The Power of D-hops in Matching Power-Law Graphs

LIREN YU, Purdue University, USA
JJAMING XU, Duke University, USA
XIAOJUN LIN, Purdue University, USA

This paper studies seeded graph matching for power-law graphs. Assume that two edge-correlated graphs
are independently edge-sampled from a common parent graph with a power-law degree distribution. A set
of correctly matched vertex-pairs is chosen at random and revealed as initial seeds. Our goal is to use the
seeds to recover the remaining latent vertex correspondence between the two graphs. Departing from the
existing approaches that focus on the use of high-degree seeds in 1-hop neighborhoods, we develop an efficient
algorithm that exploits the low-degree seeds in suitably-defined D-hop neighborhoods. Specifically, we first
match a set of vertex-pairs with appropriate degrees (which we refer to as the first slice) based on the number
of low-degree seeds in their D-hop neighborhoods. This approach significantly reduces the number of initial
seeds needed to trigger a cascading process to match the rest of graphs. Under the Chung-Lu random graph
model with n vertices, max degree ©(y/n), and the power-law exponent 2 < f < 3, we show that as soon

as D > %, by optimally choosing the first slice, with high probability our algorithm can correctly match

a constant fraction of the true pairs without any error, provided with only Q((log n)*=P) initial seeds. Our
result achieves an exponential reduction in the seed size requirement, as the best previously known result
requires nl/2*€ seeds (for any small constant € > 0). Performance evaluation with synthetic and real data

further corroborates the improved performance of our algorithm.

CCS Concepts: « Mathematics of computing — Random graphs; « Information systems — Data min-
ing.

Additional Key Words and Phrases: graph matching; power-law graphs; Chung-Lu model; multi-hop neigh-
borhoods

ACM Reference Format:
Liren Yu, Jiaming Xu, and Xiaojun Lin. 2021. The Power of D-hops in Matching Power-Law Graphs. Proc.
ACM Meas. Anal. Comput. Syst. 5, 2, Article 27 (June 2021), 43 pages. https://doi.org/10.1145/3410220.3460098

1 INTRODUCTION

Given two edge-correlated graphs, graph matching aims to find a bijective mapping between their
vertex sets so that their edge sets are maximally aligned. It is a fundamental problem with numerous
applications in a variety of fields, including social network de-anonymization [25], machine learning
[11, 14], computer vision [10, 29], pattern recognition [4, 6], computational biology [17, 31] and
natural language processing [16].

This paper focuses on seeded graph matching, wherein an initial set of seeds, i.e., correctly
matched vertex-pairs, is revealed as side information. Seeded graph matching is motivated by the
fact that in many real applications, some side information on the vertex identities is available,

Authors’ addresses: Liren Yu, yu827@purdue.edu, Purdue University, 465 Northwestern Ave., West Lafayette, Indiana, USA,
47907-2035; Jiaming Xu, jx77@duke.edu, Duke University, 100 Fuqua Drive, Durham, North Carolina, USA, 27708; Xiaojun
Lin, linx@purdue.edu, Purdue University, 465 Northwestern Ave., West Lafayette, Indiana, USA, 47907-2035.

i

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2476-1249/2021/6-ART27. https://doi.org/10.1145/3410220.3460098

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:2 Liren Yu, Jiaming Xu, and Xiaojun Lin

which has been successfully utilized to match many real-world networks ! [24, 25]. Using seeds,
we can then measure the similarity of a vertex-pair by its “witnesses” More precisely, let G; and G,
denote two graphs. For each pair of vertices (u,v) with u in G; and v in Gy, a seed (w, w’) is called a
1-hop witness for (u,v) if w is a neighbor of u in G; and w’ is a neighbor of v in G,. Since G; and G;
are graphs with correlated edges, a candidate pair of vertices are expected to have more witnesses
if they are a true pair than if they are a fake pair. Not only has this idea been applied to many graph
matching problems, strong performance guarantees (in term of the required number of seeds) have
been obtained, in particular, for matching Erdés-Rényi graphs [15, 18, 19, 21-23, 27, 30, 33, 34].

However, Erdés-Rényi graphs fall short of capturing many fundamental structural properties of
real-world networks. Notably, many real-world networks exhibit a power-law degree distribution,
i.e., the fraction of nodes with degree at least k decays as k™#*! for some exponent f > 0. As a
consequence, we expect to see very large degree fluctuations, with some nodes having very high
degrees (so-called hubs) and some other sparsely-connected nodes with small degrees. Intuitively,
this degree fluctuation may confuse witness-based vertex matching, e.g., a fake pair with high
degrees may have many more witnesses than a true pair with low degrees, which foils the existing
seeded algorithms designed for matching Erdés-Rényi graphs.

There have been several attempts to design seeded graph matching algorithms for power-law
graphs [5, 7, 19]. However, they tend to require a larger number of seeds than Erdés-Rényi graphs.
Note that to address the above-mentioned degree variations, a common idea is to first partition
graphs into slices consisting of vertex-pairs with similar degrees. Then, the vertices are matched
slice by slice, starting from the highest-degree slice to lower-degree slices. A cascade process is
triggered, in the sense that the matched vertices in the current slice is used as new seeds to match
the next slice. Intuitively, it is critical to correctly match the first slice in order to successfully
trigger the cascading matching process for the later slices. [5, 7, 19] all use this idea and match the
first slice based on 1-hop witnesses. Unfortunately, they also require a large number of correct
seeds to match the first slice successfully. Specifically, [19] assumes preferential-attachment graphs
with n vertices [2] and their algorithm requires Q(n/log(n)) seeds to match a constant fraction
of vertices correctly. [5, 7] instead assume the Chung-Lu graph model [8] (cf. Section 2). When
all seeds are chosen from the high-degree vertices, [5, 7] show that their algorithm require only
n¢ seeds to correctly match a constant fraction of the vertices. However, if the seeds are chosen
uniformly from all vertices, the number of high-degree seeds will be much smaller than »€. In that
case, the degree-driven graph matching (DDM) algorithm in [7] requires n'/%*¢
constant fraction of vertices correctly.

In this paper, we propose a new algorithm for matching power-law graphs. Our algorithm only
requires Q((log n)*~#) initial seeds chosen randomly to correctly match a provably constant fraction
of vertices. Our key departure from [5, 7, 19] is to use “witnesses” in larger D-hop neighborhoods.
More precisely, a seed (w, w’) is a D-hop witness for (u,v) if w is a D-hop neighbor of u in G;
and w’ is a D-hop neighbor of v in G,. To see why using D-hop witnesses is crucial, note that,
under the Chung-Lu model of [8] (cf. Section 2), even the highest degree vertices only have a 1-hop
neighborhood of size at most O(+/n). Since seeds are uniformly chosen, it is obvious that at least
Q(+/n) seeds are needed to ensure that a true pair in the first slice can have Q(1) 1-hop witnesses.
In contrast, as D increases, the size of the D-hop neighborhoods grows rapidly, and thus there are
substantially more seeds that can serve as D-hop witnesses for true pairs, which provides hope to
significantly reduce the number of initial seeds.

seeds to match a

IFor example, in social network de-anonymization, some users provide identifiable information in their service registrations
or explicitly link their accounts across different social networks.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:3

The idea of D-hop witnesses has also been used for matching Erdés-Rényi graphs in [23, 34].
However, as can be seen in the rest of the paper, the application of D-hop witnesses to power-
law graphs is highly non-trivial. Specifically, due to the power-law degree variations, the D-hop
neighborhoods of some high-degree vertices may become so large that even a fake pair can have
many D-hop witnesses. Therefore, a key challenge is to properly control the size of the D-hop
neighborhoods. This size depends not only on the degrees of the vertex-pairs to be matched,
but also that of the intermediate nodes (to reach D-hop) and that of the seeds. To overcome this
challenge, our algorithm design (to be explained in Section 3) (i) carefully chooses the first slice of
vertices to be matched, (ii) carefully chooses the intermediate vertices when constructing the D-hop
neighborhoods, and (iii) carefully avoids high-degree seeds in order to eliminate the confusion for
fake pairs. These three ideas altogether ensure that the true pairs in the first slice have many more
D-hop witnesses than the fake pairs, and thus can be correctly matched to trigger the cascading
process to match the rest of the graphs. See Section 3 for more detailed discussions.

To fully realize the power of D-hops, we further need to carefully construct overlapping slices
to account for the potential mismatch in the vertex slicing of graphs G, and G, and to design
effective ways to match the remaining slices. Assembling all these pieces together enables us to
achieve an exponential reduction in the required number of seeds compared to state-of-art results
in [7]. Specifically, under the Chung-Lu model with power-law exponent 2 < f§ < 3 and max degree
©(+/n), we prove the following performance guarantee of our algorithm, stated informally here
and formally in Section 5.

THEOREM 1 (SUMMARY OF MAIN RESULT). Suppose D > 3
seeds chosen independently at random, by optimally choosing the first slice, with high probability our
algorithm correctly matches Q(n) vertex-pairs without any error.

%. If there are Q((logn)*™F) initial

This reduces the seed size requirement exponentially, as the best previously known result [7]
requires n'/?*¢ seeds. To prove Theorem 1, there are several key innovations in our analysis in
particular to address the difficult dependency issues across edges and slices. First, note that when
we define the D-hop neighborhoods, we use vertex degrees to construct the slices and to select the
seeds and intermediate nodes. This degree-based slicing unfortunately brings dependency issues.
In particular, if we condition on the vertex degrees, then the edges are no longer independently
generated according to the Chung-Lu model. To circumvent this dependency issue, we first show
that the degree-guided construction and selection can be closely approximated by the weight-
guided counterparts with high probability. Then we restore the independence by studying the
weight-guided construction and selection, since the edges are independently generated according
to the Chung-Lu model given the weights. Second, as we use the matched pairs in the current slice
as new seeds to match the next slice, the matching results are correlated across different slices.
To deal with these correlations, we carefully construct sets of matched pairs that only depend on
vertex weights to “sandwich” the original set of matched pairs at each slice, but are not correlated
any more, which allows us to eliminate the slice-dependency issue. Last but not least, to derive the
optimal choice of the first slice and attain the smallest seed size requirement, we tightly bound the
sizes of the common D-hop neighborhoods for both true pairs and fake pairs. Compared to the
Erdés-Rényi graphs, this requires much more sophisticated lines of analysis of the neighborhood
exploration process in the power-law graphs due to the heterogeneous vertex weights.

In the literature, the idea of D-hop witnesses has been used in Erdés-Rényi graphs [23, 34].
However, there is a significant difference in our results for power-law graphs. Specifically, in the
Erd6s-Rényi graphs with average degree d, the sizes of the D-hop neighborhoods are highly concen-
trated on d”. Moreover, when the average degree d is a constant, the size of D-hop neighborhoods
is always O(1) for any constant D. Thus, unless D increases with n, at least Q(n) seeds are still

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:4 Liren Yu, Jiaming Xu, and Xiaojun Lin

needed to ensure that there are enough D-hop witnesses for true pairs. In stark contrast, the power
of the D-hop becomes much more significant for matching power-law graphs. In particular, for
power-law graphs with constant average degrees, by properly using the D-hop witnesses, we
dramatically reduce the seed requirement to Q((log n)*~#), as soon as D exceeds %. Further, we
note that the algorithms in [23, 34] do not need to worry about controlling the D-hop neighborhood,
as they do not face the challenge of power-law degree variations.

Finally, we conduct extensive experiments on both synthetic and real power-law graphs to
corroborate our theoretical analysis. In particular, we compare our algorithm with five other state-
of-the-art seeded graph matching algorithms. Numerical results demonstrate that our algorithm
drastically boosts the matching accuracy and requires substantially fewer seeds to correctly match
a large fraction of vertices. Further, although our analysis focuses on matching two graphs of the
same number of vertices, our algorithm can be readily applied to match two graphs of different
sizes and return an accurate matching between vertices in the common subgraph of the two graphs.
Indeed, our experiments on real networks in Section 6.3.2 and Section 6.3.3 show that our algorithm
still achieves outstanding matching performance, even when two graphs are of very different sizes.

2 MODEL

Following [5, 7], we adopt the Chung-Lu random graph model [8] to generate the underlying
parent graph with a power-law degree distribution. We use the Chung-Lu model because it can
easily fit different power-law degree distributions of real graphs. Furthermore, when the Chung-Lu
model is used to model large complex graphs, the small-world phenomenon, i.e., having short paths
between any two vertices, is well captured with high probability [8]. The study in [28] also shows
that the Chung-Lu model is effective to fit the eigenvalues and core decompositions for real graphs.
Thus, we believe that our results under the Chung-Lu model can be applied to many real graphs as
illustrated by our numerical experiments in Section 6. Here, [n] denotes the set {1, 2, ..., n}.

Definition 1. Given parameters w > 0, W << Wpax < Vnw, and f§ > 2, the Chung-Lu graph is a
random graph Gy([n], E) generated as follows. Each vertex i € [n] is associated with a positive

_ 24 —p o \f-1
weight w; = W% (%)ﬂ ', where iy = n (%) . For any pair of two vertices i, j € [n]
with i # j, they are connected independently by an edge with probability p;; = “==.

nw

Note that iy is chosen such that wy = wpax, Which is the largest weight among all vertices.
Further, w approximates the average weight as follows. Since W < wyay, it follows that iy < n. It
can then be verified that % Y wi — wand % 2t Ty maey w1 as n — c0.? Thus, the degree
of vertex i is expected to be close to w;, which admits a power-law distribution with exponent f.

The Chung-Lu model is particularly convenient for modelling the degree variations in real-world
networks. In these real-world networks, while the average degree is often a constant, a small but
non-negligible fraction of the vertices has very large degrees (the so-called hubs) [3]. To model such
sparse power-law graphs with hubs, we assume w = ©(1) and 2 < § < 3. Empirical studies have
shown that the vertex degrees of many real-world networks indeed follow a power-law distribution
with 2 < f < 3 [3, 9, 26]. Note that if 0 < f§ < 2, the average degree diverges and the network
cannot be sparse; if f > 3, the degree variance is bounded and no large hub can appear [3].

2To see the first part of the statement, let f(x) = wy/n. Then /1n+1 f(x)dx < % Sihiw < f(n)+ /1-11 f(x)dx. Moreover,

2-p p-2 B2
fln f(x)dx =wnb1|(n+ig+1)F 1 - (ip+1) A1) — w, in view of iy < n due to wp,x > w. Further, we can verify

_w\B-1 o5\ B-1
the second part of the statement by % S s w) = (ngf;x) - ';0 — (Eﬁj;X) .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:5

Next, we obtain a subgraph G; by sampling each edge of G, into G independently with probability
s, which is a constant independent of n. To construct another subgraph G,, repeat the same sub-
sampling process independently and relabel the vertices according to an unknown permutation
7 : [n] — [n]. Throughout the paper, we denote a vertex-pair by (u,v), where u € G; and v € G;.
For each vertex-pair (u,v), if v = m(u), then (u,v) is a true pair; if v # 7(u), then (u,0) is a fake
pair.

Finally, there is an initial seed set S consisting of true pairs. Each true pair is added into S with
probability 6 independently. Our goal is to recover x based on the observation of G;,G; and S.

Notation. We use standard asymptotic notation: for two positive sequences {a,} and {b,}, we
write a, = O(by,) or a, < by, if a, < Cb, for some an absolute constant C and for all n; a,, = Q(b,,)
ora, 2 by, if b, = O(ay,); a, = O(by) or a, =< by, if a, = O(b,) and a, = Q(by); a, = o(b,) or
b, = w(ay), if a, /b, — 0 as n — oo. For ease of reference, the key notations are summarized in
Table 1. The definitions of the last seven notations will be provided in the sequel.

