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Abstract

We study the ergodic control problem for a class of controlled jump diffusions driven by a compound
oisson process. This extends the results of Arapostathis et al. (2019) to running costs that are not near-
onotone. This generality is needed in applications such as optimal scheduling of large-scale parallel

erver networks.
We provide a full characterizations of optimality via the Hamilton–Jacobi–Bellman (HJB) equation,

or which we additionally exhibit regularity of solutions under mild hypotheses. In addition, we show that
ptimal stationary Markov controls are a.s. pathwise optimal. Lastly, we show that one can fix a stable
ontrol outside a compact set and obtain near-optimal solutions by solving the HJB on a sufficiently
arge bounded domain. This is useful for constructing asymptotically optimal scheduling policies for

ulticlass parallel server networks.
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1. Introduction

Control problems for jump diffusions have been studied extensively. We refer the readers
to [14] and references therein for the study of the discounted problem and many appli-
cations. In [28], the ergodic control problem under a strong blanket stability condition
(see [28, (1.6)]) has been studied. In [4], the authors have studied the ergodic control problem
for jump diffusions when the associated Lévy measures are finite and state-dependent and have
rough kernels under a near-monotone running cost function. However, in many applications the
dynamics are not stable under any Markov control, nor do they have a near-monotone running
cost function. In this paper we waive these assumptions, and study the ergodic control problem
under the more general structural hypotheses (see Assumptions 2.1 and 2.2) first introduced in
[2], and also used in [9] in the study of multiclass multi-pool queueing networks.

The class of jump diffusions studied in this paper is abstracted from the diffusion limit
of multiclass queueing networks in the Halfin–Whitt regime with service interruptions [12].
The jump process in this model is compound Poisson, and thus the associated Lévy measure is
finite. However, it does not have any particular regularity properties such as density. In addition,
the running cost function, which typically penalizes the queue size, is not near-monotone.
We abstract and generalize this model, and consider a large class of diffusions with jumps,
which includes models having a near-monotone running cost function, or with uniformly stable
dynamics as special cases.

We first establish the existence of an optimal stationary Markov control for the ergodic
control problem, and characterize all optimal stationary Markov controls via the ergodic
Hamilton–Jacobi–Bellman (HJB) equation.

It is shown in [4, Example 1.1] that the Harnack property may fail for infinitesimal
generators of jump diffusions with compound Poisson jumps. Thus the approach developed
in [2,3] for the study of the ergodic HJB equation associated with continuous diffusions cannot
be applied here. On the other hand, the running cost function is assumed near-monotone in [4],
and thus the infimum of the value function for the discounted problem is attained in a compact
set (see [4, Theorem 3.2]), and the solutions of the ergodic HJB equation are bounded from
below. In the present paper, we extend the technique developed in [4], and derive the ergodic
HJB under Assumptions 2.1 and 2.2. This is rather delicate, and requires an estimate of the
negative part of the solutions of the HJB.

Another difficulty concerns the regularity of solutions of the discounted and ergodic HJB
equations associated with jump diffusions, when the Lévy kernel is rough. In [4], we show that
the solutions have locally Hölder continuous second order derivatives when the Lévy measure
has a compact support (see [4, Remark 3.4]). In this paper, we present a gradient estimate for
solutions of a class of second order nonlocal equations in 5.3 using scaling, and employ this
to establish C2,α regularity of the solutions of the HJB equations in 5.3.

We also study pathwise optimality of optimal controls for the ergodic control problem.
For continuous diffusion processes, pathwise optimality has been studied in [1,3,16,17,20].
Pathwise optimality for jump diffusions with near-monotone running cost is studied in
[4, Theorem 4.4]. We extend the technique in [1], using also the result on convergence of
random empirical measures for jump diffusions in [4, Lemma 4.3] while providing a crucial
estimate on the nonlocal term, to establish pathwise optimality for the model studied in this
paper.

The ability to synthesize a near-optimal Markov control, by fixing a suitable stable control

outside a large ball and solving the HJB equation inside the ball plays a crucial role in the study
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of asymptotic optimality for multiclass parallel server networks. This is used in [2,5,10,11] to
construct asymptotically near-optimal scheduling policies for the prelimit system. In addressing
this problem for jump diffusions, we first derive a lower bound for supersolutions of a general
class of integro-differential equations in Lemma 7.1, and then use this to establish the required
result in Theorems 7.1 and 7.1. In turn, this result is used to establish the asymptotic optimality
of multiclass networks with service interruptions in [13].

In [15], the ergodic control problem for diffusions under the dissipativity condition (see
[15, (2.2)]) and with control both on the drift and diffusion coefficients have been studied.
For the large time behavior associated with diffusions under some dissipativity condition, we
also refer the reader to [25], where a rate of convergence for the solution of the parabolic
equation to that of the ergodic equation has been studied, for a bounded domain under Neumann
conditions. In this paper, we only consider drift control and the drift does not satisfy the
dissipativity condition. Also, the domain is not compact, so the rate of convergence cannot
be easily established.

1.1. Organization of the paper

In the next subsection, we summarize the notation used in this paper. In Section 2, we
introduce the model and state the assumptions. Section 3 contains some examples from queue-
ing networks whose limiting controlled jump diffusions satisfy these assumptions. Section 4
concerns the existence of optimal stationary Markov controls. Section 5 is devoted to the study
of the HJB equations on the discounted and ergodic control problems. In Section 6, we study
the pathwise optimality for the ergodic control problem. The characterization of near-optimal
controls is studied in Section 7.

1.2. Notation

The standard Euclidean norm in Rd is denoted by | · |, ⟨ · , · ⟩ denotes the inner product,
and xT denotes the transpose of x ∈ Rd . The set of nonnegative real numbers is denoted
by R+, N stands for the set of natural numbers, and 1 denotes the indicator function. The
minimum (maximum) of two real numbers a and b is denoted by a ∧ b (a ∨ b), respectively,
and a±

:= (±a) ∨ 0. The closure, boundary, and the complement of a set A ⊂ Rd are denoted
by Ā, ∂A, and Ac, respectively. We also let e := (1, . . . , 1)T. For any function f : Rd

→ R

and domain D ⊂ R we define the oscillation of f on D as follows:

osc
D

f := sup
{

f (x) − f (y) : x, y ∈ D
}
.

We denote by τ (A) the first exit time of the process {X t } from the set A ⊂ Rd , defined by

τ (A) := inf {t > 0 : X t ̸∈ A}.

The open ball of radius r in Rd , centered at x ∈ Rd is denoted by Br (x). We write Br for
Br (0), and let τr := τ (Br ), and τ̆r := τ (Bc

r ).
The term domain in Rd refers to a nonempty, connected open subset of the Euclidean

space Rd . For a domain D ⊂ Rd , the space Ck(D) (C∞(D)), k ≥ 0, refers to the class of
all real-valued functions on D whose partial derivatives up to order k (of any order) exist
and are continuous. By Ck,α(Rd ) we denote the set of functions that are k-times continuously
differentiable and whose kth derivatives are locally Hölder continuous with exponent α. The
space L p(D), p ∈ [1,∞), stands for the Banach space of (equivalence classes of) measurable
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functions f satisfying
∫

D| f (x)|p dx < ∞, and L∞(D) is the Banach space of functions that
re essentially bounded in D. The standard Sobolev space of functions on D whose generalized
erivatives up to order k are in L p(D), equipped with its natural norm, is denoted by Wk,p(D),

k ≥ 0, p ≥ 1. In general, if X is a space of real-valued functions on Q, Xloc consists of all
functions f such that f ϕ ∈ X for every ϕ ∈ C∞

c (Q). In this manner we obtain for example
the space W

2,p
loc (Q).

For k ∈ N, we let Dk
:= D(R+,R

k) denote the space of Rk-valued cádlág functions on
+. When k = 1, we write D for Dk .
For a nonnegative function g ∈ C(Rd ) we let O(g) denote the space of functions f ∈ C(Rd )

atisfying supx∈Rd
| f (x)|

1+g(x) < ∞. We also let o(g) denote the subspace of O(g) consisting of
hose functions f satisfying lim sup|x |→∞

| f (x)|
1+g(x) = 0.

For a probability measure µ in P(Rd ), the space of Borel probability measures on Rd under
the Prokhorov topology, and a real-valued function f which is integrable with respect to µ we
se the notation µ( f ) :=

∫
Rd f (x)µ(dx).

