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which has been successfully utilized to match many real-world networks 1 [24, 25]. Using seeds,
we can then measure the similarity of a vertex-pair by its łwitnesses.ž More precisely, let𝐺1 and𝐺2

denote two graphs. For each pair of vertices (𝑢, 𝑣) with 𝑢 in𝐺1 and 𝑣 in𝐺2, a seed (𝑤,𝑤 ′) is called a
1-hop witness for (𝑢, 𝑣) if𝑤 is a neighbor of 𝑢 in𝐺1 and𝑤

′ is a neighbor of 𝑣 in𝐺2. Since𝐺1 and𝐺2

are graphs with correlated edges, a candidate pair of vertices are expected to have more witnesses
if they are a true pair than if they are a fake pair. Not only has this idea been applied to many graph
matching problems, strong performance guarantees (in term of the required number of seeds) have
been obtained, in particular, for matching Erdős-Rényi graphs [15, 18, 19, 21ś23, 27, 30, 33, 34].

However, Erdős-Rényi graphs fall short of capturing many fundamental structural properties of
real-world networks. Notably, many real-world networks exhibit a power-law degree distribution,
i.e., the fraction of nodes with degree at least 𝑘 decays as 𝑘−𝛽+1 for some exponent 𝛽 > 0. As a
consequence, we expect to see very large degree fluctuations, with some nodes having very high
degrees (so-called hubs) and some other sparsely-connected nodes with small degrees. Intuitively,
this degree fluctuation may confuse witness-based vertex matching, e.g., a fake pair with high
degrees may have many more witnesses than a true pair with low degrees, which foils the existing
seeded algorithms designed for matching Erdős-Rényi graphs.
There have been several attempts to design seeded graph matching algorithms for power-law

graphs [5, 7, 19]. However, they tend to require a larger number of seeds than Erdős-Rényi graphs.
Note that to address the above-mentioned degree variations, a common idea is to first partition
graphs into slices consisting of vertex-pairs with similar degrees. Then, the vertices are matched
slice by slice, starting from the highest-degree slice to lower-degree slices. A cascade process is
triggered, in the sense that the matched vertices in the current slice is used as new seeds to match
the next slice. Intuitively, it is critical to correctly match the first slice in order to successfully
trigger the cascading matching process for the later slices. [5, 7, 19] all use this idea and match the
first slice based on 1-hop witnesses. Unfortunately, they also require a large number of correct
seeds to match the first slice successfully. Specifically, [19] assumes preferential-attachment graphs
with 𝑛 vertices [2] and their algorithm requires Ω(𝑛/log(𝑛)) seeds to match a constant fraction
of vertices correctly. [5, 7] instead assume the Chung-Lu graph model [8] (cf. Section 2). When
all seeds are chosen from the high-degree vertices, [5, 7] show that their algorithm require only
𝑛𝜖 seeds to correctly match a constant fraction of the vertices. However, if the seeds are chosen
uniformly from all vertices, the number of high-degree seeds will be much smaller than 𝑛𝜖 . In that
case, the degree-driven graph matching (DDM) algorithm in [7] requires 𝑛1/2+𝜖 seeds to match a
constant fraction of vertices correctly.

In this paper, we propose a new algorithm for matching power-law graphs. Our algorithm only
requires Ω((log𝑛)4−𝛽 ) initial seeds chosen randomly to correctly match a provably constant fraction
of vertices. Our key departure from [5, 7, 19] is to use łwitnessesž in larger 𝐷-hop neighborhoods.
More precisely, a seed (𝑤,𝑤 ′) is a 𝐷-hop witness for (𝑢, 𝑣) if 𝑤 is a 𝐷-hop neighbor of 𝑢 in 𝐺1

and 𝑤 ′ is a 𝐷-hop neighbor of 𝑣 in 𝐺2 . To see why using 𝐷-hop witnesses is crucial, note that,
under the Chung-Lu model of [8] (cf. Section 2), even the highest degree vertices only have a 1-hop
neighborhood of size at most 𝑂 (

√
𝑛). Since seeds are uniformly chosen, it is obvious that at least

Ω(
√
𝑛) seeds are needed to ensure that a true pair in the first slice can have Ω(1) 1-hop witnesses.

In contrast, as 𝐷 increases, the size of the 𝐷-hop neighborhoods grows rapidly, and thus there are
substantially more seeds that can serve as 𝐷-hop witnesses for true pairs, which provides hope to
significantly reduce the number of initial seeds.

1For example, in social network de-anonymization, some users provide identifiable information in their service registrations

or explicitly link their accounts across different social networks.
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The idea of 𝐷-hop witnesses has also been used for matching Erdős-Rényi graphs in [23, 34].
However, as can be seen in the rest of the paper, the application of 𝐷-hop witnesses to power-
law graphs is highly non-trivial. Specifically, due to the power-law degree variations, the 𝐷-hop
neighborhoods of some high-degree vertices may become so large that even a fake pair can have
many 𝐷-hop witnesses. Therefore, a key challenge is to properly control the size of the 𝐷-hop
neighborhoods. This size depends not only on the degrees of the vertex-pairs to be matched,
but also that of the intermediate nodes (to reach 𝐷-hop) and that of the seeds. To overcome this
challenge, our algorithm design (to be explained in Section 3) (i) carefully chooses the first slice of
vertices to be matched, (ii) carefully chooses the intermediate vertices when constructing the 𝐷-hop
neighborhoods, and (iii) carefully avoids high-degree seeds in order to eliminate the confusion for
fake pairs. These three ideas altogether ensure that the true pairs in the first slice have many more
𝐷-hop witnesses than the fake pairs, and thus can be correctly matched to trigger the cascading
process to match the rest of the graphs. See Section 3 for more detailed discussions.
To fully realize the power of 𝐷-hops, we further need to carefully construct overlapping slices

to account for the potential mismatch in the vertex slicing of graphs 𝐺1 and 𝐺2, and to design
effective ways to match the remaining slices. Assembling all these pieces together enables us to
achieve an exponential reduction in the required number of seeds compared to state-of-art results
in [7]. Specifically, under the Chung-Lu model with power-law exponent 2 < 𝛽 < 3 and max degree
Θ(

√
𝑛), we prove the following performance guarantee of our algorithm, stated informally here

and formally in Section 5.

Theorem 1 (Summary of main result). Suppose 𝐷 >
4−𝛽
3−𝛽 . If there are Ω((log𝑛)4−𝛽 ) initial

seeds chosen independently at random, by optimally choosing the first slice, with high probability our

algorithm correctly matches Ω(𝑛) vertex-pairs without any error.

This reduces the seed size requirement exponentially, as the best previously known result [7]
requires 𝑛1/2+𝜖 seeds. To prove Theorem 1, there are several key innovations in our analysis in
particular to address the difficult dependency issues across edges and slices. First, note that when
we define the 𝐷-hop neighborhoods, we use vertex degrees to construct the slices and to select the
seeds and intermediate nodes. This degree-based slicing unfortunately brings dependency issues.
In particular, if we condition on the vertex degrees, then the edges are no longer independently
generated according to the Chung-Lu model. To circumvent this dependency issue, we first show
that the degree-guided construction and selection can be closely approximated by the weight-
guided counterparts with high probability. Then we restore the independence by studying the
weight-guided construction and selection, since the edges are independently generated according
to the Chung-Lu model given the weights. Second, as we use the matched pairs in the current slice
as new seeds to match the next slice, the matching results are correlated across different slices.
To deal with these correlations, we carefully construct sets of matched pairs that only depend on
vertex weights to łsandwichž the original set of matched pairs at each slice, but are not correlated
any more, which allows us to eliminate the slice-dependency issue. Last but not least, to derive the
optimal choice of the first slice and attain the smallest seed size requirement, we tightly bound the
sizes of the common 𝐷-hop neighborhoods for both true pairs and fake pairs. Compared to the
Erdős-Rényi graphs, this requires much more sophisticated lines of analysis of the neighborhood
exploration process in the power-law graphs due to the heterogeneous vertex weights.
In the literature, the idea of 𝐷-hop witnesses has been used in Erdős-Rényi graphs [23, 34].

However, there is a significant difference in our results for power-law graphs. Specifically, in the
Erdős-Rényi graphs with average degree 𝑑 , the sizes of the 𝐷-hop neighborhoods are highly concen-
trated on 𝑑𝐷 . Moreover, when the average degree 𝑑 is a constant, the size of 𝐷-hop neighborhoods
is always 𝑂 (1) for any constant 𝐷 . Thus, unless 𝐷 increases with 𝑛, at least Ω(𝑛) seeds are still
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needed to ensure that there are enough 𝐷-hop witnesses for true pairs. In stark contrast, the power
of the 𝐷-hop becomes much more significant for matching power-law graphs. In particular, for
power-law graphs with constant average degrees, by properly using the 𝐷-hop witnesses, we

dramatically reduce the seed requirement to Ω((log𝑛)4−𝛽 ), as soon as 𝐷 exceeds
4−𝛽
3−𝛽 . Further, we

note that the algorithms in [23, 34] do not need to worry about controlling the𝐷-hop neighborhood,
as they do not face the challenge of power-law degree variations.
Finally, we conduct extensive experiments on both synthetic and real power-law graphs to

corroborate our theoretical analysis. In particular, we compare our algorithm with five other state-
of-the-art seeded graph matching algorithms. Numerical results demonstrate that our algorithm
drastically boosts the matching accuracy and requires substantially fewer seeds to correctly match
a large fraction of vertices. Further, although our analysis focuses on matching two graphs of the
same number of vertices, our algorithm can be readily applied to match two graphs of different
sizes and return an accurate matching between vertices in the common subgraph of the two graphs.
Indeed, our experiments on real networks in Section 6.3.2 and Section 6.3.3 show that our algorithm
still achieves outstanding matching performance, even when two graphs are of very different sizes.

2 MODEL

Following [5, 7], we adopt the Chung-Lu random graph model [8] to generate the underlying
parent graph with a power-law degree distribution. We use the Chung-Lu model because it can
easily fit different power-law degree distributions of real graphs. Furthermore, when the Chung-Lu
model is used to model large complex graphs, the small-world phenomenon, i.e., having short paths
between any two vertices, is well captured with high probability [8]. The study in [28] also shows
that the Chung-Lu model is effective to fit the eigenvalues and core decompositions for real graphs.
Thus, we believe that our results under the Chung-Lu model can be applied to many real graphs as
illustrated by our numerical experiments in Section 6. Here, [𝑛] denotes the set {1, 2, ..., 𝑛}.

Definition 1. Given parameters 𝑤 > 0, 𝑤 ≪ 𝑤max ≤
√
𝑛𝑤, and 𝛽 > 2, the Chung-Lu graph is a

random graph 𝐺0 ( [𝑛], 𝐸) generated as follows. Each vertex 𝑖 ∈ [𝑛] is associated with a positive

weight 𝑤𝑖 = 𝑤
𝛽−2
𝛽−1

(
𝑛
𝑖+𝑖0

) 1
𝛽−1

, where 𝑖0 = 𝑛
(
𝑤 (𝛽−2)
𝑤max (𝛽−1)

)𝛽−1
. For any pair of two vertices 𝑖, 𝑗 ∈ [𝑛]

with 𝑖 ≠ 𝑗 , they are connected independently by an edge with probability 𝑝𝑖 𝑗 =
𝑤𝑖𝑤𝑗

𝑛𝑤
.

Note that 𝑖0 is chosen such that 𝑤0 = 𝑤max, which is the largest weight among all vertices.
Further,𝑤 approximates the average weight as follows. Since𝑤 ≪ 𝑤max, it follows that 𝑖0 ≪ 𝑛. It
can then be verified that 1

𝑛

∑𝑛
𝑖=1𝑤𝑖 → 𝑤 and 1

𝑛

∑𝑛
𝑖=1 1{𝑤𝑖 ≥𝑤 } ∝ 𝑤−𝛽+1 as 𝑛 → ∞.2 Thus, the degree

of vertex 𝑖 is expected to be close to𝑤𝑖 , which admits a power-law distribution with exponent 𝛽.
The Chung-Lu model is particularly convenient for modelling the degree variations in real-world

networks. In these real-world networks, while the average degree is often a constant, a small but
non-negligible fraction of the vertices has very large degrees (the so-called hubs) [3]. To model such
sparse power-law graphs with hubs, we assume𝑤 = Θ(1) and 2 < 𝛽 < 3. Empirical studies have
shown that the vertex degrees of many real-world networks indeed follow a power-law distribution
with 2 < 𝛽 < 3 [3, 9, 26]. Note that if 0 < 𝛽 ≤ 2, the average degree diverges and the network
cannot be sparse; if 𝛽 ≥ 3, the degree variance is bounded and no large hub can appear [3].

2To see the first part of the statement, let 𝑓 (𝑥) = 𝑤𝑥 /𝑛. Then
∫ 𝑛+1
1

𝑓 (𝑥)𝑑𝑥 ≤ 1
𝑛

∑𝑛
𝑖=1 𝑤𝑖 ≤ 𝑓 (𝑛) +

∫ 𝑛

1
𝑓 (𝑥)𝑑𝑥 . Moreover,

∫ 𝑛

1
𝑓 (𝑥)𝑑𝑥 = 𝑤𝑛

2−𝛽
𝛽−1

(
(𝑛 + 𝑖0 + 1)

𝛽−2
𝛽−1 − (𝑖0 + 1)

𝛽−2
𝛽−1

)
→ 𝑤, in view of 𝑖0 ≪ 𝑛 due to 𝑤max ≫ 𝑤. Further, we can verify

the second part of the statement by 1
𝑛

∑𝑛
𝑖=1 1{𝑤𝑖≥𝑤} =

(
(𝛽−2)𝑤
(𝛽−1)𝑤

)𝛽−1
− 𝑖0

𝑛 →
(
(𝛽−2)𝑤
(𝛽−1)𝑤

)𝛽−1
.
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Next, we obtain a subgraph𝐺1 by sampling each edge of𝐺0 into𝐺1 independentlywith probability
𝑠 , which is a constant independent of 𝑛. To construct another subgraph 𝐺2, repeat the same sub-
sampling process independently and relabel the vertices according to an unknown permutation
𝜋 : [𝑛] → [𝑛]. Throughout the paper, we denote a vertex-pair by (𝑢, 𝑣), where 𝑢 ∈ 𝐺1 and 𝑣 ∈ 𝐺2.
For each vertex-pair (𝑢, 𝑣), if 𝑣 = 𝜋 (𝑢), then (𝑢, 𝑣) is a true pair; if 𝑣 ≠ 𝜋 (𝑢), then (𝑢, 𝑣) is a fake
pair.

Finally, there is an initial seed set S consisting of true pairs. Each true pair is added into S with
probability 𝜃 independently. Our goal is to recover 𝜋 based on the observation of 𝐺1,𝐺2 and S.

Notation. We use standard asymptotic notation: for two positive sequences {𝑎𝑛} and {𝑏𝑛}, we
write 𝑎𝑛 = 𝑂 (𝑏𝑛) or 𝑎𝑛 ≲ 𝑏𝑛 , if 𝑎𝑛 ≤ 𝐶𝑏𝑛 for some an absolute constant𝐶 and for all 𝑛; 𝑎𝑛 = Ω(𝑏𝑛)
or 𝑎𝑛 ≳ 𝑏𝑛 , if 𝑏𝑛 = 𝑂 (𝑎𝑛); 𝑎𝑛 = Θ(𝑏𝑛) or 𝑎𝑛 ≍ 𝑏𝑛 , if 𝑎𝑛 = 𝑂 (𝑏𝑛) and 𝑎𝑛 = Ω(𝑏𝑛); 𝑎𝑛 = 𝑜 (𝑏𝑛) or
𝑏𝑛 = 𝜔 (𝑎𝑛), if 𝑎𝑛/𝑏𝑛 → 0 as 𝑛 → ∞. For ease of reference, the key notations are summarized in
Table 1. The definitions of the last seven notations will be provided in the sequel.

Table 1. Key Notations

𝐺 Graph
𝑛 Number of vertices
𝑤𝑖 Vertex 𝑖’s weight
𝑤max The largest vertex weight
𝛽 Exponent of the power-law degree distribution
𝑝𝑖 𝑗 Connection probability between vertices 𝑖 and 𝑗 in the parent graph
𝑠 Sub-sampling probability
𝜃 Probability that a true pair is chosen as initial seed
S Seed set
Γ
𝐺
𝑑
(𝑢) The set of 𝑑-hop neighbors of vertex 𝑢 in graph 𝐺

𝑃𝑘 The 𝑘-th perfect slice
𝑄𝑘 The 𝑘-th perfect slice-pair 𝑄𝑘 ≜ 𝑃𝑘 × 𝑃𝑘
𝑃𝐺
𝑘

The 𝑘-th imperfect slice of graph 𝐺

𝑄𝑘 The 𝑘-th imperfect slice-pair 𝑄𝑘 ≜ 𝑃
𝐺1

𝑘
× 𝑃𝐺2

𝑘
𝑛𝛾 The largest weight of the first perfect slice
𝛼𝑘 Threshold between the 𝑘-th perfect slice and the (𝑘 − 1)-th perfect slice

3 KEY ALGORITHMIC IDEAS

In this section, we elaborate on our three design choices to properly control the𝐷-hop neighborhood
sizes: the weight of the seeds, the weight of the candidate vertex-pairs, and the weight of the
intermediate vertices.
First, it is important to utilize low-weight seeds while avoiding high-weight seeds. Due to the

power-law degree distribution, when seeds are uniformly chosen, there are many more low-weight
seeds than high-weight seeds. Thus, the 𝐷-hop neighborhoods need to be large enough to reach
sufficiently many low-weight seeds. However, for fake pairs, their large 𝐷-hop neighborhoods
may also overlap. This implies that high-weight seeds may easily become witnesses for fake pairs,
which can appear in many 𝐷-hop neighborhoods. Therefore, in order to avoid having too many
witnesses for fake pairs, it is important to eliminate the high-weight seeds.

Second, for a given 𝐷 , we need to carefully choose the first slice of candidate vertex-pairs to be
matched using the 𝐷-hop witnesses. On the one hand, if the weight of the candidate vertex-pairs
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is too small, the common 𝐷-hop neighborhoods of a true pair are too small to produce enough
witnesses. On the other hand, if the weight of the candidate vertex-pairs is too large, the 𝐷-hop
neighborhoods of a fake pair would intersect a lot, leading to too many 𝐷-hop witnesses.

Third, the high-weight vertices are not suitable to be the intermediate vertices in 𝐷-hop neigh-
borhoods when 𝐷 is large. This is because, when 𝐷 is large, there exist some high-weight vertices
with very large 𝑑-hop (𝑑 < 𝐷) neighborhoods. If these high-weight vertices become (𝐷 − 𝑑)-hop
neighbors of the candidate vertices, the 𝐷-hop neighborhoods of the fake pairs would become too
large. Thus, we should avoid using the high-weight vertices as the intermediate vertices.
Prompted by the above three ideas, we partition the graph into łperfectž slices

𝑃𝑘 = {𝑢 : 𝑤𝑢 ∈ [𝛼𝑘 , 𝛼𝑘−1]} where 𝛼𝑘 = 𝑛𝛾/2𝑘 for 𝑘 ≥ 0, and 𝛼−1 = ∞, (1)

for some 𝛾 ∈ (0, log𝑛𝑤max]. In particular, the first slice 𝑃1 is the set of vertices with weight in
[𝑛𝛾/2, 𝑛𝛾 ], which is the first set of the vertices that we wish to match. We will show in (8) that
for a vertex in the first slice 𝑃1, its number of Θ(1)-weight 𝐷-hop neighbors is on the order of
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1. Hence, we optimally choose 𝛾 close to 1

(3−𝛽) (𝐷−1)+1 so that its number of Θ(1)-
weight 𝐷-hop neighbors is close to Θ(𝑛). Under this optimal choice, we prove that sufficiently
many vertex-pairs in the first slice are correctly matched so that they can be used as new seeds to
trigger the cascading process to match the rest of the graphs slice-by-slice. In fact, for slice 𝑘 ≥ 2

until 𝑘 = 𝑘∗ for some 𝑘∗, since the earlier slices provide so many new seeds, it turns out that using
1-hop witnesses suffices. When 𝑘 > 𝑘∗, the slice-by-slice matching process stops, as there are not
enough 1-hop witnesses to correctly match the slices with low-weight vertices. Fortunately, for the
fake pairs with such low-weights, there are very few 1-hop witnesses as well. Thus we treat all the
low-weight vertices as a single slice and apply the PGM algorithm in [33] to match them. Finally,
we use all the matched vertex-pairs as new seeds to match the zero slice 𝑃0 with very high weights.

For the above ideas to work, however, it is important that the earlier slices do not produce wrong
matches; otherwise, the wrong matches will propagate errors to the subsequent slices. As such, we
only match pairs with the number of witnesses larger than a threshold, as we will see next in the
detailed algorithm.

4 THE POWER-LAW 𝐷-HOP (PLD) ALGORITHM

In this section, we present our Power-Law D-hop (PLD) algorithm, shown in Algorithm 1 and
provide the intuition why it works. As we will explain below, a few steps of our PLD algorithm
use the Greedy Maximum Weight Matching (GMWM) algorithm (which was also used in [1]) and
the Percolation Graph Matching (PGM) algorithm (which was introduced in [33]). We will briefly
explain GMWM and PGM below, and will provide their detailed description in Appendix A for
reference.

4.1 Algorithm description

We first introduce some notations regarding 𝐷-hop neighborhoods. Given any graph𝐺 and two
vertices 𝑢, 𝑣 in 𝐺 , we denote the length of the shortest path from 𝑢 to 𝑣 in 𝐺 by dist𝐺 (𝑢, 𝑣). For
each vertex 𝑢 ∈ 𝐺 , the 𝑑-hop neighbors of 𝑢 is denoted by Γ

𝐺
𝑑
(𝑢) = {𝑣 ∈ 𝐺 : dist𝐺 (𝑢, 𝑣) = 𝑑}. The

neighbors within 𝑑-hop of 𝑢 is denoted by 𝑁𝐺
𝑑
(𝑢) = ⋃𝑑

𝑗=1 Γ
𝐺
𝑗 (𝑢).