Table 1. Key Notations

G Graph

n Number of vertices

w; Vertex i’s weight

Wmax The largest vertex weight

B Exponent of the power-law degree distribution

Dij Connection probability between vertices i and j in the parent graph
s Sub-sampling probability

0 Probability that a true pair is chosen as initial seed

S Seed set

Ff(u) The set of d-hop neighbors of vertex u in graph G
Py The k-th perfect slice

Ok The k-th perfect slice-pair Qp = P X Py

PS The k-th imperfect slice of graph G

Ok The k-th imperfect slice-pair Or = ﬁ,? ' X ff 2
n¥ The largest weight of the first perfect slice
Qg Threshold between the k-th perfect slice and the (k — 1)-th perfect slice

3 KEY ALGORITHMIC IDEAS

In this section, we elaborate on our three design choices to properly control the D-hop neighborhood
sizes: the weight of the seeds, the weight of the candidate vertex-pairs, and the weight of the
intermediate vertices.

First, it is important to utilize low-weight seeds while avoiding high-weight seeds. Due to the
power-law degree distribution, when seeds are uniformly chosen, there are many more low-weight
seeds than high-weight seeds. Thus, the D-hop neighborhoods need to be large enough to reach
sufficiently many low-weight seeds. However, for fake pairs, their large D-hop neighborhoods
may also overlap. This implies that high-weight seeds may easily become witnesses for fake pairs,
which can appear in many D-hop neighborhoods. Therefore, in order to avoid having too many
witnesses for fake pairs, it is important to eliminate the high-weight seeds.

Second, for a given D, we need to carefully choose the first slice of candidate vertex-pairs to be
matched using the D-hop witnesses. On the one hand, if the weight of the candidate vertex-pairs

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:6 Liren Yu, Jiaming Xu, and Xiaojun Lin

is too small, the common D-hop neighborhoods of a true pair are too small to produce enough
witnesses. On the other hand, if the weight of the candidate vertex-pairs is too large, the D-hop
neighborhoods of a fake pair would intersect a lot, leading to too many D-hop witnesses.

Third, the high-weight vertices are not suitable to be the intermediate vertices in D-hop neigh-
borhoods when D is large. This is because, when D is large, there exist some high-weight vertices
with very large d-hop (d < D) neighborhoods. If these high-weight vertices become (D — d)-hop
neighbors of the candidate vertices, the D-hop neighborhoods of the fake pairs would become too
large. Thus, we should avoid using the high-weight vertices as the intermediate vertices.

Prompted by the above three ideas, we partition the graph into “perfect” slices

Pr={u:wy € [ag,ar_1]} where a; = n¥ /2% for k > 0, and a_; = oo, (1)

for some y € (0,log, Wmax]. In particular, the first slice P; is the set of vertices with weight in
[n¥/2, n¥], which is the first set of the vertices that we wish to match. We will show in (8) that
for a vertex in the first slice Py, its number of ©(1)-weight D-hop neighbors is on the order of
nV(G=A(D-D+ Hence, we optimally choose y close to m so that its number of @(1)-
weight D-hop neighbors is close to ©(n). Under this optimal choice, we prove that sufficiently
many vertex-pairs in the first slice are correctly matched so that they can be used as new seeds to
trigger the cascading process to match the rest of the graphs slice-by-slice. In fact, for slice k > 2
until k = k* for some k*, since the earlier slices provide so many new seeds, it turns out that using
1-hop witnesses suffices. When k > k*, the slice-by-slice matching process stops, as there are not
enough 1-hop witnesses to correctly match the slices with low-weight vertices. Fortunately, for the
fake pairs with such low-weights, there are very few 1-hop witnesses as well. Thus we treat all the
low-weight vertices as a single slice and apply the PGM algorithm in [33] to match them. Finally,
we use all the matched vertex-pairs as new seeds to match the zero slice Py with very high weights.

For the above ideas to work, however, it is important that the earlier slices do not produce wrong
matches; otherwise, the wrong matches will propagate errors to the subsequent slices. As such, we
only match pairs with the number of witnesses larger than a threshold, as we will see next in the
detailed algorithm.

4 THE POWER-LAW D-HOP (PLD) ALGORITHM

In this section, we present our Power-Law D-hop (PLD) algorithm, shown in Algorithm 1 and
provide the intuition why it works. As we will explain below, a few steps of our PLD algorithm
use the Greedy Maximum Weight Matching (GMWM) algorithm (which was also used in [1]) and
the Percolation Graph Matching (PGM) algorithm (which was introduced in [33]). We will briefly
explain GMWM and PGM below, and will provide their detailed description in Appendix A for
reference.

4.1 Algorithm description

We first introduce some notations regarding D-hop neighborhoods. Given any graph G and two
vertices u,v in G, we denote the length of the shortest path from u to v in G by distg (4, v). For
each vertex u € G, the d-hop neighbors of u is denoted by FdG (u) = {v € G : distg(u,v) = d}. The
neighbors within d-hop of u is denoted by N(?(u) = U;i:l F].G(u).

Our PLD algorithm carefully incorporates the key algorithmic ideas described in Section 3. At a
high-level, we first slice the vertices according to their degrees. We then apply the D-hop algorithm
to the first slice (which is carefully chosen). Afterwards, we apply the 1-hop algorithm to the
lower-degree slices 2 to k*, until the vertex degrees are about poly-logarithmic in n, in which case

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:7

we apply the PGM algorithm to the last slice with the lowest-degree vertices. Finally, we return to
slice 0 of vertices with very high degrees.
The full algorithm is presented in Algorithm 1. We now describe the details.

Algorithm 1 The Power-Law D-hop (PLD) Algorithm.
1: Input: Graphs G; and Gy, initial seed set S, parameters D, y, 71, 72, k*
2: Construct a subset of low-degree seeds S= {(u, v) €S)I‘lGl (u)| FIGZ(U)) <5log n}

3. Let G; denote the subgraph of G; induced by the vertex set V; = {u : |1"10" (u)| <(1+ 5)nys} for
i=1,2.

4: Partition the graph G; into slices ﬁkG’ fori=1,2and 0 < k < k*, according to (2).

5: In G; and G,, for candidate vertex-pairs in 0O, count their D-hop witnesses in S and use
GMWM to match pairs with more than 7; D-hop witnesses (z; is given in (3)). The set of
matched pairs is R;.

6: for k =2to k" do

7. For candidate vertex-pairs in ék, count their 1-hop witnesses in Ri_; and use GMWM to

match pairs with more than 7, (k) 1-hop witnesses (z,(k) is given in (5)). The set of matched
pairs is Ry.

8: end for

9: Let G/ denote the subgraph of G; induced by the vertex set V = {u : ‘FIG i(u)
fori=1,2.

10: Apply PGM to G| and G, with the seed set R+ and the threshold r = 3. The set of matched
pairs is denoted by Ry+41.

<1 +5)(xk*_1s},

11: For candidate vertex-pairs in QO, count their 1-hop witnesses in R & Ui;{l Ry and match pairs

with GMWM. The set of matched pairs is R,.
12: Output: All matched pairs R=RUR,US

In line 2, we construct a subset of low-weight seeds to use as future witnesses. However, since
we do not have access to the vertex weights directly, we construct a seed subset S that contains
seeds with degrees no larger than 5logn to ensure that all seeds with ©(1) weights are included.

In line 3, we eliminate the vertices with degrees larger than (1 + §)n¥ and their adjacent edges,
because we do not want to use the high-weight vertices as the intermediate vertices.

In line 4, we partition the graphs G; and G, into slices. Recall that the “perfect” slices Py in (1)
are defined with the vertex weights. Again, since we can not observe the vertex weight directly, we
need to use the vertex degree as an estimate of the vertex weight. However, using vertex degree
to slice vertices creates new technical difficulties. Specifically, for two vertices corresponding to a
true pair, their actual degrees in G; and G, may differ, and thus these two vertices may be assigned
to two slices of different indices in G; and G,. This case becomes problematic because, if we only
match slices with the same index, such a true pair would never be matched. Fortunately, the actual
degrees of the vertices corresponding to a true pair should not differ too much (assuming a common
sub-sampling probability s for both graphs). Thus, to address the above difficulty, we enlarge the
slices a little bit, so that with high probability the two vertices corresponding to a true pair can fall
into slices with the same index, and therefore have the opportunity to be matched. More precisely,
for k > 0, we define the imperfect slice as

P¢={u:(1-8as <|IF(w)| < (1+8)ag_ys}, fork >0, (2)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:8 Liren Yu, Jiaming Xu, and Xiaojun Lin

where 6 = % throughout this paper. Here, ¢ are the same as (1), and the parameters y and D will
.

P 2

k

be set to satisfy (10) in Theorem 2. The imperfect slice-pair is then defined as Qk = I/J\kG1 X
{(u,v) :u € Pove ﬁfz}

In line 5, we count the D-hop witnesses for all vertex-pairs in the first slices ﬁlG !and 1’_—,‘16 2 and then
use Greedy Maximum Weight Matching (GMWM) [1] to find the vertex correspondence such that
the total number of witnesses is large. GMWM first finds the vertex-pair with the largest number
of witnesses among all possible vertex-pairs. It then discards all vertex-pairs that are adjacent to
the one just found, and chooses the vertex-pair with the largest number of witnesses among the
remaining candidate vertex-pairs, and so on. The detailed description of the GMWM algorithm
can be found in Appendix A.1. Here, we note that our earlier idea of enlarging the imperfect slices
Py creates a new problem. That is, the imperfect slices with neighboring indices now have some
overlap. As a result, it is possible that a slice pair contains a fake pair (u, 7 (v)), but does not contain
the true pairs (u, 7(u)) and (v, 7(0))*. When that happens, the fake pairs (u, 7(v)) may have the
most witnesses among all the candidate vertex-pairs containing either u or 7 (v). Thus, the fake
pair (u, 7(v)) may be matched by GMWM. Fortunately, the number of witnesses of these fake pairs
is still expected to be smaller than that of any true pair. Therefore, to resolve this difficulty and to
ensure that only the true pairs are matched, for the first slice we match only the vertex-pairs with
no less than 7; D-hop witnesses, where 77 is set to be a constant fraction of the expected number of
the D-hop witnesses for true pairs, i.e.,

2\D
S (C_S) (=B (D-1)+1) g 3)

~ 70 \12w

_oyw\ Sl
where C = (25_1 -1) ((fﬂﬂ)w) . Similar thresholds are also used in the following steps when we
match other slices.

In line 6-8, we use the matched pairs from the previous slice as new seeds, and use the 1-hop

algorithm to match the vertices in slices k = 2, ..., k*, where

Cs? w7
K= llog2 (ny (m))| . .

192wlogn ﬁ

Cs?)
Again to ensure that only the true pairs are matched for each slice, we only match the vertex-pairs
with at least 7;(k) 1-hop witnesses, where 7, (k) is set to be half of the expected number of the

1-hop witnesses of the true pairs, i.e.,

In other words, we match the vertices with degrees larger than (1-9)ay-, where ag- >

CaZ:fsz
(k) = oo 5

In line 9-10, we apply the PGM algorithm [33, Section 3], which iteratively matches vertex-pairs
whose number of witnesses is no less than a threshold r (which is 3 in line 10), to match the
remaining vertices with degrees no larger than (1 + §) . Note that when the vertex weight is this
small, estimating the vertex weight based on its degree is not accurate anymore. Thus, it is difficult
to use the vertex degree to distinguish which slices should these vertices fall into. Instead, we treat
all of these low-weight vertices as one slice. Further, for such low-degree vertices, using 1-hop

3This phenomenon does not contradict the idea of enlarging the slices. Enlarging the slices only guarantees the true

pairs (u, 7(u)) and (v, 7(v)) are assigned into some slice-pairs. However, for other slice-pairs that contain the fake pair
(u, (v)), it is still possible that the two true pairs are not included.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:9

algorithm based on the seeds from earlier slices will lead to poor performance, because even the
true pairs in this slice have too few 1-hop witnesses. Fortunately, there are even fewer witnesses
for the fake pairs with such low degrees. Thus, we can use the PGM algorithm. The PGM algorithm
starts with the initial seed set S to calculate the number of witnesses for each vertex-pair. As soon
as any vertex-pair gets at least r witnesses (which are called “marks”), it is matched and becomes a
new seed. The “marks” of neighboring vertex-pairs are then updated to match more vertex-pairs.
See Appendix A.2 for the description of the PGM algorithm. In this way, PGM can match a constant
fraction of the rest of vertex-pairs, while avoiding matching fake pairs.

Finally, in line 11, the algorithm uses all vertex-pairs matched above as new seeds and matches
the vertices in Q via the 1-hop algorithm.

The total complexity of our algorithm is O(n>=2¥#=V) The proof can be found in Appendix B.

4.2 Intuition

Before we present the main results, we explain the intuition why the above algorithm will work only
with Q((log n)*#) seeds. For the purpose of explaining this intuition, we ignore the inaccuracy
of estimating the weights by the vertex degrees and assume that the graphs can be partitioned
into perfect slices Pi. We further assume that the true mapping 7 is the identity permutation. Also,
when we write ~, we ignore the constant factors that are non-essential.

The key to the success of Algorithm 1 is appropriately choosing the first slice to apply the
D-hop algorithm. We first calculate the probability that a vertex of ©(1) weight lies in the D-hop
neighborhood of a vertex in the first slice. Specifically, given a vertex u in the first slice P; and
another vertex v of weight 1, we want to compute the probability gp that v is a D-hop neighbor of

u,ie,qp =P {v S ng (u)} where j is either 1 or 2. Note that if v is a D-hop neighbor of u, then v

is connected to some (D — 1)-hop neighbors i of u. Therefore, gp satisfies the following recursion:

quZP{UeFF’(i)}xP{zeF g (u)}

ieG;
nY
(g)c‘/ nw?. l_ - wgp_1dw
0 nw
¥ (3-B)
qD-1 /" 2B cn?
=C— w dw = — - 9D-1- (6)
wJo w(3-p)

In step (a), we integrate over the degree w of the (D — 1)-hop neighbor i. Thus, P {i € Fgﬁl (u)} is

wPp_; by our definition. Further, w/(nw) is the probability that v (with weight 1) is connected to i,
and number of such vertices i with degree in [w, w+dw] is about 2\i_; 1 (<, <wadw} — enwPdw

—2)w ﬁ_l
with ¢ = ((ﬂ(,83)1) (B — 1). By the Chung-Lu model, q; ~ ,’:—W Iterating (6) over D, it follows that

nr(3-p) \P1 D=1y (3-H) (D-1)+1)
qp = () q = (7)

w(3-p) nwP (3 — p)P-1

As explained in Section 3, for the success of the D-hop algorithm, there are two key considerations.
On the one hand, we need to ensure that the fake pairsin Q; £ P;XP; have very few D-hop witnesses.
As such, we want to prevent the fake pairs in Q; from having too many common neighbors of
small weight. Therefore, we require gp < 1 which roughly corresponds to n/(G3=A(P-D+1) « p
and is close to the condition (10) (stated later in Theorem 2). On the other hand, we need to ensure

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:10 Liren Yu, Jiaming Xu, and Xiaojun Lin

that the true pairs in Q; have sufficiently many ©(1)-weight D-hop witnesses. Indeed, for u € P;,
its number of common D-hop neighbors of ©(1)-weight is at least

){v tw, =0O(D)}N FglAGZ(u) ~ ngp ~ /(=P DD+, 3)

where the first approximation holds because there are about ©(n) vertices with ©(1) weight based
on the power-law weight distribution. Therefore, under condition (11) stated in Theorem 2, which is

roughly 8 = Q (%) all the true pairs have at least Q(log n) low-degree D-hop witnesses.
The above choices thus ensure that all true pairs (but no fake pairs) are matched.
Interestingly, after matching the first slice, it triggers a cascading process, where the new matches

at one slice can be used as new seeds to match the subsequent slice by the 1-hop algorithm. To see
why using 1-hop witnesses is sufficient, recall that the weight of vertices in Py satisfies

n n
g <wifop 1 & ——— - <i{—m —
1 ((B-Dais)/"1 b ((p-Dax)f’"l
(p-2)w (F—2)w

According to the index range of these vertices, we get that the number of vertices in Py is © (nock ’f)

Since the vertices in Py and the vertices in Py, are connected independently with probability at

least M , it follows that, for a vertex in Pk.1, its number of 1-hop neighbors in Py is about
1-p 3-p
1By, ks X1 %k X1 O
noy — = — =z —.)
nw w 8w

Note that for the 1-hop algorithm to succeed the true pairs need to have more than log n 1-hop
8

witnesses [23]. Since 2 < f < 3, we hav
assuming that the true pairs in Q; = Px >< Pk are correctly matched, we expect that the 1- hop
algorithm can correctly match the true pairs in Qg,; as long as k < k*.