. The model and assumptions

We consider a controlled jump diffusion process {X t }t≥0 taking values in the d-dimensional
uclidean space Rd defined by

dX t := b(X t ,Ut ) dt + σ (X t ) dWt + dL t , (2.1)

ith X0 = x ∈ Rd . All random processes in (2.1) are defined on a complete probability space
Ω ,F,P). The process {Wt }t≥0 is a d-dimensional standard Wiener process, and {L t }t≥0 is a
évy process defined as follows. Let Ñ (dt, dz) denote a martingale measure on Rl

∗
= Rl

\{0},
≥ 1, taking the form Ñ (dt, dz) = N (dt, dz) − Π (dz)dt , where N is a Poisson random
easure, and Π (dz)dt is the corresponding intensity measure, with Π a finite measure on Rl

∗
.

hen, {L t }t≥0 is given by

dL t :=

∫
Rl

∗

g(z) Ñ (dt, dz)

or a measurable function g : Rd
× Rl

→ Rd . The control process {Ut }t≥0 takes values in
compact, metrizable space U, Ut (ω) is jointly measurable in (t, ω) ∈ [0,∞) × Ω , and is

on-anticipative: for s < t ,
(
Wt − Ws, N (t, ·) − N (s, ·)

)
is independent of

Fs := the completion of σ {X0,Ur ,Wr ,N (r, ·) : r ≤ s} relative to (F,P).

uch a process U is called an admissible control, and we let U denote the set of admissible
ontrols. We also assume that the initial conditions X0, W0 and N (0, ·) are independent.

To guarantee the existence of a solution to the equation (2.1), we impose the following usual
ssumptions on the drift, matrix σ and jump functions (compare with [4, Section 4.2]). The
unctions b : Rd

× U ↦→ Rd and σ = [σ i j ] : Rd
↦→ Rd×d are continuous and have at most

ffine growth on Rd . Also, b is locally Lipschitz continuous in its first argument uniformly
ith respect to the second. The matrix σ is locally Lipschitz continuous and nonsingular. We

lso assume that
∫
Rl

∗
|g(z)|2 Π (dz) < ∞. Define ν(A) := Π

(
{z ∈ Rl

∗
: g(z) ∈ A}

)
. Thus, ν is

Radon measure on Rd , and we let ν := ν(Rd ) = Π (Rl
∗
), which is finite. These hypotheses

re enforced throughout the rest of the paper.
Under the above assumptions on the parameters, (2.1) has a unique strong solution under any
dmissible control U (see, e.g., [21, Part II, §7]), which is right continuous w.p.1, and has the



A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733–6756 6737

a

w
[
o
[
c
t

w

f
h

f
H
c
a

2

c
(

f

c

strong Feller property. Recall that Markov controls may be identified with Borel measurable
map v on R+ × Rd , by letting Ut = v(t, X t ). For any such Markov control v, define the
ssociated diffusion process {X◦, t ≥ 0} by

dX◦

t := b(X◦

t , v(t, X◦

t )) dt + σ (X◦

t ) dWt , (2.2)

ith X◦

0 = x◦
∈ Rd . It is well known that (2.2) has a pathwise unique strong solution by

23, Theorem 2.8]. We also refer the reader to [3, Theorem 2.2.12] for a different proof based
n the technique in [30]. Since Π is finite, it follows by the construction of a solution in
29, Chap. 1, Theorem 14] via (2.2) that (2.1) has a unique strong solution under any Markov
ontrol. We say that a Markov control v is stationary if v(t, x) is independent of t , and we use
he symbol Usm to denote the set of these controls.

For ϕ ∈ C2(Rd ), define the integro-differential operator A : C2(Rd ) → C(Rd
× U) by

Aϕ(x, u) := ai j (x)∂i jϕ(x) + b̃i (x, u)∂iϕ(x) +

∫
Rd

(
ϕ(x + y) − ϕ(x)

)
ν(dy) , (2.3)

here a :=
1
2σσ

T, and b̃(x, u) := b(x, u) +
∫
Rd z ν(dz). With u ∈ U treated as a parameter, we

also define Auϕ(x) := Aϕ(x, u). We decompose this operator as Au = L̃u + Ĩ, where

L̃uϕ(x) := ai j (x)∂i jϕ(x) + b̃i (x, u)∂iϕ(x) − νϕ(x) , and

Ĩϕ(x) :=

∫
Rd
ϕ(x + y) ν(dy) . (2.4)

Let D be a bounded domain with C1,1 boundary. Recall that τ (D) denotes the first exit time
rom D. As shown in [4, Lemma 4.1], for any f ∈ W

2,d
loc (Rd ), such that Ĩ| f | ∈ Ld

loc(Rd ), we
ave

EU
x [ f (X t∧τ (D))] = f (x) + EU

x

[∫ t∧τ (D)

0
A f (Xs,Us) ds

]
(2.5)

or all x ∈ D, t ≥ 0, and U ∈ U. In addition, (2.5) holds if we replace t ∧ τ (D) with τ (D).
ere, EU

x denotes the expectation operator on the canonical space of the process under the
ontrol U ∈ U. Eq. (2.5) arises from the well known Krylov’s extension of the Itô’s formula,
nd we refer to this plainly as the Itô formula.

.1. The ergodic control problem

Given a continuous running cost function R : Rd
× U → R+, which is locally Lipschitz

ontinuous in its first argument uniformly with respect to the second, we define the average
or ergodic) penalty as

ϱU (x) := lim sup
T →∞

1
T
EU

x

[∫ T

0
R(X t ,Ut ) dt

]
. (2.6)

or an admissible control U ∈ U. We say that U ∈ U is stabilizing if ϱU (x) < ∞ for all
x ∈ Rd .

The ergodic control problem seeks to minimize the ergodic penalty over all admissible
ontrols. We define

ϱ∗(x) := inf
U∈U

ϱU (x) . (2.7)

As we show in Theorem 4.1, the optimal ergodic value ϱ does not depend on x .
∗
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Assumption 2.1 which follows, is a slight variation of [2, Assumption 3.1], and is abstracted
from the limiting diffusions arising in multiclass stochastic networks in the Halfin–Whitt
regime. Note that the assumption on the running cost in [4, Section 2.2] is not met in these
problems. Recall that a function f : X → R, where X is a σ -compact space, is called coercive,
r inf-compact if the set {x ∈ X : f (x) ≤ C} is compact (or empty) for every C ∈ R.

ssumption 2.1. There exist some open set K ⊂ Rd , a ball B◦, and coercive nonnegative
unctions V◦ ∈ C2(Rd ) and F ∈ C(Rd

× U) such that:

(i) The running cost R is coercive on K.
(ii) The following inequalities hold

AuV◦(x) ≤ 1B◦
(x) − F(x, u) ∀ (x, u) ∈ Kc

× U ,
AuV◦(x) ≤ 1B◦

(x) + R(x, u) ∀ (x, u) ∈ K × U .
(2.8)

ithout loss of generality, we assume F is locally Lipschitz continuous in its first argument.

Since we can always scale B◦, V◦ and F to obtain the form in (2.8), there is no need to
include any other constants in these equations. It is worth noting that R is coercive on Rd if
Kc is bounded, and the controlled jump diffusion is uniformly stable if K is bounded.

We introduce an additional assumption which, together with Assumption 2.1, is sufficient
or the existence of a stabilizing stationary Markov control. For v ∈ Usm, we let bv(x) :=(

x, v(x)
)
, and define Av , L̃v , Rv , and ϱv analogously. If under v ∈ Usm the controlled jump

iffusion is positive recurrent, then v is called a stable Markov control, and the set of such
ontrols is denoted by Ussm.

ssumption 2.2. There exist v̂ ∈ Ussm, a positive constant κ̂ , and a coercive nonnegative
unction V ∈ C2(Rd ) such that

Av̂V(x) ≤ κ̂1B◦
(x) − Rv̂(x) , ∀x ∈ Rd , (2.9)

ith B◦ as in Assumption 2.1.

Without loss of generality, we use the same ball B◦ in Assumptions 2.1 and 2.2 in the
interest of notational economy.

Remark 2.1. The reader will note that Assumption 2.2 is not used in [2]. Instead, starting
from a weak stabilizability hypothesis, namely that

ϱU (x) < ∞ for some x ∈ Rd and U ∈ U , (2.10)

the existence of a control v̂ ∈ Ussm and a coercive nonnegative function V ∈ C2(Rd ) satisfying
(2.9) is established in [2, Lemma 3.1]. For the model studied in this paper, if we assume
(2.10), then together with Assumption 2.1 we can show, that there exists a control v̂ which
is stabilizing for some coercive running cost R̃ ≥ R (see the proof of Theorem 4.1 which
appears later). Then, if ν has compact support, [4, Theorem 3.7] shows that there exists a
function V ∈ W

2,p
loc (Rd ), for any p > 1, satisfying Assumption 2.2, and this implies that

IV ∈ Ld
loc(Rd ). Thus, if ν has compact support, then the Itô formula in (2.5) is applicable to

V, and using this in the proofs, it follows that as far as the results of this paper are concerned, we
may replace Assumption 2.2 with the weaker hypothesis in (2.10), which cannot be weakened
further since it is necessary for the value of the ergodic control problem to be finite. In typical
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applications, the existence of a stabilizing Markov control is usually established by exhibiting
a Foster–Lyapunov equation taking the form of (2.9).

As we establish in Theorem 4.1, Assumption 2.1 and (2.10) together guarantee the existence
of an optimal stationary Markov control for the ergodic control problem. Thus Assumption 2.2
need not be used for the existence part. However, it plays a crucial role in the derivation of the
HJB equation in Section 5 for non-compactly supported ν.

