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Abstract

We study the ergodic control problem for a class of controlled jump diffusions driven by a compound
Poisson process. This extends the results of Arapostathis et al. (2019) to running costs that are not near-
monotone. This generality is needed in applications such as optimal scheduling of large-scale parallel
server networks.

We provide a full characterizations of optimality via the Hamilton—Jacobi-Bellman (HJB) equation,
for which we additionally exhibit regularity of solutions under mild hypotheses. In addition, we show that
optimal stationary Markov controls are a.s. pathwise optimal. Lastly, we show that one can fix a stable
control outside a compact set and obtain near-optimal solutions by solving the HIB on a sufficiently
large bounded domain. This is useful for constructing asymptotically optimal scheduling policies for
multiclass parallel server networks.
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1. Introduction

Control problems for jump diffusions have been studied extensively. We refer the readers
to [14] and references therein for the study of the discounted problem and many appli-
cations. In [28], the ergodic control problem under a strong blanket stability condition
(see [28, (1.6)]) has been studied. In [4], the authors have studied the ergodic control problem
for jump diffusions when the associated Lévy measures are finite and state-dependent and have
rough kernels under a near-monotone running cost function. However, in many applications the
dynamics are not stable under any Markov control, nor do they have a near-monotone running
cost function. In this paper we waive these assumptions, and study the ergodic control problem
under the more general structural hypotheses (see Assumptions 2.1 and 2.2) first introduced in
[2], and also used in [9] in the study of multiclass multi-pool queueing networks.

The class of jump diffusions studied in this paper is abstracted from the diffusion limit
of multiclass queueing networks in the Halfin—Whitt regime with service interruptions [12].
The jump process in this model is compound Poisson, and thus the associated Lévy measure is
finite. However, it does not have any particular regularity properties such as density. In addition,
the running cost function, which typically penalizes the queue size, is not near-monotone.
We abstract and generalize this model, and consider a large class of diffusions with jumps,
which includes models having a near-monotone running cost function, or with uniformly stable
dynamics as special cases.

We first establish the existence of an optimal stationary Markov control for the ergodic
control problem, and characterize all optimal stationary Markov controls via the ergodic
Hamilton—Jacobi—Bellman (HJB) equation.

It is shown in [4, Example 1.1] that the Harnack property may fail for infinitesimal
generators of jump diffusions with compound Poisson jumps. Thus the approach developed
in [2,3] for the study of the ergodic HIB equation associated with continuous diffusions cannot
be applied here. On the other hand, the running cost function is assumed near-monotone in [4],
and thus the infimum of the value function for the discounted problem is attained in a compact
set (see [4, Theorem 3.2]), and the solutions of the ergodic HIB equation are bounded from
below. In the present paper, we extend the technique developed in [4], and derive the ergodic
HIJIB under Assumptions 2.1 and 2.2. This is rather delicate, and requires an estimate of the
negative part of the solutions of the HJB.

Another difficulty concerns the regularity of solutions of the discounted and ergodic HIB
equations associated with jump diffusions, when the Lévy kernel is rough. In [4], we show that
the solutions have locally Holder continuous second order derivatives when the Lévy measure
has a compact support (see [4, Remark 3.4]). In this paper, we present a gradient estimate for
solutions of a class of second order nonlocal equations in 5.3 using scaling, and employ this
to establish C>* regularity of the solutions of the HIB equations in 5.3.

We also study pathwise optimality of optimal controls for the ergodic control problem.
For continuous diffusion processes, pathwise optimality has been studied in [1,3,16,17,20].
Pathwise optimality for jump diffusions with near-monotone running cost is studied in
[4, Theorem 4.4]. We extend the technique in [1], using also the result on convergence of
random empirical measures for jump diffusions in [4, Lemma 4.3] while providing a crucial
estimate on the nonlocal term, to establish pathwise optimality for the model studied in this
paper.

The ability to synthesize a near-optimal Markov control, by fixing a suitable stable control
outside a large ball and solving the HIB equation inside the ball plays a crucial role in the study
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of asymptotic optimality for multiclass parallel server networks. This is used in [2,5,10,11] to
construct asymptotically near-optimal scheduling policies for the prelimit system. In addressing
this problem for jump diffusions, we first derive a lower bound for supersolutions of a general
class of integro-differential equations in Lemma 7.1, and then use this to establish the required
result in Theorems 7.1 and 7.1. In turn, this result is used to establish the asymptotic optimality
of multiclass networks with service interruptions in [13].

In [15], the ergodic control problem for diffusions under the dissipativity condition (see
[15, (2.2)]) and with control both on the drift and diffusion coefficients have been studied.
For the large time behavior associated with diffusions under some dissipativity condition, we
also refer the reader to [25], where a rate of convergence for the solution of the parabolic
equation to that of the ergodic equation has been studied, for a bounded domain under Neumann
conditions. In this paper, we only consider drift control and the drift does not satisfy the
dissipativity condition. Also, the domain is not compact, so the rate of convergence cannot
be easily established.

1.1. Organization of the paper

In the next subsection, we summarize the notation used in this paper. In Section 2, we
introduce the model and state the assumptions. Section 3 contains some examples from queue-
ing networks whose limiting controlled jump diffusions satisfy these assumptions. Section 4
concerns the existence of optimal stationary Markov controls. Section 5 is devoted to the study
of the HIB equations on the discounted and ergodic control problems. In Section 6, we study
the pathwise optimality for the ergodic control problem. The characterization of near-optimal
controls is studied in Section 7.

1.2. Notation

The standard Euclidean norm in R? is denoted by |-|, (-, -) denotes the inner product,
and xT denotes the transpose of x € R?. The set of nonnegative real numbers is denoted
by R;, IN stands for the set of natural numbers, and 1 denotes the indicator function. The
minimum (maximum) of two real numbers a and b is denoted by a A b (a V b), respectively,
and a* := (£a) v 0. The closure, boundary, and the complement of a set A C R? are denoted
by A, 9A, and A€, respectively. We also let e := (1,..., l)T. For any function f: RY > R
and domain D C R we define the oscillation of f on D as follows:

osc f = sup {f(x) = f(3): %, y € D}.
We denote by T(A) the first exit time of the process {X,} from the set A C R?, defined by
T(A) = inf{t >0: X, & A}.

The open ball of radius  in R?, centered at x € R? is denoted by B,(x). We write B, for
B,(0), and let 7, := 7(B,), and 7, := t(BY).

The term domain in R? refers to a nonempty, connected open subset of the Euclidean
space R¢. For a domain D C RY, the space CX(D) (C®(D)), k > 0, refers to the class of
all real-valued functions on D whose partial derivatives up to order k (of any order) exist
and are continuous. By C**(RRY) we denote the set of functions that are k-times continuously
differentiable and whose kth derivatives are locally Holder continuous with exponent «. The
space LP(D), p € [1, 00), stands for the Banach space of (equivalence classes of) measurable
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functions f satisfying || plf(X)]Pdx < oo, and L*°(D) is the Banach space of functions that
are essentially bounded in D. The standard Sobolev space of functions on D whose generalized
derivatives up to order k are in L?(D), equipped with its natural norm, is denoted by W~ (D),
k >0, p > 1. In general, if X' is a space of real-valued functions on Q, Aj,. consists of all
functions f such that f¢ € X for every ¢ € C°(Q). In this manner we obtain for example
the space W"(Q).