However, when k > k*, for a vertex in P4, its number of 1-hop neighbors in Py becomes smaller
than log n, and thus the 1-hop algorithm can no longer match the vertices in Py correctly. As
discussed in Section 3, we instead resort to the PGM algorithm to match a constant fraction of
the rest of low-weight vertices. Note that the key to the success of the PGM is that the number of
witnesses for a fake pair is no more than 2 [33]. To see why this condition holds for the remaining
low-weight vertices, note that the probability that a low-weight seed (with weight no larger than o)

4
becomes a 1-hop witnesses for a fake pair with weight no larger than ay- is at most (M)Z = n{;(ﬁv
Since there are at most n seeds and the majorlty of them are low -weight, the number of witnesses

for any fake pair with low-weights is about —£ = < M < 1. Thus, we can use the PGM

algorithm with threshold r = 3 to match a constant fraction of the low-weight vertex-pairs without
erTorSs.

Finally, the number of vertices with weight less than o is ©(n). If most true pairs with weight
less than a, are matched, we can use them as new seeds to exactly match the remaining vertex-pairs

in Q().

5 MAIN RESULTS

The following theorem provides a sufficient condition for our algorithm to correctly match a constant

(B- 2)w p-1 s (1428)225-FC
) and k £ e

fraction of nodes without any errors. We define C £ (2671 - 1) (
throughout this paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:11

THEOREM 2. Suppose y > 0 and the positive integer D are chosen such that y < log, Wmax,
n% =o(n), and

- D
W(@-po-neny _ CEF -1 Cs? n
n < — . (10)
20-23-F \12k%-w| (logn)3F
If the fraction 6 of seeds satisfies
3201
0> ogn (11)

D bl
(%) r((3=P) (D-1)+1)

then for all sufficiently large n, Algorithm 1 with ty in (3) and 72(k) in (5) outputs ©(n) true pairs and
zero fake pairs with probability at least 1 — n~ o),

Recall from (8) that n¥(3=A)(P=1D+D) s roughly the size of the D-hop neighborhood of a vertex
(with weight around nY) in the first slice P;. Therefore, on the one hand, (10) ensures that for two
distinct vertices (u,v) in the first slice, the intersection of their D-hop neighborhoods is much
smaller than the two neighborhoods, so that the fake pairs have much fewer D-hop witnesses than
the true pairs. On the other hand, (11) ensures that the true pairs have at least Q(logn) D-hop
witnesses.

Assuming wi,y = ©(y/n),if weset D = 1andy = % — € for a small constant € > 0, then Theorem 2
recovers the seed requirement n'/2*¢ for the 1-hop algorithm which is comparable to the result in
[7]. Surprisingly, for larger D, if we optimally choose nY in (13), then the seed requirement can be
dramatically reduced to Q((log n)*~#), as shown by the following corollary.

CoROLLARY 1 (THE FORMAL VERSION OF THEOREM 1). Suppose

1 1 4-
DZ—(&—1)+1 and D> 2P (12)
3- ,B log(Wmax) 3- ﬂ
Choose
ar(G=p-n+) _ M (13)

(log m)*"

for a sufficiently small constant c so that (10) is satisfied, and 11, 72(k) according to (3) and (5),
respectively. If the fraction of seeds satisfies

4-p
> Co (logn)
n

0

for a sufficiently large constant Cy, then for all sufficiently large n, Algorithm 1 outputs Q(n) true
pairs and zero fake pairs, with probability at least 1 — n™!.

According to (13), we choose y asymptotically equal to m. Condition (12) is imposed
to ensure that this choice satisfies y < 1/2 and y < log, (Wmax) in Theorem 2. Theorem 1 is a special
case of Corollary 1, where wyax = ©(4/n) so that (12) reduces to D > 3%?
6 NUMERICAL EXPERIMENTS
In this section, we conduct numerical experiments to verify our theoretical findings and the
effectiveness of the PLD algorithm. For all experimental results, we calculate the accuracy rate as
the median of the proportion of vertices that are correctly matched, taken over 10 independent
runs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:12 Liren Yu, Jiaming Xu, and Xiaojun Lin

6.1 Choice of D and y

In this section, we simulate our PLD algorithm with different D and y to investigate the impact
of the two parameters. We generate the underlying parent graph G, according to the Chung-Lu
model with n = 10000, f = 2.5 and W = 10. Then, we construct G; and G, by sampling each edge of
Gy twice independently with probability s = 0.8. The seeds are selected such that each true pair
becomes a seed with probability 6 independently.

In Fig. 1, we first plot the accuracy rates of our PLD algorithm with D = 3 and different y, when 0
varies from 0 to 0.01. We observe that for a given accuracy rate, wheny = 1/[(3 — f)(D — 1) + 1], the
PLD algorithm requires the smallest number of seeds. This result is consistent with the theoretical
prediction in Corollary 1, i.e., the optimal choice of y approaches 1/[(3 — f)(D — 1) + 1] as n — oo.

1 — N —
—o = 1/(3-p)(D-1)
L —& = 1((3-6)(D-1)+1)| |
o 08 / —oy=1/((3-0)(D-1)+2) 4
] —e—=1/((3-8)(D-1)+3)
Eo 6t @ j?*’y: 1/((3-8)(D-1)+4)| |
[S] &
o /
304r / o” 1
Q /
< /o)
0.2r £ oo T
PRg o o-———-6-——
O == = e €‘> _ I
0 0.002 0.004 0.006 0.008 0.01

Fig. 1. The performance of the PLD algorithm with D = 3 and varying y.

Then, in Fig. 2, we plot the accuracy rates of our PLD algorithm with different choices of D by
fixing y = 1/[(3 — f)(D — 1) + 1]. We can see that the curves for different D align well with each
other, showing that the PLD algorithm with different D requires a comparable number of seeds to
succeed when y is optimally chosen, as suggested by Corollary 1.

6.2 Performance Comparison with Synthetic Data

For our experiments on synthetic data, we still use the graphs generated in Section 6.1 according
to the Chung-Lu model. Then, our PLD algorithm is simulated and compared with other five
state-of-the-art seeded graph matching algorithms, namely DDM [7], Y-test [5], User-Matching
[19], 2-hop [23] and PGM [33] algorithms. For the PLD algorithm, we select D = 2,3,4 and
Yy =1/((3-p)(D—-1)+1) as suggested in Corollary 1. In Fig. 3, we plot the performance comparison
when 6 varies from 0 to 0.03. We observe that our PLD algorithm with different D achieves similar
performance, and it significantly outperforms all other algorithms. Specifically, our PLD algorithm
only requires around 50 seeds to match almost all vertices, while the User-Matching algorithm
requires at least 150 seeds, and the DDM requires at least 220 seeds. Other algorithms perform
even worse. Note that roughly 5% of vertices have degree at most 1 in both graphs; thus we do not
expect to correctly match them. That is why the accuracy rates of our PLD algorithm saturated
around 95%.

Note that the 2-hop and PGM algorithms have been known to work well for matching Erdés-
Rényi graphs [23, 33]. However, we see that they are brittle to the power-law degree variations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:13

1 o & N N
= - f-- g--—¢--9_ 8 =
08 [/// il
40—') //”/
D(:“ i
06r |/ .
o) [/
g /d
304+ [/ .
8 ~o~PLD D=2
< ~=—PLD D=3
02 ~¢ PLD D=4||
/ ~e~PLD D=5
0 0.004 0.008 0.012 0.016 0.02
0

Fig. 2. The performance of the PLD algorithm with different D and y = (3—ﬁ)(+1)+1'

The DDM, Y-test, and User-Matching algorithms perform slightly better. However, since they all
rely on the 1-hop witnesses, they still require a large number of seeds to succeed.

1 ‘ ‘ ‘ ‘
=8-8558
— 8
0.8)
2
s
T 06 s
8 —©—PLD D=2
= —© -PLDD=3
8 0.4 ~©--PLD D=4
Q —=—DDM
< — 2~ Y-test B
0.2 _ |79 —User Matching| 7|
— & —2-hop
—%--PGM

0 0005 001 0015 002 0025 003
0

Fig. 3. Performance comparison of our PLD algorithm and five other algorithms on the Chung-Lu model
with different 6.

In Fig. 4, we set 0 = 0.01 and plot the performance comparison when s varies from 0 to 1. We
observe that, when s is small, the accuracy rates of all these algorithms are low. This is because a
small correlation between the two graphs leads to insufficient witnesses for true pairs. For higher
value of s, all algorithms’ performance improves, but our PLD algorithm consistently outperforms
other existing algorithms.

From Fig. 3 and Fig. 4, we can observe that the accuracy rate of the PLD algorithm exhibits a
transition from nearly 0 to close-to-1, when 6 goes from 0.0015 to 0.0045 in Fig. 3 and when s goes
from 0.5 to 0.8 in Fig. 4. However, since our main result only provides a sufficient condition, we
cannot conclude whether there is a sharp phase transition, which we leave for future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:14 Liren Yu, Jiaming Xu, and Xiaojun Lin

——PLD D=2

—©-PLD D=3
o 0-8[|-oPLD D=4
= —=—DDM
o 0.6 | © Y-est
Py ——User Matching
© —¢-2-hop
3 0.4[|-o-PGM
Q
<

0.2}
0 0.2

Fig. 4. Performance comparison of our PLD algorithm and five other algorithms on the Chung-Lu model
with different s.

6.3 Performance Comparison with Real Data

6.3.1 Estimate Parameters for Real Graphs. We see that the performance of our PLD algorithm
is outstanding on synthetic graphs. To further demonstrate the power of D-hops, we investigate
its performance in matching real graphs. However, our algorithm based on the Chung-Lu model
requires several parameters, which are unknown for real graphs. As such, in this section, we
describe our method to estimate the key model parameters before implementing our algorithm.

First and foremost, we estimate the power-law exponent of real graphs by fitting them to the
Chung-Lu model using the maximum-likelihood estimation given in [9]:

a "
> 1n(—dmm_1/2)l : (19)

d; dein

—~

p=1+N

where d; is the degree of vertex i, N is the number of vertices with degree at least dp;n, and dpin
is some lower bound on the vertex degrees to be specified. It is suggested in [9] to estimate dyin
using the Kolmogorov-Smirnov approach, which minimizes the maximum distance between the
empirical CDF and the theoretical CDF of vertex degrees. More precisely,

dmin = arg min max I?d(di) — Fy(d;)|,
d di>d

where Fy (x) is the CDF of the observed vertex degrees with values at least d, and F(x) is the CDF
of the power-law vertex distribution restricted to [d, +c0). Numerical experiments in [9] show /? is
accurate to 1% or better if dpy is set to be around 6. Thus, we fix dpi, = 6 throughout our real-data
experiments.

Next, we estimate the subsampling probability s, which characterizes the edge correlation
between the two observed graphs. Let G;[S] denote the subgraph of G; induced by vertices in
S ={i:(i,i) € 8}, where S is the initial seed set. Note that under our subsampling model, given an
edge in one graph, it appears in the other graph with probability s. Thus we estimate the sampling
probability s by

2|E[G1[S] A Ge[S]]
|E[G1[ST]] + |E[G.[STII

s =

(15)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:15

where E[G] denotes the edge set of graph G.

Based on s, we can further estimate the average weight w. Recall that w is close to the average
degree under the Chung-Lu model. Thus, we estimate w by W, where d(G) is the average
degree in graph G. Finally, for the fraction of seeds 0, if it is unknown, we can simply estimate it
by % Note that since wp,x will not be used by our algorithm, we do not need to estimate it.

Based on the estimated model parameters, we can then determine the input parameters of our
PLD algorithm. Since we optimally choose y = 1/((3 — f)(D — 1) + 1), the threshold 7; in (3) can

D
be simplified to 7; = % (%) n@. Further, the threshold 7, (k) can be set according to (5).

6.3.2 Facebook Friendship Networks. We use a Facebook friendship network (provided in [32]) of
63392 students and staffs from University of Oregon as the parent graph G,. There are 1633772
edges in Gy. The power-law exponent of the Facebook social network is estimated as 2.09 by (14).
To obtain two edge-correlated subgraphs G; and G; of different sizes, we independently sample
each edge of Gy twice with probability s = 0.9 and sample each vertex of G,y twice with probability
0.8. Then, we relabel the vertices in G, according to a random permutation 7 : [n;] — [n;], where
ny is the number of nodes in G,. Let m denote the number of common vertices that appear in
both G; and G;. The initial seed set is constructed by including each true pair independently with
probability 6. We treat G; as the public network and G, as the private network, and the goal is to
de-anonymize the node identities in G, by matching G; and G,. In Fig. 5, we show the performance
of our PLD algorithm and five other algorithms, when the fraction of initial seeds 8 varies from 0
to 0.05. We can observe that our PLD algorithm significantly outperforms other algorithms. To
investigate which types of vertices contribute most to the matching error of our PLD algorithm,
we fix 6 = 0.01 and plot in Fig. 6 the statistics of the wrongly matched vertices according to their
degrees. Specifically, for a given degree, we compute the number of vertices with such a degree in
the parent graph that are not correctly matched by the PLD algorithm. We can observe that most
matching errors are from low-degree vertices. This is because the low-degree vertices do not have
sufficient common neighbors to distinguish the true pairs. Since there are about 23.5% vertices
that have degree at most 1 in either G; or G, (who are thus difficult to be correctly matched), the
matching accuracy in Fig. 5 is saturated at around 75%.

08 —
&
//

0.6 /7
© @ /
o / /‘/
> [

. @
© 0 4 f/ i o
5 i s —& -PLD D=3
o e o . & |- -PLD D=4
Q j < ° —=—DDM

/ _ % =

< 0.2r %/ o ~-8-—Y-test

/o . —&— User Matching

g"/' oS — & —2-hop

I PRI ~4--PGM

0 o & L L 1
0 0.01 0.02 0.03 0.04 0.05
0

Fig. 5. Performance comparison of the PLD algorithm and five other algorithms applied to the Facebook
networks with different 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:16 Liren Yu, Jiaming Xu, and Xiaojun Lin

D
o
o
o

4000]

2000 | il

Number of Wrongly Matched Vertices

O 1 I
0 10 20 30 40 50

Degree

Fig. 6. The statistics of the wrongly matched pairs according to their degrees (in the parent graphs) when the
PLD algorithm is applied to the Facebook networks.

In Fig. 7, we set 8 = 0.01 and plot the performance comparison when s varies from 0 to 1. Similar
to Fig. 4, for small s, the accuracy rates of all matching algorithms become small because the
correlation between the two graphs are low. For larger s, our PLD algorithm again consistently
outperforms other algorithms.