Our PLD algorithm carefully incorporates the key algorithmic ideas described in Section 3. At a
high-level, we first slice the vertices according to their degrees. We then apply the 𝐷-hop algorithm
to the first slice (which is carefully chosen). Afterwards, we apply the 1-hop algorithm to the
lower-degree slices 2 to 𝑘∗, until the vertex degrees are about poly-logarithmic in 𝑛, in which case
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we apply the PGM algorithm to the last slice with the lowest-degree vertices. Finally, we return to
slice 0 of vertices with very high degrees.
The full algorithm is presented in Algorithm 1. We now describe the details.

Algorithm 1 The Power-Law D-hop (PLD) Algorithm.

1: Input: Graphs 𝐺1 and 𝐺2, initial seed set S, parameters 𝐷,𝛾, 𝜏1, 𝜏2, 𝑘
∗

2: Construct a subset of low-degree seeds Ŝ =

{
(𝑢, 𝑣) ∈ S :

���Γ𝐺1

1 (𝑢)
��� ,

���Γ𝐺2

1 (𝑣)
��� ≤ 5 log𝑛

}
.

3: Let𝐺𝑖 denote the subgraph of𝐺𝑖 induced by the vertex set 𝑉𝑖 =
{
𝑢 :

���Γ𝐺𝑖

1 (𝑢)
��� ≤ (1 + 𝛿)𝑛𝛾𝑠

}
for

𝑖 = 1, 2.

4: Partition the graph 𝐺𝑖 into slices 𝑃𝐺𝑖

𝑘
for 𝑖 = 1, 2 and 0 ≤ 𝑘 ≤ 𝑘∗, according to (2).

5: In 𝐺1 and 𝐺2, for candidate vertex-pairs in 𝑄1, count their 𝐷-hop witnesses in Ŝ and use
GMWM to match pairs with more than 𝜏1 𝐷-hop witnesses (𝜏1 is given in (3)). The set of
matched pairs is R1.

6: for 𝑘 = 2 to 𝑘∗ do
7: For candidate vertex-pairs in 𝑄𝑘 , count their 1-hop witnesses in R𝑘−1 and use GMWM to

match pairs with more than 𝜏2 (𝑘) 1-hop witnesses (𝜏2 (𝑘) is given in (5)). The set of matched
pairs is R𝑘 .

8: end for

9: Let𝐺 ′
𝑖 denote the subgraph of𝐺𝑖 induced by the vertex set𝑉 ′

𝑖 =

{
𝑢 :

���Γ𝐺𝑖

1 (𝑢)
��� ≤ (1 + 𝛿)𝛼𝑘∗−1𝑠

}
,

for 𝑖 = 1, 2.

10: Apply PGM to 𝐺 ′
1 and 𝐺

′
2, with the seed set R𝑘∗ and the threshold 𝑟 = 3. The set of matched

pairs is denoted by R𝑘∗+1.
11: For candidate vertex-pairs in𝑄0, count their 1-hop witnesses in R̂ ≜ ⋃𝑘∗+1

𝑘=1 R𝑘 and match pairs
with GMWM. The set of matched pairs is R0.

12: Output: All matched pairs R = R̂ ∪ R0 ∪ S

In line 2, we construct a subset of low-weight seeds to use as future witnesses. However, since

we do not have access to the vertex weights directly, we construct a seed subset Ŝ that contains
seeds with degrees no larger than 5 log𝑛 to ensure that all seeds with Θ(1) weights are included.
In line 3, we eliminate the vertices with degrees larger than (1 + 𝛿)𝑛𝛾 and their adjacent edges,

because we do not want to use the high-weight vertices as the intermediate vertices.
In line 4, we partition the graphs 𝐺1 and 𝐺2 into slices. Recall that the łperfectž slices 𝑃𝑘 in (1)

are defined with the vertex weights. Again, since we can not observe the vertex weight directly, we
need to use the vertex degree as an estimate of the vertex weight. However, using vertex degree
to slice vertices creates new technical difficulties. Specifically, for two vertices corresponding to a
true pair, their actual degrees in𝐺1 and𝐺2 may differ, and thus these two vertices may be assigned
to two slices of different indices in 𝐺1 and 𝐺2 . This case becomes problematic because, if we only
match slices with the same index, such a true pair would never be matched. Fortunately, the actual
degrees of the vertices corresponding to a true pair should not differ too much (assuming a common
sub-sampling probability 𝑠 for both graphs). Thus, to address the above difficulty, we enlarge the
slices a little bit, so that with high probability the two vertices corresponding to a true pair can fall
into slices with the same index, and therefore have the opportunity to be matched. More precisely,
for 𝑘 ≥ 0, we define the imperfect slice as

𝑃𝐺𝑘 =
{
𝑢 : (1 − 𝛿)𝛼𝑘𝑠 ≤

��Γ𝐺1 (𝑢)
�� ≤ (1 + 𝛿)𝛼𝑘−1𝑠

}
, for 𝑘 ≥ 0, (2)
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where 𝛿 =
1
8
throughout this paper. Here, 𝛼𝑘 are the same as (1), and the parameters 𝛾 and 𝐷 will

be set to satisfy (10) in Theorem 2. The imperfect slice-pair is then defined as 𝑄𝑘 = 𝑃𝐺1

𝑘
× 𝑃𝐺2

𝑘
=

{(𝑢, 𝑣) : 𝑢 ∈ 𝑃𝐺1

𝑘
, 𝑣 ∈ 𝑃𝐺2

𝑘
}.

In line 5, we count the𝐷-hop witnesses for all vertex-pairs in the first slices 𝑃𝐺1

1 and 𝑃𝐺2

1 , and then
use Greedy Maximum Weight Matching (GMWM) [1] to find the vertex correspondence such that
the total number of witnesses is large. GMWM first finds the vertex-pair with the largest number
of witnesses among all possible vertex-pairs. It then discards all vertex-pairs that are adjacent to
the one just found, and chooses the vertex-pair with the largest number of witnesses among the
remaining candidate vertex-pairs, and so on. The detailed description of the GMWM algorithm
can be found in Appendix A.1. Here, we note that our earlier idea of enlarging the imperfect slices

𝑃𝑘 creates a new problem. That is, the imperfect slices with neighboring indices now have some
overlap. As a result, it is possible that a slice pair contains a fake pair (𝑢, 𝜋 (𝑣)), but does not contain
the true pairs (𝑢, 𝜋 (𝑢)) and (𝑣, 𝜋 (𝑣))3. When that happens, the fake pairs (𝑢, 𝜋 (𝑣)) may have the
most witnesses among all the candidate vertex-pairs containing either 𝑢 or 𝜋 (𝑣). Thus, the fake
pair (𝑢, 𝜋 (𝑣)) may be matched by GMWM. Fortunately, the number of witnesses of these fake pairs
is still expected to be smaller than that of any true pair. Therefore, to resolve this difficulty and to
ensure that only the true pairs are matched, for the first slice we match only the vertex-pairs with
no less than 𝜏1 𝐷-hop witnesses, where 𝜏1 is set to be a constant fraction of the expected number of
the 𝐷-hop witnesses for true pairs, i.e.,

𝜏1 =
3

10

(
𝐶𝑠2

12𝑤

)𝐷
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1)𝜃, (3)

where𝐶 ≜ (2𝛽−1 − 1)
(
(𝛽−2)𝑤
(𝛽−1)

)𝛽−1
. Similar thresholds are also used in the following steps when we

match other slices.
In line 6-8, we use the matched pairs from the previous slice as new seeds, and use the 1-hop

algorithm to match the vertices in slices 𝑘 = 2, ..., 𝑘∗, where

𝑘∗ =

⌊
log2

(
𝑛𝛾

(
𝐶𝑠2

192𝑤 log𝑛

) 1
3−𝛽

)⌋
. (4)

In other words, wematch the vertices with degrees larger than (1−𝛿)𝛼𝑘∗ , where𝛼𝑘∗ ≥
(
192𝑤 log𝑛

𝐶𝑠2

) 1
3−𝛽

.

Again to ensure that only the true pairs are matched for each slice, we only match the vertex-pairs
with at least 𝜏2 (𝑘) 1-hop witnesses, where 𝜏2 (𝑘) is set to be half of the expected number of the
1-hop witnesses of the true pairs, i.e.,

𝜏2 (𝑘) =
𝐶𝛼

3−𝛽
𝑘−1𝑠

2

16𝑤
. (5)

In line 9-10, we apply the PGM algorithm [33, Section 3], which iteratively matches vertex-pairs
whose number of witnesses is no less than a threshold 𝑟 (which is 3 in line 10), to match the
remaining vertices with degrees no larger than (1 + 𝛿)𝛼𝑘∗ . Note that when the vertex weight is this
small, estimating the vertex weight based on its degree is not accurate anymore. Thus, it is difficult
to use the vertex degree to distinguish which slices should these vertices fall into. Instead, we treat
all of these low-weight vertices as one slice. Further, for such low-degree vertices, using 1-hop

3This phenomenon does not contradict the idea of enlarging the slices. Enlarging the slices only guarantees the true

pairs (𝑢, 𝜋 (𝑢)) and (𝑣, 𝜋 (𝑣)) are assigned into some slice-pairs. However, for other slice-pairs that contain the fake pair

(𝑢, 𝜋 (𝑣)) , it is still possible that the two true pairs are not included.
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algorithm based on the seeds from earlier slices will lead to poor performance, because even the
true pairs in this slice have too few 1-hop witnesses. Fortunately, there are even fewer witnesses
for the fake pairs with such low degrees. Thus, we can use the PGM algorithm. The PGM algorithm
starts with the initial seed set S to calculate the number of witnesses for each vertex-pair. As soon
as any vertex-pair gets at least 𝑟 witnesses (which are called łmarksž), it is matched and becomes a
new seed. The łmarksž of neighboring vertex-pairs are then updated to match more vertex-pairs.
See Appendix A.2 for the description of the PGM algorithm. In this way, PGM can match a constant
fraction of the rest of vertex-pairs, while avoiding matching fake pairs.

Finally, in line 11, the algorithm uses all vertex-pairs matched above as new seeds and matches

the vertices in 𝑄0 via the 1-hop algorithm.
The total complexity of our algorithm is 𝑂 (𝑛3−2𝛾 (𝛽−1) ). The proof can be found in Appendix B.

4.2 Intuition

Before we present the main results, we explain the intuition why the above algorithmwill work only
with Ω((log𝑛)4−𝛽 ) seeds. For the purpose of explaining this intuition, we ignore the inaccuracy
of estimating the weights by the vertex degrees and assume that the graphs can be partitioned
into perfect slices 𝑃𝑘 . We further assume that the true mapping 𝜋 is the identity permutation. Also,
when we write ≈, we ignore the constant factors that are non-essential.

The key to the success of Algorithm 1 is appropriately choosing the first slice to apply the
𝐷-hop algorithm. We first calculate the probability that a vertex of Θ(1) weight lies in the 𝐷-hop
neighborhood of a vertex in the first slice. Specifically, given a vertex 𝑢 in the first slice 𝑃1 and
another vertex 𝑣 of weight 1, we want to compute the probability 𝑞𝐷 that 𝑣 is a 𝐷-hop neighbor of

𝑢, i.e., 𝑞𝐷 ≜ P

{
𝑣 ∈ Γ

𝐺 𝑗

𝐷
(𝑢)

}
, where 𝑗 is either 1 or 2. Note that if 𝑣 is a 𝐷-hop neighbor of 𝑢, then 𝑣

is connected to some (𝐷 − 1)-hop neighbors 𝑖 of 𝑢. Therefore, 𝑞𝐷 satisfies the following recursion:

𝑞𝐷 ≈
∑

𝑖∈𝐺 𝑗

P

{
𝑣 ∈ Γ

𝐺 𝑗

1 (𝑖)
}
× P

{
𝑖 ∈ Γ

𝐺 𝑗

𝐷−1 (𝑢)
}

(𝑎)≈ 𝑐
∫ 𝑛𝛾

0

𝑛𝑤−𝛽 · 𝑤
𝑛𝑤

·𝑤𝑞𝐷−1𝑑𝑤

=𝑐
𝑞𝐷−1
𝑤

∫ 𝑛𝛾

0

𝑤2−𝛽𝑑𝑤 =
𝑐𝑛𝛾 (3−𝛽)

𝑤 (3 − 𝛽)𝑞𝐷−1 . (6)

In step (𝑎), we integrate over the degree𝑤 of the (𝐷 − 1)-hop neighbor 𝑖 . Thus, P

{
𝑖 ∈ Γ

𝐺 𝑗

𝐷−1 (𝑢)
}
is

𝑤𝑃𝐷−1 by our definition. Further,𝑤/(𝑛𝑤̄) is the probability that 𝑣 (with weight 1) is connected to 𝑖 ,
and number of such vertices 𝑖 with degree in [𝑤,𝑤 +𝑑𝑤] is about ∑𝑛

𝑖=1 1{𝑤≤𝑤𝑖 ≤𝑤+𝑑𝑤 } → 𝑐𝑛𝑤−𝛽𝑑𝑤

with 𝑐 =
(
(𝛽−2)𝑤
(𝛽−1

)𝛽−1
(𝛽 − 1). By the Chung-Lu model, 𝑞1 ≈ 𝑛𝛾

𝑛𝑤
. Iterating (6) over 𝐷 , it follows that

𝑞𝐷 ≈
(
𝑐
𝑛𝛾 (3−𝛽)

𝑤 (3 − 𝛽)

)𝐷−1
𝑞1 ≈ 𝑐𝐷−1𝑛𝛾 ( (3−𝛽) (𝐷−1)+1)

𝑛𝑤𝐷 (3 − 𝛽)𝐷−1
. (7)

As explained in Section 3, for the success of the 𝐷-hop algorithm, there are two key considerations.
On the one hand, we need to ensure that the fake pairs in𝑄1 ≜ 𝑃1×𝑃1 have very few𝐷-hopwitnesses.
As such, we want to prevent the fake pairs in 𝑄1 from having too many common neighbors of
small weight. Therefore, we require 𝑞𝐷 ≪ 1 which roughly corresponds to 𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) ≪ 𝑛

and is close to the condition (10) (stated later in Theorem 2). On the other hand, we need to ensure
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that the true pairs in 𝑄1 have sufficiently many Θ(1)-weight 𝐷-hop witnesses. Indeed, for 𝑢 ∈ 𝑃1,
its number of common 𝐷-hop neighbors of Θ(1)-weight is at least

���{𝑣 : 𝑤𝑣 = Θ(1)} ∩ Γ
𝐺1∧𝐺2

𝐷
(𝑢)

��� ≈ 𝑛𝑞𝐷 ≈ 𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) , (8)

where the first approximation holds because there are about Θ(𝑛) vertices with Θ(1) weight based
on the power-law weight distribution. Therefore, under condition (11) stated in Theorem 2, which is

roughly 𝜃 = Ω

(
log𝑛

𝑛𝛾 ( (3−𝛽 ) (𝐷−1)+1)

)
, all the true pairs have at least Ω(log𝑛) low-degree 𝐷-hop witnesses.

The above choices thus ensure that all true pairs (but no fake pairs) are matched.
Interestingly, after matching the first slice, it triggers a cascading process, where the newmatches

at one slice can be used as new seeds to match the subsequent slice by the 1-hop algorithm. To see
why using 1-hop witnesses is sufficient, recall that the weight of vertices in 𝑃𝑘 satisfies

𝛼𝑘 ≤ 𝑤𝑖 ≤ 𝛼𝑘−1 ⇐⇒ 𝑛
(
(𝛽−1)𝛼𝑘−1
(𝛽−2)𝑤

)𝛽−1 − 𝑖0 ≤ 𝑖 ≤
𝑛

(
(𝛽−1)𝛼𝑘
(𝛽−2)𝑤

)𝛽−1 − 𝑖0 .

According to the index range of these vertices, we get that the number of vertices in 𝑃𝑘 isΘ
(
𝑛𝛼

1−𝛽
𝑘−1

)
.

Since the vertices in 𝑃𝑘 and the vertices in 𝑃𝑘+1 are connected independently with probability at
least 𝛼𝑘𝛼𝑘+1

𝑛𝑤
, it follows that, for a vertex in 𝑃𝑘+1, its number of 1-hop neighbors in 𝑃𝑘 is about

𝑛𝛼
1−𝛽
𝑘−1 ×

𝛼𝑘𝛼𝑘+1
𝑛𝑤

=
𝛼
1−𝛽
𝑘−1𝛼𝑘𝛼𝑘+1

𝑤
≥
𝛼
3−𝛽
𝑘

8𝑤
. (9)

Note that for the 1-hop algorithm to succeed, the true pairs need to have more than log𝑛 1-hop

witnesses [23]. Since 2 < 𝛽 < 3, we have
𝛼
3−𝛽
𝑘

8𝑤
> log𝑛, as long as 𝛼𝑘 > 𝛼𝑘∗ ≈ (log𝑛)

1
3−𝛽 . Therefore,

assuming that the true pairs in 𝑄𝑘 ≜ 𝑃𝑘 × 𝑃𝑘 are correctly matched, we expect that the 1-hop
algorithm can correctly match the true pairs in 𝑄𝑘+1 as long as 𝑘 < 𝑘∗.

However, when 𝑘 ≥ 𝑘∗, for a vertex in 𝑃𝑘+1, its number of 1-hop neighbors in 𝑃𝑘 becomes smaller
than log𝑛, and thus the 1-hop algorithm can no longer match the vertices in 𝑃𝑘+1 correctly. As
discussed in Section 3, we instead resort to the PGM algorithm to match a constant fraction of
the rest of low-weight vertices. Note that the key to the success of the PGM is that the number of
witnesses for a fake pair is no more than 2 [33]. To see why this condition holds for the remaining
low-weight vertices, note that the probability that a low-weight seed (with weight no larger than𝛼𝑘∗ )

becomes a 1-hop witnesses for a fake pair with weight no larger than 𝛼𝑘∗ is at most
(𝛼𝑘∗𝛼𝑘∗

𝑛𝑤

)2
=

𝛼4
𝑘∗

𝑛2𝑤2 .

Since there are at most 𝑛 seeds and the majority of them are low-weight, the number of witnesses

for any fake pair with low-weights is about
𝛼4
𝑘∗

𝑛𝑤2 ≲
(log𝑛)

4
3−𝛽

𝑛𝑤2 ≪ 1. Thus, we can use the PGM

algorithm with threshold 𝑟 = 3 to match a constant fraction of the low-weight vertex-pairs without
errors.
Finally, the number of vertices with weight less than 𝛼0 is Θ(𝑛). If most true pairs with weight

less than 𝛼0 are matched, we can use them as new seeds to exactly match the remaining vertex-pairs
in 𝑄0.

5 MAIN RESULTS

The following theorem provides a sufficient condition for our algorithm to correctlymatch a constant

fraction of nodes without any errors. We define 𝐶 ≜ (2𝛽−1 − 1)
(
(𝛽−2)𝑤
(𝛽−1)

)𝛽−1
and 𝜅 ≜ (1+2𝛿)225−𝛽𝐶

(23−𝛽−1)𝑤
throughout this paper.
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Theorem 2. Suppose 𝛾 > 0 and the positive integer 𝐷 are chosen such that 𝛾 ≤ log𝑛𝑤max,

𝑛2𝛾 = 𝑜 (𝑛), and

𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) ≤ 𝐶𝑠 (23−𝛽 − 1)
20 · 23−𝛽

(
𝐶𝑠2

12𝜅2 ·𝑤

)𝐷
𝑛

(log𝑛)3−𝛽
. (10)

If the fraction 𝜃 of seeds satisfies

𝜃 ≥ 320 log𝑛
(
𝐶𝑠2

12·𝑤

)𝐷
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1)

, (11)

then for all sufficiently large 𝑛, Algorithm 1 with 𝜏1 in (3) and 𝜏2 (𝑘) in (5) outputs Θ(𝑛) true pairs and
zero fake pairs with probability at least 1 − 𝑛−1+𝑜 (1) .

Recall from (8) that 𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) is roughly the size of the 𝐷-hop neighborhood of a vertex
(with weight around 𝑛𝛾 ) in the first slice 𝑃1. Therefore, on the one hand, (10) ensures that for two
distinct vertices (𝑢, 𝑣) in the first slice, the intersection of their 𝐷-hop neighborhoods is much
smaller than the two neighborhoods, so that the fake pairs have much fewer 𝐷-hop witnesses than
the true pairs. On the other hand, (11) ensures that the true pairs have at least Ω(log𝑛) 𝐷-hop
witnesses.

Assuming𝑤max = Θ(
√
𝑛), if we set𝐷 = 1 and𝛾 =

1
2
−𝜖 for a small constant 𝜖 > 0, then Theorem 2

recovers the seed requirement 𝑛1/2+𝜖 for the 1-hop algorithm which is comparable to the result in
[7]. Surprisingly, for larger 𝐷 , if we optimally choose 𝑛𝛾 in (13), then the seed requirement can be
dramatically reduced to Ω((log𝑛)4−𝛽 ), as shown by the following corollary.

Corollary 1 (The formal version of Theorem 1). Suppose

𝐷 ≥ 1

3 − 𝛽

(
log𝑛

log(𝑤max)
− 1

)
+ 1 and 𝐷 >

4 − 𝛽
3 − 𝛽 . (12)

Choose

𝑛𝛾 ( (3−𝛽) (𝐷−1)+1)
=

𝑐𝑛

(log𝑛)3−𝛽
, (13)

for a sufficiently small constant 𝑐 so that (10) is satisfied, and 𝜏1, 𝜏2 (𝑘) according to (3) and (5),

respectively. If the fraction of seeds satisfies

𝜃 ≥ 𝐶0 (log𝑛)4−𝛽

𝑛

for a sufficiently large constant 𝐶0, then for all sufficiently large 𝑛, Algorithm 1 outputs Ω(𝑛) true
pairs and zero fake pairs, with probability at least 1 − 𝑛−1.