For k € IN, we let D¥ = DR+, Rk) denote the space of RF-valued céadlag functions on
R,. When k = 1, we write D for D,

For a nonnegative function g € C(R?) we let O(g) denote the space of functions f € C(IR¢)

satisfying sup, pd 1‘_{;’2)) < 0o. We also let o(g) denote the subspace of O(g) consisting of
L

those functions f satisfying limsup,|_, e = 0
For a probability measure u in P(R?), the space of Borel probability measures on R¢ under
the Prokhorov topology, and a real-valued function f which is integrable with respect to u we

use the notation pu(f) = [pa f(x) pu(dx).

2. The model and assumptions

We consider a controlled jump diffusion process {X,},>¢ taking values in the d-dimensional
Euclidean space R defined by

dX, == b(X,,U)dt + o(X,)dW, +dL,, 2.1)

with Xo = x € R?. All random processes in (2.1) are defined on a complete probability space
(£2, §, P). The process {W;};>¢ is a d;dimensional standard Wiener process, and {L};>¢ is a
Lévy process defined as follows. Let N(dt, dz) denote a martingale measure on R., = R/ \ {0},
[ > 1, taking the form N(dt,dz) = N(dt,dz) — II(dz)dt, where N is a Poisson random
measure, and [1(dz)dt is the corresponding intensity measure, with I7 a finite measure on RY.
Then, {L,},>¢ is given by

dL, :=/ g(z)J\N/(dt, dz)
RL

for a measurable function g: R? x RY — R The control process {U,};>o takes values in
a compact, metrizable space U, U,(w) is jointly measurable in (t, w) € [0, 00) x {2, and is
non-anticipative: for s < ¢, (Wt — Wy, N(t, ) — N, -)) is independent of

Js = the completion of o{Xy, U,, W,, N(r, ) : r < s} relative to (F, P).

Such a process U is called an admissible control, and we let Ll denote the set of admissible
controls. We also assume that the initial conditions Xo, Wy and N (0, -) are independent.

To guarantee the existence of a solution to the equation (2.1), we impose the following usual
assumptions on the drift, matrix o and jump functions (compare with [4, Section 4.2]). The
functions b: R? x U — R? and ¢ = [6¥]: R? — RY*? are continuous and have at most
affine growth on R¢. Also, b is locally Lipschitz continuous in its first argument uniformly
with respect to the second. The matrix o is locally Lipschitz continuous and nonsingular. We
also assume that fRz*|g(z)|2 II(dz) < oo. Define v(A) := II({z € R, : g(z) € A}). Thus, v is
a Radon measure on R?, and we let v := v(R?) = II(R.), which is finite. These hypotheses
are enforced throughout the rest of the paper.

Under the above assumptions on the parameters, (2.1) has a unique strong solution under any
admissible control U (see, e.g., [21, Part II, §7]), which is right continuous w.p.1, and has the



A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733-6756 6737

strong Feller property. Recall that Markov controls may be identified with Borel measurable
map v on R, x R?, by letting U, = v(¢, X;). For any such Markov control v, define the
associated diffusion process {X°, t > 0} by

dX? = b(X?, v(t, X2))dr + o (XO)dW, 2.2)

with X = x° € R?. Tt is well known that (2.2) has a pathwise unique strong solution by
[23, Theorem 2.8]. We also refer the reader to [3, Theorem 2.2.12] for a different proof based
on the technique in [30]. Since II is finite, it follows by the construction of a solution in
[29, Chap. 1, Theorem 14] via (2.2) that (2.1) has a unique strong solution under any Markov
control. We say that a Markov control v is stationary if v(¢, x) is independent of 7, and we use
the symbol i, to denote the set of these controls.

For ¢ € C>(RY), define the integro-differential operator A: C*(R%) — C(R¢ x U) by

Ap(x, u) = a” (x)d;p(x) + b (x, u)dp(x) +/ (p(x + ) = 9(x)) v(dy), 2.3)

where a : %00 and b(x u) :=b(x,u)+ f]Rd zv(dz). With u € U treated as _a parameter, we
also define A, p(x) := Agp(x, u). We decompose this operator as A, = E + 7, where
Lup(x) = a’(x)d;;0(x) + b (x, 0)d;p(x) — ve(x), and
Tow) = [ o)y, 2.4
Let D be a bounded domain with C'-! boundary. Recall that (D) denotes the first exit time

from D. As shown in [4, Lemma 4.1], for any f € W>(R¢), such that Z| f| € L% (R?), we
have

loc loc

tAt(D)
EV[f(Xineo))] = f(x) +EY [f Af (X, Us)dsi| (2.5)
0

forall x € D,t > 0, and U € {l. In addition, (2.5) holds if we replace t A (D) with (D).
Here, EV denotes the expectation operator on the canonical space of the process under the
control U € 4. Eq. (2.5) arises from the well known Krylov’s extension of the It6’s formula,
and we refer to this plainly as the Itd6 formula.

2.1. The ergodic control problem

Given a continuous running cost function R: R¢ x U — R, which is locally Lipschitz
continuous in its first argument uniformly with respect to the second, we define the average
(or ergodic) penalty as

T
0y(x) := limsup —EU UO R(X,, U,)dr] (2.6)

T—o0

for an admissible control U € il. We say that U e il is stabilizing if o,(x) < oo for all
x € RY.

The ergodic control problem seeks to minimize the ergodic penalty over all admissible
controls. We define

0x(x) = 51;5 oyx). .7)

As we show in Theorem 4.1, the optimal ergodic value o, does not depend on x.
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Assumption 2.1 which follows, is a slight variation of [2, Assumption 3.1], and is abstracted
from the limiting diffusions arising in multiclass stochastic networks in the Halfin—Whitt
regime. Note that the assumption on the running cost in [4, Section 2.2] is not met in these
problems. Recall that a function f : X — R, where X is a o-compact space, is called coercive,
or inf-compact if the set {x € X : f(x) < C} is compact (or empty) for every C € R.

Assumption 2.1. There exist some open set X C R?, a ball B,, and coercive nonnegative
functions V, € C2(R?) and F € C(R? x U) such that:

(i) The running cost R is coercive on K.
(ii) The following inequalities hold

AVo(x) < 1g (x) — F(x,u) Vx,u) e K°xU,
AV (x) < 1g (x) + R(x, u) Vix,u) e CxU.

Without loss of generality, we assume F is locally Lipschitz continuous in its first argument.

2.8)

Since we can always scale B,, V, and F to obtain the form in (2.8), there is no need to
include any other constants in these equations. It is worth noting that R is coercive on R if
K¢ is bounded, and the controlled jump diffusion is uniformly stable if /C is bounded.

We introduce an additional assumption which, together with Assumption 2.1, is sufficient
for the existence of a stabigzing stationary Markov control. For v € g, we let b,(x) =
b(x, v(x)), and define A,, £,, R,, and g, analogously. If under v € i, the controlled jump
diffusion is positive recurrent, then v is called a stable Markov control, and the set of such
controls is denoted by L.

Assumption 2.2. There exist 0 € L, a positive constant &, and a coercive nonnegative
function V € C2(R¢) such that

AiV(x) < k1g,(x) — Ry(x), Vx € R?, (2.9)
with B, as in Assumption 2.1.