0.8 ‘
——PLD D=2
- -PLD D=3
o 0.6 --o-PLD D=4
=5 ——DDM
an —=-Y-test
P —o—User Matchin
& 041 ~¢-2-hg ’
= p
3 ~¢-PGM
o
<02
P
0 . a
0 0.2

Fig. 7. Performance comparison of the PLD algorithm and five other algorithms applied to the Facebook
networks with different s.

6.3.3 Autonomous Systems Networks. Following [13], we use the Autonomous Systems (AS) data
set from [20] to further test the graph matching performance on power-law graphs. The data set
consists of 9 graphs of Autonomous Systems peering information inferred from Oregon route-views
between March 31, 2001, and May 26, 2001. Since some vertices and edges are changed over time,
these nine graphs can be viewed as correlated versions of each other. The number of vertices of the
9 graphs ranges from 10,670 to 11,174 and the number of edges from 22,002 to 23,409. We aim to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:17

match each graph to that on March 31, with vertices randomly permuted. The initial seed set is
obtained by including each true pair independently with probability 6.

The power-law exponent of the Autonomous Systems networks is estimated to be 2.01 according
to (14). Note that in this experiment, the two correlated graphs are provided by the real data set.
Thus, we further estimate the correlation parameter s according to (15).

The performance comparison of the six algorithms is plotted in Fig. 8 for 6 = 0.1 and in Fig. 9
for 8 = 0.01. We observe that our PLD algorithm again significantly outperforms other algorithms.
Note that the accuracy rates for all algorithms decay in time, because over time the graphs become
less correlated with the initial one on March 31.

1 T T
\ —6—PLD D=2
N\ ~© -PLDD=3
08+ A\ —-6-—PLD D=4 i
o h —=—DDM
-ES' —n — 2~ Y-test
o 0.6 - S5 fig'f —a —6— User Matching| |
> O-. 'Oi—:;t*S*Z-hop f
19) ~-0--PGM
o
S04r 1
2 - B =
02f T e]
D GO D Shmis: S St S———
0
3/31 4/7 4/14 4/21 4/28 5/5 5/12 5/19 5/26

Date

Fig. 8. Performance comparison of the PLD algorithm and five other algorithms applied to the Autonomous
Systems graphs when 6 = 0.1.

1g : :
\ —o—PLD D=2
iy ~e-PLD D=3 |
0 081 ~o-PLD D=4
= —=—DDM
o N -~ = Y-test J
0.6 A\ .
Py \f«@ ——User Matching
© P —¢-2-hop
304r e —-PGM 1
~o O
& eITTe——
025 R G Gl
O = ~ - o SR f» ————— g p & - —%
3/31 4/7 4/14 4/21 4/28 5/5 5/12 5/19 5/26
Date

Fig. 9. Performance comparison of the PLD algorithm and five other algorithms applied to the Autonomous

Systems graphs when 6 = 0.01.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:18 Liren Yu, Jiaming Xu, and Xiaojun Lin

7 ANALYSIS

In this section, we present the proof for Theorem 2. In Section 7.1, we describe the dependency
issue in our analysis and how we deal with it. In Section 7.2, we prove that all the true pairs in the
first slice Q; are matched error-free by the D-hop algorithm. Using the matched vertices in the
previous slice as new seeds, we show in Section 7.3 that all the true pairs in slice Qy are matched
error-free by the 1-hop algorithm for 2 < k < k*. Further, Section 7.4 proves that using the match
pairs in slice k* as new seeds, the PGM algorithm correctly matches a constant fraction of true
pairs with low weights. Finally, in Section 7.5, we come back to Qy and prove that using all the
matched pairs as seeds, all the true pairs in Qp are matched error-free by the 1-hop algorithm.
Theorem 2 readily follows by combining these results. The proofs of auxiliary lemmas can be found
in Appendix C.2.

For ease of presentation, throughout the analysis, we assume without loss of generality that the
true mapping 7 is the identity permutation. We further assume y > 0 and the integer D are such
that y < log,, Wmax, ¥ = o(n), and (10) holds.

7.1 Deal with the Dependency Issues

In Algorithm 1, we use degrees as guidance to define the imperfect slice 135 7/ for j = 1,2 and the

induced graphs G, G,. However, if we condition on the degrees, then the edges are no longer
independently generated with probability p;; as defined in the Chung-Lu model. To deal with this

. . . « - 1.» 50j
dependency issue, we construct slices based on vertex weight that “sandwich” P, ’. Recall that
the perfect slices defined as Px = {u : wy, € [k, @k—1]}. By construction and the concentration of

vertex degrees, we expect that P, C ﬁf 7. We also need another weight-guided slice to contain ﬁg 7.
Specifically, define
Pr={u:w, € [(1-28)ak (1+28)ar1]},
where § = 2—13. We also define @k £ l_’k X I_Jk. The following lemma shows that with high probability,
Py C ﬁkc /¢ Py and hence Qy C Qk C Q,. Similarly, we define two different subsets of vertices that
“sandwich” V;:
V={u:w,e[0,n']} and V= {u:w,e[0,(1+25)n"]}.
Further, let G ; and G ; denote the subgraph of G; induced by the vertex set V and V, respectively,
for j = 1,2. The following lemma shows that with high probability, V C V; C V and hence
Qj C éj C Ej.
LEmMMA 1. Forany0 < k < k¥,

P{Qk c Qk c @k} >1— n—4+0(1>’
and
P{sz* C sz* C @Zk*} Z 1—n_4+0(1).
Forj=1,2,
P{KCV]- CV} =P{Q}. cG; céj} > 1 -3,

7.2 Match Pairs in Q, using D-hop Algorithm

Recall that we give a heuristic argument of (8), showing that for a true pair in Q;, the number of
common D-hop neighbors of ©(1) weights is on the order of n¥3=# P~V by jenoring the the
potential dependency between G, Q; and graphs G, G,. To resolve this dependency, we crucially

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:19

exploit the fact that with high probability Q; C 0, and G, c G ' as shown in Lemma 1. In particular,
we consider a true pair (4, u) in Q; and bound its number of ®(1)-weight D-hop neighbors in G ;-
Unfortunately, even when G, cGj, the D-hop neighbors of u in G, may contain some vertices that
are within the (D — 1)-hop neighborhood of u in G;, which means ng ¢ l"gj . In order to exclude
such vertices, we bound the number of ©(1)-weight vertices in N[E)f ,(w) from above. Fortunately,

|Ngi1(u)| is close to |I‘gfl(u)|, which is on the order of n¥3=#)(P-2+1 and thus is much smaller

G,
than IFB] | To be more precise, we have the following lemma.

LEMMA 2. Fix any vertex u € Py and constant c. For all sufficiently large n,

P ”rglAQZ(u) N{i:w <c}|> me} > 1 - o), (16)
P {|Ngi1(u) N{i:w < c}| < Nmax} >1-n*W forj=1,2 (17)

D
where Tnin = § (%) nY (G=B)(D-D+1) gnd N .. = 2ckPpy(3-A(D-2)+1)

To appreciate the utility of Lemma 2, note that under the high-probability event G, c G ;i C G g
for j = 1,2, we have
TS (@) N TR (w) 2 T5" ¥ @) \ (NS, () UNG?, @)
Therefore, combining (16) and (17) implies that with high probability,
IS (u) N TS (w) 1 {i = wy < c}‘ > Tinin — 2Nimax ~ i (18)

where the last approximation holds because Iy > Npay due to 2 < f < 3. Hence, the last display
yields the desired lower bound (8) to the number of common D-hop neighbors of ©(1) weights for
a true pair (u,u) in Q.

Next, we adopt a similar strategy to study fake pairs. In particular, for a fake pair in él, we
bound from above its number of common D-hop neighbors of weights smaller than 15—5 log n.* Again,
to circumvent the dependency between G s Ql and graphs Gj, Gz, we consider a fake pair (u, v)
in Q, and bound from above its number of ©(1)-weight neighbors within the common D-hop
neighborhood in Gy and G,.

LEMMA 3. Fix any two distinct vertices u,v € Fl. For sufficiently large n,
1
P e

G G 5
NS (u) NNS*(0) N {i: w; < — logn}
23-B 12D 2y ((3-p) (D-1)+1)

S
(23-F-1)Cn

< u1£fmax} > 1-n e, (19)

(21og n)S_ﬁ + zgf—ZKD‘ln(Y(?"ﬁ)(D‘z)“) (4+6logn).

where Y.y = :

Remark 1. To see how (19) follows, note that

NS (w)NS: (o) (rg (1) U Np_y (4, v))n(rEZ (0) U Np_y (1, v)) - (r,f (u) N TS (v))UND_1 (1,0),

where Np_;(u,0) = Ngll (w)u Ngfl(v). We have already obtained an upper bound to ‘Ngfl when

proving (17) for j = 1, 2. Thus, it remains to bound from above)Fg‘ (w) N TEZ (0)). A simple yet key

4The threshold 1?5 log n is chosen such that {i : w; < % log n} contains {i : |1"1Gl ()] < 5logn, |1"1Gz (i)| < 5logn} with
high probability.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:20 Liren Yu, Jiaming Xu, and Xiaojun Lin

observation is that for a vertex i of weight 1, there are two extreme cases in which i becomes a

common D-hop neighbor of (u,v). One case is that i connects to some vertex in FDcil (w) \ Fgfl (v),

and connects to some other vertex in Fgfl(v) \ I“gil (u). It can be shown that each of these two
connections happens independently with probability approximately qp and thus the number of
such common D-hop neighbors is about ng?, which roughly gives rise to the first term of ¥iax.
The other extreme case is that i is a (D — 1)-hop neighbor of some common neighbor of (u,v).
Luckily, the common 1-hop neighborhood of (u, v) is typically of a very small size and thus we can

bound from above |1"Gl (W) N FGZ(U)| by approximately log n. Moreover, i becomes a (D — 1)-hop

neighbor of a given vertex in I‘lG "(w) N I“IG ?(v) with probability at most gp_1. Thus, the number of
such common D-hop neighbors is at most around ngp-; log n, which gives an expression close to
the second term of Wp,x. These two extreme cases turn out to be the dominating cases as shown in
the proof of Lemma 3.

To see the usage of Lemma 3, note that under the high-probability event éj C Ej for j =1,2, we
have Fgl (w) N ng (v) C Ngl (w) N Ngz (v). Therefore, (19) implies that with high probability

5 G, . 15
T () NI (0) N {i s w; < ~ logn}| < 2¥max, (20)

which yields the desired upper bound to the number of common D-hop neighbors of ©(1) weights
for a fake pair (u,0) in Ql.

Finally, since we have n' 3= > log n and n?(G3-A(P=D+1) (Jog n)3>~# = O(n) based on the choice
in (11), it follows that T, > 2%ax. Moreover, (11) ensures that I}y;,0 = Q(logn). Therefore,
combining (18) and (20) implies that the true pairs in Q; have more D-hop witnesses than the fake
pairs in Ql. Hence, we can use Algorithm 1 to match pairs in él correctly. More precisely, we have
the following lemma.

LEMMA 4. Under the conditions of Theorem 2, for all sufficiently large n, the set of matched pairs
in Step 5 of Algorithm 1, denoted by Ry, contains all true pairs in Q, and no fake pairs in Q; with
probability at least 1 — n~ 1501

7.3 Match Pairs in Oy Slice by Slice using 1-hop Algorithm

Given that all the true pairs in Q; are matched error-free, we show that all the true pairs in Q. are
matched error-free by the 1-hop algorithm for all 2 < k < k*.

Note that when matching pairs in Qk, we use Ry_1, the set of matched vertices in Qk 1, as seeds.
Suppose slice k —1 is successfully matched. Then, Ry_; contains all the true pairs in Q_;. Therefore,
for a true pair in Qg, to bound from below its number of 1-hop witnesses in Ry_1, it suffices to

&P
consider its number of 1-hop common neighbors in Pj_;, which is on the order of " L as we
explained in (9). This intuition is made precise by the following lemma.

LEMMA 5. Fix any 2 < k < k* and any vertex u € Py. For all sufficiently large n,
P{ o 2 (1) N Py | > §k} >1-n"% (21)
ca’ P2
where & = 1’2 ‘i}

Moreover, if slice k — 1 is successfully matched, since there is no matchmg error, on the hlgh—
probability event Pk | C Pr_ 1, Ri-1 is contained by the set of true pairs in Qk = £ Py X Py
Therefore, for a fake pair in Qk, to bound from above its the number of 1-hop witnesses in Ry_, it

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:21

suffices to bound its number of 1-hop common neighbors in P;_j, which is done in the following
lemma. Note that to resolve the potential dependency between Qy and graphs Gy, G,, we state the
lemma for a fake pair in Q, which contains Qy with high probability.

LEMMA 6. Fix any?2 < k < k* and any two distinct vertices u,v € Py, Then for all sufficiently large

P
where {j = % + L logn.

n’

Gy
1

1G2 (v) N Pey

sg}zl—n4, (22)

To see how (22) follows, note that a vertex in Py_, is a 1-hop common neighbor for the fake pair
(aktxk 1)2 —

_ﬁ .
1) vertices

(u,v) with probability at most on the order of
o«

in Pi_;, the number of 1- -hop common neighbors in Pr_, is about on expectation. The extra

term 36 log n in (22) comes from the sub-exponential tail bounds When we apply concentration

inequalities.

b

Recall that we assume n% = o(n) and hence az f > &L for 2 < k < k*. Moreover, az f >
Z*ﬁ > wzgﬂ for 2 < k < k*. It then can be verified that §k > (. Thus, we expect that the 1-hop

algorithm can match vertex-pairs in Ok correctly. More precisely, we have the following lemma.

(04

LEMMA 7. Under the conditions of Theorem 2, for all sufficiently large n, with probability at least
1= n 1% | the set of matched pairs in Step 6-8 of Algorithm 1, denoted by Ry, contains all true
pairs in Qk and no fake pairs in Q. forall2 < k < k*.

7.4 Match Low-Weight Pairs by PGM

We proceed to match pairs with weight smaller than ay+ using the PGM algorithm. As explained in
Section 4.2, we expect that the number of common 1-hop neighbors for any fake pair with weights
smaller than ay- is at most 2. Thus, even if all low-weight true pairs are provided as seeds, no fake
pair will be matched by the PGM algorithm with threshold r = 3. This intuition is made precise by
the following lemma.

LEMMA 8. Denote P = {u : wy € [0, (1+ 28)ag+_1]}. Fix any two distinct vertices u,v € Pojost.
Then for all sufficiently large n,

g

Although the PGM algorithm may fail to match some true pairs with very few common 1-hop
neighbors, it is expected to match the true pair with at least three 1-hop witnesses. In particular, let
us recursively define

G G D
11 12(0)0P2k*

32}21—n4. (23)

So=Pres Sh={u:u€Ppp, T () NI () NSpy| 23} forh>1.

Note that Sy = Py~ has been correctly matched based on Lemma 7 in the previous step. Also, once
the true pairs in Sy, are added into the set of matched pairs, the PGM algorithm with threshold
r = 3 can use the vertices in S;_; as new seeds to match vertices in Sy, correctly. Therefore, all the
true pairs in Sj, for any h > 1 can be correctly matched. Thus, to show the PGM matches many
true pairs, it suffices to bound from below the size of Sy, for h < h*, which is done by the following
theorem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:22 Liren Yu, Jiaming Xu, and Xiaojun Lin

_ NG N N
LEMMA 9. Letw = (%) . Define h* such that w < a1+ < 2w. Then forany1 < h <

h*, and all sufficiently large n,
1
{|Sh| _nk*+h} >1-n30, (24)

The proof of Lemma 9 follows by induction. Assume (24) holds for h — 1. Then analogous to the
3-F ~2
intuition of (9), for any u in P+4p, E ”I’IG1 (w) N I‘le(u) N Sh_lu X % > 41n 2. Hence, we can
show that P{u € S;,} > 4, which further implies (24) holds for h by concentration.

