definite, and
1 -
-, k) —— T(k), (2.23)
n n—oo

where T'(k) is also a positive definite d x d matrix, for all k € K.

We note here that the nondegeneracy hypothesis in Assumption 2.2(iv) is used in Lemma 5.3
to derive gradient estimates of the solution of a Poisson equation.

Remark 2.5. Equation (2.21) is of course much stronger than Hypothesis 2.1(c). This is
needed for the results in this section which rely on certain Schauder estimates for solutions
of the Poisson equation for the generator of an approximating diffusion equation.

Let {A”: ze 2"} be a family of independent unit-rate Poisson processes, independent of
J", and Ag(t) := A”(#) — t. Then the d-dimensional process X" (¢) is governed by the equation

t
X =X"0)+ > zAl < / EN(X" (), J"(5)) ds)
eZd" 0

t
=X"(0)+M"(t) + / E"(X"(s), J"(5)) ds,
0
where

~ t
M) = ) zA! ( /0 EL(X"(5), J'(5)) ds).

zeZ™"

Note that M"(t) is a local martingale with respect to the filtration
t
F o= G{X"(O), J"(s), A7 (f EZ"(X"(S), J"(s)) ds),
0

t
/ SZ"(X"(S), J”(s)) ds: ze Z", s < t}.
0
The locally predictable quadratic variation of M" satisfies
'
(M")(1)= / I (X"(s), J"(s)) ds, >0,
0

where the function I'" = [T'}]: RY x '+ R4 is given in (2.19).
By (2.21), it is evident that given x"(0) € RY, there exists a unique solution x"(¢) satisfying

t
O=x"0)+ ) m / B ((s), k) ds.
ket 0

We refer to this as the nth ‘averaged’ fluid model.
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10 A. ARAPOSTATHIS ET AL

In this section, the scaled process is defined as in Definition 2.1, with the exception that
Xl e R is as specified in Assumption 2.2. Note that in the extended generator in (2 2) and (2.3)
we may replace r”(nﬂx +x},z) by & (nPx + 1" ", k). It is evident from (2.24) that X" satisfies

t
(1) = X"(0) + M"(¢) + / " (X" (s), J(5)) ds, (2.24)
0
where
_ M" ~ E"(nPx 4+ X", k
o= and BGh) = S TAETR e RO (225)

}’l/3 ’ nﬁ

The locally predictable quadratic variation of M"is given by

1
0= [ F .S G) s =0
0
with |
&, k) = —= r"(nﬂ)%+x*, k),  (keR!x. (2.26)

We next introduce a sequence of processes that approximate X". Let Y" be the strong
solution to the Itd d-dimensional stochastic differential equation

dY" (1) =b"(Y"(1) dt + 0"dW(r), (2.27)

with ’17"(0) =yp, where W(t) is a d-dimensional standard Brownian motion,

bl(H) = Z NS, k), $eRe, ie.”
ket

with E" defined in (2.25). The diffusion matrix o” is characterized as follows. Let

Y ={M-0 '-n (2.28)
denote the deviation matrix corresponding to the transition rate matrix Q [7]. Let ®" = [9"] be
defined by

—n n =n

BN, k)ET (XL, 0)

O =23 Y ———m—— Y, ijeS (2.29)
tet ket .
and

a"(x) = [a](x) = Z L (x, k), xeR%.
ke X

Then, by Assumption 2.2(iv), and using the spectral decomposition, o” satisfies
"= (c"o" =a"(0) + O". (2.30)
The generator of Y", denoted by &7*, is given by

A (x) = Zb”(x)af(x)+ Do spogf.  feC(RY). (2.31)
iced tjef
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Ergodicity of a class of Markov processes under fast regime switching 11

We borrow the following definitions from [11]. We say that a function f € C>(R?) is sub-
exponential if f > 1 and there exists some positive constant ¢ such that

IVF)l + [V @)| < ce™ vxeR?

and
fata) _ .

sup <
{z: |z|<1} S

We also let %, denote the open ball around x € R? of radius (1 + |x[)~!, and define

) — (@)
Hf”co»l(,@x) = sup [f(x)| + sup u
: yeBy v,26€ By ly —zl

Vxe R4

. fec™ @Y.

The following assumption concerning the ergodic properties of y" plays a crucial role in
the proofs for steady-state approximations.

Assumption 2.3 There exist a sub-exponential norm-like function Ve C*(RY), a positive
constant k, and an open ball 9 such that

A Nx) < 1px) —kAUx) VxeR? VneN.

We continue with the main result of this section. Its proof is given in Section 5. Let v" €
P(]Rd ) denote the steady-state distribution of Y.

Theorem 2.2. Grant Assumptions 2.2 and 2.3. Assume that X", I is ergodic, and its steady-
state distribution " € P(R?Y x ¥ satisfies

lim sup / U + |’ 7(dx, dk) < oo. (2.32)
RIx.

n— o0

Then, for any f: R¢ — R such that Ifllco.1(,) < Ax), and any a > 0, we have

1
|Ttn(f) - l)n(f)| = ﬁ(m) (233)

Theorem 2.2 concerns the gap between the moments of the marginal distribution of the
steady-state X" and those of v". The order of the function in (2.32) is determined by the esti-
mates in Lemma 5.2 and the gradient estimates of the solutions to the Poisson equation in
Lemma 5.3. In the following corollary, we provide a sufficient condition for (2.32). We give its
proof in Section 5. In Section 3, we show that this sufficient condition holds in many examples.