According to (13), we choose 𝛾 asymptotically equal to 1
[ (3−𝛽) (𝐷−1)+1] . Condition (12) is imposed

to ensure that this choice satisfies 𝛾 < 1/2 and 𝛾 ≤ log𝑛 (𝑤max) in Theorem 2. Theorem 1 is a special

case of Corollary 1, where𝑤max = Θ(
√
𝑛) so that (12) reduces to 𝐷 >

4−𝛽
3−𝛽 .

6 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to verify our theoretical findings and the
effectiveness of the PLD algorithm. For all experimental results, we calculate the accuracy rate as
the median of the proportion of vertices that are correctly matched, taken over 10 independent
runs.
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6.1 Choice of 𝐷 and 𝛾

In this section, we simulate our PLD algorithm with different 𝐷 and 𝛾 to investigate the impact
of the two parameters. We generate the underlying parent graph 𝐺0 according to the Chung-Lu
model with 𝑛 = 10000, 𝛽 = 2.5 and𝑤 = 10. Then, we construct𝐺1 and𝐺2 by sampling each edge of
𝐺0 twice independently with probability 𝑠 = 0.8. The seeds are selected such that each true pair
becomes a seed with probability 𝜃 independently.

In Fig. 1, we first plot the accuracy rates of our PLD algorithm with 𝐷 = 3 and different 𝛾 , when 𝜃
varies from 0 to 0.01.We observe that for a given accuracy rate, when𝛾 = 1/[(3 − 𝛽) (𝐷 − 1) + 1], the
PLD algorithm requires the smallest number of seeds. This result is consistent with the theoretical
prediction in Corollary 1, i.e., the optimal choice of 𝛾 approaches 1/[(3 − 𝛽) (𝐷 − 1) + 1] as 𝑛 → ∞.
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Fig. 1. The performance of the PLD algorithm with 𝐷 = 3 and varying 𝛾 .

Then, in Fig. 2, we plot the accuracy rates of our PLD algorithm with different choices of 𝐷 by
fixing 𝛾 = 1/[(3 − 𝛽) (𝐷 − 1) + 1]. We can see that the curves for different 𝐷 align well with each
other, showing that the PLD algorithm with different 𝐷 requires a comparable number of seeds to
succeed when 𝛾 is optimally chosen, as suggested by Corollary 1.

6.2 Performance Comparison with Synthetic Data

For our experiments on synthetic data, we still use the graphs generated in Section 6.1 according
to the Chung-Lu model. Then, our PLD algorithm is simulated and compared with other five
state-of-the-art seeded graph matching algorithms, namely DDM [7], Y-test [5], User-Matching
[19], 2-hop [23] and PGM [33] algorithms. For the PLD algorithm, we select 𝐷 = 2, 3, 4 and
𝛾 = 1/((3−𝛽) (𝐷−1) +1) as suggested in Corollary 1. In Fig. 3, we plot the performance comparison
when 𝜃 varies from 0 to 0.03. We observe that our PLD algorithm with different 𝐷 achieves similar
performance, and it significantly outperforms all other algorithms. Specifically, our PLD algorithm
only requires around 50 seeds to match almost all vertices, while the User-Matching algorithm
requires at least 150 seeds, and the DDM requires at least 220 seeds. Other algorithms perform
even worse. Note that roughly 5% of vertices have degree at most 1 in both graphs; thus we do not
expect to correctly match them. That is why the accuracy rates of our PLD algorithm saturated
around 95%.
Note that the 2-hop and PGM algorithms have been known to work well for matching Erdős-

Rényi graphs [23, 33]. However, we see that they are brittle to the power-law degree variations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.



The Power of 𝐷-hops in Matching Power-Law Graphs 27:13

0 0.004 0.008 0.012 0.016 0.02
0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y
 R

a
te

PLD D=2

PLD D=3

PLD D=4

PLD D=5

Fig. 2. The performance of the PLD algorithm with different 𝐷 and 𝛾 =
1

(3−𝛽) (𝐷−1)+1 .

The DDM, Y-test, and User-Matching algorithms perform slightly better. However, since they all
rely on the 1-hop witnesses, they still require a large number of seeds to succeed.
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Fig. 3. Performance comparison of our PLD algorithm and five other algorithms on the Chung-Lu model

with different 𝜃 .

In Fig. 4, we set 𝜃 = 0.01 and plot the performance comparison when 𝑠 varies from 0 to 1. We
observe that, when 𝑠 is small, the accuracy rates of all these algorithms are low. This is because a
small correlation between the two graphs leads to insufficient witnesses for true pairs. For higher
value of 𝑠 , all algorithms’ performance improves, but our PLD algorithm consistently outperforms
other existing algorithms.
From Fig. 3 and Fig. 4, we can observe that the accuracy rate of the PLD algorithm exhibits a

transition from nearly 0 to close-to-1, when 𝜃 goes from 0.0015 to 0.0045 in Fig. 3 and when 𝑠 goes
from 0.5 to 0.8 in Fig. 4. However, since our main result only provides a sufficient condition, we
cannot conclude whether there is a sharp phase transition, which we leave for future work.
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Fig. 4. Performance comparison of our PLD algorithm and five other algorithms on the Chung-Lu model

with different 𝑠 .

6.3 Performance Comparison with Real Data

6.3.1 Estimate Parameters for Real Graphs. We see that the performance of our PLD algorithm
is outstanding on synthetic graphs. To further demonstrate the power of 𝐷-hops, we investigate
its performance in matching real graphs. However, our algorithm based on the Chung-Lu model
requires several parameters, which are unknown for real graphs. As such, in this section, we
describe our method to estimate the key model parameters before implementing our algorithm.
First and foremost, we estimate the power-law exponent of real graphs by fitting them to the

Chung-Lu model using the maximum-likelihood estimation given in [9]:

𝛽 = 1 + 𝑁
[ ∑

𝑑𝑖 ≥𝑑min

ln

(
𝑑𝑖

𝑑min − 1/2

)]−1
, (14)

where 𝑑𝑖 is the degree of vertex 𝑖 , 𝑁 is the number of vertices with degree at least 𝑑min, and 𝑑min

is some lower bound on the vertex degrees to be specified. It is suggested in [9] to estimate 𝑑min

using the Kolmogorov-Smirnov approach, which minimizes the maximum distance between the
empirical CDF and the theoretical CDF of vertex degrees. More precisely,

𝑑min = argmin
𝑑

max
𝑑𝑖 ≥𝑑

���𝐹𝑑 (𝑑𝑖 ) − 𝐹𝑑 (𝑑𝑖 )
��� ,

where 𝐹𝑑 (𝑥) is the CDF of the observed vertex degrees with values at least 𝑑 , and 𝐹 (𝑥) is the CDF
of the power-law vertex distribution restricted to [𝑑, +∞). Numerical experiments in [9] show 𝛽 is
accurate to 1% or better if 𝑑min is set to be around 6. Thus, we fix 𝑑min = 6 throughout our real-data
experiments.
Next, we estimate the subsampling probability 𝑠 , which characterizes the edge correlation

between the two observed graphs. Let 𝐺 𝑗 [𝑆] denote the subgraph of 𝐺 𝑗 induced by vertices in
𝑆 = {𝑖 : (𝑖, 𝑖) ∈ S}, where S is the initial seed set. Note that under our subsampling model, given an
edge in one graph, it appears in the other graph with probability 𝑠 . Thus we estimate the sampling
probability 𝑠 by

𝑠̂ =
2 |𝐸 [𝐺1 [𝑆] ∧𝐺2 [𝑆]] |

|𝐸 [𝐺1 [𝑆]] | + |𝐸 [𝐺2 [𝑆]] |
, (15)
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where 𝐸 [𝐺] denotes the edge set of graph 𝐺 .
Based on 𝑠̂ , we can further estimate the average weight𝑤 . Recall that𝑤 is close to the average

degree under the Chung-Lu model. Thus, we estimate𝑤 by 𝑑 (𝐺1)+𝑑 (𝐺2)
2̂𝑠

, where 𝑑 (𝐺) is the average
degree in graph 𝐺. Finally, for the fraction of seeds 𝜃 , if it is unknown, we can simply estimate it

by |S |
𝑛
. Note that since𝑤max will not be used by our algorithm, we do not need to estimate it.

Based on the estimated model parameters, we can then determine the input parameters of our
PLD algorithm. Since we optimally choose 𝛾 = 1/((3 − 𝛽) (𝐷 − 1) + 1), the threshold 𝜏1 in (3) can

be simplified to 𝜏1 =
3
10

(
𝐶𝑠2

12𝑤

)𝐷
𝑛𝜃 . Further, the threshold 𝜏2 (𝑘) can be set according to (5).

6.3.2 Facebook Friendship Networks. We use a Facebook friendship network (provided in [32]) of
63392 students and staffs from University of Oregon as the parent graph 𝐺0. There are 1633772
edges in 𝐺0. The power-law exponent of the Facebook social network is estimated as 2.09 by (14).
To obtain two edge-correlated subgraphs 𝐺1 and 𝐺2 of different sizes, we independently sample
each edge of 𝐺0 twice with probability 𝑠 = 0.9 and sample each vertex of 𝐺0 twice with probability
0.8. Then, we relabel the vertices in𝐺2 according to a random permutation 𝜋 : [𝑛2] → [𝑛2], where
𝑛2 is the number of nodes in 𝐺2. Let 𝑚 denote the number of common vertices that appear in
both 𝐺1 and 𝐺2. The initial seed set is constructed by including each true pair independently with
probability 𝜃 . We treat 𝐺1 as the public network and 𝐺2 as the private network, and the goal is to
de-anonymize the node identities in𝐺2 by matching𝐺1 and𝐺2. In Fig. 5, we show the performance
of our PLD algorithm and five other algorithms, when the fraction of initial seeds 𝜃 varies from 0

to 0.05. We can observe that our PLD algorithm significantly outperforms other algorithms. To
investigate which types of vertices contribute most to the matching error of our PLD algorithm,
we fix 𝜃 = 0.01 and plot in Fig. 6 the statistics of the wrongly matched vertices according to their
degrees. Specifically, for a given degree, we compute the number of vertices with such a degree in
the parent graph that are not correctly matched by the PLD algorithm. We can observe that most
matching errors are from low-degree vertices. This is because the low-degree vertices do not have
sufficient common neighbors to distinguish the true pairs. Since there are about 23.5% vertices
that have degree at most 1 in either 𝐺1 or 𝐺2 (who are thus difficult to be correctly matched), the
matching accuracy in Fig. 5 is saturated at around 75%.
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Fig. 5. Performance comparison of the PLD algorithm and five other algorithms applied to the Facebook

networks with different 𝜃 .
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Fig. 6. The statistics of the wrongly matched pairs according to their degrees (in the parent graphs) when the

PLD algorithm is applied to the Facebook networks.

In Fig. 7, we set 𝜃 = 0.01 and plot the performance comparison when 𝑠 varies from 0 to 1. Similar
to Fig. 4, for small 𝑠 , the accuracy rates of all matching algorithms become small because the
correlation between the two graphs are low. For larger 𝑠 , our PLD algorithm again consistently
outperforms other algorithms.
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Fig. 7. Performance comparison of the PLD algorithm and five other algorithms applied to the Facebook

networks with different 𝑠 .

6.3.3 Autonomous Systems Networks. Following [13], we use the Autonomous Systems (AS) data
set from [20] to further test the graph matching performance on power-law graphs. The data set
consists of 9 graphs of Autonomous Systems peering information inferred from Oregon route-views
between March 31, 2001, and May 26, 2001. Since some vertices and edges are changed over time,
these nine graphs can be viewed as correlated versions of each other. The number of vertices of the
9 graphs ranges from 10,670 to 11,174 and the number of edges from 22,002 to 23,409. We aim to
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match each graph to that on March 31, with vertices randomly permuted. The initial seed set is
obtained by including each true pair independently with probability 𝜃 .

The power-law exponent of the Autonomous Systems networks is estimated to be 2.01 according
to (14). Note that in this experiment, the two correlated graphs are provided by the real data set.
Thus, we further estimate the correlation parameter 𝑠 according to (15).

The performance comparison of the six algorithms is plotted in Fig. 8 for 𝜃 = 0.1 and in Fig. 9
for 𝜃 = 0.01. We observe that our PLD algorithm again significantly outperforms other algorithms.
Note that the accuracy rates for all algorithms decay in time, because over time the graphs become
less correlated with the initial one on March 31.

3/31 4/7 4/14 4/21 4/28 5/5 5/12 5/19 5/26

Date

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y
 R

a
te

PLD D=2

PLD D=3

PLD D=4

DDM

Y-test

User Matching

2-hop

PGM

Fig. 8. Performance comparison of the PLD algorithm and five other algorithms applied to the Autonomous

Systems graphs when 𝜃 = 0.1.
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Fig. 9. Performance comparison of the PLD algorithm and five other algorithms applied to the Autonomous

Systems graphs when 𝜃 = 0.01.
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7 ANALYSIS

In this section, we present the proof for Theorem 2. In Section 7.1, we describe the dependency
issue in our analysis and how we deal with it. In Section 7.2, we prove that all the true pairs in the
first slice 𝑄1 are matched error-free by the 𝐷-hop algorithm. Using the matched vertices in the
previous slice as new seeds, we show in Section 7.3 that all the true pairs in slice 𝑄𝑘 are matched
error-free by the 1-hop algorithm for 2 ≤ 𝑘 ≤ 𝑘∗. Further, Section 7.4 proves that using the match
pairs in slice 𝑘∗ as new seeds, the PGM algorithm correctly matches a constant fraction of true
pairs with low weights. Finally, in Section 7.5, we come back to 𝑄0 and prove that using all the
matched pairs as seeds, all the true pairs in 𝑄0 are matched error-free by the 1-hop algorithm.
Theorem 2 readily follows by combining these results. The proofs of auxiliary lemmas can be found
in Appendix C.2.

For ease of presentation, throughout the analysis, we assume without loss of generality that the
true mapping 𝜋 is the identity permutation. We further assume 𝛾 > 0 and the integer 𝐷 are such
that 𝛾 ≤ log𝑛𝑤max, 𝑛

2𝛾
= 𝑜 (𝑛), and (10) holds.

7.1 Deal with the Dependency Issues

In Algorithm 1, we use degrees as guidance to define the imperfect slice 𝑃
𝐺 𝑗

𝑘
for 𝑗 = 1, 2 and the

induced graphs 𝐺1,𝐺2. However, if we condition on the degrees, then the edges are no longer
independently generated with probability 𝑝𝑖 𝑗 as defined in the Chung-Lu model. To deal with this

dependency issue, we construct slices based on vertex weight that łsandwichž 𝑃
𝐺 𝑗

𝑘
. Recall that

the perfect slices defined as 𝑃𝑘 = {𝑢 : 𝑤𝑢 ∈ [𝛼𝑘 , 𝛼𝑘−1]}. By construction and the concentration of

vertex degrees, we expect that 𝑃𝑘 ⊂ 𝑃
𝐺 𝑗

𝑘
. We also need another weight-guided slice to contain 𝑃

𝐺 𝑗

𝑘
.

Specifically, define

𝑃𝑘 = {𝑢 : 𝑤𝑢 ∈ [(1 − 2𝛿)𝛼𝑘 , (1 + 2𝛿)𝛼𝑘−1]},
where 𝛿 =

1
8
. We also define 𝑄𝑘 ≜ 𝑃𝑘 × 𝑃𝑘 . The following lemma shows that with high probability,

𝑃𝑘 ⊂ 𝑃
𝐺 𝑗

𝑘
⊂ 𝑃𝑘 and hence 𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄𝑘 . Similarly, we define two different subsets of vertices that

łsandwichž 𝑉𝑗 :

𝑉 = {𝑢 : 𝑤𝑢 ∈ [0, 𝑛𝛾 ]} and 𝑉 = {𝑢 : 𝑤𝑢 ∈ [0, (1 + 2𝛿)𝑛𝛾 ]}.
Further, let 𝐺 𝑗 and𝐺 𝑗 denote the subgraph of 𝐺 𝑗 induced by the vertex set 𝑉 and 𝑉 , respectively,

for 𝑗 = 1, 2. The following lemma shows that with high probability, 𝑉 ⊂ 𝑉𝑗 ⊂ 𝑉 and hence

𝐺 𝑗 ⊂ 𝐺 𝑗 ⊂ 𝐺 𝑗 .

Lemma 1. For any 0 ≤ 𝑘 ≤ 𝑘∗,

P

{
𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄𝑘

}
≥ 1 − 𝑛−4+𝑜 (1) ,

and

P

{
𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗

}
≥ 1 − 𝑛−4+𝑜 (1) .

For 𝑗 = 1, 2,

P

{
𝑉 ⊂ 𝑉𝑗 ⊂ 𝑉

}
= P

{
𝐺 𝑗 ⊂ 𝐺 𝑗 ⊂ 𝐺 𝑗

}
≥ 1 − 𝑛−3+𝑜 (1) .

7.2 Match Pairs in 𝑄1 using 𝐷-hop Algorithm

Recall that we give a heuristic argument of (8), showing that for a true pair in 𝑄1, the number of
common 𝐷-hop neighbors of Θ(1) weights is on the order of 𝑛𝛾 (3−𝛽) (𝐷−1)+1, by ignoring the the

potential dependency between 𝐺 𝑗 , 𝑄1 and graphs 𝐺1,𝐺2. To resolve this dependency, we crucially
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exploit the fact that with high probability𝑄1 ⊂ 𝑄1 and𝐺 𝑗 ⊂ 𝐺 𝑗 as shown in Lemma 1. In particular,

we consider a true pair (𝑢,𝑢) in 𝑄1 and bound its number of Θ(1)-weight 𝐷-hop neighbors in 𝐺 𝑗 .

Unfortunately, even when𝐺 𝑗 ⊂ 𝐺 𝑗 , the 𝐷-hop neighbors of 𝑢 in𝐺 𝑗 may contain some vertices that

are within the (𝐷 − 1)-hop neighborhood of 𝑢 in 𝐺 𝑗 , which means Γ
𝐺 𝑗

𝐷
⊈ Γ

𝐺 𝑗

𝐷
. In order to exclude

such vertices, we bound the number of Θ(1)-weight vertices in 𝑁𝐺 𝑗

𝐷−1 (𝑢) from above. Fortunately,
��𝑁𝐺 𝑗

𝐷−1 (𝑢)
�� is close to

��Γ𝐺 𝑗

𝐷−1 (𝑢)
��, which is on the order of 𝑛𝛾 (3−𝛽) (𝐷−2)+1 and thus is much smaller

than
��Γ𝐺 𝑗

𝐷

��. To be more precise, we have the following lemma.

Lemma 2. Fix any vertex 𝑢 ∈ 𝑃1 and constant 𝑐 . For all sufficiently large 𝑛,

P

{���Γ𝐺1∧𝐺2

𝐷
(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}

��� ≥ Γmin

}
≥ 1 − 𝑛−4+𝑜 (1) , (16)

P

{���𝑁𝐺 𝑗

𝐷−1 (𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}
��� ≤ 𝑁max

}
≥ 1 − 𝑛−4+𝑜 (1) , for 𝑗 = 1, 2, (17)

where Γmin =
1
2

(
𝐶 ·𝑠2
12·𝑤

)𝐷
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) and 𝑁max = 2𝑐𝜅𝐷𝑛𝛾 ( (3−𝛽) (𝐷−2)+1) .

To appreciate the utility of Lemma 2, note that under the high-probability event 𝐺 𝑗 ⊂ 𝐺 𝑗 ⊂ 𝐺 𝑗

for 𝑗 = 1, 2, we have

Γ
𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑢) ⊃ Γ

𝐺1∧𝐺2

𝐷
(𝑢) \

(
𝑁𝐺1

𝐷−1 (𝑢) ∪ 𝑁
𝐺2

𝐷−1 (𝑢)
)
.

Therefore, combining (16) and (17) implies that with high probability,
���Γ𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}

��� ≥ Γmin − 2𝑁max ≈ Γmin, (18)

where the last approximation holds because Γmin ≫ 𝑁max due to 2 < 𝛽 < 3. Hence, the last display
yields the desired lower bound (8) to the number of common 𝐷-hop neighbors of Θ(1) weights for
a true pair (𝑢,𝑢) in 𝑄1.

Next, we adopt a similar strategy to study fake pairs. In particular, for a fake pair in 𝑄1, we
bound from above its number of common 𝐷-hop neighbors of weights smaller than 15

𝑠
log𝑛.4 Again,

to circumvent the dependency between 𝐺 𝑗 , 𝑄1 and graphs 𝐺1,𝐺2, we consider a fake pair (𝑢, 𝑣)
in 𝑄1 and bound from above its number of Θ(1)-weight neighbors within the common 𝐷-hop

neighborhood in 𝐺1 and 𝐺2.

Lemma 3. Fix any two distinct vertices 𝑢, 𝑣 ∈ 𝑃1. For sufficiently large 𝑛,

P

{����𝑁
𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� ≤ Ψmax

}
≥ 1 − 𝑛−4+𝑜 (1) , (19)

where Ψmax =
23−𝛽𝜅2𝐷𝑛2𝛾 ( (3−𝛽 ) (𝐷−1)+1)

(23−𝛽−1)𝐶𝑛
(
15
𝑠
log𝑛

)3−𝛽 + 2𝛽−2

2𝛽−2−1𝜅
𝐷−1𝑛 (𝛾 (3−𝛽) (𝐷−2)+1) (4 + 6 log𝑛).