By Lemma 9, the PGM matches at least half of true pairs in Pj-,p-. Note that the number of
vertices in Py, satisfies ng-yp = Cn(agen—1)'# > Cn(w)'# = ©(n), as w = ©(1). Thus, the
set of matched pairs by the PGM contains a constant fraction of true pairs. More precisely, we have
the following lemma.

LEMMA 10. Under the conditions of Theorem 2, for all sufficiently large n, with probability at least
1—n~1%°W the set of matched pairs in Step 10 of Algorithm 1, denoted by Ry-,1, contains all true pairs
in S, and no fake pairs in Qk*+h for all h > 1. In particular, we have |Ry-11| = ©(n) with probability
at least 1 — n~1+o(V),

7.5 Match Pairs in Q, using 1-hop Algorithm
Given that a large constant fraction of true pairs with weights smaller than o, are matched error-free,
we show that all the true pairs in Q are matched error-free by the 1-hop algorithm.

When we match vertices in QO, we use R, the set of pairs matched in Step 5 — 10 of Algorithm
1, as seeds. Note that all true pairs in Q- have been proved to be matched correctly with high
probability. The number of true pairs in Q- is @(nal_ﬂ) and the vertex in Py has weight larger than
n¥. Moreover, a vertex in Py connects to a vertex in Py~ with probability at least aoa’” . Therefore,
for a true pair in Qy, to bound from below its number of 1-hop witnesses in R, it suﬁices to consider
its number of 1-hop common neighbors in P+, which is about na;:_ﬁ L X % = ®(ai:ﬁ n¥). More
precisely, we have the following theorem.

LEMMA 11. Fix any vertex u € Py. For all sufficiently large n,
Ca? P ays?
P {)rfl (w) NI (w) N P | > %—_0} >1-n"t (25)
w

We caution the reader that even though the true pair (u, u) may have more 1-hop witnesses in
Qk++1 than Qg+, we cannot consider its number of 1-hop common neighbors in Pj+,;, because the
PGM algorithm only matches a subset of the true pairs in Qk-,1 and this subset is random and may
incur dependency issues to the analysis.

Next we study fake pairs. Note that with high probability R contains no fake pair in Jgs4 Ok
Therefore, on the event that ﬁk C ﬁk for all k > 1, all the matched pairs in R is contained by the
set of true pairs in R x R, where R = Uks1 P = {i : w; € [0,(1+28)n"]}. Therefore, for a fake
pair in Qo, to bound from above its the number of 1-hop witnesses in ﬁ, it suffices to bound its
number of 1-hop common neighbors in R, which is done in the following lemma. Again, to resolve
the potential dependency between Qo and graphs Gy, G,, we state the lemma for a fake pair in Q,),
which contains Qy with high probability.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:23

LEMMA 12. Denote R = {i : w; € [0, (1 + 28)n*]}. Fix any two distinct vertices u,v € P,. For all
sufficiently large n,

P {‘I‘IG1 (w) N l“le(v) NR| < 4Kn3’(3_ﬁ)sz} >1-n"" (26)

where i = {x2d?2fc
@ f-yw

To see how (26) follows, note that a vertex in Py becomes a common 1-hop neighbor of the fake

2
pair (u,v) with probability at most (%)2 < :—% Since there are @(na;_ﬁ) true pairs in Qg, the

— 3-p
number of common 1-hop neighbors in R is on the order of Zle 0!"7 =0 (n”(3_ﬁ)).

Recall that Py C Py U P;. Thus for any fake pair (1,0) € Q,, the two corresponding true pairs
(u,u), (v,v) € Qo U Qs. If one of them is in Qy, then it has already been matched in Ql by Lemma 4.
If one of them is in Q,, since ai:ﬁny =0 (n"(logn) PGP > nrG=P) inview of 2 < f < 3, it
has more 1-hop witnesses than the fake pair (u,v). Thus, we expect that the 1-hop algorithm can

match all the true pairs in Q, error-free. More precisely, we have the following lemma.

LEMMA 13. Under the conditions of Theorem 2, for all sufficiently large n, with probability at least
1 —n~%3, the set of matched pairs in Step 11 of Algorithm 1, denoted by Ry, contains all true pairs in
Qo and no fake pairs in Qy.

7.6 Proof of Theorem 2

Due to Lemma 10 and Ry~,; C R, the set of matched pairs by Algorithm 1 contains ©(n) true pairs
with probability at least 1 — n1ro(D), Combining Lemma 4, Lemma 7, Lemma 10 and Lemma 13, R
contains no fake pairs with probability at least 1 — n~ (),

8 CONCLUSION

In this paper, we propose an efficient seeded algorithm for matching graphs with power-law degree
distributions. Theoretically, under the Chung-Lu model with power-law exponent 2 < f < 3
and max degree ©(+/n), we show that as soon as D > %, by optimally choosing the first slice,
our algorithm correctly matches a constant fraction of true pairs without any error with high
probability, provided with only Q((log n)*~#) initial seeds. This result achieves an exponential
reduction in the seed size requirement, as the previously best known result requires n'/?*¢ initial
seeds. Empirically, numerical experiments in both synthetic and real power-law graphs further
demonstrate that our algorithm significantly outperforms the state-of-the-art algorithms. These
results uncover the enormous power of D-hops in seeded graph matching under power-law graphs.
Our work can be extended along several future directions. First, our work focuses on the challeng-
ing scenario when all seeds are uniformly chosen. We expect that it would be easier to match graphs
when more high-degree vertex-pairs are chosen as seeds. It would be interesting to extend our
algorithm to such cases with non-uniform seeds and reduce the existing seed requirement Q(n¢)
in [5, 7]. Second, the Chung-Lu model may not well capture some properties of real networks, such
as the clustering coefficients and the abundance of triangles [28]. An alternative power-law model
is the celebrated preferential attachment model [2]. It remains open whether similar performance
guarantees for D-hop algorithm can be shown under the preferential attachment model to reduce
the existing seed requirement Q(n/log(n)) in [19]. Finally, another interesting and important future
direction to further explore the power of D-hops in matching power-law graphs without seeds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:24 Liren Yu, Jiaming Xu, and Xiaojun Lin

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their suggestions and comments. L.
Yu and J. Xu are supported by the NSF Grant IIS-1932630.

REFERENCES

[1] David Avis. 1983. A Survey of Heuristics for the Weighted Matching Problem. Networks 13, 4 (1983), 475-493.

[2] Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of Scaling in Random Networks. Science 286, 5439 (1999),
509-512.

[3] Albert-Laszl6 Barabasi. 2016. Network Science. Cambridge University Press, Cambridge. http://barabasi.com/
networksciencebook/

[4] Alexander C Berg, Tamara L Berg, and Jitendra Malik. 2005. Shape Matching and Object Recognition Using Low
Distortion Correspondences. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), Vol. 2. IEEE Computer Society, 26-33.

[5] Karl Bringmann, Tobias Friedrich, and Anton Krohmer. 2014. De-anonymization of Heterogeneous Random Graphs in
Quasilinear Time. In European Symposium on Algorithms. Springer, 197-208.

[6] T. Caelli and S. Kosinov. 2004. An Eigenspace Projection Clustering Method for Inexact Graph Matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26, 4 (2004), 515-519.

[7] Carla-Fabiana Chiasserini, Michele Garetto, and Emilio Leonardi. 2016. Social Network De-Anonymization Under
Scale-Free User Relations. IEEE/ACM Transactions on Networking 24, 6 (2016), 3756-3769.

[8] Fan Chung and Linyuan Lu. 2004. The Average Distance in a Random Graph with Given Expected Degrees. Internet
Mathematics 1, 1 (2004), 91-113.

[9] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ] Newman. 2009. Power-law Distributions in Empirical Data. SIAM
review 51, 4 (2009), 661-703.

[10] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty years of graph matching in pattern
recognition. International Journal of Pattern Recognition and Artificial Intelligence 18, 03 (2004), 265-298.

[11] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. 2006. Balanced Graph Matching. In Advances in Neural Information
Processing Systems 19. 313-320.

[12] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press. https://doi.org/10.1017/CB09780511581274

[13] Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. 2020. Spectral Graph Matching and Regularized Quadratic
Relaxations: Algorithm and Theory. In International Conference on Machine Learning. PMLR, 2985-2995.

[14] Marcelo Fiori, Pablo Sprechmann, Joshua Vogelstein, Pablo Muse, and Guillermo Sapiro. 2013. Robust Multimodal
Graph Matching: Sparse Coding Meets Graph Matching. In Advances in Neural Information Processing Systems 26.
127-135.

[15] Donniell E. Fishkind, Sancar Adali, Heather G. Patsolic, Lingyao Meng, Digvijay Singh, Vince Lyzinski, and Carey E.
Priebe. 2018. Seeded Graph Matching. arXiv:1209.0367 [stat.ML]

[16] Aria Haghighi, Andrew Y Ng, and Christopher D Manning. 2005. Robust Textual Inference via Graph Matching. In
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing. 387-394.

[17] Ehsan Kazemi, Hamed Hassani, Matthias Grossglauser, and Hassan Pezeshgi Modarres. 2016. PROPER: Global Protein
Interaction Network Alignment Through Percolation Matching. BMC bioinformatics 17, 1 (2016), 527.

[18] Ehsan Kazemi, S Hamed Hassani, and Matthias Grossglauser. 2015. Growing a Graph Matching from a Handful of
Seeds. Proceedings of the VLDB Endowment 8, 10 (2015), 1010-1021.

[19] Nitish Korula and Silvio Lattanzi. 2014. An efficient reconciliation algorithm for social networks. Proceedings of the
VLDB Endowment 7, 5 (2014), 377-388.

[20] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.
edu/data.

[21] Joseph Lubars and R Srikant. 2018. Correcting the Output of Approximate Graph Matching Algorithms. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 1745-1753.

[22] Vince Lyzinski, Donniell E. Fishkind, and Carey E. Priebe. 2013. Seeded Graph Matching for Correlated Erds-Rényi
Graphs. Journal of Machine Learning Research 15 (2013).

[23] Elchanan Mossel and Jiaming Xu. 2019. Seeded Graph Matching via Large Neighborhood Statistics. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1005-1014.

[24] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust De-anonymization of Large Sparse Datasets. In 2008 IEEE
Symposium on Security and Privacy. IEEE, 111-125.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:25

[25] Arvind Narayanan and Vitaly Shmatikov. 2009. De-anonymizing Social Networks. In 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 173-187.

[26] Mark EJ Newman. 2003. The Structure and Function of Complex Networks. SIAM review 45, 2 (2003), 167-256.

[27] Pedram Pedarsani and Matthias Grossglauser. 2011. On the Privacy of Anonymized Networks. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1235-1243.

[28] Ali Pinar, C. Seshadhri, and Tamara G. Kolda. 2011. The Similarity between Stochastic Kronecker and Chung-Lu Graph
Models. arXiv:1110.4925 [cs.SI]

[29] Christian Schellewald and Christoph Schnérr. 2005. Probabilistic Subgraph Matching Based on Convex Relaxation. In
International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, 171-186.

[30] Farhad Shirani, Siddharth Garg, and Elza Erkip. 2017. Seeded Graph Matching: Efficient Algorithms and Theoretical
Guarantees. In 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE, 253-257.

[31] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global Alignment of Multiple Protein Interaction Networks With
Application to Functional Orthology Detection. Proceedings of the National Academy of Sciences 105, 35 (2008),
12763-12768.

[32] Amanda L Traud, Peter] Mucha, and Mason A Porter. 2012. Social Structure of Facebook Networks. Physica A:
Statistical Mechanics and its Applications 16, 391 (2012), 4165-4180.

[33] Lyudmila Yartseva and Matthias Grossglauser. 2013. On the Performance of Percolation Graph Matching. In Proceedings
of the 1st ACM Conference on Online Social Networks. ACM, 119-130.

[34] Liren Yu, Jiaming Xu, and Xiaojun Lin. 2021. Graph Matching with Partially-Correct Seeds. arXiv:2004.03816 [cs.DS]

A ALGORITHM

In this section, we present the GMWM algorithm [1] and the PGM algorithm [33] used in our PLD
algorithm.

A.1 The GMWM Algorithm

After counting the number of witnesses, we can form a weighted bipartite graph G,,, with the
vertex set being a collection of all vertices in G; and G, the edges connecting every possible
vertex-pairs, and the weight of an edge being defined as the number of witnesses. Then, we use the
GMWM algorithm shown in Algorithm 2 to find the matches in G, with large weights. GMWM
first chooses the vertex-pair with the largest weight from all candidate vertex-pairs in G,. Then, it
removes all edges adjacent to the chosen vertex-pair, and then chooses the vertex-pair with the
largest weight among the remaining candidate vertex-pairs, and so on.

Algorithm 2 The Greedy Maximum Weight Matching (GMWM) Algorithm.

1: Input: Graph G,,, the set of matched pairs M = 0.
2: while G,, contains edges do

3. Choose the pair (i, j) with largest weight.

4 Add (i, j) into M.
5
6
7

delete i, j and their adjacent edges from G,.
: end while
: Output: The set of matched pairs M

A.2 The PGM Algorithm

The PGM algorithm proposed in [33] is shown in Algorithm 3. The algorithm iteratively matches
pairs with at least r witnesses. The algorithm maintains a set M of matched pairs (which is initially
the seed set S), and a set Z of used pairs (which is initially empty). At each iteration, the algorithm
uses exactly one unused but already matched pair (i, j) € M \ Z. This vertex-pair adds one mark
(i.e., one witness) to each neighboring pair, i.e., to every pair in FIG (i) x I“lG 2(j)- This vertex-pair
(i, j) then becomes a used pair, which is added to Z. As soon as any vertex-pair gets at least r marks,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:26 Liren Yu, Jiaming Xu, and Xiaojun Lin

it is added to the set M of matched pairs. The process iterates until there are no more unused pairs
inM\ Z.

Algorithm 3 The Percolation Graph Matching (PGM) Algorithm.

1: Input: Graphs Gy, G, initial seed set S, used seed set Z = (), threshold r.

2: LetM =S8

3: for all vertex-pairs (i, j) € M \ Z do

4: Add one mark to all candidate vertex-pairs (i’, j’) such that i’ € I‘IG‘ (i) and j’ € FIGZ (.
5. if a vertex-pair (i’, j*) has at least r marks then
6

7

8

Add (¥, j*) into M.
All other candidates (i’, j’) and (i”, j’) are discarded from consideration.

end if
90 Z=ZU{(i)}
10: end for

11: Output: The set of matched pairs M

B COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of Algorithm 1 in each step.

First, Algorithm 1 checks all the vertices degrees to construct the subgraphs Gy, G, and partition
the vertices in G; and G; into slices based on vertex degrees in line 2-4 and line 9. The total time
complexity of this step is O(n).

We then apply the D-hop algorithm in the first slice. Searching for all D-hop neighbors of a
given vertex u in the first slice takes a total of O(n) time steps. The number of vertices in the first
slice in @(na;_ﬁ). Thus, the complexity of counting D-hop witnesses for all vertices-pairs in the
first slice-pair is O(n3af =Py = 0 (n3-2r(F-V)_ Since we have shown that with high probability, all
the fake pairs have D-hop witnesses fewer than the threshold, we only need to sort and match at
most n true pairs using GMWM and hence the complexity of the GMWM step is O(nlogn).