Corollary 2.3. Grant Assumption 2.2. Let Vand Vbe two sub-exponential functions in C*(RY)
satisfying Assumption 2.3, such that

) (1+ 1) < T (2.34)

and
(1 + DIV + [V2H)]) + (1 + |x|2)m2’1;3mw o = O (2.35)

for some positive constant C and any x € RY, with mq as in (2.18). Then (2.32) holds for V. As
a consequence, (2.33) holds.
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12 A. ARAPOSTATHIS ET AL

3. Examples

In this section, we demonstrate how the results of Section 2 can be applied through
examples.

Example 3.1. (Markov-modulated M /M /oo queue.) We consider a process given by

t ‘
X"(t) = X"(0)+ Al </0 n)»(J”(s)) ds) —A", (/0 /L(J”(s))X”(s) ds>,

where A" | and A’ are mutually independent unit-rate Poisson processes, independent of J”,
for n € IN. We assume that A(k) > 0 and (k) > 0, for k € 7. We let

)Hl* =n Zke%nkk(k) .
Recall that X" = n~F (X" — ), and then X' = {x"(x): x € Z1}. Itis evident that A(k) and p(k)x

satisfy Hypothesis 2.1(c)—(d). Let A= Zke}gnkk(k) and = Zke T kja(k). By Definition
2.2, we obtain

(3.1)

Zf@ =ni (fG+n"P) = f@) + i 0Px+ xXD(FG—nF) — f(3) (3.2)

forall # € X". Let V(x) = |x|", for x € R, with m > 2 an even integer. It is clear that

FEn " — 3" = £ Pm@™ " + 0(n ) 6(131m2). (3.3)
Thus we obtain from (3.1) and (3.2) that

LV® =nd(R+nP1" = 31" =0 Pmi3) 4 @ R(1R - P — (37
+ X (1% —n P — 13"+ mn PR
=10 O™ + A(— " + o HoR" )
+ 0! o))
<Ci-CV&)  VieX'

for some positive constants C; and C;, where in the second equality we use (3.3), and in the
last line we apply Young’s inequality. It is straightforward to verify that V(x) satisfies (2.10).
Therefore, the assumptions in Theorem 2.1 hold, and X", J") is exponentially ergodic for all
large enough n.

Next we verify the assumptions in Corollary 2.3. The equation in (2.20) becomes

Z T ENA k) = Z Teni(k) — Z T (k)X = 0. (3.4)
ket ket ket

Note that x7} in (3.1) is the unique solution to (3.4). Recall the representation of Y" in (2.27).
In this example, it follows by (3.4) that

') =nPax! —nPamfx+x)=—jix VxeR,
and

a"(0)=n"P(na + ux")y =n'"?P2).
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Ergodicity of a class of Markov processes under fast regime switching 13

Let Ax) =« + |x|™, with k > 1, for some integer m > 2. We choose some k& > 1 such that
Yo = k(14 ™) = M1+ ) VxeR.

Then Assumptions 2.2 and 2.3 are satisfied. Indeed, by the discussion following Theorem 3.1
of [11], if #e C3(R?) in Corollary 2.3, we may replace (2.35) by

(1 + DIV + | V2AW)]) + (1 + 6P|V H0)| < CH) (3.5)
for some positive constant C and any x € R, where

33

V3 =
] d
axy' - - 0x)

v~vith amulti-index (11, .. ., ng) satisfying Z;jzl n; = 3. Then it is straightforward to check that
¥ chosen above satisfies (3.5). Thus, the result in Corollary 2.3 follows.

The following example concerns Markov-modulated multiclass M /M /n+ M queues.
Exponential ergodicity for these queues under a static priority scheduling policy has been stud-
ied in [3, Theorem 4], which treats a special case of the model considered in this paper. Here
we show that by using the result in Corollary 2.1, the proof of [3, Theorem 4] is greatly sim-
plified. We also extend the results in [3, Theorem 4 and Lemma 3] to include a larger class of
scheduling policies such that the Markov-modulated queues have exponential ergodicity.

Example 3.2. (Markov-modulated multiclass M/M/n+ M queues.) We consider a
d-dimensional birth—death process {X"(7): > 0}, with state space Zi, given by

t
X[(1) = X]'(0) + A, ( / nhi(J"(s)) ds)
0

t
—a, ( /0 (1) X" ) + 1 (") (X() = FK"(5)) ds)
forie #:={1,...,d}, where {AZl,, A" ol L€ #} are mutually independent unit-rate Poisson
processes, independent of J”, and 7" is the static priority policy defined by

i—1

+
Z(x) = xi/\<n—2xj> Vie s

j=1
We assume that {A;(k), wi(k), yi(k): i € 7, ke #} are strictly positive, and the system is
critically loaded, that is, Zie, 7 pi =1 with p; := %i/ji;. Equation (2.20) becomes
> mENL k) =nki — L () — i — ) =0 Vie,
ket
which has a unique solution x} = np with p = (p1, . . ., pa).