Remark 1. To see how (19) follows, note that

𝑁𝐺1

𝐷
(𝑢)∩𝑁𝐺2

𝐷
(𝑣) ⊂

(
Γ
𝐺1

𝐷
(𝑢) ∪ 𝑁𝐷−1 (𝑢, 𝑣)

)
∩
(
Γ
𝐺2

𝐷
(𝑣) ∪ 𝑁𝐷−1 (𝑢, 𝑣)

)
=

(
Γ
𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣)

)
∪𝑁𝐷−1 (𝑢, 𝑣),

where 𝑁𝐷−1 (𝑢, 𝑣) = 𝑁𝐺1

𝐷−1 (𝑢) ∪𝑁
𝐺2

𝐷−1 (𝑣). We have already obtained an upper bound to
���𝑁𝐺 𝑗

𝐷−1

��� when

proving (17) for 𝑗 = 1, 2. Thus, it remains to bound from above
���Γ𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣)

���. A simple yet key

4The threshold 15
𝑠 log𝑛 is chosen such that {𝑖 : 𝑤𝑖 ≤ 15

𝑠 log𝑛} contains {𝑖 : |Γ𝐺1
1 (𝑖) | ≤ 5 log𝑛, |Γ𝐺2

1 (𝑖) | ≤ 5 log𝑛} with
high probability.
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observation is that for a vertex 𝑖 of weight 1, there are two extreme cases in which 𝑖 becomes a

common 𝐷-hop neighbor of (𝑢, 𝑣). One case is that 𝑖 connects to some vertex in Γ
𝐺1

𝐷−1 (𝑢) \ Γ
𝐺2

𝐷−1 (𝑣),
and connects to some other vertex in Γ

𝐺2

𝐷−1 (𝑣) \ Γ
𝐺1

𝐷−1 (𝑢). It can be shown that each of these two
connections happens independently with probability approximately 𝑞𝐷 and thus the number of
such common 𝐷-hop neighbors is about 𝑛𝑞2

𝐷
, which roughly gives rise to the first term of Ψmax.

The other extreme case is that 𝑖 is a (𝐷 − 1)-hop neighbor of some common neighbor of (𝑢, 𝑣).
Luckily, the common 1-hop neighborhood of (𝑢, 𝑣) is typically of a very small size and thus we can

bound from above
���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣)
��� by approximately log𝑛. Moreover, 𝑖 becomes a (𝐷 − 1)-hop

neighbor of a given vertex in Γ
𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) with probability at most 𝑞𝐷−1. Thus, the number of
such common 𝐷-hop neighbors is at most around 𝑛𝑞𝐷−1 log𝑛, which gives an expression close to
the second term of Ψmax. These two extreme cases turn out to be the dominating cases as shown in
the proof of Lemma 3.

To see the usage of Lemma 3, note that under the high-probability event𝐺 𝑗 ⊂ 𝐺 𝑗 for 𝑗 = 1, 2, we

have Γ𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣) ⊂ 𝑁𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣). Therefore, (19) implies that with high probability

����Γ
𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� ≤ 2Ψmax, (20)

which yields the desired upper bound to the number of common 𝐷-hop neighbors of Θ(1) weights
for a fake pair (𝑢, 𝑣) in 𝑄1.

Finally, since we have 𝑛𝛾 (3−𝛽) ≫ log𝑛 and 𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) (log𝑛)3−𝛽 = 𝑂 (𝑛) based on the choice
in (11), it follows that Γmin > 2Ψmax. Moreover, (11) ensures that Γmin𝜃 = Ω(log𝑛). Therefore,
combining (18) and (20) implies that the true pairs in 𝑄1 have more 𝐷-hop witnesses than the fake

pairs in 𝑄1. Hence, we can use Algorithm 1 to match pairs in 𝑄1 correctly. More precisely, we have
the following lemma.

Lemma 4. Under the conditions of Theorem 2, for all sufficiently large 𝑛, the set of matched pairs

in Step 5 of Algorithm 1, denoted by R1, contains all true pairs in 𝑄1 and no fake pairs in 𝑄1 with

probability at least 1 − 𝑛−1.5+𝑜 (1) .

7.3 Match Pairs in 𝑄𝑘 Slice by Slice using 1-hop Algorithm

Given that all the true pairs in 𝑄1 are matched error-free, we show that all the true pairs in 𝑄𝑘 are
matched error-free by the 1-hop algorithm for all 2 ≤ 𝑘 ≤ 𝑘∗.

Note that when matching pairs in 𝑄𝑘 , we use R𝑘−1, the set of matched vertices in 𝑄𝑘−1, as seeds.
Suppose slice 𝑘−1 is successfully matched. Then, R𝑘−1 contains all the true pairs in𝑄𝑘−1. Therefore,
for a true pair in 𝑄𝑘 , to bound from below its number of 1-hop witnesses in R𝑘−1, it suffices to

consider its number of 1-hop common neighbors in 𝑃𝑘−1, which is on the order of
𝛼
3−𝛽
𝑘−1
2𝑤

as we
explained in (9). This intuition is made precise by the following lemma.

Lemma 5. Fix any 2 ≤ 𝑘 ≤ 𝑘∗ and any vertex 𝑢 ∈ 𝑃𝑘 . For all sufficiently large 𝑛,

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘−1
��� ≥ 𝜉𝑘

}
≥ 1 − 𝑛−4, (21)

where 𝜉𝑘 =
𝐶𝛼

3−𝛽
𝑘−1𝑠

2

16𝑤
.

Moreover, if slice 𝑘 − 1 is successfully matched, since there is no matching error, on the high-

probability event 𝑃𝑘−1 ⊂ 𝑃𝑘−1, R𝑘−1 is contained by the set of true pairs in 𝑄𝑘−1 ≜ 𝑃𝑘−1 × 𝑃𝑘−1.
Therefore, for a fake pair in 𝑄𝑘 , to bound from above its the number of 1-hop witnesses in R𝑘−1, it
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suffices to bound its number of 1-hop common neighbors in 𝑃𝑘−1, which is done in the following

lemma. Note that to resolve the potential dependency between 𝑄𝑘 and graphs 𝐺1,𝐺2, we state the

lemma for a fake pair in 𝑄𝑘 , which contains 𝑄𝑘 with high probability.

Lemma 6. Fix any 2 ≤ 𝑘 ≤ 𝑘∗ and any two distinct vertices 𝑢, 𝑣 ∈ 𝑃𝑘 , Then for all sufficiently large

𝑛,

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃𝑘−1
��� ≤ 𝜁𝑘

}
≥ 1 − 𝑛−4, (22)

where 𝜁𝑘 =
8(1+2𝛿)4𝐶𝛼5−𝛽

𝑘−1
𝑤2𝑛

+ 16
3
log𝑛.

To see how (22) follows, note that a vertex in 𝑃𝑘−1 is a 1-hop common neighbor for the fake pair

(𝑢, 𝑣) with probability at most on the order of
(𝛼𝑘𝛼𝑘−1

𝑛𝑤

)2
=

𝛼4
𝑘−1

4𝑛2𝑤2 . Since there are Θ(𝑛𝛼1−𝛽
𝑘−1 ) vertices

in 𝑃𝑘−1, the number of 1-hop common neighbors in 𝑃𝑘−1 is about
𝛼
5−𝛽
𝑘−1

4𝑛𝑤2 on expectation. The extra

term 16
3
log𝑛 in (22) comes from the sub-exponential tail bounds when we apply concentration

inequalities.

Recall that we assume 𝑛2𝛾 = 𝑜 (𝑛) and hence 𝛼
3−𝛽
𝑘−1 ≫ 𝛼

5−𝛽
𝑘−1
𝑛

for 2 ≤ 𝑘 ≤ 𝑘∗. Moreover, 𝛼
3−𝛽
𝑘−1 ≥

𝛼
3−𝛽
𝑘∗ ≥ 192𝑤 log𝑛

𝐶𝑠2
for 2 ≤ 𝑘 ≤ 𝑘∗. It then can be verified that 𝜉𝑘 > 𝜁𝑘 . Thus, we expect that the 1-hop

algorithm can match vertex-pairs in 𝑄𝑘 correctly. More precisely, we have the following lemma.

Lemma 7. Under the conditions of Theorem 2, for all sufficiently large 𝑛, with probability at least

1 − 𝑛−1.5+𝑜 (1) , the set of matched pairs in Step 6-8 of Algorithm 1, denoted by R𝑘 , contains all true
pairs in 𝑄𝑘 and no fake pairs in 𝑄𝑘 for all 2 ≤ 𝑘 ≤ 𝑘∗.

7.4 Match Low-Weight Pairs by PGM

We proceed to match pairs with weight smaller than 𝛼𝑘∗ using the PGM algorithm. As explained in
Section 4.2, we expect that the number of common 1-hop neighbors for any fake pair with weights
smaller than 𝛼𝑘∗ is at most 2. Thus, even if all low-weight true pairs are provided as seeds, no fake
pair will be matched by the PGM algorithm with threshold 𝑟 = 3. This intuition is made precise by
the following lemma.

Lemma 8. Denote 𝑃 ≥𝑘∗ = {𝑢 : 𝑤𝑢 ∈ [0, (1 + 2𝛿)𝛼𝑘∗−1]}. Fix any two distinct vertices 𝑢, 𝑣 ∈ 𝑃 ≥𝑘∗+1.
Then for all sufficiently large 𝑛,

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃 ≥𝑘∗
��� ≤ 2

}
≥ 1 − 𝑛−2. (23)

Although the PGM algorithm may fail to match some true pairs with very few common 1-hop
neighbors, it is expected to match the true pair with at least three 1-hop witnesses. In particular, let
us recursively define

𝑆0 = 𝑃𝑘∗ , 𝑆ℎ = {𝑢 : 𝑢 ∈ 𝑃ℎ+𝑘∗ , |Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑆ℎ−1 | ≥ 3} for ℎ ≥ 1.

Note that 𝑆0 = 𝑃𝑘∗ has been correctly matched based on Lemma 7 in the previous step. Also, once
the true pairs in 𝑆ℎ−1 are added into the set of matched pairs, the PGM algorithm with threshold
𝑟 = 3 can use the vertices in 𝑆ℎ−1 as new seeds to match vertices in 𝑆ℎ correctly. Therefore, all the
true pairs in 𝑆ℎ for any ℎ ≥ 1 can be correctly matched. Thus, to show the PGM matches many
true pairs, it suffices to bound from below the size of 𝑆ℎ for ℎ ≤ ℎ∗, which is done by the following
theorem.
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Lemma 9. Let𝑤 ≜
(
192𝑤 ln 2
𝐶𝑠2

)1/(3−𝛽)
. Define ℎ∗ such that𝑤 ≤ 𝛼𝑘∗+ℎ∗ < 2𝑤. Then for any 1 ≤ ℎ ≤

ℎ∗, and all sufficiently large 𝑛,

P

{
|𝑆ℎ | ≥

1

2
𝑛𝑘∗+ℎ

}
≥ 1 − 𝑛−3+𝑜 (1) . (24)

The proof of Lemma 9 follows by induction. Assume (24) holds for ℎ − 1. Then analogous to the

intuition of (9), for any 𝑢 in 𝑃𝑘∗+ℎ , E
[���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑆ℎ−1
���
]
≈ 𝛼

3−𝛽
𝑘∗+ℎ𝐶𝑠

2

𝑤
≥ 4 ln 2. Hence, we can

show that P {𝑢 ∈ 𝑆ℎ} ≥ 3
4
, which further implies (24) holds for ℎ by concentration.

By Lemma 9, the PGM matches at least half of true pairs in 𝑃𝑘∗+ℎ∗ . Note that the number of
vertices in 𝑃𝑘∗+ℎ∗ satisfies 𝑛𝑘∗+ℎ∗ = 𝐶𝑛(𝛼𝑘∗+ℎ∗−1)1−𝛽 ≥ 𝐶𝑛(𝑤)1−𝛽 = Θ(𝑛), as 𝑤 = Θ(1). Thus, the
set of matched pairs by the PGM contains a constant fraction of true pairs. More precisely, we have
the following lemma.

Lemma 10. Under the conditions of Theorem 2, for all sufficiently large 𝑛, with probability at least

1−𝑛−1+𝑜 (1) , the set of matched pairs in Step 10 of Algorithm 1, denoted by R𝑘∗+1, contains all true pairs
in 𝑆ℎ and no fake pairs in 𝑄𝑘∗+ℎ for all ℎ ≥ 1. In particular, we have |R𝑘∗+1 | = Θ(𝑛) with probability

at least 1 − 𝑛−1+𝑜 (1) .

7.5 Match Pairs in 𝑄0 using 1-hop Algorithm

Given that a large constant fraction of true pairs with weights smaller than𝛼0 are matched error-free,
we show that all the true pairs in 𝑄0 are matched error-free by the 1-hop algorithm.

When we match vertices in 𝑄0, we use R̂, the set of pairs matched in Step 5 − 10 of Algorithm
1, as seeds. Note that all true pairs in 𝑄𝑘∗ have been proved to be matched correctly with high

probability. The number of true pairs in𝑄𝑘∗ isΘ(𝑛𝛼1−𝛽
𝑘∗−1) and the vertex in 𝑃0 has weight larger than

𝑛𝛾 . Moreover, a vertex in 𝑃0 connects to a vertex in 𝑃𝑘∗ with probability at least
𝛼0𝛼𝑘∗
𝑛𝑤

. Therefore,

for a true pair in𝑄0, to bound from below its number of 1-hop witnesses in R̂, it suffices to consider

its number of 1-hop common neighbors in 𝑃𝑘∗ , which is about 𝑛𝛼
1−𝛽
𝑘∗−1 ×

𝛼0𝛼𝑘∗
𝑛𝑤

= Θ(𝛼2−𝛽
𝑘∗ 𝑛𝛾 ). More

precisely, we have the following theorem.

Lemma 11. Fix any vertex 𝑢 ∈ 𝑃0. For all sufficiently large 𝑛,

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘∗
��� ≥

𝐶𝛼
2−𝛽
𝑘∗ 𝛼0𝑠

2

8𝑤

}
≥ 1 − 𝑛−4. (25)

We caution the reader that even though the true pair (𝑢,𝑢) may have more 1-hop witnesses in
𝑄𝑘∗+1 than 𝑄𝑘∗ , we cannot consider its number of 1-hop common neighbors in 𝑃𝑘∗+1, because the
PGM algorithm only matches a subset of the true pairs in 𝑄𝑘∗+1 and this subset is random and may
incur dependency issues to the analysis.

Next we study fake pairs. Note that with high probability R̂ contains no fake pair in
⋃
𝑘≥1𝑄𝑘 .

Therefore, on the event that 𝑃𝑘 ⊂ 𝑃𝑘 for all 𝑘 ≥ 1, all the matched pairs in R̂ is contained by the

set of true pairs in 𝑅 × 𝑅, where 𝑅 =
⋃
𝑘≥1 𝑃𝑘 = {𝑖 : 𝑤𝑖 ∈ [0, (1 + 2𝛿)𝑛𝛾 ]}. Therefore, for a fake

pair in 𝑄0, to bound from above its the number of 1-hop witnesses in R̂, it suffices to bound its

number of 1-hop common neighbors in 𝑅, which is done in the following lemma. Again, to resolve

the potential dependency between 𝑄0 and graphs 𝐺1,𝐺2, we state the lemma for a fake pair in 𝑄0,

which contains 𝑄0 with high probability.
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Lemma 12. Denote 𝑅 = {𝑖 : 𝑤𝑖 ∈ [0, (1 + 2𝛿)𝑛𝛾 ]}. Fix any two distinct vertices 𝑢, 𝑣 ∈ 𝑃0. For all
sufficiently large 𝑛,

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑅
��� ≤ 4𝜅𝑛𝛾 (3−𝛽)𝑠2

}
≥ 1 − 𝑛−4, (26)

where 𝜅 =
(1+2𝛿)225−𝛽𝐶
(23−𝛽−1)𝑤 .

To see how (26) follows, note that a vertex in 𝑃𝑘 becomes a common 1-hop neighbor of the fake

pair (𝑢, 𝑣) with probability at most
(𝛼𝑘𝑤max

𝑛𝑤

)2 ≤ 𝛼2
𝑘

𝑛𝑤
. Since there are Θ(𝑛𝛼1−𝛽

𝑘
) true pairs in 𝑄𝑘 , the

number of common 1-hop neighbors in 𝑅 is on the order of
∑𝐾
𝑘=1

𝛼
3−𝛽
𝑘

𝑤
= Θ

(
𝑛𝛾 (3−𝛽)

)
.

Recall that 𝑃0 ⊂ 𝑃0 ∪ 𝑃1. Thus for any fake pair (𝑢, 𝑣) ∈ 𝑄0, the two corresponding true pairs

(𝑢,𝑢), (𝑣, 𝑣) ∈ 𝑄0 ∪𝑄1. If one of them is in 𝑄1, then it has already been matched in 𝑄1 by Lemma 4.

If one of them is in 𝑄0, since 𝛼
2−𝛽
𝑘∗ 𝑛𝛾 = Θ

(
𝑛𝛾 (log𝑛) (2−𝛽)/(3−𝛽)

)
≫ 𝑛𝛾 (3−𝛽) in view of 2 < 𝛽 < 3, it

has more 1-hop witnesses than the fake pair (𝑢, 𝑣). Thus, we expect that the 1-hop algorithm can

match all the true pairs in 𝑄0 error-free. More precisely, we have the following lemma.

Lemma 13. Under the conditions of Theorem 2, for all sufficiently large 𝑛, with probability at least

1 − 𝑛−2.5, the set of matched pairs in Step 11 of Algorithm 1, denoted by R0, contains all true pairs in

𝑄0 and no fake pairs in 𝑄0.

7.6 Proof of Theorem 2

Due to Lemma 10 and R𝑘∗+1 ⊂ R, the set of matched pairs by Algorithm 1 contains Θ(𝑛) true pairs
with probability at least 1 − 𝑛−1+𝑜 (1) . Combining Lemma 4, Lemma 7, Lemma 10 and Lemma 13, R
contains no fake pairs with probability at least 1 − 𝑛−1+𝑜 (1) .

8 CONCLUSION

In this paper, we propose an efficient seeded algorithm for matching graphs with power-law degree
distributions. Theoretically, under the Chung-Lu model with power-law exponent 2 < 𝛽 < 3

and max degree Θ(
√
𝑛), we show that as soon as 𝐷 >

4−𝛽
3−𝛽 , by optimally choosing the first slice,

our algorithm correctly matches a constant fraction of true pairs without any error with high
probability, provided with only Ω((log𝑛)4−𝛽 ) initial seeds. This result achieves an exponential

reduction in the seed size requirement, as the previously best known result requires 𝑛1/2+𝜖 initial
seeds. Empirically, numerical experiments in both synthetic and real power-law graphs further
demonstrate that our algorithm significantly outperforms the state-of-the-art algorithms. These
results uncover the enormous power of 𝐷-hops in seeded graph matching under power-law graphs.

Our work can be extended along several future directions. First, our work focuses on the challeng-
ing scenario when all seeds are uniformly chosen. We expect that it would be easier to match graphs
when more high-degree vertex-pairs are chosen as seeds. It would be interesting to extend our
algorithm to such cases with non-uniform seeds and reduce the existing seed requirement Ω(𝑛𝜖 )
in [5, 7]. Second, the Chung-Lu model may not well capture some properties of real networks, such
as the clustering coefficients and the abundance of triangles [28]. An alternative power-law model
is the celebrated preferential attachment model [2]. It remains open whether similar performance
guarantees for 𝐷-hop algorithm can be shown under the preferential attachment model to reduce
the existing seed requirement Ω(𝑛/log(𝑛)) in [19]. Finally, another interesting and important future
direction to further explore the power of 𝐷-hops in matching power-law graphs without seeds.
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A ALGORITHM

In this section, we present the GMWM algorithm [1] and the PGM algorithm [33] used in our PLD
algorithm.

A.1 The GMWM Algorithm

After counting the number of witnesses, we can form a weighted bipartite graph 𝐺𝑚 , with the
vertex set being a collection of all vertices in 𝐺1 and 𝐺2, the edges connecting every possible
vertex-pairs, and the weight of an edge being defined as the number of witnesses. Then, we use the
GMWM algorithm shown in Algorithm 2 to find the matches in 𝐺𝑚 with large weights. GMWM
first chooses the vertex-pair with the largest weight from all candidate vertex-pairs in 𝐺𝑚 . Then, it
removes all edges adjacent to the chosen vertex-pair, and then chooses the vertex-pair with the
largest weight among the remaining candidate vertex-pairs, and so on.

Algorithm 2 The Greedy Maximum Weight Matching (GMWM) Algorithm.

1: Input: Graph 𝐺𝑚 , the set of matched pairs𝑀 = ∅.
2: while 𝐺𝑚 contains edges do
3: Choose the pair (𝑖, 𝑗) with largest weight.
4: Add (𝑖, 𝑗) into𝑀 .
5: delete 𝑖 , 𝑗 and their adjacent edges from 𝐺𝑚 .
6: end while

7: Output: The set of matched pairs𝑀

A.2 The PGM Algorithm

The PGM algorithm proposed in [33] is shown in Algorithm 3. The algorithm iteratively matches
pairs with at least 𝑟 witnesses. The algorithm maintains a set𝑀 of matched pairs (which is initially
the seed set S), and a set 𝑍 of used pairs (which is initially empty). At each iteration, the algorithm
uses exactly one unused but already matched pair (𝑖, 𝑗) ∈ 𝑀 \ 𝑍 . This vertex-pair adds one mark

(i.e., one witness) to each neighboring pair, i.e., to every pair in Γ
𝐺1

1 (𝑖) × Γ
𝐺2

1 ( 𝑗). This vertex-pair
(𝑖, 𝑗) then becomes a used pair, which is added to 𝑍 . As soon as any vertex-pair gets at least 𝑟 marks,
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it is added to the set𝑀 of matched pairs. The process iterates until there are no more unused pairs
in𝑀 \ 𝑍 .

Algorithm 3 The Percolation Graph Matching (PGM) Algorithm.

1: Input: Graphs 𝐺1,𝐺2, initial seed set S, used seed set 𝑍 = ∅, threshold 𝑟 .
2: Let𝑀 = S
3: for all vertex-pairs (𝑖, 𝑗) ∈ 𝑀 \ 𝑍 do

4: Add one mark to all candidate vertex-pairs (𝑖 ′, 𝑗 ′) such that 𝑖 ′ ∈ Γ
𝐺1

1 (𝑖) and 𝑗 ′ ∈ Γ
𝐺2

1 ( 𝑗).
5: if a vertex-pair (𝑖 ′, 𝑗 ′) has at least 𝑟 marks then
6: Add (𝑖 ′, 𝑗 ′) into𝑀 .
7: All other candidates (𝑖 ′, 𝑗 ′′) and (𝑖 ′′, 𝑗 ′) are discarded from consideration.
8: end if

9: 𝑍 = 𝑍 ∪ {(𝑖, 𝑗)}.
10: end for

11: Output: The set of matched pairs𝑀

B COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of Algorithm 1 in each step.