We next apply the 1-hop algorithm in the subsequent slices. We compute the number of 1-
hop witnesses via neighborhood exploration. For each matched pair in Qk_;, we fetch its 1-hop
neighbors of size O(ax—1) in G, and G,, and then increase the number of 1-hop witnesses by 1 for
O(ai_l) vertex-pairs. Thus, the total complexity of our algorithm to match vertices in Py is about

nall(:f X ai_l = 0(n'trG-P),

Analogously, the PGM algorithm explores the 1-hop neighbors of each matched pair. There are
at most n matched pair, and for each mathced pair, we increase the number of 1-hop witnesses by
1 for O(A?) vertex-pairs, where A is the largest degree among G| and G;. By the definition, A is
O((logn) w7). Therefore, the total complexity in line 10 is O(n(logn) ﬁ).

Finally, there are at most n true pairs to serve as 1-hop witnesses for vertex-pairs in Q. For
any true pair (i, i), the complexity of neighborhood exploration is O(|I“1Gl ()| |I“1G2 (i)]). Thus, the
complexity of line 11 is Y7, |1“lGl(i)||FIGZ(i)| = O(XL, w?) = O(n'*G-P)/2) as shown in [8, page
98].

In conclusion, by summing up the complexity for each step, the total computational complexity

2
of our algorithm is O ((n3‘2”(ﬁ‘1) +nlogn+n"*vGh L n(logn) ™7 + n1+(3‘ﬁ)/2) =0 (n*~ (A1)

duetoy <1/2and2 < f < 3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:27

C PROOF
C.1 Supporting Theorems

Tueorem 3. Chernoff Bound ([12]): Let X = }.;¢[,, Xi, where X;, i € [n], are independent random
variables taking values in {0, 1}. Then, forn € [0,1],

P{X<(1-nE[X]} <exp (—%ZE [X]), P{X > (1+n)E[X]} <exp (—%ZE [X]).

THEOREM 4. Bernstein’s Inequality ([12]): Let X = };c[,) Xi, where X;, i € [n], are independent
random variables such that |X;| < K almost surely. Then, fort > 0, we have

PX2E[X]+1} < -

+]

= =P\ T2+ Ke/3)

where 0% = Yie[n] Var(X;) is the variance of X. It follows then for p > 0, we have

P{X > E[X]++202%p + ?} < exp(—p).

The obtained estimate holds for P {X <E[X] —+20%p — ZKTP} too (by considering —X), i.e.,

2K
P{X <E[X] - +v20%p - Tp} < exp(—p).
THEOREM 5. ([34, Theorem 6]) Forr > 0, every real number x € (0,1) and rx < 1, it holds that
rx
rlog (1 -x) <log (1 - ?) .

THEOREM 6. ([34, Corollary 1]) Let X denote a random variable such that X ~ Binom(n, p). If
ne [nmin» nmax], thenforl >0,

4
P {X > 2Mmax + ?y} < exp(-y) (27)

C.2 Proof of the Main Result

First, we define some notations related to graph slicing. We count the number of vertices in the
slice P, and Py. The vertices in Py satisfies

n n
G <w < e — — —jp<i L —m ——— —
e gy \FT (p-uynr \ P71
(B-2)w2k-1 (B-2)w2k

According to the index range of the vertices, we define ny to be the difference between the two
bounds. To be more precise,

ng = Cna;_/f, (28)

_2)w\F1
where C throughout this paper denotes (251 — 1) ((f ﬁ_zi)w) . Moreover, we have that

11
ne < |Pe|l <np+1< To™ (29)
Similarly, the vertices in P, satisfies

(1-28)ap < wi < (1+28) 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:28 Liren Yu, Jiaming Xu, and Xiaojun Lin

Thus,
B | < (o8-1 B-1_ (1 _ ﬁ—l) Mk
]pk(< (z (1+26)7 - (1-20)7) S HE— 41
p-1 3\B-1
@(3)" -
< SF1_ 1 nig +1 < 2ny, (30)

where (a) follows from § = é
The number of perfect slices, denoted by K, is

log, (n') < K < 1+log, (n).

C.2.1 Proof of Lemma 1. First, we prove Py C ﬁfj with high probability for 0 < k < k*and j =1, 2.

Fix any vertex u in Py. It suffices to show with high probability u € f’f 7. Note that any vertex v
connects to u in G; independently with probability p,,s, where j = 1,2 and p,, = <=2, Thus

E HFIGj (u)” = Z PuoS = Wys.

v€eG;
1 lﬁ 1
85w = 20 . .
Note that o < w, < a1 and o > ap- > (%gn > 535" for the choice of k* in (4) and

sufficiently large n, in view of 2 < < 3. Then, applying the Chernoff Bound in Theorem 3 with
n =4 yields
P Hl“lGj(u)| > (1+ 5)ak_1s} < exp (—52%) <n

and
Gj 2 %S -5
P“Fl (u)) <(1 —é)aks} < exp (—5 7) <n™.
Combining the last two displayed equation yields that
P{u ¢ ﬁg’} <2n”.
Taking an union bound over u gives

P{Pkcﬁ,ff}z1—ZP{ugﬁ,ff}zl—n*‘“O(l). (31)

Uu€ePy

Next we show that Py« C PY. with high probability. Fix any vertex u € Py with k > k*. Take a

>k*
. . Gj o | 5t |Gy
vertex v € P with wy, = ag-_;. Since w,, < w,, we have |I}” (u)‘ < I/ (v)|- Therefore,

PlugPlll=p{

rle(u)| > (1 +5)ak*,ls} <P {|1"1Gj(v)) > (1 +6)ak*,1s} <n,
Taking a union bound over u gives
P{sz* c ?f;;*} >1—p e, (32)

Second, we prove that for 0 < k < k*, with high probability Py C Py, or equivalently, [n]\Px C
[n]\Px, Fix any vertex u with w,, > (1 +28)ax_1, applying the Chernoff Bound with = % yields

d

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

rlGj(”)) <(1+ 5)0:;(,13} < exp (—52%) <n. (33)

The Power of D-hops in Matching Power-Law Graphs 27:29

For any vertex u with w,, < (1 — 28)ay, applying the Chernoff Bound with n = % yields

P < 1—~1Gj(u) > (1- S)ka} < exp (—52%) <n>. (34)
Thus, we have
PPy c B} = {an\Pec [nN\B)} 2 1-) plue B} 2 1-n7, (39
uéf‘k

where the last inequality holds by combining (33) and (34). Moreover,

PIP0. cPo) =B {(n\Poe c NP 21— Y PluePO)2 1-n7 (o)

>k*
urwy > (1428) o ¢

where the last inequality holds by (33).

Then, combining (31) and (35) with the union bound yields that P {Qk C Qk C @k} >1-
n~*°W for 0 < k < k*. Similarly, combining (32) and (36) with a union bound yields that
P{sz* C Ospr C sz*} > 1 —pHo),

Finally, since V. = Ugs1 Pr, V = U1 I’-fj and V = Uk>1 Py, combining (31), (32), (35), and (36)
with the union bound, we have

P{Qjcéj c@}:P{Kchc‘_f} > 1-n 30,

C.2.2 Proof of Lemma 2. Note that G, A G,, Gy, and G, are graphs that are edge-sampled from G,
with probability s?, s, s, respectively. Thus, we let G denote a graph obtained by sampling each edge
of Gy independently with probability ¢ = ©(1) and G denote a subgraph of G induced by the vertex
set V = {u:wy, € [0,(1+26)n"]}. Fix a vertex u € Py, we first study its number of d-hop neighbors
in each slice in G. Then, we can arrive at Lemma 2 by selecting the corresponding parameters. To

be more precise, we define I“dak(u) = I‘da(u) N Py and Ndak (w) =Ui<j<d FJ.Gk(u). We bound I‘dEk(u)

and ka(u) by the following lemma.

LEMMA 14. Fix any vertex u € Py, and let Qg denote the event such that the followings hold
simultaneously fork =1,...,K:

_ 1-28)2C-t*
8, 0] = 26002 (%) WP 2 (), (37)
\ 12-w
)Tfk (u)‘ < 2(k-D(B-2)dpy(-Pd & 1 (g k), (38)
ka(u) < k=D (F-2)+1,dy(3-F)d (39)

-5
where k = %, Suppose y and D are chosen such that condition (10) holds. Then, for all

1 < d < D and sufficiently large n,
P{Qy} >1- (4% - 1)n". (40)

Remark 2. The intuition behind Lemma 14 is as follows. Recall that g4, the probability that a
vertex of ©(1) weight lies in the d-hop neighborhood of a vertex in the first slice, is on the order of
n¥ (=B (d=D+11-1 iy view of (7). Note that the weight of vertices in Py is about a, and the size of
Py is ©(na'~F). Thus, the expected number of vertices in Py that are d-hop neighbors of a given

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:30 Liren Yu, Jiaming Xu, and Xiaojun Lin

vertex in the first slice is roughly nqdaifﬁ ~ 2D (F=2py(3-Ad Hence, we expect (37)- (39) to
hold with high probability by concentration.

Before proving Lemma 14, we first show how to apply Lemma 14 to prove Lemma 2. By setting
§=0andt = s% we have G = G, A G,. Thus, (37) with k = [log,(n¥)] and d = D leads to the
desired conclusion (16). Moreover, there are at most ¢ slices in {i : w; < c}. By setting § = g
d=D-1,G= Ej (ie, t =s), (39) with log,(n"/c) < k < K < log,(n") + 1, we have

K
9 (k=1 (F-2)+1, D=1y (3-P)(D-1) < 9, D-1,y((3-F)(D-2)+1) _

k="log, (n/c)]

max»

where Npay is given in (17). Thus, we prove the desired conclusion (17).
We then present the proof of Lemma 14.

PROOF OF LEMMA 14. Fix a vertex u in Py, we study its d-hop neighborhood in G from d = 1.
Ford = 1: For each vertex i € I_Jk, define an indicator variable

xf = l{ier?(u)}'

In other words, xf = 1if i is connected to u in G, and xl(‘ = 0 otherwise. Since u € Py, it follows that
ko (L3451 k_ [0 k
pmin—(l—Z(S)n—WtsP{xi _1} < (1+20) R =k

B ;

_| in view of

Then, we have

Fﬁ(u)) =2, eﬁ x and x ’s are independent. Recall that ny = Cna
(28) and ny < ’ﬁk‘ < 2ny in view of (30). Thus

_ﬂa Ly (3p)
t=(1- 25)Cmt,

a f =)
nkpmax = (1+25)C t= (1+25)Cmt.

npt. = (1- 25)C

Hence, applying Chernoff Bound in Theorem 3 with 7 = 1 yields that

|
|

where (a) and (b) hold because ngpk,, > mpt. > (1- 25)%;% > 108 log n for sufficiently
large n.

We also have P “N k(u)) > 3nkpmax} < n~*dueto N k(u) = gk(u) Finally, taking the union
bound leads to (40) ford = 1.

— Cn)’(3—ﬁ)t) e 1 k _
Lk(u)‘ <(1- 25)m} < P{Bmom (nk,pmin) < Enkpmin} < n

3CnY 5Pt

l“fk(u)| > (1 + 25)m} <P {Binom (an,p]];ax) < Snkpﬁlax} <n’

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:31

For2 < d < D: We first count the d-hop neighbors conditional on the (d — 1)-hop neighborhood
of u such that Q;_; holds. The high-level idea is as follows. After the conditioning, every vertex i
outside the (d — 1)-hop neighborhood of u will become a d-hop neighbor by connecting to at least
one of the (d — 1)-hop neighbors v of u. These edge connections are still independently generated
across different v and i according to the Chung-Lu model.

We first bound ‘ka (u)‘ from below. For each vertex i € Py \ (Nf_ L k(u)) = P/, define an indicator
variable

k = — —
Yi = 1{Evel"d(’ll(u): iGFIG(U)}.
In other words, yf = 1if i is connected to at least one (d — 1)-hop neighbor of u in G, and

yf.‘ = 0 otherwise. Thus, we have ka(u)

=Yic P yf, and yf ’s are independent across different i

conditional on Qg_;. B
Note that l"f_l [(w) c l"dG_1 (u). Thus, we can bound P {y{C = 1|Qd,1} from below by considering

the possible edge connections between i and vertices in l"dG_1 ,(u). More precisely, we get that
Plyf = 1104} 2P (T eTd, (i eTC(0) | Qul

@ i (d—
21— (1= poy) Y

arory \Imin(d=1,1)
>1— (1 —(1- 25)2k—_1t)
nw

(&) (1 = 26)2 t
YAz d—1 Bt
nw

min”

3 ((1—25)20-t

d
_ V(G- (d-1+2) & pkd
2kCn | 12w) " p

where (a) holds because {i ¢ 1"16 (v)} are independent across v; (b) follows from Theorem 5.

Now, to bound |I’d§k (u)

from below, we also need a lower bound to |P/|, or equivalently an upper

bound to |N§_1 k(u)|. Since we have conditioned on the (d — 1)-hop neighborhood of u such that
event Qg_; holds. It follows from (39) that

‘ Ndé—l,k(u) <o (k=1 (B-2)+1,.d~1,y(3-p)(d-1)

:ZKd—I ny((3—ﬁ) (d-2)+1) 0‘/1:?

where (a) holds due to the condition (10). Thus, we have |P,’c| > |Py| — |Nd§_1 k(u)| > %nk.
Note that for sufficiently large n,

8 rd 4 ((1 —26)%Ct

d
4
= = yG-pa _ 4p S
9nkpmin 3. 2P TR) n 3 min(d, k) > 128log n.

Thus, we apply the Chernoff Bound in Theorem 3 with = } and get

P {‘ka(u)

min

8
< Tin(d, k) | Qd_l} < P{Binom (5nk, pkd) < Tin(d, k) | Qd_l} <nt

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:32 Liren Yu, Jiaming Xu, and Xiaojun Lin

Next, we bound ‘I“dak(u)

from above. To this end, we bound P {y{‘ = 1|Qd_1} from above and get

K

_ @ s 5

Plgf =100} <) 2 {3 €18, i e TE0) | Q)
=1

) 2 > Ak-101-1
< (1+26) Zl"max(d—l,l)—
=1

d-1,y((3-p)(d-D+2) K

_ 2K (1-1)(5-3)
=(1+20) — lZz
=1
KAy (P .
i, - Pma (41)

where (a) follow from the union bound; () holds due to the union bound and event Q4_;; (b)
follows from (1 + x)" > 1+ rx for every integer r > 0 and every real number x > —2; and the last

. . .. _ (1+26)%2FC
inequality follows from the definition of k = T

Also, note that P] C Py and thus [P/ < |Px| < 2ng. For sufficiently large n, we have

1
anpled = 2D P21, dpyG-Pd — Z1 (4 k).

max
2

Hence, applying Chernoff Bound in Theorem 3 with 1 = 1 yields that

p {‘ka(u)‘ > T (4,5 | Qd_l} <P {Binom (an, p,’;;gx) > Tonax(d, k)} <n

Induction: Finally, we prove (40) by induction.
For d = 1, we have proved that (40) holds. Suppose that (40) holds for d — 1. Then we have

P {|r§k(u)] < Tonin(d, k)} <P{QS }+P Hrfk(u)

< Tin(d, k) | Qaa} P {Qq) <497 a7,
(42)

Similarly, we get
P {)rfk(u)(> Tax(d, k)} <441 g (43)

Since

NEk(u)| = ‘Nd6—1,k(“)| + |F§k (u)| we take an union bound and have
P {|N§k(u)| > 2(k—1)(ﬂ—2)+1Kdny(3—ﬁ)d} <@ 1)t a® ot o (248 St (4)

Combining (42), (43) and (44) with an union bound, we prove that (40) holds forany 1 < k < K
and1<d <D.