3. Examples

In this section, we provide examples of stochastic networks, and show that the jump
diffusions involved satisfy Assumptions 2.1 and 2.2. We refer the reader to [9, Section 2] for
a detailed description of multiclass multi-pool networks.

Consider a multiclass multi-pool network with d classes of customers and J server pools.
Define the sets I := {1, . . . , d}, J := {1, . . . , J }, and

U :=
{
u = (uc, us) ∈ Rd

+
× RJ

+
: ⟨e, uc

⟩ = ⟨e, us
⟩ = 1

}
.

Following similar arguments as in [13, Theorem 2.1], and assuming that service interruptions
are asymptotically negligible under the

√
n-scaling, we can show that the limiting controlled

ueueing processes are d-dimensional jump diffusions taking the form

dX t = b(X t ,Ut ) dt + σ dWt + θ dL t , (3.1)

here σ is a nonsingular diagonal matrix, θ is a strictly positive vector, and {L t }t≥0 is a one-
imensional compound Poisson process. The Lévy measure of θL t is denoted by ν(dz). This
s supported on {θ t : t ∈ [0,∞)}. It follows by [9, Lemma 4.3] that

b(x, u) = ℓ− M1
(
x − ⟨e, x⟩

+uc)
− ⟨e, x⟩

+Γ uc
+ ⟨e, x⟩

−M2us , (3.2)

where ℓ ∈ Rd , Γ = diag(γ1, . . . , γd ), M1 is a lower-diagonal d × d matrix with positive
diagonal elements, and M2 is a d × J matrix. Without loss of generality, we assume that
γ1 = 0, γd > 0, and γi ≥ 0, i ∈ I \ {1, d}. We consider the ergodic control problem in (2.7)
with

R(x, u) :=

∑
i∈I

ci [⟨e, x⟩
+uc

i ]m
+

∑
j∈J

s j [⟨e, x⟩
−us

j ]
m (3.3)

for some m ≥ 1, and some positive constants {ci : i ∈ I} and {s j : j ∈ J}. This running cost
function penalizes the queue sizes and idleness. It is evident that R(x, u) is not near-monotone,
since ⟨e, x⟩ equals 0 on a hyperplane in Rd . We assume that

∫
Rd |z|m ν(dz) < ∞.

We define Kδ := {x ∈ Rd
: |⟨e, x⟩| > δ|x |} with δ > 0. It is clear that R is coercive on Kδ

for δ > 0. For a positive definite symmetric matrix Q, we let g(x) be some positive convex
smooth function which agrees with ⟨x, Qx⟩

1/2 on Bc
1 , and define the function VQ,k(x) =

(
g(x)

)k

for k > 0.

Lemma 3.1. There exist a diagonal matrix Q, some δ > 0 small enough, and a positive
constant C such that V◦ = VQ,m and F(x) = C |x |

m satisfy Assumption 2.1 with K = Kδ .

Proof. Recall b̃ defined in (2.3). Following the same calculation as in the proof of [9, Theorem
4.1], we obtain⟨̃

b(x, u),∇VQ,m(x)
⟩

≤

{
C1 − m⟨x, Qx⟩

m/2−1
|x |

2
∀ (x, u) ∈ Kc

δ × U ,(
m
)

C1 1 + |⟨e, x⟩| ∀ (x, u) ∈ Kδ × U
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for some δ > 0, a positive constant C1, and a diagonal matrix Q satisfying xT(QM1+MT
1 Q)x ≥

|x |. On the other hand, using the hypothesis
∫
Rd |z|m ν(dz) < ∞, we obtain∫

Rd

(
VQ,m(x + z) − VQ,m(x)

)
ν(dz) =

∫
Rd

∫ 1

0

⟨
z,∇VQ,m(x + t z)

⟩
dt ν(dz)

≤ C2 + ϵ⟨x, Qx⟩
m/2

(3.4)

or some ϵ > 0 sufficiently small, and a positive constant C2. Thus (2.8) holds. This completes
he proof. □

emark 3.1. Let ℓ̃ := ℓ +
∫

Rd z ν(dz) and uc
1 = 1, and suppose that ⟨e, (M−1

1 )Tℓ̃⟩ > 0.
sing the leaf elimination algorithm as in [9, Theorem 4.2], we obtain a constant control

¯ = (ūc, ūs) ∈ U, with ūc
1 = 1, such that the last two terms on the right hand side of (3.2)

re equal to 0. This implies that {X t }t≥0 is transient under the control ū by [12, Theorem 3.1].
herefore, (3.1) is not uniformly stable.

Recall L̃ and Ĩ defined in (2.4). By [9, Theorem 4.2] concerning the local operator L̃, and
3.4) for Ĩ, it follows that there exist u = (uc, us) ∈ U with uc

d = 1, and V(x) ∼ ⟨x, Q̃x⟩
m/2

or some diagonal positive matrix Q̃ satisfying Assumption 2.2.

We present two specific examples: the ‘W’ and ‘V’ networks.

xample 3.1 (The ‘W’ Model with Service Interruptions.). See [9, Section 4.2] for the detailed
efinition of the ‘W’ model. We have I = {1, 2, 3} and J = {1, 2}. By [9, Example 4.2], M1

nd M2 in (3.2) are given by

M1 =

⎡⎣ µ11 0 0
µ22 − µ21 µ22 0

0 0 µ32

⎤⎦ , M2 =

⎡⎣ 0 0
µ21 − µ22 0

0 0

⎤⎦
or some positive constants {µi j : i ∈ I, j ∈ J, (i, j) /∈ {(1, 2), (3, 1)}}. We assume that
1 = γ2 = 0 and γ3 = 1, and ⟨e, (M−1

1 )Tℓ̃⟩ > 0. By [24, Theorem 3.1], under any control
∈ Usm with v3 = 0 and v5 = 1, {X t }t≥0 is transient. On the other hand, Assumption 2.2 is

atisfied for the constant control uc
3 = 1 and us

2 = 1.

xample 3.2 (The ‘V’ Model with Service Interruptions.). Eq. (3.1) also describes the limiting
ump diffusions of the ‘V’ model. Here I = {1, . . . , d}, J = {1}, and

b(x, u) = ℓ− M
(
x − ⟨e, x⟩

+u
)
− ⟨e, x⟩

+Γ u,

here u takes values U = {u ∈ Rd
: ⟨e, u⟩ = 1}, and M = diag(µ1, . . . , µd ) is a positive

iagonal matrix. Suppose that there exists a nonempty set I0 ⊂ {1, . . . , d − 1} such that
i = 0 for i ∈ I0, and ⟨e,M−1ℓ̃⟩ > 0. In this case, [12, Theorem 3.3] asserts that {X t }t≥0

s transient under any v ∈ Ussm satisfying Γ v = 0. However, Assumption 2.1 is satisfied by
12, Remark 5.1], and, provided that γi > 0 for some i ∈ I, then Assumption 2.2 holds by
12, Theorem 3.5].

emark 3.2. It is shown in [7] that the limiting diffusion of the ‘V’ model without service
nterruptions is uniformly ergodic over all stationary Markov controls, if either Γ > 0, or
he spare capacity −⟨e,M−1ℓ⟩ is positive. This result has been extended to the limiting jump
iffusion of the ‘V’ model with service interruptions in [8], with the difference that uniform
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ergodicity is over all stationary Markov controls resulting in a locally Lipschitz continuous
drift. It is also shown in [24] that if the spare capacity is positive, then the limiting diffusion of
the multiclass multi-pool networks with a dominant server pool (for example the ‘N’ and ‘M’
models), or class-dependent service rates, is uniformly exponentially ergodic over all stationary
Markov controls. However, in general, multiclass multi-pool networks do not enjoy uniform
ergodicity, but fall in the framework of Assumptions 2.1 and 2.2.

4. Existence of an optimal stationary Markov control

In this section we establish the existence of an optimal stationary Markov control by
following a standard convex analytic argument. We adopt the relaxed control framework (see,
e.g., [3, Section 2.3]), and extend the definitions of b and R accordingly, that is we let
bv(x) =

∫
U b(x, u) v(du | x), where v(x) = v(du | x) is a measurable kernel on U given

x , and analogously for R. Let µv ∈ P(Rd ) denote the unique invariant probability measure of
(2.1) under v ∈ Ussm. Define the corresponding ergodic occupation measure πv ∈ P(Rd

× U)
by πv(dx, du) := µv(dx) v(du | x). The class of all ergodic occupation measures is denoted by
G. Let C2

0 (Rd ) denote the Banach space of functions f : Rd
→ R that are twice continuously

differentiable and their derivatives up to second order vanish at infinity, and C denote some
fixed dense subset of C2

0 (Rd ) consisting of functions with compact supports. Applying the
Theorem in [18], it follows that π ∈ G if and only if∫

Rd
Au f (x)π(dx, du) = 0 ∀ f ∈ C.

It is easy to show that G is a closed and convex subset of P(Rd
× U) (see, e.g.,

[3, Lemma 3.2.3]).
Recall also the definition of empirical measures.