First, Algorithm 1 checks all the vertices degrees to construct the subgraphs 𝐺1,𝐺2 and partition
the vertices in 𝐺1 and 𝐺2 into slices based on vertex degrees in line 2-4 and line 9. The total time
complexity of this step is 𝑂 (𝑛).
We then apply the 𝐷-hop algorithm in the first slice. Searching for all 𝐷-hop neighbors of a

given vertex 𝑢 in the first slice takes a total of 𝑂 (𝑛) time steps. The number of vertices in the first

slice in Θ(𝑛𝛼1−𝛽1 ). Thus, the complexity of counting 𝐷-hop witnesses for all vertices-pairs in the

first slice-pair is𝑂 (𝑛3𝛼2(1−𝛽)1 ) = 𝑂 (𝑛3−2𝛾 (𝛽−1) ). Since we have shown that with high probability, all
the fake pairs have 𝐷-hop witnesses fewer than the threshold, we only need to sort and match at
most 𝑛 true pairs using GMWM and hence the complexity of the GMWM step is 𝑂 (𝑛 log𝑛).
We next apply the 1-hop algorithm in the subsequent slices. We compute the number of 1-

hop witnesses via neighborhood exploration. For each matched pair in 𝑄𝑘−1, we fetch its 1-hop

neighbors of size 𝑂 (𝛼𝑘−1) in 𝐺1 and 𝐺2, and then increase the number of 1-hop witnesses by 1 for
𝑂 (𝛼2

𝑘−1) vertex-pairs. Thus, the total complexity of our algorithm to match vertices in 𝑃𝑘 is about

𝑛𝛼
1−𝛽
𝑘−1 × 𝛼

2
𝑘−1 = 𝑂 (𝑛1+𝛾 (3−𝛽) ).

Analogously, the PGM algorithm explores the 1-hop neighbors of each matched pair. There are
at most 𝑛 matched pair, and for each mathced pair, we increase the number of 1-hop witnesses by
1 for 𝑂 (△2) vertex-pairs, where △ is the largest degree among 𝐺 ′

1 and 𝐺
′
2. By the definition, △ is

𝑂 ((log𝑛)
1

3−𝛽 ). Therefore, the total complexity in line 10 is 𝑂 (𝑛(log𝑛)
2

3−𝛽 ).
Finally, there are at most 𝑛 true pairs to serve as 1-hop witnesses for vertex-pairs in 𝑄0. For

any true pair (𝑖, 𝑖), the complexity of neighborhood exploration is 𝑂 ( |Γ𝐺1

1 (𝑖) | |Γ𝐺2

1 (𝑖) |). Thus, the
complexity of line 11 is

∑𝑛
𝑖=1 |Γ

𝐺1

1 (𝑖) | |Γ𝐺2

1 (𝑖) | = 𝑂 (∑𝑛
𝑖=1𝑤

2
𝑖 ) = 𝑂 (𝑛1+(3−𝛽)/2) as shown in [8, page

98].
In conclusion, by summing up the complexity for each step, the total computational complexity

of our algorithm is 𝑂
(
(𝑛3−2𝛾 (𝛽−1) + 𝑛 log𝑛 + 𝑛1+𝛾 (3−𝛽) + 𝑛(log𝑛)

2
3−𝛽 + 𝑛1+(3−𝛽)/2

)
= 𝑂

(
𝑛3−2𝛾 (𝛽−1)

)

due to 𝛾 ≤ 1/2 and 2 < 𝛽 < 3.
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C PROOF

C.1 Supporting Theorems

Theorem 3. Chernoff Bound ([12]): Let 𝑋 =
∑
𝑖∈[𝑛] 𝑋𝑖 , where 𝑋𝑖 , 𝑖 ∈ [𝑛], are independent random

variables taking values in {0, 1}. Then, for 𝜂 ∈ [0, 1],

P {𝑋 ≤ (1 − 𝜂)E [𝑋 ]} ≤ exp

(
−𝜂

2

2
E [𝑋 ]

)
, P {𝑋 ≥ (1 + 𝜂)E [𝑋 ]} ≤ exp

(
−𝜂

2

3
E [𝑋 ]

)
.

Theorem 4. Bernstein’s Inequality ([12]): Let 𝑋 =
∑
𝑖∈[𝑛] 𝑋𝑖 , where 𝑋𝑖 , 𝑖 ∈ [𝑛], are independent

random variables such that |𝑋𝑖 | ≤ 𝐾 almost surely. Then, for 𝑡 > 0, we have

P {𝑋 ≥ E [𝑋 ] + 𝑡} ≤ exp

(
− 𝑡2

2(𝜎2 + 𝐾𝑡/3)

)
,

where 𝜎2 =
∑
𝑖∈[𝑛] var(𝑋𝑖 ) is the variance of 𝑋 . It follows then for 𝜌 > 0, we have

P

{
𝑋 ≥ E [𝑋 ] +

√
2𝜎2𝜌 + 2𝐾𝜌

3

}
≤ exp(−𝜌).

The obtained estimate holds for P
{
𝑋 ≤ E [𝑋 ] −

√
2𝜎2𝜌 − 2𝐾𝜌

3

}
too (by considering −𝑋 ), i.e.,

P

{
𝑋 ≤ E [𝑋 ] −

√
2𝜎2𝜌 − 2𝐾𝜌

3

}
≤ exp(−𝜌).

Theorem 5. ([34, Theorem 6]) For 𝑟 ≥ 0, every real number 𝑥 ∈ (0, 1) and 𝑟𝑥 ≤ 1, it holds that

𝑟 log (1 − 𝑥) ≤ log
(
1 − 𝑟𝑥

2

)
.

Theorem 6. ([34, Corollary 1]) Let 𝑋 denote a random variable such that 𝑋 ∼ Binom(𝑛, 𝑝). If
𝑛 ∈ [𝑛min, 𝑛max], then for 𝜆 > 0,

P

{
𝑋 ≥ 2𝑛max𝛼 + 4𝛾

3

}
≤ exp(−𝛾) (27)

C.2 Proof of the Main Result

First, we define some notations related to graph slicing. We count the number of vertices in the

slice 𝑃𝑘 and 𝑃𝑘 . The vertices in 𝑃𝑘 satisfies

𝛼𝑘 ≤ 𝑤𝑖 ≤ 𝛼𝑘−1 ⇐⇒ 𝑛
(

(𝛽−1)𝑛𝛾
(𝛽−2)𝑤2𝑘−1

)𝛽−1 − 𝑖0 ≤ 𝑖 ≤
𝑛

(
(𝛽−1)𝑛𝛾
(𝛽−2)𝑤2𝑘

)𝛽−1 − 𝑖0.

According to the index range of the vertices, we define 𝑛𝑘 to be the difference between the two
bounds. To be more precise,

𝑛𝑘 ≜ 𝐶𝑛𝛼
1−𝛽
𝑘−1 , (28)

where 𝐶 throughout this paper denotes (2𝛽−1 − 1)
(
(𝛽−2)𝑤
(𝛽−1)

)𝛽−1
. Moreover, we have that

𝑛𝑘 ≤ |𝑃𝑘 | ≤ 𝑛𝑘 + 1 ≤ 11

10
𝑛𝑘 . (29)

Similarly, the vertices in 𝑃𝑘 satisfies

(1 − 2𝛿)𝛼𝑘 ≤ 𝑤𝑖 ≤ (1 + 2𝛿)𝛼𝑘−1.
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Thus,
���𝑃𝑘

��� ≤
(
2𝛽−1 (1 + 2𝛿)𝛽−1 − (1 − 2𝛿)𝛽−1

) 𝑛𝑘

2𝛽−1 − 1
+ 1

(𝑎)
≤

(
5
2

)𝛽−1 −
(
3
4

)𝛽−1

2𝛽−1 − 1
𝑛𝑘 + 1 ≤ 2𝑛𝑘 , (30)

where (𝑎) follows from 𝛿 =
1
8
.

The number of perfect slices, denoted by 𝐾 , is

log2 (𝑛𝛾 ) ≤ 𝐾 ≤ 1 + log2 (𝑛𝛾 ) .

C.2.1 Proof of Lemma 1. First, we prove 𝑃𝑘 ⊂ 𝑃
𝐺 𝑗

𝑘
with high probability for 0 ≤ 𝑘 ≤ 𝑘∗ and 𝑗 = 1, 2.

Fix any vertex 𝑢 in 𝑃𝑘 . It suffices to show with high probability 𝑢 ∈ 𝑃𝐺 𝑗

𝑘
. Note that any vertex 𝑣

connects to 𝑢 in 𝐺 𝑗 independently with probability 𝑝𝑢𝑣𝑠 , where 𝑗 = 1, 2 and 𝑝𝑢𝑣 =
𝑤𝑢𝑤𝑣

𝑛𝑤
. Thus

E

[���Γ𝐺 𝑗

1 (𝑢)
���
]
=

∑

𝑣∈𝐺 𝑗

𝑝𝑢𝑣𝑠 = 𝑤𝑢𝑠 .

Note that 𝛼𝑘 ≤ 𝑤𝑢 ≤ 𝛼𝑘−1 and 𝛼𝑘 ≥ 𝛼𝑘∗ ≥
(
85𝑤 log𝑛

𝐶𝑠2

) 1
3−𝛽 ≥ 20 log𝑛

𝛿2𝑠
for the choice of 𝑘∗ in (4) and

sufficiently large 𝑛, in view of 2 < 𝛽 < 3. Then, applying the Chernoff Bound in Theorem 3 with
𝜂 = 𝛿 yields

P

{���Γ𝐺 𝑗

1 (𝑢)
��� ≥ (1 + 𝛿)𝛼𝑘−1𝑠

}
≤ exp

(
−𝛿2𝛼𝑘−1𝑠

3

)
≤ 𝑛−5,

and

P

{���Γ𝐺 𝑗

1 (𝑢)
��� ≤ (1 − 𝛿)𝛼𝑘𝑠

}
≤ exp

(
−𝛿2𝛼𝑘𝑠

2

)
≤ 𝑛−5.

Combining the last two displayed equation yields that

P

{
𝑢 ∉ 𝑃

𝐺 𝑗

𝑘

}
≤ 2𝑛−5 .

Taking an union bound over 𝑢 gives

P

{
𝑃𝑘 ⊂ 𝑃

𝐺 𝑗

𝑘

}
≥ 1 −

∑

𝑢∈𝑃𝑘
P

{
𝑢 ∉ 𝑃

𝐺 𝑗

𝑘

}
≥ 1 − 𝑛−4+𝑜 (1) . (31)

Next we show that 𝑃≥𝑘∗ ⊂ 𝑃
𝐺 𝑗

≥𝑘∗ with high probability. Fix any vertex 𝑢 ∈ 𝑃𝑘 with 𝑘 ≥ 𝑘∗. Take a

vertex 𝑣 ∈ 𝑃𝑘∗ with𝑤𝑣 = 𝛼𝑘∗−1. Since𝑤𝑢 ≤ 𝑤𝑣 , we have
���Γ𝐺 𝑗

1 (𝑢)
���
𝑠.𝑡 .
≤

���Γ𝐺 𝑗

1 (𝑣)
���. Therefore,

P

{
𝑢 ∉ 𝑃

𝐺 𝑗

≥𝑘∗
}
= P

{���Γ𝐺 𝑗

1 (𝑢)
��� ≥ (1 + 𝛿)𝛼𝑘∗−1𝑠

}
≤ P

{���Γ𝐺 𝑗

1 (𝑣)
��� ≥ (1 + 𝛿)𝛼𝑘∗−1𝑠

}
≤ 𝑛−5,

Taking a union bound over 𝑢 gives

P

{
𝑃≥𝑘∗ ⊂ 𝑃

𝐺 𝑗

≥𝑘∗
}
≥ 1 − 𝑛−4+𝑜 (1) . (32)

Second, we prove that for 0 ≤ 𝑘 ≤ 𝑘∗, with high probability 𝑃𝑘 ⊂ 𝑃𝑘 , or equivalently, [𝑛]\𝑃𝑘 ⊂
[𝑛]\𝑃𝑘 , Fix any vertex 𝑢 with𝑤𝑢 > (1+ 2𝛿)𝛼𝑘−1, applying the Chernoff Bound with 𝜂 =

𝛿
1+2𝛿 yields

P

{���Γ𝐺 𝑗

1 (𝑢)
��� ≤ (1 + 𝛿)𝛼𝑘−1𝑠

}
≤ exp

(
−𝛿2 𝛼𝑘−1𝑠

2(1 + 2𝛿)

)
≤ 𝑛−5. (33)
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For any vertex 𝑢 with𝑤𝑢 < (1 − 2𝛿)𝛼𝑘 , applying the Chernoff Bound with 𝜂 =
𝛿

1−2𝛿 yields

P

{���Γ𝐺 𝑗

1 (𝑢)
��� ≥ (1 − 𝛿)𝛼𝑘𝑠

}
≤ exp

(
−𝛿2 𝛼𝑘𝑠

3(1 − 2𝛿)

)
≤ 𝑛−5 . (34)

Thus, we have

P

{
𝑃
𝐺 𝑗

𝑘
⊂ 𝑃𝑘

}
= P

{
[𝑛]\𝑃𝑘 ⊂ [𝑛]\𝑃𝐺 𝑗

𝑘

}
≥ 1 −

∑

𝑢∉𝑃𝑘

P

{
𝑢 ∈ 𝑃𝐺 𝑗

𝑘

}
≥ 1 − 𝑛−4, (35)

where the last inequality holds by combining (33) and (34). Moreover,

P

{
𝑃
𝐺 𝑗

≥𝑘∗ ⊂ 𝑃 ≥𝑘∗
}
= P

{
[𝑛]\𝑃 ≥𝑘∗ ⊂ [𝑛]\𝑃𝐺 𝑗

≥𝑘∗
}
≥ 1 −

∑

𝑢:𝑤𝑢> (1+2𝛿)𝛼𝑘∗−1

P

{
𝑢 ∈ 𝑃𝐺 𝑗

≥𝑘∗
}
≥ 1 − 𝑛−4, (36)

where the last inequality holds by (33).

Then, combining (31) and (35) with the union bound yields that P
{
𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄𝑘

}
≥ 1 −

𝑛−4+𝑜 (1) for 0 ≤ 𝑘 ≤ 𝑘∗. Similarly, combining (32) and (36) with a union bound yields that

P

{
𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗

}
≥ 1 − 𝑛−4+𝑜 (1) .

Finally, since 𝑉 =
⋃
𝑘≥1 𝑃𝑘 , 𝑉 =

⋃
𝑘≥1 𝑃

𝐺 𝑗

𝑘
and 𝑉 =

⋃
𝑘≥1 𝑃𝑘 , combining (31), (32), (35), and (36)

with the union bound, we have

P

{
𝐺 𝑗 ⊂ 𝐺 𝑗 ⊂ 𝐺 𝑗

}
= P

{
𝑉 ⊂ 𝑉𝑗 ⊂ 𝑉

}
≥ 1 − 𝑛−3+𝑜 (1) .

C.2.2 Proof of Lemma 2. Note that𝐺1 ∧𝐺2,𝐺1, and𝐺2 are graphs that are edge-sampled from𝐺0

with probability 𝑠2, 𝑠 , 𝑠 , respectively. Thus, we let𝐺 denote a graph obtained by sampling each edge

of𝐺0 independently with probability 𝑡 = Θ(1) and𝐺 denote a subgraph of𝐺 induced by the vertex

set𝑉 = {𝑢 : 𝑤𝑢 ∈ [0, (1 + 2𝛿)𝑛𝛾 ]}. Fix a vertex 𝑢 ∈ 𝑃1, we first study its number of 𝑑-hop neighbors

in each slice in 𝐺 . Then, we can arrive at Lemma 2 by selecting the corresponding parameters. To

be more precise, we define Γ𝐺
𝑑,𝑘

(𝑢) = Γ
𝐺
𝑑
(𝑢) ∩ 𝑃𝑘 and 𝑁𝐺𝑑,𝑘 (𝑢) =

⋃
1≤ 𝑗≤𝑑 Γ

𝐺
𝑗,𝑘
(𝑢). We bound Γ

𝐺
𝑑,𝑘

(𝑢)
and 𝑁𝐺

𝑑,𝑘
(𝑢) by the following lemma.

Lemma 14. Fix any vertex 𝑢 ∈ 𝑃1, and let Ω𝑑 denote the event such that the followings hold

simultaneously for 𝑘 = 1, . . . , 𝐾 :

���Γ𝐺𝑑,𝑘 (𝑢)
��� ≥ 2(𝑘−1) (𝛽−2)

(
(1 − 2𝛿)2𝐶 · 𝑡

12 ·𝑤

)𝑑
𝑛𝛾 (3−𝛽)𝑑 ≜ Γmin (𝑑, 𝑘), (37)

���Γ𝐺𝑑,𝑘 (𝑢)
��� ≤ 2(𝑘−1) (𝛽−2)𝜅𝑑𝑛𝛾 (3−𝛽)𝑑 ≜ Γmax (𝑑, 𝑘), (38)

���𝑁𝐺𝑑,𝑘 (𝑢)
��� ≤ 2(𝑘−1) (𝛽−2)+1𝜅𝑑𝑛𝛾 (3−𝛽)𝑑 , (39)

where 𝜅 =
(1+2𝛿)225−𝛽𝐶
(23−𝛽−1)𝑤 . Suppose 𝛾 and 𝐷 are chosen such that condition (10) holds. Then, for all

1 ≤ 𝑑 ≤ 𝐷 and sufficiently large 𝑛,

P {Ω𝑑 } ≥ 1 − (4𝑑 − 1)𝑛−4 . (40)

Remark 2. The intuition behind Lemma 14 is as follows. Recall that 𝑞𝑑 , the probability that a
vertex of Θ(1) weight lies in the 𝑑-hop neighborhood of a vertex in the first slice, is on the order of
𝑛𝛾 [ (3−𝛽) (𝑑−1)+1]−1 in view of (7). Note that the weight of vertices in 𝑃𝑘 is about 𝛼𝑘 , and the size of
𝑃𝑘 is Θ(𝑛𝛼1−𝛽 ). Thus, the expected number of vertices in 𝑃𝑘 that are 𝑑-hop neighbors of a given
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vertex in the first slice is roughly 𝑛𝑞𝑑𝛼
2−𝛽
𝑘

≈ 2(𝑘−1) (𝛽−2)𝑛𝛾 (3−𝛽)𝑑 . Hence, we expect (37)ś (39) to
hold with high probability by concentration.

Before proving Lemma 14, we first show how to apply Lemma 14 to prove Lemma 2. By setting

𝛿 = 0 and 𝑡 = 𝑠2, we have 𝐺 = 𝐺1 ∧ 𝐺2. Thus, (37) with 𝑘 = ⌈log2 (𝑛𝛾 )⌉ and 𝑑 = 𝐷 leads to the

desired conclusion (16). Moreover, there are at most 𝑐 slices in {𝑖 : 𝑤𝑖 ≤ 𝑐}. By setting 𝛿 =
1
8
,

𝑑 = 𝐷 − 1, 𝐺 = 𝐺 𝑗 (i.e., 𝑡 = 𝑠), (39) with log2 (𝑛𝛾/𝑐) ≤ 𝑘 ≤ 𝐾 ≤ log2 (𝑛𝛾 ) + 1, we have

𝐾∑

𝑘= ⌊log2 (𝑛𝛾 /𝑐) ⌋
2(𝑘−1) (𝛽−2)+1𝜅𝐷−1𝑛𝛾 (3−𝛽) (𝐷−1) ≤ 2𝑐𝜅𝐷−1𝑛𝛾 ( (3−𝛽) (𝐷−2)+1)

= 𝑁max,

where 𝑁max is given in (17). Thus, we prove the desired conclusion (17).
We then present the proof of Lemma 14.

proof of Lemma 14. Fix a vertex 𝑢 in 𝑃1, we study its 𝑑-hop neighborhood in 𝐺 from 𝑑 = 1.

For 𝑑 = 1: For each vertex 𝑖 ∈ 𝑃𝑘 , define an indicator variable

𝑥𝑘𝑖 = 1{
𝑖∈Γ𝐺1 (𝑢)

} .

In other words, 𝑥𝑘𝑖 = 1 if 𝑖 is connected to 𝑢 in𝐺 , and 𝑥𝑘𝑖 = 0 otherwise. Since 𝑢 ∈ 𝑃1, it follows that

𝑝𝑘min = (1 − 2𝛿)𝛼𝑘𝛼1
𝑛𝑤

𝑡 ≤ P
{
𝑥𝑘𝑖 = 1

}
≤ (1 + 2𝛿)𝛼𝑘−1𝛼0

𝑛𝑤
𝑡 = 𝑝𝑘max .

Then, we have
���Γ𝐺1,𝑘 (𝑢)

��� = ∑
𝑖∈𝑃𝑘 𝑥

𝑘
𝑖 and 𝑥𝑘𝑖 ’s are independent. Recall that 𝑛𝑘 = 𝐶𝑛𝛼

1−𝛽
𝑘−1 in view of

(28) and 𝑛𝑘 ≤
���𝑃𝑘

��� ≤ 2𝑛𝑘 in view of (30). Thus

𝑛𝑘𝑝
𝑘
min = (1 − 2𝛿)𝐶

𝛼
2−𝛽
𝑘−1𝛼1

2𝑤
𝑡 = (1 − 2𝛿)𝐶 𝑛𝛾 (3−𝛽)

4 · 2(𝑘−1) (2−𝛽)𝑤
𝑡,

𝑛𝑘𝑝
𝑘
max = (1 + 2𝛿)𝐶

𝛼
2−𝛽
𝑘−1𝛼0

𝑤
𝑡 = (1 + 2𝛿)𝐶 𝑛𝛾 (3−𝛽)

2(𝑘−1) (2−𝛽)𝑤
𝑡 .