We first establish exponential ergodicity and verify Assumption 2.1. Let

Vg, (x, k) = nhi(k), Y2, (x, k) = npipi(k),
and

DL, (x, k) = pik)(2i' (x) — npi) + yi(k)(xi — 2 (x))
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14 A. ARAPOSTATHIS ET AL

for i €.# and (x, k) € RY x % Then &Z(x) =ni; and lﬁﬁel,(x) =npift; =nr;. It is evident
that the functions ;. and ¢, satisfy (2.11) and (2.12). Note that z/'(x) <x;, and thus
Hypothesis 2.1(d) is satisfied. Let V¢ ;,(x) := Zief ilx;|™ for x € R4, an even integer m > 2,
and a positive vector £ € R to be chosen later. Recall Gy in (2.13). It is straightforward to
verify that

GVem® =0 " —¢", ("% +np, x|z
iced

+n 2PN (ki + ¢, (P x4 np, 0) O(151™2).
ies
Since inf; i {pi(k), yi(k)} > 0, it follows by [2, Lemma 5.1] that there exist some positive vector
A, ng € IN, and positive constants C; and C, such that

GVem@® < C1 = CVem@®. (b eX"x A n=zno. (3.6)

Therefore, the result in Corollary 2.1 follows. We remark that the claim in Corollary 2.1

holds for any work-conserving scheduling policy satisfying (3.6), since there is no continu-

ity assumption on ¢, . This extends the results of [3, Theorem 4 and Lemma 3]. Indeed the

proofs of these results can be greatly simplified by following the approach above, since we
only need to consider the constant functions ;. and ¥, in x.

Next we focus on steady-state approximations for this example. It is straightforward to

verify that the coefficients in (2.27) take the form

bl (x) = —%l (z?(n’gx +x) — /(D)
n i} (3.7)
— D0~ Gl =), e s

and
_ 1, -  _ _ DY .
a;;(0) = nTﬂ(nM + ) + (Y - ) =n" TP, Vie s,
and that c_lZ-(O) =0fori#j. Welet ¥ ,u(x) =k + D _;c s ¢ilxi|™ for some positive vector ¢ € R¢,
an even integer m > 2, and x > 1. We choose x > 1 such that
Ve m(x) = /z<1 +> §i|x|6+m> > Y@+ 1) YxeR?
i€ d

Repeating the calculation in [2, Lemma 5.1], we find that there exist some positive vector
IS R4 and some positive constants ¢; and ¢; such that

("), VYem@) < c1 —c2%m(x)  VxeR?
It follows directly by Young’s inequality that there exists some positive constant c3 such that

c
}Vz“//;,m(x)| < c3— ?2”//;,,,1()6) VxeR4.

The same holds for %ym. Thus, we have verified Assumption 2.3. Since z} is Lipschitz contin-
uous, it is evident that Assumption 2.2 holds. An easy calculation shows that (3.5) holds. As a
result, Corollary 2.3 follows.
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Ergodicity of a class of Markov processes under fast regime switching 15

When d =1, (2.20) becomes

Z B, k) =nh — a(x An) — 7 ( —n)t =0,

ket
which can be solved directly without the critically-loaded assumption. It is straightforward to
verify that (3.7) becomes

b"(x) = —i((x + n Py ARt TP — Py A nl_’s)
_ )7((X+ n—ﬂxn* _ nl—ﬂ)-i' _ l’l_ﬁ(xn* _ n)-‘r)

Repeating the procedure as above, we establish Corollary 2.3.
Example 3.3. (Markov-modulated M /PH /n + M queues.) We assume that all customers start
service in phase 1, and there are d phases. Given J" =k, the probability of getting phase
J after finishing service in phase i is denoted by p;(k). Let X{ denote the total number of
customers, both in service and queued, in phase 1, and let X', for i # 1, denote the number
of customers in service in phase i. (We refer the reader to [8] for a detailed description of
the model without Markov modulation, and to [26] for an application of Markov-modulated
phase-type distributions in queueing.) Then (2.19) becomes

E7(x, k) = nr(k) — 1 (o) (x1 — (e, x) —m)t) — y () (e, x) —n) ¥,

Bl k)= —pioxi+ Y pikou(kx;
JFLJFL
+ p1itou (k) (x1 — (e, x) —m)T)  fori#1,
and (2.20) becomes
nh — fig (2 — ((e. &) = m)*) — 7 (te. x2) —n) T =0,
X A Dz joet DXy +Prii (X | — (e, &) =m)T) =0 fori#1,
where y =3 pmy(k), and pj=) ;. pmipij(k). Here, e'=(1,...,1) as defined in
Section 1.2. Assume that A = 1. Note that {EY: i € .#} are piecewise linear functions in their

first argument. It is straightforward to verify that Hypothesis 2.1 and Assumption 2.2 are
satisfied. We get x”! = np, where
Mle 1 - S N
p = m, and M = (I — P )diag(p),
with I the identity matrix and P := [pij]. The coefficients in (2.27) satisfy

b'(x)=—Mx+ (M — yI)ei (e, x)*,

n' =28 (1+ fu1o1) ifi=1,
aGO=9 o _ N
n (Z#i,j#lpjiujpj+uipi+mmpu> ifizl,
and
a0y =n""* (pyivipi + pjiiijey),  i#J.