Without loss of generality, we use the same ball B, in Assumptions 2.1 and 2.2 in the
interest of notational economy.

Remark 2.1. The reader will note that Assumption 2.2 is not used in [2]. Instead, starting
from a weak stabilizability hypothesis, namely that

oy(x) < oo for some x € RYand U € 4, (2.10)

the existence of a control v € {4y, and a coercive nonnegative function V € C>(R¢) satisfying
(2.9) is established in [2, Lemma 3.1]. For the model studied in this paper, if we assume
(2.10), then together with Assumption 2.1 we can show, that there exists a control ¥ which
is stabilizing for some coercive running cost R > R (see the proof of Theorem 4.1 which
appears later). Then, if v has compact support, [4, Theorem 3.7] shows that there exists a
function V € le(;f (R%), for any p > 1, satisfying Assumption 2.2, and this implies that
IV e Lﬁ)C(Rd). Thus, if v has compact support, then the It6 formula in (2.5) is applicable to
V, and using this in the proofs, it follows that as far as the results of this paper are concerned, we
may replace Assumption 2.2 with the weaker hypothesis in (2.10), which cannot be weakened

further since it is necessary for the value of the ergodic control problem to be finite. In typical
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applications, the existence of a stabilizing Markov control is usually established by exhibiting
a Foster—Lyapunov equation taking the form of (2.9).

As we establish in Theorem 4.1, Assumption 2.1 and (2.10) together guarantee the existence
of an optimal stationary Markov control for the ergodic control problem. Thus Assumption 2.2
need not be used for the existence part. However, it plays a crucial role in the derivation of the
HJB equation in Section 5 for non-compactly supported v.

3. Examples

In this section, we provide examples of stochastic networks, and show that the jump
diffusions involved satisfy Assumptions 2.1 and 2.2. We refer the reader to [9, Section 2] for
a detailed description of multiclass multi-pool networks.

Consider a multiclass multi-pool network with d classes of customers and J server pools.
Define the sets J:={1,...,d}, J .= {1, ..., J}, and

U = {u =, u’) e Ri X Rfr: (e, u) = (e, u’) = 1}.

Following similar arguments as in [13, Theorem 2.1], and assuming that service interruptions
are asymptotically negligible under the 1/n-scaling, we can show that the limiting controlled
queueing processes are d-dimensional jump diffusions taking the form

dX, = b(X,,U)dt + o dW, +6dL,, 3.1)

where o is a nonsingular diagonal matrix, 6 is a strictly positive vector, and {L,},>¢ is a one-
dimensional compound Poisson process. The Lévy measure of 6L, is denoted by v(dz). This
is supported on {0¢: t € [0, 00)}. It follows by [9, Lemma 4.3] that

b(x,u) = £ — M, (x — (e, x)+u") — e, x)TTu’ + (e, x)” Mou* , 3.2)

where ¢ € R, I' = diag(yi, - .., Ya), M, is a lower-diagonal d x d matrix with positive
diagonal elements, and M, is a d x J matrix. Without loss of generality, we assume that
y1=0,y;>0,and y; > 0,i € J\ {1,d}. We consider the ergodic control problem in (2.7)
with

Rex,u) = Y cille. x)Tuf1" + > sille, x)ul]" (3.3)
ied jed
for some m > 1, and some positive constants {c;: i € J} and {s;: j € J}. This running cost
function penalizes the queue sizes and idleness. It is evident that R(x, u) is not near-monotone,
since (e, x) equals O on a hyperplane in RY. We assume that f]Rd |z|™ v(dz) < oo.
We define K5 = {x € R?: |{e, x)| > §|x|} with § > 0. It is clear that R is coercive on K;
for § > 0. For a positive definite symmetric matrix Q, we let g(x) be some positive convex

smooth function which agrees with (x, Qx)"? on B¢, and define the function Vg (x) = (g(x))k
for k > 0.

Lemma 3.1. There exist a diagonal matrix Q, some § > 0 small enough, and a positive
constant C such that Vo, =V, and F(x) = C|x|" satisfy Assumption 2.1 with K = ICs.

Proof. Recall 5 defined in (2.3). Following the same calculation as in the proof of [9, Theorem
4.1], we obtain
Ci —m(x, Qx)"* Nx> V(x,u) e K{x U,

(b, ), Vo) < {Cl(l + lfe. x)[") Vi u) e Ks x U
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for some § > 0, a positive constant C;, and a diagonal matrix Q satisfying xT(QM;+M lT O)x >
8|x|. On the other hand, using the hypothesis fRd|z|’" v(dz) < oo, we obtain

1
/Rd /o (z, VV g m(x + 12))dr v(dz) 3.4)
Cy + €(x, Qx)"?

for some € > 0 sufficiently small, and a positive constant C. Thus (2.8) holds. This completes
the proof. [J

/R (Vo +2) = Von() v(d2)

IA

Remark 3.1. Let ¢ := ¢ + [, zv(dz) and u = 1, and suppose that (e, (M;)T¢) > 0.
Using the leaf elimination algorithm as in [9, Theorem 4.2], we obtain a constant control
u = (u,u’) € U, with u{ = 1, such that the last two terms on the right hand side of (3.2)
are equal to 0. This implies that {X,},>¢ is transient under the control u# by [12, Theorem 3.1].
Therefore, (3.1) is not uniformly stable. ~

Recall £ and 7 defined in (2.4). By [9, Theorem 4.2] concerning the local operator £, and
(3.4) for f, it follows that there exist u = (u°, u’) € U with u§ = 1, and V(x) ~ (x, Qx)'"/2
for some diagonal positive matrix 0 satisfying Assumption 2.2.

We present two specific examples: the ‘W’ and ‘V’ networks.
Example 3.1 (The ‘W’ Model with Service Interruptions.). See [9, Section 4.2] for the detailed

definition of the ‘W’ model. We have J = {1, 2, 3} and J = {1, 2}. By [9, Example 4.2], M,
and M, in (3.2) are given by

M1t 0 0 0 0
My = |pun—pan pmn 0|, My=|pau—pun O
0 0 12%5) 0 0

for some positive constants {u;;: i € J,j € J,0G, j) ¢ {(1,2),(3,1)}}. We assume that
y1 =y, = 0and y3 = 1, and (e, (MI_I)TE) > 0. By [24, Theorem 3.1], under any control
v € Yy, with v3 = 0 and vs = 1, {X,;},>0 is transient. On the other hand, Assumption 2.2 is
satisfied for the constant control u§ =1 and uj = 1.

Example 3.2 (The ‘V’ Model with Service Interruptions.). Eq. (3.1) also describes the limiting
jump diffusions of the “V’ model. Here J = {1, ...,d}, J = {1}, and

bx,u) = £ — M(x — (e,x)+u) — (e, x)TT'u,

where u takes values U = {u € R?: (e,u) = 1}, and M = diag(ui, ..., jg) is a positive
diagonal matrix. Suppose that there exists a nonempty set Jy C {l,...,d — 1} such that
y; = 0 for i € Jy, and (e, M"f) > 0. In this case, [12, Theorem 3.3] asserts that {X,},>¢
is transient under any v € iy satisfying I"'v = 0. However, Assumption 2.1 is satisfied by
[12, Remark 5.1], and, provided that y; > O for some i € J, then Assumption 2.2 holds by
[12, Theorem 3.5].