]
C.2.3 Proof of Lemma 3. Note that
NS (u) N NG (o) € (I‘S’}C(u) U Np_1x (4 u)) N (rgi(v) U Np_1x(u, u))
= (IS AT @) U Np 1 k(s 0) (45)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:33

where Np_1x(u,v) = Ngil (WU Ngfl . (0). Since we have already obtained the upper bounds of
‘Ngl_l,k (u)| and ‘Ngz_l,k (v)

from above l"g LN Fg % (v)|, which is done in the following lemma.

by Lemma 14 by letting G to be either G; or G,, it remains to bound

LEmMA 15. Suppose y and D are chosen such that condition (10) holds. Fix any two distinct vertices
u,0 € Py, foralll <d <D,k=1,...,K, and sufficiently large n,

G G. 2. 44 »
P N1 < w@ R} > 1- ==,)
where
P(d k) = K22, (d - 1,10 P 6Tpae(d — 1,1) logn

Yk 0GBy T GDep)

) _ _ _ . S 205-p
With Tpay (d — 1, 1) = k4 1nY =P g5 defined in (38) and k = (I(J;_,);—_ZUWC

Remark 3. We provide an intuitive explanation on the first term of ¥(d, k). Fix a vertex u. Recall
that [nax(d — 1,1) is an upper bound of its (d — 1)-hop neighbors in P; by Lemma 14. Thus,
a vertex i in Py connects to at least one (d — 1)-hop neighbor of u with probability at most
Z{il Nhax(d — 1, l)% ~ Klax (d — 1, 1) axn? ™!, where the approximation holds because [= 1 is the
dominating term in the summation. Moreover, there are @(nallc_ﬁ) vertices in the slice Py. Thus, for
a fake pair (u,v), its number of common d-hop neighbors in Py is about x?T'2_ (d — 1, l)nzy‘laz_ﬁ ,
which gives rise to the first term of ¥(d, k).

Before proving Lemma 15, we first show how to apply Lemma 15 to prove Lemma 3. combining
(45), (39), and (46) yields that

p {|rf;(u) TS (0)] < W(d, k) + 2Nax(d — 1. k)} > 1—p o)

Next we set d = D and sum over k for all the slices P, with weight at most 15—5 logn, ie.,

ai < % log n. In particular, we have k > ko = |log,(15";);")] and

K
D" WD, k) + 2N (D = 1, k)

k=ko
K - — —_ —
- Z K T2 (D = 1,1)n P , Tnax(D 1, 1)6logn+ 4 D-1,y(3-F) (D-1)
= 2(k=1)(3=-p) Cp 2(k=1)(2-p) 2(k=1)(2-p)
=Ko
PIRG (D=L 00D I LD LD 2 kDO

$PB_ 120 0GBcn 221 2KDEP

()

23-B1c2D 2y ((3-) (D-1)+1) (15)3—ﬁ 2f-2
+

| -
(23-F - 1)Cn s OB 262 -1

26-2 _ 1 2(K-1)(2-p)

kP p(G=A D=2+ (4 4 61og n) = Yraxs

where ¥,y is given in (19). Thus, we prove the desired conclusion (19).
Next we present the proof of Lemma 15.

PROOF OF LEMMA 15. Fix two distinct vertices u, v in Py, we study their common d-hop neigh-
borhood from d = 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:34 Liren Yu, Jiaming Xu, and Xiaojun Lin

Ford = 1: For each vertex i € I_Jk, define an indicator variable
k

F =1 e e .
i fierf aonrf o)}
In other words, x =1ifi is connected to u in G; and v in G, and xf = 0 otherwise. Then, we have

l"fkl (w) N FGZ (v)| Leﬁk xf. Since wy, wy € [(1 = 28]y, (1+ 28)ay], it follows that

P{xf:l} ((1+25)2ak cvao) 2 Pax-

Hence, we have

rfkl (W) N er (0)] <

Bmom (‘Pk

)

Recall ng = Cna f in view of (28) and |ﬁk) < 2ny in view of (30). Hence,
4 f”
2mepk . = (1+26) —
wn
Hence, we apply Lemma 6 with A = 4logn, and get
4(1+28)ca’ P 14
P{)I‘Gl()nF 2(0)| > 12 1l 4 Zlogny <nh
wn 3
Fn
Since Tax (0,1) = 1, we have ¥(1,k) = —&— + 6log n. Thus, (46) holds for d = 1.

For2 < d < D: We first count the d-hop neighbors conditional on the (d — 1)-hop neighborhood
of u and v. We use Q;’; to denote the event that Q;_; with G = 61, 52 hold, and forallk =1,...,K,

G (w) NTG: (0)] < ¥(d. k),

with ¥(d, k) defined in Lemma 15.

Conditioning on Q7 41> Dote that there are two possible cases under which each true pair (i, i)
becomes a common d-hop neighbor of (u,v). One case is that i connects to some common (d — 1)-
hop neighbors of (1,v) in both G; and G;. The other case is that i connects to different (d — 1)-hop
neighbors of (u,v) in G and G,, respectively.

For each vertex i € Py \ Np_1(u,), define two indicator variables

k _ _ _
Yi _l{ierfl(u),ierjz(v)}’

k _ _ _ _
% _1{EIjEI“i11(u)ﬂF‘i21(v): ier ()
In other words, y¥ = 1if i is a d-hop neighbor of u in G, and v in G, and y* = 0 otherwise. Similarly,
zf = 1if i is connected to at least one common (d — 1)-hop neighbor of (u,v) in both G; and G5, and
zf.‘ = 0 otherwise. Note that zf.“ = 1 includes the case that i connects to some common (d — 1)-hop
neighbors of (u,v) in both G; and G,.

We first bound P {z{< = 1|Q:‘171} from above by

K
@ 5 s 5
P{zf .y Q;;_l} < ZP{EIJ eT¥ () NTY (0) i € TO(j) | Q;_l}
I=1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:35

(b)
< (1+26) Z\P(d— 1, 1)“" 1911
I=1
- K2T2, (d - 2,1)nv"h) . 6Tmax(d — 2, 1)n? logn Z (1+26)?
- 2k-1Cn%w 2k-1nw 2= G=p)
K212V -2y 0) xed=17 (B-F)(d-D42) [og
2k+1c2n2 + 2k+1cn

where (a) holds due to the union bound; (b) follows from the union bound and event Q7 |

=1,

Then, the event {yfC =1}\ {zf = 1} denotes the event that i connects to some vertex in l"dG_‘1 L\
FdG_Zl . () and connects to some vertex in l"dG_z1 . (v) independently. Thus, P {{yf =1}\ {zfC =1} | 92—1}
can be bounded by

k k *
Plk =0\ =111 Q)
<P {3; eId W\TP, , (0) i € TC(j) | Q;_l} p {31' €% (0) 1§ € TO:(j) | Q;_l}
<P {i €% (v) | Q;_l}P {i €% (o) | Q;_l}
(a) [xdpy(3=P)(d-1)+2) \ 2
< (2k+1Cp)

2d 2y (3-P) (d-2)

22(k+1) C2p2

n2yG-p =,

where (a) follows from a similar proof of (41).
When we compare the first term of v; and v, we have

2 2y (3-F) (d-2) 2 2y (3-F) (d-2)

y(7-p)
22(k+1) 022 n < 22(k+1) 022

n2r(G-A),

where the last inequality follows from :zyy(:;ﬂ/’,)) =nr(F-3) < 1.

Thus, we have

4y (=P (d=2)42) 1o

P{yf=1|92_1}ﬁv1+vz32v2+

2kCn
k2dp2yG-Pd=Dpty gedpy(G-Pd=2+2) 150
3.2t 2kCn ~ Mk
Thus, conditional on Q; > we have
|F (u)ﬂF (v) Bmom <|Pk| yk)

-p.

Recall ny = Cna 4

in view of (28) and |ﬁk| < 2ng in view of (30). Therefore, for sufficiently large n,

221 BB A=)y 5P =Ly =P (1) Jog
PR T P 2(k-1) (2P)

2
2N = < g‘P(d, k).

We then apply Chernoff Bound with 1 = l and get

P[5 NI 0] 2 T (d) 125, } <07t

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:36 Liren Yu, Jiaming Xu, and Xiaojun Lin

Induction: Finally, we prove (46) by induction.
For d = 1, we have proved that (46) holds.
Suppose (46) holds for d — 1, then taking the union bound yields that

Ploj,} <2 P{0g }+B{IZ, (0 NI, L 0)] 2 Ya(d - 1,00

2. 44-1 2. 44
<204 - Dnt 4 3 nt= (5 1|-n7%

Thus, we have

P{ IS wn rf;(v)} > Yrax (d, k)}

<P {0} +P{[rS @ nT50)| 2 Hnan(@) 1 05,
.44 L4d

B L N S Ly
3 3

]

C.2.4 Proof of Lemma 4. The main idea of the proof is to bound the number of D-hop witnesses
for both true pairs and fake pairs in the first slice, using the bounds to the number of the D-hop
neighbors established in Lemma 2 and Lemma 3.

Recall that in Algorithm 1, we select the set S of low-degree seeds. Let S= {i: (i) € §} To
circumvent the dependency between S and the graphs G; and G,, we will introduce S and S such
that they are independent from graphs and S C S c S with high probability. To this end, we define
an event & such that

15
{i:wi<e}cfi:T7()| < 5logn, T (i)| < 5logn} C {i: w; < — logn}.
s
For any i with w; < ¢, E [|1“1G1 (1)|] = cs. Thus, applying Lemma 6 with A = 3log n yields
]P{ll"lc‘(i)l > 510gn} < P{ll"lc"(i)| > 2cs+4logn} <n>.

Taking a union bound over i gives P {{i cw; <cpc{i: |1“1G1(i)| < 5logn, |1“1G2(i)| < 510gn}} >
1— n—2+0(1).

For any i with w; > % logn, E [ll"lG1 (i)|] = 15log n. we apply Chernoff Bound in Theorem 3
with = 2/3 and have

) 2
]P’{|1“lcl(i)| < 5logn} < P{|F1G’(i)| < (1 ~ g) 1510gn} <n”.
Thus, we have
15
P{{i 02 (i) < 5logn, [T7?(i)] < 5logn} € {i:w; < —logn}}

S

15

:P{{i cw; > — logn} c {i: [[7' ()| > 5logn, [T (i)| > 5log n}} =1—p 2o,
N
Thus, P{E} > 1 — n~%*°()_ On event &, we have

—~ 15 _
S2{i:w;<cjnScSc{i:w; < —lognfnS=S,
s

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:37

where S = {i : (i,i) € S} denotes the set of vertices selected as the initial seed set S. Note that
crucially the initial seeds in S are selected among all true pairs with probability 6, independently
from everything else. Thus S and S are independent from graphs. As a consequence, to bound
from below (resp. above) the number of D-hop witnesses for the true (resp. fake) pair, it suffices to
consider their common D-hop neighbors in S (resp. S).

More specifically, let us first consider the true pairs. Fix any vertex u € P;. Let A(u) = 1"1% ()N
Fl%(u) \ (Ngl_l(u) N Ngfl(u)). Define event

3 1(C\ 6-po-n
Ay = |A(u) | S\ > —Tnin@ ¢, where Iyin = — — | n¥ .
275 2\12-w

Note that due to assumption (10) and nG-p > log n for sufficiently large n, Np.x < %Fmin.
Hence it follows from Lemma 2 that

4
P{|A(u) N{i:w; <c|< grmin} < pdro())

Because the seeds S are selected among all true pairs with probability 6, independently from
everything else, we have

|A(u) N §| ~ Binom (|[A(u) N {i: w; <c}|,0).

Then, we apply Chernoff Bound in Theorem 3 with n = % and get

P{AS} SP{lA(u) N{i:w; <c} < gl’mm} +P{ﬂ§

AW N (i wi <)] > ;—‘rmm}

3
<p~to() 4 p {Binom (Tmin, 0) < grming}

<p~to(D) 4 exp (_ﬁrmine) (;) n_4+0(1)’

where (a) holds due to assumption (11). Let A = Nyep, Ay, It follows from the union bound that

P{A} < n3W,

We next consider the fake pairs. Fix any two distinct vertices u, v € P;. Define an event
e e 41
Byo = {|Ngl(u) S ROREE 5rmme)} .

Note that due to the assumption (10) and n¥®=# > log? n for sufficiently large n,

2D ny(B=H)(D-1+1) (15 o446 logn
cs \P Cn (? log n) T T Gp) min
(#5)

Hence, it follows from Lemma 3 that

|

Since the seeds S are selected among all true pairs with probability 8 independently, we have

)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

Phax < <

1—‘min .

1
8

el G 15
NS (w) N NS (o) N {i:w; < ~ logn}

> il—‘min} < n_4+°(1).

|I“§1 (w) N ng (v) N 5} ~ Binom(

el el 15
NS (w) N NS (o) N {i = w; < — logn}

27:38 Liren Yu, Jiaming Xu, and Xiaojun Lin
Then, we apply Chernoff Bound in Theorem 3 with 7 = 1 and get
P{8B;,} <P {

+P {wa

el el 15
NS () N NS (o) N {i: w; < — logn}

> lF
4 min

el el 15
Ngl(u) ﬂNgz(u) N{i:w; < . log n}

1
< Zrmin
—4+0(1) . 1 1
<n + P {Binom ZI‘mm, 0| < Ermme
1 () _
<n —4+0(1) +exp __mee 4+o(1)’
where (a) holds due to assumption (11). Let B8 =N

that P {8B°} < n~2to(),
Finally, we define event C such that

w0EP iuBuv' It follows from the union bound

QjC’G\jcaj, Vj=1,2 and P Cﬁ] Cl_‘jl.
It follows from Lemma 1 that P {C} > 1 — n~*°(1), Taking the union bound, we have
P{ANBNCNE}>1—n 3+ _p=2ro() _gp=d+o(l) 5 1 _ p=2+o(1)

It remains to verify that on the event AN B N C N &, R; contains all true pairs in Q; and no fake
pairs in §1.

Recall that we uses seeds in S and count the D-hop witnesses in 51 and é:z for all (iandidate
vertex-pairs in Ql in Step 4 of Algorithm 1. On event ANC N &, A(u) C I‘DG1 (w) N ng(u) and
the minimum number of D-hop wAitnesses among all true pairsﬁ(u, u) in Q; is lower bounded
by %TmmG. Onevent BNCNE, TS (u) N ng (v) C NDGI(u) N Ngz(v) the maximum number of
D-hop witnesses among all fake pairs (u, v) in Ql is upper bounded by 3 Tnin6. Thus, GMWM with
threshold r; = %rmme outputs R;, which contains all true pairs in Q; and no fake pairs in él.

C.2.5 Proof of Lemma 5. Fix a vertex u € Py. For each vertex i € Pr_1, let x; be a binary random
variable such that x; = 1 if i connects to u both in G; and G,, and x; = 0 otherwise. Then,

‘I“IGI (w) N rle(u) N Pk_1| = Yiep,_, Xi and x;’s are independent. Moreover, we have

A A—1 2
nw

P{x;=1} > ———

Therefore, applying Chernoff Bound in Theorem 3 with 5 = % yields that

Ca 3- ,B ara Ca 3= ﬁ 2
P Flcl (w) N Fle (w) N Pr_q| < =l < P4 Binom (le—l, @sz) < = <n™
3w nw 3w
ca’Fs? 3
where the last inequality holds because nj_; “Z&=1s? = 5 1> > 32logn in view of (ay-)># >
85wlogn
Cs?