By [5, Theorem 3.5] (see also [9, Theorem 3]), there exists a function %satisfying the assump-
tion in Corollary 2.3. In analogy to [5, Theorem 3.5], we can show that there exists a function
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16 A. ARAPOSTATHIS ET AL

V(x) = (x, Rx)"?, for m > 2 and some positive definite matrix R, satisfying the conditions in
Theorem 2.1.

4. Proofs of Theorem 2.1 and Corollaries 2.1 and 2.2

The range of the transition matrix Q is the subspace A = {y € R : Y ke Tk =0}. As
shown in [13, Theorem 3.5], if v and u are any vectors in R¥e satisfying 7w Tv # 0 and uTe #0,
then the matrix Q + vul is nonsingular, and

T=(Q+w")" 4.1)
is a generalized inverse of Q; that is, it satisfies Q7 Q = Q. This of course means that
QTy=y forallyeA. (4.2)
We also need the following definition.

Definition 4.1. Recall (2.3) and Definition 2.2. Let .ffkn =" — %', This operator takes
the form

LofG k) =Y H@PR+ 2 (G +n Pz b —fG b)), G ReX x A
e

for f € Cp(R? x #), where
i, 2) = 7'(x, 2) = F(x, 2), (x, k) e X" x A

Proof of Theroem 2.1. Let T = [Tielx ¢cz be as defined in (4.1).

~ 1 . ~n
VG kb= — > TufV"®. GheX'x i (4.3)
n tet”

Then _ ;. _

AV'G, k=L V) YR keX x ., (4.4)
by (4.2).
We define R ~ R

V'(x, k) = V&) + V&, k), R keX" x A (4.5)

By Hypothesis 2.1(c)—(d), we have
PnPi+x0,2) < Co™V P +nP1Rl) VG keX x H Ve Z", VnelN.  (4.6)
We choose N large enough so that mg < 80Nf3 , with mg as defined in Hypothesis 2.1(a). By
Hypothesis 2.1(a)—(b), (2.6), and (4.6), we have
14+ V"(x)
nP(1+|3))

for all n > Nj. Therefore, since o + 8 — 1 > /2 for o > 0, it follows by (4.5)—(4.7) that there
exists n1 € IN, n; > Ny, such that (2.8) holds.
Recall the definitions in (2.2), (2.3), and (2.5). We have

|2V @)| < NoCon™" + nP|]) Cmy (4.7)

V'R = VG + LVG) = LVNE) + @V k)
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Ergodicity of a class of Markov processes under fast regime switching 17

by (4.4). Therefore, since Q"V"(x) = 0, we obtain
"V k)= LVG) + LV G k) + OV (R k)

_ N . (4.8)
=2V + LVG k) VG keX x
We define the function
Gi(x.2) = (P24, 2)(V'G+nP2) = V'®).
It is straightforward to verify, using (4.3), that
LV G = Y ROPE AL (VG Ph k) = V(G k)
heZ"
1 (4.9)
=— > HEPr+xlh) Y Tu(GiG+nh, ) - Gj(&. 2).
hzeZ" et
On the other hand, it follows by Hypothesis 2.1(c) and a triangle inequality that
IGYG+n"Ph, 2) — G}, 2)l
< 2Con** + |h) V"G +n"P2) — V'
= 2Co( |l) [V"( ) @ 4.10)

+ | @Px+ 2+, )| [V'G+nPr+nPh)
~V'GAnPh) V'GP VR
forall h, z€ Z". As in (4.6), we have
P42+ h 2 < Co(n™V 2 +nP1R+1h) VG eX xH Vhze 2",

4.11)
for all n € IN. By (2.6) and Hypothesis 2.1(a), we have
A R L+ V(%)
n BN _ yn < Cmp———22
V'G+nP2)—-V'(®)| < L T
V'G+nPz4nPh)—V'"G+nPh 4.12)
14+ V()

Gt 4 VG PR
V'GP +V'®)| < O g e

for all h, z€ By, X € in, and n € IN. Hence, using (4.9) together with the estimates in (4.6)
and (4.10)—(4.12) and Hypothesis 2.1(a)—(b), we obtain

LV, k)

11/2 1vu/2 ﬂ A 1 + Vn()%)
< NoCoCmo Y |Trel ( 200 + mo)(n""? 4 nP 1)) ————
- ne A (1 4 |3)) (4.13)
k.k' et
A A 1+ V"(X)
1ve/2 B 1ve/2 B
+N0C0m0(n +n |x|)(n + n”|x| +m0)—na+25(1 )

Using the property 8 = max{1/2, 1 — «/2}, we deduce from (4.13) that for any € > O there exists
some constant C,(¢) such that

LV k) < Cole) + V"R Y@K eX x A VnelN, (4.14)
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18 A. ARAPOSTATHIS ET AL

Therefore, choosing € = %62, and using (2.7), (2.8), (4.8), and (4.14), we obtain

~ e — _ - 1=« X ~
LVIE ) = CrtCo(G) + LG = SOV h) YEREX X A Yn>m.
This completes the proof.