Definition 4.1. For U ∈ U and x ∈ Rd , we define the mean empirical measures {ζ̄U
x,t : t > 0},

and (random) empirical measures {ζU
t : t > 0} by

ζ̄U
x,t ( f ) =

∫
Rd×U

f (x, u) ζ̄U
x,t (dx, du) :=

1
t

∫ t

0
EU

x

[∫
U

f (Xs, u) Us(du)
]

ds,

nd

ζU
t ( f ) =

∫
Rd×U

f (x, u) dζU
t (dx, du) :=

1
t

∫ t

0

∫
U

f (Xs, u) Us(du) ds,

respectively, for all f ∈ Cb(Rd
× U).

Let R
d

denote the one-point compactification of Rd . Then as shown in [4, Lemma 4.2],
very limit ζ̂ ∈ P(R

d
× U) of ζ Z

x,t as t → ∞ takes the form ζ̂ = δζ ′
+ (1 − δ)ζ ′′ for some

∈ [0, 1], with ζ ′
∈ G and ζ ′′({∞} × U) = 1 almost surely. The same claim holds for the

ean empirical measures, without the qualifier ‘almost surely’.
We borrow the technique introduced in [2]. Recall the function F and the set K in

ssumption 2.1. First, define the set

K̃ := (K × U) ∪
{
(x, u) ∈ Rd

× U : R(x, u) > F(x, u)
}
.

We have
AuV◦(x, u) ≤ 1B◦
(x, u) − F(x, u)1K̃c (x, u) + R(x, u)1K̃(x, u) (4.1)
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for all (x, u) ∈ Rd
× U. As shown in [2, Lemma 3.3], there exists a coercive function

F̃ ∈ C(Rd
× U), which is locally Lipschitz in its first argument, and satisfies

R ≤ F̃ ≤ κ̃
(
1B◦

+ R1K̃ + F 1K̃c
)

(4.2)

for some positive constant κ̃ ≥ 1. Here again we select the same ball B◦ as in Assumption 2.1
for convenience. This can always be accomplished by adjusting the constant κ̃ .

Define the perturbed running cost Rϵ := R+ ϵ F̃ . Since Rϵ is coercive for ϵ > 0, the results
of [4] are applicable for the ergodic control problem with the perturbed running cost. At the
same time, it follows from (4.1) and (4.2) and the argument in the proof of [2, Theorem 3.1],
that if a control U ∈ U is stabilizing for R, then it is also stabilizing for Rϵ for any ϵ > 0.

Theorem 4.1. Grant Assumption 2.1. Then every stabilizing stationary Markov control is in
Ussm. In addition, if the stabilizability hypothesis in (2.10) is met, then there exists a stationary
Markov control which is optimal for the ergodic control problem, and ϱ∗ is a constant.

Proof. By Assumption 2.1, we have ĨV◦ ∈ L∞

loc(Rd ), and thus, applying Itô’s formula and
Fatou’s lemma to (4.1), it follows by (4.2) that

ζ̄U
x,t (R

ϵ) ≤ ζ̄U
x,t (R) + ϵκ̃

(
1 +

1
t
V◦(x) + 2ζ̄U

x,t (R)
)

(4.3)

for all (x, t) ∈ Rd
× (0,∞) and U ∈ U.

Since by (4.3) we have

πv(Rϵ) ≤ ϱv + ϵκ̃(1 + 2ϱv) (4.4)

for any stabilizing stationary Markov control v, we have πv(R) < ∞, and the first assertion
follows.

Define ϱϵU and ϱϵ
∗

as in (2.6) and (2.7), respectively, by replacing R with Rϵ . Let ϱ̂ϵ
∗

:=

infπ∈G π (Rϵ), and ϱ̂∗ := infπ∈G π(R). Since Rϵ is coercive for any ϵ ∈ (0, 1), we have
ϱ̂ϵ

∗
= πvϵ∗ (Rϵ) for some vϵ

∗
∈ Ussm by [3, Theorem 3.4.5], and ϱ̂ϵ

∗
= ϱϵ

∗
by Lemma 4.2 in [4] and

the proof of [3, Theorem 3.4.7]. Hence, by (4.3), which implies that ϱϵU ≤ ϱU + ϵκ̃(1 + 2ϱU ),
and the above definitions we have

ϱ∗ ≤ ϱ̂∗ ≤ ϱ̂ϵ
∗

= ϱϵ
∗

≤ ϱ∗ + ϵκ̃(1 + 2ϱ∗) ∀ ϵ ∈ (0, 1).

This shows that ϱ∗ = ϱ̂∗. It remains to show that ϱ∗ = πv∗ (R) for some v∗ ∈ Ussm. But
this follows by using the technique in the proof of [3, Theorem 3.4.5]. This completes the
proof. □

5. The HJB equations

In this section, we study the α-discounted and ergodic HJB equations for the jump diffusion
defined in (2.1). For the α-discounted control problem, it is rather standard to establish
the existence of solutions and the characterization of optimal controls (see Theorem 5.1 for
etails). We consider the Dirichlet problem on BR for the α-discounted problem with running
ost Rϵ . From [14, Chap. 3, Theorem 2.3 and Remark 2.3], there exists a unique solution
ϵ
α,R ∈ W2,p(BR) ∩ W

1,p
0 (BR) to the (homogeneous) Dirichlet problem

min
[
Auψ

ϵ
α,R + Rϵ(·, u)

]
= αψϵ

α,R in BR , and ψϵ
α,R = 0 in Bc

R . (5.1)

u∈U
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For the Dirichlet problem with a linear integro-differential operator, existence and uniqueness
of a solution are also asserted in [19, Theorem 3.1.22]. Meanwhile, for a bounded running cost
function [28, (1.26)] and under the blanket stability assumption in [28, (1.6)], HJB equations
on the whole space are established in [28, Remark 3.3 and Theorem 4.1]. It is clear that these
assumptions are not met for multiclass stochastic networks in the Halfin–Whitt regime. For
example, in (3.3), the running cost function penalizing the queueing and idleness is unbounded,
and the drift in (3.1) does not satisfy [28, (1.6)].

Theorem 5.1. Grant Assumptions 2.1 and 2.2. Then for any α ∈ (0, 1) and ϵ ∈ [0, κ̃−1), the
unction ψϵ

α,R in (5.1) converges uniformly on compacta to a function V ϵ
α ∈ W

2,p
loc (Rd ) for any

p > 1, which is the minimal nonnegative solution of the HJB equation

min
u∈U

[
Au V ϵ

α (x) + Rϵ(x, u)
]

= αV ϵ
α (x) a.e. in Rd , (5.2)

nd has the stochastic representation

V ϵ
α (x) = inf

U∈U
EU

x

[∫
∞

0
e−αtRϵ(X t ,Ut ) dt

]
. (5.3)

n addition, a control v ∈ Usm is optimal, that is, it attains the infimum in (5.3), if and only if
t is an a.e. measurable selector from the minimizer of (5.2).

roof. Under Assumption 2.2, the proof for the existence of a minimal nonnegative solution
V ϵ
α ∈ W

2,p
loc (Rd ) is exactly same as in [4, Theorem 3.2]. A straightforward application of the

omparison principle shows that the following bound holds

V ϵ
α (x) ≤

3κ̂ + 2
α

+ V◦(x) + 3V(x) ∀x ∈ Rd , ∀α ∈ (0, 1) , ∀ϵ ∈ [0, κ̃−1) . (5.4)

rom (5.4), we have ĨV ϵ
α ∈ L∞

loc(Rd ). Thus using the Itô’s formula in (2.5), the stochastic
epresentation and the sufficiency part of the verification of optimality are established in a
tandard manner (see, e.g., [3, Theorem 3.5.6 and Remark 3.5.8]). On the other hand, for any
∈ Usm, the resolvent of the controlled diffusion defined in (2.2) has a positive density with

espect to the Lebesgue measure by [3, Theorem 3.4.5]. Since the Lévy measure ν is finite, then
pplying [27, Lemma 2.1], we see that the same holds for the resolvent of the jump diffusion
n (2.1). Thus, we may repeat the argument in [3, Theorem 3.5.6] to establish the necessity
art of the verification of optimality. This completes the proof. □

We proceed to derive the HJB equation on the ergodic control problem by using the
anishing discount method. The technique used has some important differences from [4], since
ere the running cost is not near-monotone when ϵ = 0. To overcome this difficulty, we derive
ower and upper bounds for V ϵ

α in the lemma which follows.