C.2.6 Proof of Lemma 6. Fix a pair of two distinct vertices u, v € Py. For each vertex i € Pj_y, let
x; be a binary random variable such that x; = 1 if i is connected to u in G; and v in G,, and x; = 0
otherwise. Since the event that i is connected to u is independent of the event that i is connected to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:39

v, we have

4.4 2

Qo1 p—y \2 41 +28)%_s° |

Pix =1} < ((14+28) B2) o T S
nw n‘w

- £ _
Moreover, x;’s are independent. Therefore, Flcl (w) N Fl(}z (v) N Pk—l‘ SS Binom (‘Pk‘ ,Pmax). Recall

ng = Cnallc:/f in view of (28) and ’T’k‘ < 2ny in view of (30). Thus, we apply Lemma 6 with A = 4log n,

and get

P { o
C.2.7 Proof of Lemma 7. The proof is divided into two parts. The first part is to identify a set
of “good” events whose intersection holds with high probability. The second part provides a
deterministic argument, showing that on the intersection of these good events, the 1-hop algorithm
successfully matches slice k for all 2 < k < k*.

First, we identify a good event under which the number of common 1-hop neighbors of a true
pair is large. More precisely, for any vertex u € Py, define event

72(0) N Proy | 2

—2
wn

16(1+28)'Cal s> 16 })
+—logny <n

B2
15

3
Ar(u) = {|I‘1Gl () N Flcz () N Pr_q| = §k} , where & = ; ,

and A = Ny<p <+ Nuep, Ax (). By Lemma 5 and union bound, we have P {A°} < n~3+0(1),
Second, we determine a good event under which the number of common 1-hop neighbors of a
fake pair is small. More formally, for any pair of distinct vertices u, v € Py, define event

16(1+28)iCa’Ps? 16
< (k} where i £ k1 + —logn,
w'n 3

Bi(u,0) = { Gy

2 (0) N Py

—3+0(1) .

and B = Nycp<pr N By (u,v). By Lemma 6 and union bound, we have P{B¢} < n

u,UEPk:u;tu

Third, we define an event C = Ny<j<k+ {Qk cOrcC @k} . By Lemma 1 and union bound, we
have P {C°} < n~#o(1),

Finally, we let ¥ denote the event that the first slice is successfully matched, i.e., Ry contains all
true pairs in Q; and no fake pairs in Q;. By Lemma 4, P {F°} < p~15to(1)

Combining the above, it follows that

P {ﬂ NBNCN 7:} >1-— 2n—3+o(1) _ n—4+0(1) _ n—145+0(1) >1— n—1.5+o(1).

It remains to verify on the event A N B N C N F, Ry contains all true pairs in Qf and no fake
pairs in O forall 1 < k < k*. We prove this by induction. The base case with k = 1 follows from
the definition of . Assume the induction hypothesis holds for the slice k — 1, we aim to show it
continues to hold for k.

Recall that when matching the slice Qk, we use Ry_; as the set of seeds. Since the induction
hypothesis is true for slice k — 1, it follows that Ry_; contains all the true pairs in Qx_;. Thus, the
minimum number of 1-hop witnesses among all true pairs (u, u) in Qk is lower bounded by &.
Moreover, since Ry_; contains no fake palrs in Qk 1 and on event C, Qk 1 C Qk, it follows that
Ry_y is contained by all the true pairs in Q;_,. Also, the set of fake pairs in Qk is contained by the
set of fake pairs in Q.. Thus, the maximum number of 1-hop witnesses among all fake pairs (u, v)
in @k is upper bounded by .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:40 Liren Yu, Jiaming Xu, and Xiaojun Lin

Note that i
(b) 64(1+26 Y1 (o)
G @ oa1+20) T 1@

(k) — wn 3 ’

(@)
& = (k) and

_ 1
where (a) holds by definition of 7, (k) in (5); (b) follows from n¥ > o > ap+ > (ssziggn) " for

2 < k < k*; (¢) holds as n is sufficiently large in view of n?Y = o(n) and w = ©(1). Thus, Ry
contains all true pairs in Qx and no fake pairs in Qy, completing the induction.

C.2.8 Proof of Lemma 8. Fix any two distinct vertices u,v € I_JZ;(*H. Then wy, wy, < (1 + 28)ag-.

For each vertex i € ﬁzk*, let x; be a binary random variable such that x; = 1 if i connects to u in G;

and v in Gy, and x; = 0 otherwise. Since the event that i connects to u is independent of the event

that i connects to v, we have

40{,‘:*52 N
2—2

Ape A —1
- pmax-
nw

2
Pix; =1} < ((1+25)2 s) = (1+26)"
Moreover, x;’s are independent. Therefore,

I (w) NI (0) N Poge Py

P

st
< Blnom(

.t
,pmax) < Binom (n, pinay) -
Thus, we get

I (u) NI (0) N Page

> 3} <P {Binom (n, pmax) 2 3}

(@)
<1 Prnax
123 12 6
B (1+28) "Cay’s < yo3ol1).
B n3w® B
where (a) follows from the union bound.

C.2.9 Proof of Lemma 9. We first bound |Sy| by conditioning on Sj,_;. For any u € Py-,p, let x; be
a binary random variable such that x; = 1 if i € S,_; connects to u, and x; = 0 otherwise. Since
Sh-1 is only determined by the vertex weight and the edges connecting to previous S;, I < h—1,
the event that i and u is connected is independent across i conditional on Sp_;. It follows that
P{xi =1 I Shfl} > 0f]<*+h+—1_m<*+}132.
nw
G G- s.t. . Ap* A .
Thus, we have ’Fl "(u) NI (u) N Sp—1| > Binom (|Spi], Wsz) conditional on Sj_;.

Applying Chernoft Bound in Theorem 3 yields that

7|

1 e+ [o4%
<P {Binom (—nk*+h—1, Msz) <(1- v)u}
2 nw

T (w) NI (1) N Spq| < 3

1
|Sp-1| = 5”k*+h—1}

n’ 1
<exp (—;u) =pPh<

1 A Qe ca3;ﬁ s 64wln 2 1/(3-$)
where i = gy —HEEE th 2 = Fh— > 16log2 due to agryp (%) and =
#3 1
221

Then, the above result implies that: E [|Sh| | [Sh_1]| = %nkuh,l] > (1 — pp)ng=+n. Note that the
event u € Sy, only depends on the vertex weight and the edge set E;, = {(u,i) : i € Sp_1} . Because

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:41

E,’s are disjoint, the event u € Sy, is independent across u € Py+4j,. Thus, we apply Chernoff Bound
1-2pp

pm) and have

in Theorem 3 with 5 =

1 1 . 1
P{|5h| < Mkt ISh-1] = Enk*+h—1} <P {Bmom(nk*+h: 1-pp) < 5”k*+h}

_(a- ZPh)an*+h) <n?

S‘”‘p(8(1-pn)

_ 15
where the last inequality holds due to ng+4p, > ng- > Cn (%) s log n due to the choice

of k* in (4) and sufficiently large n.
Finally, we prove by induction that P {|5h| < %nk’q.h} <h-n3.
For h = 0, it is true by definition.
For h > 1,if P{|Sh-1] > nk=sn1} > 1= (h—1) - n7%, then

1 1 1 1
P{|5h| < Enk*+h} SP{|Sh| < 5Mke+h | [Sp-1] = Enk*+h—1} +P{|5h—1| < Enk*+h—1}
<n 3+ (h-1)-n3=h-n>
C.2.10 Proof of Lemma 10. First, for any two distinct vertices u,v € sz*, define event

Ao = { % (u) N T%(0) N Py

<3},

and A =, ,cp...u0 Auo- By Lemma 12 and union bound, we have P {A} < p~ o)

Second, let 8B denote the event that all true pairs in P+ are matched successfully. By Lemma 7,
P{B} > 1—n 150,
Third, by Lemma 1 and union bound, we have P {sz* C Ospe C sz*} < pio(),

Finally, by Lemma 9, we have
1
P {lSh*| > Enk*+h*} >1- .n_3+0(1>.

Combining the above, it follows that

P {7‘ NBN{Qsp € Qi C Qupee} N {ISke| 2 %”k*+h*}} >1—p o),

Now, suppose event AN B N {Qsp+ C sz* C @zk*} N {|Sk+| = %nk*J,h*} holds. We aim to show
that Rg-4;1 contains no fake pair in sz* and all true pairs (u, u) with u € Sy, for h > 0.

We first show R+, contains no fake pair in sz»«. Suppose not. Let (u,v) denote the first fake
pair in @z x+ matched by the PGM algorithm. This implies that the PGM only matches true pairs
before matching (u, v). Since the threshold r of the PGM is set to be 3, it follows that (u,v) has
at least three 1-hop witnesses that are true pairs in sz»«. Since sz* C @zk*’ it follows that

I‘IGI (w) N I“IGZ (0) N Psg| > 3, which contradicts the fact that event A holds. Thus, Ry-,; contains

no fake pairs in Qs-.

Next, we prove that Rg-,; contains all true pairs in Sy for all A > 0 by induction. For ease of
presentation, we assume Ry-;; contains the match pairs in the previous slice, that is Ri+1 O Ri-.
The base case with h = 0 follows from the definition of 8. Assume the induction hypothesis holds
for h — 1, we aim to show it continues to hold for h. Based on the definition of Sy, the true pairs
in Sy have at least 3 common 1-hop neighbors in Sj_;. Because all true pairs in Sp_; have been

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

27:42 Liren Yu, Jiaming Xu, and Xiaojun Lin

matched and Qs+ C sz*, the true pairs in S, would be matched by the PGM algorithm with
threshold r = 3. Therefore, Ry+4; contains all true pairs in S for all & > 0.

Finally,

C i C i
1Sl 2 i = Sneg . > (@),

647w1n 2

Cs?
has ©(n) true pairs.

1/(3-p)
) = ©(1) and the last inequality holds due to the choice of h*. Thus, Ry+11

where w = (

C.2.11 Proof of Lemma 11. Fix a vertex u € P,. For each vertex i € Py, let x; be a binary random
variable such that x; = 1 if i connects to u both in G; and G,, and x; = 0 otherwise. Then,

1"1Gl (w)n I"lG2 (w)n Pk*| = 2iep,. Xi and x;’s are independent. Moreover, we have

A+
P{x;=1} > =042,

Recall |Pp+| > ng« = Cna,i:_ﬁl in view of (28). Hence,

|rG1 (u) NT%(u) N Pe|

Ao e
Bmom (nk*, 52) .

Thus, we apply Chernoff Bound in Theorem 3 with n = % and get

2- 2
C(){k*ﬂz){os2 ' Qo Cak*ﬂaos »
< —— < P{Binom (’lk*, s) < <n?
2w n

P {|FIG1 (u) NI () N Py il =
w

. . P Cca’P aps?

where the last inequality holds because ny- === §2 = —k =

in (4).

> 64log n, due to the choice of k*

C.2.12 Proof of Lemma 12. Fix two distinct vertices u,o € Py. We bound from above the number
of their common 1-hop neighbors in R = i, Pk.
For each k > 1 and each vertex i € Py, let yf.‘ be a binary random variable such that yf =1ifiis

connected to u in Gy and v in G,, and yf? = 0 otherwise. Since the event that i is connected to u is
independent of the event that i is connected to v, we have

k (1+28)ar_1w k 1.2 a4
P{yi =1}5(T‘“a" < (1+28)*——= = s ph o Vk>1
Moreover, yf’s are independent. Thus,
—| s.t K —
FlGl (w) N FIGZ(U) N R‘ < Z Binom (|Pk| ,pﬁlax) .
k=1
_ -B
Recall ng = Cna f in view of (28), ny < ‘Pk| < 2ng,and k = %. Thus,
— | & K (1+ 25)2“13_1 ZCUY(3 P (1+ 25)* Y(3-H)g 2
>)Pk|Pmax <D me—— Z 2D G-p = K"
k=1 k=1
K 2 (3-8)
— | ag Cn¥
Zl)Pk|pmax > nln—ws2 = Ts > 64logn.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

The Power of D-hops in Matching Power-Law Graphs 27:43
Then, we apply Chernoff Bound in Theorem 3 with = 3, and get

d

C.2.13 Proof of Lemma 13. Recall the bound of the number of 1-hop witnesses is provided by
G

Lemma 11 and Lemma 12.
First, for any vertex u € Py, define event
Cai:ﬁ aps?
=11l S
and A = (), ep, Au. By Lemma 11 and union bound, we have P {A} < n~3+o(D),
Second, for any two distinct vertices u,v € ﬁo, define event
Buv = { < 4Kn‘Y(3_ﬁ)32} s

Bup. By Lemma 12 and union bound, we have P {B¢} < n~2to(),

K
I (u) N T (o) ﬂ§| > 4KnY(37ﬂ)sz} <P {Z Binom ()Fk|’p§1ax) > 4Kn”(3ﬂ)sz} <n™
k=1

2 (u) N Py

I (u) NI (o) NR

and B = mu,vepozuiv

Third, we define an event C = [g<f <k {Qk C Qk C @k} N {sz»« C sz»« C @zk*} .ByLemma 1

and union bound, we have P {C¢} < n~4(),

Finally, we let & denote the event that R contains all true pairs in Q- and no fake pairs in Ok
for any k > 1. By Lemma 4, Lemma 7 and Lemma 10, P {&°} < p15+o(1)
Combining the above, it follows that

P {ﬂ NBNCAN 6} >1-— n—3+0(1) _ n—2+o(l) _ n—4+0(1) _ n—1.5+o(l) >1-— n—1.5+0(1)'

Suppose ANBNCNE holds. Then R contains all true pairs in Q-+, and thus the minimum number

9 ,
Cak*ﬁaosz

of 1-hop witnesses among all true pairs (u, u) in Qp C éo is lower bounded by . Moreover,

2nw
since R contains no fake pairs in Q> and Q> C Q5 on event C, it follows that R is contained by
all the true pairs in g Q. i.e., all the true pairs with weights no larger than (1 + 26)n". Thus,

the maximum number of 1-hop witnesses among all fake pairs (u, v) in Qo C Qo is upper bounded

ﬁ
by 4xn’ =P 5% Note that by the choice of k* in (4), Cak;waos 2 ngws (SS‘ZLZgn) > 4xknV P2,
where the last inequality hols for all sufficiently large n in view of 2 < < 3. Moreover, since
Py C Py U Py, for any fake pair (u,0) € QO, the two corresponding true pairs (u, u), (v,0) € Qo U Q.
Therefore, the two true pairs either have more 1-hop witnesses than the fake pair (u, v) or have

already been matched in O:. Hence, R, contains all true pairs in Qp and no fake pairs in QO

Received February 2021; revised April 2021; accepted April 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.

	Abstract
	1 Introduction
	2 Model
	3 Key Algorithmic Ideas
	4 The Power-Law D-hop (PLD) Algorithm
	4.1 Algorithm description
	4.2 Intuition

	5 Main Results
	6 Numerical experiments
	6.1 Choice of D and
	6.2 Performance Comparison with Synthetic Data
	6.3 Performance Comparison with Real Data

	7 Analysis
	7.1 Deal with the Dependency Issues
	7.2 Match Pairs in "0362Q1 using D-hop Algorithm
	7.3 Match Pairs in "0362Qk Slice by Slice using 1-hop Algorithm
	7.4 Match Low-Weight Pairs by PGM
	7.5 Match Pairs in "0362Q0 using 1-hop Algorithm
	7.6 Proof of Theorem 2

	8 Conclusion
	Acknowledgments
	References
	A Algorithm
	A.1 The GMWM Algorithm
	A.2 The PGM Algorithm

	B Computational Complexity Analysis
	C Proof
	C.1 Supporting Theorems
	C.2 Proof of the Main Result