Hence, applying Chernoff Bound in Theorem 3 with 𝜂 =
1
2
yields that

P

{���Γ𝐺1,𝑘 (𝑢)
��� ≤ (1 − 2𝛿) 𝐶𝑛𝛾 (3−𝛽)𝑡

8 · 2(𝑘−1) (2−𝛽)𝑤

}
≤ P

{
Binom

(
𝑛𝑘 , 𝑝

𝑘
min

)
≤ 1

2
𝑛𝑘𝑝

𝑘
min

}
(𝑎)
≤ 𝑛−4,

P

{���Γ𝐺1,𝑘 (𝑢)
��� ≥ (1 + 2𝛿) 3𝐶𝑛𝛾 (3−𝛽)𝑡

2(𝑘−1) (2−𝛽)𝑤

}
≤ P

{
Binom

(
2𝑛𝑘 , 𝑝

𝑘
max

)
≤ 3𝑛𝑘𝑝

𝑘
max

} (𝑏)
≤ 𝑛−4,

where (𝑎) and (𝑏) hold because 𝑛𝑘𝑝
𝑘
max ≥ 𝑛𝑘𝑝

𝑘
min

≥ (1 − 2𝛿)𝐶𝑛𝛾 (3−𝛽 ) 𝑡
4·𝑤 ≥ 108 log𝑛 for sufficiently

large 𝑛.

We also have P
{���𝑁𝐺1,𝑘 (𝑢)

��� ≥ 3𝑛𝑘𝑝
𝑘
max

}
≤ 𝑛−4 due to 𝑁𝐺

1,𝑘
(𝑢) = Γ

𝐺
1,𝑘

(𝑢). Finally, taking the union
bound leads to (40) for 𝑑 = 1.
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For 2 ≤ 𝑑 ≤ 𝐷 : We first count the 𝑑-hop neighbors conditional on the (𝑑 − 1)-hop neighborhood
of 𝑢 such that Ω𝑑−1 holds. The high-level idea is as follows. After the conditioning, every vertex 𝑖
outside the (𝑑 − 1)-hop neighborhood of 𝑢 will become a 𝑑-hop neighbor by connecting to at least
one of the (𝑑 − 1)-hop neighbors 𝑣 of 𝑢. These edge connections are still independently generated
across different 𝑣 and 𝑖 according to the Chung-Lu model.

We first bound
���Γ𝐺𝑑,𝑘 (𝑢)

��� from below. For each vertex 𝑖 ∈ 𝑃𝑘 \
(
𝑁𝐺
𝑑−1,𝑘 (𝑢)

)
≜ 𝑃 ′

𝑘
, define an indicator

variable

𝑦𝑘𝑖 = 1{
∃𝑣∈Γ𝐺

𝑑−1 (𝑢) : 𝑖∈Γ
𝐺
1 (𝑣)

} .

In other words, 𝑦𝑘𝑖 = 1 if 𝑖 is connected to at least one (𝑑 − 1)-hop neighbor of 𝑢 in 𝐺 , and

𝑦𝑘𝑖 = 0 otherwise. Thus, we have
���Γ𝐺𝑑,𝑘 (𝑢)

��� = ∑
𝑖∈𝑃 ′

𝑘
𝑦𝑘𝑖 , and 𝑦

𝑘
𝑖 ’s are independent across different 𝑖

conditional on Ω𝑑−1.

Note that Γ𝐺
𝑑−1,1 (𝑢) ⊂ Γ

𝐺
𝑑−1 (𝑢). Thus, we can bound P

{
𝑦𝑘𝑖 = 1|Ω𝑑−1

}
from below by considering

the possible edge connections between 𝑖 and vertices in Γ
𝐺
𝑑−1,1 (𝑢). More precisely, we get that

P

{
𝑦𝑘𝑖 = 1 | Ω𝑑−1

}
≥P

{
∃𝑣 ∈ Γ

𝐺
𝑑−1,1 (𝑢) : 𝑖 ∈ Γ

𝐺
1 (𝑣) | Ω𝑑−1

}

(𝑎)
≥ 1 − (1 − 𝑝𝑣𝑖 )Γmin (𝑑−1,1)

≥1 −
(
1 − (1 − 2𝛿)2𝛼𝑘𝛼1

𝑛𝑤
𝑡
)Γmin (𝑑−1,1)

(𝑏)
≥ (1 − 2𝛿)2

2
Γmin (𝑑 − 1, 1)𝛼𝑘𝛼1𝑡

𝑛𝑤

=
3

2𝑘𝐶𝑛

(
(1 − 2𝛿)2𝐶 · 𝑡

12 ·𝑤

)𝑑
𝑛𝛾 ( (3−𝛽) (𝑑−1)+2) ≜ 𝑝𝑘,𝑑

min
.

where (𝑎) holds because
{
𝑖 ∉ Γ

𝐺
1 (𝑣)

}
are independent across 𝑣 ; (𝑏) follows from Theorem 5.

Now, to bound
���Γ𝐺𝑑,𝑘 (𝑢)

��� from below, we also need a lower bound to |𝑃 ′
𝑘
|, or equivalently an upper

bound to
���𝑁𝐺𝑑−1,𝑘 (𝑢)

���. Since we have conditioned on the (𝑑 − 1)-hop neighborhood of 𝑢 such that

event Ω𝑑−1 holds. It follows from (39) that
���𝑁𝐺𝑑−1,𝑘 (𝑢)

��� ≤2(𝑘−1) (𝛽−2)+1𝜅𝑑−1𝑛𝛾 (3−𝛽) (𝑑−1)

=2𝜅𝑑−1𝑛𝛾 ( (3−𝛽) (𝑑−2)+1)𝛼1−𝛽
𝑘−1

(𝑎)
≤ 𝐶

10
𝑛𝛼

1−𝛽
𝑘−1 ≤ 1

9
𝑛𝑘 ,

where (𝑎) holds due to the condition (10). Thus, we have
��𝑃 ′
𝑘

�� ≥ |𝑃𝑘 | −
���𝑁𝐺𝑑−1,𝑘 (𝑢)

��� ≥ 8
9
𝑛𝑘 .

Note that for sufficiently large 𝑛,

8

9
𝑛𝑘𝑝

𝑘,𝑑
min

=
4

3 · 2(𝑘−1) (2−𝛽)

(
(1 − 2𝛿)2𝐶𝑡

12 ·𝑤

)𝑑
𝑛𝛾 (3−𝛽)𝑑 =

4

3
Γmin (𝑑, 𝑘) ≥ 128 log𝑛.

Thus, we apply the Chernoff Bound in Theorem 3 with 𝜂 =
1
4
and get

P

{���Γ𝐺𝑑,𝑘 (𝑢)
��� ≤ Γmin (𝑑, 𝑘) | Ω𝑑−1

}
≤ P

{
Binom

(
8

9
𝑛𝑘 , 𝑝

𝑘,𝑑
min

)
≤ Γmin (𝑑, 𝑘) | Ω𝑑−1

}
≤ 𝑛−4.
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Next, we bound
���Γ𝐺𝑑,𝑘 (𝑢)

��� from above. To this end, we bound P
{
𝑦𝑘𝑖 = 1|Ω𝑑−1

}
from above and get

P

{
𝑦𝑘𝑖 = 1|Ω𝑑−1

} (𝑎)
≤

𝐾∑

𝑙=1

P

{
∃ 𝑗 ∈ Γ

𝐺
𝑑−1,𝑙 (𝑢) : 𝑖 ∈ Γ

𝐺
1 ( 𝑗) | Ω𝑑−1

}

(𝑏)
≤ (1 + 2𝛿)2

𝐾∑

𝑙=1

Γmax (𝑑 − 1, 𝑙)𝛼𝑘−1𝛼𝑙−1
𝑛𝑤

=(1 + 2𝛿)2𝜅
𝑑−1𝑛𝛾 ( (3−𝛽) (𝑑−1)+2)

2𝑘−1𝑛𝑤

𝐾∑

𝑙=1

2(𝑙−1) (𝛽−3)

≤𝜅
𝑑𝑛𝛾 ( (3−𝛽) (𝑑−1)+2)

2𝑘+1𝐶𝑛
≜ 𝑝𝑘,𝑑max, (41)

where (𝑎) follow from the union bound; (𝑏) holds due to the union bound and event Ω𝑑−1; (𝑏)
follows from (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 for every integer 𝑟 ≥ 0 and every real number 𝑥 ≥ −2; and the last

inequality follows from the definition of 𝜅 =
(1+2𝛿)225−𝛽𝐶
(23−𝛽−1)𝑤 .

Also, note that 𝑃 ′
𝑘
⊂ 𝑃𝑘 and thus |𝑃 ′

𝑘
| ≤ |𝑃𝑘 | ≤ 2𝑛𝑘 . For sufficiently large 𝑛, we have

2𝑛𝑘𝑝
𝑘,𝑑
max = 2(𝑘−1) (𝛽−2)−1𝜅𝑑𝑛𝛾 (3−𝛽)𝑑 =

1

2
Γmax (𝑑, 𝑘) .

Hence, applying Chernoff Bound in Theorem 3 with 𝜂 = 1 yields that

P

{���Γ𝐺𝑑,𝑘 (𝑢)
��� ≥ Γmax (𝑑, 𝑘) | Ω𝑑−1

}
≤ P

{
Binom

(
2𝑛𝑘 , 𝑝

𝑘,𝑑
max

)
≥ Γmax (𝑑, 𝑘)

}
≤ 𝑛−4.

Induction: Finally, we prove (40) by induction.
For 𝑑 = 1, we have proved that (40) holds. Suppose that (40) holds for 𝑑 − 1. Then we have

P

{���Γ𝐺𝑑,𝑘 (𝑢)
��� ≤ Γmin (𝑑, 𝑘)

}
≤ P

{
Ω
𝑐
𝑑−1

}
+ P

{���Γ𝐺𝑑,𝑘 (𝑢)
��� ≤ Γmin (𝑑, 𝑘) | Ω𝑑−1

}
P {Ω𝑑−1} ≤ 4𝑑−1 · 𝑛−4 .

(42)

Similarly, we get

P

{���Γ𝐺𝑑,𝑘 (𝑢)
��� ≥ Γmax (𝑑, 𝑘)

}
≤ 4𝑑−1 · 𝑛−4 (43)

Since
���𝑁𝐺𝑑,𝑘 (𝑢)

��� =
���𝑁𝐺𝑑−1,𝑘 (𝑢)

��� +
���Γ𝐺𝑑,𝑘 (𝑢)

���, we take an union bound and have

P

{���𝑁𝐺𝑑,𝑘 (𝑢)
��� ≥ 2(𝑘−1) (𝛽−2)+1𝜅𝑑𝑛𝛾 (3−𝛽)𝑑

}
≤(4𝑑−1 − 1) · 𝑛−4 + 4𝑑−1 · 𝑛−4 = (2 · 4𝑑−1 − 1)𝑛−4. (44)

Combining (42), (43) and (44) with an union bound, we prove that (40) holds for any 1 ≤ 𝑘 ≤ 𝐾

and 1 ≤ 𝑑 ≤ 𝐷 .
□

C.2.3 Proof of Lemma 3. Note that

𝑁𝐺1

𝐷,𝑘
(𝑢) ∩ 𝑁𝐺2

𝐷,𝑘
(𝑣) ⊂

(
Γ
𝐺1

𝐷,𝑘
(𝑢) ∪ 𝑁𝐷−1,𝑘 (𝑢, 𝑣)

)
∩

(
Γ
𝐺2

𝐷,𝑘
(𝑣) ∪ 𝑁𝐷−1,𝑘 (𝑢, 𝑣)

)

=

(
Γ
𝐺1

𝐷,𝑘
(𝑢) ∩ Γ

𝐺2

𝐷,𝑘
(𝑣)

)
∪ 𝑁𝐷−1,𝑘 (𝑢, 𝑣), (45)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 27. Publication date: June 2021.



The Power of 𝐷-hops in Matching Power-Law Graphs 27:33

where 𝑁𝐷−1,𝑘 (𝑢, 𝑣) = 𝑁𝐺1

𝐷−1,𝑘 (𝑢) ∪ 𝑁
𝐺2

𝐷−1,𝑘 (𝑣). Since we have already obtained the upper bounds of���𝑁𝐺1

𝐷−1,𝑘 (𝑢)
��� and

���𝑁𝐺2

𝐷−1,𝑘 (𝑣)
��� by Lemma 14 by letting 𝐺 to be either 𝐺1 or 𝐺2, it remains to bound

from above
���Γ𝐺1

𝐷,𝑘
(𝑢) ∩ Γ

𝐺2

𝐷,𝑘
(𝑣)

���, which is done in the following lemma.

Lemma 15. Suppose 𝛾 and 𝐷 are chosen such that condition (10) holds. Fix any two distinct vertices

𝑢, 𝑣 ∈ 𝑃1, for all 1 ≤ 𝑑 ≤ 𝐷 , 𝑘 = 1, . . . , 𝐾 , and sufficiently large 𝑛,

P

{���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≤ Ψ(𝑑, 𝑘)
}
≥ 1 − 2 · 4𝑑

3
· 𝑛−4, (46)

where

Ψ(𝑑, 𝑘) = 𝜅2Γ2max (𝑑 − 1, 1)𝑛𝛾 (5−𝛽)

2(𝑘−1) (3−𝛽)𝐶𝑛
+ 6Γmax (𝑑 − 1, 1) log𝑛

2(𝑘−1) (2−𝛽)

with Γmax (𝑑 − 1, 1) = 𝜅𝑑−1𝑛𝛾 (3−𝛽) (𝑑−1) as defined in (38) and 𝜅 =
(1+2𝛿)225−𝛽𝐶
(23−𝛽−1)𝑤 .

Remark 3. We provide an intuitive explanation on the first term of Ψ(𝑑, 𝑘). Fix a vertex 𝑢. Recall
that Γmax (𝑑 − 1, 𝑙) is an upper bound of its (𝑑 − 1)-hop neighbors in 𝑃𝑙 by Lemma 14. Thus,
a vertex 𝑖 in 𝑃𝑘 connects to at least one (𝑑 − 1)-hop neighbor of 𝑢 with probability at most∑𝐾
𝑙=1 Γmax (𝑑 − 1, 𝑙) 𝛼𝑘𝛼𝑙

𝑛𝑤
≈ 𝜅Γmax (𝑑 − 1, 1)𝛼𝑘𝑛𝛾−1, where the approximation holds because 𝑙 = 1 is the

dominating term in the summation. Moreover, there are Θ(𝑛𝛼1−𝛽
𝑘

) vertices in the slice 𝑃𝑘 . Thus, for

a fake pair (𝑢, 𝑣), its number of common 𝑑-hop neighbors in 𝑃𝑘 is about 𝜅
2
Γ
2
max (𝑑 − 1, 1)𝑛2𝛾−1𝛼3−𝛽

𝑘
,

which gives rise to the first term of Ψ(𝑑, 𝑘).

Before proving Lemma 15, we first show how to apply Lemma 15 to prove Lemma 3. combining
(45), (39), and (46) yields that

P

{���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≤ Ψ(𝑑, 𝑘) + 2𝑁max (𝑑 − 1, 𝑘)
}
> 1 − 𝑛−4+𝑜 (1) .

Next we set 𝑑 = 𝐷 and sum over 𝑘 for all the slices 𝑃𝑘 with weight at most 15
𝑠
log𝑛, i.e.,

𝛼𝑘 ≤ 15
𝑠
log𝑛. In particular, we have 𝑘 ≥ 𝑘0 ≜ ⌊log2 ( 𝑛𝛾𝑠

15 log𝑛
)⌋ and

𝐾∑

𝑘=𝑘0

Ψ(𝐷,𝑘) + 2𝑁max (𝐷 − 1, 𝑘)

≤
𝐾∑

𝑘=𝑘0

𝜅2Γ2max (𝐷 − 1, 1)𝑛𝛾 (5−𝛽)

2(𝑘−1) (3−𝛽)𝐶𝑛
+ Γmax(𝐷 − 1, 1)

2(𝑘−1) (2−𝛽)
6 log𝑛 + 4𝜅𝐷−1𝑛𝛾 (3−𝛽) (𝐷−1)

2(𝑘−1) (2−𝛽)

≤ 23−𝛽𝜅2Γ2max (𝐷 − 1, 1)𝑛𝛾 (5−𝛽)

(23−𝛽 − 1)2(𝑘0−1) (3−𝛽)𝐶𝑛
+ 2𝛽−2

2𝛽−2 − 1

Γmax (𝐷 − 1, 1)
2(𝐾−1) (2−𝛽)

6 log𝑛 + 2𝛽−2

2𝛽−2 − 1

4𝜅𝐷−1𝑛𝛾 (3−𝛽) (𝐷−1)

2(𝐾−1) (2−𝛽)

≤ 23−𝛽𝜅2𝐷𝑛2𝛾 ( (3−𝛽) (𝐷−1)+1)

(23−𝛽 − 1)𝐶𝑛

(
15

𝑠
log𝑛

)3−𝛽
+ 2𝛽−2

2𝛽−2 − 1
𝜅𝐷−1𝑛 (𝛾 (3−𝛽) (𝐷−2)+1) (4 + 6 log𝑛) = Ψmax,

where Ψmax is given in (19). Thus, we prove the desired conclusion (19).
Next we present the proof of Lemma 15.

proof of Lemma 15. Fix two distinct vertices 𝑢, 𝑣 in 𝑃1, we study their common 𝑑-hop neigh-
borhood from 𝑑 = 1.
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For 𝑑 = 1: For each vertex 𝑖 ∈ 𝑃𝑘 , define an indicator variable

𝑥𝑘𝑖 = 1{
𝑖∈Γ𝐺1

1 (𝑢)∩Γ𝐺2
1 (𝑣)

} .

In other words, 𝑥𝑘𝑖 = 1 if 𝑖 is connected to 𝑢 in𝐺1 and 𝑣 in𝐺2, and 𝑥
𝑘
𝑖 = 0 otherwise. Then, we have���Γ𝐺1

1,𝑘
(𝑢) ∩ Γ

𝐺2

1,𝑘
(𝑣)

��� = ∑
𝑖∈𝑃𝑘 𝑥

𝑘
𝑖 . Since𝑤𝑢,𝑤𝑣 ∈ [(1 − 2𝛿]𝛼1, (1 + 2𝛿)𝛼0], it follows that

P

{
𝑥𝑘𝑖 = 1

}
≤

(
(1 + 2𝛿)2𝛼𝑘−1𝛼0

𝑛𝑤

)2
≜ 𝑝𝑘max.

Hence, we have ���Γ𝐺1

1,𝑘
(𝑢) ∩ Γ

𝐺2

1,𝑘
(𝑣)

���
𝑠.𝑡 .
≤ Binom

(���𝑃𝑘
��� , 𝑝𝑘max

)
.

Recall 𝑛𝑘 = 𝐶𝑛𝛼
1−𝛽
𝑘−1 in view of (28) and

���𝑃𝑘
��� ≤ 2𝑛𝑘 in view of (30). Hence,

2𝑛𝑘𝑝
𝑘
max = (1 + 2𝛿)4

2𝐶𝛼
3−𝛽
𝑘−1𝑛

2𝛾

𝑤2𝑛
.

Hence, we apply Lemma 6 with 𝜆 = 4 log𝑛, and get

P

{���Γ𝐺1

1,𝑘
(𝑢) ∩ Γ

𝐺2

1,𝑘
(𝑣)

��� ≥
4(1 + 2𝛿)4𝐶𝛼3−𝛽

𝑘−1𝑛
2𝛾

𝑤2𝑛
+ 16

3
log𝑛

}
≤ 𝑛−4.

Since Γmax (0, 1) = 1, we have Ψ(1, 𝑘) = 𝜅2𝛼
3−𝛽
𝑘−1𝑛

2𝛾

𝐶𝑛
+ 6 log𝑛. Thus, (46) holds for 𝑑 = 1.

For 2 ≤ 𝑑 ≤ 𝐷 : We first count the 𝑑-hop neighbors conditional on the (𝑑 − 1)-hop neighborhood

of 𝑢 and 𝑣 . We use Ω∗
𝑑
to denote the event that Ω𝑑−1 with 𝐺 = 𝐺1,𝐺2 hold, and for all 𝑘 = 1, . . . , 𝐾 ,

���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≤ Ψ(𝑑, 𝑘),

with Ψ(𝑑, 𝑘) defined in Lemma 15.
Conditioning on Ω

∗
𝑑−1, note that there are two possible cases under which each true pair (𝑖, 𝑖)

becomes a common 𝑑-hop neighbor of (𝑢, 𝑣). One case is that 𝑖 connects to some common (𝑑 − 1)-
hop neighbors of (𝑢, 𝑣) in both𝐺1 and𝐺2. The other case is that 𝑖 connects to different (𝑑 − 1)-hop
neighbors of (𝑢, 𝑣) in 𝐺1 and 𝐺2, respectively.

For each vertex 𝑖 ∈ 𝑃𝑘 \ 𝑁𝐷−1 (𝑢, 𝑣), define two indicator variables

𝑦𝑘𝑖 =1{
𝑖∈Γ𝐺1

𝑑
(𝑢),𝑖∈Γ𝐺2

𝑑
(𝑣)

},

𝑧𝑘𝑖 =1{
∃ 𝑗 ∈Γ𝐺1

𝑑−1 (𝑢)∩Γ
𝐺2
𝑑−1 (𝑣) : 𝑖∈Γ

𝐺1
1 ( 𝑗)

} .

In other words,𝑦𝑘𝑖 = 1 if 𝑖 is a 𝑑-hop neighbor of𝑢 in𝐺1 and 𝑣 in𝐺2, and𝑦
𝑘
𝑖 = 0 otherwise. Similarly,

𝑧𝑘𝑖 = 1 if 𝑖 is connected to at least one common (𝑑 −1)-hop neighbor of (𝑢, 𝑣) in both𝐺1 and𝐺2, and

𝑧𝑘𝑖 = 0 otherwise. Note that 𝑧𝑘𝑖 = 1 includes the case that 𝑖 connects to some common (𝑑 − 1)-hop
neighbors of (𝑢, 𝑣) in both 𝐺1 and 𝐺2.