Proof of Corollary 2.1. Recall G} in (2.13), and let G/ := G — Z}". Then G takes the form

GifG. =Y UrePi+ 2L (fG+n"Pz k) —f& b)), G heX'x X
e
for f € Cp(RY x #), where

Ui ) = P ) — YD), ke (L eX"x 2
Compare this to Definition 4.1. We let
P&, k) = ni"‘ YN T GV'G). GheX" x
tet
Asin (4.4), we have
VG k) =GV"R), G keX'x X
In analogy to (4.8), we get
ZVE ) =GV + LV k), Gk eX x A
In obtaining an estimate for .Z’ V(%, k), the proof is the same as that of Theorem 2.1, except

that we replace ' with /", and use (2.11) and (2.12). Applying (2.11) and (2.12) again, we
may show (2.8). Then the claim in (2.9) follows by (2.14). U

Proof of Corollary 2.2. We present only some crucial estimates that are different from those
in the proof of Theorem 2.1. Indeed, it follows by (2.15) and (2.16) that

HnPr 4+, 2) < Co(1 +n), nPr 4+, z) < Co(1+n), (4.15)
and
[P G+ nPhy+ X, 2) — F(nPi+ X, 2)| < Co(l+ |l An) (4.16)
for some positive constant Cy. By Hypothesis 2.1(a)—(b), (4.15), and (2.17), (4.7) becomes
o 1+ V'(x
|$,fvn(5c)| < NoCo(1 +n) Cm0+—ﬂ(x) 4.17)
n
for all large n. Using (2.17) and (4.15)—(4.17), together with Hypothesis 2.1(a)-(b), (4.13)
becomes
~ 1+ V'(3)
LV G ) = NoCoCmo 3 [Tiel (201 +mo)(1 +m)—=7=

kK e (4.18)

1+V"(x)
+ NoComo(1 +n)(1 + n)w)

Since o + 28 > 2 implies o 4+ > 1, it follows by (4.18) that (4.14) holds for all large n. The
rest of the proof is the same as that of Theorem 2.1. U
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Ergodicity of a class of Markov processes under fast regime switching 19

5. Proofs of Theorem 2.2 and Corollary 2.3

We need to introduce some additional notation to facilitate the proofs. Recall the definitions
of 8", ', b", and @" in (2.25)—(2.27) and (2.30), respectively. For f € C2(RY) and n € IN, let

S, k) = Z(Z;;?(x) — (E2(x, k) — B0, k))) 3£ (x)
i€ s

| ) i (5.1)
+5 > (@) — T, b)) 9 ()
ijed
and
1
SIf1x, k) = pres T Z Z (Z Nlézn(nﬂx + X, DY
Z hed Vlext
(5.2)
— &' (nPx+ ), kmh) B D) Y udf (),

jes ied
with Y as defined in (2.28). It follows by the identity
Z (Z TEN (P x4+ X, DXy, — M (P + ¥, k)Tkh> =0
kex lext

that ), mi85[f1(x, k) =0. It is clear that ), , mg}[f1(x, k) = 0. Recall the matrix 7 in
(4.1) and (4.2). We define

1
G0 = — Y T gllx 0,  i=1,2, (5.3)
n
let
and thus
Q"M k)= gNf I, k), i=1,2. (5.4)
For f € C2(R?) and n € IN, let
1
A0 = — 3 Y B W)Y 3 (). (5.5)
" he X je s

Note that the function g5[f] corresponds to the covariance of the background Markov process
J". We let g"[f] denote the sum of the above functions, that is,

I k) = ghfICx, k) + alfl(x, k) + g3lf 1 k), (k) eRYx 2 (5.6)

To keep the algebraic expressions in the proofs manageable, we adopt the notation
introduced in the following definition.

Definition 5.1. We define the operators [D!']° and [D!] ]! ,j € .7, by
[DIf@) =fx+nP2) = f0) —n™P D 2dif ) —n =P 2z (),
ies ijed

[ D2 1if ()= (x+nP2) — 0f ) —n P Y~ 2 f(),
ic s
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20 A. ARAPOSTATHIS ET AL

for f € C2(R?) and z € Z°". In addition, we define

G k) =) &P+, b DI,

o1 e - .
G = 5 D D ml(TE b — T, £)d (),
ijefkejzf/

311G &) = nam ST 3T (B4 PR D — BRG D) B by Cndf (),

ijes hleXt
. 1 . .

G0 = g 0 Y &P+ 0 Y B0 WIDfR),

z heX jes

sU1G, k) = 2 giIf1&, k),
o1G, k) = L &If1&, k).
The following lemma establishes a useful identity involving the generator of X", J") in

(2.2) and that of Y" in (2.31) and the operators R} in Definition 5.1.
Lemma 5.1. Under Assumption 2.2(ii), for f € C*(R%), we have

6
2O +Z"S G =@+ RIFIG K. GheX xH  (57)

i=1

Proof. By (2.2) we have

3
Z g1 o =Y (LG 0 + Qg ), (5:8)

i=1
and Z"f(%) = L/f&) for any f € C2(RY).
We first show that

f )+ Q"&NIfIR, k) + Q" g5 [f (x, k)