Remark 3.2. It is shown in [7] that the limiting diffusion of the ‘V’ model without service
interruptions is uniformly ergodic over all stationary Markov controls, if either I" > 0, or
the spare capacity —(e, M~'£) is positive. This result has been extended to the limiting jump
diffusion of the V' model with service interruptions in [8], with the difference that uniform
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ergodicity is over all stationary Markov controls resulting in a locally Lipschitz continuous
drift. It is also shown in [24] that if the spare capacity is positive, then the limiting diffusion of
the multiclass multi-pool networks with a dominant server pool (for example the ‘N’ and ‘M’
models), or class-dependent service rates, is uniformly exponentially ergodic over all stationary
Markov controls. However, in general, multiclass multi-pool networks do not enjoy uniform
ergodicity, but fall in the framework of Assumptions 2.1 and 2.2.

4. Existence of an optimal stationary Markov control

In this section we establish the existence of an optimal stationary Markov control by
following a standard convex analytic argument. We adopt the relaxed control framework (see,
e.g., [3, Section 2.3]), and extend the definitions of » and R accordingly, that is we let
b,(x) = fU b(x,u)v(du | x), where v(x) = v(du | x) is a measurable kernel on U given
x, and analogously for R. Let 1, € P(R?) denote the unique invariant probability measure of
(2.1) under v € Ysgp,. Define the corresponding ergodic occupation measure 1, € PRY x U)
by m,(dx, du) := u,(dx) v(du | x). The class of all ergodic occupation measures is denoted by
G. Let Cg(]Rd) denote the Banach space of functions f: R¢ — R that are twice continuously
differentiable and their derivatives up to second order vanish at infinity, and C denote some
fixed dense subset of C3(R?) consisting of functions with compact supports. Applying the
Theorem in [18], it follows that = € G if and only if

/ A, f(x)m(dx,du) = 0 VfecC.
]Rd

It is easy to show that G is a closed and convex subset of PR? x U) (see, e.g.,
[3, Lemma 3.2.3]).
Recall also the definition of empirical measures.

Definition 4.1. For U € { and x € R?, we define the mean empirical measures {g:xlf, it > 0},
and (random) empirical measures {;“,U 1t > 0} by
- - 1 !
Lo () = / fOrw ¢l (dx, du) = ~ / EY / f(Xs, w) Uy(du) | ds,
R4 xU tJo U
and
1 t
&) = / [ wde/(dx, du) = / f f(Xs, u) U(du) ds,
RIxU tJo Ju

respectively, for all f € Cp(R? x U).

Let Ed denote the one-point compactification of R?. Then as shown in [4, Lemma 4.2],
every limit [ e P(ﬁd x U) of g“xZJ as t — oo takes the form ¢ = 8¢’ + (1 — 8)¢” for some
8 € [0,1], with ¢’ € G and ¢”({o0} x U) = 1 almost surely. The same claim holds for the
mean empirical measures, without the qualifier ‘almost surely’.

We borrow the technique introduced in [2]. Recall the function F and the set K in
Assumption 2.1. First, define the set

K= KxUU{@x,ueR! xU: R(x,u) > Fx,u)}.
We have
AVo(x,u) < 1 (x,u) — F(x, u)lge(x, u) + R(x, u)Lg(x, u) 4.1
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fgr all (x,u) € R? x U. As shown in [2, Lemma 3.3], there exists a coercive function
F € C(RY x U), which is locally Lipschitz in its first argument, and satisfies

R<F <i(la, +R1g+Flg) 4.2)

for some positive constant k¥ > 1. Here again we select the same ball B, as in Assumption 2.1
for convenience. This can always be accomplished by adjusting the constant «.

Define the perturbed running cost R€ := R+ ¢ F. Since R¢ is coercive for € > 0, the results
of [4] are applicable for the ergodic control problem with the perturbed running cost. At the
same time, it follows from (4.1) and (4.2) and the argument in the proof of [2, Theorem 3.1],
that if a control U € i is stabilizing for R, then it is also stabilizing for R¢ for any € > 0.

Theorem 4.1. Grant Assumption 2.1. Then every stabilizing stationary Markov control is in
Ussm. In addition, if the stabilizability hypothesis in (2.10) is met, then there exists a stationary
Markov control which is optimal for the ergodic control problem, and o, is a constant.

Proof. By Assumption 2.1, we have v, L (RY), and thus, applying It6’s formula and
Fatou’s lemma to (4.1), it follows by (4.2) that

- - 1 -
L@ < L (®+ ez<1 + V() + 2;5{,(9%)) (4.3)

for all (x,¢) € R? x (0, co) and U € il
Since by (4.3) we have

Ty(R) = ov +ex(1+20,) 4.4

for any stabilizing stationary Markov control v, we have m,(R) < oo, and the first assertion
follows.

Define of, and @S as in (2.6) and (2.7), respectively, by replacing R with R€. Let 9¢ =
infreg w(R), and 0, = infrcg m(R). Since K¢ is coercive for any € € (0, 1), we have
05 = e (R) for some v$ € Ugyn by [3, Theorem 3.4.5], and oS = of by Lemma 4.2 in [4] and
the proof of [3, Theorem 3.4.7]. Hence, by (4.3), which implies that o}, < oy + ek (1 + 20y),
and the above definitions we have

0« < 0+ <0y =05 < 0:+ek(14+20,) Vee(0,1).

This shows that o, = Q.. It remains to show that o, = m, (R) for some v, € . But
this follows by using the technique in the proof of [3, Theorem 3.4.5]. This completes the
proof. [

5. The HJB equations

In this section, we study the «-discounted and ergodic HIB equations for the jump diffusion
defined in (2.1). For the «-discounted control problem, it is rather standard to establish
the existence of solutions and the characterization of optimal controls (see Theorem 5.1 for
details). We consider the Dirichlet problem on Bg for the a-discounted problem with running
cost R€. From [14, Chap. 3, Theorem 2.3 and Remark 2.3], there exists a unique solution
Vor € W2P(Bg)N W(l)‘p (Bg) to the (homogeneous) Dirichlet problem

min [AWir +RCw)] =aysy inBg, and ¥5r =0 in Bj. (5.1)
ue ’ ’ ’
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For the Dirichlet problem with a linear integro-differential operator, existence and uniqueness
of a solution are also asserted in [19, Theorem 3.1.22]. Meanwhile, for a bounded running cost
function [28, (1.26)] and under the blanket stability assumption in [28, (1.6)], HIB equations
on the whole space are established in [28, Remark 3.3 and Theorem 4.1]. It is clear that these
assumptions are not met for multiclass stochastic networks in the Halfin—Whitt regime. For
example, in (3.3), the running cost function penalizing the queueing and idleness is unbounded,
and the drift in (3.1) does not satisfy [28, (1.6)].

Theorem 5.1. Grant Assumptions 2.1 and 2.2. Then for any o € (0, 1) and € € [0,&7"), the
Junction g p in (5.1) converges uniformly on compacta to a function Vg € W,zt;f (RY) for any
p > 1, which is the minimal nonnegative solution of the HJB equation

mi{g [A Vi) + RE(x,w)] = aVi(x) ae in R, (5.2)
ue

and has the stochastic representation
VE(x) = inf EY |:/ e RX,, U,)dt] . 5.3
Uesl 0

In addition, a control v € gy, is optimal, that is, it attains the infimum in (5.3), if and only if
it is an a.e. measurable selector from the minimizer of (5.2).