emma 5.1. Grant the hypotheses in Assumptions 2.1 and 2.2. For any δ ∈ (0, 1
2 ], there

exists r̃ = r (δ) > 0 such that

V ϵ
α ≥ inf

Br
V ϵ
α − δV◦ on Bc

r , ∀ r > r̃ , (5.5)

for all α ∈ (0, 1) and ϵ ∈ [0, κ̃−1). Moreover, there exists r◦ > 0 such that

V ϵ
α ≤ sup

Br◦

V ϵ
α + V◦ + 3V on Rd , (5.6)

for all α ∈ (0, 1) and ϵ ∈ [0, κ̃−1).
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Proof. Let v∗ be an optimal control in Ussm. Its existence has been asserted in Theorem 4.1.
ecall that µv∗ denotes the invariant probability measure under v∗. Using (5.3), Fubini’s

heorem, and (4.4), we obtain

µv∗ (Br )
(

inf
Br
αV ϵ

α

)
≤ ϱ∗ ≤ ϱ∗ + ϵκ̃(1 + 2ϱ∗)

or any r > 0. Fix some r◦ > 0 such that Br◦ ⊃ B◦. Then

inf
Br
αV ϵ

α ≤
ϵκ̃ + (1 + 2ϵκ̃)ϱ∗

µv∗ (Br )
≤

ϱ∗

µv∗ (Br◦ )
, (5.7)

for all r > r◦, α ∈ (0, 1), and ϵ ∈ [0, κ̃−1).
We first establish a lower bound of V ϵ

α . Let ψϵ
α,R satisfy (5.1), and v̂R ∈ U be a measurable

selector from its minimizer, that is, it satisfies

Av̂Rψ
ϵ
α,R − αψϵ

α,R = −Rϵv̂R
on BR . (5.8)

Let δ ∈
(
0, 1

2

]
be arbitrary. By (5.7), and the coerciveness of F̃ in (4.2), there exists r̃ = r̃ (δ) >

◦ such that

inf
Br̃
αψϵ

α,R ≤ δκ̃−1 F̃v̂R (x) for all x ∈ Bc
r̃ , R ≥ r̃ , α ∈ (0, 1) , and ϵ ∈ [0, κ̃−1) . (5.9)

et

φϵα,R := δV◦ + ψϵ
α,R − inf

Br̃
ψϵ
α,R . (5.10)

y (4.1), (4.2), (5.8) and (5.9), we have

Aφϵα,R − αφϵα,R ≤ inf
Br̃
αψϵ

α,R − δFv̂R1K̃c − (1 − δ)Rv̂R1K̃

≤ inf
Br̃
αψϵ

α,R − δκ̃−1 F̃v̂R

≤ 0 on BR \ Br̃ , for all R ≥ r̃ .

(5.11)

ince ψϵ
α,R converges monotonically to V ϵ

α as R → ∞ and V◦ is coercive, there exists
R0 = R0(δ, α) > r̃ such that

inf
Br̃
ψϵ
α,R ≤ δV◦(x) ∀ x ∈ BR \ BR0 , R > R0 . (5.12)

Thus, since φϵα,R ≥ 0 on Br̃ by (5.10), and φϵα,R ≥ 0 on BR \ BR0 by (5.12), it follows that
φϵα,R ≥ 0 on Rd for all R > R0 by (5.11) and the strong maximum principle. Taking limits as
R → ∞ in (5.10), we obtain

V ϵ
α ≥ inf

Br̃
V ϵ
α − δV◦ on Bc

r̃ ,

hich establishes (5.5).
Next we prove the upper bound. For v̂ in Assumption 2.2, we have

Av̂(−ψϵ
α,R) − α(−ψϵ

α,R) ≤ Rv̂ + ϵ F̃v̂ on BR . (5.13)

ecall that Br◦ ⊃ B◦, and select any balls D1 and D2, such that Br◦ ⋐ D1 ⋐ D2. By (4.1),
4.2), (5.8) and (5.13), the function

φ̂ϵα,R := sup ψϵ
α,R − ψϵ

α,R + V◦ + 3V

Br◦
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satisfies

Av̂φ̂
ϵ
α,R − αφ̂ϵα,R ≤ − sup

Br◦

ψϵ
α,R ≤ 0 on BR \ Br◦ ,

for all α ∈ (0, 1) and ϵ ∈ [0, κ̃−1). It is evident that ϕ̂ϵα,R ≥ 0 on Br◦ ∪ Bc
R . Thus, employing

the strong maximum principle, we obtain

ψϵ
α,R ≤ sup

Br◦

ψϵ
α,R + V◦ + 3V on Rd , (5.14)

for all α ∈ (0, 1) and ϵ ∈ [0, κ̃−1). Letting R → ∞ in (5.14), we obtain (5.6). This completes
the proof. □

We also need the following estimate. Its proof combines the technique in the proof of
[4, Theorem 3.3] with Lemma 5.1.

Lemma 5.2. Grant the hypotheses in Assumptions 2.1 and 2.2. For each R > 0, there exists
a constant κR such that

osc
BR

V ϵ
α ≤ κR

for all α ∈ (0, 1) and ϵ ∈ [0, κ̃−1).

Proof. We choose Br◦ , D1, and D2 as in the proof of Lemma 5.1. By (2.9) and (4.1), it is
evident that Ĩ(V◦ + 3V) ∈ L∞

loc(Rd ). Let x̂ϵα ∈ Arg minD̄2
V ϵ
α . The function ϕϵα := V ϵ

α − V ϵ
α (x̂ϵα)

satisfies

min
u∈U

[
Auϕ

ϵ
α(x) − αϕϵα(x) + Rϵ(x, u)

]
= αV ϵ

α (x̂ϵα) ≤
ϱ∗

µv∗ (Br◦ )
,

where the inequality follows by (5.7). Using (5.6), we obtain

sup
BR

ϕϵα ≤ sup
Br◦

ϕϵα + sup
BR

(
3V + V◦

)
for all R > r◦ , (5.15)

∈ (0, 1) and ϵ ∈ [0, κ̃−1). Let vϵα be a measurable selector from the minimizer of the
-discounted problem associated with Rϵ . By the local maximum principle [22, Theorem 9.20],

for any p > 0, there exists a constant C̃1(p) > 0 such that

sup
Br◦

ϕϵα ≤ C̃1(p)
(
∥ϕϵα∥p;D1 + ∥Ĩϕϵα∥Ld (D1) + ∥Rϵvϵα∥Ld (D1)

)
ith ∥ϕϵα∥p;D1 :=

(∫
D1

|ϕϵα(x)|dx
)1/p, and by the supersolution estimate [22, Theorem 9.22],

here exist some p > 0 and C̃2 > 0 such that

∥ϕϵα∥p;D1 ≤ C̃2

(
inf
D1
ϕϵα + κ1 |D2|

1/d
)
.

On the other hand, the inequality in (5.5) implies that infD1 ϕ
ϵ
α ≤ supD2

V◦. Combining these
stimates, we obtain

sup
Br◦

ϕϵα ≤ κ2 + C̃1(p) ∥Ĩ ϕϵα∥Ld (D1) . (5.16)

here

κ2 := C̃1(p)
(

(1 + C̃2)
(

supV◦ + κ1 |D2|
1/d

)
+ ∥Rϵvϵα∥Ld (D1)

)
.

D2
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By (5.15) and (5.16), we have

sup
D2

ϕϵα ≤ κ2 + ∥V◦ + 3V∥L∞(D2) + C̃1(p) ∥Ĩϕϵα∥Ld (D1).

ence, either supD2
ϕϵα ≤ 2κ2 + 2∥V◦ + 3V∥L∞(D2), which directly implies (5.7), or

sup
D2

ϕϵα ≤ 2C̃1(p) ∥Ĩϕϵα∥Ld (D1) . (5.17)

Suppose that (5.17) is the case. By (5.15), we have the estimate

Ĩ(1Dc
2
ϕϵα)(x) ≤

(
sup
Br◦

ϕϵα

)
ν(Dc

2) + Ĩ
(
1Dc

2
(V◦ + 3V)

)
(x) ∀x ∈ D1 . (5.18)

hus, by (5.16)–(5.18), we obtain

sup
D1

Ĩϕϵα ≤ κ2ν + 3C̃1(p)ν ∥Ĩϕϵα∥Ld (D1) + ∥Ĩ
(
1Dc

2
(V◦ + 3V)

)
∥L∞(D1).

gain we distinguish two cases. If

sup
D1

Ĩϕϵα ≤ 6C̃1(p)ν ∥Ĩϕϵα∥Ld (D1),

hen the proof is the same as in [4, Theorem 3.3]. It remains to consider the case

sup
D1

Ĩϕϵα ≤ 2κ2ν + 2∥Ĩ
(
1Dc

2
(V◦ + 3V)

)
∥L∞(D1) . (5.19)

et φ̃ϵα be the solution of the Dirichlet problem

L̃vϵα φ̃
ϵ
α − αφ̃ϵα = 0 in D1 and φ̃ϵα = ϕϵα on ∂D1 .

y Harnack’s inequality, we have φ̃ϵα ≤ C̃H φ̃
ϵ
α(x̂ϵα) for all x ∈ Br◦ , α ∈ (0, 1), and ϵ ∈ [0, κ̃−1).