= Y H@ @ + 5 Y i + RING b+ RS, G
=54 tjef

Using (2.3) and (5.5), we obtain

QARG =D qulu Y L (x SJ( %). (5.10)

he X le jes

Since QY =I1 — I, where I denotes the identity matrix, it follows by (2.20) that

DO qu T BN =Y mhBIL h) — B (L k) = — BN (XL k), (5.11)
he X et he X
where in the second equality we use Assumption 2.2(ii). Thus, by (5.10) and (5.11), we have
’—‘i’l xi’l R
QA IE =)~ aﬂx) > —ENO0. k) of ). (5.12)
jes jes

Downloaded from https://www.cambridge.org/core. Pennsylvania State University, on 01 Aug 2021 at 19:31:11, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.47


https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.47
https://www.cambridge.org/core

Ergodicity of a class of Markov processes under fast regime switching 21

By (2.3) and a standard identity, we obtain

L@ =Y &4k (Z nPzdf )
€2 i€ed

+ Y Prziouf ) + [DI°F (&)) (5.13)
ijed
=2 B U) + ) T R0y (D) + RAFIG K.
=4 ijes

Thus (5.9) follows from (5.1), (5.4), (5.12), and (5.13).
Next, we show that

7 GMFIR, k) + Q' GAIFIR, k) = Z 01 0:f ) + RAFIG b+ RIFIG b, (5.14)

1]6}’

We have

e g’%[f](fc k)
=— ﬂ Zg PR+ 0 YD BN )Y (3 G +nP2) — 0 ()

he X jed

by (2.3). It is clear that

ofG+nPo)—af ) =n""> " zoyf () + [DIfG)
ic ¥
and

Dz PR+ k) = EI G )+ (B] (L +nPR k) — EJ(LL K).
Z

Therefore, (5.14) follows from combining these identities with (5.2) and (5.4).
Hence, we obtain (5.7) by adding (5.8), (5.9), and (5.14), and using the definitions of R [f]
for i =5, 6. This completes the proof. U

The following lemma provides needed estimates for R and Rg.

Lemma 5.2. Under Assumption 2.2 (i)—(iii), there exists some positive constant C such that

|R2IFIG, k)|
1 . 1. 1 o
<C —| |+ 7 )W+ (g R+ e ) IV B
1 (5.15)
+< — %2 4+ — |5c|> max |[Vf(x+n"P2) — VI3
nOt ,3 n« 1 zeﬁﬂn

I B 1 I
oM+ T R o e )= V@)

Downloaded from https://www.cambridge.org/core. Pennsylvania State University, on 01 Aug 2021 at 19:31:11, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2020.47


https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2020.47
https://www.cambridge.org/core

22 A. ARAPOSTATHIS ET AL

and

A [ 1 >
|REIFIG, k)| < c[(nmﬂg_1 1% + nmzﬂ_z) (V@)

LY .
+ <nza_1|x| Rl (5.16)

1 n _ N
n2a+2/3—3> mex VG +nF2) — V2f(x)|]’
z€

+
for any (x, k) € X' x
Proof. Recall the functions g'[f] and g5[f]in (5.3). It follows by (2.21) and (2.22) that
E20r K| < Clx = 2| +m) (5.17)
and
€42l k) — £ )| < Cla (5.18)

for (x, k) e RY x #,z€ 2", andn € IN. By Assumption 2.2(i), and applying (2.20) and (5.18)
it is straightforward to verify that

Y mE'G k)| < CNomols|  VieR” (5.19)
ket
Thus, by (5.18) and (5.19),we have
|b"(%) — (E"(&, k) — E"(0, b))| < 2CNomol3| ¥ (&, k) e RY x A (5.20)
Applying (5.17), we obtain
|@"&) — TG, k)| < 2CNom} (P |31 +n'"2F) VG, b eRY x 4, (5.21)

and

Z TEN PR+ X, DYy — EL PR+ XL )| < Ci(nP1R1+0)  YieR?  (5.22)
lext”

and all k, h € #and z € 2", for some positive constant C;. We have
|E"(", k)| < CNomon ~ VYke ¥, neN, (5.23)
by (2.22), and

E1PR+ )| < COPIRI+n)  Y(G K eR! x 7 ze 2", nel, (5.24)
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Ergodicity of a class of Markov processes under fast regime switching 23

by (5.17). From (2.21), we obtain

|B"G+n~Pz, k) — E"G, k)| < nPCNom (5.25)
and
|T"G+nPz k) — TG, k)| < n= > CNom (5.26)

for (x, k) e R x %, z€ 2", and n € IN. Repeating similar calculations as in (4.10) and (4.13),
and applying (5.20), (5.21), and (5.24)—(5.26), we have

[ RE1G), k|
~~ ~~ z(nﬂ|£|+n) ~
< CNomo D [Tiel | 2CNomg— = IVf (D)

ke

(nP1x] +n)
o

+ 2CNomo || max IVFG+nP2) — V)
ZG o¥n

IBA
s~ MPIX|+n) 5. .
+ CN0m0W|V f0|

(n=P1x] +n'=2P) 0P |3 + n)

nC(

+2CNom? mgg;nwf@ +n Py — Vf(fc)|) ,
z€

which establishes (5.15). The estimate for R¢ in (5.16) obtained in a similar manner by
applying (2.21) and (5.22)—(5.24). This completes the proof. U

We borrow the following estimates for solutions to the Poisson equation for the operator
/" from [11, Theorem 4.1] and the discussion following this theorem. Recall that v" is the
steady-state distribution of Y” in (2.27).