Proof. Under Assumption 2.2, the proof for the existence of a minimal nonnegative solution
Vi € WP (RY) is exactly same as in [4, Theorem 3.2]. A straightforward application of the

loc
comparison principle shows that the following bound holds

3% +2
V) +3V0)  YreR. Vae(0.1). Ve e [0.87)).  (54)

Vo) =<
From (5.4), we have fV; € Ll":c(IRd). Thus using the It6’s formula in (2.5), the stochastic
representation and the sufficiency part of the verification of optimality are established in a
standard manner (see, e.g., [3, Theorem 3.5.6 and Remark 3.5.8]). On the other hand, for any
v € Y, the resolvent of the controlled diffusion defined in (2.2) has a positive density with
respect to the Lebesgue measure by [3, Theorem 3.4.5]. Since the Lévy measure v is finite, then
applying [27, Lemma 2.1], we see that the same holds for the resolvent of the jump diffusion
in (2.1). Thus, we may repeat the argument in [3, Theorem 3.5.6] to establish the necessity
part of the verification of optimality. This completes the proof. [

We proceed to derive the HIB equation on the ergodic control problem by using the
vanishing discount method. The technique used has some important differences from [4], since
here the running cost is not near-monotone when € = 0. To overcome this difficulty, we derive
lower and upper bounds for V; in the lemma which follows.

Lemma 5.1. Grant the hypotheses in Assumptions 2.1 and 2.2. For any § € (0, %], there
exists 7 = r(8) > 0 such that

vV, > igf Vs — 8V, on B, Vr>F, (5.5)
for all a € (0,1) and € € [0, &Y. Moreover, there exists ro > 0 such that
Ve < sup Vi +V, +3V onRY, (5.6)
By,

forall o € (0,1) and € € [0, k7 1).
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Proof. Let v, be an optimal control in Agy,. Its existence has been asserted in Theorem 4.1.
Recall that w,, denotes the invariant probability measure under v,. Using (5.3), Fubini’s
theorem, and (4.4), we obtain

/’Lv*(Br)(igf avg) < 0« < 0« +ek(l +204)

for any r > 0. Fix some r, > 0 such that B,, D B,. Then
€k + (1 + 2€K)0+ - _ O
Mo, (Br) T (B’

forall r > r., @ € (0, 1), and € € [0, 1.
We first establish a lower bound of V. Let ¥ p satisfy (5.1), and vg € 4 be a measurable
selector from its minimizer, that is, it satlsﬁes

Aiggr —aVor = —R;,  onBg. (5.8)

inf V< (5.7)

Let$ € (O, %] be arbitrary. By (5.7), and the coerciveness of Fin (4.2), there exists ¥ = 7(§) >
o such that

igFf ayyp < 8E_lng(x) forallx e B, R>7, a€(0,1), and e € [0,77". (5.9
Let

bor = Vot V5 p— igff Vor- (5.10)
By (4.1), (4.2), (5.8) and (5.9), we have

Ao r —ager < il[i’l;f ayy p — 0Flge — (1 = )Ry, 1

IA

inf g p — Sk Fy, (5.11)

IA

0 onBg\B;, forall R >r.

Since v , converges monotonically to V5 as R — oo and V, is coercive, there exists
Ry = Ry(8, o) > 7 such that

igf Yix < 8Vu(x)  VxeBg\Bg, R>Ro. (5.12)

Thus, since ¢, . > 0 on Bz by (5.10), and ¢;, . = 0 on Bg \ Bg, by (5.12), it follows that

w.r > 0 on Rd for all R > Ry by (5.11) and the strong maximum principle. Taking limits as

R — o0 in (5.10), we obtain
vV, > i};lf Ve — 8V, on B,
which establishes (5.5).
Next we prove the upper bound. For 9 in Assumption 2.2, we have
As(—¥E ) —a(—¥E x) < Ry +€F;  on Bg. (5.13)

Recall that B,, D B,, and select any balls D; and D;, such that B,, € D; € D,. By (4.1),
(4.2), (5.8) and (5.13), the function

Por = SUp VS g — Ve g+ Vo + 3V

To
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satisfies

Aﬁ(ﬁé,R—O{AZ,R < —sup Yo r <0 on Bg \ B,,,
for all @ € (0, 1) and € € [0, #~"). It is evident that @;,R > 0 on B,, U Bf. Thus, employing
the strong maximum principle, we obtain

Yor < sup¥Sp+Vo+3V  onR?, (5.14)
for all & € (0, 1) and € € [0, &~ "). Letting R — oo in (5.14), we obtain (5.6). This completes
the proof. [

We also need the following estimate. Its proof combines the technique in the proof of
[4, Theorem 3.3] with Lemma 5.1.

Lemma 5.2. Grant the hypotheses in Assumptions 2.1 and 2.2. For each R > 0, there exists
a constant kg such that

osc Vi < kg
Br
forall o € (0,1) and € € [0, k™).

Proof. We ghoose B, , Dy, and D, as in the proof of Lemma 5.1. By (2.9) and (4.1), it is
evident that Z(V, 4 3V) € L2 (RY). Let &5 € Argminp, V. The function ¢f == V¢ — VE(£5)
satisfies

L

Mv*(Bro)’

where the inequality follows by (5.7). Using (5.6), we obtain

min [ A} () — agl(x) + R, w)] = V(&) <

sup @, < sup ¢S + sup (BV + VO) for all R > r,, (5.15)
Br o Br

r

o € (0,1) and € € [0,&"). Let v, be a measurable selector from the minimizer of the
a-discounted problem associated with R¢. By the local maximum principle [22, Theorem 9.20],
for any p > 0, there exists a constant C;(p) > O such that

sup ¢, < CN'I(P)(”(/); lp:p, + 1Zg;, ”Ld(Dl) + ||Rf}g||Ld(Dl))

with (@5l p:p, = (fDl |<P;(x)|dx)l/”, and by the supersolution estimate [22, Theorem 9.22],
there exist some p > 0 and C, > 0 such that

el = Calinf g + i 1D2").
1

On the other hand, the inequality in (5.5) implies that infp, ¢; < supp V.. Combining these
estimates, we obtain

sup g5 < k2 + Co(p) IZ @4l ap,) - (5.16)
By,

where

Ky = él(l’)((l + éz)<sll)lp Vo + k1 |D2|l/d> + ||fR§g||u/(Dl)>.
2
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By (5.15) and (5.16), we have
sup 95 < &2+ Vs + 3Vl ooy + C1(P) 1ZE i, -
D,

Hence, either sup D, @5 < 20 + 2|V, 4 3V Loo(p,), Which directly implies (5.7), or
sup 95 < 2C1(p) 1295 Il Lacp,) - (5.17)
D,

Suppose that (5.17) is the case. By (5.15), we have the estimate

T(Lpgpl)x) < (sup wé)v(D;‘) +Z(Lps(V +3V) () VxeDy. (5.18)