We first bound P
{
𝑧𝑘𝑖 = 1|Ω∗

𝑑−1
}
from above by

P

{
𝑧𝑘𝑖 = 1 | Ω∗

𝑑−1

} (𝑎)
≤

𝐾∑

𝑙=1

P

{
∃ 𝑗 ∈ Γ

𝐺1

𝑑−1 (𝑢) ∩ Γ
𝐺2

𝑑−1 (𝑣) : 𝑖 ∈ Γ
𝐺1

1 ( 𝑗) | Ω∗
𝑑−1

}
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(𝑏)
≤ (1 + 2𝛿)2

𝐾∑

𝑙=1

Ψ(𝑑 − 1, 𝑙)𝛼𝑘−1𝛼𝑙−1
𝑛𝑤

≤
(
𝜅2Γ2max (𝑑 − 2, 1)𝑛𝛾 (7−𝛽)

2𝑘−1𝐶𝑛2𝑤
+ 6Γmax (𝑑 − 2, 1)𝑛2𝛾 log𝑛

2𝑘−1𝑛𝑤

) 𝐾∑

𝑙=1

(1 + 2𝛿)2
2(𝑙−1) (3−𝛽)

≤𝜅
2𝑑−1𝑛2𝛾 (3−𝛽) (𝑑−2)𝑛𝛾 (7−𝛽)

2𝑘+1𝐶2𝑛2
+ 6𝜅𝑑−1𝑛𝛾 ( (3−𝛽) (𝑑−2)+2) log𝑛

2𝑘+1𝐶𝑛
= 𝜈1,

where (𝑎) holds due to the union bound; (𝑏) follows from the union bound and event Ω∗
𝑑−1.

Then, the event {𝑦𝑘𝑖 = 1} \ {𝑧𝑘𝑖 = 1} denotes the event that 𝑖 connects to some vertex in Γ
𝐺1

𝑑−1,𝑘 (𝑢) \
Γ
𝐺2

𝑑−1,𝑘 (𝑣) and connects to some vertex in Γ𝐺2

𝑑−1,𝑘 (𝑣) independently. Thus,P
{
{𝑦𝑘𝑖 = 1} \ {𝑧𝑘𝑖 = 1} | Ω∗

𝑑−1
}

can be bounded by

P

{
{𝑦𝑘𝑖 = 1} \ {𝑧𝑘𝑖 = 1} | Ω∗

𝑑−1

}

≤P
{
∃ 𝑗 ∈ Γ

𝐺1

𝑑−1,𝑘 (𝑢) \ Γ
𝐺2

𝑑−1,𝑘 (𝑣) : 𝑖 ∈ Γ
𝐺1

1 ( 𝑗) | Ω∗
𝑑−1

}
P

{
∃ 𝑗 ∈ Γ

𝐺2

𝑑−1 (𝑣) : 𝑖 ∈ Γ
𝐺2

1 ( 𝑗) | Ω∗
𝑑−1

}

≤P
{
𝑖 ∈ Γ

𝐺1

𝑑
(𝑣) | Ω∗

𝑑−1

}
P

{
𝑖 ∈ Γ

𝐺2

𝑑
(𝑣) | Ω∗

𝑑−1

}

(𝑎)
≤

(
𝜅𝑑𝑛𝛾 ( (3−𝛽) (𝑑−1)+2)

2𝑘+1𝐶𝑛

)2

≤𝜅
2𝑑𝑛2𝛾 (3−𝛽) (𝑑−2)

22(𝑘+1)𝐶2𝑛2
𝑛2𝛾 (5−𝛽) = 𝜈2,

where (𝑎) follows from a similar proof of (41).
When we compare the first term of 𝜈1 and 𝜈2, we have

𝜅2𝑑𝑛2𝛾 (3−𝛽) (𝑑−2)

22(𝑘+1)𝐶2𝑛2
𝑛𝛾 (7−𝛽) ≤ 𝜅2𝑑𝑛2𝛾 (3−𝛽) (𝑑−2)

22(𝑘+1)𝐶2𝑛2
𝑛2𝛾 (5−𝛽) ,

where the last inequality follows from 𝑛𝛾 (7−𝛽 )

𝑛2𝛾 (5−𝛽 ) = 𝑛
𝛾 (𝛽−3) ≤ 1.

Thus, we have

P

{
𝑦𝑘𝑖 = 1 | Ω∗

𝑑−1

}
≤ 𝜈1 + 𝜈2 ≤ 2𝜈2 +

4𝜅𝑑𝑛𝛾 ( (3−𝛽) (𝑑−2)+2) log𝑛

2𝑘𝐶𝑛

≤ 𝜅2𝑑𝑛2𝛾 (3−𝛽) (𝑑−1)𝑛4𝛾

3 · 22(𝑘−1)𝐶2𝑛2
+ 4𝜅𝑑𝑛𝛾 ( (3−𝛽) (𝑑−2)+2) log𝑛

2𝑘𝐶𝑛
≜ 𝜇𝑘 .

Thus, conditional on Ω
∗
𝑑−1, we have

���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

���
𝑠.𝑡 .
≤ Binom

(���𝑃𝑘
��� , 𝜇𝑘

)
.

Recall 𝑛𝑘 = 𝐶𝑛𝛼
1−𝛽
𝑘−1 in view of (28) and

���𝑃𝑘
��� ≤ 2𝑛𝑘 in view of (30). Therefore, for sufficiently large 𝑛,

2𝑛𝑘𝜇𝑘 =
2𝜅2𝑑𝑛2𝛾 (3−𝛽) (𝑑−1)𝑛𝛾 (5−𝛽)

3 · 2(𝑘−1) (3−𝛽)𝐶𝑛
+ 4𝜅𝑑−1𝑛𝛾 (3−𝛽) (𝑑−1) log𝑛

2(𝑘−1) (2−𝛽)
≤ 2

3
Ψ(𝑑, 𝑘).

We then apply Chernoff Bound with 𝜂 =
1
2
and get

P

{���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≥ Ψmax (𝑑, 𝑘) | Ω∗
𝑑−1

}
≤ 𝑛−4.
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Induction: Finally, we prove (46) by induction.
For 𝑑 = 1, we have proved that (46) holds.
Suppose (46) holds for 𝑑 − 1, then taking the union bound yields that

P
{
Ω
∗𝑐
𝑑−1

}
≤2 · P

{
Ω
𝑐
𝑑−1

}
+ P

{���Γ𝐺1

𝑑−1,𝑘 (𝑢) ∩ Γ
𝐺2

𝑑−1,𝑘 (𝑣)
��� ≥ Ψmax (𝑑 − 1, 𝑘)

}

≤2(4𝑑−1 − 1)𝑛−4 + 2 · 4𝑑−1
3

𝑛−4 =

(
2 · 4𝑑
3

− 1

)
· 𝑛−4.

Thus, we have

P

{���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≥ Ψmax (𝑑, 𝑘)
}

≤P
{
Ω
∗𝑐
𝑑−1

}
+ P

{���Γ𝐺1

𝑑,𝑘
(𝑢) ∩ Γ

𝐺2

𝑑,𝑘
(𝑣)

��� ≥ Ψmax (𝑑, 𝑘) | Ω∗
𝑑−1

}

≤
(
2 · 4𝑑
3

− 1

)
· 𝑛−4 + 𝑛−4 ≤ 2 · 4𝑑

3
· 𝑛−4 .

□

C.2.4 Proof of Lemma 4. The main idea of the proof is to bound the number of 𝐷-hop witnesses
for both true pairs and fake pairs in the first slice, using the bounds to the number of the 𝐷-hop
neighbors established in Lemma 2 and Lemma 3.

Recall that in Algorithm 1, we select the set Ŝ of low-degree seeds. Let 𝑆 = {𝑖 : (𝑖, 𝑖) ∈ Ŝ}. To
circumvent the dependency between 𝑆 and the graphs𝐺1 and 𝐺2, we will introduce 𝑆 and 𝑆 such

that they are independent from graphs and 𝑆 ⊂ 𝑆 ⊂ 𝑆 with high probability. To this end, we define
an event E such that

{𝑖 : 𝑤𝑖 ≤ 𝑐} ⊂ {𝑖 : |Γ𝐺1

1 (𝑖) | ≤ 5 log𝑛, |Γ𝐺2

1 (𝑖) | ≤ 5 log𝑛} ⊂ {𝑖 : 𝑤𝑖 ≤
15

𝑠
log𝑛}.

For any 𝑖 with𝑤𝑖 ≤ 𝑐 , E
[
|Γ𝐺1

1 (𝑖) |
]
= 𝑐𝑠 . Thus, applying Lemma 6 with 𝜆 = 3 log𝑛 yields

P

{
|Γ𝐺1

1 (𝑖) | ≥ 5 log𝑛
}
≤ P

{
|Γ𝐺𝑖

1 (𝑖) | ≥ 2𝑐𝑠 + 4 log𝑛
}
≤ 𝑛−3.

Taking a union bound over 𝑖 gives P
{
{𝑖 : 𝑤𝑖 ≤ 𝑐} ⊂ {𝑖 : |Γ𝐺1

1 (𝑖) | ≤ 5 log𝑛, |Γ𝐺2

1 (𝑖) | ≤ 5 log𝑛}
}
≥

1 − 𝑛−2+𝑜 (1) .
For any 𝑖 with 𝑤𝑖 >

15
𝑠
log𝑛, E

[
|Γ𝐺1

1 (𝑖) |
]
= 15 log𝑛. we apply Chernoff Bound in Theorem 3

with 𝜂 = 2/3 and have

P

{
|Γ𝐺1

1 (𝑖) | ≤ 5 log𝑛
}
≤ P

{
|Γ𝐺𝑖

1 (𝑖) | ≤
(
1 − 2

3

)
15 log𝑛

}
≤ 𝑛−3.

Thus, we have

P

{
{𝑖 : |Γ𝐺1

1 (𝑖) | ≤ 5 log𝑛, |Γ𝐺2

1 (𝑖) | ≤ 5 log𝑛} ⊂ {𝑖 : 𝑤𝑖 ≤
15

𝑠
log𝑛}

}

=P

{
{𝑖 : 𝑤𝑖 >

15

𝑠
log𝑛} ⊂ {𝑖 : |Γ𝐺1

1 (𝑖) | > 5 log𝑛, |Γ𝐺2

1 (𝑖) | > 5 log𝑛}
}
= 1 − 𝑛−2+𝑜 (1) .

Thus, P {E} ≥ 1 − 𝑛−2+𝑜 (1) . On event E, we have

𝑆 ≜ {𝑖 : 𝑤𝑖 ≤ 𝑐} ∩ 𝑆 ⊂ 𝑆 ⊂ {𝑖 : 𝑤𝑖 ≤
15

𝑠
log𝑛} ∩ 𝑆 ≜ 𝑆,
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where 𝑆 = {𝑖 : (𝑖, 𝑖) ∈ S} denotes the set of vertices selected as the initial seed set S. Note that
crucially the initial seeds in S are selected among all true pairs with probability 𝜃 , independently

from everything else. Thus 𝑆 and 𝑆 are independent from graphs. As a consequence, to bound
from below (resp. above) the number of 𝐷-hop witnesses for the true (resp. fake) pair, it suffices to

consider their common 𝐷-hop neighbors in 𝑆 (resp. 𝑆).

More specifically, let us first consider the true pairs. Fix any vertex 𝑢 ∈ 𝑃1. Let Λ(𝑢) = Γ
𝐺1

𝐷
(𝑢) ∩

Γ
𝐺2

𝐷
(𝑢) \

(
𝑁𝐺1

𝐷−1 (𝑢) ∩ 𝑁
𝐺2

𝐷−1 (𝑢)
)
. Define event

A𝑢 =

{��Λ(𝑢) ∩ 𝑆
��
>

3

5
Γmin𝜃

}
, where Γmin =

1

2

(
𝐶 · 𝑠2
12 ·𝑤

)𝐷
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1) .

Note that due to assumption (10) and 𝑛𝛾 (3−𝛽) ≫ log𝑛 for sufficiently large 𝑛, 𝑁max ≤ 1
10
Γmin.

Hence it follows from Lemma 2 that

P

{
|Λ(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐 | <

4

5
Γmin

}
≤ 𝑛−4+𝑜 (1) .

Because the seeds S are selected among all true pairs with probability 𝜃 , independently from
everything else, we have

��Λ(𝑢) ∩ 𝑆
�� ∼ Binom ( |Λ(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}| , 𝜃 ) .

Then, we apply Chernoff Bound in Theorem 3 with 𝜂 =
1
4
and get

P
{
A𝑐
𝑢

}
≤P

{
|Λ(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}| <

4

5
Γmin

}
+ P

{
A𝑐
𝑢

���� |Λ(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤ 𝑐}| ≥
4

5
Γmin

}

≤𝑛−4+𝑜 (1) + P
{
Binom (Γmin, 𝜃 ) ≤

3

5
Γmin𝜃

}

≤𝑛−4+𝑜 (1) + exp

(
− 1

40
Γmin𝜃

)
(𝑎)
≤ 𝑛−4+𝑜 (1) ,

where (𝑎) holds due to assumption (11). Let A = ∩𝑢∈𝑃1A𝑢 . It follows from the union bound that

P {A} ≤ 𝑛−3+𝑜 (1) .
We next consider the fake pairs. Fix any two distinct vertices 𝑢, 𝑣 ∈ 𝑃1. Define an event

B𝑢𝑣 =
{���𝑁𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) ∩ 𝑆

��� ≤ 1

2
Γmin𝜃

}
.

Note that due to the assumption (10) and 𝑛𝛾 (3−𝛽) ≫ log2 𝑛 for sufficiently large 𝑛,

Ψmax ≤
𝜅2𝐷

(
𝐶𝑠2

12·𝑤

)𝐷

(
𝑛𝛾 ( (3−𝛽) (𝐷−1)+1)

𝐶𝑛

(
15

𝑠
log𝑛

)3−𝛽
+ 4 + 6 log𝑛

𝑛𝛾 (3−𝛽)

)
Γmin ≤ 1

8
Γmin .

Hence, it follows from Lemma 3 that

P

{����𝑁
𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� >
1

4
Γmin

}
≤ 𝑛−4+𝑜 (1) .

Since the seeds S are selected among all true pairs with probability 𝜃 independently, we have

���Γ𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣) ∩ 𝑆

��� ∼ Binom

(����𝑁
𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� , 𝜃
)
.
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Then, we apply Chernoff Bound in Theorem 3 with 𝜂 = 1 and get

P
{
B𝑐𝑢𝑣

}
≤P

{����𝑁
𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� >
1

4
Γmin

}

+ P
{
E𝑐𝑢𝑣

����
����𝑁

𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑢) ∩ {𝑖 : 𝑤𝑖 ≤

15

𝑠
log𝑛}

���� ≤
1

4
Γmin

}

≤𝑛−4+𝑜 (1) + P
{
Binom

(
1

4
Γmin, 𝜃

)
≤ 1

2
Γmin𝜃

}

≤𝑛−4+𝑜 (1) + exp

(
− 1

12
Γmin𝜃

)
(𝑎)
≤ 𝑛−4+𝑜 (1) ,

where (𝑎) holds due to assumption (11). Let B = ∩𝑢,𝑣∈𝑃1:𝑢≠𝑣
B𝑢𝑣 . It follows from the union bound

that P {B𝑐 } ≤ 𝑛−2+𝑜 (1) .
Finally, we define event C such that

𝐺 𝑗 ⊂ 𝐺 𝑗 ⊂ 𝐺 𝑗 , ∀𝑗 = 1, 2 and 𝑃1 ⊂ 𝑃1 ⊂ 𝑃1 .

It follows from Lemma 1 that P {C} ≥ 1 − 𝑛−4+𝑜 (1) . Taking the union bound, we have

P {A ∩ B ∩ C ∩ E} ≥ 1 − 𝑛−3+𝑜 (1) − 𝑛−2+𝑜 (1) − 2𝑛−4+𝑜 (1) ≥ 1 − 𝑛−2+𝑜 (1) .

It remains to verify that on the event A ∩ B ∩ C ∩ E, R1 contains all true pairs in 𝑄1 and no fake

pairs in 𝑄1.

Recall that we uses seeds in Ŝ and count the 𝐷-hop witnesses in 𝐺1 and 𝐺2 for all candidate

vertex-pairs in 𝑄1 in Step 4 of Algorithm 1. On event A ∩ C ∩ E, Λ(𝑢) ⊂ Γ
𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑢) and

the minimum number of 𝐷-hop witnesses among all true pairs (𝑢,𝑢) in 𝑄1 is lower bounded

by 3
5
Γmin𝜃 . On event B ∩ C ∩ E, Γ𝐺1

𝐷
(𝑢) ∩ Γ

𝐺2

𝐷
(𝑣) ⊂ 𝑁𝐺1

𝐷
(𝑢) ∩ 𝑁𝐺2

𝐷
(𝑣) the maximum number of

𝐷-hop witnesses among all fake pairs (𝑢, 𝑣) in 𝑄1 is upper bounded by 1
2
Γmin𝜃 . Thus, GMWM with

threshold 𝜏1 =
1
2
Γmin𝜃 outputs R1, which contains all true pairs in 𝑄1 and no fake pairs in 𝑄1.

C.2.5 Proof of Lemma 5. Fix a vertex 𝑢 ∈ 𝑃𝑘 . For each vertex 𝑖 ∈ 𝑃𝑘−1, let 𝑥𝑖 be a binary random
variable such that 𝑥𝑖 = 1 if 𝑖 connects to 𝑢 both in 𝐺1 and 𝐺2, and 𝑥𝑖 = 0 otherwise. Then,���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘−1
��� = ∑

𝑖∈𝑃𝑘−1 𝑥𝑖 and 𝑥𝑖 ’s are independent. Moreover, we have

P {𝑥𝑖 = 1} ≥ 𝛼𝑘𝛼𝑘−1
𝑛𝑤

𝑠2 .

Therefore, applying Chernoff Bound in Theorem 3 with 𝜂 =
1
3
yields that

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘−1
��� ≤

𝐶𝛼
3−𝛽
𝑘−1𝑠

2

3𝑤

}
≤ P

{
Binom

(
𝑛𝑘−1,

𝛼𝑘𝛼𝑘−1
𝑛𝑤

𝑠2
)
≤
𝐶𝛼

3−𝛽
𝑘−1𝑠

2

3𝑤

}
≤ 𝑛−4,

where the last inequality holds because 𝑛𝑘−1
𝛼𝑘𝛼𝑘−1
𝑛𝑤

𝑠2 =
𝐶𝛼

3−𝛽
𝑘−1𝑠

2

2𝑤
≥ 32 log𝑛 in view of (𝛼𝑘∗ )3−𝛽 ≥

85𝑤 log𝑛

𝐶𝑠2
.

C.2.6 Proof of Lemma 6. Fix a pair of two distinct vertices 𝑢, 𝑣 ∈ 𝑃𝑘 . For each vertex 𝑖 ∈ 𝑃𝑘−1, let
𝑥𝑖 be a binary random variable such that 𝑥𝑖 = 1 if 𝑖 is connected to 𝑢 in 𝐺1 and 𝑣 in 𝐺2, and 𝑥𝑖 = 0

otherwise. Since the event that 𝑖 is connected to 𝑢 is independent of the event that 𝑖 is connected to
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𝑣 , we have

P {𝑥𝑖 = 1} ≤
(
(1 + 2𝛿)2𝛼𝑘−1𝛼𝑘−2

𝑛𝑤
𝑠
)2

=
4(1 + 2𝛿)4𝛼4

𝑘−1𝑠
2

𝑛2𝑤2
≜ 𝑝max .

Moreover, 𝑥𝑖 ’s are independent. Therefore,
���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃𝑘−1
���
𝑠.𝑡 .
≤ Binom

(���𝑃𝑘
��� , 𝑝max

)
. Recall

𝑛𝑘 = 𝐶𝑛𝛼
1−𝛽
𝑘−1 in view of (28) and

���𝑃𝑘
��� ≤ 2𝑛𝑘 in view of (30). Thus, we apply Lemma 6 with 𝜆 = 4 log𝑛,

and get

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃𝑘−1
��� ≥

16(1 + 2𝛿)4𝐶𝛼5−𝛽
𝑘−1𝑠

2

𝑤2𝑛
+ 16

3
log𝑛

}
≤ 𝑛−4.

C.2.7 Proof of Lemma 7. The proof is divided into two parts. The first part is to identify a set
of łgoodž events whose intersection holds with high probability. The second part provides a
deterministic argument, showing that on the intersection of these good events, the 1-hop algorithm
successfully matches slice 𝑘 for all 2 ≤ 𝑘 ≤ 𝑘∗ .
First, we identify a good event under which the number of common 1-hop neighbors of a true

pair is large. More precisely, for any vertex 𝑢 ∈ 𝑃𝑘 , define event

A𝑘 (𝑢) =
{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘−1
��� ≥ 𝜉𝑘

}
, where 𝜉𝑘 ≜

𝐶𝛼
3−𝛽
𝑘−1𝑠

2

3𝑤
,

and A = ∩2≤𝑘≤𝑘∗ ∩𝑢∈𝑃𝑘 A𝑘 (𝑢). By Lemma 5 and union bound, we have P {A𝑐 } ≤ 𝑛−3+𝑜 (1) .
Second, we determine a good event under which the number of common 1-hop neighbors of a

fake pair is small. More formally, for any pair of distinct vertices 𝑢, 𝑣 ∈ 𝑃𝑘 , define event

B𝑘 (𝑢, 𝑣) =
{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃𝑘−1
��� ≤ 𝜁𝑘

}
, where 𝜁𝑘 ≜

16(1 + 2𝛿)4𝐶𝛼5−𝛽
𝑘−1𝑠

2

𝑤2𝑛
+ 16

3
log𝑛,

and B = ∩2≤𝑘≤𝑘∗ ∩𝑢,𝑣∈𝑃𝑘 :𝑢≠𝑣 B𝑘 (𝑢, 𝑣). By Lemma 6 and union bound, we have P {B𝑐 } ≤ 𝑛−3+𝑜 (1) .
Third, we define an event C = ∩2≤𝑘≤𝑘∗

{
𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄𝑘

}
. By Lemma 1 and union bound, we

have P {C𝑐 } ≤ 𝑛−4+𝑜 (1) .
Finally, we let F denote the event that the first slice is successfully matched, i.e., R1 contains all

true pairs in 𝑄1 and no fake pairs in 𝑄1. By Lemma 4, P {F 𝑐 } ≤ 𝑛−1.5+𝑜 (1) .
Combining the above, it follows that

P {A ∩ B ∩ C ∩ F } ≥ 1 − 2𝑛−3+𝑜 (1) − 𝑛−4+𝑜 (1) − 𝑛−1.5+𝑜 (1) ≥ 1 − 𝑛−1.5+𝑜 (1) .