Lemma 5.3. Grant Assumption 2.2, and fix a function ¥ in Assumption 2.3. Let f € C%'(R%)
be such that ||f || co.1(g,) < Ax) and v"(f) = 0. Then the function u}' € C2(RY) defined by

i (x) = /0 “E [F(Y"(s))] ds
is the unique (up to an additive constant) solution to the Poisson equation
o'u=—f, (5.27)
and satisfies
IVupx)| € O((1 + [xAx)), (V2| € O((1 + [x) ), (5.28)

and
(1], 128 0 € O((1+ )W) (5.29)

v

In the following lemma, we consider the solution of the Poisson equation in (5.27) and
establish an estimate for the sum of terms ’R;"[u}’}], i=1,...,6,given in Definition 5.1.
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24 A. ARAPOSTATHIS ET AL

Lemma 5.4. Grant Assumption 2.2, and fix a function ¥in Assumption 2.3. Let f and u]’} be as
in Lemma 5.3. Then

6
1 o
> RIMG k) = ﬁ(m> O+ EPH3) VG heX x A (5.30)
j=1

Proof. Note that

[DI°W G =n" Y 270 (G + &) — uf (B))
ijed

for e;f’z € [lier i, Xi + n~Pz]. Applying (4.6) and (5.29), we obtain

1 o
RIAG )= — 0((1+ [FH7®)  VEeX" x (5.31)
‘ n
By (5.18), we have
IFiG, k) — T20, k)| < CNomdnPI31 V(@ b e X' x A

and thus it follows by (5.28) that
A 1 N A
RLuf 10 = — 0((1 + R UR)). (5.32)
Applying Definition 5.1, (5.18), (5.23), and (5.28), we obtain
N 1 N N
RALFIG, k) = Wﬁ((l +RHUR) Vkex (5.33)
Repeating the above procedure, and using Definition 5.1, (5.17), (5.23), and (5.29), we obtain
. 1 . .
Rﬁ[u}'](x, k)= ﬁ(W) ﬁ’((l + |x|4)%x)) Vke Z (5.34)
It follows by Lemma 5.2, (5.28), and (5.29) that
N 1 N A
RE G k) = ﬁ(m> o((1 + R 1)) (5.35)
and

nr, s 1 [ [
Reluf1G, k) = ﬁ(m> o((1 + 3P MR) (5.36)

for all k € 2#. On the other hand, when o > 1, ,3:%, a+pB—1>p8and 200 + 38 —3 > B,
andwheno <1l,a0+ 8 —1=2a+38 —-3=a/2and o + 38 — 2 = B. Then, by using (5.31)—
(5.36), we have shown (5.30). This completes the proof. U
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Ergodicity of a class of Markov processes under fast regime switching 25

Proof of Theorem 2.2. Without loss of generality, we assume that v"(f) = 0 (see [11, Remark
3.2]). Recall the function g" in (5.6). Applying Lemma 5.1, it follows that

B [} (R(1)) + ") (R"(D), (1)

= o[} R(0)) + &' [ 1R"(0), J"(0) |

T
+ Exn [ / A"} (X"(5)) dsj| (5.37)
) .

6

T
+ > B [ /0 Rt (X" (5). J"(5)) ds:|.
j=1

J

By Lemma 5.4, we have

6 T
> 5| [ RIGIE.0) 0]
j=1

s ' X" X 5.38
=< ﬁ<na/2A1/2>]Enn |:/0 (1 + NX"(9)) (1 + X (s)|5)) ds:| (5.38)

1_ ¥ ANS s
- ﬁ(ww/z)T /Rdx %(1 + MR + X)) 7" (dR, dk).
Applying (5.6), (5.24), and (5.28), we obtain
"G 0l = Q1+ +EHAD) V& beX x A (5.39)

for some positive constant C| and all large enough 7. Since |uj’?| € O() by the claim in (22) of
[11], it follows by (5.39) that

B[} (D) + "1 ) (R"(T), (D)

(5.40)
< c2<1 + / N1+ |x])° " (dx, dk)>
RixH
for some positive constant C. By (5.27),
T T
Eon [ f o'uf (X"(5)) ds:| = —FEm [ / F(X"() ds] = —T7"(f). (5.41)
0 0

Since 7" is the stationary distribution, the bound in (5.40) also holds for the first term on the
right-hand side of (5.37). Thus, applying (5.37), (5.38), (5.40), and (5.41), we obtain

RYx.