To

Thus, by (5.16)—(5.18), we obtain

sup To < kv +3C1 W IZEN iy + IZ(Lpg (Vo + 3V) lL(,)-
1

Again we distinguish two cases. If
sup Zpy, < 6C1(pIv 1 Z¢5 I o)
Dy

then the proof is the same as in [4, Theorem 3.3]. It remains to consider the case

sup ZgS < 2k,0 + 2||f(11D5(\70 +3V)lzopy) - (5.19)
Dy

Let ¢¢ be the solution of the Dirichlet problem
LoedS—adSs =0 inD, and ¢S = ¢S ondD,.
By Harnack’s inequality, we have ¢~>§ < éy(ﬁg(ﬁ?g) forall x € B,,, 2 € (0, 1), and € € [0, .
Thus
Logpe = 00) = ews = 8 = ~Tog +a Vi) - X
> —sgp ToS + aVE(&S) — R in Dy,
1

and ¢S — ¢S = 0 on dD;. On the other hand, we have

L@ — 05) — (@ — ¢5) = Lol — aVe(Es) + R
> igf f(p; —aVi(x) + R in Dy, (5.20)
1

Using (5.5), we obtain

inf Zp¢ > —sup 2V, . (5.21)
D| DI

Since IV, € L (RY), applying the ABP weak maximum principle in [22, Theorem 9.1] to
(5.20), and using (5.19) and (5.21), we obtain ||@ — @ llzop,) < Co for some constant Cy
which does not depend on « € (0, 1) and € € [0, ¥~!). Thus, employing [6, Corollary 2.2] as

done in [4, Theorem 3.3], we establish (5.7). This completes the proof. [

In Theorem 5.2 which follows, we derive the HIB equation for the ergodic control
problem, and the corresponding characterization of optimal Markov controls. Compared to
[4, Theorem 4.5], the important difference here is that the solutions to the HIB equation may
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not be bounded from below in R?, since the running cost function is not near-monotone. As
a consequence, [3, Lemma 3.6.9] cannot be applied here directly to establish the stochastic
representation of the solutions, and prove uniqueness. We let V, := V; |e —o

Theorem 5.2. Grant Assumptions 2.1 and 2.2. Then

(a) As o \( O, Va =V,—-V (O) converges in C'* with p € (0, 1), uniformly on compact
sets, to a function V, € Wlm (RY) for any p > 1, which satisfies V. € o(V,), and

miqul [Au Vi(x) + R(x, u)] = 0. ae inRY. (5.22)

(b) A control v € Mg, is optimal for the ergodic control problem with R if and only if it is
an a.e. measurable selector from the minimizer in (5.22).

(c) Let ﬂssm = {v € Ussm: 0v < o0}. The function V, is the unique solution (up to an
additive constant) to the equation min,cy [A, Vi(x) + R(x, u)] = 0 a.e. on R, with
0 < 0« which satisfies V.. € o(V,) and V,.(0) = 0. In addition, it has the stochastic
representation

V,) = lim inf IE“[ / T'"(sz(xs)—g*)ds] (5.23)
0

™0 Ueussm

Proof. We first prove (a). By (5.2), we have
min [A Vo) + Rx, w)] = aVo(x) +aV,(0) ae.in RY. (5.24)
ue

The limit limg\ o @V, (0) = 04 follows as in the proof of Theorem 3.6 in [2] using Lemma 5.2.
We fix an arbitrary ball B, and using (5.5) and (5.6), we obtain

Vo) < [Vallzooem) + Vox) +3V(x)  Vx e RY. (5.25)

By (2.9), (4.1) and (5.25), we have I|V | € LIOC(Rd). Let v, be a measurable selector for the
minimizer of (5.24). Then, applying the interior estimate in [22, Theorem 9.11], we obtain

1Wellwerisg = € (1Pl + 10Va® = R, = o) -

where C = C(R, p). Hence, sup,( 1 ||V ll'w2.p(gg) < 00. Thus, followmg a standard argument
(see [3, Lemma 3.5.4]), for any sequence «, \, O, the functions {Van} converge along a
subsequence in Cl* with p € (0, 1), uniformly on compact sets, to V,. Since R is arbitrary,
this proves (5.22). Letting o N\ 0 in (5.5), which holds for all § > 0, with 7 depending only
on §, we obtain (with € = 0)

Vo € o(V,). (5.26)

Concerning part (b), necessity follows by [4, Theorem 3.5]. Sufficiency follows exactly as
in the proof of [2, Theorem 3.4 (b)] using (5.26) and part (a).

It remains to establish uniqueness and the stochastic representation as stated in part (c). By
(5.25), we also have IV e L2 (RY). Following the same arguments as in [3, Lemma 3.6.9],
we have

loc

V.(x) < liminf inf ]E;[ / r(RU(XJ)—Q*)ds]. (5.27)
0

™0 vellssm



6748 A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733-6756

On the other hand, applying It6’s formula, we obtain

Vi(x) = E [ fo T R — 0. ds + v*(xf,w] : (5.28)
with vy a measurable selector for the minimizer of (5.22). Note that

ViXznrg) = Vi Xz)L(T < Tr) + Vil X)) LT = TR)
We next show that

limsup EX[V, (X )1(7, > tz)] = 0. (5.29)
R /o0

Let @ := V, + V.. It follows by (5.26) that @ is coercive and V.~ € o(®). It is also evident by
(4.1) and (5.22) that A,, @(x) < 13 (x) + 0« Then, applying It&’s formula, we obtain

EP[D(Xnrp)] < (06 + DEYV[E A tr] 4+ (x) < (0x + DEP[E] + D(x).

We also have

ES[V, (X1 2 )] = (0 + DELIE] + 0() sup % 0) (5.30)

yGB; QB(Y) .

Note that E°[7,] is finite since vy € s by Theorem 4.1. Since V. € o(®), it follows that
SUPyc g, V;T(y);) vanishes as R — oo, which in turn implies that the right hand side of (5.30)
converges to 0 as R — oo. This proves (5.29). Letting R — oo in (5.28), it follows by Fatou’s

lemma and (5.29) that

Vo(x) = EY [ / " (R (X0 — 0.) ds + v*<xf,>] ,
0

and we obtain

Vi(x) > limsup inf E} |:/ (Ry(Xs) — 04) dsi| , (5.31)
N0 veslsm 0

which together with (5.27) implies (5.23). Note that, by the argument above, (5.31) holds for
any solution V of (5.22) which satisfies V~ € o(V,). Thus, if V is any other solution, we have
V. < V and equality follows by the strong maximum principle. This completes the proof. [

5.1. Regularity of solutions of the HIB

In this section, we examine the regularity of solutions of the HIB equations in Theorems 5.1
and 5.2. If the Lévy measure v has a compact support, then it follows by the elliptic
regularity [22, Theorem 9.19] that the solutions to the HIB equations are in C>"(R¥) for any
r € (0, 1). See also Remark 3.4 in [4].

We need the following gradient estimate which is also applicable to a larger class of
equations.