hus

L̃vϵα (ϕϵα − φ̃ϵα) − α(ϕϵα − φ̃ϵα) = −Ĩϕϵα + αV ϵ
α (x̂ϵα) − Rϵ

≥ − sup
D1

Ĩϕϵα + αV ϵ
α (x̂ϵα) − Rϵ in D1 ,

nd ϕϵα − φ̃ϵα = 0 on ∂D1. On the other hand, we have

L̃vϵα (φ̃ϵα − ϕϵα) − α(φ̃ϵα − ϕϵα) = Ĩϕϵα − αV ϵ
α (x̂ϵα) + Rϵ

≥ inf
D1

Ĩϕϵα − αV ϵ
α (x̂ϵα) + Rϵ in D1 ,

(5.20)

sing (5.5), we obtain

inf
D1

Ĩϕϵα ≥ − sup
D1

ĨV◦ . (5.21)

ince ĨV◦ ∈ L∞

loc(Rd ), applying the ABP weak maximum principle in [22, Theorem 9.1] to
5.20), and using (5.19) and (5.21), we obtain ∥ϕϵα − φ̃ϵα∥L∞(D1) ≤ C̃0 for some constant C̃0

hich does not depend on α ∈ (0, 1) and ϵ ∈ [0, κ̃−1). Thus, employing [6, Corollary 2.2] as
one in [4, Theorem 3.3], we establish (5.7). This completes the proof. □

In Theorem 5.2 which follows, we derive the HJB equation for the ergodic control
roblem, and the corresponding characterization of optimal Markov controls. Compared to

4, Theorem 4.5], the important difference here is that the solutions to the HJB equation may
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not be bounded from below in Rd , since the running cost function is not near-monotone. As
consequence, [3, Lemma 3.6.9] cannot be applied here directly to establish the stochastic

epresentation of the solutions, and prove uniqueness. We let Vα := V ϵ
α

⏐⏐
ϵ=0.

Theorem 5.2. Grant Assumptions 2.1 and 2.2. Then

(a) As α ↘ 0, Ṽα := Vα − Vα(0) converges in C1,ρ with ρ ∈ (0, 1), uniformly on compact
sets, to a function V∗ ∈ W

2,p
loc (Rd ) for any p > 1, which satisfies V −

∗
∈ o(V◦), and

min
u∈U

[
Au V∗(x) + R(x, u)

]
= ϱ∗ a.e. in Rd . (5.22)

(b) A control v ∈ Ussm is optimal for the ergodic control problem with R if and only if it is
an a.e. measurable selector from the minimizer in (5.22).

(c) Let Ũssm := {v ∈ Ussm : ϱv < ∞}. The function V∗ is the unique solution (up to an
additive constant) to the equation minu∈U [Au V∗(x) + R(x, u)] = ϱ a.e. on Rd , with
ϱ ≤ ϱ∗, which satisfies V −

∗
∈ o(V◦) and V∗(0) = 0. In addition, it has the stochastic

representation

V∗(x) = lim
r↘0

inf
v∈Ũssm

Evx
[∫ τ̆r

0

(
Rv(Xs) − ϱ∗

)
ds

]
. (5.23)

Proof. We first prove (a). By (5.2), we have

min
u∈U

[
Au Ṽα(x) + R(x, u)

]
= αṼα(x) + αVα(0) a.e. in Rd . (5.24)

The limit limα↘0 αVα(0) = ϱ∗ follows as in the proof of Theorem 3.6 in [2] using Lemma 5.2.
We fix an arbitrary ball B, and using (5.5) and (5.6), we obtain

|Ṽα(x)| ≤ ∥Ṽα∥L∞(B) + V◦(x) + 3V(x) ∀x ∈ Rd . (5.25)

By (2.9), (4.1) and (5.25), we have Ĩ|Ṽα| ∈ L∞

loc(Rd ). Let vα be a measurable selector for the
inimizer of (5.24). Then, applying the interior estimate in [22, Theorem 9.11], we obtain

∥Ṽα∥W2,p(BR ) ≤ C
(
∥Ṽα∥L p(B2R ) + ∥αVα(0) − Rvα − Ĩ Ṽα∥L p(B2R )

)
,

here C ≡ C(R, p). Hence, supα∈(0,1) ∥Ṽα∥W2,p(BR ) < ∞. Thus, following a standard argument
see [3, Lemma 3.5.4]), for any sequence αn ↘ 0, the functions {Ṽαn } converge along a
ubsequence in C1,ρ with ρ ∈ (0, 1), uniformly on compact sets, to V∗. Since R is arbitrary,
his proves (5.22). Letting α ↘ 0 in (5.5), which holds for all δ > 0, with r̃ depending only
n δ, we obtain (with ϵ = 0)

V −

∗
∈ o(V◦) . (5.26)

Concerning part (b), necessity follows by [4, Theorem 3.5]. Sufficiency follows exactly as
n the proof of [2, Theorem 3.4 (b)] using (5.26) and part (a).

It remains to establish uniqueness and the stochastic representation as stated in part (c). By
5.25), we also have ĨV∗ ∈ L∞

loc(Rd ). Following the same arguments as in [3, Lemma 3.6.9],
e have

V∗(x) ≤ lim inf inf Evx
[∫ τ̆r

(Rv(Xs) − ϱ∗) ds
]
. (5.27)
r↘0 v∈Ũssm 0
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On the other hand, applying Itô’s formula, we obtain

V∗(x) = Ev0
x

[∫ τ̆r ∧τR

0

(
Rv0 (Xs) − ϱ∗

)
ds + V∗(X τ̆r ∧τR )

]
, (5.28)

ith v0 a measurable selector for the minimizer of (5.22). Note that

V∗(X τ̆r ∧τR ) = V∗(X τ̆r )1(τ̆r < τR) + V∗(XτR )1(τ̆r ≥ τR) .

e next show that

lim sup
R↗∞

Ev0
x [V −

∗
(XτR )1(τ̆r ≥ τR)] = 0 . (5.29)

et Φ := V∗ +V◦. It follows by (5.26) that Φ is coercive and V −
∗

∈ o(Φ). It is also evident by
4.1) and (5.22) that Av0Φ(x) ≤ 1B◦

(x) + ϱ∗. Then, applying Itô’s formula, we obtain

Ev0
x

[
Φ(X τ̆r ∧τR )

]
≤ (ϱ∗ + 1)Ev0

x [τ̆r ∧ τR] + Φ(x) ≤ (ϱ∗ + 1)Ev0
x [τ̆r ] + Φ(x) .

e also have

Ev0
x

[
V −

∗
(XτR )1(τ̆r ≥ τR)

]
≤

(
(ϱ∗ + 1)Ev0

x [τ̆r ] + Φ(x)
)

sup
y∈Bc

R

V −
∗

(y)
Φ(y)

. (5.30)

ote that Ev0
x [τ̆r ] is finite since v0 ∈ Ussm by Theorem 4.1. Since V −

∗
∈ o(Φ), it follows that

upy∈Bc
R

V −
∗ (y)
Φ(y) vanishes as R → ∞, which in turn implies that the right hand side of (5.30)

onverges to 0 as R → ∞. This proves (5.29). Letting R → ∞ in (5.28), it follows by Fatou’s
emma and (5.29) that

V∗(x) ≥ Ev0
x

[∫ τ̆r

0

(
Rv0 (Xs) − ϱ∗

)
ds + V∗(X τ̆r )

]
,

nd we obtain

V∗(x) ≥ lim sup
r↘0

inf
v∈Ũssm

Evx
[∫ τ̆r

0
(Rv(Xs) − ϱ∗) ds

]
, (5.31)

hich together with (5.27) implies (5.23). Note that, by the argument above, (5.31) holds for
any solution V of (5.22) which satisfies V −

∈ o(V◦). Thus, if V is any other solution, we have
V∗ ≤ V and equality follows by the strong maximum principle. This completes the proof. □

5.1. Regularity of solutions of the HJB

In this section, we examine the regularity of solutions of the HJB equations in Theorems 5.1
and 5.2. If the Lévy measure ν has a compact support, then it follows by the elliptic
regularity [22, Theorem 9.19] that the solutions to the HJB equations are in C2,r (Rd ) for any

∈ (0, 1). See also Remark 3.4 in [4].
We need the following gradient estimate which is also applicable to a larger class of

equations.