T|n"(f)| < 2c2(1+ / HR)(1 + 7)) (dz, dk))
- (5.42)

1 ) s
+ﬁ<W>T/WM(1 + AENA + )" (dk, dk).
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26 A. ARAPOSTATHIS ET AL

Therefore, dividing both sides of (5.42) by T, taking T — o0, and applying (2.32), we obtain

" 1
[7" () = ﬁ(m)

This completes the proof. O

Proof of Corollary 2.3. We claim that for some positive constants Cy, «1, and k>, a ball 2,
and a sequence €, — 0 as n — 0o, we have

6
Z"E) 2" NG b = /TS + Y RIAG k)
i=1
< k1 15(R) — K HE) + C1 + e, UR)

(5.43)

for all (x, k) € X" x # Indeed the equality in (5.43) follows from Lemma 5.1. Following the
calculation in the proof of Lemma 5.4, and using (2.35), the inequality in (5.43) follows from
Assumption 2.3 and Lemma 5.2. By Assumption 2.2 and (2.35), we have

IR —C3 < TR+ NG b < GIHD+1) VEeX x 7, (5.44)

for some positive constants C; and C3. Combining (5.43) and (5.44), we see that V(x, k) =
U3) + ¢"[AQR, k) satisfies.Z" V(% k) < k31 7 %) — k4 V(&, k) for some positive constants «3
and k4, and a ball . This together with (5.44) and the hypothesis in (2.34) implies (2.32),
and completes the proof. U

Appendix A. The diffusion limit

Proposition A.1, which follows, shows that under suitable assumptions, the processes X" in
(2.24) and Y" in (2.27) have the same diffusion limit. This proposition is interesting in its own
right.

Let (D9, 7;) denote the space of R%-valued cadlag functions endowed with the 7 topology
(see, e.g., [6]).

Proposition A.1. Grant Assumption 2.2. In addition, suppose that )?”(O) = Y0,

EPOL 4 nPR, k) — E1(XL, k)
B
n

EG k) Yk eXxZ" (A.1)
n— oo
uniformly on compact sets in R?, M"isa square-integrable martingale, and

EMxL, k =
B b —— Bk eR!  Viex (A2)

n n—

Then X" and Y" have the same diffusion limit X in (D4, 71), and X is the strong solution of the
stochastic differential equation

dX(1) = b(X(1)) dt + 0 dW(r),
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Ergodicity of a class of Markov processes under fast regime switching 27

with X(0) = Yo, where

bR = ) m Yy &R b,

ket z
> re kL (k) fora>1,
(04) 0y = Zke)ﬂ/nkﬁ(k) + 0 fora=1,
® fora <1,

and © = [0;;] is defined by

O =2 Y EiE{(O)m Ve, ije .~
klext
Proof. Recall that )", , 7 E"(x}, k) =0 and "(O k)y=n"fzn X7, k). Recall the repre-
sentation of X" in (2.24). By [21 Lemma 5.8], M"is stochastically bounded see also the proof
of [3, Theorem 2.1(i)]. Since " is Lipschitz continuous by (2.21), it follows by the same

argument as in the proof of [21, Lemma 5.5] that X" is stochastically bounded. Thus, by [21,
Lemma 5.9], nlxn converges to the zero process in (Dd, J1). We write X" as

X'=X"O0)+ Y / (B"X"(s), k) — "0, b)) 1 (I (5)) ds + M" (1)

ke
+ Z (x*v k) l —B / ( k(J}’l(S)) _ 7Tk) ds.
ket 0

(A.3)

Let S’”(t) and R"(r) be d-dimensional processes denoting the second and fourth terms on the
right-hand side of (A.3). It follows by [1, Proposition 3.2] and (2.23) that
N Wr fora < 1, 4
R' = in (D, 7), (A4)
0 fora > 1,

as n — 0o, where Wg is a d-dimensional Wiener process with the covariance matrix ®. On the
other hand, we have

0
=3 f ~P(EnX"(s), k) — 2"(0, k) d ( / (L (" (w)) — 7x) du)
= 0 (A.5)
+> m / (E"(X"(s), k) — E"(0, k) ds
ke X

It follows by the convergence of n~! X" to the zero process that n = 2X" also converges to the
zero process uniformly on compact sets in probability. Note that, for some constant C, we have
|E"(X"(s), k) — E"(0, k)| < C|X"(s)| for all s >0 by (2.21). It then follows by [1, Proposition
3.2] and [14, Theorem 5.2] that the first term on the right-hand side of (A.5) converges to
the zero process uniformly on compact sets in probability, as n — oco. See also the proofs of
Lemma 4.4 in [14] and Lemma 4.1 in [3]. It is clear by (A.1) that

H'G) =Y m(E"G ) —E"0.k) — > m Y &G k) (A.6)
ket ket z
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28 A. ARAPOSTATHIS ET AL

uniformly on compact sets in R?. Note that the function /" is Lipschitz continuous by (2.21).
By [21, Theorem 4.1] (see also [14, Lemma 4.1]), the integral mapping x” = ¥"("): D — D4
defined by

t
X' =7"()+ / W(x"(s)) ds VnelN,
0

is continuous in (D, 7;). Thus, applying the continuous mapping theorem and using
(A.3)—(A.6), we obtain
X'=X in (D 7).

Recall the definitions of T and ®”" in (2.25) and (2.29), respectively. As n — oo, we have
that T"(0, k) — (k) when « >1, and T'"(0, k) — 0 when « <1, by (2.23). Since =
max{1l — «/2, 1/2}, it then follows by (A.2) that ®" — ® when « < 1, and ®" — 0 when « > 1.
It is then straightforward to verify that Y"=Xin (D4, 71), as n — oo. Therefore, X" and Y"
have the same diffusion limit. O
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