Lemma 5.3. Let ¢ € WP (RY), p > d, be a strong solution, having at most polynomial

loc
growth of degree m > 0, to the equation

a" (x);;p(x) + b’ (0)3;9(x) + c(X)p(x) + Lp(x) = f(x) on RY, (5.32)
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where

(i) the matrix a is bounded, Lipschitz continuous on R¢ and uniformly elliptic;
(ii) the coefficients b and c are locally bounded and measurable, with b having at most
linear growth and ¢ having at most quadratic growth;
(iti) the function f has at most polynomial growth of degree k with k € (0, m +2J;
(iv) the Lévy measure v of the nonlocal operator I is finite and satisfies f]Rd |z]™ v(dz) < oo.

Then, |Vo(x)| € O(|lx|™*).

Proof. For any fixed xo € RY, for which without loss of generality we assume |xo| > 1, we
define the scaled variables

5(x) = ( al

and similarly for a, b, & and f . The equation in (5.32) then takes the form

& (036 + 2 .600 + g0 + <,0< x”) _ SO R 533
|x0] "/ %o |xo] o

It is clear from (i)—(ii) that the coefficients @/, |xo|~26 and |x|~'¢ are bounded in the ball
B»(xp), with a bound independent of x(, and that the Lipschitz and ellipticity constants of the
matrix a in By(x() are independent of xy. Thus, it follows by (5.33) and the a priori estimate
in [22, Theorem 9.11] that, for any fixed p > d, we have

o )”L”(Bz(-’CO))

1500 i)

for some pos1t1ve constant C independent of xy. Since v is finite and fRd|z|’" v(dz) < oo, it
follows that I(p has at most polynomial growth of degree m. Then, by the assumptions of the
lemma, the right hand side of (5.34) is O(|xo|"/?). Therefore, by (5.34) and the compactness
of the Sobolev embedding W7 (B;(xp)) < C'"(B(xo)), for 0 <r <1 — F we obtain

161w ri600 = € (1] oy + 1T 00l 53

[V6 ] Lo,y = Coll+1x0"?) Vo € R (5.35)

for some positive constant Cy independent of xj. On the other hand,
X0 _ 129 ~ d
Vol —5 | = Xl Velxo)  Yxg e RY,
|x0]"/

which together with (5.35) imply |Ve(x)| € O(Jx|"*"). This completes the proof. [J

Consider the following assumption on the growth of the coefficients and the functions V,
and V.

Assumption 5.1.

(i) The running cost function has at most polynomial growth of degree m, > 1, that is,
R(x, u) < Co(1 + |x|™), for all (x,u) € R? x U and some positive constant C,.

(i1) Assumptions 2.1 and 2.2 hold with V and V, having at most polynomial growth of degree
M.

(iii) The Lévy measure v satisfies f]Rd |z|mot!

dz < o0.
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Remark 5.1. Provided that f]Rd|z|’"Jr1 v(dz) < oo, it is clear that Assumption 5.1 holds for
the limiting controlled diffusion in Section 3.

We have the following theorem.

Theorem 5.3. Grant Assumption 5.1. The solutions Vi of (5.2), and Vi of (5.22) are in
C>"(RY) for any r € (0, 1).

Proof. Consider V,. Since V, € O(V,+3V) by (5.25), then 7V, e L2 (RY) by (2.8) and (2.9),

and V, has at most polynomial growth of degree m, by Assumption 5.1. We claim that ZV, is
locally Lipschitz continuous. To prove the claim, we fix some xo € R?, and write

|ZVilxo + x) = TVilxo + x|

IA

1
[ 9Vt 00 =430 =) 06 vay) 5.36)

IA

[ =] [ IVl @)
R4
for all x’, x” € By. By (5.22) and Lemma 5.3 we obtain
[V Vill ooy € O(lz|™th,

which together with Assumption 5.1(iii) and (5.36) proves the claim. It then follows by (5.22)
and elliptic regularity (see [22, Theorem 9.19]) that V, is in C>"(R¢) for any r € (0, 1). The
proof of the same property for V, is completely analogous. [

6. Pathwise optimality

The pathwise formulation of the ergodic control problem seeks to a.s. minimize over U € il

t
lim sup 1/ RXY, Uy ds,
t—o00 It Jo
where {XY},>¢ denotes the process governed by (2.1) under the control U. If the running
cost is near-monotone or a uniform stability condition holds, it follows by [4, Theorem 4.4]
that every average cost optimal stationary Markov control is also optimal with respect to the
pathwise ergodic criterion. In this section, we extend the results of the diffusion model in [1]
to the jump—diffusion model. We modify Assumption 2.1 as follows.

Assumption 6.1. Assumption 2.1 holds with F = ¢ o V,, where ¢: R, — R, is smooth
increasing concave function, satisfying ¢(z) — oo as z — oo. In addition, the functions o and

vV, d
TTgow, are bounded on R¢.

Remark 6.1. For the examples in Section 3, we may rescale F(x) in Lemma 3.1 so that
F(x) = CVgu(x) for some positive constant C. Thus, if we choose ¢(x) = Cx, then
Assumption 6.1 holds.

Theorem 6.1. Grant Assumption 6.1. Then, if U € U is such that oy(x) < oo, the family
of random empirical measures {¢V : t > 0} in Definition 4.1 is tight a.s. In particular, every
average cost optimal stationary Markov control is pathwise optimal.
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Proof. The technique is similar to that of [1, Theorem 3.1], but here we need to account for
the nonlocal term. We define ¥y : Ry — R, for N € IN, by

Un(z) = dy,

/0 N +¢(y)

and ¢y : RY — R, by ¢y = ¥y o V,, where ‘o’ denotes composition of functions. Let U € $(
be some admissible control such that

lim sup/ R(x, z) ;“,fl/(dx,dz) < 00
n—o0o RYxU

for some increasing divergent sequence {z,}. Since R is coercive on K x U, it follows that ;“tff
is a.s. tight when restricted to *B(XC x U), the Borel o-algebra of X x U.
Since Vyy and o are bounded, by It6’s formula and (2.8) we obtain
en(Xi) —on(Xo) _

‘l t
: f A on(X)ds + - /0 (Von(X,), o(X,) dW,)

(6.1)
—// §0N(Xs—+g(é))_(pN(Xs—))N(dsvdS)-
t Jo Jrm

Then, the second and third terms on the right hand side of (6.1) converge to 0 a.s. as t — 00,
by the proof of Lemma 4.2 in [4].
An easy computation shows that

1-¢(Vo(x)) c
Voo T Fiv() + Fan(x)  on K¢,
Apn(x) < {’ﬁ%&}i@fz;) - - « (6.2)
ooy T Frv() + Fan(x) on /K,
where
o TV

. xeR!, (6.3)
(N + ¢(Vo(x))

Finx) = —¢'(Vo(x))
and
/vo(x+£) ¢ V (x)) ¢(y) dy v(de) 6.4)

Fanx) = Vo) N + ()

N~I—¢ V(x) /]Rd

To estimate (6.4), we use

‘ / /W”E)qs\?(x)) ¢(y)
RY JVo(x) N+ ¢(y)

Then combining this with (6.1)—(6.4), we obtain
/ P (Vo(x))
Kkexty N + ¢ (Vo(x))

for some constant C, from which it follows that {tnU is a.s. tight when restricted to B(K¢ x U).
Therefore, it is a.s. tight in P@R? x U). This completes the proof. [

o

< VR 19w NtooV,

LDO(]R(])

; c
1m su N
P N

n—oo

¢Y(dx, dz) <

7. An approximate HJB equation

In this section, we use an approximate HJB equation to construct e-optimal controls.
Its purpose is twofold. First, it is used to establish asymptotic optimality in [13]. Second,
the approximating HIB equation is a semilinear equation on a sufficiently large ball, and a



6752 A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733-6756

linear equation on its complement, which is beneficial to numerical methods. This result was
first reported in [2, Section 4] for a continuous diffusion. The proof in that paper crucially
relied on the following property of a positive recurrent nondegenerate diffusion of the form
dX, = b(X,)dt + o(X,)dW,: If a function f: R — R is integrable under the invariant
probability measure p of the diffusion, then E[ f(X,)] — w(f) as t — oo. The proof of
this property in [26, Proposition 2.6] relies on the Harnack property which we do not have for
the model in this paper. Thus, a different approach is adopted.