Lemma 5.3. Let ϕ ∈ W
2,p
loc (Rd ), p > d, be a strong solution, having at most polynomial

growth of degree m > 0, to the equation
i j i ˜ d
a (x)∂i jϕ(x) + b (x)∂iϕ(x) + c(x)ϕ(x) + Iϕ(x) = f (x) on R , (5.32)
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where

(i) the matrix a is bounded, Lipschitz continuous on Rd and uniformly elliptic;
(ii) the coefficients b and c are locally bounded and measurable, with b having at most

linear growth and c having at most quadratic growth;
(iii) the function f has at most polynomial growth of degree κ with κ ∈ (0,m + 2];
(iv) the Lévy measure ν of the nonlocal operator Ĩ is finite and satisfies

∫
Rd |z|m ν(dz) < ∞.

hen, |∇ϕ(x)| ∈ O(|x |
m+1).

roof. For any fixed x0 ∈ Rd , for which without loss of generality we assume |x0| ≥ 1, we
efine the scaled variables

ϕ̃(x) := ϕ

(
x

|x0|
1/2

)
,

and similarly for ã, b̃, c̃, and f̃ . The equation in (5.32) then takes the form

ãi j (x)∂i j ϕ̃(x) +
b̃i (x)
|x0|

1/2
∂i ϕ̃(x) +

c̃(x)
|x0|

ϕ̃(x) + Ĩϕ
(

x
|x0|

1/2

)
=

f̃ (x)
|x0|

on Rd . (5.33)

t is clear from (i)–(ii) that the coefficients ãi j , |x0|
−1/2b̃i and |x0|

−1c̃ are bounded in the ball
B2(x0), with a bound independent of x0, and that the Lipschitz and ellipticity constants of the
matrix ã in B2(x0) are independent of x0. Thus, it follows by (5.33) and the a priori estimate
in [22, Theorem 9.11] that, for any fixed p > d, we have

∥ϕ̃∥W2,p(B1(x0)) ≤ C
(ϕ̃

L p(B2(x0)) +
Ĩϕ(|x0|

−1/2
· )


L p(B2(x0))

+|x0|
−1

 f̃


L p(B2(x0))

) (5.34)

for some positive constant C independent of x0. Since ν is finite and
∫
Rd |z|m ν(dz) < ∞, it

follows that Ĩϕ has at most polynomial growth of degree m. Then, by the assumptions of the
lemma, the right hand side of (5.34) is O

(
|x0|

m/2
)
. Therefore, by (5.34) and the compactness

of the Sobolev embedding W2,p
(
B1(x0)

)
↪→ C1,r

(
B1(x0)

)
, for 0 < r < 1 −

d
p , we obtain∇ϕ̃


L∞(B1(x0)) ≤ C0

(
1 + |x0|

m/2
)

∀ x0 ∈ Rd (5.35)

or some positive constant C0 independent of x0. On the other hand,

∇ϕ

(
x0

|x0|
1/2

)
= |x0|

1/2
∇ϕ̃(x0) ∀ x0 ∈ Rd ,

hich together with (5.35) imply |∇ϕ(x)| ∈ O(|x |
m+1). This completes the proof. □

Consider the following assumption on the growth of the coefficients and the functions V◦

nd V.

ssumption 5.1.

(i) The running cost function has at most polynomial growth of degree m◦ ≥ 1, that is,
R(x, u) ≤ C◦(1 + |x |

m◦ ), for all (x, u) ∈ Rd
× U and some positive constant C◦.

(ii) Assumptions 2.1 and 2.2 hold with V and V◦ having at most polynomial growth of degree
m◦.

´
∫

m◦+1
(iii) The Levy measure ν satisfies
Rd |z| dz < ∞.
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Remark 5.1. Provided that
∫
Rd |z|m+1 ν(dz) < ∞, it is clear that Assumption 5.1 holds for

the limiting controlled diffusion in Section 3.

We have the following theorem.

Theorem 5.3. Grant Assumption 5.1. The solutions V ϵ
α of (5.2), and V∗ of (5.22) are in

C2,r (Rd ) for any r ∈ (0, 1).

Proof. Consider V∗. Since V∗ ∈ O(V◦ +3V) by (5.25), then ĨV∗ ∈ L∞

loc(Rd ) by (2.8) and (2.9),
and V∗ has at most polynomial growth of degree m◦ by Assumption 5.1. We claim that ĨV∗ is
locally Lipschitz continuous. To prove the claim, we fix some x0 ∈ Rd , and write⏐⏐ĨV∗(x0 + x ′) − ĨV∗(x0 + x ′′)

⏐⏐
≤

∫
Rd

∫ 1

0

⏐⏐⟨∇V∗(x0 + θ (x ′
− x ′′) + y), x ′

− x ′′
⟩⏐⏐ dθ ν(dy)

≤
⏐⏐x ′

− x ′′
⏐⏐ ∫

Rd
∥∇V∗∥L∞(B2(x0+y)) ν(dy)

(5.36)

for all x ′, x ′′
∈ B1. By (5.22) and Lemma 5.3 we obtain

∥∇V∗∥L∞(B2(z)) ∈ O(|z|m◦+1),

which together with Assumption 5.1(iii) and (5.36) proves the claim. It then follows by (5.22)
and elliptic regularity (see [22, Theorem 9.19]) that V∗ is in C2,r (Rd ) for any r ∈ (0, 1). The
proof of the same property for V ϵ

α is completely analogous. □

6. Pathwise optimality

The pathwise formulation of the ergodic control problem seeks to a.s. minimize over U ∈ U

lim sup
t→∞

1
t

∫ t

0
R(XU

s ,Us) ds,

where {XU
t }t≥0 denotes the process governed by (2.1) under the control U . If the running

cost is near-monotone or a uniform stability condition holds, it follows by [4, Theorem 4.4]
that every average cost optimal stationary Markov control is also optimal with respect to the
pathwise ergodic criterion. In this section, we extend the results of the diffusion model in [1]
to the jump–diffusion model. We modify Assumption 2.1 as follows.

Assumption 6.1. Assumption 2.1 holds with F = φ ◦ V◦, where φ : R+ → R+ is smooth
increasing concave function, satisfying φ(z) → ∞ as z → ∞. In addition, the functions σ and

∇V◦

1+φ◦V◦
are bounded on Rd .

emark 6.1. For the examples in Section 3, we may rescale F(x) in Lemma 3.1 so that
F(x) = CVQ,m(x) for some positive constant C . Thus, if we choose φ(x) = Cx , then
Assumption 6.1 holds.

Theorem 6.1. Grant Assumption 6.1. Then, if U ∈ U is such that ϱU (x) < ∞, the family
of random empirical measures {ζU

t : t > 0} in Definition 4.1 is tight a.s. In particular, every
average cost optimal stationary Markov control is pathwise optimal.
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Proof. The technique is similar to that of [1, Theorem 3.1], but here we need to account for
the nonlocal term. We define ψN : R+ → R+, for N ∈ N, by

ψN (z) :=

∫ z

0

1
N + φ(y)

dy,

and ϕN : Rd
→ R+ by ϕN := ψN ◦V◦, where ‘◦’ denotes composition of functions. Let U ∈ U

be some admissible control such that

lim sup
n→∞

∫
Rd×U

R(x, z) ζU
tn (dx, dz) < ∞

for some increasing divergent sequence {tn}. Since R is coercive on K×U, it follows that ζU
tn

is a.s. tight when restricted to B(K × U), the Borel σ -algebra of K × U.
Since ∇ϕN and σ are bounded, by Itô’s formula and (2.8) we obtain

ϕN (X t ) − ϕN (X0)
t

=
1
t

∫ t

0
AUsϕN (Xs) ds +

1
t

∫ t

0
⟨∇ϕN (Xs), σ (Xs) dWs⟩

+
1
t

∫ t

0

∫
Rm

∗

(
ϕN

(
Xs− + g(ξ )

)
− ϕN (Xs−)

)
Ñ (ds, dξ ) .

(6.1)

hen, the second and third terms on the right hand side of (6.1) converge to 0 a.s. as t → ∞,
y the proof of Lemma 4.2 in [4].

An easy computation shows that

AzϕN (x) ≤

{
1−φ(V◦(x))
N+φ(V◦(x)) + F1,N (x) + F2,N (x) on Kc ,

1+R(x,z)
N+φ(V◦(x)) + F1,N (x) + F2,N (x) on K ,

(6.2)

where

F1,N (x) := −φ′
(
V◦(x)

) ⏐⏐σ T(x)∇V◦(x)
⏐⏐2(

N + φ(V◦(x))
)2 , x ∈ Rd , (6.3)

nd

F2,N (x) :=
1

N + φ
(
V◦(x)

) ∫
Rd

∫ V◦(x+ξ )

V◦(x)

φ
(
V◦(x)

)
− φ(y)

N + φ(y)
dy ν(dξ ) . (6.4)

o estimate (6.4), we use⏐⏐⏐⏐ ∫
Rd

∫ V◦(x+ξ )

V◦(x)

φ
(
V◦(x)

)
− φ(y)

N + φ(y)
dy ν(dξ )

⏐⏐⏐⏐ ≤ ν(Rd ) ∥φ′
∥L∞(R)

 ∇V◦

N + ϕ ◦ V◦


L∞(Rd )

.

Then combining this with (6.1)–(6.4), we obtain

lim sup
n→∞

∫
Kc×U

φ
(
V◦(x)

)
N + φ

(
V◦(x)

) ζU
tn (dx, dz) ≤

C
N

or some constant C , from which it follows that ζU
tn is a.s. tight when restricted to B(Kc

×U).
Therefore, it is a.s. tight in P(Rd

× U). This completes the proof. □

7. An approximate HJB equation

In this section, we use an approximate HJB equation to construct ϵ-optimal controls.
Its purpose is twofold. First, it is used to establish asymptotic optimality in [13]. Second,
the approximating HJB equation is a semilinear equation on a sufficiently large ball, and a



6752 A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733–6756

t
t

A

D

L

w

w
o

a

I

linear equation on its complement, which is beneficial to numerical methods. This result was
first reported in [2, Section 4] for a continuous diffusion. The proof in that paper crucially
relied on the following property of a positive recurrent nondegenerate diffusion of the form
dX t = b(X t )dt + σ (X t )dWt : If a function f : Rd

→ R is integrable under the invariant
probability measure µ of the diffusion, then E[ f (X t )] → µ( f ) as t → ∞. The proof of
his property in [26, Proposition 2.6] relies on the Harnack property which we do not have for
he model in this paper. Thus, a different approach is adopted.