It remains to verify on the event A ∩ B ∩ C ∩ 𝐹 , R𝑘 contains all true pairs in 𝑄𝑘 and no fake

pairs in 𝑄𝑘 for all 1 ≤ 𝑘 ≤ 𝑘∗. We prove this by induction. The base case with 𝑘 = 1 follows from
the definition of F . Assume the induction hypothesis holds for the slice 𝑘 − 1, we aim to show it
continues to hold for 𝑘.
Recall that when matching the slice 𝑄𝑘 , we use R𝑘−1 as the set of seeds. Since the induction

hypothesis is true for slice 𝑘 − 1, it follows that R𝑘−1 contains all the true pairs in 𝑄𝑘−1 . Thus, the
minimum number of 1-hop witnesses among all true pairs (𝑢,𝑢) in 𝑄𝑘 is lower bounded by 𝜉𝑘 .

Moreover, since R𝑘−1 contains no fake pairs in 𝑄𝑘−1 and on event C, 𝑄𝑘−1 ⊂ 𝑄𝑘 , it follows that

R𝑘−1 is contained by all the true pairs in 𝑄𝑘−1. Also, the set of fake pairs in 𝑄𝑘 is contained by the

set of fake pairs in 𝑄𝑘 . Thus, the maximum number of 1-hop witnesses among all fake pairs (𝑢, 𝑣)
in 𝑄𝑘 is upper bounded by 𝜁𝑘 .
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Note that

𝜉𝑘
(𝑎)
≥ 𝜏2 (𝑘) and

𝜁𝑘

𝜏2 (𝑘)
(𝑏)
≤ 64(1 + 2𝛿)4𝑛2𝛾

𝑤𝑛
+ 1

3

(𝑐)
< 1,

where (𝑎) holds by definition of 𝜏2 (𝑘) in (5); (𝑏) follows from 𝑛𝛾 ≥ 𝛼𝑘 ≥ 𝛼𝑘∗ ≥
(
85𝑤 log𝑛

𝐶𝑠2

) 1
3−𝛽

for

2 ≤ 𝑘 ≤ 𝑘∗; (𝑐) holds as 𝑛 is sufficiently large in view of 𝑛2𝛾 = 𝑜 (𝑛) and 𝑤 = Θ(1). Thus, R𝑘
contains all true pairs in 𝑄𝑘 and no fake pairs in 𝑄𝑘 , completing the induction.

C.2.8 Proof of Lemma 8. Fix any two distinct vertices 𝑢, 𝑣 ∈ 𝑃 ≥𝑘∗+1. Then 𝑤𝑢,𝑤𝑣 ≤ (1 + 2𝛿)𝛼𝑘∗ .
For each vertex 𝑖 ∈ 𝑃 ≥𝑘∗ , let 𝑥𝑖 be a binary random variable such that 𝑥𝑖 = 1 if 𝑖 connects to 𝑢 in𝐺1

and 𝑣 in 𝐺2, and 𝑥𝑖 = 0 otherwise. Since the event that 𝑖 connects to 𝑢 is independent of the event
that 𝑖 connects to 𝑣 , we have

P {𝑥𝑖 = 1} ≤
(
(1 + 2𝛿)2𝛼𝑘

∗𝛼𝑘∗−1
𝑛𝑤

𝑠
)2

= (1 + 2𝛿)4
4𝛼4
𝑘∗𝑠

2

𝑛2𝑤2
≜ 𝑝max.

Moreover, 𝑥𝑖 ’s are independent. Therefore,���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃 ≥𝑘∗
���
𝑠.𝑡 .
≤ Binom

(���𝑃 ≥𝑘∗
��� , 𝑝max

) 𝑠.𝑡 .
≤ Binom (𝑛, 𝑝max) .

Thus, we get

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃 ≥𝑘∗
��� ≥ 3

}
≤P {Binom (𝑛, 𝑝max) ≥ 3}
(𝑎)
≤ 𝑛3𝑝3max

≤
(1 + 2𝛿)12𝐶3𝛼12

𝑘∗𝑠
6

𝑛3𝑤6
≤ 𝑛−3+𝑜 (1) .

where (𝑎) follows from the union bound.

C.2.9 Proof of Lemma 9. We first bound |𝑆ℎ | by conditioning on 𝑆ℎ−1. For any 𝑢 ∈ 𝑃𝑘∗+ℎ , let 𝑥𝑖 be
a binary random variable such that 𝑥𝑖 = 1 if 𝑖 ∈ 𝑆ℎ−1 connects to 𝑢, and 𝑥𝑖 = 0 otherwise. Since
𝑆ℎ−1 is only determined by the vertex weight and the edges connecting to previous 𝑆𝑙 , 𝑙 < ℎ − 1,
the event that 𝑖 and 𝑢 is connected is independent across 𝑖 conditional on 𝑆ℎ−1. It follows that

P {𝑥𝑖 = 1 | 𝑆ℎ−1} ≥
𝛼𝑘∗+ℎ+1𝛼𝑘∗+ℎ

𝑛𝑤
𝑠2 .

Thus, we have
���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑆ℎ−1
���
𝑠.𝑡 .
≥ Binom

(
|𝑆ℎ−1 | , 𝛼𝑘∗+ℎ+1𝛼𝑘∗+ℎ𝑛𝑤

𝑠2
)
conditional on 𝑆ℎ−1.

Applying Chernoff Bound in Theorem 3 yields that

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑆ℎ−1
��� < 3

���� |𝑆ℎ−1 | ≥
1

2
𝑛𝑘∗+ℎ−1

}

≤P
{
Binom

(
1

2
𝑛𝑘∗+ℎ−1,

𝛼𝑘∗+ℎ+1𝛼𝑘∗+ℎ
𝑛𝑤

𝑠2
)
≤ (1 − 𝜂)𝜇

}

≤ exp

(
−𝜂

2

2
𝜇

)
≜ 𝑝ℎ ≤ 1

4
,

where 𝜇 =
1
2
𝑛𝑘∗+ℎ−1

𝛼𝑘∗+ℎ+1𝛼𝑘∗+ℎ
𝑛𝑤

𝑠2 =
𝐶𝛼

3−𝛽
𝑘∗+ℎ𝑠

2

4𝑤
≥ 16 log 2 due to 𝛼𝑘∗+ℎ ≥

(
64𝑤 ln 2
𝐶𝑠2

)1/(3−𝛽)
and 𝜂 =

𝜇−3
𝜇

≥ 1
2
.

Then, the above result implies that: E
[
|𝑆ℎ | | |𝑆ℎ−1 | ≥ 1

2
𝑛𝑘∗+ℎ−1

]
≥ (1 − 𝑝ℎ)𝑛𝑘∗+ℎ . Note that the

event 𝑢 ∈ 𝑆ℎ only depends on the vertex weight and the edge set 𝐸𝑢 ≜ {(𝑢, 𝑖) : 𝑖 ∈ 𝑆ℎ−1} . Because
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𝐸𝑢 ’s are disjoint, the event 𝑢 ∈ 𝑆ℎ is independent across 𝑢 ∈ 𝑃𝑘∗+ℎ . Thus, we apply Chernoff Bound

in Theorem 3 with 𝜂 =
1−2𝑝ℎ
2(1−𝑝ℎ) and have

P

{
|𝑆ℎ | <

1

2
𝑛𝑘∗+ℎ

���� |𝑆ℎ−1 | ≥
1

2
𝑛𝑘∗+ℎ−1

}
≤P

{
Binom (𝑛𝑘∗+ℎ, 1 − 𝑝ℎ) <

1

2
𝑛𝑘∗+ℎ

}

≤ exp

(
− (1 − 2𝑝ℎ)2𝑛𝑘∗+ℎ

8(1 − 𝑝ℎ)

)
≤ 𝑛−3,

where the last inequality holds due to 𝑛𝑘∗+ℎ ≥ 𝑛𝑘∗ ≥ 𝐶𝑛
(
85𝑤 log𝑛

𝐶𝑠2

) 1−𝛽
3−𝛽 ≥ 72 log𝑛 due to the choice

of 𝑘∗ in (4) and sufficiently large 𝑛.
Finally, we prove by induction that P

{
|𝑆ℎ | < 1

2
𝑛𝑘∗+ℎ

}
≤ ℎ · 𝑛−3.

For ℎ = 0, it is true by definition.
For ℎ ≥ 1, if P

{
|𝑆ℎ−1 | ≥ 1

2
𝑛𝑘∗+ℎ−1

}
≥ 1 − (ℎ − 1) · 𝑛−3, then

P

{
|𝑆ℎ | <

1

2
𝑛𝑘∗+ℎ

}
≤P

{
|𝑆ℎ | <

1

2
𝑛𝑘∗+ℎ | |𝑆ℎ−1 | ≥

1

2
𝑛𝑘∗+ℎ−1

}
+ P

{
|𝑆ℎ−1 | <

1

2
𝑛𝑘∗+ℎ−1

}

≤𝑛−3 + (ℎ − 1) · 𝑛−3 = ℎ · 𝑛−3.

C.2.10 Proof of Lemma 10. First, for any two distinct vertices 𝑢, 𝑣 ∈ 𝑃 ≥𝑘∗ , define event

A𝑢𝑣 =

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃 ≥𝑘∗
��� ≤ 2

}
,

and A =
⋂
𝑢,𝑣∈𝑃≥𝑘∗ :𝑢≠𝑣

A𝑢𝑣 . By Lemma 12 and union bound, we have P {A𝑐 } ≤ 𝑛−1+𝑜 (1) .
Second, let B denote the event that all true pairs in 𝑃𝑘∗ are matched successfully. By Lemma 7,

P {B} ≥ 1 − 𝑛−1.5+𝑜 (1) .
Third, by Lemma 1 and union bound, we have P

{
𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗

}
≤ 𝑛−4+𝑜 (1) .

Finally, by Lemma 9, we have

P

{
|𝑆ℎ∗ | ≥

1

2
𝑛𝑘∗+ℎ∗

}
≥ 1 − ·𝑛−3+𝑜 (1) .

Combining the above, it follows that

P

{
A ∩ B ∩ {𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗ } ∩ {|𝑆ℎ∗ | ≥

1

2
𝑛𝑘∗+ℎ∗ }

}
≥ 1 − 𝑛−1+𝑜 (1) .

Now, suppose event A ∩B ∩ {𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗ } ∩ {|𝑆ℎ∗ | ≥ 1
2
𝑛𝑘∗+ℎ∗ } holds. We aim to show

that R𝑘∗+1 contains no fake pair in 𝑄≥𝑘∗ and all true pairs (𝑢,𝑢) with 𝑢 ∈ 𝑆ℎ for ℎ ≥ 0.

We first show R𝑘∗+1 contains no fake pair in 𝑄≥𝑘∗ . Suppose not. Let (𝑢, 𝑣) denote the first fake
pair in 𝑄≥𝑘∗ matched by the PGM algorithm. This implies that the PGM only matches true pairs
before matching (𝑢, 𝑣). Since the threshold 𝑟 of the PGM is set to be 3, it follows that (𝑢, 𝑣) has
at least three 1-hop witnesses that are true pairs in 𝑄≥𝑘∗ . Since 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗ , it follows that���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑃 ≥𝑘∗
��� ≥ 3, which contradicts the fact that event A holds. Thus, R𝑘∗+1 contains

no fake pairs in 𝑄≥𝑘∗ .
Next, we prove that R𝑘∗+1 contains all true pairs in 𝑆ℎ for all ℎ ≥ 0 by induction. For ease of

presentation, we assume R𝑘∗+1 contains the match pairs in the previous slice, that is R𝑘∗+1 ⊃ R𝑘∗ .
The base case with ℎ = 0 follows from the definition of B. Assume the induction hypothesis holds
for ℎ − 1, we aim to show it continues to hold for ℎ. Based on the definition of 𝑆ℎ , the true pairs
in 𝑆ℎ have at least 3 common 1-hop neighbors in 𝑆ℎ−1. Because all true pairs in 𝑆ℎ−1 have been
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matched and 𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ , the true pairs in 𝑆ℎ would be matched by the PGM algorithm with
threshold 𝑟 = 3. Therefore, R𝑘∗+1 contains all true pairs in 𝑆ℎ for all ℎ ≥ 0.
Finally,

|𝑆ℎ∗ | ≥
1

2
𝑛𝑘∗+ℎ∗ =

𝐶

2
𝑛𝛼

1−𝛽
𝑘∗+ℎ∗ ≥

𝐶

2
𝑛(2𝑤)1−𝛽 ,

where𝑤 =

(
64𝑤 ln 2
𝐶𝑠2

)1/(3−𝛽)
= Θ(1) and the last inequality holds due to the choice of ℎ∗. Thus, R𝑘∗+1

has Θ(𝑛) true pairs.

C.2.11 Proof of Lemma 11. Fix a vertex 𝑢 ∈ 𝑃0. For each vertex 𝑖 ∈ 𝑃𝑘∗ , let 𝑥𝑖 be a binary random
variable such that 𝑥𝑖 = 1 if 𝑖 connects to 𝑢 both in 𝐺1 and 𝐺2, and 𝑥𝑖 = 0 otherwise. Then,���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘∗
��� = ∑

𝑖∈𝑃𝑘∗ 𝑥𝑖 and 𝑥𝑖 ’s are independent. Moreover, we have

P {𝑥𝑖 = 1} ≥ 𝛼𝑘∗𝛼0

𝑛𝑤
𝑠2.

Recall |𝑃𝑘∗ | ≥ 𝑛𝑘∗ = 𝐶𝑛𝛼1−𝛽𝑘∗−1 in view of (28). Hence,

���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘∗
���
𝑠.𝑡 .
≥ Binom

(
𝑛𝑘∗ ,

𝛼0𝛼𝑘∗

𝑛𝑤
𝑠2

)
.

Thus, we apply Chernoff Bound in Theorem 3 with 𝜂 =
1
2
and get

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘∗
��� ≤

𝐶𝛼
2−𝛽
𝑘∗ 𝛼0𝑠

2

2𝑤

}
≤ P

{
Binom

(
𝑛𝑘∗ ,

𝛼0𝛼𝑘∗

𝑛𝑤
𝑠2

)
≤
𝐶𝛼

2−𝛽
𝑘∗ 𝛼0𝑠

2

2𝑤

}
≤ 𝑛−4,

where the last inequality holds because 𝑛𝑘∗
𝛼𝑘∗𝛼0
𝑛𝑤

𝑠2 =
𝐶𝛼

2−𝛽
𝑘∗ 𝛼0𝑠

2

𝑤
≥ 64 log𝑛, due to the choice of 𝑘∗

in (4).

C.2.12 Proof of Lemma 12. Fix two distinct vertices 𝑢, 𝑣 ∈ 𝑃0. We bound from above the number

of their common 1-hop neighbors in 𝑅 =
⋃
𝑘≥1 𝑃𝑘 .

For each 𝑘 ≥ 1 and each vertex 𝑖 ∈ 𝑃𝑘 , let 𝑦𝑘𝑖 be a binary random variable such that 𝑦𝑘𝑖 = 1 if 𝑖 is

connected to 𝑢 in 𝐺1 and 𝑣 in 𝐺2, and 𝑦
𝑘
𝑖 = 0 otherwise. Since the event that 𝑖 is connected to 𝑢 is

independent of the event that 𝑖 is connected to 𝑣 , we have

P

{
𝑦𝑘𝑖 = 1

}
≤

(
(1 + 2𝛿)𝛼𝑘−1𝑤max

𝑛𝑤
𝑠

)2
≤ (1 + 2𝛿)2

𝛼2
𝑘−1
𝑛𝑤

𝑠2 ≜ 𝑝𝑘max, ∀𝑘 ≥ 1.

Moreover, 𝑦𝑘𝑖 ’s are independent. Thus,

���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑅
���
𝑠.𝑡 .
≤

𝐾∑

𝑘=1

Binom
(���𝑃𝑘

��� , 𝑝𝑘max

)
.

Recall 𝑛𝑘 = 𝐶𝑛𝛼
1−𝛽
𝑘−1 in view of (28), 𝑛𝑘 ≤

���𝑃𝑘
��� ≤ 2𝑛𝑘 , and 𝜅 =

(1+2𝛿)225−𝛽𝐶
(23−𝛽−1)𝑤 . Thus,

𝐾∑

𝑘=1

���𝑃𝑘
���𝑝𝑘max ≤

𝐾∑

𝑘=1

2𝑛𝑘
(1 + 2𝛿)2𝛼2

𝑘−1
𝑛𝑤

𝑠2 =
2𝐶𝑛𝛾 (3−𝛽)

𝑤

𝐾∑

𝑘=1

(1 + 2𝛿)2
2(𝑘−1) (3−𝛽)

≤ 3𝜅𝑛𝛾 (3−𝛽)𝑠2,

𝐾∑

𝑘=1

���𝑃𝑘
���𝑝𝑘max ≥ 𝑛1

𝛼20
𝑛𝑤

𝑠2 =
𝐶𝑛𝛾 (3−𝛽)

𝑤
𝑠2 ≥ 64 log𝑛.
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Then, we apply Chernoff Bound in Theorem 3 with 𝜂 =
1
3
, and get

P

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑅
��� ≥ 4𝜅𝑛𝛾 (3−𝛽)𝑠2

}
≤ P

{
𝐾∑

𝑘=1

Binom
(���𝑃𝑘

��� , 𝑝𝑘max

)
≥ 4𝜅𝑛𝛾 (3−𝛽)𝑠2

}
≤ 𝑛−4 .

C.2.13 Proof of Lemma 13. Recall the bound of the number of 1-hop witnesses is provided by
Lemma 11 and Lemma 12.

First, for any vertex 𝑢 ∈ 𝑃0, define event

A𝑢 =

{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑢) ∩ 𝑃𝑘∗
��� ≥

𝐶𝛼
2−𝛽
𝑘∗ 𝛼0𝑠

2

2𝑤

}
,

and A =
⋂
𝑢∈𝑃0 A𝑢 . By Lemma 11 and union bound, we have P {A} ≤ 𝑛−3+𝑜 (1) .

Second, for any two distinct vertices 𝑢, 𝑣 ∈ 𝑃0, define event

B𝑢𝑣 =
{���Γ𝐺1

1 (𝑢) ∩ Γ
𝐺2

1 (𝑣) ∩ 𝑅
��� ≤ 4𝜅𝑛𝛾 (3−𝛽)𝑠2

}
,

and B =
⋂
𝑢,𝑣∈𝑃0:𝑢≠𝑣

B𝑢𝑣 . By Lemma 12 and union bound, we have P {B𝑐 } ≤ 𝑛−2+𝑜 (1) .
Third, we define an event C =

⋂
0≤𝑘≤𝑘∗

{
𝑄𝑘 ⊂ 𝑄𝑘 ⊂ 𝑄𝑘

}
∩

{
𝑄≥𝑘∗ ⊂ 𝑄≥𝑘∗ ⊂ 𝑄 ≥𝑘∗

}
. By Lemma 1

and union bound, we have P {C𝑐 } ≤ 𝑛−4+𝑜 (1) .
Finally, we let E denote the event that R̂ contains all true pairs in 𝑄𝑘∗ and no fake pairs in 𝑄𝑘

for any 𝑘 ≥ 1. By Lemma 4, Lemma 7 and Lemma 10, P {E𝑐 } ≤ 𝑛−1.5+𝑜 (1) .
Combining the above, it follows that

P {A ∩ B ∩ C ∩ E} ≥ 1 − 𝑛−3+𝑜 (1) − 𝑛−2+𝑜 (1) − 𝑛−4+𝑜 (1) − 𝑛−1.5+𝑜 (1) ≥ 1 − 𝑛−1.5+𝑜 (1) .
SupposeA∩B∩C∩E holds. Then R̂ contains all true pairs in𝑄𝑘∗ , and thus the minimum number

of 1-hop witnesses among all true pairs (𝑢,𝑢) in 𝑄0 ⊂ 𝑄0 is lower bounded by
𝐶𝛼

2−𝛽
𝑘∗ 𝛼0𝑠

2

2𝑛𝑤
. Moreover,

since R̂ contains no fake pairs in 𝑄≥1 and 𝑄≥1 ⊂ 𝑄 ≥1 on event C, it follows that R̂ is contained by

all the true pairs in
⋃
𝑘≥1𝑄𝑘 , i.e., all the true pairs with weights no larger than (1 + 2𝛿)𝑛𝛾 . Thus,

the maximum number of 1-hop witnesses among all fake pairs (𝑢, 𝑣) in 𝑄0 ⊂ 𝑄0 is upper bounded

by 4𝜅𝑛𝛾 (3−𝛽)𝑠2 . Note that by the choice of 𝑘∗ in (4),
𝐶𝛼

2−𝛽
𝑘∗ 𝛼0𝑠

2

2𝑤
≥ 𝐶𝑛𝛾𝑠2

2𝑤

(
85𝑤 log𝑛

𝐶𝑠2

) 2−𝛽
3−𝛽

> 4𝜅𝑛𝛾 (3−𝛽)𝑠2,

where the last inequality hols for all sufficiently large 𝑛 in view of 2 < 𝛽 < 3. Moreover, since

𝑃0 ⊂ 𝑃0 ∪ 𝑃1, for any fake pair (𝑢, 𝑣) ∈ 𝑄0, the two corresponding true pairs (𝑢,𝑢), (𝑣, 𝑣) ∈ 𝑄0 ∪𝑄1 .

Therefore, the two true pairs either have more 1-hop witnesses than the fake pair (𝑢, 𝑣) or have
already been matched in 𝑄1. Hence, R0 contains all true pairs in 𝑄0 and no fake pairs in 𝑄0.
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