We first consider the ergodic control problem with a suitable control which satisfies
Assumption 2.2 fixed outside a ball of arbitrarily large radius. Then, we show that e-optimal
controls are obtained by choosing the radius of the ball sufficiently large. Assumption 7.1
replaces Assumption 2.2 in this section.

Assumption 7.1. The following hold:

(i) The function F in (4.2) is in C*(R¥), has at most polynomial growth of degree /m > 1,
and satisfies

x[|VF| + [xPIV2F|| € O(F).
(ii) There exist 7 € 8l and V € C2(RY), with V € O(F), satisfying
.A,jf\v? < 5 — f

for some positive constant C;
iii The Lévy measure v satisfies fRdlzlm v(dz) < oo.

The jump diffusion with a ‘truncated’ control space is defined as follows.

Definition 7.1. With v € i, as in Assumption 7.1 and each R > 0, we define

R b(x,u), if (x,u) e Bg x U,
b (x,u) = N . X
b(x,0(x)), ifx € B,
if B
:RR(.X,M) — R(x”'f)r 1 (X,M)-E R XU?
R(x, 0(x)), ifx € B.

Let A denote the operator associated with the controlled jump diffusion
dX, = bR(X,,U,)dt + o(X,)dW, +dL,,
with X = x € R?, and define

RER — RR L ¢F, and Qi’R = inf  7,(R°),
veUsm(D,R)

where U, (0, R) denotes the class of stationary Markov controls which agree with v € Sy,
on B
R

By Theorem 5.2, for each R > 0 and € € (0, 1), there exists a unique VSR IS Wi;f (R%), for
any p > 1, which is bounded from below in R? and satisfies VER(O) =0, and

mi[[rjl [ARVE@) + ROR(x,w)] = 08F  ae. in RY.
ue
In addition, there exists a constant C such that

VR <ca+2V) VR>o0. (7.1



A. Arapostathis, G. Pang and Y. Zheng / Stochastic Processes and their Applications 130 (2020) 6733-6756 6753

It is clear that 0&® is nonincreasing. Let 0¢ := limg_.o, 05%. As in the proof of Theorem 5.2,
VR - V. e W2 P(R?), for any p > 1, which satisfies

loc

min [ A, Ve(x) + R (x, w)] = 6¢ ae. in R?. (7.2)
uel

Recall that R¢, defined in the proof of Theorem 4.1, is the optimal ergodic value for the
controlled diffusion in (2.1) with running cost R¢. We wish to show that 0¢ = . To establish
this we need the following lemma, which provides a lower bound for supersolutions of a general
class of integro-differential equations.

Lemma 7.1. Let ¢ € W2RY), be a supersolution of the equation

loc
a"’ ()39 (x) + b ()3 p(x) + Lp(x) + Fx) = 0 on R,
which is bounded below in R?. Assume the following:

(i) the matrix a is nonsingular and satisfies

. la(x)]|
lim sup 5 <
\xl%oo |x

’

(ii) the drift b is measurable and has at most linear growth;
(iii) the function F is as in Assumption 7.1;
(iv) the operator T: C'(RY) — C(RY) is given by

Ih(x) = /]Rd h(x 4+ y) — h(x) — (y, Vh(x)) v(dy)

for h € C'(RY) and the Lévy measure v satisfies

/ Izlﬁ v(dz)+/ 1z|> v(dz) < oo.
RY BI\{0}

Then, Fe O(p).

Proof. We have
Ap(x) == a’ (x)3;jp(x) + b ()dip(x) + Zop(x) < —F(x)  VxeR?. (7.3)

By using (i)—(iii), it is clear that AF—TIF € O(F) By (iii) and (iv), it follows by [12, Lemma
5.1] that IF € (‘_)(F) Thus, there exists 7 > 0 such that

AF(x)| < CA+F(x)) VxeB, (7.4)

for some positive constant C. Let ¢,(x) be a smooth cutoff function satisfying ¢,(x) = 1 on

B, and ¢,(x) =0 on By, for n € N. By (7.4) and (iii), we can choose r > 7 large enough

and € € (0, 1) sufficiently small so that for any n € IN,
— F(x)—e AF(x)p,(x) <0  Vxe B, (7.5)

Let M be a lower bound for ¢, and n > r. We define the function @7 (x) = ¢(x)— eF xX), (x)—
(M — supp, F). Then, applying (7.3) and (7.5), we have

Pr(x) < —F(x) — e AF(x)py(x) < 0 Vx € Byy1 \ B,

It is evident that ¢(x) — (M —supg F) > 0 on BS,,, and ¢(x) — € F(x) — (M — supy F) >0
on B,. Thus, applying the strong maximum principle, we obtain ¢”(x) > 0 in R¢. It follows
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that ¢(x) > eF ()P (x) + (M — supp, F ) in R? for all n large enough. This completes the
proof. [

The main result of this section is the following.
Theorem 7.1. Grant Assumption 7.1. Then, 0¢ = ©t.

Proof. Let V, € WE? (R), p > 1, be the unique solution of the equation

loc

min [A, Ve(x) + R(x, )] = of ae.in R, (7.6)
ue

which is bounded below in R¢ and satisfies V,(0) = 0. Applying Itd’s formula to (7.6), we
obtain

€ € T'Azy €
B (V)] = Ve B [ R 00) 05|+ 0BT A, a7
0

with v§ a measurable selector from the minimizer of (7.7). Tt is clear from (7.7) that G(T) :=
lim, o E [V (Xr M,)] exists and satisfies lim sup = G(T) — O by Birkhoff’s ergodic theorem.
By Lemma 7.1, we have 9%6 € O(V,), and this 1mphes that V € O(V,) by Assumption 7.1(ii)

and (7.1). Therefore, if G(T) = limsup, ,  E [V (X7rz,)]. then lim sup;_, TG(T) — 0.
Thus, evaluating (7.2) at v, and applying It6’ formula, we obtain

1wl (T
lim sup TE?‘ [/ Ree (Xs) ds:| > 0°,
0

T—o0

from which it follows that oS > 0¢. This of course implies that o = 9¢, since (7.2) has no
bounded from below solutions for o€ < 5. O

The following corollary concerns the construction of continuous precise e-optimal controls.
It follows directly from 7.1 and the method in [9, Theorem 5.5].

Corollary 7.1. For any given € > 0 and v satisfying Assumption 2.2, there exist R = R(¢) > 0
and a continuous precise control v € s such that ve = v on By, and

/ R(x, u)m, (dx, du) < o, + €.
RYxU
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