We first consider the ergodic control problem with a suitable control which satisfies
ssumption 2.2 fixed outside a ball of arbitrarily large radius. Then, we show that ϵ-optimal

controls are obtained by choosing the radius of the ball sufficiently large. Assumption 7.1
replaces Assumption 2.2 in this section.

Assumption 7.1. The following hold:

(i) The function F̃ in (4.2) is in C2(Rd ), has at most polynomial growth of degree m̃ ≥ 1,
and satisfies

|x ||∇ F̃ | + |x |
2
∥∇

2 F̃∥ ∈ O(F̃).

(ii) There exist ṽ ∈ Ussm and Ṽ ∈ C2(Rd ), with Ṽ ∈ O(F̃), satisfying

AṽṼ ≤ C̃ − F̃

for some positive constant C̃ ;
iii The Lévy measure ν satisfies

∫
Rd |z|m̃ ν(dz) < ∞.

The jump diffusion with a ‘truncated’ control space is defined as follows.

efinition 7.1. With ṽ ∈ Ussm as in Assumption 7.1 and each R > 0, we define

bR(x, u) :=

{
b(x, u) , if (x, u) ∈ BR × U ,
b
(
x, ṽ(x)

)
, if x ∈ Bc

R ,

RR(x, u) :=

{
R(x, u) , if (x, u) ∈ BR × U ,
R

(
x, ṽ(x)

)
, if x ∈ Bc

R .

et AR
u denote the operator associated with the controlled jump diffusion

dX t := bR(X t ,Ut ) dt + σ (X t ) dWt + dL t ,

ith X0 = x ∈ Rd , and define

Rϵ,R := RR
+ ϵ F̃ , and ϱϵ,R

∗
= inf

v∈Usm(ṽ,R)
πv(Rϵ),

here Usm(ṽ, R) denotes the class of stationary Markov controls which agree with ṽ ∈ Ussm
n Bc

R .

By Theorem 5.2, for each R > 0 and ϵ ∈ (0, 1), there exists a unique V R
ϵ ∈ W

2,p
loc (Rd ), for

ny p > 1, which is bounded from below in Rd and satisfies V R
ϵ (0) = 0, and

min
u∈U

[
AR

u V R
ϵ (x) + Rϵ,R(x, u)

]
= ϱϵ,R

∗
a.e. in Rd .

n addition, there exists a constant C such that
R ˜
Vϵ ≤ C(1 + 2V) ∀ R > 0 . (7.1)
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It is clear that ϱϵ,R
∗

is nonincreasing. Let ϱ̂ϵ := limR→∞ ϱ
ϵ,R
∗

. As in the proof of Theorem 5.2,
V R
ϵ → V̂ϵ ∈ W

2,p
loc (Rd ), for any p > 1, which satisfies

min
u∈U

[
Au V̂ϵ(x) + Rϵ(x, u)

]
= ϱ̂ϵ a.e. in Rd . (7.2)

Recall that Rϵ , defined in the proof of Theorem 4.1, is the optimal ergodic value for the
ontrolled diffusion in (2.1) with running cost Rϵ . We wish to show that ϱ̂ϵ = ϱϵ

∗
. To establish

his we need the following lemma, which provides a lower bound for supersolutions of a general
lass of integro-differential equations.

emma 7.1. Let ϕ ∈ W
2,d
loc (Rd ), be a supersolution of the equation

ai j (x)∂i jϕ(x) + bi (x)∂iϕ(x) + Iϕ(x) + F̃(x) = 0 on Rd ,

hich is bounded below in Rd . Assume the following:

(i) the matrix a is nonsingular and satisfies

lim sup
|x |→∞

∥a(x)∥
|x |2

< ∞ ;

(ii) the drift b is measurable and has at most linear growth;
(iii) the function F̃ is as in Assumption 7.1;
(iv) the operator I : C1(Rd ) ↦→ C(Rd ) is given by

Ih(x) =

∫
Rd

∗

h(x + y) − h(x) − ⟨y,∇h(x)⟩ ν(dy)

for h ∈ C1(Rd ) and the Lévy measure ν satisfies∫
Rd

∗

|z|m̃ ν(dz) +

∫
B1\{0}

|z|2 ν(dz) < ∞.

hen, F̃ ∈ O(ϕ).

roof. We have

Aϕ(x) := ai j (x)∂i jϕ(x) + bi (x)∂iϕ(x) + Iϕ(x) ≤ −F̃(x) ∀ x ∈ Rd . (7.3)

y using (i)–(iii), it is clear that AF̃ −I F̃ ∈ O(F̃). By (iii) and (iv), it follows by [12, Lemma
.1] that I F̃ ∈ O(F̃). Thus, there exists r̂ > 0 such that

|AF̃(x)| ≤ C(1 + F̃(x)) ∀ x ∈ Bc
r̂ , (7.4)

for some positive constant C . Let φn(x) be a smooth cutoff function satisfying φn(x) = 1 on
Bn and φn(x) = 0 on Bc

n+1, for n ∈ N. By (7.4) and (iii), we can choose r > r̂ large enough
nd ϵ ∈ (0, 1) sufficiently small so that for any n ∈ N,

− F̃(x) − ϵAF̃(x)φn(x) ≤ 0 ∀ x ∈ Bc
r . (7.5)

et M be a lower bound for ϕ, and n > r . We define the function ϕ̂n
ϵ (x) := ϕ(x)−ϵ F̃(x)φn(x)−

M − supBr F̃). Then, applying (7.3) and (7.5), we have

Aϕ̂n
ϵ (x) ≤ −F̃(x) − ϵAF̃(x)φn(x) ≤ 0 ∀ x ∈ Bn+1 \ Br .

t is evident that ϕ(x) − (M − supBr F̃) ≥ 0 on Bc
n+1, and ϕ(x) − ϵ F̃(x) − (M − supBr F̃) ≥ 0

n B . Thus, applying the strong maximum principle, we obtain ϕ̂n(x) ≥ 0 in Rd . It follows
r ϵ
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that ϕ(x) ≥ ϵ F̃(x)φn(x) + (M − supBr F̃) in Rd for all n large enough. This completes the
roof. □

The main result of this section is the following.

heorem 7.1. Grant Assumption 7.1. Then, ϱ̂ϵ = ϱϵ
∗
.

roof. Let Vϵ ∈ W
2,p
loc (Rd ), p > 1, be the unique solution of the equation

min
u∈U

[
Au Vϵ(x) + Rϵ(x, u)

]
= ϱϵ

∗
a.e. in Rd , (7.6)

hich is bounded below in Rd and satisfies Vϵ(0) = 0. Applying Itô’s formula to (7.6), we
btain

Ev
ϵ
∗

x
[
Vϵ(XT ∧τr )

]
= Vϵ(x) − Ev

ϵ
∗

x

[∫ T ∧τr

0
Rϵvϵ∗

(
Xs

)
ds

]
+ ϱϵ

∗
Ev

ϵ
∗

x [T ∧ τr ] , (7.7)

ith vϵ
∗

a measurable selector from the minimizer of (7.7). It is clear from (7.7) that G(T ) :=

imr→∞ Ev
ϵ
∗

x
[
Vϵ(XT ∧τr )

]
exists and satisfies lim sup 1

T G(T ) → 0 by Birkhoff’s ergodic theorem.
y Lemma 7.1, we have Rϵ

vϵ∗
∈ O(Vϵ), and this implies that V̂ϵ ∈ O(Vϵ) by Assumption 7.1(ii)

nd (7.1). Therefore, if Ĝ(T ) := lim supr→∞ Ev
ϵ
∗

x
[
V̂ϵ(XT ∧τr )

]
, then lim supT →∞

1
T Ĝ(T ) → 0.

hus, evaluating (7.2) at vϵ
∗
, and applying Itô’s formula, we obtain

lim sup
T →∞

1
T
Ev

ϵ
∗

x

[∫ T

0
Rϵvϵ∗

(
Xs

)
ds

]
≥ ϱ̂ϵ,

rom which it follows that ϱϵ
∗

≥ ϱ̂ϵ . This of course implies that ϱϵ
∗

= ϱ̂ϵ , since (7.2) has no
ounded from below solutions for ϱ̂ϵ < ϱϵ

∗
. □

The following corollary concerns the construction of continuous precise ϵ-optimal controls.
t follows directly from 7.1 and the method in [9, Theorem 5.5].

orollary 7.1. For any given ϵ > 0 and ṽ satisfying Assumption 2.2, there exist R = R(ϵ) > 0
nd a continuous precise control vϵ ∈ Ussm such that vϵ ≡ ṽ on B̄c

R , and∫
Rd×U

R(x, u)πvϵ (dx, du) ≤ ϱ∗ + ϵ.
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